1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "qemu/cutils.h" 31 #include "qemu/bitops.h" 32 #include "qemu/bitmap.h" 33 #include "qemu/madvise.h" 34 #include "qemu/main-loop.h" 35 #include "xbzrle.h" 36 #include "ram-compress.h" 37 #include "ram.h" 38 #include "migration.h" 39 #include "migration-stats.h" 40 #include "migration/register.h" 41 #include "migration/misc.h" 42 #include "qemu-file.h" 43 #include "postcopy-ram.h" 44 #include "page_cache.h" 45 #include "qemu/error-report.h" 46 #include "qapi/error.h" 47 #include "qapi/qapi-types-migration.h" 48 #include "qapi/qapi-events-migration.h" 49 #include "qapi/qapi-commands-migration.h" 50 #include "qapi/qmp/qerror.h" 51 #include "trace.h" 52 #include "exec/ram_addr.h" 53 #include "exec/target_page.h" 54 #include "qemu/rcu_queue.h" 55 #include "migration/colo.h" 56 #include "block.h" 57 #include "sysemu/cpu-throttle.h" 58 #include "savevm.h" 59 #include "qemu/iov.h" 60 #include "multifd.h" 61 #include "sysemu/runstate.h" 62 #include "rdma.h" 63 #include "options.h" 64 #include "sysemu/dirtylimit.h" 65 #include "sysemu/kvm.h" 66 67 #include "hw/boards.h" /* for machine_dump_guest_core() */ 68 69 #if defined(__linux__) 70 #include "qemu/userfaultfd.h" 71 #endif /* defined(__linux__) */ 72 73 /***********************************************************/ 74 /* ram save/restore */ 75 76 /* 77 * RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it 78 * worked for pages that were filled with the same char. We switched 79 * it to only search for the zero value. And to avoid confusion with 80 * RAM_SAVE_FLAG_COMPRESS_PAGE just rename it. 81 */ 82 /* 83 * RAM_SAVE_FLAG_FULL was obsoleted in 2009, it can be reused now 84 */ 85 #define RAM_SAVE_FLAG_FULL 0x01 86 #define RAM_SAVE_FLAG_ZERO 0x02 87 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 88 #define RAM_SAVE_FLAG_PAGE 0x08 89 #define RAM_SAVE_FLAG_EOS 0x10 90 #define RAM_SAVE_FLAG_CONTINUE 0x20 91 #define RAM_SAVE_FLAG_XBZRLE 0x40 92 /* 0x80 is reserved in rdma.h for RAM_SAVE_FLAG_HOOK */ 93 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 94 #define RAM_SAVE_FLAG_MULTIFD_FLUSH 0x200 95 /* We can't use any flag that is bigger than 0x200 */ 96 97 XBZRLECacheStats xbzrle_counters; 98 99 /* used by the search for pages to send */ 100 struct PageSearchStatus { 101 /* The migration channel used for a specific host page */ 102 QEMUFile *pss_channel; 103 /* Last block from where we have sent data */ 104 RAMBlock *last_sent_block; 105 /* Current block being searched */ 106 RAMBlock *block; 107 /* Current page to search from */ 108 unsigned long page; 109 /* Set once we wrap around */ 110 bool complete_round; 111 /* Whether we're sending a host page */ 112 bool host_page_sending; 113 /* The start/end of current host page. Invalid if host_page_sending==false */ 114 unsigned long host_page_start; 115 unsigned long host_page_end; 116 }; 117 typedef struct PageSearchStatus PageSearchStatus; 118 119 /* struct contains XBZRLE cache and a static page 120 used by the compression */ 121 static struct { 122 /* buffer used for XBZRLE encoding */ 123 uint8_t *encoded_buf; 124 /* buffer for storing page content */ 125 uint8_t *current_buf; 126 /* Cache for XBZRLE, Protected by lock. */ 127 PageCache *cache; 128 QemuMutex lock; 129 /* it will store a page full of zeros */ 130 uint8_t *zero_target_page; 131 /* buffer used for XBZRLE decoding */ 132 uint8_t *decoded_buf; 133 } XBZRLE; 134 135 static void XBZRLE_cache_lock(void) 136 { 137 if (migrate_xbzrle()) { 138 qemu_mutex_lock(&XBZRLE.lock); 139 } 140 } 141 142 static void XBZRLE_cache_unlock(void) 143 { 144 if (migrate_xbzrle()) { 145 qemu_mutex_unlock(&XBZRLE.lock); 146 } 147 } 148 149 /** 150 * xbzrle_cache_resize: resize the xbzrle cache 151 * 152 * This function is called from migrate_params_apply in main 153 * thread, possibly while a migration is in progress. A running 154 * migration may be using the cache and might finish during this call, 155 * hence changes to the cache are protected by XBZRLE.lock(). 156 * 157 * Returns 0 for success or -1 for error 158 * 159 * @new_size: new cache size 160 * @errp: set *errp if the check failed, with reason 161 */ 162 int xbzrle_cache_resize(uint64_t new_size, Error **errp) 163 { 164 PageCache *new_cache; 165 int64_t ret = 0; 166 167 /* Check for truncation */ 168 if (new_size != (size_t)new_size) { 169 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", 170 "exceeding address space"); 171 return -1; 172 } 173 174 if (new_size == migrate_xbzrle_cache_size()) { 175 /* nothing to do */ 176 return 0; 177 } 178 179 XBZRLE_cache_lock(); 180 181 if (XBZRLE.cache != NULL) { 182 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp); 183 if (!new_cache) { 184 ret = -1; 185 goto out; 186 } 187 188 cache_fini(XBZRLE.cache); 189 XBZRLE.cache = new_cache; 190 } 191 out: 192 XBZRLE_cache_unlock(); 193 return ret; 194 } 195 196 static bool postcopy_preempt_active(void) 197 { 198 return migrate_postcopy_preempt() && migration_in_postcopy(); 199 } 200 201 bool migrate_ram_is_ignored(RAMBlock *block) 202 { 203 return !qemu_ram_is_migratable(block) || 204 (migrate_ignore_shared() && qemu_ram_is_shared(block) 205 && qemu_ram_is_named_file(block)); 206 } 207 208 #undef RAMBLOCK_FOREACH 209 210 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque) 211 { 212 RAMBlock *block; 213 int ret = 0; 214 215 RCU_READ_LOCK_GUARD(); 216 217 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 218 ret = func(block, opaque); 219 if (ret) { 220 break; 221 } 222 } 223 return ret; 224 } 225 226 static void ramblock_recv_map_init(void) 227 { 228 RAMBlock *rb; 229 230 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 231 assert(!rb->receivedmap); 232 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits()); 233 } 234 } 235 236 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr) 237 { 238 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb), 239 rb->receivedmap); 240 } 241 242 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset) 243 { 244 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); 245 } 246 247 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr) 248 { 249 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap); 250 } 251 252 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr, 253 size_t nr) 254 { 255 bitmap_set_atomic(rb->receivedmap, 256 ramblock_recv_bitmap_offset(host_addr, rb), 257 nr); 258 } 259 260 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL) 261 262 /* 263 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes). 264 * 265 * Returns >0 if success with sent bytes, or <0 if error. 266 */ 267 int64_t ramblock_recv_bitmap_send(QEMUFile *file, 268 const char *block_name) 269 { 270 RAMBlock *block = qemu_ram_block_by_name(block_name); 271 unsigned long *le_bitmap, nbits; 272 uint64_t size; 273 274 if (!block) { 275 error_report("%s: invalid block name: %s", __func__, block_name); 276 return -1; 277 } 278 279 nbits = block->postcopy_length >> TARGET_PAGE_BITS; 280 281 /* 282 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit 283 * machines we may need 4 more bytes for padding (see below 284 * comment). So extend it a bit before hand. 285 */ 286 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 287 288 /* 289 * Always use little endian when sending the bitmap. This is 290 * required that when source and destination VMs are not using the 291 * same endianness. (Note: big endian won't work.) 292 */ 293 bitmap_to_le(le_bitmap, block->receivedmap, nbits); 294 295 /* Size of the bitmap, in bytes */ 296 size = DIV_ROUND_UP(nbits, 8); 297 298 /* 299 * size is always aligned to 8 bytes for 64bit machines, but it 300 * may not be true for 32bit machines. We need this padding to 301 * make sure the migration can survive even between 32bit and 302 * 64bit machines. 303 */ 304 size = ROUND_UP(size, 8); 305 306 qemu_put_be64(file, size); 307 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size); 308 g_free(le_bitmap); 309 /* 310 * Mark as an end, in case the middle part is screwed up due to 311 * some "mysterious" reason. 312 */ 313 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING); 314 int ret = qemu_fflush(file); 315 if (ret) { 316 return ret; 317 } 318 319 return size + sizeof(size); 320 } 321 322 /* 323 * An outstanding page request, on the source, having been received 324 * and queued 325 */ 326 struct RAMSrcPageRequest { 327 RAMBlock *rb; 328 hwaddr offset; 329 hwaddr len; 330 331 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; 332 }; 333 334 /* State of RAM for migration */ 335 struct RAMState { 336 /* 337 * PageSearchStatus structures for the channels when send pages. 338 * Protected by the bitmap_mutex. 339 */ 340 PageSearchStatus pss[RAM_CHANNEL_MAX]; 341 /* UFFD file descriptor, used in 'write-tracking' migration */ 342 int uffdio_fd; 343 /* total ram size in bytes */ 344 uint64_t ram_bytes_total; 345 /* Last block that we have visited searching for dirty pages */ 346 RAMBlock *last_seen_block; 347 /* Last dirty target page we have sent */ 348 ram_addr_t last_page; 349 /* last ram version we have seen */ 350 uint32_t last_version; 351 /* How many times we have dirty too many pages */ 352 int dirty_rate_high_cnt; 353 /* these variables are used for bitmap sync */ 354 /* last time we did a full bitmap_sync */ 355 int64_t time_last_bitmap_sync; 356 /* bytes transferred at start_time */ 357 uint64_t bytes_xfer_prev; 358 /* number of dirty pages since start_time */ 359 uint64_t num_dirty_pages_period; 360 /* xbzrle misses since the beginning of the period */ 361 uint64_t xbzrle_cache_miss_prev; 362 /* Amount of xbzrle pages since the beginning of the period */ 363 uint64_t xbzrle_pages_prev; 364 /* Amount of xbzrle encoded bytes since the beginning of the period */ 365 uint64_t xbzrle_bytes_prev; 366 /* Are we really using XBZRLE (e.g., after the first round). */ 367 bool xbzrle_started; 368 /* Are we on the last stage of migration */ 369 bool last_stage; 370 371 /* total handled target pages at the beginning of period */ 372 uint64_t target_page_count_prev; 373 /* total handled target pages since start */ 374 uint64_t target_page_count; 375 /* number of dirty bits in the bitmap */ 376 uint64_t migration_dirty_pages; 377 /* 378 * Protects: 379 * - dirty/clear bitmap 380 * - migration_dirty_pages 381 * - pss structures 382 */ 383 QemuMutex bitmap_mutex; 384 /* The RAMBlock used in the last src_page_requests */ 385 RAMBlock *last_req_rb; 386 /* Queue of outstanding page requests from the destination */ 387 QemuMutex src_page_req_mutex; 388 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests; 389 390 /* 391 * This is only used when postcopy is in recovery phase, to communicate 392 * between the migration thread and the return path thread on dirty 393 * bitmap synchronizations. This field is unused in other stages of 394 * RAM migration. 395 */ 396 unsigned int postcopy_bmap_sync_requested; 397 }; 398 typedef struct RAMState RAMState; 399 400 static RAMState *ram_state; 401 402 static NotifierWithReturnList precopy_notifier_list; 403 404 /* Whether postcopy has queued requests? */ 405 static bool postcopy_has_request(RAMState *rs) 406 { 407 return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests); 408 } 409 410 void precopy_infrastructure_init(void) 411 { 412 notifier_with_return_list_init(&precopy_notifier_list); 413 } 414 415 void precopy_add_notifier(NotifierWithReturn *n) 416 { 417 notifier_with_return_list_add(&precopy_notifier_list, n); 418 } 419 420 void precopy_remove_notifier(NotifierWithReturn *n) 421 { 422 notifier_with_return_remove(n); 423 } 424 425 int precopy_notify(PrecopyNotifyReason reason, Error **errp) 426 { 427 PrecopyNotifyData pnd; 428 pnd.reason = reason; 429 pnd.errp = errp; 430 431 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd); 432 } 433 434 uint64_t ram_bytes_remaining(void) 435 { 436 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) : 437 0; 438 } 439 440 void ram_transferred_add(uint64_t bytes) 441 { 442 if (runstate_is_running()) { 443 stat64_add(&mig_stats.precopy_bytes, bytes); 444 } else if (migration_in_postcopy()) { 445 stat64_add(&mig_stats.postcopy_bytes, bytes); 446 } else { 447 stat64_add(&mig_stats.downtime_bytes, bytes); 448 } 449 } 450 451 struct MigrationOps { 452 int (*ram_save_target_page)(RAMState *rs, PageSearchStatus *pss); 453 }; 454 typedef struct MigrationOps MigrationOps; 455 456 MigrationOps *migration_ops; 457 458 static int ram_save_host_page_urgent(PageSearchStatus *pss); 459 460 /* NOTE: page is the PFN not real ram_addr_t. */ 461 static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page) 462 { 463 pss->block = rb; 464 pss->page = page; 465 pss->complete_round = false; 466 } 467 468 /* 469 * Check whether two PSSs are actively sending the same page. Return true 470 * if it is, false otherwise. 471 */ 472 static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2) 473 { 474 return pss1->host_page_sending && pss2->host_page_sending && 475 (pss1->host_page_start == pss2->host_page_start); 476 } 477 478 /** 479 * save_page_header: write page header to wire 480 * 481 * If this is the 1st block, it also writes the block identification 482 * 483 * Returns the number of bytes written 484 * 485 * @pss: current PSS channel status 486 * @block: block that contains the page we want to send 487 * @offset: offset inside the block for the page 488 * in the lower bits, it contains flags 489 */ 490 static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f, 491 RAMBlock *block, ram_addr_t offset) 492 { 493 size_t size, len; 494 bool same_block = (block == pss->last_sent_block); 495 496 if (same_block) { 497 offset |= RAM_SAVE_FLAG_CONTINUE; 498 } 499 qemu_put_be64(f, offset); 500 size = 8; 501 502 if (!same_block) { 503 len = strlen(block->idstr); 504 qemu_put_byte(f, len); 505 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 506 size += 1 + len; 507 pss->last_sent_block = block; 508 } 509 return size; 510 } 511 512 /** 513 * mig_throttle_guest_down: throttle down the guest 514 * 515 * Reduce amount of guest cpu execution to hopefully slow down memory 516 * writes. If guest dirty memory rate is reduced below the rate at 517 * which we can transfer pages to the destination then we should be 518 * able to complete migration. Some workloads dirty memory way too 519 * fast and will not effectively converge, even with auto-converge. 520 */ 521 static void mig_throttle_guest_down(uint64_t bytes_dirty_period, 522 uint64_t bytes_dirty_threshold) 523 { 524 uint64_t pct_initial = migrate_cpu_throttle_initial(); 525 uint64_t pct_increment = migrate_cpu_throttle_increment(); 526 bool pct_tailslow = migrate_cpu_throttle_tailslow(); 527 int pct_max = migrate_max_cpu_throttle(); 528 529 uint64_t throttle_now = cpu_throttle_get_percentage(); 530 uint64_t cpu_now, cpu_ideal, throttle_inc; 531 532 /* We have not started throttling yet. Let's start it. */ 533 if (!cpu_throttle_active()) { 534 cpu_throttle_set(pct_initial); 535 } else { 536 /* Throttling already on, just increase the rate */ 537 if (!pct_tailslow) { 538 throttle_inc = pct_increment; 539 } else { 540 /* Compute the ideal CPU percentage used by Guest, which may 541 * make the dirty rate match the dirty rate threshold. */ 542 cpu_now = 100 - throttle_now; 543 cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 / 544 bytes_dirty_period); 545 throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment); 546 } 547 cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max)); 548 } 549 } 550 551 void mig_throttle_counter_reset(void) 552 { 553 RAMState *rs = ram_state; 554 555 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 556 rs->num_dirty_pages_period = 0; 557 rs->bytes_xfer_prev = migration_transferred_bytes(); 558 } 559 560 /** 561 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache 562 * 563 * @current_addr: address for the zero page 564 * 565 * Update the xbzrle cache to reflect a page that's been sent as all 0. 566 * The important thing is that a stale (not-yet-0'd) page be replaced 567 * by the new data. 568 * As a bonus, if the page wasn't in the cache it gets added so that 569 * when a small write is made into the 0'd page it gets XBZRLE sent. 570 */ 571 static void xbzrle_cache_zero_page(ram_addr_t current_addr) 572 { 573 /* We don't care if this fails to allocate a new cache page 574 * as long as it updated an old one */ 575 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, 576 stat64_get(&mig_stats.dirty_sync_count)); 577 } 578 579 #define ENCODING_FLAG_XBZRLE 0x1 580 581 /** 582 * save_xbzrle_page: compress and send current page 583 * 584 * Returns: 1 means that we wrote the page 585 * 0 means that page is identical to the one already sent 586 * -1 means that xbzrle would be longer than normal 587 * 588 * @rs: current RAM state 589 * @pss: current PSS channel 590 * @current_data: pointer to the address of the page contents 591 * @current_addr: addr of the page 592 * @block: block that contains the page we want to send 593 * @offset: offset inside the block for the page 594 */ 595 static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss, 596 uint8_t **current_data, ram_addr_t current_addr, 597 RAMBlock *block, ram_addr_t offset) 598 { 599 int encoded_len = 0, bytes_xbzrle; 600 uint8_t *prev_cached_page; 601 QEMUFile *file = pss->pss_channel; 602 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count); 603 604 if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) { 605 xbzrle_counters.cache_miss++; 606 if (!rs->last_stage) { 607 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 608 generation) == -1) { 609 return -1; 610 } else { 611 /* update *current_data when the page has been 612 inserted into cache */ 613 *current_data = get_cached_data(XBZRLE.cache, current_addr); 614 } 615 } 616 return -1; 617 } 618 619 /* 620 * Reaching here means the page has hit the xbzrle cache, no matter what 621 * encoding result it is (normal encoding, overflow or skipping the page), 622 * count the page as encoded. This is used to calculate the encoding rate. 623 * 624 * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB, 625 * 2nd page turns out to be skipped (i.e. no new bytes written to the 626 * page), the overall encoding rate will be 8KB / 2KB = 4, which has the 627 * skipped page included. In this way, the encoding rate can tell if the 628 * guest page is good for xbzrle encoding. 629 */ 630 xbzrle_counters.pages++; 631 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 632 633 /* save current buffer into memory */ 634 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 635 636 /* XBZRLE encoding (if there is no overflow) */ 637 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 638 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 639 TARGET_PAGE_SIZE); 640 641 /* 642 * Update the cache contents, so that it corresponds to the data 643 * sent, in all cases except where we skip the page. 644 */ 645 if (!rs->last_stage && encoded_len != 0) { 646 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 647 /* 648 * In the case where we couldn't compress, ensure that the caller 649 * sends the data from the cache, since the guest might have 650 * changed the RAM since we copied it. 651 */ 652 *current_data = prev_cached_page; 653 } 654 655 if (encoded_len == 0) { 656 trace_save_xbzrle_page_skipping(); 657 return 0; 658 } else if (encoded_len == -1) { 659 trace_save_xbzrle_page_overflow(); 660 xbzrle_counters.overflow++; 661 xbzrle_counters.bytes += TARGET_PAGE_SIZE; 662 return -1; 663 } 664 665 /* Send XBZRLE based compressed page */ 666 bytes_xbzrle = save_page_header(pss, pss->pss_channel, block, 667 offset | RAM_SAVE_FLAG_XBZRLE); 668 qemu_put_byte(file, ENCODING_FLAG_XBZRLE); 669 qemu_put_be16(file, encoded_len); 670 qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len); 671 bytes_xbzrle += encoded_len + 1 + 2; 672 /* 673 * Like compressed_size (please see update_compress_thread_counts), 674 * the xbzrle encoded bytes don't count the 8 byte header with 675 * RAM_SAVE_FLAG_CONTINUE. 676 */ 677 xbzrle_counters.bytes += bytes_xbzrle - 8; 678 ram_transferred_add(bytes_xbzrle); 679 680 return 1; 681 } 682 683 /** 684 * pss_find_next_dirty: find the next dirty page of current ramblock 685 * 686 * This function updates pss->page to point to the next dirty page index 687 * within the ramblock to migrate, or the end of ramblock when nothing 688 * found. Note that when pss->host_page_sending==true it means we're 689 * during sending a host page, so we won't look for dirty page that is 690 * outside the host page boundary. 691 * 692 * @pss: the current page search status 693 */ 694 static void pss_find_next_dirty(PageSearchStatus *pss) 695 { 696 RAMBlock *rb = pss->block; 697 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 698 unsigned long *bitmap = rb->bmap; 699 700 if (migrate_ram_is_ignored(rb)) { 701 /* Points directly to the end, so we know no dirty page */ 702 pss->page = size; 703 return; 704 } 705 706 /* 707 * If during sending a host page, only look for dirty pages within the 708 * current host page being send. 709 */ 710 if (pss->host_page_sending) { 711 assert(pss->host_page_end); 712 size = MIN(size, pss->host_page_end); 713 } 714 715 pss->page = find_next_bit(bitmap, size, pss->page); 716 } 717 718 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb, 719 unsigned long page) 720 { 721 uint8_t shift; 722 hwaddr size, start; 723 724 if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) { 725 return; 726 } 727 728 shift = rb->clear_bmap_shift; 729 /* 730 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this 731 * can make things easier sometimes since then start address 732 * of the small chunk will always be 64 pages aligned so the 733 * bitmap will always be aligned to unsigned long. We should 734 * even be able to remove this restriction but I'm simply 735 * keeping it. 736 */ 737 assert(shift >= 6); 738 739 size = 1ULL << (TARGET_PAGE_BITS + shift); 740 start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size); 741 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page); 742 memory_region_clear_dirty_bitmap(rb->mr, start, size); 743 } 744 745 static void 746 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb, 747 unsigned long start, 748 unsigned long npages) 749 { 750 unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift; 751 unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages); 752 unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages); 753 754 /* 755 * Clear pages from start to start + npages - 1, so the end boundary is 756 * exclusive. 757 */ 758 for (i = chunk_start; i < chunk_end; i += chunk_pages) { 759 migration_clear_memory_region_dirty_bitmap(rb, i); 760 } 761 } 762 763 /* 764 * colo_bitmap_find_diry:find contiguous dirty pages from start 765 * 766 * Returns the page offset within memory region of the start of the contiguout 767 * dirty page 768 * 769 * @rs: current RAM state 770 * @rb: RAMBlock where to search for dirty pages 771 * @start: page where we start the search 772 * @num: the number of contiguous dirty pages 773 */ 774 static inline 775 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, 776 unsigned long start, unsigned long *num) 777 { 778 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 779 unsigned long *bitmap = rb->bmap; 780 unsigned long first, next; 781 782 *num = 0; 783 784 if (migrate_ram_is_ignored(rb)) { 785 return size; 786 } 787 788 first = find_next_bit(bitmap, size, start); 789 if (first >= size) { 790 return first; 791 } 792 next = find_next_zero_bit(bitmap, size, first + 1); 793 assert(next >= first); 794 *num = next - first; 795 return first; 796 } 797 798 static inline bool migration_bitmap_clear_dirty(RAMState *rs, 799 RAMBlock *rb, 800 unsigned long page) 801 { 802 bool ret; 803 804 /* 805 * Clear dirty bitmap if needed. This _must_ be called before we 806 * send any of the page in the chunk because we need to make sure 807 * we can capture further page content changes when we sync dirty 808 * log the next time. So as long as we are going to send any of 809 * the page in the chunk we clear the remote dirty bitmap for all. 810 * Clearing it earlier won't be a problem, but too late will. 811 */ 812 migration_clear_memory_region_dirty_bitmap(rb, page); 813 814 ret = test_and_clear_bit(page, rb->bmap); 815 if (ret) { 816 rs->migration_dirty_pages--; 817 } 818 819 return ret; 820 } 821 822 static void dirty_bitmap_clear_section(MemoryRegionSection *section, 823 void *opaque) 824 { 825 const hwaddr offset = section->offset_within_region; 826 const hwaddr size = int128_get64(section->size); 827 const unsigned long start = offset >> TARGET_PAGE_BITS; 828 const unsigned long npages = size >> TARGET_PAGE_BITS; 829 RAMBlock *rb = section->mr->ram_block; 830 uint64_t *cleared_bits = opaque; 831 832 /* 833 * We don't grab ram_state->bitmap_mutex because we expect to run 834 * only when starting migration or during postcopy recovery where 835 * we don't have concurrent access. 836 */ 837 if (!migration_in_postcopy() && !migrate_background_snapshot()) { 838 migration_clear_memory_region_dirty_bitmap_range(rb, start, npages); 839 } 840 *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages); 841 bitmap_clear(rb->bmap, start, npages); 842 } 843 844 /* 845 * Exclude all dirty pages from migration that fall into a discarded range as 846 * managed by a RamDiscardManager responsible for the mapped memory region of 847 * the RAMBlock. Clear the corresponding bits in the dirty bitmaps. 848 * 849 * Discarded pages ("logically unplugged") have undefined content and must 850 * not get migrated, because even reading these pages for migration might 851 * result in undesired behavior. 852 * 853 * Returns the number of cleared bits in the RAMBlock dirty bitmap. 854 * 855 * Note: The result is only stable while migrating (precopy/postcopy). 856 */ 857 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb) 858 { 859 uint64_t cleared_bits = 0; 860 861 if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) { 862 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 863 MemoryRegionSection section = { 864 .mr = rb->mr, 865 .offset_within_region = 0, 866 .size = int128_make64(qemu_ram_get_used_length(rb)), 867 }; 868 869 ram_discard_manager_replay_discarded(rdm, §ion, 870 dirty_bitmap_clear_section, 871 &cleared_bits); 872 } 873 return cleared_bits; 874 } 875 876 /* 877 * Check if a host-page aligned page falls into a discarded range as managed by 878 * a RamDiscardManager responsible for the mapped memory region of the RAMBlock. 879 * 880 * Note: The result is only stable while migrating (precopy/postcopy). 881 */ 882 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start) 883 { 884 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 885 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 886 MemoryRegionSection section = { 887 .mr = rb->mr, 888 .offset_within_region = start, 889 .size = int128_make64(qemu_ram_pagesize(rb)), 890 }; 891 892 return !ram_discard_manager_is_populated(rdm, §ion); 893 } 894 return false; 895 } 896 897 /* Called with RCU critical section */ 898 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb) 899 { 900 uint64_t new_dirty_pages = 901 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length); 902 903 rs->migration_dirty_pages += new_dirty_pages; 904 rs->num_dirty_pages_period += new_dirty_pages; 905 } 906 907 /** 908 * ram_pagesize_summary: calculate all the pagesizes of a VM 909 * 910 * Returns a summary bitmap of the page sizes of all RAMBlocks 911 * 912 * For VMs with just normal pages this is equivalent to the host page 913 * size. If it's got some huge pages then it's the OR of all the 914 * different page sizes. 915 */ 916 uint64_t ram_pagesize_summary(void) 917 { 918 RAMBlock *block; 919 uint64_t summary = 0; 920 921 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 922 summary |= block->page_size; 923 } 924 925 return summary; 926 } 927 928 uint64_t ram_get_total_transferred_pages(void) 929 { 930 return stat64_get(&mig_stats.normal_pages) + 931 stat64_get(&mig_stats.zero_pages) + 932 compress_ram_pages() + xbzrle_counters.pages; 933 } 934 935 static void migration_update_rates(RAMState *rs, int64_t end_time) 936 { 937 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev; 938 939 /* calculate period counters */ 940 stat64_set(&mig_stats.dirty_pages_rate, 941 rs->num_dirty_pages_period * 1000 / 942 (end_time - rs->time_last_bitmap_sync)); 943 944 if (!page_count) { 945 return; 946 } 947 948 if (migrate_xbzrle()) { 949 double encoded_size, unencoded_size; 950 951 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss - 952 rs->xbzrle_cache_miss_prev) / page_count; 953 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; 954 unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) * 955 TARGET_PAGE_SIZE; 956 encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev; 957 if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) { 958 xbzrle_counters.encoding_rate = 0; 959 } else { 960 xbzrle_counters.encoding_rate = unencoded_size / encoded_size; 961 } 962 rs->xbzrle_pages_prev = xbzrle_counters.pages; 963 rs->xbzrle_bytes_prev = xbzrle_counters.bytes; 964 } 965 compress_update_rates(page_count); 966 } 967 968 /* 969 * Enable dirty-limit to throttle down the guest 970 */ 971 static void migration_dirty_limit_guest(void) 972 { 973 /* 974 * dirty page rate quota for all vCPUs fetched from 975 * migration parameter 'vcpu_dirty_limit' 976 */ 977 static int64_t quota_dirtyrate; 978 MigrationState *s = migrate_get_current(); 979 980 /* 981 * If dirty limit already enabled and migration parameter 982 * vcpu-dirty-limit untouched. 983 */ 984 if (dirtylimit_in_service() && 985 quota_dirtyrate == s->parameters.vcpu_dirty_limit) { 986 return; 987 } 988 989 quota_dirtyrate = s->parameters.vcpu_dirty_limit; 990 991 /* 992 * Set all vCPU a quota dirtyrate, note that the second 993 * parameter will be ignored if setting all vCPU for the vm 994 */ 995 qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL); 996 trace_migration_dirty_limit_guest(quota_dirtyrate); 997 } 998 999 static void migration_trigger_throttle(RAMState *rs) 1000 { 1001 uint64_t threshold = migrate_throttle_trigger_threshold(); 1002 uint64_t bytes_xfer_period = 1003 migration_transferred_bytes() - rs->bytes_xfer_prev; 1004 uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE; 1005 uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100; 1006 1007 /* During block migration the auto-converge logic incorrectly detects 1008 * that ram migration makes no progress. Avoid this by disabling the 1009 * throttling logic during the bulk phase of block migration. */ 1010 if (blk_mig_bulk_active()) { 1011 return; 1012 } 1013 1014 /* 1015 * The following detection logic can be refined later. For now: 1016 * Check to see if the ratio between dirtied bytes and the approx. 1017 * amount of bytes that just got transferred since the last time 1018 * we were in this routine reaches the threshold. If that happens 1019 * twice, start or increase throttling. 1020 */ 1021 if ((bytes_dirty_period > bytes_dirty_threshold) && 1022 (++rs->dirty_rate_high_cnt >= 2)) { 1023 rs->dirty_rate_high_cnt = 0; 1024 if (migrate_auto_converge()) { 1025 trace_migration_throttle(); 1026 mig_throttle_guest_down(bytes_dirty_period, 1027 bytes_dirty_threshold); 1028 } else if (migrate_dirty_limit()) { 1029 migration_dirty_limit_guest(); 1030 } 1031 } 1032 } 1033 1034 static void migration_bitmap_sync(RAMState *rs, bool last_stage) 1035 { 1036 RAMBlock *block; 1037 int64_t end_time; 1038 1039 stat64_add(&mig_stats.dirty_sync_count, 1); 1040 1041 if (!rs->time_last_bitmap_sync) { 1042 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1043 } 1044 1045 trace_migration_bitmap_sync_start(); 1046 memory_global_dirty_log_sync(last_stage); 1047 1048 qemu_mutex_lock(&rs->bitmap_mutex); 1049 WITH_RCU_READ_LOCK_GUARD() { 1050 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1051 ramblock_sync_dirty_bitmap(rs, block); 1052 } 1053 stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining()); 1054 } 1055 qemu_mutex_unlock(&rs->bitmap_mutex); 1056 1057 memory_global_after_dirty_log_sync(); 1058 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); 1059 1060 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1061 1062 /* more than 1 second = 1000 millisecons */ 1063 if (end_time > rs->time_last_bitmap_sync + 1000) { 1064 migration_trigger_throttle(rs); 1065 1066 migration_update_rates(rs, end_time); 1067 1068 rs->target_page_count_prev = rs->target_page_count; 1069 1070 /* reset period counters */ 1071 rs->time_last_bitmap_sync = end_time; 1072 rs->num_dirty_pages_period = 0; 1073 rs->bytes_xfer_prev = migration_transferred_bytes(); 1074 } 1075 if (migrate_events()) { 1076 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count); 1077 qapi_event_send_migration_pass(generation); 1078 } 1079 } 1080 1081 static void migration_bitmap_sync_precopy(RAMState *rs, bool last_stage) 1082 { 1083 Error *local_err = NULL; 1084 1085 /* 1086 * The current notifier usage is just an optimization to migration, so we 1087 * don't stop the normal migration process in the error case. 1088 */ 1089 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) { 1090 error_report_err(local_err); 1091 local_err = NULL; 1092 } 1093 1094 migration_bitmap_sync(rs, last_stage); 1095 1096 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) { 1097 error_report_err(local_err); 1098 } 1099 } 1100 1101 void ram_release_page(const char *rbname, uint64_t offset) 1102 { 1103 if (!migrate_release_ram() || !migration_in_postcopy()) { 1104 return; 1105 } 1106 1107 ram_discard_range(rbname, offset, TARGET_PAGE_SIZE); 1108 } 1109 1110 /** 1111 * save_zero_page: send the zero page to the stream 1112 * 1113 * Returns the number of pages written. 1114 * 1115 * @rs: current RAM state 1116 * @pss: current PSS channel 1117 * @offset: offset inside the block for the page 1118 */ 1119 static int save_zero_page(RAMState *rs, PageSearchStatus *pss, 1120 ram_addr_t offset) 1121 { 1122 uint8_t *p = pss->block->host + offset; 1123 QEMUFile *file = pss->pss_channel; 1124 int len = 0; 1125 1126 if (!buffer_is_zero(p, TARGET_PAGE_SIZE)) { 1127 return 0; 1128 } 1129 1130 len += save_page_header(pss, file, pss->block, offset | RAM_SAVE_FLAG_ZERO); 1131 qemu_put_byte(file, 0); 1132 len += 1; 1133 ram_release_page(pss->block->idstr, offset); 1134 1135 stat64_add(&mig_stats.zero_pages, 1); 1136 ram_transferred_add(len); 1137 1138 /* 1139 * Must let xbzrle know, otherwise a previous (now 0'd) cached 1140 * page would be stale. 1141 */ 1142 if (rs->xbzrle_started) { 1143 XBZRLE_cache_lock(); 1144 xbzrle_cache_zero_page(pss->block->offset + offset); 1145 XBZRLE_cache_unlock(); 1146 } 1147 1148 return len; 1149 } 1150 1151 /* 1152 * @pages: the number of pages written by the control path, 1153 * < 0 - error 1154 * > 0 - number of pages written 1155 * 1156 * Return true if the pages has been saved, otherwise false is returned. 1157 */ 1158 static bool control_save_page(PageSearchStatus *pss, 1159 ram_addr_t offset, int *pages) 1160 { 1161 int ret; 1162 1163 ret = rdma_control_save_page(pss->pss_channel, pss->block->offset, offset, 1164 TARGET_PAGE_SIZE); 1165 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) { 1166 return false; 1167 } 1168 1169 if (ret == RAM_SAVE_CONTROL_DELAYED) { 1170 *pages = 1; 1171 return true; 1172 } 1173 *pages = ret; 1174 return true; 1175 } 1176 1177 /* 1178 * directly send the page to the stream 1179 * 1180 * Returns the number of pages written. 1181 * 1182 * @pss: current PSS channel 1183 * @block: block that contains the page we want to send 1184 * @offset: offset inside the block for the page 1185 * @buf: the page to be sent 1186 * @async: send to page asyncly 1187 */ 1188 static int save_normal_page(PageSearchStatus *pss, RAMBlock *block, 1189 ram_addr_t offset, uint8_t *buf, bool async) 1190 { 1191 QEMUFile *file = pss->pss_channel; 1192 1193 ram_transferred_add(save_page_header(pss, pss->pss_channel, block, 1194 offset | RAM_SAVE_FLAG_PAGE)); 1195 if (async) { 1196 qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE, 1197 migrate_release_ram() && 1198 migration_in_postcopy()); 1199 } else { 1200 qemu_put_buffer(file, buf, TARGET_PAGE_SIZE); 1201 } 1202 ram_transferred_add(TARGET_PAGE_SIZE); 1203 stat64_add(&mig_stats.normal_pages, 1); 1204 return 1; 1205 } 1206 1207 /** 1208 * ram_save_page: send the given page to the stream 1209 * 1210 * Returns the number of pages written. 1211 * < 0 - error 1212 * >=0 - Number of pages written - this might legally be 0 1213 * if xbzrle noticed the page was the same. 1214 * 1215 * @rs: current RAM state 1216 * @block: block that contains the page we want to send 1217 * @offset: offset inside the block for the page 1218 */ 1219 static int ram_save_page(RAMState *rs, PageSearchStatus *pss) 1220 { 1221 int pages = -1; 1222 uint8_t *p; 1223 bool send_async = true; 1224 RAMBlock *block = pss->block; 1225 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 1226 ram_addr_t current_addr = block->offset + offset; 1227 1228 p = block->host + offset; 1229 trace_ram_save_page(block->idstr, (uint64_t)offset, p); 1230 1231 XBZRLE_cache_lock(); 1232 if (rs->xbzrle_started && !migration_in_postcopy()) { 1233 pages = save_xbzrle_page(rs, pss, &p, current_addr, 1234 block, offset); 1235 if (!rs->last_stage) { 1236 /* Can't send this cached data async, since the cache page 1237 * might get updated before it gets to the wire 1238 */ 1239 send_async = false; 1240 } 1241 } 1242 1243 /* XBZRLE overflow or normal page */ 1244 if (pages == -1) { 1245 pages = save_normal_page(pss, block, offset, p, send_async); 1246 } 1247 1248 XBZRLE_cache_unlock(); 1249 1250 return pages; 1251 } 1252 1253 static int ram_save_multifd_page(QEMUFile *file, RAMBlock *block, 1254 ram_addr_t offset) 1255 { 1256 if (multifd_queue_page(file, block, offset) < 0) { 1257 return -1; 1258 } 1259 stat64_add(&mig_stats.normal_pages, 1); 1260 1261 return 1; 1262 } 1263 1264 int compress_send_queued_data(CompressParam *param) 1265 { 1266 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_PRECOPY]; 1267 MigrationState *ms = migrate_get_current(); 1268 QEMUFile *file = ms->to_dst_file; 1269 int len = 0; 1270 1271 RAMBlock *block = param->block; 1272 ram_addr_t offset = param->offset; 1273 1274 if (param->result == RES_NONE) { 1275 return 0; 1276 } 1277 1278 assert(block == pss->last_sent_block); 1279 1280 if (param->result == RES_ZEROPAGE) { 1281 assert(qemu_file_buffer_empty(param->file)); 1282 len += save_page_header(pss, file, block, offset | RAM_SAVE_FLAG_ZERO); 1283 qemu_put_byte(file, 0); 1284 len += 1; 1285 ram_release_page(block->idstr, offset); 1286 } else if (param->result == RES_COMPRESS) { 1287 assert(!qemu_file_buffer_empty(param->file)); 1288 len += save_page_header(pss, file, block, 1289 offset | RAM_SAVE_FLAG_COMPRESS_PAGE); 1290 len += qemu_put_qemu_file(file, param->file); 1291 } else { 1292 abort(); 1293 } 1294 1295 update_compress_thread_counts(param, len); 1296 1297 return len; 1298 } 1299 1300 #define PAGE_ALL_CLEAN 0 1301 #define PAGE_TRY_AGAIN 1 1302 #define PAGE_DIRTY_FOUND 2 1303 /** 1304 * find_dirty_block: find the next dirty page and update any state 1305 * associated with the search process. 1306 * 1307 * Returns: 1308 * <0: An error happened 1309 * PAGE_ALL_CLEAN: no dirty page found, give up 1310 * PAGE_TRY_AGAIN: no dirty page found, retry for next block 1311 * PAGE_DIRTY_FOUND: dirty page found 1312 * 1313 * @rs: current RAM state 1314 * @pss: data about the state of the current dirty page scan 1315 * @again: set to false if the search has scanned the whole of RAM 1316 */ 1317 static int find_dirty_block(RAMState *rs, PageSearchStatus *pss) 1318 { 1319 /* Update pss->page for the next dirty bit in ramblock */ 1320 pss_find_next_dirty(pss); 1321 1322 if (pss->complete_round && pss->block == rs->last_seen_block && 1323 pss->page >= rs->last_page) { 1324 /* 1325 * We've been once around the RAM and haven't found anything. 1326 * Give up. 1327 */ 1328 return PAGE_ALL_CLEAN; 1329 } 1330 if (!offset_in_ramblock(pss->block, 1331 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) { 1332 /* Didn't find anything in this RAM Block */ 1333 pss->page = 0; 1334 pss->block = QLIST_NEXT_RCU(pss->block, next); 1335 if (!pss->block) { 1336 if (migrate_multifd() && 1337 !migrate_multifd_flush_after_each_section()) { 1338 QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel; 1339 int ret = multifd_send_sync_main(f); 1340 if (ret < 0) { 1341 return ret; 1342 } 1343 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH); 1344 qemu_fflush(f); 1345 } 1346 /* 1347 * If memory migration starts over, we will meet a dirtied page 1348 * which may still exists in compression threads's ring, so we 1349 * should flush the compressed data to make sure the new page 1350 * is not overwritten by the old one in the destination. 1351 * 1352 * Also If xbzrle is on, stop using the data compression at this 1353 * point. In theory, xbzrle can do better than compression. 1354 */ 1355 compress_flush_data(); 1356 1357 /* Hit the end of the list */ 1358 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 1359 /* Flag that we've looped */ 1360 pss->complete_round = true; 1361 /* After the first round, enable XBZRLE. */ 1362 if (migrate_xbzrle()) { 1363 rs->xbzrle_started = true; 1364 } 1365 } 1366 /* Didn't find anything this time, but try again on the new block */ 1367 return PAGE_TRY_AGAIN; 1368 } else { 1369 /* We've found something */ 1370 return PAGE_DIRTY_FOUND; 1371 } 1372 } 1373 1374 /** 1375 * unqueue_page: gets a page of the queue 1376 * 1377 * Helper for 'get_queued_page' - gets a page off the queue 1378 * 1379 * Returns the block of the page (or NULL if none available) 1380 * 1381 * @rs: current RAM state 1382 * @offset: used to return the offset within the RAMBlock 1383 */ 1384 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) 1385 { 1386 struct RAMSrcPageRequest *entry; 1387 RAMBlock *block = NULL; 1388 1389 if (!postcopy_has_request(rs)) { 1390 return NULL; 1391 } 1392 1393 QEMU_LOCK_GUARD(&rs->src_page_req_mutex); 1394 1395 /* 1396 * This should _never_ change even after we take the lock, because no one 1397 * should be taking anything off the request list other than us. 1398 */ 1399 assert(postcopy_has_request(rs)); 1400 1401 entry = QSIMPLEQ_FIRST(&rs->src_page_requests); 1402 block = entry->rb; 1403 *offset = entry->offset; 1404 1405 if (entry->len > TARGET_PAGE_SIZE) { 1406 entry->len -= TARGET_PAGE_SIZE; 1407 entry->offset += TARGET_PAGE_SIZE; 1408 } else { 1409 memory_region_unref(block->mr); 1410 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1411 g_free(entry); 1412 migration_consume_urgent_request(); 1413 } 1414 1415 return block; 1416 } 1417 1418 #if defined(__linux__) 1419 /** 1420 * poll_fault_page: try to get next UFFD write fault page and, if pending fault 1421 * is found, return RAM block pointer and page offset 1422 * 1423 * Returns pointer to the RAMBlock containing faulting page, 1424 * NULL if no write faults are pending 1425 * 1426 * @rs: current RAM state 1427 * @offset: page offset from the beginning of the block 1428 */ 1429 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset) 1430 { 1431 struct uffd_msg uffd_msg; 1432 void *page_address; 1433 RAMBlock *block; 1434 int res; 1435 1436 if (!migrate_background_snapshot()) { 1437 return NULL; 1438 } 1439 1440 res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1); 1441 if (res <= 0) { 1442 return NULL; 1443 } 1444 1445 page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address; 1446 block = qemu_ram_block_from_host(page_address, false, offset); 1447 assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0); 1448 return block; 1449 } 1450 1451 /** 1452 * ram_save_release_protection: release UFFD write protection after 1453 * a range of pages has been saved 1454 * 1455 * @rs: current RAM state 1456 * @pss: page-search-status structure 1457 * @start_page: index of the first page in the range relative to pss->block 1458 * 1459 * Returns 0 on success, negative value in case of an error 1460 */ 1461 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss, 1462 unsigned long start_page) 1463 { 1464 int res = 0; 1465 1466 /* Check if page is from UFFD-managed region. */ 1467 if (pss->block->flags & RAM_UF_WRITEPROTECT) { 1468 void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS); 1469 uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS; 1470 1471 /* Flush async buffers before un-protect. */ 1472 qemu_fflush(pss->pss_channel); 1473 /* Un-protect memory range. */ 1474 res = uffd_change_protection(rs->uffdio_fd, page_address, run_length, 1475 false, false); 1476 } 1477 1478 return res; 1479 } 1480 1481 /* ram_write_tracking_available: check if kernel supports required UFFD features 1482 * 1483 * Returns true if supports, false otherwise 1484 */ 1485 bool ram_write_tracking_available(void) 1486 { 1487 uint64_t uffd_features; 1488 int res; 1489 1490 res = uffd_query_features(&uffd_features); 1491 return (res == 0 && 1492 (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0); 1493 } 1494 1495 /* ram_write_tracking_compatible: check if guest configuration is 1496 * compatible with 'write-tracking' 1497 * 1498 * Returns true if compatible, false otherwise 1499 */ 1500 bool ram_write_tracking_compatible(void) 1501 { 1502 const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT); 1503 int uffd_fd; 1504 RAMBlock *block; 1505 bool ret = false; 1506 1507 /* Open UFFD file descriptor */ 1508 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false); 1509 if (uffd_fd < 0) { 1510 return false; 1511 } 1512 1513 RCU_READ_LOCK_GUARD(); 1514 1515 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1516 uint64_t uffd_ioctls; 1517 1518 /* Nothing to do with read-only and MMIO-writable regions */ 1519 if (block->mr->readonly || block->mr->rom_device) { 1520 continue; 1521 } 1522 /* Try to register block memory via UFFD-IO to track writes */ 1523 if (uffd_register_memory(uffd_fd, block->host, block->max_length, 1524 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) { 1525 goto out; 1526 } 1527 if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) { 1528 goto out; 1529 } 1530 } 1531 ret = true; 1532 1533 out: 1534 uffd_close_fd(uffd_fd); 1535 return ret; 1536 } 1537 1538 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset, 1539 ram_addr_t size) 1540 { 1541 const ram_addr_t end = offset + size; 1542 1543 /* 1544 * We read one byte of each page; this will preallocate page tables if 1545 * required and populate the shared zeropage on MAP_PRIVATE anonymous memory 1546 * where no page was populated yet. This might require adaption when 1547 * supporting other mappings, like shmem. 1548 */ 1549 for (; offset < end; offset += block->page_size) { 1550 char tmp = *((char *)block->host + offset); 1551 1552 /* Don't optimize the read out */ 1553 asm volatile("" : "+r" (tmp)); 1554 } 1555 } 1556 1557 static inline int populate_read_section(MemoryRegionSection *section, 1558 void *opaque) 1559 { 1560 const hwaddr size = int128_get64(section->size); 1561 hwaddr offset = section->offset_within_region; 1562 RAMBlock *block = section->mr->ram_block; 1563 1564 populate_read_range(block, offset, size); 1565 return 0; 1566 } 1567 1568 /* 1569 * ram_block_populate_read: preallocate page tables and populate pages in the 1570 * RAM block by reading a byte of each page. 1571 * 1572 * Since it's solely used for userfault_fd WP feature, here we just 1573 * hardcode page size to qemu_real_host_page_size. 1574 * 1575 * @block: RAM block to populate 1576 */ 1577 static void ram_block_populate_read(RAMBlock *rb) 1578 { 1579 /* 1580 * Skip populating all pages that fall into a discarded range as managed by 1581 * a RamDiscardManager responsible for the mapped memory region of the 1582 * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock 1583 * must not get populated automatically. We don't have to track 1584 * modifications via userfaultfd WP reliably, because these pages will 1585 * not be part of the migration stream either way -- see 1586 * ramblock_dirty_bitmap_exclude_discarded_pages(). 1587 * 1588 * Note: The result is only stable while migrating (precopy/postcopy). 1589 */ 1590 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 1591 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 1592 MemoryRegionSection section = { 1593 .mr = rb->mr, 1594 .offset_within_region = 0, 1595 .size = rb->mr->size, 1596 }; 1597 1598 ram_discard_manager_replay_populated(rdm, §ion, 1599 populate_read_section, NULL); 1600 } else { 1601 populate_read_range(rb, 0, rb->used_length); 1602 } 1603 } 1604 1605 /* 1606 * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking 1607 */ 1608 void ram_write_tracking_prepare(void) 1609 { 1610 RAMBlock *block; 1611 1612 RCU_READ_LOCK_GUARD(); 1613 1614 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1615 /* Nothing to do with read-only and MMIO-writable regions */ 1616 if (block->mr->readonly || block->mr->rom_device) { 1617 continue; 1618 } 1619 1620 /* 1621 * Populate pages of the RAM block before enabling userfault_fd 1622 * write protection. 1623 * 1624 * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with 1625 * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip 1626 * pages with pte_none() entries in page table. 1627 */ 1628 ram_block_populate_read(block); 1629 } 1630 } 1631 1632 static inline int uffd_protect_section(MemoryRegionSection *section, 1633 void *opaque) 1634 { 1635 const hwaddr size = int128_get64(section->size); 1636 const hwaddr offset = section->offset_within_region; 1637 RAMBlock *rb = section->mr->ram_block; 1638 int uffd_fd = (uintptr_t)opaque; 1639 1640 return uffd_change_protection(uffd_fd, rb->host + offset, size, true, 1641 false); 1642 } 1643 1644 static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd) 1645 { 1646 assert(rb->flags & RAM_UF_WRITEPROTECT); 1647 1648 /* See ram_block_populate_read() */ 1649 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 1650 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 1651 MemoryRegionSection section = { 1652 .mr = rb->mr, 1653 .offset_within_region = 0, 1654 .size = rb->mr->size, 1655 }; 1656 1657 return ram_discard_manager_replay_populated(rdm, §ion, 1658 uffd_protect_section, 1659 (void *)(uintptr_t)uffd_fd); 1660 } 1661 return uffd_change_protection(uffd_fd, rb->host, 1662 rb->used_length, true, false); 1663 } 1664 1665 /* 1666 * ram_write_tracking_start: start UFFD-WP memory tracking 1667 * 1668 * Returns 0 for success or negative value in case of error 1669 */ 1670 int ram_write_tracking_start(void) 1671 { 1672 int uffd_fd; 1673 RAMState *rs = ram_state; 1674 RAMBlock *block; 1675 1676 /* Open UFFD file descriptor */ 1677 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true); 1678 if (uffd_fd < 0) { 1679 return uffd_fd; 1680 } 1681 rs->uffdio_fd = uffd_fd; 1682 1683 RCU_READ_LOCK_GUARD(); 1684 1685 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1686 /* Nothing to do with read-only and MMIO-writable regions */ 1687 if (block->mr->readonly || block->mr->rom_device) { 1688 continue; 1689 } 1690 1691 /* Register block memory with UFFD to track writes */ 1692 if (uffd_register_memory(rs->uffdio_fd, block->host, 1693 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) { 1694 goto fail; 1695 } 1696 block->flags |= RAM_UF_WRITEPROTECT; 1697 memory_region_ref(block->mr); 1698 1699 /* Apply UFFD write protection to the block memory range */ 1700 if (ram_block_uffd_protect(block, uffd_fd)) { 1701 goto fail; 1702 } 1703 1704 trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size, 1705 block->host, block->max_length); 1706 } 1707 1708 return 0; 1709 1710 fail: 1711 error_report("ram_write_tracking_start() failed: restoring initial memory state"); 1712 1713 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1714 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) { 1715 continue; 1716 } 1717 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length); 1718 /* Cleanup flags and remove reference */ 1719 block->flags &= ~RAM_UF_WRITEPROTECT; 1720 memory_region_unref(block->mr); 1721 } 1722 1723 uffd_close_fd(uffd_fd); 1724 rs->uffdio_fd = -1; 1725 return -1; 1726 } 1727 1728 /** 1729 * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection 1730 */ 1731 void ram_write_tracking_stop(void) 1732 { 1733 RAMState *rs = ram_state; 1734 RAMBlock *block; 1735 1736 RCU_READ_LOCK_GUARD(); 1737 1738 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1739 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) { 1740 continue; 1741 } 1742 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length); 1743 1744 trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size, 1745 block->host, block->max_length); 1746 1747 /* Cleanup flags and remove reference */ 1748 block->flags &= ~RAM_UF_WRITEPROTECT; 1749 memory_region_unref(block->mr); 1750 } 1751 1752 /* Finally close UFFD file descriptor */ 1753 uffd_close_fd(rs->uffdio_fd); 1754 rs->uffdio_fd = -1; 1755 } 1756 1757 #else 1758 /* No target OS support, stubs just fail or ignore */ 1759 1760 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset) 1761 { 1762 (void) rs; 1763 (void) offset; 1764 1765 return NULL; 1766 } 1767 1768 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss, 1769 unsigned long start_page) 1770 { 1771 (void) rs; 1772 (void) pss; 1773 (void) start_page; 1774 1775 return 0; 1776 } 1777 1778 bool ram_write_tracking_available(void) 1779 { 1780 return false; 1781 } 1782 1783 bool ram_write_tracking_compatible(void) 1784 { 1785 assert(0); 1786 return false; 1787 } 1788 1789 int ram_write_tracking_start(void) 1790 { 1791 assert(0); 1792 return -1; 1793 } 1794 1795 void ram_write_tracking_stop(void) 1796 { 1797 assert(0); 1798 } 1799 #endif /* defined(__linux__) */ 1800 1801 /** 1802 * get_queued_page: unqueue a page from the postcopy requests 1803 * 1804 * Skips pages that are already sent (!dirty) 1805 * 1806 * Returns true if a queued page is found 1807 * 1808 * @rs: current RAM state 1809 * @pss: data about the state of the current dirty page scan 1810 */ 1811 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) 1812 { 1813 RAMBlock *block; 1814 ram_addr_t offset; 1815 bool dirty; 1816 1817 do { 1818 block = unqueue_page(rs, &offset); 1819 /* 1820 * We're sending this page, and since it's postcopy nothing else 1821 * will dirty it, and we must make sure it doesn't get sent again 1822 * even if this queue request was received after the background 1823 * search already sent it. 1824 */ 1825 if (block) { 1826 unsigned long page; 1827 1828 page = offset >> TARGET_PAGE_BITS; 1829 dirty = test_bit(page, block->bmap); 1830 if (!dirty) { 1831 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, 1832 page); 1833 } else { 1834 trace_get_queued_page(block->idstr, (uint64_t)offset, page); 1835 } 1836 } 1837 1838 } while (block && !dirty); 1839 1840 if (!block) { 1841 /* 1842 * Poll write faults too if background snapshot is enabled; that's 1843 * when we have vcpus got blocked by the write protected pages. 1844 */ 1845 block = poll_fault_page(rs, &offset); 1846 } 1847 1848 if (block) { 1849 /* 1850 * We want the background search to continue from the queued page 1851 * since the guest is likely to want other pages near to the page 1852 * it just requested. 1853 */ 1854 pss->block = block; 1855 pss->page = offset >> TARGET_PAGE_BITS; 1856 1857 /* 1858 * This unqueued page would break the "one round" check, even is 1859 * really rare. 1860 */ 1861 pss->complete_round = false; 1862 } 1863 1864 return !!block; 1865 } 1866 1867 /** 1868 * migration_page_queue_free: drop any remaining pages in the ram 1869 * request queue 1870 * 1871 * It should be empty at the end anyway, but in error cases there may 1872 * be some left. in case that there is any page left, we drop it. 1873 * 1874 */ 1875 static void migration_page_queue_free(RAMState *rs) 1876 { 1877 struct RAMSrcPageRequest *mspr, *next_mspr; 1878 /* This queue generally should be empty - but in the case of a failed 1879 * migration might have some droppings in. 1880 */ 1881 RCU_READ_LOCK_GUARD(); 1882 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { 1883 memory_region_unref(mspr->rb->mr); 1884 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1885 g_free(mspr); 1886 } 1887 } 1888 1889 /** 1890 * ram_save_queue_pages: queue the page for transmission 1891 * 1892 * A request from postcopy destination for example. 1893 * 1894 * Returns zero on success or negative on error 1895 * 1896 * @rbname: Name of the RAMBLock of the request. NULL means the 1897 * same that last one. 1898 * @start: starting address from the start of the RAMBlock 1899 * @len: length (in bytes) to send 1900 */ 1901 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len, 1902 Error **errp) 1903 { 1904 RAMBlock *ramblock; 1905 RAMState *rs = ram_state; 1906 1907 stat64_add(&mig_stats.postcopy_requests, 1); 1908 RCU_READ_LOCK_GUARD(); 1909 1910 if (!rbname) { 1911 /* Reuse last RAMBlock */ 1912 ramblock = rs->last_req_rb; 1913 1914 if (!ramblock) { 1915 /* 1916 * Shouldn't happen, we can't reuse the last RAMBlock if 1917 * it's the 1st request. 1918 */ 1919 error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no previous block"); 1920 return -1; 1921 } 1922 } else { 1923 ramblock = qemu_ram_block_by_name(rbname); 1924 1925 if (!ramblock) { 1926 /* We shouldn't be asked for a non-existent RAMBlock */ 1927 error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no block '%s'", rbname); 1928 return -1; 1929 } 1930 rs->last_req_rb = ramblock; 1931 } 1932 trace_ram_save_queue_pages(ramblock->idstr, start, len); 1933 if (!offset_in_ramblock(ramblock, start + len - 1)) { 1934 error_setg(errp, "MIG_RP_MSG_REQ_PAGES request overrun, " 1935 "start=" RAM_ADDR_FMT " len=" 1936 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 1937 start, len, ramblock->used_length); 1938 return -1; 1939 } 1940 1941 /* 1942 * When with postcopy preempt, we send back the page directly in the 1943 * rp-return thread. 1944 */ 1945 if (postcopy_preempt_active()) { 1946 ram_addr_t page_start = start >> TARGET_PAGE_BITS; 1947 size_t page_size = qemu_ram_pagesize(ramblock); 1948 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY]; 1949 int ret = 0; 1950 1951 qemu_mutex_lock(&rs->bitmap_mutex); 1952 1953 pss_init(pss, ramblock, page_start); 1954 /* 1955 * Always use the preempt channel, and make sure it's there. It's 1956 * safe to access without lock, because when rp-thread is running 1957 * we should be the only one who operates on the qemufile 1958 */ 1959 pss->pss_channel = migrate_get_current()->postcopy_qemufile_src; 1960 assert(pss->pss_channel); 1961 1962 /* 1963 * It must be either one or multiple of host page size. Just 1964 * assert; if something wrong we're mostly split brain anyway. 1965 */ 1966 assert(len % page_size == 0); 1967 while (len) { 1968 if (ram_save_host_page_urgent(pss)) { 1969 error_setg(errp, "ram_save_host_page_urgent() failed: " 1970 "ramblock=%s, start_addr=0x"RAM_ADDR_FMT, 1971 ramblock->idstr, start); 1972 ret = -1; 1973 break; 1974 } 1975 /* 1976 * NOTE: after ram_save_host_page_urgent() succeeded, pss->page 1977 * will automatically be moved and point to the next host page 1978 * we're going to send, so no need to update here. 1979 * 1980 * Normally QEMU never sends >1 host page in requests, so 1981 * logically we don't even need that as the loop should only 1982 * run once, but just to be consistent. 1983 */ 1984 len -= page_size; 1985 }; 1986 qemu_mutex_unlock(&rs->bitmap_mutex); 1987 1988 return ret; 1989 } 1990 1991 struct RAMSrcPageRequest *new_entry = 1992 g_new0(struct RAMSrcPageRequest, 1); 1993 new_entry->rb = ramblock; 1994 new_entry->offset = start; 1995 new_entry->len = len; 1996 1997 memory_region_ref(ramblock->mr); 1998 qemu_mutex_lock(&rs->src_page_req_mutex); 1999 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); 2000 migration_make_urgent_request(); 2001 qemu_mutex_unlock(&rs->src_page_req_mutex); 2002 2003 return 0; 2004 } 2005 2006 /* 2007 * try to compress the page before posting it out, return true if the page 2008 * has been properly handled by compression, otherwise needs other 2009 * paths to handle it 2010 */ 2011 static bool save_compress_page(RAMState *rs, PageSearchStatus *pss, 2012 ram_addr_t offset) 2013 { 2014 if (!migrate_compress()) { 2015 return false; 2016 } 2017 2018 /* 2019 * When starting the process of a new block, the first page of 2020 * the block should be sent out before other pages in the same 2021 * block, and all the pages in last block should have been sent 2022 * out, keeping this order is important, because the 'cont' flag 2023 * is used to avoid resending the block name. 2024 * 2025 * We post the fist page as normal page as compression will take 2026 * much CPU resource. 2027 */ 2028 if (pss->block != pss->last_sent_block) { 2029 compress_flush_data(); 2030 return false; 2031 } 2032 2033 return compress_page_with_multi_thread(pss->block, offset, 2034 compress_send_queued_data); 2035 } 2036 2037 /** 2038 * ram_save_target_page_legacy: save one target page 2039 * 2040 * Returns the number of pages written 2041 * 2042 * @rs: current RAM state 2043 * @pss: data about the page we want to send 2044 */ 2045 static int ram_save_target_page_legacy(RAMState *rs, PageSearchStatus *pss) 2046 { 2047 RAMBlock *block = pss->block; 2048 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 2049 int res; 2050 2051 if (control_save_page(pss, offset, &res)) { 2052 return res; 2053 } 2054 2055 if (save_compress_page(rs, pss, offset)) { 2056 return 1; 2057 } 2058 2059 if (save_zero_page(rs, pss, offset)) { 2060 return 1; 2061 } 2062 2063 /* 2064 * Do not use multifd in postcopy as one whole host page should be 2065 * placed. Meanwhile postcopy requires atomic update of pages, so even 2066 * if host page size == guest page size the dest guest during run may 2067 * still see partially copied pages which is data corruption. 2068 */ 2069 if (migrate_multifd() && !migration_in_postcopy()) { 2070 return ram_save_multifd_page(pss->pss_channel, block, offset); 2071 } 2072 2073 return ram_save_page(rs, pss); 2074 } 2075 2076 /* Should be called before sending a host page */ 2077 static void pss_host_page_prepare(PageSearchStatus *pss) 2078 { 2079 /* How many guest pages are there in one host page? */ 2080 size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2081 2082 pss->host_page_sending = true; 2083 if (guest_pfns <= 1) { 2084 /* 2085 * This covers both when guest psize == host psize, or when guest 2086 * has larger psize than the host (guest_pfns==0). 2087 * 2088 * For the latter, we always send one whole guest page per 2089 * iteration of the host page (example: an Alpha VM on x86 host 2090 * will have guest psize 8K while host psize 4K). 2091 */ 2092 pss->host_page_start = pss->page; 2093 pss->host_page_end = pss->page + 1; 2094 } else { 2095 /* 2096 * The host page spans over multiple guest pages, we send them 2097 * within the same host page iteration. 2098 */ 2099 pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns); 2100 pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns); 2101 } 2102 } 2103 2104 /* 2105 * Whether the page pointed by PSS is within the host page being sent. 2106 * Must be called after a previous pss_host_page_prepare(). 2107 */ 2108 static bool pss_within_range(PageSearchStatus *pss) 2109 { 2110 ram_addr_t ram_addr; 2111 2112 assert(pss->host_page_sending); 2113 2114 /* Over host-page boundary? */ 2115 if (pss->page >= pss->host_page_end) { 2116 return false; 2117 } 2118 2119 ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 2120 2121 return offset_in_ramblock(pss->block, ram_addr); 2122 } 2123 2124 static void pss_host_page_finish(PageSearchStatus *pss) 2125 { 2126 pss->host_page_sending = false; 2127 /* This is not needed, but just to reset it */ 2128 pss->host_page_start = pss->host_page_end = 0; 2129 } 2130 2131 /* 2132 * Send an urgent host page specified by `pss'. Need to be called with 2133 * bitmap_mutex held. 2134 * 2135 * Returns 0 if save host page succeeded, false otherwise. 2136 */ 2137 static int ram_save_host_page_urgent(PageSearchStatus *pss) 2138 { 2139 bool page_dirty, sent = false; 2140 RAMState *rs = ram_state; 2141 int ret = 0; 2142 2143 trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page); 2144 pss_host_page_prepare(pss); 2145 2146 /* 2147 * If precopy is sending the same page, let it be done in precopy, or 2148 * we could send the same page in two channels and none of them will 2149 * receive the whole page. 2150 */ 2151 if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) { 2152 trace_postcopy_preempt_hit(pss->block->idstr, 2153 pss->page << TARGET_PAGE_BITS); 2154 return 0; 2155 } 2156 2157 do { 2158 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page); 2159 2160 if (page_dirty) { 2161 /* Be strict to return code; it must be 1, or what else? */ 2162 if (migration_ops->ram_save_target_page(rs, pss) != 1) { 2163 error_report_once("%s: ram_save_target_page failed", __func__); 2164 ret = -1; 2165 goto out; 2166 } 2167 sent = true; 2168 } 2169 pss_find_next_dirty(pss); 2170 } while (pss_within_range(pss)); 2171 out: 2172 pss_host_page_finish(pss); 2173 /* For urgent requests, flush immediately if sent */ 2174 if (sent) { 2175 qemu_fflush(pss->pss_channel); 2176 } 2177 return ret; 2178 } 2179 2180 /** 2181 * ram_save_host_page: save a whole host page 2182 * 2183 * Starting at *offset send pages up to the end of the current host 2184 * page. It's valid for the initial offset to point into the middle of 2185 * a host page in which case the remainder of the hostpage is sent. 2186 * Only dirty target pages are sent. Note that the host page size may 2187 * be a huge page for this block. 2188 * 2189 * The saving stops at the boundary of the used_length of the block 2190 * if the RAMBlock isn't a multiple of the host page size. 2191 * 2192 * The caller must be with ram_state.bitmap_mutex held to call this 2193 * function. Note that this function can temporarily release the lock, but 2194 * when the function is returned it'll make sure the lock is still held. 2195 * 2196 * Returns the number of pages written or negative on error 2197 * 2198 * @rs: current RAM state 2199 * @pss: data about the page we want to send 2200 */ 2201 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss) 2202 { 2203 bool page_dirty, preempt_active = postcopy_preempt_active(); 2204 int tmppages, pages = 0; 2205 size_t pagesize_bits = 2206 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2207 unsigned long start_page = pss->page; 2208 int res; 2209 2210 if (migrate_ram_is_ignored(pss->block)) { 2211 error_report("block %s should not be migrated !", pss->block->idstr); 2212 return 0; 2213 } 2214 2215 /* Update host page boundary information */ 2216 pss_host_page_prepare(pss); 2217 2218 do { 2219 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page); 2220 2221 /* Check the pages is dirty and if it is send it */ 2222 if (page_dirty) { 2223 /* 2224 * Properly yield the lock only in postcopy preempt mode 2225 * because both migration thread and rp-return thread can 2226 * operate on the bitmaps. 2227 */ 2228 if (preempt_active) { 2229 qemu_mutex_unlock(&rs->bitmap_mutex); 2230 } 2231 tmppages = migration_ops->ram_save_target_page(rs, pss); 2232 if (tmppages >= 0) { 2233 pages += tmppages; 2234 /* 2235 * Allow rate limiting to happen in the middle of huge pages if 2236 * something is sent in the current iteration. 2237 */ 2238 if (pagesize_bits > 1 && tmppages > 0) { 2239 migration_rate_limit(); 2240 } 2241 } 2242 if (preempt_active) { 2243 qemu_mutex_lock(&rs->bitmap_mutex); 2244 } 2245 } else { 2246 tmppages = 0; 2247 } 2248 2249 if (tmppages < 0) { 2250 pss_host_page_finish(pss); 2251 return tmppages; 2252 } 2253 2254 pss_find_next_dirty(pss); 2255 } while (pss_within_range(pss)); 2256 2257 pss_host_page_finish(pss); 2258 2259 res = ram_save_release_protection(rs, pss, start_page); 2260 return (res < 0 ? res : pages); 2261 } 2262 2263 /** 2264 * ram_find_and_save_block: finds a dirty page and sends it to f 2265 * 2266 * Called within an RCU critical section. 2267 * 2268 * Returns the number of pages written where zero means no dirty pages, 2269 * or negative on error 2270 * 2271 * @rs: current RAM state 2272 * 2273 * On systems where host-page-size > target-page-size it will send all the 2274 * pages in a host page that are dirty. 2275 */ 2276 static int ram_find_and_save_block(RAMState *rs) 2277 { 2278 PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY]; 2279 int pages = 0; 2280 2281 /* No dirty page as there is zero RAM */ 2282 if (!rs->ram_bytes_total) { 2283 return pages; 2284 } 2285 2286 /* 2287 * Always keep last_seen_block/last_page valid during this procedure, 2288 * because find_dirty_block() relies on these values (e.g., we compare 2289 * last_seen_block with pss.block to see whether we searched all the 2290 * ramblocks) to detect the completion of migration. Having NULL value 2291 * of last_seen_block can conditionally cause below loop to run forever. 2292 */ 2293 if (!rs->last_seen_block) { 2294 rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks); 2295 rs->last_page = 0; 2296 } 2297 2298 pss_init(pss, rs->last_seen_block, rs->last_page); 2299 2300 while (true){ 2301 if (!get_queued_page(rs, pss)) { 2302 /* priority queue empty, so just search for something dirty */ 2303 int res = find_dirty_block(rs, pss); 2304 if (res != PAGE_DIRTY_FOUND) { 2305 if (res == PAGE_ALL_CLEAN) { 2306 break; 2307 } else if (res == PAGE_TRY_AGAIN) { 2308 continue; 2309 } else if (res < 0) { 2310 pages = res; 2311 break; 2312 } 2313 } 2314 } 2315 pages = ram_save_host_page(rs, pss); 2316 if (pages) { 2317 break; 2318 } 2319 } 2320 2321 rs->last_seen_block = pss->block; 2322 rs->last_page = pss->page; 2323 2324 return pages; 2325 } 2326 2327 static uint64_t ram_bytes_total_with_ignored(void) 2328 { 2329 RAMBlock *block; 2330 uint64_t total = 0; 2331 2332 RCU_READ_LOCK_GUARD(); 2333 2334 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2335 total += block->used_length; 2336 } 2337 return total; 2338 } 2339 2340 uint64_t ram_bytes_total(void) 2341 { 2342 RAMBlock *block; 2343 uint64_t total = 0; 2344 2345 RCU_READ_LOCK_GUARD(); 2346 2347 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2348 total += block->used_length; 2349 } 2350 return total; 2351 } 2352 2353 static void xbzrle_load_setup(void) 2354 { 2355 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 2356 } 2357 2358 static void xbzrle_load_cleanup(void) 2359 { 2360 g_free(XBZRLE.decoded_buf); 2361 XBZRLE.decoded_buf = NULL; 2362 } 2363 2364 static void ram_state_cleanup(RAMState **rsp) 2365 { 2366 if (*rsp) { 2367 migration_page_queue_free(*rsp); 2368 qemu_mutex_destroy(&(*rsp)->bitmap_mutex); 2369 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex); 2370 g_free(*rsp); 2371 *rsp = NULL; 2372 } 2373 } 2374 2375 static void xbzrle_cleanup(void) 2376 { 2377 XBZRLE_cache_lock(); 2378 if (XBZRLE.cache) { 2379 cache_fini(XBZRLE.cache); 2380 g_free(XBZRLE.encoded_buf); 2381 g_free(XBZRLE.current_buf); 2382 g_free(XBZRLE.zero_target_page); 2383 XBZRLE.cache = NULL; 2384 XBZRLE.encoded_buf = NULL; 2385 XBZRLE.current_buf = NULL; 2386 XBZRLE.zero_target_page = NULL; 2387 } 2388 XBZRLE_cache_unlock(); 2389 } 2390 2391 static void ram_save_cleanup(void *opaque) 2392 { 2393 RAMState **rsp = opaque; 2394 RAMBlock *block; 2395 2396 /* We don't use dirty log with background snapshots */ 2397 if (!migrate_background_snapshot()) { 2398 /* caller have hold iothread lock or is in a bh, so there is 2399 * no writing race against the migration bitmap 2400 */ 2401 if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) { 2402 /* 2403 * do not stop dirty log without starting it, since 2404 * memory_global_dirty_log_stop will assert that 2405 * memory_global_dirty_log_start/stop used in pairs 2406 */ 2407 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION); 2408 } 2409 } 2410 2411 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2412 g_free(block->clear_bmap); 2413 block->clear_bmap = NULL; 2414 g_free(block->bmap); 2415 block->bmap = NULL; 2416 } 2417 2418 xbzrle_cleanup(); 2419 compress_threads_save_cleanup(); 2420 ram_state_cleanup(rsp); 2421 g_free(migration_ops); 2422 migration_ops = NULL; 2423 } 2424 2425 static void ram_state_reset(RAMState *rs) 2426 { 2427 int i; 2428 2429 for (i = 0; i < RAM_CHANNEL_MAX; i++) { 2430 rs->pss[i].last_sent_block = NULL; 2431 } 2432 2433 rs->last_seen_block = NULL; 2434 rs->last_page = 0; 2435 rs->last_version = ram_list.version; 2436 rs->xbzrle_started = false; 2437 } 2438 2439 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 2440 2441 /* **** functions for postcopy ***** */ 2442 2443 void ram_postcopy_migrated_memory_release(MigrationState *ms) 2444 { 2445 struct RAMBlock *block; 2446 2447 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2448 unsigned long *bitmap = block->bmap; 2449 unsigned long range = block->used_length >> TARGET_PAGE_BITS; 2450 unsigned long run_start = find_next_zero_bit(bitmap, range, 0); 2451 2452 while (run_start < range) { 2453 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); 2454 ram_discard_range(block->idstr, 2455 ((ram_addr_t)run_start) << TARGET_PAGE_BITS, 2456 ((ram_addr_t)(run_end - run_start)) 2457 << TARGET_PAGE_BITS); 2458 run_start = find_next_zero_bit(bitmap, range, run_end + 1); 2459 } 2460 } 2461 } 2462 2463 /** 2464 * postcopy_send_discard_bm_ram: discard a RAMBlock 2465 * 2466 * Callback from postcopy_each_ram_send_discard for each RAMBlock 2467 * 2468 * @ms: current migration state 2469 * @block: RAMBlock to discard 2470 */ 2471 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block) 2472 { 2473 unsigned long end = block->used_length >> TARGET_PAGE_BITS; 2474 unsigned long current; 2475 unsigned long *bitmap = block->bmap; 2476 2477 for (current = 0; current < end; ) { 2478 unsigned long one = find_next_bit(bitmap, end, current); 2479 unsigned long zero, discard_length; 2480 2481 if (one >= end) { 2482 break; 2483 } 2484 2485 zero = find_next_zero_bit(bitmap, end, one + 1); 2486 2487 if (zero >= end) { 2488 discard_length = end - one; 2489 } else { 2490 discard_length = zero - one; 2491 } 2492 postcopy_discard_send_range(ms, one, discard_length); 2493 current = one + discard_length; 2494 } 2495 } 2496 2497 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block); 2498 2499 /** 2500 * postcopy_each_ram_send_discard: discard all RAMBlocks 2501 * 2502 * Utility for the outgoing postcopy code. 2503 * Calls postcopy_send_discard_bm_ram for each RAMBlock 2504 * passing it bitmap indexes and name. 2505 * (qemu_ram_foreach_block ends up passing unscaled lengths 2506 * which would mean postcopy code would have to deal with target page) 2507 * 2508 * @ms: current migration state 2509 */ 2510 static void postcopy_each_ram_send_discard(MigrationState *ms) 2511 { 2512 struct RAMBlock *block; 2513 2514 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2515 postcopy_discard_send_init(ms, block->idstr); 2516 2517 /* 2518 * Deal with TPS != HPS and huge pages. It discard any partially sent 2519 * host-page size chunks, mark any partially dirty host-page size 2520 * chunks as all dirty. In this case the host-page is the host-page 2521 * for the particular RAMBlock, i.e. it might be a huge page. 2522 */ 2523 postcopy_chunk_hostpages_pass(ms, block); 2524 2525 /* 2526 * Postcopy sends chunks of bitmap over the wire, but it 2527 * just needs indexes at this point, avoids it having 2528 * target page specific code. 2529 */ 2530 postcopy_send_discard_bm_ram(ms, block); 2531 postcopy_discard_send_finish(ms); 2532 } 2533 } 2534 2535 /** 2536 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages 2537 * 2538 * Helper for postcopy_chunk_hostpages; it's called twice to 2539 * canonicalize the two bitmaps, that are similar, but one is 2540 * inverted. 2541 * 2542 * Postcopy requires that all target pages in a hostpage are dirty or 2543 * clean, not a mix. This function canonicalizes the bitmaps. 2544 * 2545 * @ms: current migration state 2546 * @block: block that contains the page we want to canonicalize 2547 */ 2548 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block) 2549 { 2550 RAMState *rs = ram_state; 2551 unsigned long *bitmap = block->bmap; 2552 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; 2553 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 2554 unsigned long run_start; 2555 2556 if (block->page_size == TARGET_PAGE_SIZE) { 2557 /* Easy case - TPS==HPS for a non-huge page RAMBlock */ 2558 return; 2559 } 2560 2561 /* Find a dirty page */ 2562 run_start = find_next_bit(bitmap, pages, 0); 2563 2564 while (run_start < pages) { 2565 2566 /* 2567 * If the start of this run of pages is in the middle of a host 2568 * page, then we need to fixup this host page. 2569 */ 2570 if (QEMU_IS_ALIGNED(run_start, host_ratio)) { 2571 /* Find the end of this run */ 2572 run_start = find_next_zero_bit(bitmap, pages, run_start + 1); 2573 /* 2574 * If the end isn't at the start of a host page, then the 2575 * run doesn't finish at the end of a host page 2576 * and we need to discard. 2577 */ 2578 } 2579 2580 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) { 2581 unsigned long page; 2582 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start, 2583 host_ratio); 2584 run_start = QEMU_ALIGN_UP(run_start, host_ratio); 2585 2586 /* Clean up the bitmap */ 2587 for (page = fixup_start_addr; 2588 page < fixup_start_addr + host_ratio; page++) { 2589 /* 2590 * Remark them as dirty, updating the count for any pages 2591 * that weren't previously dirty. 2592 */ 2593 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); 2594 } 2595 } 2596 2597 /* Find the next dirty page for the next iteration */ 2598 run_start = find_next_bit(bitmap, pages, run_start); 2599 } 2600 } 2601 2602 /** 2603 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap 2604 * 2605 * Transmit the set of pages to be discarded after precopy to the target 2606 * these are pages that: 2607 * a) Have been previously transmitted but are now dirty again 2608 * b) Pages that have never been transmitted, this ensures that 2609 * any pages on the destination that have been mapped by background 2610 * tasks get discarded (transparent huge pages is the specific concern) 2611 * Hopefully this is pretty sparse 2612 * 2613 * @ms: current migration state 2614 */ 2615 void ram_postcopy_send_discard_bitmap(MigrationState *ms) 2616 { 2617 RAMState *rs = ram_state; 2618 2619 RCU_READ_LOCK_GUARD(); 2620 2621 /* This should be our last sync, the src is now paused */ 2622 migration_bitmap_sync(rs, false); 2623 2624 /* Easiest way to make sure we don't resume in the middle of a host-page */ 2625 rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL; 2626 rs->last_seen_block = NULL; 2627 rs->last_page = 0; 2628 2629 postcopy_each_ram_send_discard(ms); 2630 2631 trace_ram_postcopy_send_discard_bitmap(); 2632 } 2633 2634 /** 2635 * ram_discard_range: discard dirtied pages at the beginning of postcopy 2636 * 2637 * Returns zero on success 2638 * 2639 * @rbname: name of the RAMBlock of the request. NULL means the 2640 * same that last one. 2641 * @start: RAMBlock starting page 2642 * @length: RAMBlock size 2643 */ 2644 int ram_discard_range(const char *rbname, uint64_t start, size_t length) 2645 { 2646 trace_ram_discard_range(rbname, start, length); 2647 2648 RCU_READ_LOCK_GUARD(); 2649 RAMBlock *rb = qemu_ram_block_by_name(rbname); 2650 2651 if (!rb) { 2652 error_report("ram_discard_range: Failed to find block '%s'", rbname); 2653 return -1; 2654 } 2655 2656 /* 2657 * On source VM, we don't need to update the received bitmap since 2658 * we don't even have one. 2659 */ 2660 if (rb->receivedmap) { 2661 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(), 2662 length >> qemu_target_page_bits()); 2663 } 2664 2665 return ram_block_discard_range(rb, start, length); 2666 } 2667 2668 /* 2669 * For every allocation, we will try not to crash the VM if the 2670 * allocation failed. 2671 */ 2672 static int xbzrle_init(void) 2673 { 2674 Error *local_err = NULL; 2675 2676 if (!migrate_xbzrle()) { 2677 return 0; 2678 } 2679 2680 XBZRLE_cache_lock(); 2681 2682 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE); 2683 if (!XBZRLE.zero_target_page) { 2684 error_report("%s: Error allocating zero page", __func__); 2685 goto err_out; 2686 } 2687 2688 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(), 2689 TARGET_PAGE_SIZE, &local_err); 2690 if (!XBZRLE.cache) { 2691 error_report_err(local_err); 2692 goto free_zero_page; 2693 } 2694 2695 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 2696 if (!XBZRLE.encoded_buf) { 2697 error_report("%s: Error allocating encoded_buf", __func__); 2698 goto free_cache; 2699 } 2700 2701 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 2702 if (!XBZRLE.current_buf) { 2703 error_report("%s: Error allocating current_buf", __func__); 2704 goto free_encoded_buf; 2705 } 2706 2707 /* We are all good */ 2708 XBZRLE_cache_unlock(); 2709 return 0; 2710 2711 free_encoded_buf: 2712 g_free(XBZRLE.encoded_buf); 2713 XBZRLE.encoded_buf = NULL; 2714 free_cache: 2715 cache_fini(XBZRLE.cache); 2716 XBZRLE.cache = NULL; 2717 free_zero_page: 2718 g_free(XBZRLE.zero_target_page); 2719 XBZRLE.zero_target_page = NULL; 2720 err_out: 2721 XBZRLE_cache_unlock(); 2722 return -ENOMEM; 2723 } 2724 2725 static int ram_state_init(RAMState **rsp) 2726 { 2727 *rsp = g_try_new0(RAMState, 1); 2728 2729 if (!*rsp) { 2730 error_report("%s: Init ramstate fail", __func__); 2731 return -1; 2732 } 2733 2734 qemu_mutex_init(&(*rsp)->bitmap_mutex); 2735 qemu_mutex_init(&(*rsp)->src_page_req_mutex); 2736 QSIMPLEQ_INIT(&(*rsp)->src_page_requests); 2737 (*rsp)->ram_bytes_total = ram_bytes_total(); 2738 2739 /* 2740 * Count the total number of pages used by ram blocks not including any 2741 * gaps due to alignment or unplugs. 2742 * This must match with the initial values of dirty bitmap. 2743 */ 2744 (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS; 2745 ram_state_reset(*rsp); 2746 2747 return 0; 2748 } 2749 2750 static void ram_list_init_bitmaps(void) 2751 { 2752 MigrationState *ms = migrate_get_current(); 2753 RAMBlock *block; 2754 unsigned long pages; 2755 uint8_t shift; 2756 2757 /* Skip setting bitmap if there is no RAM */ 2758 if (ram_bytes_total()) { 2759 shift = ms->clear_bitmap_shift; 2760 if (shift > CLEAR_BITMAP_SHIFT_MAX) { 2761 error_report("clear_bitmap_shift (%u) too big, using " 2762 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX); 2763 shift = CLEAR_BITMAP_SHIFT_MAX; 2764 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) { 2765 error_report("clear_bitmap_shift (%u) too small, using " 2766 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN); 2767 shift = CLEAR_BITMAP_SHIFT_MIN; 2768 } 2769 2770 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2771 pages = block->max_length >> TARGET_PAGE_BITS; 2772 /* 2773 * The initial dirty bitmap for migration must be set with all 2774 * ones to make sure we'll migrate every guest RAM page to 2775 * destination. 2776 * Here we set RAMBlock.bmap all to 1 because when rebegin a 2777 * new migration after a failed migration, ram_list. 2778 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole 2779 * guest memory. 2780 */ 2781 block->bmap = bitmap_new(pages); 2782 bitmap_set(block->bmap, 0, pages); 2783 block->clear_bmap_shift = shift; 2784 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift)); 2785 } 2786 } 2787 } 2788 2789 static void migration_bitmap_clear_discarded_pages(RAMState *rs) 2790 { 2791 unsigned long pages; 2792 RAMBlock *rb; 2793 2794 RCU_READ_LOCK_GUARD(); 2795 2796 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 2797 pages = ramblock_dirty_bitmap_clear_discarded_pages(rb); 2798 rs->migration_dirty_pages -= pages; 2799 } 2800 } 2801 2802 static void ram_init_bitmaps(RAMState *rs) 2803 { 2804 qemu_mutex_lock_ramlist(); 2805 2806 WITH_RCU_READ_LOCK_GUARD() { 2807 ram_list_init_bitmaps(); 2808 /* We don't use dirty log with background snapshots */ 2809 if (!migrate_background_snapshot()) { 2810 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION); 2811 migration_bitmap_sync_precopy(rs, false); 2812 } 2813 } 2814 qemu_mutex_unlock_ramlist(); 2815 2816 /* 2817 * After an eventual first bitmap sync, fixup the initial bitmap 2818 * containing all 1s to exclude any discarded pages from migration. 2819 */ 2820 migration_bitmap_clear_discarded_pages(rs); 2821 } 2822 2823 static int ram_init_all(RAMState **rsp) 2824 { 2825 if (ram_state_init(rsp)) { 2826 return -1; 2827 } 2828 2829 if (xbzrle_init()) { 2830 ram_state_cleanup(rsp); 2831 return -1; 2832 } 2833 2834 ram_init_bitmaps(*rsp); 2835 2836 return 0; 2837 } 2838 2839 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out) 2840 { 2841 RAMBlock *block; 2842 uint64_t pages = 0; 2843 2844 /* 2845 * Postcopy is not using xbzrle/compression, so no need for that. 2846 * Also, since source are already halted, we don't need to care 2847 * about dirty page logging as well. 2848 */ 2849 2850 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2851 pages += bitmap_count_one(block->bmap, 2852 block->used_length >> TARGET_PAGE_BITS); 2853 } 2854 2855 /* This may not be aligned with current bitmaps. Recalculate. */ 2856 rs->migration_dirty_pages = pages; 2857 2858 ram_state_reset(rs); 2859 2860 /* Update RAMState cache of output QEMUFile */ 2861 rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out; 2862 2863 trace_ram_state_resume_prepare(pages); 2864 } 2865 2866 /* 2867 * This function clears bits of the free pages reported by the caller from the 2868 * migration dirty bitmap. @addr is the host address corresponding to the 2869 * start of the continuous guest free pages, and @len is the total bytes of 2870 * those pages. 2871 */ 2872 void qemu_guest_free_page_hint(void *addr, size_t len) 2873 { 2874 RAMBlock *block; 2875 ram_addr_t offset; 2876 size_t used_len, start, npages; 2877 MigrationState *s = migrate_get_current(); 2878 2879 /* This function is currently expected to be used during live migration */ 2880 if (!migration_is_setup_or_active(s->state)) { 2881 return; 2882 } 2883 2884 for (; len > 0; len -= used_len, addr += used_len) { 2885 block = qemu_ram_block_from_host(addr, false, &offset); 2886 if (unlikely(!block || offset >= block->used_length)) { 2887 /* 2888 * The implementation might not support RAMBlock resize during 2889 * live migration, but it could happen in theory with future 2890 * updates. So we add a check here to capture that case. 2891 */ 2892 error_report_once("%s unexpected error", __func__); 2893 return; 2894 } 2895 2896 if (len <= block->used_length - offset) { 2897 used_len = len; 2898 } else { 2899 used_len = block->used_length - offset; 2900 } 2901 2902 start = offset >> TARGET_PAGE_BITS; 2903 npages = used_len >> TARGET_PAGE_BITS; 2904 2905 qemu_mutex_lock(&ram_state->bitmap_mutex); 2906 /* 2907 * The skipped free pages are equavalent to be sent from clear_bmap's 2908 * perspective, so clear the bits from the memory region bitmap which 2909 * are initially set. Otherwise those skipped pages will be sent in 2910 * the next round after syncing from the memory region bitmap. 2911 */ 2912 migration_clear_memory_region_dirty_bitmap_range(block, start, npages); 2913 ram_state->migration_dirty_pages -= 2914 bitmap_count_one_with_offset(block->bmap, start, npages); 2915 bitmap_clear(block->bmap, start, npages); 2916 qemu_mutex_unlock(&ram_state->bitmap_mutex); 2917 } 2918 } 2919 2920 /* 2921 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has 2922 * long-running RCU critical section. When rcu-reclaims in the code 2923 * start to become numerous it will be necessary to reduce the 2924 * granularity of these critical sections. 2925 */ 2926 2927 /** 2928 * ram_save_setup: Setup RAM for migration 2929 * 2930 * Returns zero to indicate success and negative for error 2931 * 2932 * @f: QEMUFile where to send the data 2933 * @opaque: RAMState pointer 2934 */ 2935 static int ram_save_setup(QEMUFile *f, void *opaque) 2936 { 2937 RAMState **rsp = opaque; 2938 RAMBlock *block; 2939 int ret; 2940 2941 if (compress_threads_save_setup()) { 2942 return -1; 2943 } 2944 2945 /* migration has already setup the bitmap, reuse it. */ 2946 if (!migration_in_colo_state()) { 2947 if (ram_init_all(rsp) != 0) { 2948 compress_threads_save_cleanup(); 2949 return -1; 2950 } 2951 } 2952 (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f; 2953 2954 WITH_RCU_READ_LOCK_GUARD() { 2955 qemu_put_be64(f, ram_bytes_total_with_ignored() 2956 | RAM_SAVE_FLAG_MEM_SIZE); 2957 2958 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2959 qemu_put_byte(f, strlen(block->idstr)); 2960 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 2961 qemu_put_be64(f, block->used_length); 2962 if (migrate_postcopy_ram() && block->page_size != 2963 qemu_host_page_size) { 2964 qemu_put_be64(f, block->page_size); 2965 } 2966 if (migrate_ignore_shared()) { 2967 qemu_put_be64(f, block->mr->addr); 2968 } 2969 } 2970 } 2971 2972 ret = rdma_registration_start(f, RAM_CONTROL_SETUP); 2973 if (ret < 0) { 2974 qemu_file_set_error(f, ret); 2975 return ret; 2976 } 2977 2978 ret = rdma_registration_stop(f, RAM_CONTROL_SETUP); 2979 if (ret < 0) { 2980 qemu_file_set_error(f, ret); 2981 return ret; 2982 } 2983 2984 migration_ops = g_malloc0(sizeof(MigrationOps)); 2985 migration_ops->ram_save_target_page = ram_save_target_page_legacy; 2986 2987 qemu_mutex_unlock_iothread(); 2988 ret = multifd_send_sync_main(f); 2989 qemu_mutex_lock_iothread(); 2990 if (ret < 0) { 2991 return ret; 2992 } 2993 2994 if (migrate_multifd() && !migrate_multifd_flush_after_each_section()) { 2995 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH); 2996 } 2997 2998 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 2999 return qemu_fflush(f); 3000 } 3001 3002 /** 3003 * ram_save_iterate: iterative stage for migration 3004 * 3005 * Returns zero to indicate success and negative for error 3006 * 3007 * @f: QEMUFile where to send the data 3008 * @opaque: RAMState pointer 3009 */ 3010 static int ram_save_iterate(QEMUFile *f, void *opaque) 3011 { 3012 RAMState **temp = opaque; 3013 RAMState *rs = *temp; 3014 int ret = 0; 3015 int i; 3016 int64_t t0; 3017 int done = 0; 3018 3019 if (blk_mig_bulk_active()) { 3020 /* Avoid transferring ram during bulk phase of block migration as 3021 * the bulk phase will usually take a long time and transferring 3022 * ram updates during that time is pointless. */ 3023 goto out; 3024 } 3025 3026 /* 3027 * We'll take this lock a little bit long, but it's okay for two reasons. 3028 * Firstly, the only possible other thread to take it is who calls 3029 * qemu_guest_free_page_hint(), which should be rare; secondly, see 3030 * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which 3031 * guarantees that we'll at least released it in a regular basis. 3032 */ 3033 qemu_mutex_lock(&rs->bitmap_mutex); 3034 WITH_RCU_READ_LOCK_GUARD() { 3035 if (ram_list.version != rs->last_version) { 3036 ram_state_reset(rs); 3037 } 3038 3039 /* Read version before ram_list.blocks */ 3040 smp_rmb(); 3041 3042 ret = rdma_registration_start(f, RAM_CONTROL_ROUND); 3043 if (ret < 0) { 3044 qemu_file_set_error(f, ret); 3045 goto out; 3046 } 3047 3048 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 3049 i = 0; 3050 while ((ret = migration_rate_exceeded(f)) == 0 || 3051 postcopy_has_request(rs)) { 3052 int pages; 3053 3054 if (qemu_file_get_error(f)) { 3055 break; 3056 } 3057 3058 pages = ram_find_and_save_block(rs); 3059 /* no more pages to sent */ 3060 if (pages == 0) { 3061 done = 1; 3062 break; 3063 } 3064 3065 if (pages < 0) { 3066 qemu_file_set_error(f, pages); 3067 break; 3068 } 3069 3070 rs->target_page_count += pages; 3071 3072 /* 3073 * During postcopy, it is necessary to make sure one whole host 3074 * page is sent in one chunk. 3075 */ 3076 if (migrate_postcopy_ram()) { 3077 compress_flush_data(); 3078 } 3079 3080 /* 3081 * we want to check in the 1st loop, just in case it was the 1st 3082 * time and we had to sync the dirty bitmap. 3083 * qemu_clock_get_ns() is a bit expensive, so we only check each 3084 * some iterations 3085 */ 3086 if ((i & 63) == 0) { 3087 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 3088 1000000; 3089 if (t1 > MAX_WAIT) { 3090 trace_ram_save_iterate_big_wait(t1, i); 3091 break; 3092 } 3093 } 3094 i++; 3095 } 3096 } 3097 qemu_mutex_unlock(&rs->bitmap_mutex); 3098 3099 /* 3100 * Must occur before EOS (or any QEMUFile operation) 3101 * because of RDMA protocol. 3102 */ 3103 ret = rdma_registration_stop(f, RAM_CONTROL_ROUND); 3104 if (ret < 0) { 3105 qemu_file_set_error(f, ret); 3106 } 3107 3108 out: 3109 if (ret >= 0 3110 && migration_is_setup_or_active(migrate_get_current()->state)) { 3111 if (migrate_multifd() && migrate_multifd_flush_after_each_section()) { 3112 ret = multifd_send_sync_main(rs->pss[RAM_CHANNEL_PRECOPY].pss_channel); 3113 if (ret < 0) { 3114 return ret; 3115 } 3116 } 3117 3118 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3119 ram_transferred_add(8); 3120 ret = qemu_fflush(f); 3121 } 3122 if (ret < 0) { 3123 return ret; 3124 } 3125 3126 return done; 3127 } 3128 3129 /** 3130 * ram_save_complete: function called to send the remaining amount of ram 3131 * 3132 * Returns zero to indicate success or negative on error 3133 * 3134 * Called with iothread lock 3135 * 3136 * @f: QEMUFile where to send the data 3137 * @opaque: RAMState pointer 3138 */ 3139 static int ram_save_complete(QEMUFile *f, void *opaque) 3140 { 3141 RAMState **temp = opaque; 3142 RAMState *rs = *temp; 3143 int ret = 0; 3144 3145 rs->last_stage = !migration_in_colo_state(); 3146 3147 WITH_RCU_READ_LOCK_GUARD() { 3148 if (!migration_in_postcopy()) { 3149 migration_bitmap_sync_precopy(rs, true); 3150 } 3151 3152 ret = rdma_registration_start(f, RAM_CONTROL_FINISH); 3153 if (ret < 0) { 3154 qemu_file_set_error(f, ret); 3155 return ret; 3156 } 3157 3158 /* try transferring iterative blocks of memory */ 3159 3160 /* flush all remaining blocks regardless of rate limiting */ 3161 qemu_mutex_lock(&rs->bitmap_mutex); 3162 while (true) { 3163 int pages; 3164 3165 pages = ram_find_and_save_block(rs); 3166 /* no more blocks to sent */ 3167 if (pages == 0) { 3168 break; 3169 } 3170 if (pages < 0) { 3171 qemu_mutex_unlock(&rs->bitmap_mutex); 3172 return pages; 3173 } 3174 } 3175 qemu_mutex_unlock(&rs->bitmap_mutex); 3176 3177 compress_flush_data(); 3178 3179 ret = rdma_registration_stop(f, RAM_CONTROL_FINISH); 3180 if (ret < 0) { 3181 qemu_file_set_error(f, ret); 3182 return ret; 3183 } 3184 } 3185 3186 ret = multifd_send_sync_main(rs->pss[RAM_CHANNEL_PRECOPY].pss_channel); 3187 if (ret < 0) { 3188 return ret; 3189 } 3190 3191 if (migrate_multifd() && !migrate_multifd_flush_after_each_section()) { 3192 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH); 3193 } 3194 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3195 return qemu_fflush(f); 3196 } 3197 3198 static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy, 3199 uint64_t *can_postcopy) 3200 { 3201 RAMState **temp = opaque; 3202 RAMState *rs = *temp; 3203 3204 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3205 3206 if (migrate_postcopy_ram()) { 3207 /* We can do postcopy, and all the data is postcopiable */ 3208 *can_postcopy += remaining_size; 3209 } else { 3210 *must_precopy += remaining_size; 3211 } 3212 } 3213 3214 static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy, 3215 uint64_t *can_postcopy) 3216 { 3217 MigrationState *s = migrate_get_current(); 3218 RAMState **temp = opaque; 3219 RAMState *rs = *temp; 3220 3221 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3222 3223 if (!migration_in_postcopy() && remaining_size < s->threshold_size) { 3224 qemu_mutex_lock_iothread(); 3225 WITH_RCU_READ_LOCK_GUARD() { 3226 migration_bitmap_sync_precopy(rs, false); 3227 } 3228 qemu_mutex_unlock_iothread(); 3229 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3230 } 3231 3232 if (migrate_postcopy_ram()) { 3233 /* We can do postcopy, and all the data is postcopiable */ 3234 *can_postcopy += remaining_size; 3235 } else { 3236 *must_precopy += remaining_size; 3237 } 3238 } 3239 3240 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 3241 { 3242 unsigned int xh_len; 3243 int xh_flags; 3244 uint8_t *loaded_data; 3245 3246 /* extract RLE header */ 3247 xh_flags = qemu_get_byte(f); 3248 xh_len = qemu_get_be16(f); 3249 3250 if (xh_flags != ENCODING_FLAG_XBZRLE) { 3251 error_report("Failed to load XBZRLE page - wrong compression!"); 3252 return -1; 3253 } 3254 3255 if (xh_len > TARGET_PAGE_SIZE) { 3256 error_report("Failed to load XBZRLE page - len overflow!"); 3257 return -1; 3258 } 3259 loaded_data = XBZRLE.decoded_buf; 3260 /* load data and decode */ 3261 /* it can change loaded_data to point to an internal buffer */ 3262 qemu_get_buffer_in_place(f, &loaded_data, xh_len); 3263 3264 /* decode RLE */ 3265 if (xbzrle_decode_buffer(loaded_data, xh_len, host, 3266 TARGET_PAGE_SIZE) == -1) { 3267 error_report("Failed to load XBZRLE page - decode error!"); 3268 return -1; 3269 } 3270 3271 return 0; 3272 } 3273 3274 /** 3275 * ram_block_from_stream: read a RAMBlock id from the migration stream 3276 * 3277 * Must be called from within a rcu critical section. 3278 * 3279 * Returns a pointer from within the RCU-protected ram_list. 3280 * 3281 * @mis: the migration incoming state pointer 3282 * @f: QEMUFile where to read the data from 3283 * @flags: Page flags (mostly to see if it's a continuation of previous block) 3284 * @channel: the channel we're using 3285 */ 3286 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis, 3287 QEMUFile *f, int flags, 3288 int channel) 3289 { 3290 RAMBlock *block = mis->last_recv_block[channel]; 3291 char id[256]; 3292 uint8_t len; 3293 3294 if (flags & RAM_SAVE_FLAG_CONTINUE) { 3295 if (!block) { 3296 error_report("Ack, bad migration stream!"); 3297 return NULL; 3298 } 3299 return block; 3300 } 3301 3302 len = qemu_get_byte(f); 3303 qemu_get_buffer(f, (uint8_t *)id, len); 3304 id[len] = 0; 3305 3306 block = qemu_ram_block_by_name(id); 3307 if (!block) { 3308 error_report("Can't find block %s", id); 3309 return NULL; 3310 } 3311 3312 if (migrate_ram_is_ignored(block)) { 3313 error_report("block %s should not be migrated !", id); 3314 return NULL; 3315 } 3316 3317 mis->last_recv_block[channel] = block; 3318 3319 return block; 3320 } 3321 3322 static inline void *host_from_ram_block_offset(RAMBlock *block, 3323 ram_addr_t offset) 3324 { 3325 if (!offset_in_ramblock(block, offset)) { 3326 return NULL; 3327 } 3328 3329 return block->host + offset; 3330 } 3331 3332 static void *host_page_from_ram_block_offset(RAMBlock *block, 3333 ram_addr_t offset) 3334 { 3335 /* Note: Explicitly no check against offset_in_ramblock(). */ 3336 return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset), 3337 block->page_size); 3338 } 3339 3340 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block, 3341 ram_addr_t offset) 3342 { 3343 return ((uintptr_t)block->host + offset) & (block->page_size - 1); 3344 } 3345 3346 void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages) 3347 { 3348 qemu_mutex_lock(&ram_state->bitmap_mutex); 3349 for (int i = 0; i < pages; i++) { 3350 ram_addr_t offset = normal[i]; 3351 ram_state->migration_dirty_pages += !test_and_set_bit( 3352 offset >> TARGET_PAGE_BITS, 3353 block->bmap); 3354 } 3355 qemu_mutex_unlock(&ram_state->bitmap_mutex); 3356 } 3357 3358 static inline void *colo_cache_from_block_offset(RAMBlock *block, 3359 ram_addr_t offset, bool record_bitmap) 3360 { 3361 if (!offset_in_ramblock(block, offset)) { 3362 return NULL; 3363 } 3364 if (!block->colo_cache) { 3365 error_report("%s: colo_cache is NULL in block :%s", 3366 __func__, block->idstr); 3367 return NULL; 3368 } 3369 3370 /* 3371 * During colo checkpoint, we need bitmap of these migrated pages. 3372 * It help us to decide which pages in ram cache should be flushed 3373 * into VM's RAM later. 3374 */ 3375 if (record_bitmap) { 3376 colo_record_bitmap(block, &offset, 1); 3377 } 3378 return block->colo_cache + offset; 3379 } 3380 3381 /** 3382 * ram_handle_zero: handle the zero page case 3383 * 3384 * If a page (or a whole RDMA chunk) has been 3385 * determined to be zero, then zap it. 3386 * 3387 * @host: host address for the zero page 3388 * @ch: what the page is filled from. We only support zero 3389 * @size: size of the zero page 3390 */ 3391 void ram_handle_zero(void *host, uint64_t size) 3392 { 3393 if (!buffer_is_zero(host, size)) { 3394 memset(host, 0, size); 3395 } 3396 } 3397 3398 static void colo_init_ram_state(void) 3399 { 3400 ram_state_init(&ram_state); 3401 } 3402 3403 /* 3404 * colo cache: this is for secondary VM, we cache the whole 3405 * memory of the secondary VM, it is need to hold the global lock 3406 * to call this helper. 3407 */ 3408 int colo_init_ram_cache(void) 3409 { 3410 RAMBlock *block; 3411 3412 WITH_RCU_READ_LOCK_GUARD() { 3413 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3414 block->colo_cache = qemu_anon_ram_alloc(block->used_length, 3415 NULL, false, false); 3416 if (!block->colo_cache) { 3417 error_report("%s: Can't alloc memory for COLO cache of block %s," 3418 "size 0x" RAM_ADDR_FMT, __func__, block->idstr, 3419 block->used_length); 3420 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3421 if (block->colo_cache) { 3422 qemu_anon_ram_free(block->colo_cache, block->used_length); 3423 block->colo_cache = NULL; 3424 } 3425 } 3426 return -errno; 3427 } 3428 if (!machine_dump_guest_core(current_machine)) { 3429 qemu_madvise(block->colo_cache, block->used_length, 3430 QEMU_MADV_DONTDUMP); 3431 } 3432 } 3433 } 3434 3435 /* 3436 * Record the dirty pages that sent by PVM, we use this dirty bitmap together 3437 * with to decide which page in cache should be flushed into SVM's RAM. Here 3438 * we use the same name 'ram_bitmap' as for migration. 3439 */ 3440 if (ram_bytes_total()) { 3441 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3442 unsigned long pages = block->max_length >> TARGET_PAGE_BITS; 3443 block->bmap = bitmap_new(pages); 3444 } 3445 } 3446 3447 colo_init_ram_state(); 3448 return 0; 3449 } 3450 3451 /* TODO: duplicated with ram_init_bitmaps */ 3452 void colo_incoming_start_dirty_log(void) 3453 { 3454 RAMBlock *block = NULL; 3455 /* For memory_global_dirty_log_start below. */ 3456 qemu_mutex_lock_iothread(); 3457 qemu_mutex_lock_ramlist(); 3458 3459 memory_global_dirty_log_sync(false); 3460 WITH_RCU_READ_LOCK_GUARD() { 3461 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3462 ramblock_sync_dirty_bitmap(ram_state, block); 3463 /* Discard this dirty bitmap record */ 3464 bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS); 3465 } 3466 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION); 3467 } 3468 ram_state->migration_dirty_pages = 0; 3469 qemu_mutex_unlock_ramlist(); 3470 qemu_mutex_unlock_iothread(); 3471 } 3472 3473 /* It is need to hold the global lock to call this helper */ 3474 void colo_release_ram_cache(void) 3475 { 3476 RAMBlock *block; 3477 3478 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION); 3479 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3480 g_free(block->bmap); 3481 block->bmap = NULL; 3482 } 3483 3484 WITH_RCU_READ_LOCK_GUARD() { 3485 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3486 if (block->colo_cache) { 3487 qemu_anon_ram_free(block->colo_cache, block->used_length); 3488 block->colo_cache = NULL; 3489 } 3490 } 3491 } 3492 ram_state_cleanup(&ram_state); 3493 } 3494 3495 /** 3496 * ram_load_setup: Setup RAM for migration incoming side 3497 * 3498 * Returns zero to indicate success and negative for error 3499 * 3500 * @f: QEMUFile where to receive the data 3501 * @opaque: RAMState pointer 3502 */ 3503 static int ram_load_setup(QEMUFile *f, void *opaque) 3504 { 3505 xbzrle_load_setup(); 3506 ramblock_recv_map_init(); 3507 3508 return 0; 3509 } 3510 3511 static int ram_load_cleanup(void *opaque) 3512 { 3513 RAMBlock *rb; 3514 3515 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3516 qemu_ram_block_writeback(rb); 3517 } 3518 3519 xbzrle_load_cleanup(); 3520 3521 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3522 g_free(rb->receivedmap); 3523 rb->receivedmap = NULL; 3524 } 3525 3526 return 0; 3527 } 3528 3529 /** 3530 * ram_postcopy_incoming_init: allocate postcopy data structures 3531 * 3532 * Returns 0 for success and negative if there was one error 3533 * 3534 * @mis: current migration incoming state 3535 * 3536 * Allocate data structures etc needed by incoming migration with 3537 * postcopy-ram. postcopy-ram's similarly names 3538 * postcopy_ram_incoming_init does the work. 3539 */ 3540 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 3541 { 3542 return postcopy_ram_incoming_init(mis); 3543 } 3544 3545 /** 3546 * ram_load_postcopy: load a page in postcopy case 3547 * 3548 * Returns 0 for success or -errno in case of error 3549 * 3550 * Called in postcopy mode by ram_load(). 3551 * rcu_read_lock is taken prior to this being called. 3552 * 3553 * @f: QEMUFile where to send the data 3554 * @channel: the channel to use for loading 3555 */ 3556 int ram_load_postcopy(QEMUFile *f, int channel) 3557 { 3558 int flags = 0, ret = 0; 3559 bool place_needed = false; 3560 bool matches_target_page_size = false; 3561 MigrationIncomingState *mis = migration_incoming_get_current(); 3562 PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel]; 3563 3564 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 3565 ram_addr_t addr; 3566 void *page_buffer = NULL; 3567 void *place_source = NULL; 3568 RAMBlock *block = NULL; 3569 uint8_t ch; 3570 int len; 3571 3572 addr = qemu_get_be64(f); 3573 3574 /* 3575 * If qemu file error, we should stop here, and then "addr" 3576 * may be invalid 3577 */ 3578 ret = qemu_file_get_error(f); 3579 if (ret) { 3580 break; 3581 } 3582 3583 flags = addr & ~TARGET_PAGE_MASK; 3584 addr &= TARGET_PAGE_MASK; 3585 3586 trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags); 3587 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 3588 RAM_SAVE_FLAG_COMPRESS_PAGE)) { 3589 block = ram_block_from_stream(mis, f, flags, channel); 3590 if (!block) { 3591 ret = -EINVAL; 3592 break; 3593 } 3594 3595 /* 3596 * Relying on used_length is racy and can result in false positives. 3597 * We might place pages beyond used_length in case RAM was shrunk 3598 * while in postcopy, which is fine - trying to place via 3599 * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault. 3600 */ 3601 if (!block->host || addr >= block->postcopy_length) { 3602 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 3603 ret = -EINVAL; 3604 break; 3605 } 3606 tmp_page->target_pages++; 3607 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE; 3608 /* 3609 * Postcopy requires that we place whole host pages atomically; 3610 * these may be huge pages for RAMBlocks that are backed by 3611 * hugetlbfs. 3612 * To make it atomic, the data is read into a temporary page 3613 * that's moved into place later. 3614 * The migration protocol uses, possibly smaller, target-pages 3615 * however the source ensures it always sends all the components 3616 * of a host page in one chunk. 3617 */ 3618 page_buffer = tmp_page->tmp_huge_page + 3619 host_page_offset_from_ram_block_offset(block, addr); 3620 /* If all TP are zero then we can optimise the place */ 3621 if (tmp_page->target_pages == 1) { 3622 tmp_page->host_addr = 3623 host_page_from_ram_block_offset(block, addr); 3624 } else if (tmp_page->host_addr != 3625 host_page_from_ram_block_offset(block, addr)) { 3626 /* not the 1st TP within the HP */ 3627 error_report("Non-same host page detected on channel %d: " 3628 "Target host page %p, received host page %p " 3629 "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)", 3630 channel, tmp_page->host_addr, 3631 host_page_from_ram_block_offset(block, addr), 3632 block->idstr, addr, tmp_page->target_pages); 3633 ret = -EINVAL; 3634 break; 3635 } 3636 3637 /* 3638 * If it's the last part of a host page then we place the host 3639 * page 3640 */ 3641 if (tmp_page->target_pages == 3642 (block->page_size / TARGET_PAGE_SIZE)) { 3643 place_needed = true; 3644 } 3645 place_source = tmp_page->tmp_huge_page; 3646 } 3647 3648 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 3649 case RAM_SAVE_FLAG_ZERO: 3650 ch = qemu_get_byte(f); 3651 if (ch != 0) { 3652 error_report("Found a zero page with value %d", ch); 3653 ret = -EINVAL; 3654 break; 3655 } 3656 /* 3657 * Can skip to set page_buffer when 3658 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE). 3659 */ 3660 if (!matches_target_page_size) { 3661 memset(page_buffer, ch, TARGET_PAGE_SIZE); 3662 } 3663 break; 3664 3665 case RAM_SAVE_FLAG_PAGE: 3666 tmp_page->all_zero = false; 3667 if (!matches_target_page_size) { 3668 /* For huge pages, we always use temporary buffer */ 3669 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 3670 } else { 3671 /* 3672 * For small pages that matches target page size, we 3673 * avoid the qemu_file copy. Instead we directly use 3674 * the buffer of QEMUFile to place the page. Note: we 3675 * cannot do any QEMUFile operation before using that 3676 * buffer to make sure the buffer is valid when 3677 * placing the page. 3678 */ 3679 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 3680 TARGET_PAGE_SIZE); 3681 } 3682 break; 3683 case RAM_SAVE_FLAG_COMPRESS_PAGE: 3684 tmp_page->all_zero = false; 3685 len = qemu_get_be32(f); 3686 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 3687 error_report("Invalid compressed data length: %d", len); 3688 ret = -EINVAL; 3689 break; 3690 } 3691 decompress_data_with_multi_threads(f, page_buffer, len); 3692 break; 3693 case RAM_SAVE_FLAG_MULTIFD_FLUSH: 3694 multifd_recv_sync_main(); 3695 break; 3696 case RAM_SAVE_FLAG_EOS: 3697 /* normal exit */ 3698 if (migrate_multifd() && 3699 migrate_multifd_flush_after_each_section()) { 3700 multifd_recv_sync_main(); 3701 } 3702 break; 3703 default: 3704 error_report("Unknown combination of migration flags: 0x%x" 3705 " (postcopy mode)", flags); 3706 ret = -EINVAL; 3707 break; 3708 } 3709 3710 /* Got the whole host page, wait for decompress before placing. */ 3711 if (place_needed) { 3712 ret |= wait_for_decompress_done(); 3713 } 3714 3715 /* Detect for any possible file errors */ 3716 if (!ret && qemu_file_get_error(f)) { 3717 ret = qemu_file_get_error(f); 3718 } 3719 3720 if (!ret && place_needed) { 3721 if (tmp_page->all_zero) { 3722 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block); 3723 } else { 3724 ret = postcopy_place_page(mis, tmp_page->host_addr, 3725 place_source, block); 3726 } 3727 place_needed = false; 3728 postcopy_temp_page_reset(tmp_page); 3729 } 3730 } 3731 3732 return ret; 3733 } 3734 3735 static bool postcopy_is_running(void) 3736 { 3737 PostcopyState ps = postcopy_state_get(); 3738 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END; 3739 } 3740 3741 /* 3742 * Flush content of RAM cache into SVM's memory. 3743 * Only flush the pages that be dirtied by PVM or SVM or both. 3744 */ 3745 void colo_flush_ram_cache(void) 3746 { 3747 RAMBlock *block = NULL; 3748 void *dst_host; 3749 void *src_host; 3750 unsigned long offset = 0; 3751 3752 memory_global_dirty_log_sync(false); 3753 qemu_mutex_lock(&ram_state->bitmap_mutex); 3754 WITH_RCU_READ_LOCK_GUARD() { 3755 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3756 ramblock_sync_dirty_bitmap(ram_state, block); 3757 } 3758 } 3759 3760 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages); 3761 WITH_RCU_READ_LOCK_GUARD() { 3762 block = QLIST_FIRST_RCU(&ram_list.blocks); 3763 3764 while (block) { 3765 unsigned long num = 0; 3766 3767 offset = colo_bitmap_find_dirty(ram_state, block, offset, &num); 3768 if (!offset_in_ramblock(block, 3769 ((ram_addr_t)offset) << TARGET_PAGE_BITS)) { 3770 offset = 0; 3771 num = 0; 3772 block = QLIST_NEXT_RCU(block, next); 3773 } else { 3774 unsigned long i = 0; 3775 3776 for (i = 0; i < num; i++) { 3777 migration_bitmap_clear_dirty(ram_state, block, offset + i); 3778 } 3779 dst_host = block->host 3780 + (((ram_addr_t)offset) << TARGET_PAGE_BITS); 3781 src_host = block->colo_cache 3782 + (((ram_addr_t)offset) << TARGET_PAGE_BITS); 3783 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num); 3784 offset += num; 3785 } 3786 } 3787 } 3788 qemu_mutex_unlock(&ram_state->bitmap_mutex); 3789 trace_colo_flush_ram_cache_end(); 3790 } 3791 3792 static int parse_ramblock(QEMUFile *f, RAMBlock *block, ram_addr_t length) 3793 { 3794 int ret = 0; 3795 /* ADVISE is earlier, it shows the source has the postcopy capability on */ 3796 bool postcopy_advised = migration_incoming_postcopy_advised(); 3797 3798 assert(block); 3799 3800 if (!qemu_ram_is_migratable(block)) { 3801 error_report("block %s should not be migrated !", block->idstr); 3802 return -EINVAL; 3803 } 3804 3805 if (length != block->used_length) { 3806 Error *local_err = NULL; 3807 3808 ret = qemu_ram_resize(block, length, &local_err); 3809 if (local_err) { 3810 error_report_err(local_err); 3811 return ret; 3812 } 3813 } 3814 /* For postcopy we need to check hugepage sizes match */ 3815 if (postcopy_advised && migrate_postcopy_ram() && 3816 block->page_size != qemu_host_page_size) { 3817 uint64_t remote_page_size = qemu_get_be64(f); 3818 if (remote_page_size != block->page_size) { 3819 error_report("Mismatched RAM page size %s " 3820 "(local) %zd != %" PRId64, block->idstr, 3821 block->page_size, remote_page_size); 3822 return -EINVAL; 3823 } 3824 } 3825 if (migrate_ignore_shared()) { 3826 hwaddr addr = qemu_get_be64(f); 3827 if (migrate_ram_is_ignored(block) && 3828 block->mr->addr != addr) { 3829 error_report("Mismatched GPAs for block %s " 3830 "%" PRId64 "!= %" PRId64, block->idstr, 3831 (uint64_t)addr, (uint64_t)block->mr->addr); 3832 return -EINVAL; 3833 } 3834 } 3835 ret = rdma_block_notification_handle(f, block->idstr); 3836 if (ret < 0) { 3837 qemu_file_set_error(f, ret); 3838 } 3839 3840 return ret; 3841 } 3842 3843 static int parse_ramblocks(QEMUFile *f, ram_addr_t total_ram_bytes) 3844 { 3845 int ret = 0; 3846 3847 /* Synchronize RAM block list */ 3848 while (!ret && total_ram_bytes) { 3849 RAMBlock *block; 3850 char id[256]; 3851 ram_addr_t length; 3852 int len = qemu_get_byte(f); 3853 3854 qemu_get_buffer(f, (uint8_t *)id, len); 3855 id[len] = 0; 3856 length = qemu_get_be64(f); 3857 3858 block = qemu_ram_block_by_name(id); 3859 if (block) { 3860 ret = parse_ramblock(f, block, length); 3861 } else { 3862 error_report("Unknown ramblock \"%s\", cannot accept " 3863 "migration", id); 3864 ret = -EINVAL; 3865 } 3866 total_ram_bytes -= length; 3867 } 3868 3869 return ret; 3870 } 3871 3872 /** 3873 * ram_load_precopy: load pages in precopy case 3874 * 3875 * Returns 0 for success or -errno in case of error 3876 * 3877 * Called in precopy mode by ram_load(). 3878 * rcu_read_lock is taken prior to this being called. 3879 * 3880 * @f: QEMUFile where to send the data 3881 */ 3882 static int ram_load_precopy(QEMUFile *f) 3883 { 3884 MigrationIncomingState *mis = migration_incoming_get_current(); 3885 int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0; 3886 3887 if (!migrate_compress()) { 3888 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE; 3889 } 3890 3891 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 3892 ram_addr_t addr; 3893 void *host = NULL, *host_bak = NULL; 3894 uint8_t ch; 3895 3896 /* 3897 * Yield periodically to let main loop run, but an iteration of 3898 * the main loop is expensive, so do it each some iterations 3899 */ 3900 if ((i & 32767) == 0 && qemu_in_coroutine()) { 3901 aio_co_schedule(qemu_get_current_aio_context(), 3902 qemu_coroutine_self()); 3903 qemu_coroutine_yield(); 3904 } 3905 i++; 3906 3907 addr = qemu_get_be64(f); 3908 flags = addr & ~TARGET_PAGE_MASK; 3909 addr &= TARGET_PAGE_MASK; 3910 3911 if (flags & invalid_flags) { 3912 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) { 3913 error_report("Received an unexpected compressed page"); 3914 } 3915 3916 ret = -EINVAL; 3917 break; 3918 } 3919 3920 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 3921 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { 3922 RAMBlock *block = ram_block_from_stream(mis, f, flags, 3923 RAM_CHANNEL_PRECOPY); 3924 3925 host = host_from_ram_block_offset(block, addr); 3926 /* 3927 * After going into COLO stage, we should not load the page 3928 * into SVM's memory directly, we put them into colo_cache firstly. 3929 * NOTE: We need to keep a copy of SVM's ram in colo_cache. 3930 * Previously, we copied all these memory in preparing stage of COLO 3931 * while we need to stop VM, which is a time-consuming process. 3932 * Here we optimize it by a trick, back-up every page while in 3933 * migration process while COLO is enabled, though it affects the 3934 * speed of the migration, but it obviously reduce the downtime of 3935 * back-up all SVM'S memory in COLO preparing stage. 3936 */ 3937 if (migration_incoming_colo_enabled()) { 3938 if (migration_incoming_in_colo_state()) { 3939 /* In COLO stage, put all pages into cache temporarily */ 3940 host = colo_cache_from_block_offset(block, addr, true); 3941 } else { 3942 /* 3943 * In migration stage but before COLO stage, 3944 * Put all pages into both cache and SVM's memory. 3945 */ 3946 host_bak = colo_cache_from_block_offset(block, addr, false); 3947 } 3948 } 3949 if (!host) { 3950 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 3951 ret = -EINVAL; 3952 break; 3953 } 3954 if (!migration_incoming_in_colo_state()) { 3955 ramblock_recv_bitmap_set(block, host); 3956 } 3957 3958 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); 3959 } 3960 3961 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 3962 case RAM_SAVE_FLAG_MEM_SIZE: 3963 ret = parse_ramblocks(f, addr); 3964 break; 3965 3966 case RAM_SAVE_FLAG_ZERO: 3967 ch = qemu_get_byte(f); 3968 if (ch != 0) { 3969 error_report("Found a zero page with value %d", ch); 3970 ret = -EINVAL; 3971 break; 3972 } 3973 ram_handle_zero(host, TARGET_PAGE_SIZE); 3974 break; 3975 3976 case RAM_SAVE_FLAG_PAGE: 3977 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 3978 break; 3979 3980 case RAM_SAVE_FLAG_COMPRESS_PAGE: 3981 len = qemu_get_be32(f); 3982 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 3983 error_report("Invalid compressed data length: %d", len); 3984 ret = -EINVAL; 3985 break; 3986 } 3987 decompress_data_with_multi_threads(f, host, len); 3988 break; 3989 3990 case RAM_SAVE_FLAG_XBZRLE: 3991 if (load_xbzrle(f, addr, host) < 0) { 3992 error_report("Failed to decompress XBZRLE page at " 3993 RAM_ADDR_FMT, addr); 3994 ret = -EINVAL; 3995 break; 3996 } 3997 break; 3998 case RAM_SAVE_FLAG_MULTIFD_FLUSH: 3999 multifd_recv_sync_main(); 4000 break; 4001 case RAM_SAVE_FLAG_EOS: 4002 /* normal exit */ 4003 if (migrate_multifd() && 4004 migrate_multifd_flush_after_each_section()) { 4005 multifd_recv_sync_main(); 4006 } 4007 break; 4008 case RAM_SAVE_FLAG_HOOK: 4009 ret = rdma_registration_handle(f); 4010 if (ret < 0) { 4011 qemu_file_set_error(f, ret); 4012 } 4013 break; 4014 default: 4015 error_report("Unknown combination of migration flags: 0x%x", flags); 4016 ret = -EINVAL; 4017 } 4018 if (!ret) { 4019 ret = qemu_file_get_error(f); 4020 } 4021 if (!ret && host_bak) { 4022 memcpy(host_bak, host, TARGET_PAGE_SIZE); 4023 } 4024 } 4025 4026 ret |= wait_for_decompress_done(); 4027 return ret; 4028 } 4029 4030 static int ram_load(QEMUFile *f, void *opaque, int version_id) 4031 { 4032 int ret = 0; 4033 static uint64_t seq_iter; 4034 /* 4035 * If system is running in postcopy mode, page inserts to host memory must 4036 * be atomic 4037 */ 4038 bool postcopy_running = postcopy_is_running(); 4039 4040 seq_iter++; 4041 4042 if (version_id != 4) { 4043 return -EINVAL; 4044 } 4045 4046 /* 4047 * This RCU critical section can be very long running. 4048 * When RCU reclaims in the code start to become numerous, 4049 * it will be necessary to reduce the granularity of this 4050 * critical section. 4051 */ 4052 WITH_RCU_READ_LOCK_GUARD() { 4053 if (postcopy_running) { 4054 /* 4055 * Note! Here RAM_CHANNEL_PRECOPY is the precopy channel of 4056 * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to 4057 * service fast page faults. 4058 */ 4059 ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY); 4060 } else { 4061 ret = ram_load_precopy(f); 4062 } 4063 } 4064 trace_ram_load_complete(ret, seq_iter); 4065 4066 return ret; 4067 } 4068 4069 static bool ram_has_postcopy(void *opaque) 4070 { 4071 RAMBlock *rb; 4072 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 4073 if (ramblock_is_pmem(rb)) { 4074 info_report("Block: %s, host: %p is a nvdimm memory, postcopy" 4075 "is not supported now!", rb->idstr, rb->host); 4076 return false; 4077 } 4078 } 4079 4080 return migrate_postcopy_ram(); 4081 } 4082 4083 /* Sync all the dirty bitmap with destination VM. */ 4084 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs) 4085 { 4086 RAMBlock *block; 4087 QEMUFile *file = s->to_dst_file; 4088 4089 trace_ram_dirty_bitmap_sync_start(); 4090 4091 qatomic_set(&rs->postcopy_bmap_sync_requested, 0); 4092 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4093 qemu_savevm_send_recv_bitmap(file, block->idstr); 4094 trace_ram_dirty_bitmap_request(block->idstr); 4095 qatomic_inc(&rs->postcopy_bmap_sync_requested); 4096 } 4097 4098 trace_ram_dirty_bitmap_sync_wait(); 4099 4100 /* Wait until all the ramblocks' dirty bitmap synced */ 4101 while (qatomic_read(&rs->postcopy_bmap_sync_requested)) { 4102 if (migration_rp_wait(s)) { 4103 return -1; 4104 } 4105 } 4106 4107 trace_ram_dirty_bitmap_sync_complete(); 4108 4109 return 0; 4110 } 4111 4112 /* 4113 * Read the received bitmap, revert it as the initial dirty bitmap. 4114 * This is only used when the postcopy migration is paused but wants 4115 * to resume from a middle point. 4116 * 4117 * Returns true if succeeded, false for errors. 4118 */ 4119 bool ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block, Error **errp) 4120 { 4121 /* from_dst_file is always valid because we're within rp_thread */ 4122 QEMUFile *file = s->rp_state.from_dst_file; 4123 g_autofree unsigned long *le_bitmap = NULL; 4124 unsigned long nbits = block->used_length >> TARGET_PAGE_BITS; 4125 uint64_t local_size = DIV_ROUND_UP(nbits, 8); 4126 uint64_t size, end_mark; 4127 RAMState *rs = ram_state; 4128 4129 trace_ram_dirty_bitmap_reload_begin(block->idstr); 4130 4131 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) { 4132 error_setg(errp, "Reload bitmap in incorrect state %s", 4133 MigrationStatus_str(s->state)); 4134 return false; 4135 } 4136 4137 /* 4138 * Note: see comments in ramblock_recv_bitmap_send() on why we 4139 * need the endianness conversion, and the paddings. 4140 */ 4141 local_size = ROUND_UP(local_size, 8); 4142 4143 /* Add paddings */ 4144 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 4145 4146 size = qemu_get_be64(file); 4147 4148 /* The size of the bitmap should match with our ramblock */ 4149 if (size != local_size) { 4150 error_setg(errp, "ramblock '%s' bitmap size mismatch (0x%"PRIx64 4151 " != 0x%"PRIx64")", block->idstr, size, local_size); 4152 return false; 4153 } 4154 4155 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size); 4156 end_mark = qemu_get_be64(file); 4157 4158 if (qemu_file_get_error(file) || size != local_size) { 4159 error_setg(errp, "read bitmap failed for ramblock '%s': " 4160 "(size 0x%"PRIx64", got: 0x%"PRIx64")", 4161 block->idstr, local_size, size); 4162 return false; 4163 } 4164 4165 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) { 4166 error_setg(errp, "ramblock '%s' end mark incorrect: 0x%"PRIx64, 4167 block->idstr, end_mark); 4168 return false; 4169 } 4170 4171 /* 4172 * Endianness conversion. We are during postcopy (though paused). 4173 * The dirty bitmap won't change. We can directly modify it. 4174 */ 4175 bitmap_from_le(block->bmap, le_bitmap, nbits); 4176 4177 /* 4178 * What we received is "received bitmap". Revert it as the initial 4179 * dirty bitmap for this ramblock. 4180 */ 4181 bitmap_complement(block->bmap, block->bmap, nbits); 4182 4183 /* Clear dirty bits of discarded ranges that we don't want to migrate. */ 4184 ramblock_dirty_bitmap_clear_discarded_pages(block); 4185 4186 /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */ 4187 trace_ram_dirty_bitmap_reload_complete(block->idstr); 4188 4189 qatomic_dec(&rs->postcopy_bmap_sync_requested); 4190 4191 /* 4192 * We succeeded to sync bitmap for current ramblock. Always kick the 4193 * migration thread to check whether all requested bitmaps are 4194 * reloaded. NOTE: it's racy to only kick when requested==0, because 4195 * we don't know whether the migration thread may still be increasing 4196 * it. 4197 */ 4198 migration_rp_kick(s); 4199 4200 return true; 4201 } 4202 4203 static int ram_resume_prepare(MigrationState *s, void *opaque) 4204 { 4205 RAMState *rs = *(RAMState **)opaque; 4206 int ret; 4207 4208 ret = ram_dirty_bitmap_sync_all(s, rs); 4209 if (ret) { 4210 return ret; 4211 } 4212 4213 ram_state_resume_prepare(rs, s->to_dst_file); 4214 4215 return 0; 4216 } 4217 4218 void postcopy_preempt_shutdown_file(MigrationState *s) 4219 { 4220 qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS); 4221 qemu_fflush(s->postcopy_qemufile_src); 4222 } 4223 4224 static SaveVMHandlers savevm_ram_handlers = { 4225 .save_setup = ram_save_setup, 4226 .save_live_iterate = ram_save_iterate, 4227 .save_live_complete_postcopy = ram_save_complete, 4228 .save_live_complete_precopy = ram_save_complete, 4229 .has_postcopy = ram_has_postcopy, 4230 .state_pending_exact = ram_state_pending_exact, 4231 .state_pending_estimate = ram_state_pending_estimate, 4232 .load_state = ram_load, 4233 .save_cleanup = ram_save_cleanup, 4234 .load_setup = ram_load_setup, 4235 .load_cleanup = ram_load_cleanup, 4236 .resume_prepare = ram_resume_prepare, 4237 }; 4238 4239 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host, 4240 size_t old_size, size_t new_size) 4241 { 4242 PostcopyState ps = postcopy_state_get(); 4243 ram_addr_t offset; 4244 RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset); 4245 Error *err = NULL; 4246 4247 if (!rb) { 4248 error_report("RAM block not found"); 4249 return; 4250 } 4251 4252 if (migrate_ram_is_ignored(rb)) { 4253 return; 4254 } 4255 4256 if (!migration_is_idle()) { 4257 /* 4258 * Precopy code on the source cannot deal with the size of RAM blocks 4259 * changing at random points in time - especially after sending the 4260 * RAM block sizes in the migration stream, they must no longer change. 4261 * Abort and indicate a proper reason. 4262 */ 4263 error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr); 4264 migration_cancel(err); 4265 error_free(err); 4266 } 4267 4268 switch (ps) { 4269 case POSTCOPY_INCOMING_ADVISE: 4270 /* 4271 * Update what ram_postcopy_incoming_init()->init_range() does at the 4272 * time postcopy was advised. Syncing RAM blocks with the source will 4273 * result in RAM resizes. 4274 */ 4275 if (old_size < new_size) { 4276 if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) { 4277 error_report("RAM block '%s' discard of resized RAM failed", 4278 rb->idstr); 4279 } 4280 } 4281 rb->postcopy_length = new_size; 4282 break; 4283 case POSTCOPY_INCOMING_NONE: 4284 case POSTCOPY_INCOMING_RUNNING: 4285 case POSTCOPY_INCOMING_END: 4286 /* 4287 * Once our guest is running, postcopy does no longer care about 4288 * resizes. When growing, the new memory was not available on the 4289 * source, no handler needed. 4290 */ 4291 break; 4292 default: 4293 error_report("RAM block '%s' resized during postcopy state: %d", 4294 rb->idstr, ps); 4295 exit(-1); 4296 } 4297 } 4298 4299 static RAMBlockNotifier ram_mig_ram_notifier = { 4300 .ram_block_resized = ram_mig_ram_block_resized, 4301 }; 4302 4303 void ram_mig_init(void) 4304 { 4305 qemu_mutex_init(&XBZRLE.lock); 4306 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state); 4307 ram_block_notifier_add(&ram_mig_ram_notifier); 4308 } 4309