xref: /openbmc/qemu/migration/ram.c (revision 1dfd42c4)
1 /*
2  * QEMU System Emulator
3  *
4  * Copyright (c) 2003-2008 Fabrice Bellard
5  * Copyright (c) 2011-2015 Red Hat Inc
6  *
7  * Authors:
8  *  Juan Quintela <quintela@redhat.com>
9  *
10  * Permission is hereby granted, free of charge, to any person obtaining a copy
11  * of this software and associated documentation files (the "Software"), to deal
12  * in the Software without restriction, including without limitation the rights
13  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14  * copies of the Software, and to permit persons to whom the Software is
15  * furnished to do so, subject to the following conditions:
16  *
17  * The above copyright notice and this permission notice shall be included in
18  * all copies or substantial portions of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26  * THE SOFTWARE.
27  */
28 
29 #include "qemu/osdep.h"
30 #include "qemu/cutils.h"
31 #include "qemu/bitops.h"
32 #include "qemu/bitmap.h"
33 #include "qemu/madvise.h"
34 #include "qemu/main-loop.h"
35 #include "xbzrle.h"
36 #include "ram-compress.h"
37 #include "ram.h"
38 #include "migration.h"
39 #include "migration-stats.h"
40 #include "migration/register.h"
41 #include "migration/misc.h"
42 #include "qemu-file.h"
43 #include "postcopy-ram.h"
44 #include "page_cache.h"
45 #include "qemu/error-report.h"
46 #include "qapi/error.h"
47 #include "qapi/qapi-types-migration.h"
48 #include "qapi/qapi-events-migration.h"
49 #include "qapi/qapi-commands-migration.h"
50 #include "qapi/qmp/qerror.h"
51 #include "trace.h"
52 #include "exec/ram_addr.h"
53 #include "exec/target_page.h"
54 #include "qemu/rcu_queue.h"
55 #include "migration/colo.h"
56 #include "block.h"
57 #include "sysemu/cpu-throttle.h"
58 #include "savevm.h"
59 #include "qemu/iov.h"
60 #include "multifd.h"
61 #include "sysemu/runstate.h"
62 #include "rdma.h"
63 #include "options.h"
64 #include "sysemu/dirtylimit.h"
65 #include "sysemu/kvm.h"
66 
67 #include "hw/boards.h" /* for machine_dump_guest_core() */
68 
69 #if defined(__linux__)
70 #include "qemu/userfaultfd.h"
71 #endif /* defined(__linux__) */
72 
73 /***********************************************************/
74 /* ram save/restore */
75 
76 /*
77  * RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
78  * worked for pages that were filled with the same char.  We switched
79  * it to only search for the zero value.  And to avoid confusion with
80  * RAM_SAVE_FLAG_COMPRESS_PAGE just rename it.
81  */
82 /*
83  * RAM_SAVE_FLAG_FULL was obsoleted in 2009, it can be reused now
84  */
85 #define RAM_SAVE_FLAG_FULL     0x01
86 #define RAM_SAVE_FLAG_ZERO     0x02
87 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
88 #define RAM_SAVE_FLAG_PAGE     0x08
89 #define RAM_SAVE_FLAG_EOS      0x10
90 #define RAM_SAVE_FLAG_CONTINUE 0x20
91 #define RAM_SAVE_FLAG_XBZRLE   0x40
92 /* 0x80 is reserved in rdma.h for RAM_SAVE_FLAG_HOOK */
93 #define RAM_SAVE_FLAG_COMPRESS_PAGE    0x100
94 #define RAM_SAVE_FLAG_MULTIFD_FLUSH    0x200
95 /* We can't use any flag that is bigger than 0x200 */
96 
97 /*
98  * mapped-ram migration supports O_DIRECT, so we need to make sure the
99  * userspace buffer, the IO operation size and the file offset are
100  * aligned according to the underlying device's block size. The first
101  * two are already aligned to page size, but we need to add padding to
102  * the file to align the offset.  We cannot read the block size
103  * dynamically because the migration file can be moved between
104  * different systems, so use 1M to cover most block sizes and to keep
105  * the file offset aligned at page size as well.
106  */
107 #define MAPPED_RAM_FILE_OFFSET_ALIGNMENT 0x100000
108 
109 /*
110  * When doing mapped-ram migration, this is the amount we read from
111  * the pages region in the migration file at a time.
112  */
113 #define MAPPED_RAM_LOAD_BUF_SIZE 0x100000
114 
115 XBZRLECacheStats xbzrle_counters;
116 
117 /* used by the search for pages to send */
118 struct PageSearchStatus {
119     /* The migration channel used for a specific host page */
120     QEMUFile    *pss_channel;
121     /* Last block from where we have sent data */
122     RAMBlock *last_sent_block;
123     /* Current block being searched */
124     RAMBlock    *block;
125     /* Current page to search from */
126     unsigned long page;
127     /* Set once we wrap around */
128     bool         complete_round;
129     /* Whether we're sending a host page */
130     bool          host_page_sending;
131     /* The start/end of current host page.  Invalid if host_page_sending==false */
132     unsigned long host_page_start;
133     unsigned long host_page_end;
134 };
135 typedef struct PageSearchStatus PageSearchStatus;
136 
137 /* struct contains XBZRLE cache and a static page
138    used by the compression */
139 static struct {
140     /* buffer used for XBZRLE encoding */
141     uint8_t *encoded_buf;
142     /* buffer for storing page content */
143     uint8_t *current_buf;
144     /* Cache for XBZRLE, Protected by lock. */
145     PageCache *cache;
146     QemuMutex lock;
147     /* it will store a page full of zeros */
148     uint8_t *zero_target_page;
149     /* buffer used for XBZRLE decoding */
150     uint8_t *decoded_buf;
151 } XBZRLE;
152 
153 static void XBZRLE_cache_lock(void)
154 {
155     if (migrate_xbzrle()) {
156         qemu_mutex_lock(&XBZRLE.lock);
157     }
158 }
159 
160 static void XBZRLE_cache_unlock(void)
161 {
162     if (migrate_xbzrle()) {
163         qemu_mutex_unlock(&XBZRLE.lock);
164     }
165 }
166 
167 /**
168  * xbzrle_cache_resize: resize the xbzrle cache
169  *
170  * This function is called from migrate_params_apply in main
171  * thread, possibly while a migration is in progress.  A running
172  * migration may be using the cache and might finish during this call,
173  * hence changes to the cache are protected by XBZRLE.lock().
174  *
175  * Returns 0 for success or -1 for error
176  *
177  * @new_size: new cache size
178  * @errp: set *errp if the check failed, with reason
179  */
180 int xbzrle_cache_resize(uint64_t new_size, Error **errp)
181 {
182     PageCache *new_cache;
183     int64_t ret = 0;
184 
185     /* Check for truncation */
186     if (new_size != (size_t)new_size) {
187         error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
188                    "exceeding address space");
189         return -1;
190     }
191 
192     if (new_size == migrate_xbzrle_cache_size()) {
193         /* nothing to do */
194         return 0;
195     }
196 
197     XBZRLE_cache_lock();
198 
199     if (XBZRLE.cache != NULL) {
200         new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
201         if (!new_cache) {
202             ret = -1;
203             goto out;
204         }
205 
206         cache_fini(XBZRLE.cache);
207         XBZRLE.cache = new_cache;
208     }
209 out:
210     XBZRLE_cache_unlock();
211     return ret;
212 }
213 
214 static bool postcopy_preempt_active(void)
215 {
216     return migrate_postcopy_preempt() && migration_in_postcopy();
217 }
218 
219 bool migrate_ram_is_ignored(RAMBlock *block)
220 {
221     return !qemu_ram_is_migratable(block) ||
222            (migrate_ignore_shared() && qemu_ram_is_shared(block)
223                                     && qemu_ram_is_named_file(block));
224 }
225 
226 #undef RAMBLOCK_FOREACH
227 
228 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
229 {
230     RAMBlock *block;
231     int ret = 0;
232 
233     RCU_READ_LOCK_GUARD();
234 
235     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
236         ret = func(block, opaque);
237         if (ret) {
238             break;
239         }
240     }
241     return ret;
242 }
243 
244 static void ramblock_recv_map_init(void)
245 {
246     RAMBlock *rb;
247 
248     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
249         assert(!rb->receivedmap);
250         rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
251     }
252 }
253 
254 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
255 {
256     return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
257                     rb->receivedmap);
258 }
259 
260 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
261 {
262     return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
263 }
264 
265 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
266 {
267     set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
268 }
269 
270 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
271                                     size_t nr)
272 {
273     bitmap_set_atomic(rb->receivedmap,
274                       ramblock_recv_bitmap_offset(host_addr, rb),
275                       nr);
276 }
277 
278 #define  RAMBLOCK_RECV_BITMAP_ENDING  (0x0123456789abcdefULL)
279 
280 /*
281  * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
282  *
283  * Returns >0 if success with sent bytes, or <0 if error.
284  */
285 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
286                                   const char *block_name)
287 {
288     RAMBlock *block = qemu_ram_block_by_name(block_name);
289     unsigned long *le_bitmap, nbits;
290     uint64_t size;
291 
292     if (!block) {
293         error_report("%s: invalid block name: %s", __func__, block_name);
294         return -1;
295     }
296 
297     nbits = block->postcopy_length >> TARGET_PAGE_BITS;
298 
299     /*
300      * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
301      * machines we may need 4 more bytes for padding (see below
302      * comment). So extend it a bit before hand.
303      */
304     le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
305 
306     /*
307      * Always use little endian when sending the bitmap. This is
308      * required that when source and destination VMs are not using the
309      * same endianness. (Note: big endian won't work.)
310      */
311     bitmap_to_le(le_bitmap, block->receivedmap, nbits);
312 
313     /* Size of the bitmap, in bytes */
314     size = DIV_ROUND_UP(nbits, 8);
315 
316     /*
317      * size is always aligned to 8 bytes for 64bit machines, but it
318      * may not be true for 32bit machines. We need this padding to
319      * make sure the migration can survive even between 32bit and
320      * 64bit machines.
321      */
322     size = ROUND_UP(size, 8);
323 
324     qemu_put_be64(file, size);
325     qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
326     g_free(le_bitmap);
327     /*
328      * Mark as an end, in case the middle part is screwed up due to
329      * some "mysterious" reason.
330      */
331     qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
332     int ret = qemu_fflush(file);
333     if (ret) {
334         return ret;
335     }
336 
337     return size + sizeof(size);
338 }
339 
340 /*
341  * An outstanding page request, on the source, having been received
342  * and queued
343  */
344 struct RAMSrcPageRequest {
345     RAMBlock *rb;
346     hwaddr    offset;
347     hwaddr    len;
348 
349     QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
350 };
351 
352 /* State of RAM for migration */
353 struct RAMState {
354     /*
355      * PageSearchStatus structures for the channels when send pages.
356      * Protected by the bitmap_mutex.
357      */
358     PageSearchStatus pss[RAM_CHANNEL_MAX];
359     /* UFFD file descriptor, used in 'write-tracking' migration */
360     int uffdio_fd;
361     /* total ram size in bytes */
362     uint64_t ram_bytes_total;
363     /* Last block that we have visited searching for dirty pages */
364     RAMBlock *last_seen_block;
365     /* Last dirty target page we have sent */
366     ram_addr_t last_page;
367     /* last ram version we have seen */
368     uint32_t last_version;
369     /* How many times we have dirty too many pages */
370     int dirty_rate_high_cnt;
371     /* these variables are used for bitmap sync */
372     /* last time we did a full bitmap_sync */
373     int64_t time_last_bitmap_sync;
374     /* bytes transferred at start_time */
375     uint64_t bytes_xfer_prev;
376     /* number of dirty pages since start_time */
377     uint64_t num_dirty_pages_period;
378     /* xbzrle misses since the beginning of the period */
379     uint64_t xbzrle_cache_miss_prev;
380     /* Amount of xbzrle pages since the beginning of the period */
381     uint64_t xbzrle_pages_prev;
382     /* Amount of xbzrle encoded bytes since the beginning of the period */
383     uint64_t xbzrle_bytes_prev;
384     /* Are we really using XBZRLE (e.g., after the first round). */
385     bool xbzrle_started;
386     /* Are we on the last stage of migration */
387     bool last_stage;
388 
389     /* total handled target pages at the beginning of period */
390     uint64_t target_page_count_prev;
391     /* total handled target pages since start */
392     uint64_t target_page_count;
393     /* number of dirty bits in the bitmap */
394     uint64_t migration_dirty_pages;
395     /*
396      * Protects:
397      * - dirty/clear bitmap
398      * - migration_dirty_pages
399      * - pss structures
400      */
401     QemuMutex bitmap_mutex;
402     /* The RAMBlock used in the last src_page_requests */
403     RAMBlock *last_req_rb;
404     /* Queue of outstanding page requests from the destination */
405     QemuMutex src_page_req_mutex;
406     QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
407 
408     /*
409      * This is only used when postcopy is in recovery phase, to communicate
410      * between the migration thread and the return path thread on dirty
411      * bitmap synchronizations.  This field is unused in other stages of
412      * RAM migration.
413      */
414     unsigned int postcopy_bmap_sync_requested;
415 };
416 typedef struct RAMState RAMState;
417 
418 static RAMState *ram_state;
419 
420 static NotifierWithReturnList precopy_notifier_list;
421 
422 /* Whether postcopy has queued requests? */
423 static bool postcopy_has_request(RAMState *rs)
424 {
425     return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests);
426 }
427 
428 void precopy_infrastructure_init(void)
429 {
430     notifier_with_return_list_init(&precopy_notifier_list);
431 }
432 
433 void precopy_add_notifier(NotifierWithReturn *n)
434 {
435     notifier_with_return_list_add(&precopy_notifier_list, n);
436 }
437 
438 void precopy_remove_notifier(NotifierWithReturn *n)
439 {
440     notifier_with_return_remove(n);
441 }
442 
443 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
444 {
445     PrecopyNotifyData pnd;
446     pnd.reason = reason;
447 
448     return notifier_with_return_list_notify(&precopy_notifier_list, &pnd, errp);
449 }
450 
451 uint64_t ram_bytes_remaining(void)
452 {
453     return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
454                        0;
455 }
456 
457 void ram_transferred_add(uint64_t bytes)
458 {
459     if (runstate_is_running()) {
460         stat64_add(&mig_stats.precopy_bytes, bytes);
461     } else if (migration_in_postcopy()) {
462         stat64_add(&mig_stats.postcopy_bytes, bytes);
463     } else {
464         stat64_add(&mig_stats.downtime_bytes, bytes);
465     }
466 }
467 
468 struct MigrationOps {
469     int (*ram_save_target_page)(RAMState *rs, PageSearchStatus *pss);
470 };
471 typedef struct MigrationOps MigrationOps;
472 
473 MigrationOps *migration_ops;
474 
475 static int ram_save_host_page_urgent(PageSearchStatus *pss);
476 
477 /* NOTE: page is the PFN not real ram_addr_t. */
478 static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page)
479 {
480     pss->block = rb;
481     pss->page = page;
482     pss->complete_round = false;
483 }
484 
485 /*
486  * Check whether two PSSs are actively sending the same page.  Return true
487  * if it is, false otherwise.
488  */
489 static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2)
490 {
491     return pss1->host_page_sending && pss2->host_page_sending &&
492         (pss1->host_page_start == pss2->host_page_start);
493 }
494 
495 /**
496  * save_page_header: write page header to wire
497  *
498  * If this is the 1st block, it also writes the block identification
499  *
500  * Returns the number of bytes written
501  *
502  * @pss: current PSS channel status
503  * @block: block that contains the page we want to send
504  * @offset: offset inside the block for the page
505  *          in the lower bits, it contains flags
506  */
507 static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f,
508                                RAMBlock *block, ram_addr_t offset)
509 {
510     size_t size, len;
511     bool same_block = (block == pss->last_sent_block);
512 
513     if (same_block) {
514         offset |= RAM_SAVE_FLAG_CONTINUE;
515     }
516     qemu_put_be64(f, offset);
517     size = 8;
518 
519     if (!same_block) {
520         len = strlen(block->idstr);
521         qemu_put_byte(f, len);
522         qemu_put_buffer(f, (uint8_t *)block->idstr, len);
523         size += 1 + len;
524         pss->last_sent_block = block;
525     }
526     return size;
527 }
528 
529 /**
530  * mig_throttle_guest_down: throttle down the guest
531  *
532  * Reduce amount of guest cpu execution to hopefully slow down memory
533  * writes. If guest dirty memory rate is reduced below the rate at
534  * which we can transfer pages to the destination then we should be
535  * able to complete migration. Some workloads dirty memory way too
536  * fast and will not effectively converge, even with auto-converge.
537  */
538 static void mig_throttle_guest_down(uint64_t bytes_dirty_period,
539                                     uint64_t bytes_dirty_threshold)
540 {
541     uint64_t pct_initial = migrate_cpu_throttle_initial();
542     uint64_t pct_increment = migrate_cpu_throttle_increment();
543     bool pct_tailslow = migrate_cpu_throttle_tailslow();
544     int pct_max = migrate_max_cpu_throttle();
545 
546     uint64_t throttle_now = cpu_throttle_get_percentage();
547     uint64_t cpu_now, cpu_ideal, throttle_inc;
548 
549     /* We have not started throttling yet. Let's start it. */
550     if (!cpu_throttle_active()) {
551         cpu_throttle_set(pct_initial);
552     } else {
553         /* Throttling already on, just increase the rate */
554         if (!pct_tailslow) {
555             throttle_inc = pct_increment;
556         } else {
557             /* Compute the ideal CPU percentage used by Guest, which may
558              * make the dirty rate match the dirty rate threshold. */
559             cpu_now = 100 - throttle_now;
560             cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 /
561                         bytes_dirty_period);
562             throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment);
563         }
564         cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max));
565     }
566 }
567 
568 void mig_throttle_counter_reset(void)
569 {
570     RAMState *rs = ram_state;
571 
572     rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
573     rs->num_dirty_pages_period = 0;
574     rs->bytes_xfer_prev = migration_transferred_bytes();
575 }
576 
577 /**
578  * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
579  *
580  * @current_addr: address for the zero page
581  *
582  * Update the xbzrle cache to reflect a page that's been sent as all 0.
583  * The important thing is that a stale (not-yet-0'd) page be replaced
584  * by the new data.
585  * As a bonus, if the page wasn't in the cache it gets added so that
586  * when a small write is made into the 0'd page it gets XBZRLE sent.
587  */
588 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
589 {
590     /* We don't care if this fails to allocate a new cache page
591      * as long as it updated an old one */
592     cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
593                  stat64_get(&mig_stats.dirty_sync_count));
594 }
595 
596 #define ENCODING_FLAG_XBZRLE 0x1
597 
598 /**
599  * save_xbzrle_page: compress and send current page
600  *
601  * Returns: 1 means that we wrote the page
602  *          0 means that page is identical to the one already sent
603  *          -1 means that xbzrle would be longer than normal
604  *
605  * @rs: current RAM state
606  * @pss: current PSS channel
607  * @current_data: pointer to the address of the page contents
608  * @current_addr: addr of the page
609  * @block: block that contains the page we want to send
610  * @offset: offset inside the block for the page
611  */
612 static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss,
613                             uint8_t **current_data, ram_addr_t current_addr,
614                             RAMBlock *block, ram_addr_t offset)
615 {
616     int encoded_len = 0, bytes_xbzrle;
617     uint8_t *prev_cached_page;
618     QEMUFile *file = pss->pss_channel;
619     uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
620 
621     if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) {
622         xbzrle_counters.cache_miss++;
623         if (!rs->last_stage) {
624             if (cache_insert(XBZRLE.cache, current_addr, *current_data,
625                              generation) == -1) {
626                 return -1;
627             } else {
628                 /* update *current_data when the page has been
629                    inserted into cache */
630                 *current_data = get_cached_data(XBZRLE.cache, current_addr);
631             }
632         }
633         return -1;
634     }
635 
636     /*
637      * Reaching here means the page has hit the xbzrle cache, no matter what
638      * encoding result it is (normal encoding, overflow or skipping the page),
639      * count the page as encoded. This is used to calculate the encoding rate.
640      *
641      * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB,
642      * 2nd page turns out to be skipped (i.e. no new bytes written to the
643      * page), the overall encoding rate will be 8KB / 2KB = 4, which has the
644      * skipped page included. In this way, the encoding rate can tell if the
645      * guest page is good for xbzrle encoding.
646      */
647     xbzrle_counters.pages++;
648     prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
649 
650     /* save current buffer into memory */
651     memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
652 
653     /* XBZRLE encoding (if there is no overflow) */
654     encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
655                                        TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
656                                        TARGET_PAGE_SIZE);
657 
658     /*
659      * Update the cache contents, so that it corresponds to the data
660      * sent, in all cases except where we skip the page.
661      */
662     if (!rs->last_stage && encoded_len != 0) {
663         memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
664         /*
665          * In the case where we couldn't compress, ensure that the caller
666          * sends the data from the cache, since the guest might have
667          * changed the RAM since we copied it.
668          */
669         *current_data = prev_cached_page;
670     }
671 
672     if (encoded_len == 0) {
673         trace_save_xbzrle_page_skipping();
674         return 0;
675     } else if (encoded_len == -1) {
676         trace_save_xbzrle_page_overflow();
677         xbzrle_counters.overflow++;
678         xbzrle_counters.bytes += TARGET_PAGE_SIZE;
679         return -1;
680     }
681 
682     /* Send XBZRLE based compressed page */
683     bytes_xbzrle = save_page_header(pss, pss->pss_channel, block,
684                                     offset | RAM_SAVE_FLAG_XBZRLE);
685     qemu_put_byte(file, ENCODING_FLAG_XBZRLE);
686     qemu_put_be16(file, encoded_len);
687     qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len);
688     bytes_xbzrle += encoded_len + 1 + 2;
689     /*
690      * Like compressed_size (please see update_compress_thread_counts),
691      * the xbzrle encoded bytes don't count the 8 byte header with
692      * RAM_SAVE_FLAG_CONTINUE.
693      */
694     xbzrle_counters.bytes += bytes_xbzrle - 8;
695     ram_transferred_add(bytes_xbzrle);
696 
697     return 1;
698 }
699 
700 /**
701  * pss_find_next_dirty: find the next dirty page of current ramblock
702  *
703  * This function updates pss->page to point to the next dirty page index
704  * within the ramblock to migrate, or the end of ramblock when nothing
705  * found.  Note that when pss->host_page_sending==true it means we're
706  * during sending a host page, so we won't look for dirty page that is
707  * outside the host page boundary.
708  *
709  * @pss: the current page search status
710  */
711 static void pss_find_next_dirty(PageSearchStatus *pss)
712 {
713     RAMBlock *rb = pss->block;
714     unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
715     unsigned long *bitmap = rb->bmap;
716 
717     if (migrate_ram_is_ignored(rb)) {
718         /* Points directly to the end, so we know no dirty page */
719         pss->page = size;
720         return;
721     }
722 
723     /*
724      * If during sending a host page, only look for dirty pages within the
725      * current host page being send.
726      */
727     if (pss->host_page_sending) {
728         assert(pss->host_page_end);
729         size = MIN(size, pss->host_page_end);
730     }
731 
732     pss->page = find_next_bit(bitmap, size, pss->page);
733 }
734 
735 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb,
736                                                        unsigned long page)
737 {
738     uint8_t shift;
739     hwaddr size, start;
740 
741     if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) {
742         return;
743     }
744 
745     shift = rb->clear_bmap_shift;
746     /*
747      * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
748      * can make things easier sometimes since then start address
749      * of the small chunk will always be 64 pages aligned so the
750      * bitmap will always be aligned to unsigned long. We should
751      * even be able to remove this restriction but I'm simply
752      * keeping it.
753      */
754     assert(shift >= 6);
755 
756     size = 1ULL << (TARGET_PAGE_BITS + shift);
757     start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size);
758     trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
759     memory_region_clear_dirty_bitmap(rb->mr, start, size);
760 }
761 
762 static void
763 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb,
764                                                  unsigned long start,
765                                                  unsigned long npages)
766 {
767     unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift;
768     unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages);
769     unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages);
770 
771     /*
772      * Clear pages from start to start + npages - 1, so the end boundary is
773      * exclusive.
774      */
775     for (i = chunk_start; i < chunk_end; i += chunk_pages) {
776         migration_clear_memory_region_dirty_bitmap(rb, i);
777     }
778 }
779 
780 /*
781  * colo_bitmap_find_diry:find contiguous dirty pages from start
782  *
783  * Returns the page offset within memory region of the start of the contiguout
784  * dirty page
785  *
786  * @rs: current RAM state
787  * @rb: RAMBlock where to search for dirty pages
788  * @start: page where we start the search
789  * @num: the number of contiguous dirty pages
790  */
791 static inline
792 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
793                                      unsigned long start, unsigned long *num)
794 {
795     unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
796     unsigned long *bitmap = rb->bmap;
797     unsigned long first, next;
798 
799     *num = 0;
800 
801     if (migrate_ram_is_ignored(rb)) {
802         return size;
803     }
804 
805     first = find_next_bit(bitmap, size, start);
806     if (first >= size) {
807         return first;
808     }
809     next = find_next_zero_bit(bitmap, size, first + 1);
810     assert(next >= first);
811     *num = next - first;
812     return first;
813 }
814 
815 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
816                                                 RAMBlock *rb,
817                                                 unsigned long page)
818 {
819     bool ret;
820 
821     /*
822      * Clear dirty bitmap if needed.  This _must_ be called before we
823      * send any of the page in the chunk because we need to make sure
824      * we can capture further page content changes when we sync dirty
825      * log the next time.  So as long as we are going to send any of
826      * the page in the chunk we clear the remote dirty bitmap for all.
827      * Clearing it earlier won't be a problem, but too late will.
828      */
829     migration_clear_memory_region_dirty_bitmap(rb, page);
830 
831     ret = test_and_clear_bit(page, rb->bmap);
832     if (ret) {
833         rs->migration_dirty_pages--;
834     }
835 
836     return ret;
837 }
838 
839 static void dirty_bitmap_clear_section(MemoryRegionSection *section,
840                                        void *opaque)
841 {
842     const hwaddr offset = section->offset_within_region;
843     const hwaddr size = int128_get64(section->size);
844     const unsigned long start = offset >> TARGET_PAGE_BITS;
845     const unsigned long npages = size >> TARGET_PAGE_BITS;
846     RAMBlock *rb = section->mr->ram_block;
847     uint64_t *cleared_bits = opaque;
848 
849     /*
850      * We don't grab ram_state->bitmap_mutex because we expect to run
851      * only when starting migration or during postcopy recovery where
852      * we don't have concurrent access.
853      */
854     if (!migration_in_postcopy() && !migrate_background_snapshot()) {
855         migration_clear_memory_region_dirty_bitmap_range(rb, start, npages);
856     }
857     *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages);
858     bitmap_clear(rb->bmap, start, npages);
859 }
860 
861 /*
862  * Exclude all dirty pages from migration that fall into a discarded range as
863  * managed by a RamDiscardManager responsible for the mapped memory region of
864  * the RAMBlock. Clear the corresponding bits in the dirty bitmaps.
865  *
866  * Discarded pages ("logically unplugged") have undefined content and must
867  * not get migrated, because even reading these pages for migration might
868  * result in undesired behavior.
869  *
870  * Returns the number of cleared bits in the RAMBlock dirty bitmap.
871  *
872  * Note: The result is only stable while migrating (precopy/postcopy).
873  */
874 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb)
875 {
876     uint64_t cleared_bits = 0;
877 
878     if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) {
879         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
880         MemoryRegionSection section = {
881             .mr = rb->mr,
882             .offset_within_region = 0,
883             .size = int128_make64(qemu_ram_get_used_length(rb)),
884         };
885 
886         ram_discard_manager_replay_discarded(rdm, &section,
887                                              dirty_bitmap_clear_section,
888                                              &cleared_bits);
889     }
890     return cleared_bits;
891 }
892 
893 /*
894  * Check if a host-page aligned page falls into a discarded range as managed by
895  * a RamDiscardManager responsible for the mapped memory region of the RAMBlock.
896  *
897  * Note: The result is only stable while migrating (precopy/postcopy).
898  */
899 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start)
900 {
901     if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
902         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
903         MemoryRegionSection section = {
904             .mr = rb->mr,
905             .offset_within_region = start,
906             .size = int128_make64(qemu_ram_pagesize(rb)),
907         };
908 
909         return !ram_discard_manager_is_populated(rdm, &section);
910     }
911     return false;
912 }
913 
914 /* Called with RCU critical section */
915 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
916 {
917     uint64_t new_dirty_pages =
918         cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length);
919 
920     rs->migration_dirty_pages += new_dirty_pages;
921     rs->num_dirty_pages_period += new_dirty_pages;
922 }
923 
924 /**
925  * ram_pagesize_summary: calculate all the pagesizes of a VM
926  *
927  * Returns a summary bitmap of the page sizes of all RAMBlocks
928  *
929  * For VMs with just normal pages this is equivalent to the host page
930  * size. If it's got some huge pages then it's the OR of all the
931  * different page sizes.
932  */
933 uint64_t ram_pagesize_summary(void)
934 {
935     RAMBlock *block;
936     uint64_t summary = 0;
937 
938     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
939         summary |= block->page_size;
940     }
941 
942     return summary;
943 }
944 
945 uint64_t ram_get_total_transferred_pages(void)
946 {
947     return stat64_get(&mig_stats.normal_pages) +
948         stat64_get(&mig_stats.zero_pages) +
949         compress_ram_pages() + xbzrle_counters.pages;
950 }
951 
952 static void migration_update_rates(RAMState *rs, int64_t end_time)
953 {
954     uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
955 
956     /* calculate period counters */
957     stat64_set(&mig_stats.dirty_pages_rate,
958                rs->num_dirty_pages_period * 1000 /
959                (end_time - rs->time_last_bitmap_sync));
960 
961     if (!page_count) {
962         return;
963     }
964 
965     if (migrate_xbzrle()) {
966         double encoded_size, unencoded_size;
967 
968         xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
969             rs->xbzrle_cache_miss_prev) / page_count;
970         rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
971         unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) *
972                          TARGET_PAGE_SIZE;
973         encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev;
974         if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) {
975             xbzrle_counters.encoding_rate = 0;
976         } else {
977             xbzrle_counters.encoding_rate = unencoded_size / encoded_size;
978         }
979         rs->xbzrle_pages_prev = xbzrle_counters.pages;
980         rs->xbzrle_bytes_prev = xbzrle_counters.bytes;
981     }
982     compress_update_rates(page_count);
983 }
984 
985 /*
986  * Enable dirty-limit to throttle down the guest
987  */
988 static void migration_dirty_limit_guest(void)
989 {
990     /*
991      * dirty page rate quota for all vCPUs fetched from
992      * migration parameter 'vcpu_dirty_limit'
993      */
994     static int64_t quota_dirtyrate;
995     MigrationState *s = migrate_get_current();
996 
997     /*
998      * If dirty limit already enabled and migration parameter
999      * vcpu-dirty-limit untouched.
1000      */
1001     if (dirtylimit_in_service() &&
1002         quota_dirtyrate == s->parameters.vcpu_dirty_limit) {
1003         return;
1004     }
1005 
1006     quota_dirtyrate = s->parameters.vcpu_dirty_limit;
1007 
1008     /*
1009      * Set all vCPU a quota dirtyrate, note that the second
1010      * parameter will be ignored if setting all vCPU for the vm
1011      */
1012     qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL);
1013     trace_migration_dirty_limit_guest(quota_dirtyrate);
1014 }
1015 
1016 static void migration_trigger_throttle(RAMState *rs)
1017 {
1018     uint64_t threshold = migrate_throttle_trigger_threshold();
1019     uint64_t bytes_xfer_period =
1020         migration_transferred_bytes() - rs->bytes_xfer_prev;
1021     uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE;
1022     uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100;
1023 
1024     /* During block migration the auto-converge logic incorrectly detects
1025      * that ram migration makes no progress. Avoid this by disabling the
1026      * throttling logic during the bulk phase of block migration. */
1027     if (blk_mig_bulk_active()) {
1028         return;
1029     }
1030 
1031     /*
1032      * The following detection logic can be refined later. For now:
1033      * Check to see if the ratio between dirtied bytes and the approx.
1034      * amount of bytes that just got transferred since the last time
1035      * we were in this routine reaches the threshold. If that happens
1036      * twice, start or increase throttling.
1037      */
1038     if ((bytes_dirty_period > bytes_dirty_threshold) &&
1039         (++rs->dirty_rate_high_cnt >= 2)) {
1040         rs->dirty_rate_high_cnt = 0;
1041         if (migrate_auto_converge()) {
1042             trace_migration_throttle();
1043             mig_throttle_guest_down(bytes_dirty_period,
1044                                     bytes_dirty_threshold);
1045         } else if (migrate_dirty_limit()) {
1046             migration_dirty_limit_guest();
1047         }
1048     }
1049 }
1050 
1051 static void migration_bitmap_sync(RAMState *rs, bool last_stage)
1052 {
1053     RAMBlock *block;
1054     int64_t end_time;
1055 
1056     stat64_add(&mig_stats.dirty_sync_count, 1);
1057 
1058     if (!rs->time_last_bitmap_sync) {
1059         rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1060     }
1061 
1062     trace_migration_bitmap_sync_start();
1063     memory_global_dirty_log_sync(last_stage);
1064 
1065     qemu_mutex_lock(&rs->bitmap_mutex);
1066     WITH_RCU_READ_LOCK_GUARD() {
1067         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1068             ramblock_sync_dirty_bitmap(rs, block);
1069         }
1070         stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining());
1071     }
1072     qemu_mutex_unlock(&rs->bitmap_mutex);
1073 
1074     memory_global_after_dirty_log_sync();
1075     trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1076 
1077     end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1078 
1079     /* more than 1 second = 1000 millisecons */
1080     if (end_time > rs->time_last_bitmap_sync + 1000) {
1081         migration_trigger_throttle(rs);
1082 
1083         migration_update_rates(rs, end_time);
1084 
1085         rs->target_page_count_prev = rs->target_page_count;
1086 
1087         /* reset period counters */
1088         rs->time_last_bitmap_sync = end_time;
1089         rs->num_dirty_pages_period = 0;
1090         rs->bytes_xfer_prev = migration_transferred_bytes();
1091     }
1092     if (migrate_events()) {
1093         uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
1094         qapi_event_send_migration_pass(generation);
1095     }
1096 }
1097 
1098 static void migration_bitmap_sync_precopy(RAMState *rs, bool last_stage)
1099 {
1100     Error *local_err = NULL;
1101 
1102     /*
1103      * The current notifier usage is just an optimization to migration, so we
1104      * don't stop the normal migration process in the error case.
1105      */
1106     if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1107         error_report_err(local_err);
1108         local_err = NULL;
1109     }
1110 
1111     migration_bitmap_sync(rs, last_stage);
1112 
1113     if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1114         error_report_err(local_err);
1115     }
1116 }
1117 
1118 void ram_release_page(const char *rbname, uint64_t offset)
1119 {
1120     if (!migrate_release_ram() || !migration_in_postcopy()) {
1121         return;
1122     }
1123 
1124     ram_discard_range(rbname, offset, TARGET_PAGE_SIZE);
1125 }
1126 
1127 /**
1128  * save_zero_page: send the zero page to the stream
1129  *
1130  * Returns the number of pages written.
1131  *
1132  * @rs: current RAM state
1133  * @pss: current PSS channel
1134  * @offset: offset inside the block for the page
1135  */
1136 static int save_zero_page(RAMState *rs, PageSearchStatus *pss,
1137                           ram_addr_t offset)
1138 {
1139     uint8_t *p = pss->block->host + offset;
1140     QEMUFile *file = pss->pss_channel;
1141     int len = 0;
1142 
1143     if (migrate_zero_page_detection() == ZERO_PAGE_DETECTION_NONE) {
1144         return 0;
1145     }
1146 
1147     if (!buffer_is_zero(p, TARGET_PAGE_SIZE)) {
1148         return 0;
1149     }
1150 
1151     stat64_add(&mig_stats.zero_pages, 1);
1152 
1153     if (migrate_mapped_ram()) {
1154         /* zero pages are not transferred with mapped-ram */
1155         clear_bit_atomic(offset >> TARGET_PAGE_BITS, pss->block->file_bmap);
1156         return 1;
1157     }
1158 
1159     len += save_page_header(pss, file, pss->block, offset | RAM_SAVE_FLAG_ZERO);
1160     qemu_put_byte(file, 0);
1161     len += 1;
1162     ram_release_page(pss->block->idstr, offset);
1163     ram_transferred_add(len);
1164 
1165     /*
1166      * Must let xbzrle know, otherwise a previous (now 0'd) cached
1167      * page would be stale.
1168      */
1169     if (rs->xbzrle_started) {
1170         XBZRLE_cache_lock();
1171         xbzrle_cache_zero_page(pss->block->offset + offset);
1172         XBZRLE_cache_unlock();
1173     }
1174 
1175     return len;
1176 }
1177 
1178 /*
1179  * @pages: the number of pages written by the control path,
1180  *        < 0 - error
1181  *        > 0 - number of pages written
1182  *
1183  * Return true if the pages has been saved, otherwise false is returned.
1184  */
1185 static bool control_save_page(PageSearchStatus *pss,
1186                               ram_addr_t offset, int *pages)
1187 {
1188     int ret;
1189 
1190     ret = rdma_control_save_page(pss->pss_channel, pss->block->offset, offset,
1191                                  TARGET_PAGE_SIZE);
1192     if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1193         return false;
1194     }
1195 
1196     if (ret == RAM_SAVE_CONTROL_DELAYED) {
1197         *pages = 1;
1198         return true;
1199     }
1200     *pages = ret;
1201     return true;
1202 }
1203 
1204 /*
1205  * directly send the page to the stream
1206  *
1207  * Returns the number of pages written.
1208  *
1209  * @pss: current PSS channel
1210  * @block: block that contains the page we want to send
1211  * @offset: offset inside the block for the page
1212  * @buf: the page to be sent
1213  * @async: send to page asyncly
1214  */
1215 static int save_normal_page(PageSearchStatus *pss, RAMBlock *block,
1216                             ram_addr_t offset, uint8_t *buf, bool async)
1217 {
1218     QEMUFile *file = pss->pss_channel;
1219 
1220     if (migrate_mapped_ram()) {
1221         qemu_put_buffer_at(file, buf, TARGET_PAGE_SIZE,
1222                            block->pages_offset + offset);
1223         set_bit(offset >> TARGET_PAGE_BITS, block->file_bmap);
1224     } else {
1225         ram_transferred_add(save_page_header(pss, pss->pss_channel, block,
1226                                              offset | RAM_SAVE_FLAG_PAGE));
1227         if (async) {
1228             qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE,
1229                                   migrate_release_ram() &&
1230                                   migration_in_postcopy());
1231         } else {
1232             qemu_put_buffer(file, buf, TARGET_PAGE_SIZE);
1233         }
1234     }
1235     ram_transferred_add(TARGET_PAGE_SIZE);
1236     stat64_add(&mig_stats.normal_pages, 1);
1237     return 1;
1238 }
1239 
1240 /**
1241  * ram_save_page: send the given page to the stream
1242  *
1243  * Returns the number of pages written.
1244  *          < 0 - error
1245  *          >=0 - Number of pages written - this might legally be 0
1246  *                if xbzrle noticed the page was the same.
1247  *
1248  * @rs: current RAM state
1249  * @block: block that contains the page we want to send
1250  * @offset: offset inside the block for the page
1251  */
1252 static int ram_save_page(RAMState *rs, PageSearchStatus *pss)
1253 {
1254     int pages = -1;
1255     uint8_t *p;
1256     bool send_async = true;
1257     RAMBlock *block = pss->block;
1258     ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
1259     ram_addr_t current_addr = block->offset + offset;
1260 
1261     p = block->host + offset;
1262     trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1263 
1264     XBZRLE_cache_lock();
1265     if (rs->xbzrle_started && !migration_in_postcopy()) {
1266         pages = save_xbzrle_page(rs, pss, &p, current_addr,
1267                                  block, offset);
1268         if (!rs->last_stage) {
1269             /* Can't send this cached data async, since the cache page
1270              * might get updated before it gets to the wire
1271              */
1272             send_async = false;
1273         }
1274     }
1275 
1276     /* XBZRLE overflow or normal page */
1277     if (pages == -1) {
1278         pages = save_normal_page(pss, block, offset, p, send_async);
1279     }
1280 
1281     XBZRLE_cache_unlock();
1282 
1283     return pages;
1284 }
1285 
1286 static int ram_save_multifd_page(RAMBlock *block, ram_addr_t offset)
1287 {
1288     if (!multifd_queue_page(block, offset)) {
1289         return -1;
1290     }
1291 
1292     return 1;
1293 }
1294 
1295 int compress_send_queued_data(CompressParam *param)
1296 {
1297     PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_PRECOPY];
1298     MigrationState *ms = migrate_get_current();
1299     QEMUFile *file = ms->to_dst_file;
1300     int len = 0;
1301 
1302     RAMBlock *block = param->block;
1303     ram_addr_t offset = param->offset;
1304 
1305     if (param->result == RES_NONE) {
1306         return 0;
1307     }
1308 
1309     assert(block == pss->last_sent_block);
1310 
1311     if (param->result == RES_ZEROPAGE) {
1312         assert(qemu_file_buffer_empty(param->file));
1313         len += save_page_header(pss, file, block, offset | RAM_SAVE_FLAG_ZERO);
1314         qemu_put_byte(file, 0);
1315         len += 1;
1316         ram_release_page(block->idstr, offset);
1317     } else if (param->result == RES_COMPRESS) {
1318         assert(!qemu_file_buffer_empty(param->file));
1319         len += save_page_header(pss, file, block,
1320                                 offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
1321         len += qemu_put_qemu_file(file, param->file);
1322     } else {
1323         abort();
1324     }
1325 
1326     update_compress_thread_counts(param, len);
1327 
1328     return len;
1329 }
1330 
1331 #define PAGE_ALL_CLEAN 0
1332 #define PAGE_TRY_AGAIN 1
1333 #define PAGE_DIRTY_FOUND 2
1334 /**
1335  * find_dirty_block: find the next dirty page and update any state
1336  * associated with the search process.
1337  *
1338  * Returns:
1339  *         <0: An error happened
1340  *         PAGE_ALL_CLEAN: no dirty page found, give up
1341  *         PAGE_TRY_AGAIN: no dirty page found, retry for next block
1342  *         PAGE_DIRTY_FOUND: dirty page found
1343  *
1344  * @rs: current RAM state
1345  * @pss: data about the state of the current dirty page scan
1346  * @again: set to false if the search has scanned the whole of RAM
1347  */
1348 static int find_dirty_block(RAMState *rs, PageSearchStatus *pss)
1349 {
1350     /* Update pss->page for the next dirty bit in ramblock */
1351     pss_find_next_dirty(pss);
1352 
1353     if (pss->complete_round && pss->block == rs->last_seen_block &&
1354         pss->page >= rs->last_page) {
1355         /*
1356          * We've been once around the RAM and haven't found anything.
1357          * Give up.
1358          */
1359         return PAGE_ALL_CLEAN;
1360     }
1361     if (!offset_in_ramblock(pss->block,
1362                             ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) {
1363         /* Didn't find anything in this RAM Block */
1364         pss->page = 0;
1365         pss->block = QLIST_NEXT_RCU(pss->block, next);
1366         if (!pss->block) {
1367             if (migrate_multifd() &&
1368                 (!migrate_multifd_flush_after_each_section() ||
1369                  migrate_mapped_ram())) {
1370                 QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel;
1371                 int ret = multifd_send_sync_main();
1372                 if (ret < 0) {
1373                     return ret;
1374                 }
1375 
1376                 if (!migrate_mapped_ram()) {
1377                     qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
1378                     qemu_fflush(f);
1379                 }
1380             }
1381             /*
1382              * If memory migration starts over, we will meet a dirtied page
1383              * which may still exists in compression threads's ring, so we
1384              * should flush the compressed data to make sure the new page
1385              * is not overwritten by the old one in the destination.
1386              *
1387              * Also If xbzrle is on, stop using the data compression at this
1388              * point. In theory, xbzrle can do better than compression.
1389              */
1390             compress_flush_data();
1391 
1392             /* Hit the end of the list */
1393             pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1394             /* Flag that we've looped */
1395             pss->complete_round = true;
1396             /* After the first round, enable XBZRLE. */
1397             if (migrate_xbzrle()) {
1398                 rs->xbzrle_started = true;
1399             }
1400         }
1401         /* Didn't find anything this time, but try again on the new block */
1402         return PAGE_TRY_AGAIN;
1403     } else {
1404         /* We've found something */
1405         return PAGE_DIRTY_FOUND;
1406     }
1407 }
1408 
1409 /**
1410  * unqueue_page: gets a page of the queue
1411  *
1412  * Helper for 'get_queued_page' - gets a page off the queue
1413  *
1414  * Returns the block of the page (or NULL if none available)
1415  *
1416  * @rs: current RAM state
1417  * @offset: used to return the offset within the RAMBlock
1418  */
1419 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
1420 {
1421     struct RAMSrcPageRequest *entry;
1422     RAMBlock *block = NULL;
1423 
1424     if (!postcopy_has_request(rs)) {
1425         return NULL;
1426     }
1427 
1428     QEMU_LOCK_GUARD(&rs->src_page_req_mutex);
1429 
1430     /*
1431      * This should _never_ change even after we take the lock, because no one
1432      * should be taking anything off the request list other than us.
1433      */
1434     assert(postcopy_has_request(rs));
1435 
1436     entry = QSIMPLEQ_FIRST(&rs->src_page_requests);
1437     block = entry->rb;
1438     *offset = entry->offset;
1439 
1440     if (entry->len > TARGET_PAGE_SIZE) {
1441         entry->len -= TARGET_PAGE_SIZE;
1442         entry->offset += TARGET_PAGE_SIZE;
1443     } else {
1444         memory_region_unref(block->mr);
1445         QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1446         g_free(entry);
1447         migration_consume_urgent_request();
1448     }
1449 
1450     return block;
1451 }
1452 
1453 #if defined(__linux__)
1454 /**
1455  * poll_fault_page: try to get next UFFD write fault page and, if pending fault
1456  *   is found, return RAM block pointer and page offset
1457  *
1458  * Returns pointer to the RAMBlock containing faulting page,
1459  *   NULL if no write faults are pending
1460  *
1461  * @rs: current RAM state
1462  * @offset: page offset from the beginning of the block
1463  */
1464 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1465 {
1466     struct uffd_msg uffd_msg;
1467     void *page_address;
1468     RAMBlock *block;
1469     int res;
1470 
1471     if (!migrate_background_snapshot()) {
1472         return NULL;
1473     }
1474 
1475     res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1);
1476     if (res <= 0) {
1477         return NULL;
1478     }
1479 
1480     page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address;
1481     block = qemu_ram_block_from_host(page_address, false, offset);
1482     assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0);
1483     return block;
1484 }
1485 
1486 /**
1487  * ram_save_release_protection: release UFFD write protection after
1488  *   a range of pages has been saved
1489  *
1490  * @rs: current RAM state
1491  * @pss: page-search-status structure
1492  * @start_page: index of the first page in the range relative to pss->block
1493  *
1494  * Returns 0 on success, negative value in case of an error
1495 */
1496 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1497         unsigned long start_page)
1498 {
1499     int res = 0;
1500 
1501     /* Check if page is from UFFD-managed region. */
1502     if (pss->block->flags & RAM_UF_WRITEPROTECT) {
1503         void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS);
1504         uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS;
1505 
1506         /* Flush async buffers before un-protect. */
1507         qemu_fflush(pss->pss_channel);
1508         /* Un-protect memory range. */
1509         res = uffd_change_protection(rs->uffdio_fd, page_address, run_length,
1510                 false, false);
1511     }
1512 
1513     return res;
1514 }
1515 
1516 /* ram_write_tracking_available: check if kernel supports required UFFD features
1517  *
1518  * Returns true if supports, false otherwise
1519  */
1520 bool ram_write_tracking_available(void)
1521 {
1522     uint64_t uffd_features;
1523     int res;
1524 
1525     res = uffd_query_features(&uffd_features);
1526     return (res == 0 &&
1527             (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0);
1528 }
1529 
1530 /* ram_write_tracking_compatible: check if guest configuration is
1531  *   compatible with 'write-tracking'
1532  *
1533  * Returns true if compatible, false otherwise
1534  */
1535 bool ram_write_tracking_compatible(void)
1536 {
1537     const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT);
1538     int uffd_fd;
1539     RAMBlock *block;
1540     bool ret = false;
1541 
1542     /* Open UFFD file descriptor */
1543     uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false);
1544     if (uffd_fd < 0) {
1545         return false;
1546     }
1547 
1548     RCU_READ_LOCK_GUARD();
1549 
1550     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1551         uint64_t uffd_ioctls;
1552 
1553         /* Nothing to do with read-only and MMIO-writable regions */
1554         if (block->mr->readonly || block->mr->rom_device) {
1555             continue;
1556         }
1557         /* Try to register block memory via UFFD-IO to track writes */
1558         if (uffd_register_memory(uffd_fd, block->host, block->max_length,
1559                 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) {
1560             goto out;
1561         }
1562         if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) {
1563             goto out;
1564         }
1565     }
1566     ret = true;
1567 
1568 out:
1569     uffd_close_fd(uffd_fd);
1570     return ret;
1571 }
1572 
1573 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset,
1574                                        ram_addr_t size)
1575 {
1576     const ram_addr_t end = offset + size;
1577 
1578     /*
1579      * We read one byte of each page; this will preallocate page tables if
1580      * required and populate the shared zeropage on MAP_PRIVATE anonymous memory
1581      * where no page was populated yet. This might require adaption when
1582      * supporting other mappings, like shmem.
1583      */
1584     for (; offset < end; offset += block->page_size) {
1585         char tmp = *((char *)block->host + offset);
1586 
1587         /* Don't optimize the read out */
1588         asm volatile("" : "+r" (tmp));
1589     }
1590 }
1591 
1592 static inline int populate_read_section(MemoryRegionSection *section,
1593                                         void *opaque)
1594 {
1595     const hwaddr size = int128_get64(section->size);
1596     hwaddr offset = section->offset_within_region;
1597     RAMBlock *block = section->mr->ram_block;
1598 
1599     populate_read_range(block, offset, size);
1600     return 0;
1601 }
1602 
1603 /*
1604  * ram_block_populate_read: preallocate page tables and populate pages in the
1605  *   RAM block by reading a byte of each page.
1606  *
1607  * Since it's solely used for userfault_fd WP feature, here we just
1608  *   hardcode page size to qemu_real_host_page_size.
1609  *
1610  * @block: RAM block to populate
1611  */
1612 static void ram_block_populate_read(RAMBlock *rb)
1613 {
1614     /*
1615      * Skip populating all pages that fall into a discarded range as managed by
1616      * a RamDiscardManager responsible for the mapped memory region of the
1617      * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock
1618      * must not get populated automatically. We don't have to track
1619      * modifications via userfaultfd WP reliably, because these pages will
1620      * not be part of the migration stream either way -- see
1621      * ramblock_dirty_bitmap_exclude_discarded_pages().
1622      *
1623      * Note: The result is only stable while migrating (precopy/postcopy).
1624      */
1625     if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1626         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1627         MemoryRegionSection section = {
1628             .mr = rb->mr,
1629             .offset_within_region = 0,
1630             .size = rb->mr->size,
1631         };
1632 
1633         ram_discard_manager_replay_populated(rdm, &section,
1634                                              populate_read_section, NULL);
1635     } else {
1636         populate_read_range(rb, 0, rb->used_length);
1637     }
1638 }
1639 
1640 /*
1641  * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking
1642  */
1643 void ram_write_tracking_prepare(void)
1644 {
1645     RAMBlock *block;
1646 
1647     RCU_READ_LOCK_GUARD();
1648 
1649     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1650         /* Nothing to do with read-only and MMIO-writable regions */
1651         if (block->mr->readonly || block->mr->rom_device) {
1652             continue;
1653         }
1654 
1655         /*
1656          * Populate pages of the RAM block before enabling userfault_fd
1657          * write protection.
1658          *
1659          * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with
1660          * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip
1661          * pages with pte_none() entries in page table.
1662          */
1663         ram_block_populate_read(block);
1664     }
1665 }
1666 
1667 static inline int uffd_protect_section(MemoryRegionSection *section,
1668                                        void *opaque)
1669 {
1670     const hwaddr size = int128_get64(section->size);
1671     const hwaddr offset = section->offset_within_region;
1672     RAMBlock *rb = section->mr->ram_block;
1673     int uffd_fd = (uintptr_t)opaque;
1674 
1675     return uffd_change_protection(uffd_fd, rb->host + offset, size, true,
1676                                   false);
1677 }
1678 
1679 static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd)
1680 {
1681     assert(rb->flags & RAM_UF_WRITEPROTECT);
1682 
1683     /* See ram_block_populate_read() */
1684     if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1685         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1686         MemoryRegionSection section = {
1687             .mr = rb->mr,
1688             .offset_within_region = 0,
1689             .size = rb->mr->size,
1690         };
1691 
1692         return ram_discard_manager_replay_populated(rdm, &section,
1693                                                     uffd_protect_section,
1694                                                     (void *)(uintptr_t)uffd_fd);
1695     }
1696     return uffd_change_protection(uffd_fd, rb->host,
1697                                   rb->used_length, true, false);
1698 }
1699 
1700 /*
1701  * ram_write_tracking_start: start UFFD-WP memory tracking
1702  *
1703  * Returns 0 for success or negative value in case of error
1704  */
1705 int ram_write_tracking_start(void)
1706 {
1707     int uffd_fd;
1708     RAMState *rs = ram_state;
1709     RAMBlock *block;
1710 
1711     /* Open UFFD file descriptor */
1712     uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true);
1713     if (uffd_fd < 0) {
1714         return uffd_fd;
1715     }
1716     rs->uffdio_fd = uffd_fd;
1717 
1718     RCU_READ_LOCK_GUARD();
1719 
1720     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1721         /* Nothing to do with read-only and MMIO-writable regions */
1722         if (block->mr->readonly || block->mr->rom_device) {
1723             continue;
1724         }
1725 
1726         /* Register block memory with UFFD to track writes */
1727         if (uffd_register_memory(rs->uffdio_fd, block->host,
1728                 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) {
1729             goto fail;
1730         }
1731         block->flags |= RAM_UF_WRITEPROTECT;
1732         memory_region_ref(block->mr);
1733 
1734         /* Apply UFFD write protection to the block memory range */
1735         if (ram_block_uffd_protect(block, uffd_fd)) {
1736             goto fail;
1737         }
1738 
1739         trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size,
1740                 block->host, block->max_length);
1741     }
1742 
1743     return 0;
1744 
1745 fail:
1746     error_report("ram_write_tracking_start() failed: restoring initial memory state");
1747 
1748     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1749         if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1750             continue;
1751         }
1752         uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1753         /* Cleanup flags and remove reference */
1754         block->flags &= ~RAM_UF_WRITEPROTECT;
1755         memory_region_unref(block->mr);
1756     }
1757 
1758     uffd_close_fd(uffd_fd);
1759     rs->uffdio_fd = -1;
1760     return -1;
1761 }
1762 
1763 /**
1764  * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection
1765  */
1766 void ram_write_tracking_stop(void)
1767 {
1768     RAMState *rs = ram_state;
1769     RAMBlock *block;
1770 
1771     RCU_READ_LOCK_GUARD();
1772 
1773     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1774         if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1775             continue;
1776         }
1777         uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1778 
1779         trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size,
1780                 block->host, block->max_length);
1781 
1782         /* Cleanup flags and remove reference */
1783         block->flags &= ~RAM_UF_WRITEPROTECT;
1784         memory_region_unref(block->mr);
1785     }
1786 
1787     /* Finally close UFFD file descriptor */
1788     uffd_close_fd(rs->uffdio_fd);
1789     rs->uffdio_fd = -1;
1790 }
1791 
1792 #else
1793 /* No target OS support, stubs just fail or ignore */
1794 
1795 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1796 {
1797     (void) rs;
1798     (void) offset;
1799 
1800     return NULL;
1801 }
1802 
1803 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1804         unsigned long start_page)
1805 {
1806     (void) rs;
1807     (void) pss;
1808     (void) start_page;
1809 
1810     return 0;
1811 }
1812 
1813 bool ram_write_tracking_available(void)
1814 {
1815     return false;
1816 }
1817 
1818 bool ram_write_tracking_compatible(void)
1819 {
1820     assert(0);
1821     return false;
1822 }
1823 
1824 int ram_write_tracking_start(void)
1825 {
1826     assert(0);
1827     return -1;
1828 }
1829 
1830 void ram_write_tracking_stop(void)
1831 {
1832     assert(0);
1833 }
1834 #endif /* defined(__linux__) */
1835 
1836 /**
1837  * get_queued_page: unqueue a page from the postcopy requests
1838  *
1839  * Skips pages that are already sent (!dirty)
1840  *
1841  * Returns true if a queued page is found
1842  *
1843  * @rs: current RAM state
1844  * @pss: data about the state of the current dirty page scan
1845  */
1846 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
1847 {
1848     RAMBlock  *block;
1849     ram_addr_t offset;
1850     bool dirty;
1851 
1852     do {
1853         block = unqueue_page(rs, &offset);
1854         /*
1855          * We're sending this page, and since it's postcopy nothing else
1856          * will dirty it, and we must make sure it doesn't get sent again
1857          * even if this queue request was received after the background
1858          * search already sent it.
1859          */
1860         if (block) {
1861             unsigned long page;
1862 
1863             page = offset >> TARGET_PAGE_BITS;
1864             dirty = test_bit(page, block->bmap);
1865             if (!dirty) {
1866                 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
1867                                                 page);
1868             } else {
1869                 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
1870             }
1871         }
1872 
1873     } while (block && !dirty);
1874 
1875     if (!block) {
1876         /*
1877          * Poll write faults too if background snapshot is enabled; that's
1878          * when we have vcpus got blocked by the write protected pages.
1879          */
1880         block = poll_fault_page(rs, &offset);
1881     }
1882 
1883     if (block) {
1884         /*
1885          * We want the background search to continue from the queued page
1886          * since the guest is likely to want other pages near to the page
1887          * it just requested.
1888          */
1889         pss->block = block;
1890         pss->page = offset >> TARGET_PAGE_BITS;
1891 
1892         /*
1893          * This unqueued page would break the "one round" check, even is
1894          * really rare.
1895          */
1896         pss->complete_round = false;
1897     }
1898 
1899     return !!block;
1900 }
1901 
1902 /**
1903  * migration_page_queue_free: drop any remaining pages in the ram
1904  * request queue
1905  *
1906  * It should be empty at the end anyway, but in error cases there may
1907  * be some left.  in case that there is any page left, we drop it.
1908  *
1909  */
1910 static void migration_page_queue_free(RAMState *rs)
1911 {
1912     struct RAMSrcPageRequest *mspr, *next_mspr;
1913     /* This queue generally should be empty - but in the case of a failed
1914      * migration might have some droppings in.
1915      */
1916     RCU_READ_LOCK_GUARD();
1917     QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
1918         memory_region_unref(mspr->rb->mr);
1919         QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1920         g_free(mspr);
1921     }
1922 }
1923 
1924 /**
1925  * ram_save_queue_pages: queue the page for transmission
1926  *
1927  * A request from postcopy destination for example.
1928  *
1929  * Returns zero on success or negative on error
1930  *
1931  * @rbname: Name of the RAMBLock of the request. NULL means the
1932  *          same that last one.
1933  * @start: starting address from the start of the RAMBlock
1934  * @len: length (in bytes) to send
1935  */
1936 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len,
1937                          Error **errp)
1938 {
1939     RAMBlock *ramblock;
1940     RAMState *rs = ram_state;
1941 
1942     stat64_add(&mig_stats.postcopy_requests, 1);
1943     RCU_READ_LOCK_GUARD();
1944 
1945     if (!rbname) {
1946         /* Reuse last RAMBlock */
1947         ramblock = rs->last_req_rb;
1948 
1949         if (!ramblock) {
1950             /*
1951              * Shouldn't happen, we can't reuse the last RAMBlock if
1952              * it's the 1st request.
1953              */
1954             error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no previous block");
1955             return -1;
1956         }
1957     } else {
1958         ramblock = qemu_ram_block_by_name(rbname);
1959 
1960         if (!ramblock) {
1961             /* We shouldn't be asked for a non-existent RAMBlock */
1962             error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no block '%s'", rbname);
1963             return -1;
1964         }
1965         rs->last_req_rb = ramblock;
1966     }
1967     trace_ram_save_queue_pages(ramblock->idstr, start, len);
1968     if (!offset_in_ramblock(ramblock, start + len - 1)) {
1969         error_setg(errp, "MIG_RP_MSG_REQ_PAGES request overrun, "
1970                    "start=" RAM_ADDR_FMT " len="
1971                    RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
1972                    start, len, ramblock->used_length);
1973         return -1;
1974     }
1975 
1976     /*
1977      * When with postcopy preempt, we send back the page directly in the
1978      * rp-return thread.
1979      */
1980     if (postcopy_preempt_active()) {
1981         ram_addr_t page_start = start >> TARGET_PAGE_BITS;
1982         size_t page_size = qemu_ram_pagesize(ramblock);
1983         PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY];
1984         int ret = 0;
1985 
1986         qemu_mutex_lock(&rs->bitmap_mutex);
1987 
1988         pss_init(pss, ramblock, page_start);
1989         /*
1990          * Always use the preempt channel, and make sure it's there.  It's
1991          * safe to access without lock, because when rp-thread is running
1992          * we should be the only one who operates on the qemufile
1993          */
1994         pss->pss_channel = migrate_get_current()->postcopy_qemufile_src;
1995         assert(pss->pss_channel);
1996 
1997         /*
1998          * It must be either one or multiple of host page size.  Just
1999          * assert; if something wrong we're mostly split brain anyway.
2000          */
2001         assert(len % page_size == 0);
2002         while (len) {
2003             if (ram_save_host_page_urgent(pss)) {
2004                 error_setg(errp, "ram_save_host_page_urgent() failed: "
2005                            "ramblock=%s, start_addr=0x"RAM_ADDR_FMT,
2006                            ramblock->idstr, start);
2007                 ret = -1;
2008                 break;
2009             }
2010             /*
2011              * NOTE: after ram_save_host_page_urgent() succeeded, pss->page
2012              * will automatically be moved and point to the next host page
2013              * we're going to send, so no need to update here.
2014              *
2015              * Normally QEMU never sends >1 host page in requests, so
2016              * logically we don't even need that as the loop should only
2017              * run once, but just to be consistent.
2018              */
2019             len -= page_size;
2020         };
2021         qemu_mutex_unlock(&rs->bitmap_mutex);
2022 
2023         return ret;
2024     }
2025 
2026     struct RAMSrcPageRequest *new_entry =
2027         g_new0(struct RAMSrcPageRequest, 1);
2028     new_entry->rb = ramblock;
2029     new_entry->offset = start;
2030     new_entry->len = len;
2031 
2032     memory_region_ref(ramblock->mr);
2033     qemu_mutex_lock(&rs->src_page_req_mutex);
2034     QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2035     migration_make_urgent_request();
2036     qemu_mutex_unlock(&rs->src_page_req_mutex);
2037 
2038     return 0;
2039 }
2040 
2041 /*
2042  * try to compress the page before posting it out, return true if the page
2043  * has been properly handled by compression, otherwise needs other
2044  * paths to handle it
2045  */
2046 static bool save_compress_page(RAMState *rs, PageSearchStatus *pss,
2047                                ram_addr_t offset)
2048 {
2049     if (!migrate_compress()) {
2050         return false;
2051     }
2052 
2053     /*
2054      * When starting the process of a new block, the first page of
2055      * the block should be sent out before other pages in the same
2056      * block, and all the pages in last block should have been sent
2057      * out, keeping this order is important, because the 'cont' flag
2058      * is used to avoid resending the block name.
2059      *
2060      * We post the fist page as normal page as compression will take
2061      * much CPU resource.
2062      */
2063     if (pss->block != pss->last_sent_block) {
2064         compress_flush_data();
2065         return false;
2066     }
2067 
2068     return compress_page_with_multi_thread(pss->block, offset,
2069                                            compress_send_queued_data);
2070 }
2071 
2072 /**
2073  * ram_save_target_page_legacy: save one target page
2074  *
2075  * Returns the number of pages written
2076  *
2077  * @rs: current RAM state
2078  * @pss: data about the page we want to send
2079  */
2080 static int ram_save_target_page_legacy(RAMState *rs, PageSearchStatus *pss)
2081 {
2082     ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2083     int res;
2084 
2085     if (control_save_page(pss, offset, &res)) {
2086         return res;
2087     }
2088 
2089     if (save_compress_page(rs, pss, offset)) {
2090         return 1;
2091     }
2092 
2093     if (save_zero_page(rs, pss, offset)) {
2094         return 1;
2095     }
2096 
2097     return ram_save_page(rs, pss);
2098 }
2099 
2100 /**
2101  * ram_save_target_page_multifd: send one target page to multifd workers
2102  *
2103  * Returns 1 if the page was queued, -1 otherwise.
2104  *
2105  * @rs: current RAM state
2106  * @pss: data about the page we want to send
2107  */
2108 static int ram_save_target_page_multifd(RAMState *rs, PageSearchStatus *pss)
2109 {
2110     RAMBlock *block = pss->block;
2111     ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2112 
2113     /*
2114      * While using multifd live migration, we still need to handle zero
2115      * page checking on the migration main thread.
2116      */
2117     if (migrate_zero_page_detection() == ZERO_PAGE_DETECTION_LEGACY) {
2118         if (save_zero_page(rs, pss, offset)) {
2119             return 1;
2120         }
2121     }
2122 
2123     return ram_save_multifd_page(block, offset);
2124 }
2125 
2126 /* Should be called before sending a host page */
2127 static void pss_host_page_prepare(PageSearchStatus *pss)
2128 {
2129     /* How many guest pages are there in one host page? */
2130     size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2131 
2132     pss->host_page_sending = true;
2133     if (guest_pfns <= 1) {
2134         /*
2135          * This covers both when guest psize == host psize, or when guest
2136          * has larger psize than the host (guest_pfns==0).
2137          *
2138          * For the latter, we always send one whole guest page per
2139          * iteration of the host page (example: an Alpha VM on x86 host
2140          * will have guest psize 8K while host psize 4K).
2141          */
2142         pss->host_page_start = pss->page;
2143         pss->host_page_end = pss->page + 1;
2144     } else {
2145         /*
2146          * The host page spans over multiple guest pages, we send them
2147          * within the same host page iteration.
2148          */
2149         pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns);
2150         pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns);
2151     }
2152 }
2153 
2154 /*
2155  * Whether the page pointed by PSS is within the host page being sent.
2156  * Must be called after a previous pss_host_page_prepare().
2157  */
2158 static bool pss_within_range(PageSearchStatus *pss)
2159 {
2160     ram_addr_t ram_addr;
2161 
2162     assert(pss->host_page_sending);
2163 
2164     /* Over host-page boundary? */
2165     if (pss->page >= pss->host_page_end) {
2166         return false;
2167     }
2168 
2169     ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2170 
2171     return offset_in_ramblock(pss->block, ram_addr);
2172 }
2173 
2174 static void pss_host_page_finish(PageSearchStatus *pss)
2175 {
2176     pss->host_page_sending = false;
2177     /* This is not needed, but just to reset it */
2178     pss->host_page_start = pss->host_page_end = 0;
2179 }
2180 
2181 /*
2182  * Send an urgent host page specified by `pss'.  Need to be called with
2183  * bitmap_mutex held.
2184  *
2185  * Returns 0 if save host page succeeded, false otherwise.
2186  */
2187 static int ram_save_host_page_urgent(PageSearchStatus *pss)
2188 {
2189     bool page_dirty, sent = false;
2190     RAMState *rs = ram_state;
2191     int ret = 0;
2192 
2193     trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page);
2194     pss_host_page_prepare(pss);
2195 
2196     /*
2197      * If precopy is sending the same page, let it be done in precopy, or
2198      * we could send the same page in two channels and none of them will
2199      * receive the whole page.
2200      */
2201     if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) {
2202         trace_postcopy_preempt_hit(pss->block->idstr,
2203                                    pss->page << TARGET_PAGE_BITS);
2204         return 0;
2205     }
2206 
2207     do {
2208         page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2209 
2210         if (page_dirty) {
2211             /* Be strict to return code; it must be 1, or what else? */
2212             if (migration_ops->ram_save_target_page(rs, pss) != 1) {
2213                 error_report_once("%s: ram_save_target_page failed", __func__);
2214                 ret = -1;
2215                 goto out;
2216             }
2217             sent = true;
2218         }
2219         pss_find_next_dirty(pss);
2220     } while (pss_within_range(pss));
2221 out:
2222     pss_host_page_finish(pss);
2223     /* For urgent requests, flush immediately if sent */
2224     if (sent) {
2225         qemu_fflush(pss->pss_channel);
2226     }
2227     return ret;
2228 }
2229 
2230 /**
2231  * ram_save_host_page: save a whole host page
2232  *
2233  * Starting at *offset send pages up to the end of the current host
2234  * page. It's valid for the initial offset to point into the middle of
2235  * a host page in which case the remainder of the hostpage is sent.
2236  * Only dirty target pages are sent. Note that the host page size may
2237  * be a huge page for this block.
2238  *
2239  * The saving stops at the boundary of the used_length of the block
2240  * if the RAMBlock isn't a multiple of the host page size.
2241  *
2242  * The caller must be with ram_state.bitmap_mutex held to call this
2243  * function.  Note that this function can temporarily release the lock, but
2244  * when the function is returned it'll make sure the lock is still held.
2245  *
2246  * Returns the number of pages written or negative on error
2247  *
2248  * @rs: current RAM state
2249  * @pss: data about the page we want to send
2250  */
2251 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss)
2252 {
2253     bool page_dirty, preempt_active = postcopy_preempt_active();
2254     int tmppages, pages = 0;
2255     size_t pagesize_bits =
2256         qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2257     unsigned long start_page = pss->page;
2258     int res;
2259 
2260     if (migrate_ram_is_ignored(pss->block)) {
2261         error_report("block %s should not be migrated !", pss->block->idstr);
2262         return 0;
2263     }
2264 
2265     /* Update host page boundary information */
2266     pss_host_page_prepare(pss);
2267 
2268     do {
2269         page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2270 
2271         /* Check the pages is dirty and if it is send it */
2272         if (page_dirty) {
2273             /*
2274              * Properly yield the lock only in postcopy preempt mode
2275              * because both migration thread and rp-return thread can
2276              * operate on the bitmaps.
2277              */
2278             if (preempt_active) {
2279                 qemu_mutex_unlock(&rs->bitmap_mutex);
2280             }
2281             tmppages = migration_ops->ram_save_target_page(rs, pss);
2282             if (tmppages >= 0) {
2283                 pages += tmppages;
2284                 /*
2285                  * Allow rate limiting to happen in the middle of huge pages if
2286                  * something is sent in the current iteration.
2287                  */
2288                 if (pagesize_bits > 1 && tmppages > 0) {
2289                     migration_rate_limit();
2290                 }
2291             }
2292             if (preempt_active) {
2293                 qemu_mutex_lock(&rs->bitmap_mutex);
2294             }
2295         } else {
2296             tmppages = 0;
2297         }
2298 
2299         if (tmppages < 0) {
2300             pss_host_page_finish(pss);
2301             return tmppages;
2302         }
2303 
2304         pss_find_next_dirty(pss);
2305     } while (pss_within_range(pss));
2306 
2307     pss_host_page_finish(pss);
2308 
2309     res = ram_save_release_protection(rs, pss, start_page);
2310     return (res < 0 ? res : pages);
2311 }
2312 
2313 /**
2314  * ram_find_and_save_block: finds a dirty page and sends it to f
2315  *
2316  * Called within an RCU critical section.
2317  *
2318  * Returns the number of pages written where zero means no dirty pages,
2319  * or negative on error
2320  *
2321  * @rs: current RAM state
2322  *
2323  * On systems where host-page-size > target-page-size it will send all the
2324  * pages in a host page that are dirty.
2325  */
2326 static int ram_find_and_save_block(RAMState *rs)
2327 {
2328     PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY];
2329     int pages = 0;
2330 
2331     /* No dirty page as there is zero RAM */
2332     if (!rs->ram_bytes_total) {
2333         return pages;
2334     }
2335 
2336     /*
2337      * Always keep last_seen_block/last_page valid during this procedure,
2338      * because find_dirty_block() relies on these values (e.g., we compare
2339      * last_seen_block with pss.block to see whether we searched all the
2340      * ramblocks) to detect the completion of migration.  Having NULL value
2341      * of last_seen_block can conditionally cause below loop to run forever.
2342      */
2343     if (!rs->last_seen_block) {
2344         rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks);
2345         rs->last_page = 0;
2346     }
2347 
2348     pss_init(pss, rs->last_seen_block, rs->last_page);
2349 
2350     while (true){
2351         if (!get_queued_page(rs, pss)) {
2352             /* priority queue empty, so just search for something dirty */
2353             int res = find_dirty_block(rs, pss);
2354             if (res != PAGE_DIRTY_FOUND) {
2355                 if (res == PAGE_ALL_CLEAN) {
2356                     break;
2357                 } else if (res == PAGE_TRY_AGAIN) {
2358                     continue;
2359                 } else if (res < 0) {
2360                     pages = res;
2361                     break;
2362                 }
2363             }
2364         }
2365         pages = ram_save_host_page(rs, pss);
2366         if (pages) {
2367             break;
2368         }
2369     }
2370 
2371     rs->last_seen_block = pss->block;
2372     rs->last_page = pss->page;
2373 
2374     return pages;
2375 }
2376 
2377 static uint64_t ram_bytes_total_with_ignored(void)
2378 {
2379     RAMBlock *block;
2380     uint64_t total = 0;
2381 
2382     RCU_READ_LOCK_GUARD();
2383 
2384     RAMBLOCK_FOREACH_MIGRATABLE(block) {
2385         total += block->used_length;
2386     }
2387     return total;
2388 }
2389 
2390 uint64_t ram_bytes_total(void)
2391 {
2392     RAMBlock *block;
2393     uint64_t total = 0;
2394 
2395     RCU_READ_LOCK_GUARD();
2396 
2397     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2398         total += block->used_length;
2399     }
2400     return total;
2401 }
2402 
2403 static void xbzrle_load_setup(void)
2404 {
2405     XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2406 }
2407 
2408 static void xbzrle_load_cleanup(void)
2409 {
2410     g_free(XBZRLE.decoded_buf);
2411     XBZRLE.decoded_buf = NULL;
2412 }
2413 
2414 static void ram_state_cleanup(RAMState **rsp)
2415 {
2416     if (*rsp) {
2417         migration_page_queue_free(*rsp);
2418         qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2419         qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2420         g_free(*rsp);
2421         *rsp = NULL;
2422     }
2423 }
2424 
2425 static void xbzrle_cleanup(void)
2426 {
2427     XBZRLE_cache_lock();
2428     if (XBZRLE.cache) {
2429         cache_fini(XBZRLE.cache);
2430         g_free(XBZRLE.encoded_buf);
2431         g_free(XBZRLE.current_buf);
2432         g_free(XBZRLE.zero_target_page);
2433         XBZRLE.cache = NULL;
2434         XBZRLE.encoded_buf = NULL;
2435         XBZRLE.current_buf = NULL;
2436         XBZRLE.zero_target_page = NULL;
2437     }
2438     XBZRLE_cache_unlock();
2439 }
2440 
2441 static void ram_save_cleanup(void *opaque)
2442 {
2443     RAMState **rsp = opaque;
2444     RAMBlock *block;
2445 
2446     /* We don't use dirty log with background snapshots */
2447     if (!migrate_background_snapshot()) {
2448         /* caller have hold BQL or is in a bh, so there is
2449          * no writing race against the migration bitmap
2450          */
2451         if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) {
2452             /*
2453              * do not stop dirty log without starting it, since
2454              * memory_global_dirty_log_stop will assert that
2455              * memory_global_dirty_log_start/stop used in pairs
2456              */
2457             memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
2458         }
2459     }
2460 
2461     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2462         g_free(block->clear_bmap);
2463         block->clear_bmap = NULL;
2464         g_free(block->bmap);
2465         block->bmap = NULL;
2466     }
2467 
2468     xbzrle_cleanup();
2469     compress_threads_save_cleanup();
2470     ram_state_cleanup(rsp);
2471     g_free(migration_ops);
2472     migration_ops = NULL;
2473 }
2474 
2475 static void ram_state_reset(RAMState *rs)
2476 {
2477     int i;
2478 
2479     for (i = 0; i < RAM_CHANNEL_MAX; i++) {
2480         rs->pss[i].last_sent_block = NULL;
2481     }
2482 
2483     rs->last_seen_block = NULL;
2484     rs->last_page = 0;
2485     rs->last_version = ram_list.version;
2486     rs->xbzrle_started = false;
2487 }
2488 
2489 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2490 
2491 /* **** functions for postcopy ***** */
2492 
2493 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2494 {
2495     struct RAMBlock *block;
2496 
2497     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2498         unsigned long *bitmap = block->bmap;
2499         unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2500         unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2501 
2502         while (run_start < range) {
2503             unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2504             ram_discard_range(block->idstr,
2505                               ((ram_addr_t)run_start) << TARGET_PAGE_BITS,
2506                               ((ram_addr_t)(run_end - run_start))
2507                                 << TARGET_PAGE_BITS);
2508             run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2509         }
2510     }
2511 }
2512 
2513 /**
2514  * postcopy_send_discard_bm_ram: discard a RAMBlock
2515  *
2516  * Callback from postcopy_each_ram_send_discard for each RAMBlock
2517  *
2518  * @ms: current migration state
2519  * @block: RAMBlock to discard
2520  */
2521 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2522 {
2523     unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2524     unsigned long current;
2525     unsigned long *bitmap = block->bmap;
2526 
2527     for (current = 0; current < end; ) {
2528         unsigned long one = find_next_bit(bitmap, end, current);
2529         unsigned long zero, discard_length;
2530 
2531         if (one >= end) {
2532             break;
2533         }
2534 
2535         zero = find_next_zero_bit(bitmap, end, one + 1);
2536 
2537         if (zero >= end) {
2538             discard_length = end - one;
2539         } else {
2540             discard_length = zero - one;
2541         }
2542         postcopy_discard_send_range(ms, one, discard_length);
2543         current = one + discard_length;
2544     }
2545 }
2546 
2547 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block);
2548 
2549 /**
2550  * postcopy_each_ram_send_discard: discard all RAMBlocks
2551  *
2552  * Utility for the outgoing postcopy code.
2553  *   Calls postcopy_send_discard_bm_ram for each RAMBlock
2554  *   passing it bitmap indexes and name.
2555  * (qemu_ram_foreach_block ends up passing unscaled lengths
2556  *  which would mean postcopy code would have to deal with target page)
2557  *
2558  * @ms: current migration state
2559  */
2560 static void postcopy_each_ram_send_discard(MigrationState *ms)
2561 {
2562     struct RAMBlock *block;
2563 
2564     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2565         postcopy_discard_send_init(ms, block->idstr);
2566 
2567         /*
2568          * Deal with TPS != HPS and huge pages.  It discard any partially sent
2569          * host-page size chunks, mark any partially dirty host-page size
2570          * chunks as all dirty.  In this case the host-page is the host-page
2571          * for the particular RAMBlock, i.e. it might be a huge page.
2572          */
2573         postcopy_chunk_hostpages_pass(ms, block);
2574 
2575         /*
2576          * Postcopy sends chunks of bitmap over the wire, but it
2577          * just needs indexes at this point, avoids it having
2578          * target page specific code.
2579          */
2580         postcopy_send_discard_bm_ram(ms, block);
2581         postcopy_discard_send_finish(ms);
2582     }
2583 }
2584 
2585 /**
2586  * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
2587  *
2588  * Helper for postcopy_chunk_hostpages; it's called twice to
2589  * canonicalize the two bitmaps, that are similar, but one is
2590  * inverted.
2591  *
2592  * Postcopy requires that all target pages in a hostpage are dirty or
2593  * clean, not a mix.  This function canonicalizes the bitmaps.
2594  *
2595  * @ms: current migration state
2596  * @block: block that contains the page we want to canonicalize
2597  */
2598 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
2599 {
2600     RAMState *rs = ram_state;
2601     unsigned long *bitmap = block->bmap;
2602     unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2603     unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2604     unsigned long run_start;
2605 
2606     if (block->page_size == TARGET_PAGE_SIZE) {
2607         /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2608         return;
2609     }
2610 
2611     /* Find a dirty page */
2612     run_start = find_next_bit(bitmap, pages, 0);
2613 
2614     while (run_start < pages) {
2615 
2616         /*
2617          * If the start of this run of pages is in the middle of a host
2618          * page, then we need to fixup this host page.
2619          */
2620         if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2621             /* Find the end of this run */
2622             run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2623             /*
2624              * If the end isn't at the start of a host page, then the
2625              * run doesn't finish at the end of a host page
2626              * and we need to discard.
2627              */
2628         }
2629 
2630         if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
2631             unsigned long page;
2632             unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2633                                                              host_ratio);
2634             run_start = QEMU_ALIGN_UP(run_start, host_ratio);
2635 
2636             /* Clean up the bitmap */
2637             for (page = fixup_start_addr;
2638                  page < fixup_start_addr + host_ratio; page++) {
2639                 /*
2640                  * Remark them as dirty, updating the count for any pages
2641                  * that weren't previously dirty.
2642                  */
2643                 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2644             }
2645         }
2646 
2647         /* Find the next dirty page for the next iteration */
2648         run_start = find_next_bit(bitmap, pages, run_start);
2649     }
2650 }
2651 
2652 /**
2653  * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2654  *
2655  * Transmit the set of pages to be discarded after precopy to the target
2656  * these are pages that:
2657  *     a) Have been previously transmitted but are now dirty again
2658  *     b) Pages that have never been transmitted, this ensures that
2659  *        any pages on the destination that have been mapped by background
2660  *        tasks get discarded (transparent huge pages is the specific concern)
2661  * Hopefully this is pretty sparse
2662  *
2663  * @ms: current migration state
2664  */
2665 void ram_postcopy_send_discard_bitmap(MigrationState *ms)
2666 {
2667     RAMState *rs = ram_state;
2668 
2669     RCU_READ_LOCK_GUARD();
2670 
2671     /* This should be our last sync, the src is now paused */
2672     migration_bitmap_sync(rs, false);
2673 
2674     /* Easiest way to make sure we don't resume in the middle of a host-page */
2675     rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL;
2676     rs->last_seen_block = NULL;
2677     rs->last_page = 0;
2678 
2679     postcopy_each_ram_send_discard(ms);
2680 
2681     trace_ram_postcopy_send_discard_bitmap();
2682 }
2683 
2684 /**
2685  * ram_discard_range: discard dirtied pages at the beginning of postcopy
2686  *
2687  * Returns zero on success
2688  *
2689  * @rbname: name of the RAMBlock of the request. NULL means the
2690  *          same that last one.
2691  * @start: RAMBlock starting page
2692  * @length: RAMBlock size
2693  */
2694 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
2695 {
2696     trace_ram_discard_range(rbname, start, length);
2697 
2698     RCU_READ_LOCK_GUARD();
2699     RAMBlock *rb = qemu_ram_block_by_name(rbname);
2700 
2701     if (!rb) {
2702         error_report("ram_discard_range: Failed to find block '%s'", rbname);
2703         return -1;
2704     }
2705 
2706     /*
2707      * On source VM, we don't need to update the received bitmap since
2708      * we don't even have one.
2709      */
2710     if (rb->receivedmap) {
2711         bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2712                      length >> qemu_target_page_bits());
2713     }
2714 
2715     return ram_block_discard_range(rb, start, length);
2716 }
2717 
2718 /*
2719  * For every allocation, we will try not to crash the VM if the
2720  * allocation failed.
2721  */
2722 static int xbzrle_init(void)
2723 {
2724     Error *local_err = NULL;
2725 
2726     if (!migrate_xbzrle()) {
2727         return 0;
2728     }
2729 
2730     XBZRLE_cache_lock();
2731 
2732     XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2733     if (!XBZRLE.zero_target_page) {
2734         error_report("%s: Error allocating zero page", __func__);
2735         goto err_out;
2736     }
2737 
2738     XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2739                               TARGET_PAGE_SIZE, &local_err);
2740     if (!XBZRLE.cache) {
2741         error_report_err(local_err);
2742         goto free_zero_page;
2743     }
2744 
2745     XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2746     if (!XBZRLE.encoded_buf) {
2747         error_report("%s: Error allocating encoded_buf", __func__);
2748         goto free_cache;
2749     }
2750 
2751     XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2752     if (!XBZRLE.current_buf) {
2753         error_report("%s: Error allocating current_buf", __func__);
2754         goto free_encoded_buf;
2755     }
2756 
2757     /* We are all good */
2758     XBZRLE_cache_unlock();
2759     return 0;
2760 
2761 free_encoded_buf:
2762     g_free(XBZRLE.encoded_buf);
2763     XBZRLE.encoded_buf = NULL;
2764 free_cache:
2765     cache_fini(XBZRLE.cache);
2766     XBZRLE.cache = NULL;
2767 free_zero_page:
2768     g_free(XBZRLE.zero_target_page);
2769     XBZRLE.zero_target_page = NULL;
2770 err_out:
2771     XBZRLE_cache_unlock();
2772     return -ENOMEM;
2773 }
2774 
2775 static int ram_state_init(RAMState **rsp)
2776 {
2777     *rsp = g_try_new0(RAMState, 1);
2778 
2779     if (!*rsp) {
2780         error_report("%s: Init ramstate fail", __func__);
2781         return -1;
2782     }
2783 
2784     qemu_mutex_init(&(*rsp)->bitmap_mutex);
2785     qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2786     QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
2787     (*rsp)->ram_bytes_total = ram_bytes_total();
2788 
2789     /*
2790      * Count the total number of pages used by ram blocks not including any
2791      * gaps due to alignment or unplugs.
2792      * This must match with the initial values of dirty bitmap.
2793      */
2794     (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS;
2795     ram_state_reset(*rsp);
2796 
2797     return 0;
2798 }
2799 
2800 static void ram_list_init_bitmaps(void)
2801 {
2802     MigrationState *ms = migrate_get_current();
2803     RAMBlock *block;
2804     unsigned long pages;
2805     uint8_t shift;
2806 
2807     /* Skip setting bitmap if there is no RAM */
2808     if (ram_bytes_total()) {
2809         shift = ms->clear_bitmap_shift;
2810         if (shift > CLEAR_BITMAP_SHIFT_MAX) {
2811             error_report("clear_bitmap_shift (%u) too big, using "
2812                          "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
2813             shift = CLEAR_BITMAP_SHIFT_MAX;
2814         } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
2815             error_report("clear_bitmap_shift (%u) too small, using "
2816                          "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
2817             shift = CLEAR_BITMAP_SHIFT_MIN;
2818         }
2819 
2820         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2821             pages = block->max_length >> TARGET_PAGE_BITS;
2822             /*
2823              * The initial dirty bitmap for migration must be set with all
2824              * ones to make sure we'll migrate every guest RAM page to
2825              * destination.
2826              * Here we set RAMBlock.bmap all to 1 because when rebegin a
2827              * new migration after a failed migration, ram_list.
2828              * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
2829              * guest memory.
2830              */
2831             block->bmap = bitmap_new(pages);
2832             bitmap_set(block->bmap, 0, pages);
2833             if (migrate_mapped_ram()) {
2834                 block->file_bmap = bitmap_new(pages);
2835             }
2836             block->clear_bmap_shift = shift;
2837             block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
2838         }
2839     }
2840 }
2841 
2842 static void migration_bitmap_clear_discarded_pages(RAMState *rs)
2843 {
2844     unsigned long pages;
2845     RAMBlock *rb;
2846 
2847     RCU_READ_LOCK_GUARD();
2848 
2849     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
2850             pages = ramblock_dirty_bitmap_clear_discarded_pages(rb);
2851             rs->migration_dirty_pages -= pages;
2852     }
2853 }
2854 
2855 static void ram_init_bitmaps(RAMState *rs)
2856 {
2857     qemu_mutex_lock_ramlist();
2858 
2859     WITH_RCU_READ_LOCK_GUARD() {
2860         ram_list_init_bitmaps();
2861         /* We don't use dirty log with background snapshots */
2862         if (!migrate_background_snapshot()) {
2863             memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
2864             migration_bitmap_sync_precopy(rs, false);
2865         }
2866     }
2867     qemu_mutex_unlock_ramlist();
2868 
2869     /*
2870      * After an eventual first bitmap sync, fixup the initial bitmap
2871      * containing all 1s to exclude any discarded pages from migration.
2872      */
2873     migration_bitmap_clear_discarded_pages(rs);
2874 }
2875 
2876 static int ram_init_all(RAMState **rsp)
2877 {
2878     if (ram_state_init(rsp)) {
2879         return -1;
2880     }
2881 
2882     if (xbzrle_init()) {
2883         ram_state_cleanup(rsp);
2884         return -1;
2885     }
2886 
2887     ram_init_bitmaps(*rsp);
2888 
2889     return 0;
2890 }
2891 
2892 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
2893 {
2894     RAMBlock *block;
2895     uint64_t pages = 0;
2896 
2897     /*
2898      * Postcopy is not using xbzrle/compression, so no need for that.
2899      * Also, since source are already halted, we don't need to care
2900      * about dirty page logging as well.
2901      */
2902 
2903     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2904         pages += bitmap_count_one(block->bmap,
2905                                   block->used_length >> TARGET_PAGE_BITS);
2906     }
2907 
2908     /* This may not be aligned with current bitmaps. Recalculate. */
2909     rs->migration_dirty_pages = pages;
2910 
2911     ram_state_reset(rs);
2912 
2913     /* Update RAMState cache of output QEMUFile */
2914     rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out;
2915 
2916     trace_ram_state_resume_prepare(pages);
2917 }
2918 
2919 /*
2920  * This function clears bits of the free pages reported by the caller from the
2921  * migration dirty bitmap. @addr is the host address corresponding to the
2922  * start of the continuous guest free pages, and @len is the total bytes of
2923  * those pages.
2924  */
2925 void qemu_guest_free_page_hint(void *addr, size_t len)
2926 {
2927     RAMBlock *block;
2928     ram_addr_t offset;
2929     size_t used_len, start, npages;
2930 
2931     /* This function is currently expected to be used during live migration */
2932     if (!migration_is_setup_or_active()) {
2933         return;
2934     }
2935 
2936     for (; len > 0; len -= used_len, addr += used_len) {
2937         block = qemu_ram_block_from_host(addr, false, &offset);
2938         if (unlikely(!block || offset >= block->used_length)) {
2939             /*
2940              * The implementation might not support RAMBlock resize during
2941              * live migration, but it could happen in theory with future
2942              * updates. So we add a check here to capture that case.
2943              */
2944             error_report_once("%s unexpected error", __func__);
2945             return;
2946         }
2947 
2948         if (len <= block->used_length - offset) {
2949             used_len = len;
2950         } else {
2951             used_len = block->used_length - offset;
2952         }
2953 
2954         start = offset >> TARGET_PAGE_BITS;
2955         npages = used_len >> TARGET_PAGE_BITS;
2956 
2957         qemu_mutex_lock(&ram_state->bitmap_mutex);
2958         /*
2959          * The skipped free pages are equavalent to be sent from clear_bmap's
2960          * perspective, so clear the bits from the memory region bitmap which
2961          * are initially set. Otherwise those skipped pages will be sent in
2962          * the next round after syncing from the memory region bitmap.
2963          */
2964         migration_clear_memory_region_dirty_bitmap_range(block, start, npages);
2965         ram_state->migration_dirty_pages -=
2966                       bitmap_count_one_with_offset(block->bmap, start, npages);
2967         bitmap_clear(block->bmap, start, npages);
2968         qemu_mutex_unlock(&ram_state->bitmap_mutex);
2969     }
2970 }
2971 
2972 #define MAPPED_RAM_HDR_VERSION 1
2973 struct MappedRamHeader {
2974     uint32_t version;
2975     /*
2976      * The target's page size, so we know how many pages are in the
2977      * bitmap.
2978      */
2979     uint64_t page_size;
2980     /*
2981      * The offset in the migration file where the pages bitmap is
2982      * stored.
2983      */
2984     uint64_t bitmap_offset;
2985     /*
2986      * The offset in the migration file where the actual pages (data)
2987      * are stored.
2988      */
2989     uint64_t pages_offset;
2990 } QEMU_PACKED;
2991 typedef struct MappedRamHeader MappedRamHeader;
2992 
2993 static void mapped_ram_setup_ramblock(QEMUFile *file, RAMBlock *block)
2994 {
2995     g_autofree MappedRamHeader *header = NULL;
2996     size_t header_size, bitmap_size;
2997     long num_pages;
2998 
2999     header = g_new0(MappedRamHeader, 1);
3000     header_size = sizeof(MappedRamHeader);
3001 
3002     num_pages = block->used_length >> TARGET_PAGE_BITS;
3003     bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
3004 
3005     /*
3006      * Save the file offsets of where the bitmap and the pages should
3007      * go as they are written at the end of migration and during the
3008      * iterative phase, respectively.
3009      */
3010     block->bitmap_offset = qemu_get_offset(file) + header_size;
3011     block->pages_offset = ROUND_UP(block->bitmap_offset +
3012                                    bitmap_size,
3013                                    MAPPED_RAM_FILE_OFFSET_ALIGNMENT);
3014 
3015     header->version = cpu_to_be32(MAPPED_RAM_HDR_VERSION);
3016     header->page_size = cpu_to_be64(TARGET_PAGE_SIZE);
3017     header->bitmap_offset = cpu_to_be64(block->bitmap_offset);
3018     header->pages_offset = cpu_to_be64(block->pages_offset);
3019 
3020     qemu_put_buffer(file, (uint8_t *) header, header_size);
3021 
3022     /* prepare offset for next ramblock */
3023     qemu_set_offset(file, block->pages_offset + block->used_length, SEEK_SET);
3024 }
3025 
3026 static bool mapped_ram_read_header(QEMUFile *file, MappedRamHeader *header,
3027                                    Error **errp)
3028 {
3029     size_t ret, header_size = sizeof(MappedRamHeader);
3030 
3031     ret = qemu_get_buffer(file, (uint8_t *)header, header_size);
3032     if (ret != header_size) {
3033         error_setg(errp, "Could not read whole mapped-ram migration header "
3034                    "(expected %zd, got %zd bytes)", header_size, ret);
3035         return false;
3036     }
3037 
3038     /* migration stream is big-endian */
3039     header->version = be32_to_cpu(header->version);
3040 
3041     if (header->version > MAPPED_RAM_HDR_VERSION) {
3042         error_setg(errp, "Migration mapped-ram capability version not "
3043                    "supported (expected <= %d, got %d)", MAPPED_RAM_HDR_VERSION,
3044                    header->version);
3045         return false;
3046     }
3047 
3048     header->page_size = be64_to_cpu(header->page_size);
3049     header->bitmap_offset = be64_to_cpu(header->bitmap_offset);
3050     header->pages_offset = be64_to_cpu(header->pages_offset);
3051 
3052     return true;
3053 }
3054 
3055 /*
3056  * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
3057  * long-running RCU critical section.  When rcu-reclaims in the code
3058  * start to become numerous it will be necessary to reduce the
3059  * granularity of these critical sections.
3060  */
3061 
3062 /**
3063  * ram_save_setup: Setup RAM for migration
3064  *
3065  * Returns zero to indicate success and negative for error
3066  *
3067  * @f: QEMUFile where to send the data
3068  * @opaque: RAMState pointer
3069  */
3070 static int ram_save_setup(QEMUFile *f, void *opaque)
3071 {
3072     RAMState **rsp = opaque;
3073     RAMBlock *block;
3074     int ret, max_hg_page_size;
3075 
3076     if (compress_threads_save_setup()) {
3077         return -1;
3078     }
3079 
3080     /* migration has already setup the bitmap, reuse it. */
3081     if (!migration_in_colo_state()) {
3082         if (ram_init_all(rsp) != 0) {
3083             compress_threads_save_cleanup();
3084             return -1;
3085         }
3086     }
3087     (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f;
3088 
3089     /*
3090      * ??? Mirrors the previous value of qemu_host_page_size,
3091      * but is this really what was intended for the migration?
3092      */
3093     max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE);
3094 
3095     WITH_RCU_READ_LOCK_GUARD() {
3096         qemu_put_be64(f, ram_bytes_total_with_ignored()
3097                          | RAM_SAVE_FLAG_MEM_SIZE);
3098 
3099         RAMBLOCK_FOREACH_MIGRATABLE(block) {
3100             qemu_put_byte(f, strlen(block->idstr));
3101             qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3102             qemu_put_be64(f, block->used_length);
3103             if (migrate_postcopy_ram() &&
3104                 block->page_size != max_hg_page_size) {
3105                 qemu_put_be64(f, block->page_size);
3106             }
3107             if (migrate_ignore_shared()) {
3108                 qemu_put_be64(f, block->mr->addr);
3109             }
3110 
3111             if (migrate_mapped_ram()) {
3112                 mapped_ram_setup_ramblock(f, block);
3113             }
3114         }
3115     }
3116 
3117     ret = rdma_registration_start(f, RAM_CONTROL_SETUP);
3118     if (ret < 0) {
3119         qemu_file_set_error(f, ret);
3120         return ret;
3121     }
3122 
3123     ret = rdma_registration_stop(f, RAM_CONTROL_SETUP);
3124     if (ret < 0) {
3125         qemu_file_set_error(f, ret);
3126         return ret;
3127     }
3128 
3129     migration_ops = g_malloc0(sizeof(MigrationOps));
3130 
3131     if (migrate_multifd()) {
3132         migration_ops->ram_save_target_page = ram_save_target_page_multifd;
3133     } else {
3134         migration_ops->ram_save_target_page = ram_save_target_page_legacy;
3135     }
3136 
3137     bql_unlock();
3138     ret = multifd_send_sync_main();
3139     bql_lock();
3140     if (ret < 0) {
3141         return ret;
3142     }
3143 
3144     if (migrate_multifd() && !migrate_multifd_flush_after_each_section()
3145         && !migrate_mapped_ram()) {
3146         qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
3147     }
3148 
3149     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3150     return qemu_fflush(f);
3151 }
3152 
3153 static void ram_save_file_bmap(QEMUFile *f)
3154 {
3155     RAMBlock *block;
3156 
3157     RAMBLOCK_FOREACH_MIGRATABLE(block) {
3158         long num_pages = block->used_length >> TARGET_PAGE_BITS;
3159         long bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
3160 
3161         qemu_put_buffer_at(f, (uint8_t *)block->file_bmap, bitmap_size,
3162                            block->bitmap_offset);
3163         ram_transferred_add(bitmap_size);
3164 
3165         /*
3166          * Free the bitmap here to catch any synchronization issues
3167          * with multifd channels. No channels should be sending pages
3168          * after we've written the bitmap to file.
3169          */
3170         g_free(block->file_bmap);
3171         block->file_bmap = NULL;
3172     }
3173 }
3174 
3175 void ramblock_set_file_bmap_atomic(RAMBlock *block, ram_addr_t offset, bool set)
3176 {
3177     if (set) {
3178         set_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap);
3179     } else {
3180         clear_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap);
3181     }
3182 }
3183 
3184 /**
3185  * ram_save_iterate: iterative stage for migration
3186  *
3187  * Returns zero to indicate success and negative for error
3188  *
3189  * @f: QEMUFile where to send the data
3190  * @opaque: RAMState pointer
3191  */
3192 static int ram_save_iterate(QEMUFile *f, void *opaque)
3193 {
3194     RAMState **temp = opaque;
3195     RAMState *rs = *temp;
3196     int ret = 0;
3197     int i;
3198     int64_t t0;
3199     int done = 0;
3200 
3201     if (blk_mig_bulk_active()) {
3202         /* Avoid transferring ram during bulk phase of block migration as
3203          * the bulk phase will usually take a long time and transferring
3204          * ram updates during that time is pointless. */
3205         goto out;
3206     }
3207 
3208     /*
3209      * We'll take this lock a little bit long, but it's okay for two reasons.
3210      * Firstly, the only possible other thread to take it is who calls
3211      * qemu_guest_free_page_hint(), which should be rare; secondly, see
3212      * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which
3213      * guarantees that we'll at least released it in a regular basis.
3214      */
3215     WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) {
3216         WITH_RCU_READ_LOCK_GUARD() {
3217             if (ram_list.version != rs->last_version) {
3218                 ram_state_reset(rs);
3219             }
3220 
3221             /* Read version before ram_list.blocks */
3222             smp_rmb();
3223 
3224             ret = rdma_registration_start(f, RAM_CONTROL_ROUND);
3225             if (ret < 0) {
3226                 qemu_file_set_error(f, ret);
3227                 goto out;
3228             }
3229 
3230             t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3231             i = 0;
3232             while ((ret = migration_rate_exceeded(f)) == 0 ||
3233                    postcopy_has_request(rs)) {
3234                 int pages;
3235 
3236                 if (qemu_file_get_error(f)) {
3237                     break;
3238                 }
3239 
3240                 pages = ram_find_and_save_block(rs);
3241                 /* no more pages to sent */
3242                 if (pages == 0) {
3243                     done = 1;
3244                     break;
3245                 }
3246 
3247                 if (pages < 0) {
3248                     qemu_file_set_error(f, pages);
3249                     break;
3250                 }
3251 
3252                 rs->target_page_count += pages;
3253 
3254                 /*
3255                  * During postcopy, it is necessary to make sure one whole host
3256                  * page is sent in one chunk.
3257                  */
3258                 if (migrate_postcopy_ram()) {
3259                     compress_flush_data();
3260                 }
3261 
3262                 /*
3263                  * we want to check in the 1st loop, just in case it was the 1st
3264                  * time and we had to sync the dirty bitmap.
3265                  * qemu_clock_get_ns() is a bit expensive, so we only check each
3266                  * some iterations
3267                  */
3268                 if ((i & 63) == 0) {
3269                     uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
3270                         1000000;
3271                     if (t1 > MAX_WAIT) {
3272                         trace_ram_save_iterate_big_wait(t1, i);
3273                         break;
3274                     }
3275                 }
3276                 i++;
3277             }
3278         }
3279     }
3280 
3281     /*
3282      * Must occur before EOS (or any QEMUFile operation)
3283      * because of RDMA protocol.
3284      */
3285     ret = rdma_registration_stop(f, RAM_CONTROL_ROUND);
3286     if (ret < 0) {
3287         qemu_file_set_error(f, ret);
3288     }
3289 
3290 out:
3291     if (ret >= 0
3292         && migration_is_setup_or_active()) {
3293         if (migrate_multifd() && migrate_multifd_flush_after_each_section() &&
3294             !migrate_mapped_ram()) {
3295             ret = multifd_send_sync_main();
3296             if (ret < 0) {
3297                 return ret;
3298             }
3299         }
3300 
3301         qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3302         ram_transferred_add(8);
3303         ret = qemu_fflush(f);
3304     }
3305     if (ret < 0) {
3306         return ret;
3307     }
3308 
3309     return done;
3310 }
3311 
3312 /**
3313  * ram_save_complete: function called to send the remaining amount of ram
3314  *
3315  * Returns zero to indicate success or negative on error
3316  *
3317  * Called with the BQL
3318  *
3319  * @f: QEMUFile where to send the data
3320  * @opaque: RAMState pointer
3321  */
3322 static int ram_save_complete(QEMUFile *f, void *opaque)
3323 {
3324     RAMState **temp = opaque;
3325     RAMState *rs = *temp;
3326     int ret = 0;
3327 
3328     rs->last_stage = !migration_in_colo_state();
3329 
3330     WITH_RCU_READ_LOCK_GUARD() {
3331         if (!migration_in_postcopy()) {
3332             migration_bitmap_sync_precopy(rs, true);
3333         }
3334 
3335         ret = rdma_registration_start(f, RAM_CONTROL_FINISH);
3336         if (ret < 0) {
3337             qemu_file_set_error(f, ret);
3338             return ret;
3339         }
3340 
3341         /* try transferring iterative blocks of memory */
3342 
3343         /* flush all remaining blocks regardless of rate limiting */
3344         qemu_mutex_lock(&rs->bitmap_mutex);
3345         while (true) {
3346             int pages;
3347 
3348             pages = ram_find_and_save_block(rs);
3349             /* no more blocks to sent */
3350             if (pages == 0) {
3351                 break;
3352             }
3353             if (pages < 0) {
3354                 qemu_mutex_unlock(&rs->bitmap_mutex);
3355                 return pages;
3356             }
3357         }
3358         qemu_mutex_unlock(&rs->bitmap_mutex);
3359 
3360         compress_flush_data();
3361 
3362         ret = rdma_registration_stop(f, RAM_CONTROL_FINISH);
3363         if (ret < 0) {
3364             qemu_file_set_error(f, ret);
3365             return ret;
3366         }
3367     }
3368 
3369     ret = multifd_send_sync_main();
3370     if (ret < 0) {
3371         return ret;
3372     }
3373 
3374     if (migrate_mapped_ram()) {
3375         ram_save_file_bmap(f);
3376 
3377         if (qemu_file_get_error(f)) {
3378             Error *local_err = NULL;
3379             int err = qemu_file_get_error_obj(f, &local_err);
3380 
3381             error_reportf_err(local_err, "Failed to write bitmap to file: ");
3382             return -err;
3383         }
3384     }
3385 
3386     if (migrate_multifd() && !migrate_multifd_flush_after_each_section() &&
3387         !migrate_mapped_ram()) {
3388         qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
3389     }
3390     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3391     return qemu_fflush(f);
3392 }
3393 
3394 static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy,
3395                                        uint64_t *can_postcopy)
3396 {
3397     RAMState **temp = opaque;
3398     RAMState *rs = *temp;
3399 
3400     uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3401 
3402     if (migrate_postcopy_ram()) {
3403         /* We can do postcopy, and all the data is postcopiable */
3404         *can_postcopy += remaining_size;
3405     } else {
3406         *must_precopy += remaining_size;
3407     }
3408 }
3409 
3410 static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy,
3411                                     uint64_t *can_postcopy)
3412 {
3413     RAMState **temp = opaque;
3414     RAMState *rs = *temp;
3415     uint64_t remaining_size;
3416 
3417     if (!migration_in_postcopy()) {
3418         bql_lock();
3419         WITH_RCU_READ_LOCK_GUARD() {
3420             migration_bitmap_sync_precopy(rs, false);
3421         }
3422         bql_unlock();
3423     }
3424 
3425     remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3426 
3427     if (migrate_postcopy_ram()) {
3428         /* We can do postcopy, and all the data is postcopiable */
3429         *can_postcopy += remaining_size;
3430     } else {
3431         *must_precopy += remaining_size;
3432     }
3433 }
3434 
3435 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3436 {
3437     unsigned int xh_len;
3438     int xh_flags;
3439     uint8_t *loaded_data;
3440 
3441     /* extract RLE header */
3442     xh_flags = qemu_get_byte(f);
3443     xh_len = qemu_get_be16(f);
3444 
3445     if (xh_flags != ENCODING_FLAG_XBZRLE) {
3446         error_report("Failed to load XBZRLE page - wrong compression!");
3447         return -1;
3448     }
3449 
3450     if (xh_len > TARGET_PAGE_SIZE) {
3451         error_report("Failed to load XBZRLE page - len overflow!");
3452         return -1;
3453     }
3454     loaded_data = XBZRLE.decoded_buf;
3455     /* load data and decode */
3456     /* it can change loaded_data to point to an internal buffer */
3457     qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3458 
3459     /* decode RLE */
3460     if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3461                              TARGET_PAGE_SIZE) == -1) {
3462         error_report("Failed to load XBZRLE page - decode error!");
3463         return -1;
3464     }
3465 
3466     return 0;
3467 }
3468 
3469 /**
3470  * ram_block_from_stream: read a RAMBlock id from the migration stream
3471  *
3472  * Must be called from within a rcu critical section.
3473  *
3474  * Returns a pointer from within the RCU-protected ram_list.
3475  *
3476  * @mis: the migration incoming state pointer
3477  * @f: QEMUFile where to read the data from
3478  * @flags: Page flags (mostly to see if it's a continuation of previous block)
3479  * @channel: the channel we're using
3480  */
3481 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis,
3482                                               QEMUFile *f, int flags,
3483                                               int channel)
3484 {
3485     RAMBlock *block = mis->last_recv_block[channel];
3486     char id[256];
3487     uint8_t len;
3488 
3489     if (flags & RAM_SAVE_FLAG_CONTINUE) {
3490         if (!block) {
3491             error_report("Ack, bad migration stream!");
3492             return NULL;
3493         }
3494         return block;
3495     }
3496 
3497     len = qemu_get_byte(f);
3498     qemu_get_buffer(f, (uint8_t *)id, len);
3499     id[len] = 0;
3500 
3501     block = qemu_ram_block_by_name(id);
3502     if (!block) {
3503         error_report("Can't find block %s", id);
3504         return NULL;
3505     }
3506 
3507     if (migrate_ram_is_ignored(block)) {
3508         error_report("block %s should not be migrated !", id);
3509         return NULL;
3510     }
3511 
3512     mis->last_recv_block[channel] = block;
3513 
3514     return block;
3515 }
3516 
3517 static inline void *host_from_ram_block_offset(RAMBlock *block,
3518                                                ram_addr_t offset)
3519 {
3520     if (!offset_in_ramblock(block, offset)) {
3521         return NULL;
3522     }
3523 
3524     return block->host + offset;
3525 }
3526 
3527 static void *host_page_from_ram_block_offset(RAMBlock *block,
3528                                              ram_addr_t offset)
3529 {
3530     /* Note: Explicitly no check against offset_in_ramblock(). */
3531     return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset),
3532                                    block->page_size);
3533 }
3534 
3535 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block,
3536                                                          ram_addr_t offset)
3537 {
3538     return ((uintptr_t)block->host + offset) & (block->page_size - 1);
3539 }
3540 
3541 void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages)
3542 {
3543     qemu_mutex_lock(&ram_state->bitmap_mutex);
3544     for (int i = 0; i < pages; i++) {
3545         ram_addr_t offset = normal[i];
3546         ram_state->migration_dirty_pages += !test_and_set_bit(
3547                                                 offset >> TARGET_PAGE_BITS,
3548                                                 block->bmap);
3549     }
3550     qemu_mutex_unlock(&ram_state->bitmap_mutex);
3551 }
3552 
3553 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3554                              ram_addr_t offset, bool record_bitmap)
3555 {
3556     if (!offset_in_ramblock(block, offset)) {
3557         return NULL;
3558     }
3559     if (!block->colo_cache) {
3560         error_report("%s: colo_cache is NULL in block :%s",
3561                      __func__, block->idstr);
3562         return NULL;
3563     }
3564 
3565     /*
3566     * During colo checkpoint, we need bitmap of these migrated pages.
3567     * It help us to decide which pages in ram cache should be flushed
3568     * into VM's RAM later.
3569     */
3570     if (record_bitmap) {
3571         colo_record_bitmap(block, &offset, 1);
3572     }
3573     return block->colo_cache + offset;
3574 }
3575 
3576 /**
3577  * ram_handle_zero: handle the zero page case
3578  *
3579  * If a page (or a whole RDMA chunk) has been
3580  * determined to be zero, then zap it.
3581  *
3582  * @host: host address for the zero page
3583  * @ch: what the page is filled from.  We only support zero
3584  * @size: size of the zero page
3585  */
3586 void ram_handle_zero(void *host, uint64_t size)
3587 {
3588     if (!buffer_is_zero(host, size)) {
3589         memset(host, 0, size);
3590     }
3591 }
3592 
3593 static void colo_init_ram_state(void)
3594 {
3595     ram_state_init(&ram_state);
3596 }
3597 
3598 /*
3599  * colo cache: this is for secondary VM, we cache the whole
3600  * memory of the secondary VM, it is need to hold the global lock
3601  * to call this helper.
3602  */
3603 int colo_init_ram_cache(void)
3604 {
3605     RAMBlock *block;
3606 
3607     WITH_RCU_READ_LOCK_GUARD() {
3608         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3609             block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3610                                                     NULL, false, false);
3611             if (!block->colo_cache) {
3612                 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3613                              "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3614                              block->used_length);
3615                 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3616                     if (block->colo_cache) {
3617                         qemu_anon_ram_free(block->colo_cache, block->used_length);
3618                         block->colo_cache = NULL;
3619                     }
3620                 }
3621                 return -errno;
3622             }
3623             if (!machine_dump_guest_core(current_machine)) {
3624                 qemu_madvise(block->colo_cache, block->used_length,
3625                              QEMU_MADV_DONTDUMP);
3626             }
3627         }
3628     }
3629 
3630     /*
3631     * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3632     * with to decide which page in cache should be flushed into SVM's RAM. Here
3633     * we use the same name 'ram_bitmap' as for migration.
3634     */
3635     if (ram_bytes_total()) {
3636         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3637             unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3638             block->bmap = bitmap_new(pages);
3639         }
3640     }
3641 
3642     colo_init_ram_state();
3643     return 0;
3644 }
3645 
3646 /* TODO: duplicated with ram_init_bitmaps */
3647 void colo_incoming_start_dirty_log(void)
3648 {
3649     RAMBlock *block = NULL;
3650     /* For memory_global_dirty_log_start below. */
3651     bql_lock();
3652     qemu_mutex_lock_ramlist();
3653 
3654     memory_global_dirty_log_sync(false);
3655     WITH_RCU_READ_LOCK_GUARD() {
3656         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3657             ramblock_sync_dirty_bitmap(ram_state, block);
3658             /* Discard this dirty bitmap record */
3659             bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS);
3660         }
3661         memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
3662     }
3663     ram_state->migration_dirty_pages = 0;
3664     qemu_mutex_unlock_ramlist();
3665     bql_unlock();
3666 }
3667 
3668 /* It is need to hold the global lock to call this helper */
3669 void colo_release_ram_cache(void)
3670 {
3671     RAMBlock *block;
3672 
3673     memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
3674     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3675         g_free(block->bmap);
3676         block->bmap = NULL;
3677     }
3678 
3679     WITH_RCU_READ_LOCK_GUARD() {
3680         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3681             if (block->colo_cache) {
3682                 qemu_anon_ram_free(block->colo_cache, block->used_length);
3683                 block->colo_cache = NULL;
3684             }
3685         }
3686     }
3687     ram_state_cleanup(&ram_state);
3688 }
3689 
3690 /**
3691  * ram_load_setup: Setup RAM for migration incoming side
3692  *
3693  * Returns zero to indicate success and negative for error
3694  *
3695  * @f: QEMUFile where to receive the data
3696  * @opaque: RAMState pointer
3697  */
3698 static int ram_load_setup(QEMUFile *f, void *opaque)
3699 {
3700     xbzrle_load_setup();
3701     ramblock_recv_map_init();
3702 
3703     return 0;
3704 }
3705 
3706 static int ram_load_cleanup(void *opaque)
3707 {
3708     RAMBlock *rb;
3709 
3710     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3711         qemu_ram_block_writeback(rb);
3712     }
3713 
3714     xbzrle_load_cleanup();
3715 
3716     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3717         g_free(rb->receivedmap);
3718         rb->receivedmap = NULL;
3719     }
3720 
3721     return 0;
3722 }
3723 
3724 /**
3725  * ram_postcopy_incoming_init: allocate postcopy data structures
3726  *
3727  * Returns 0 for success and negative if there was one error
3728  *
3729  * @mis: current migration incoming state
3730  *
3731  * Allocate data structures etc needed by incoming migration with
3732  * postcopy-ram. postcopy-ram's similarly names
3733  * postcopy_ram_incoming_init does the work.
3734  */
3735 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3736 {
3737     return postcopy_ram_incoming_init(mis);
3738 }
3739 
3740 /**
3741  * ram_load_postcopy: load a page in postcopy case
3742  *
3743  * Returns 0 for success or -errno in case of error
3744  *
3745  * Called in postcopy mode by ram_load().
3746  * rcu_read_lock is taken prior to this being called.
3747  *
3748  * @f: QEMUFile where to send the data
3749  * @channel: the channel to use for loading
3750  */
3751 int ram_load_postcopy(QEMUFile *f, int channel)
3752 {
3753     int flags = 0, ret = 0;
3754     bool place_needed = false;
3755     bool matches_target_page_size = false;
3756     MigrationIncomingState *mis = migration_incoming_get_current();
3757     PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel];
3758 
3759     while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3760         ram_addr_t addr;
3761         void *page_buffer = NULL;
3762         void *place_source = NULL;
3763         RAMBlock *block = NULL;
3764         uint8_t ch;
3765         int len;
3766 
3767         addr = qemu_get_be64(f);
3768 
3769         /*
3770          * If qemu file error, we should stop here, and then "addr"
3771          * may be invalid
3772          */
3773         ret = qemu_file_get_error(f);
3774         if (ret) {
3775             break;
3776         }
3777 
3778         flags = addr & ~TARGET_PAGE_MASK;
3779         addr &= TARGET_PAGE_MASK;
3780 
3781         trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags);
3782         if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3783                      RAM_SAVE_FLAG_COMPRESS_PAGE)) {
3784             block = ram_block_from_stream(mis, f, flags, channel);
3785             if (!block) {
3786                 ret = -EINVAL;
3787                 break;
3788             }
3789 
3790             /*
3791              * Relying on used_length is racy and can result in false positives.
3792              * We might place pages beyond used_length in case RAM was shrunk
3793              * while in postcopy, which is fine - trying to place via
3794              * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault.
3795              */
3796             if (!block->host || addr >= block->postcopy_length) {
3797                 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3798                 ret = -EINVAL;
3799                 break;
3800             }
3801             tmp_page->target_pages++;
3802             matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
3803             /*
3804              * Postcopy requires that we place whole host pages atomically;
3805              * these may be huge pages for RAMBlocks that are backed by
3806              * hugetlbfs.
3807              * To make it atomic, the data is read into a temporary page
3808              * that's moved into place later.
3809              * The migration protocol uses,  possibly smaller, target-pages
3810              * however the source ensures it always sends all the components
3811              * of a host page in one chunk.
3812              */
3813             page_buffer = tmp_page->tmp_huge_page +
3814                           host_page_offset_from_ram_block_offset(block, addr);
3815             /* If all TP are zero then we can optimise the place */
3816             if (tmp_page->target_pages == 1) {
3817                 tmp_page->host_addr =
3818                     host_page_from_ram_block_offset(block, addr);
3819             } else if (tmp_page->host_addr !=
3820                        host_page_from_ram_block_offset(block, addr)) {
3821                 /* not the 1st TP within the HP */
3822                 error_report("Non-same host page detected on channel %d: "
3823                              "Target host page %p, received host page %p "
3824                              "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)",
3825                              channel, tmp_page->host_addr,
3826                              host_page_from_ram_block_offset(block, addr),
3827                              block->idstr, addr, tmp_page->target_pages);
3828                 ret = -EINVAL;
3829                 break;
3830             }
3831 
3832             /*
3833              * If it's the last part of a host page then we place the host
3834              * page
3835              */
3836             if (tmp_page->target_pages ==
3837                 (block->page_size / TARGET_PAGE_SIZE)) {
3838                 place_needed = true;
3839             }
3840             place_source = tmp_page->tmp_huge_page;
3841         }
3842 
3843         switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3844         case RAM_SAVE_FLAG_ZERO:
3845             ch = qemu_get_byte(f);
3846             if (ch != 0) {
3847                 error_report("Found a zero page with value %d", ch);
3848                 ret = -EINVAL;
3849                 break;
3850             }
3851             /*
3852              * Can skip to set page_buffer when
3853              * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
3854              */
3855             if (!matches_target_page_size) {
3856                 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3857             }
3858             break;
3859 
3860         case RAM_SAVE_FLAG_PAGE:
3861             tmp_page->all_zero = false;
3862             if (!matches_target_page_size) {
3863                 /* For huge pages, we always use temporary buffer */
3864                 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3865             } else {
3866                 /*
3867                  * For small pages that matches target page size, we
3868                  * avoid the qemu_file copy.  Instead we directly use
3869                  * the buffer of QEMUFile to place the page.  Note: we
3870                  * cannot do any QEMUFile operation before using that
3871                  * buffer to make sure the buffer is valid when
3872                  * placing the page.
3873                  */
3874                 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3875                                          TARGET_PAGE_SIZE);
3876             }
3877             break;
3878         case RAM_SAVE_FLAG_COMPRESS_PAGE:
3879             tmp_page->all_zero = false;
3880             len = qemu_get_be32(f);
3881             if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3882                 error_report("Invalid compressed data length: %d", len);
3883                 ret = -EINVAL;
3884                 break;
3885             }
3886             decompress_data_with_multi_threads(f, page_buffer, len);
3887             break;
3888         case RAM_SAVE_FLAG_MULTIFD_FLUSH:
3889             multifd_recv_sync_main();
3890             break;
3891         case RAM_SAVE_FLAG_EOS:
3892             /* normal exit */
3893             if (migrate_multifd() &&
3894                 migrate_multifd_flush_after_each_section()) {
3895                 multifd_recv_sync_main();
3896             }
3897             break;
3898         default:
3899             error_report("Unknown combination of migration flags: 0x%x"
3900                          " (postcopy mode)", flags);
3901             ret = -EINVAL;
3902             break;
3903         }
3904 
3905         /* Got the whole host page, wait for decompress before placing. */
3906         if (place_needed) {
3907             ret |= wait_for_decompress_done();
3908         }
3909 
3910         /* Detect for any possible file errors */
3911         if (!ret && qemu_file_get_error(f)) {
3912             ret = qemu_file_get_error(f);
3913         }
3914 
3915         if (!ret && place_needed) {
3916             if (tmp_page->all_zero) {
3917                 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block);
3918             } else {
3919                 ret = postcopy_place_page(mis, tmp_page->host_addr,
3920                                           place_source, block);
3921             }
3922             place_needed = false;
3923             postcopy_temp_page_reset(tmp_page);
3924         }
3925     }
3926 
3927     return ret;
3928 }
3929 
3930 static bool postcopy_is_running(void)
3931 {
3932     PostcopyState ps = postcopy_state_get();
3933     return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3934 }
3935 
3936 /*
3937  * Flush content of RAM cache into SVM's memory.
3938  * Only flush the pages that be dirtied by PVM or SVM or both.
3939  */
3940 void colo_flush_ram_cache(void)
3941 {
3942     RAMBlock *block = NULL;
3943     void *dst_host;
3944     void *src_host;
3945     unsigned long offset = 0;
3946 
3947     memory_global_dirty_log_sync(false);
3948     qemu_mutex_lock(&ram_state->bitmap_mutex);
3949     WITH_RCU_READ_LOCK_GUARD() {
3950         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3951             ramblock_sync_dirty_bitmap(ram_state, block);
3952         }
3953     }
3954 
3955     trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
3956     WITH_RCU_READ_LOCK_GUARD() {
3957         block = QLIST_FIRST_RCU(&ram_list.blocks);
3958 
3959         while (block) {
3960             unsigned long num = 0;
3961 
3962             offset = colo_bitmap_find_dirty(ram_state, block, offset, &num);
3963             if (!offset_in_ramblock(block,
3964                                     ((ram_addr_t)offset) << TARGET_PAGE_BITS)) {
3965                 offset = 0;
3966                 num = 0;
3967                 block = QLIST_NEXT_RCU(block, next);
3968             } else {
3969                 unsigned long i = 0;
3970 
3971                 for (i = 0; i < num; i++) {
3972                     migration_bitmap_clear_dirty(ram_state, block, offset + i);
3973                 }
3974                 dst_host = block->host
3975                          + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3976                 src_host = block->colo_cache
3977                          + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3978                 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num);
3979                 offset += num;
3980             }
3981         }
3982     }
3983     qemu_mutex_unlock(&ram_state->bitmap_mutex);
3984     trace_colo_flush_ram_cache_end();
3985 }
3986 
3987 static size_t ram_load_multifd_pages(void *host_addr, size_t size,
3988                                      uint64_t offset)
3989 {
3990     MultiFDRecvData *data = multifd_get_recv_data();
3991 
3992     data->opaque = host_addr;
3993     data->file_offset = offset;
3994     data->size = size;
3995 
3996     if (!multifd_recv()) {
3997         return 0;
3998     }
3999 
4000     return size;
4001 }
4002 
4003 static bool read_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block,
4004                                      long num_pages, unsigned long *bitmap,
4005                                      Error **errp)
4006 {
4007     ERRP_GUARD();
4008     unsigned long set_bit_idx, clear_bit_idx;
4009     ram_addr_t offset;
4010     void *host;
4011     size_t read, unread, size;
4012 
4013     for (set_bit_idx = find_first_bit(bitmap, num_pages);
4014          set_bit_idx < num_pages;
4015          set_bit_idx = find_next_bit(bitmap, num_pages, clear_bit_idx + 1)) {
4016 
4017         clear_bit_idx = find_next_zero_bit(bitmap, num_pages, set_bit_idx + 1);
4018 
4019         unread = TARGET_PAGE_SIZE * (clear_bit_idx - set_bit_idx);
4020         offset = set_bit_idx << TARGET_PAGE_BITS;
4021 
4022         while (unread > 0) {
4023             host = host_from_ram_block_offset(block, offset);
4024             if (!host) {
4025                 error_setg(errp, "page outside of ramblock %s range",
4026                            block->idstr);
4027                 return false;
4028             }
4029 
4030             size = MIN(unread, MAPPED_RAM_LOAD_BUF_SIZE);
4031 
4032             if (migrate_multifd()) {
4033                 read = ram_load_multifd_pages(host, size,
4034                                               block->pages_offset + offset);
4035             } else {
4036                 read = qemu_get_buffer_at(f, host, size,
4037                                           block->pages_offset + offset);
4038             }
4039 
4040             if (!read) {
4041                 goto err;
4042             }
4043             offset += read;
4044             unread -= read;
4045         }
4046     }
4047 
4048     return true;
4049 
4050 err:
4051     qemu_file_get_error_obj(f, errp);
4052     error_prepend(errp, "(%s) failed to read page " RAM_ADDR_FMT
4053                   "from file offset %" PRIx64 ": ", block->idstr, offset,
4054                   block->pages_offset + offset);
4055     return false;
4056 }
4057 
4058 static void parse_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block,
4059                                       ram_addr_t length, Error **errp)
4060 {
4061     g_autofree unsigned long *bitmap = NULL;
4062     MappedRamHeader header;
4063     size_t bitmap_size;
4064     long num_pages;
4065 
4066     if (!mapped_ram_read_header(f, &header, errp)) {
4067         return;
4068     }
4069 
4070     block->pages_offset = header.pages_offset;
4071 
4072     /*
4073      * Check the alignment of the file region that contains pages. We
4074      * don't enforce MAPPED_RAM_FILE_OFFSET_ALIGNMENT to allow that
4075      * value to change in the future. Do only a sanity check with page
4076      * size alignment.
4077      */
4078     if (!QEMU_IS_ALIGNED(block->pages_offset, TARGET_PAGE_SIZE)) {
4079         error_setg(errp,
4080                    "Error reading ramblock %s pages, region has bad alignment",
4081                    block->idstr);
4082         return;
4083     }
4084 
4085     num_pages = length / header.page_size;
4086     bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
4087 
4088     bitmap = g_malloc0(bitmap_size);
4089     if (qemu_get_buffer_at(f, (uint8_t *)bitmap, bitmap_size,
4090                            header.bitmap_offset) != bitmap_size) {
4091         error_setg(errp, "Error reading dirty bitmap");
4092         return;
4093     }
4094 
4095     if (!read_ramblock_mapped_ram(f, block, num_pages, bitmap, errp)) {
4096         return;
4097     }
4098 
4099     /* Skip pages array */
4100     qemu_set_offset(f, block->pages_offset + length, SEEK_SET);
4101 
4102     return;
4103 }
4104 
4105 static int parse_ramblock(QEMUFile *f, RAMBlock *block, ram_addr_t length)
4106 {
4107     int ret = 0;
4108     /* ADVISE is earlier, it shows the source has the postcopy capability on */
4109     bool postcopy_advised = migration_incoming_postcopy_advised();
4110     int max_hg_page_size;
4111     Error *local_err = NULL;
4112 
4113     assert(block);
4114 
4115     if (migrate_mapped_ram()) {
4116         parse_ramblock_mapped_ram(f, block, length, &local_err);
4117         if (local_err) {
4118             error_report_err(local_err);
4119             return -EINVAL;
4120         }
4121         return 0;
4122     }
4123 
4124     if (!qemu_ram_is_migratable(block)) {
4125         error_report("block %s should not be migrated !", block->idstr);
4126         return -EINVAL;
4127     }
4128 
4129     if (length != block->used_length) {
4130         ret = qemu_ram_resize(block, length, &local_err);
4131         if (local_err) {
4132             error_report_err(local_err);
4133             return ret;
4134         }
4135     }
4136 
4137     /*
4138      * ??? Mirrors the previous value of qemu_host_page_size,
4139      * but is this really what was intended for the migration?
4140      */
4141     max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE);
4142 
4143     /* For postcopy we need to check hugepage sizes match */
4144     if (postcopy_advised && migrate_postcopy_ram() &&
4145         block->page_size != max_hg_page_size) {
4146         uint64_t remote_page_size = qemu_get_be64(f);
4147         if (remote_page_size != block->page_size) {
4148             error_report("Mismatched RAM page size %s "
4149                          "(local) %zd != %" PRId64, block->idstr,
4150                          block->page_size, remote_page_size);
4151             return -EINVAL;
4152         }
4153     }
4154     if (migrate_ignore_shared()) {
4155         hwaddr addr = qemu_get_be64(f);
4156         if (migrate_ram_is_ignored(block) &&
4157             block->mr->addr != addr) {
4158             error_report("Mismatched GPAs for block %s "
4159                          "%" PRId64 "!= %" PRId64, block->idstr,
4160                          (uint64_t)addr, (uint64_t)block->mr->addr);
4161             return -EINVAL;
4162         }
4163     }
4164     ret = rdma_block_notification_handle(f, block->idstr);
4165     if (ret < 0) {
4166         qemu_file_set_error(f, ret);
4167     }
4168 
4169     return ret;
4170 }
4171 
4172 static int parse_ramblocks(QEMUFile *f, ram_addr_t total_ram_bytes)
4173 {
4174     int ret = 0;
4175 
4176     /* Synchronize RAM block list */
4177     while (!ret && total_ram_bytes) {
4178         RAMBlock *block;
4179         char id[256];
4180         ram_addr_t length;
4181         int len = qemu_get_byte(f);
4182 
4183         qemu_get_buffer(f, (uint8_t *)id, len);
4184         id[len] = 0;
4185         length = qemu_get_be64(f);
4186 
4187         block = qemu_ram_block_by_name(id);
4188         if (block) {
4189             ret = parse_ramblock(f, block, length);
4190         } else {
4191             error_report("Unknown ramblock \"%s\", cannot accept "
4192                          "migration", id);
4193             ret = -EINVAL;
4194         }
4195         total_ram_bytes -= length;
4196     }
4197 
4198     return ret;
4199 }
4200 
4201 /**
4202  * ram_load_precopy: load pages in precopy case
4203  *
4204  * Returns 0 for success or -errno in case of error
4205  *
4206  * Called in precopy mode by ram_load().
4207  * rcu_read_lock is taken prior to this being called.
4208  *
4209  * @f: QEMUFile where to send the data
4210  */
4211 static int ram_load_precopy(QEMUFile *f)
4212 {
4213     MigrationIncomingState *mis = migration_incoming_get_current();
4214     int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0;
4215 
4216     if (!migrate_compress()) {
4217         invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
4218     }
4219 
4220     if (migrate_mapped_ram()) {
4221         invalid_flags |= (RAM_SAVE_FLAG_HOOK | RAM_SAVE_FLAG_MULTIFD_FLUSH |
4222                           RAM_SAVE_FLAG_PAGE | RAM_SAVE_FLAG_XBZRLE |
4223                           RAM_SAVE_FLAG_ZERO);
4224     }
4225 
4226     while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4227         ram_addr_t addr;
4228         void *host = NULL, *host_bak = NULL;
4229         uint8_t ch;
4230 
4231         /*
4232          * Yield periodically to let main loop run, but an iteration of
4233          * the main loop is expensive, so do it each some iterations
4234          */
4235         if ((i & 32767) == 0 && qemu_in_coroutine()) {
4236             aio_co_schedule(qemu_get_current_aio_context(),
4237                             qemu_coroutine_self());
4238             qemu_coroutine_yield();
4239         }
4240         i++;
4241 
4242         addr = qemu_get_be64(f);
4243         ret = qemu_file_get_error(f);
4244         if (ret) {
4245             error_report("Getting RAM address failed");
4246             break;
4247         }
4248 
4249         flags = addr & ~TARGET_PAGE_MASK;
4250         addr &= TARGET_PAGE_MASK;
4251 
4252         if (flags & invalid_flags) {
4253             error_report("Unexpected RAM flags: %d", flags & invalid_flags);
4254 
4255             if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
4256                 error_report("Received an unexpected compressed page");
4257             }
4258 
4259             ret = -EINVAL;
4260             break;
4261         }
4262 
4263         if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4264                      RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4265             RAMBlock *block = ram_block_from_stream(mis, f, flags,
4266                                                     RAM_CHANNEL_PRECOPY);
4267 
4268             host = host_from_ram_block_offset(block, addr);
4269             /*
4270              * After going into COLO stage, we should not load the page
4271              * into SVM's memory directly, we put them into colo_cache firstly.
4272              * NOTE: We need to keep a copy of SVM's ram in colo_cache.
4273              * Previously, we copied all these memory in preparing stage of COLO
4274              * while we need to stop VM, which is a time-consuming process.
4275              * Here we optimize it by a trick, back-up every page while in
4276              * migration process while COLO is enabled, though it affects the
4277              * speed of the migration, but it obviously reduce the downtime of
4278              * back-up all SVM'S memory in COLO preparing stage.
4279              */
4280             if (migration_incoming_colo_enabled()) {
4281                 if (migration_incoming_in_colo_state()) {
4282                     /* In COLO stage, put all pages into cache temporarily */
4283                     host = colo_cache_from_block_offset(block, addr, true);
4284                 } else {
4285                    /*
4286                     * In migration stage but before COLO stage,
4287                     * Put all pages into both cache and SVM's memory.
4288                     */
4289                     host_bak = colo_cache_from_block_offset(block, addr, false);
4290                 }
4291             }
4292             if (!host) {
4293                 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4294                 ret = -EINVAL;
4295                 break;
4296             }
4297             if (!migration_incoming_in_colo_state()) {
4298                 ramblock_recv_bitmap_set(block, host);
4299             }
4300 
4301             trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
4302         }
4303 
4304         switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4305         case RAM_SAVE_FLAG_MEM_SIZE:
4306             ret = parse_ramblocks(f, addr);
4307             /*
4308              * For mapped-ram migration (to a file) using multifd, we sync
4309              * once and for all here to make sure all tasks we queued to
4310              * multifd threads are completed, so that all the ramblocks
4311              * (including all the guest memory pages within) are fully
4312              * loaded after this sync returns.
4313              */
4314             if (migrate_mapped_ram()) {
4315                 multifd_recv_sync_main();
4316             }
4317             break;
4318 
4319         case RAM_SAVE_FLAG_ZERO:
4320             ch = qemu_get_byte(f);
4321             if (ch != 0) {
4322                 error_report("Found a zero page with value %d", ch);
4323                 ret = -EINVAL;
4324                 break;
4325             }
4326             ram_handle_zero(host, TARGET_PAGE_SIZE);
4327             break;
4328 
4329         case RAM_SAVE_FLAG_PAGE:
4330             qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4331             break;
4332 
4333         case RAM_SAVE_FLAG_COMPRESS_PAGE:
4334             len = qemu_get_be32(f);
4335             if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4336                 error_report("Invalid compressed data length: %d", len);
4337                 ret = -EINVAL;
4338                 break;
4339             }
4340             decompress_data_with_multi_threads(f, host, len);
4341             break;
4342 
4343         case RAM_SAVE_FLAG_XBZRLE:
4344             if (load_xbzrle(f, addr, host) < 0) {
4345                 error_report("Failed to decompress XBZRLE page at "
4346                              RAM_ADDR_FMT, addr);
4347                 ret = -EINVAL;
4348                 break;
4349             }
4350             break;
4351         case RAM_SAVE_FLAG_MULTIFD_FLUSH:
4352             multifd_recv_sync_main();
4353             break;
4354         case RAM_SAVE_FLAG_EOS:
4355             /* normal exit */
4356             if (migrate_multifd() &&
4357                 migrate_multifd_flush_after_each_section() &&
4358                 /*
4359                  * Mapped-ram migration flushes once and for all after
4360                  * parsing ramblocks. Always ignore EOS for it.
4361                  */
4362                 !migrate_mapped_ram()) {
4363                 multifd_recv_sync_main();
4364             }
4365             break;
4366         case RAM_SAVE_FLAG_HOOK:
4367             ret = rdma_registration_handle(f);
4368             if (ret < 0) {
4369                 qemu_file_set_error(f, ret);
4370             }
4371             break;
4372         default:
4373             error_report("Unknown combination of migration flags: 0x%x", flags);
4374             ret = -EINVAL;
4375         }
4376         if (!ret) {
4377             ret = qemu_file_get_error(f);
4378         }
4379         if (!ret && host_bak) {
4380             memcpy(host_bak, host, TARGET_PAGE_SIZE);
4381         }
4382     }
4383 
4384     ret |= wait_for_decompress_done();
4385     return ret;
4386 }
4387 
4388 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4389 {
4390     int ret = 0;
4391     static uint64_t seq_iter;
4392     /*
4393      * If system is running in postcopy mode, page inserts to host memory must
4394      * be atomic
4395      */
4396     bool postcopy_running = postcopy_is_running();
4397 
4398     seq_iter++;
4399 
4400     if (version_id != 4) {
4401         return -EINVAL;
4402     }
4403 
4404     /*
4405      * This RCU critical section can be very long running.
4406      * When RCU reclaims in the code start to become numerous,
4407      * it will be necessary to reduce the granularity of this
4408      * critical section.
4409      */
4410     WITH_RCU_READ_LOCK_GUARD() {
4411         if (postcopy_running) {
4412             /*
4413              * Note!  Here RAM_CHANNEL_PRECOPY is the precopy channel of
4414              * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to
4415              * service fast page faults.
4416              */
4417             ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY);
4418         } else {
4419             ret = ram_load_precopy(f);
4420         }
4421     }
4422     trace_ram_load_complete(ret, seq_iter);
4423 
4424     return ret;
4425 }
4426 
4427 static bool ram_has_postcopy(void *opaque)
4428 {
4429     RAMBlock *rb;
4430     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4431         if (ramblock_is_pmem(rb)) {
4432             info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4433                          "is not supported now!", rb->idstr, rb->host);
4434             return false;
4435         }
4436     }
4437 
4438     return migrate_postcopy_ram();
4439 }
4440 
4441 /* Sync all the dirty bitmap with destination VM.  */
4442 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4443 {
4444     RAMBlock *block;
4445     QEMUFile *file = s->to_dst_file;
4446 
4447     trace_ram_dirty_bitmap_sync_start();
4448 
4449     qatomic_set(&rs->postcopy_bmap_sync_requested, 0);
4450     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4451         qemu_savevm_send_recv_bitmap(file, block->idstr);
4452         trace_ram_dirty_bitmap_request(block->idstr);
4453         qatomic_inc(&rs->postcopy_bmap_sync_requested);
4454     }
4455 
4456     trace_ram_dirty_bitmap_sync_wait();
4457 
4458     /* Wait until all the ramblocks' dirty bitmap synced */
4459     while (qatomic_read(&rs->postcopy_bmap_sync_requested)) {
4460         if (migration_rp_wait(s)) {
4461             return -1;
4462         }
4463     }
4464 
4465     trace_ram_dirty_bitmap_sync_complete();
4466 
4467     return 0;
4468 }
4469 
4470 /*
4471  * Read the received bitmap, revert it as the initial dirty bitmap.
4472  * This is only used when the postcopy migration is paused but wants
4473  * to resume from a middle point.
4474  *
4475  * Returns true if succeeded, false for errors.
4476  */
4477 bool ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block, Error **errp)
4478 {
4479     /* from_dst_file is always valid because we're within rp_thread */
4480     QEMUFile *file = s->rp_state.from_dst_file;
4481     g_autofree unsigned long *le_bitmap = NULL;
4482     unsigned long nbits = block->used_length >> TARGET_PAGE_BITS;
4483     uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4484     uint64_t size, end_mark;
4485     RAMState *rs = ram_state;
4486 
4487     trace_ram_dirty_bitmap_reload_begin(block->idstr);
4488 
4489     if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4490         error_setg(errp, "Reload bitmap in incorrect state %s",
4491                    MigrationStatus_str(s->state));
4492         return false;
4493     }
4494 
4495     /*
4496      * Note: see comments in ramblock_recv_bitmap_send() on why we
4497      * need the endianness conversion, and the paddings.
4498      */
4499     local_size = ROUND_UP(local_size, 8);
4500 
4501     /* Add paddings */
4502     le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4503 
4504     size = qemu_get_be64(file);
4505 
4506     /* The size of the bitmap should match with our ramblock */
4507     if (size != local_size) {
4508         error_setg(errp, "ramblock '%s' bitmap size mismatch (0x%"PRIx64
4509                    " != 0x%"PRIx64")", block->idstr, size, local_size);
4510         return false;
4511     }
4512 
4513     size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4514     end_mark = qemu_get_be64(file);
4515 
4516     if (qemu_file_get_error(file) || size != local_size) {
4517         error_setg(errp, "read bitmap failed for ramblock '%s': "
4518                    "(size 0x%"PRIx64", got: 0x%"PRIx64")",
4519                    block->idstr, local_size, size);
4520         return false;
4521     }
4522 
4523     if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4524         error_setg(errp, "ramblock '%s' end mark incorrect: 0x%"PRIx64,
4525                    block->idstr, end_mark);
4526         return false;
4527     }
4528 
4529     /*
4530      * Endianness conversion. We are during postcopy (though paused).
4531      * The dirty bitmap won't change. We can directly modify it.
4532      */
4533     bitmap_from_le(block->bmap, le_bitmap, nbits);
4534 
4535     /*
4536      * What we received is "received bitmap". Revert it as the initial
4537      * dirty bitmap for this ramblock.
4538      */
4539     bitmap_complement(block->bmap, block->bmap, nbits);
4540 
4541     /* Clear dirty bits of discarded ranges that we don't want to migrate. */
4542     ramblock_dirty_bitmap_clear_discarded_pages(block);
4543 
4544     /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */
4545     trace_ram_dirty_bitmap_reload_complete(block->idstr);
4546 
4547     qatomic_dec(&rs->postcopy_bmap_sync_requested);
4548 
4549     /*
4550      * We succeeded to sync bitmap for current ramblock. Always kick the
4551      * migration thread to check whether all requested bitmaps are
4552      * reloaded.  NOTE: it's racy to only kick when requested==0, because
4553      * we don't know whether the migration thread may still be increasing
4554      * it.
4555      */
4556     migration_rp_kick(s);
4557 
4558     return true;
4559 }
4560 
4561 static int ram_resume_prepare(MigrationState *s, void *opaque)
4562 {
4563     RAMState *rs = *(RAMState **)opaque;
4564     int ret;
4565 
4566     ret = ram_dirty_bitmap_sync_all(s, rs);
4567     if (ret) {
4568         return ret;
4569     }
4570 
4571     ram_state_resume_prepare(rs, s->to_dst_file);
4572 
4573     return 0;
4574 }
4575 
4576 void postcopy_preempt_shutdown_file(MigrationState *s)
4577 {
4578     qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS);
4579     qemu_fflush(s->postcopy_qemufile_src);
4580 }
4581 
4582 static SaveVMHandlers savevm_ram_handlers = {
4583     .save_setup = ram_save_setup,
4584     .save_live_iterate = ram_save_iterate,
4585     .save_live_complete_postcopy = ram_save_complete,
4586     .save_live_complete_precopy = ram_save_complete,
4587     .has_postcopy = ram_has_postcopy,
4588     .state_pending_exact = ram_state_pending_exact,
4589     .state_pending_estimate = ram_state_pending_estimate,
4590     .load_state = ram_load,
4591     .save_cleanup = ram_save_cleanup,
4592     .load_setup = ram_load_setup,
4593     .load_cleanup = ram_load_cleanup,
4594     .resume_prepare = ram_resume_prepare,
4595 };
4596 
4597 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host,
4598                                       size_t old_size, size_t new_size)
4599 {
4600     PostcopyState ps = postcopy_state_get();
4601     ram_addr_t offset;
4602     RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset);
4603     Error *err = NULL;
4604 
4605     if (!rb) {
4606         error_report("RAM block not found");
4607         return;
4608     }
4609 
4610     if (migrate_ram_is_ignored(rb)) {
4611         return;
4612     }
4613 
4614     if (!migration_is_idle()) {
4615         /*
4616          * Precopy code on the source cannot deal with the size of RAM blocks
4617          * changing at random points in time - especially after sending the
4618          * RAM block sizes in the migration stream, they must no longer change.
4619          * Abort and indicate a proper reason.
4620          */
4621         error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr);
4622         migration_cancel(err);
4623         error_free(err);
4624     }
4625 
4626     switch (ps) {
4627     case POSTCOPY_INCOMING_ADVISE:
4628         /*
4629          * Update what ram_postcopy_incoming_init()->init_range() does at the
4630          * time postcopy was advised. Syncing RAM blocks with the source will
4631          * result in RAM resizes.
4632          */
4633         if (old_size < new_size) {
4634             if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) {
4635                 error_report("RAM block '%s' discard of resized RAM failed",
4636                              rb->idstr);
4637             }
4638         }
4639         rb->postcopy_length = new_size;
4640         break;
4641     case POSTCOPY_INCOMING_NONE:
4642     case POSTCOPY_INCOMING_RUNNING:
4643     case POSTCOPY_INCOMING_END:
4644         /*
4645          * Once our guest is running, postcopy does no longer care about
4646          * resizes. When growing, the new memory was not available on the
4647          * source, no handler needed.
4648          */
4649         break;
4650     default:
4651         error_report("RAM block '%s' resized during postcopy state: %d",
4652                      rb->idstr, ps);
4653         exit(-1);
4654     }
4655 }
4656 
4657 static RAMBlockNotifier ram_mig_ram_notifier = {
4658     .ram_block_resized = ram_mig_ram_block_resized,
4659 };
4660 
4661 void ram_mig_init(void)
4662 {
4663     qemu_mutex_init(&XBZRLE.lock);
4664     register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
4665     ram_block_notifier_add(&ram_mig_ram_notifier);
4666 }
4667