1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "cpu.h" 31 #include "qemu/cutils.h" 32 #include "qemu/bitops.h" 33 #include "qemu/bitmap.h" 34 #include "qemu/main-loop.h" 35 #include "xbzrle.h" 36 #include "ram.h" 37 #include "migration.h" 38 #include "migration/register.h" 39 #include "migration/misc.h" 40 #include "qemu-file.h" 41 #include "postcopy-ram.h" 42 #include "page_cache.h" 43 #include "qemu/error-report.h" 44 #include "qapi/error.h" 45 #include "qapi/qapi-types-migration.h" 46 #include "qapi/qapi-events-migration.h" 47 #include "qapi/qmp/qerror.h" 48 #include "trace.h" 49 #include "exec/ram_addr.h" 50 #include "exec/target_page.h" 51 #include "qemu/rcu_queue.h" 52 #include "migration/colo.h" 53 #include "block.h" 54 #include "sysemu/sysemu.h" 55 #include "sysemu/cpu-throttle.h" 56 #include "savevm.h" 57 #include "qemu/iov.h" 58 #include "multifd.h" 59 #include "sysemu/runstate.h" 60 61 #if defined(__linux__) 62 #include "qemu/userfaultfd.h" 63 #endif /* defined(__linux__) */ 64 65 /***********************************************************/ 66 /* ram save/restore */ 67 68 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it 69 * worked for pages that where filled with the same char. We switched 70 * it to only search for the zero value. And to avoid confusion with 71 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it. 72 */ 73 74 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ 75 #define RAM_SAVE_FLAG_ZERO 0x02 76 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 77 #define RAM_SAVE_FLAG_PAGE 0x08 78 #define RAM_SAVE_FLAG_EOS 0x10 79 #define RAM_SAVE_FLAG_CONTINUE 0x20 80 #define RAM_SAVE_FLAG_XBZRLE 0x40 81 /* 0x80 is reserved in migration.h start with 0x100 next */ 82 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 83 84 static inline bool is_zero_range(uint8_t *p, uint64_t size) 85 { 86 return buffer_is_zero(p, size); 87 } 88 89 XBZRLECacheStats xbzrle_counters; 90 91 /* struct contains XBZRLE cache and a static page 92 used by the compression */ 93 static struct { 94 /* buffer used for XBZRLE encoding */ 95 uint8_t *encoded_buf; 96 /* buffer for storing page content */ 97 uint8_t *current_buf; 98 /* Cache for XBZRLE, Protected by lock. */ 99 PageCache *cache; 100 QemuMutex lock; 101 /* it will store a page full of zeros */ 102 uint8_t *zero_target_page; 103 /* buffer used for XBZRLE decoding */ 104 uint8_t *decoded_buf; 105 } XBZRLE; 106 107 static void XBZRLE_cache_lock(void) 108 { 109 if (migrate_use_xbzrle()) { 110 qemu_mutex_lock(&XBZRLE.lock); 111 } 112 } 113 114 static void XBZRLE_cache_unlock(void) 115 { 116 if (migrate_use_xbzrle()) { 117 qemu_mutex_unlock(&XBZRLE.lock); 118 } 119 } 120 121 /** 122 * xbzrle_cache_resize: resize the xbzrle cache 123 * 124 * This function is called from migrate_params_apply in main 125 * thread, possibly while a migration is in progress. A running 126 * migration may be using the cache and might finish during this call, 127 * hence changes to the cache are protected by XBZRLE.lock(). 128 * 129 * Returns 0 for success or -1 for error 130 * 131 * @new_size: new cache size 132 * @errp: set *errp if the check failed, with reason 133 */ 134 int xbzrle_cache_resize(uint64_t new_size, Error **errp) 135 { 136 PageCache *new_cache; 137 int64_t ret = 0; 138 139 /* Check for truncation */ 140 if (new_size != (size_t)new_size) { 141 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", 142 "exceeding address space"); 143 return -1; 144 } 145 146 if (new_size == migrate_xbzrle_cache_size()) { 147 /* nothing to do */ 148 return 0; 149 } 150 151 XBZRLE_cache_lock(); 152 153 if (XBZRLE.cache != NULL) { 154 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp); 155 if (!new_cache) { 156 ret = -1; 157 goto out; 158 } 159 160 cache_fini(XBZRLE.cache); 161 XBZRLE.cache = new_cache; 162 } 163 out: 164 XBZRLE_cache_unlock(); 165 return ret; 166 } 167 168 bool ramblock_is_ignored(RAMBlock *block) 169 { 170 return !qemu_ram_is_migratable(block) || 171 (migrate_ignore_shared() && qemu_ram_is_shared(block)); 172 } 173 174 #undef RAMBLOCK_FOREACH 175 176 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque) 177 { 178 RAMBlock *block; 179 int ret = 0; 180 181 RCU_READ_LOCK_GUARD(); 182 183 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 184 ret = func(block, opaque); 185 if (ret) { 186 break; 187 } 188 } 189 return ret; 190 } 191 192 static void ramblock_recv_map_init(void) 193 { 194 RAMBlock *rb; 195 196 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 197 assert(!rb->receivedmap); 198 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits()); 199 } 200 } 201 202 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr) 203 { 204 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb), 205 rb->receivedmap); 206 } 207 208 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset) 209 { 210 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); 211 } 212 213 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr) 214 { 215 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap); 216 } 217 218 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr, 219 size_t nr) 220 { 221 bitmap_set_atomic(rb->receivedmap, 222 ramblock_recv_bitmap_offset(host_addr, rb), 223 nr); 224 } 225 226 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL) 227 228 /* 229 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes). 230 * 231 * Returns >0 if success with sent bytes, or <0 if error. 232 */ 233 int64_t ramblock_recv_bitmap_send(QEMUFile *file, 234 const char *block_name) 235 { 236 RAMBlock *block = qemu_ram_block_by_name(block_name); 237 unsigned long *le_bitmap, nbits; 238 uint64_t size; 239 240 if (!block) { 241 error_report("%s: invalid block name: %s", __func__, block_name); 242 return -1; 243 } 244 245 nbits = block->used_length >> TARGET_PAGE_BITS; 246 247 /* 248 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit 249 * machines we may need 4 more bytes for padding (see below 250 * comment). So extend it a bit before hand. 251 */ 252 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 253 254 /* 255 * Always use little endian when sending the bitmap. This is 256 * required that when source and destination VMs are not using the 257 * same endianness. (Note: big endian won't work.) 258 */ 259 bitmap_to_le(le_bitmap, block->receivedmap, nbits); 260 261 /* Size of the bitmap, in bytes */ 262 size = DIV_ROUND_UP(nbits, 8); 263 264 /* 265 * size is always aligned to 8 bytes for 64bit machines, but it 266 * may not be true for 32bit machines. We need this padding to 267 * make sure the migration can survive even between 32bit and 268 * 64bit machines. 269 */ 270 size = ROUND_UP(size, 8); 271 272 qemu_put_be64(file, size); 273 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size); 274 /* 275 * Mark as an end, in case the middle part is screwed up due to 276 * some "mysterious" reason. 277 */ 278 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING); 279 qemu_fflush(file); 280 281 g_free(le_bitmap); 282 283 if (qemu_file_get_error(file)) { 284 return qemu_file_get_error(file); 285 } 286 287 return size + sizeof(size); 288 } 289 290 /* 291 * An outstanding page request, on the source, having been received 292 * and queued 293 */ 294 struct RAMSrcPageRequest { 295 RAMBlock *rb; 296 hwaddr offset; 297 hwaddr len; 298 299 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; 300 }; 301 302 /* State of RAM for migration */ 303 struct RAMState { 304 /* QEMUFile used for this migration */ 305 QEMUFile *f; 306 /* UFFD file descriptor, used in 'write-tracking' migration */ 307 int uffdio_fd; 308 /* Last block that we have visited searching for dirty pages */ 309 RAMBlock *last_seen_block; 310 /* Last block from where we have sent data */ 311 RAMBlock *last_sent_block; 312 /* Last dirty target page we have sent */ 313 ram_addr_t last_page; 314 /* last ram version we have seen */ 315 uint32_t last_version; 316 /* We are in the first round */ 317 bool ram_bulk_stage; 318 /* The free page optimization is enabled */ 319 bool fpo_enabled; 320 /* How many times we have dirty too many pages */ 321 int dirty_rate_high_cnt; 322 /* these variables are used for bitmap sync */ 323 /* last time we did a full bitmap_sync */ 324 int64_t time_last_bitmap_sync; 325 /* bytes transferred at start_time */ 326 uint64_t bytes_xfer_prev; 327 /* number of dirty pages since start_time */ 328 uint64_t num_dirty_pages_period; 329 /* xbzrle misses since the beginning of the period */ 330 uint64_t xbzrle_cache_miss_prev; 331 /* Amount of xbzrle pages since the beginning of the period */ 332 uint64_t xbzrle_pages_prev; 333 /* Amount of xbzrle encoded bytes since the beginning of the period */ 334 uint64_t xbzrle_bytes_prev; 335 336 /* compression statistics since the beginning of the period */ 337 /* amount of count that no free thread to compress data */ 338 uint64_t compress_thread_busy_prev; 339 /* amount bytes after compression */ 340 uint64_t compressed_size_prev; 341 /* amount of compressed pages */ 342 uint64_t compress_pages_prev; 343 344 /* total handled target pages at the beginning of period */ 345 uint64_t target_page_count_prev; 346 /* total handled target pages since start */ 347 uint64_t target_page_count; 348 /* number of dirty bits in the bitmap */ 349 uint64_t migration_dirty_pages; 350 /* Protects modification of the bitmap and migration dirty pages */ 351 QemuMutex bitmap_mutex; 352 /* The RAMBlock used in the last src_page_requests */ 353 RAMBlock *last_req_rb; 354 /* Queue of outstanding page requests from the destination */ 355 QemuMutex src_page_req_mutex; 356 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests; 357 }; 358 typedef struct RAMState RAMState; 359 360 static RAMState *ram_state; 361 362 static NotifierWithReturnList precopy_notifier_list; 363 364 void precopy_infrastructure_init(void) 365 { 366 notifier_with_return_list_init(&precopy_notifier_list); 367 } 368 369 void precopy_add_notifier(NotifierWithReturn *n) 370 { 371 notifier_with_return_list_add(&precopy_notifier_list, n); 372 } 373 374 void precopy_remove_notifier(NotifierWithReturn *n) 375 { 376 notifier_with_return_remove(n); 377 } 378 379 int precopy_notify(PrecopyNotifyReason reason, Error **errp) 380 { 381 PrecopyNotifyData pnd; 382 pnd.reason = reason; 383 pnd.errp = errp; 384 385 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd); 386 } 387 388 void precopy_enable_free_page_optimization(void) 389 { 390 if (!ram_state) { 391 return; 392 } 393 394 ram_state->fpo_enabled = true; 395 } 396 397 uint64_t ram_bytes_remaining(void) 398 { 399 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) : 400 0; 401 } 402 403 MigrationStats ram_counters; 404 405 /* used by the search for pages to send */ 406 struct PageSearchStatus { 407 /* Current block being searched */ 408 RAMBlock *block; 409 /* Current page to search from */ 410 unsigned long page; 411 /* Set once we wrap around */ 412 bool complete_round; 413 }; 414 typedef struct PageSearchStatus PageSearchStatus; 415 416 CompressionStats compression_counters; 417 418 struct CompressParam { 419 bool done; 420 bool quit; 421 bool zero_page; 422 QEMUFile *file; 423 QemuMutex mutex; 424 QemuCond cond; 425 RAMBlock *block; 426 ram_addr_t offset; 427 428 /* internally used fields */ 429 z_stream stream; 430 uint8_t *originbuf; 431 }; 432 typedef struct CompressParam CompressParam; 433 434 struct DecompressParam { 435 bool done; 436 bool quit; 437 QemuMutex mutex; 438 QemuCond cond; 439 void *des; 440 uint8_t *compbuf; 441 int len; 442 z_stream stream; 443 }; 444 typedef struct DecompressParam DecompressParam; 445 446 static CompressParam *comp_param; 447 static QemuThread *compress_threads; 448 /* comp_done_cond is used to wake up the migration thread when 449 * one of the compression threads has finished the compression. 450 * comp_done_lock is used to co-work with comp_done_cond. 451 */ 452 static QemuMutex comp_done_lock; 453 static QemuCond comp_done_cond; 454 /* The empty QEMUFileOps will be used by file in CompressParam */ 455 static const QEMUFileOps empty_ops = { }; 456 457 static QEMUFile *decomp_file; 458 static DecompressParam *decomp_param; 459 static QemuThread *decompress_threads; 460 static QemuMutex decomp_done_lock; 461 static QemuCond decomp_done_cond; 462 463 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, 464 ram_addr_t offset, uint8_t *source_buf); 465 466 static void *do_data_compress(void *opaque) 467 { 468 CompressParam *param = opaque; 469 RAMBlock *block; 470 ram_addr_t offset; 471 bool zero_page; 472 473 qemu_mutex_lock(¶m->mutex); 474 while (!param->quit) { 475 if (param->block) { 476 block = param->block; 477 offset = param->offset; 478 param->block = NULL; 479 qemu_mutex_unlock(¶m->mutex); 480 481 zero_page = do_compress_ram_page(param->file, ¶m->stream, 482 block, offset, param->originbuf); 483 484 qemu_mutex_lock(&comp_done_lock); 485 param->done = true; 486 param->zero_page = zero_page; 487 qemu_cond_signal(&comp_done_cond); 488 qemu_mutex_unlock(&comp_done_lock); 489 490 qemu_mutex_lock(¶m->mutex); 491 } else { 492 qemu_cond_wait(¶m->cond, ¶m->mutex); 493 } 494 } 495 qemu_mutex_unlock(¶m->mutex); 496 497 return NULL; 498 } 499 500 static void compress_threads_save_cleanup(void) 501 { 502 int i, thread_count; 503 504 if (!migrate_use_compression() || !comp_param) { 505 return; 506 } 507 508 thread_count = migrate_compress_threads(); 509 for (i = 0; i < thread_count; i++) { 510 /* 511 * we use it as a indicator which shows if the thread is 512 * properly init'd or not 513 */ 514 if (!comp_param[i].file) { 515 break; 516 } 517 518 qemu_mutex_lock(&comp_param[i].mutex); 519 comp_param[i].quit = true; 520 qemu_cond_signal(&comp_param[i].cond); 521 qemu_mutex_unlock(&comp_param[i].mutex); 522 523 qemu_thread_join(compress_threads + i); 524 qemu_mutex_destroy(&comp_param[i].mutex); 525 qemu_cond_destroy(&comp_param[i].cond); 526 deflateEnd(&comp_param[i].stream); 527 g_free(comp_param[i].originbuf); 528 qemu_fclose(comp_param[i].file); 529 comp_param[i].file = NULL; 530 } 531 qemu_mutex_destroy(&comp_done_lock); 532 qemu_cond_destroy(&comp_done_cond); 533 g_free(compress_threads); 534 g_free(comp_param); 535 compress_threads = NULL; 536 comp_param = NULL; 537 } 538 539 static int compress_threads_save_setup(void) 540 { 541 int i, thread_count; 542 543 if (!migrate_use_compression()) { 544 return 0; 545 } 546 thread_count = migrate_compress_threads(); 547 compress_threads = g_new0(QemuThread, thread_count); 548 comp_param = g_new0(CompressParam, thread_count); 549 qemu_cond_init(&comp_done_cond); 550 qemu_mutex_init(&comp_done_lock); 551 for (i = 0; i < thread_count; i++) { 552 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE); 553 if (!comp_param[i].originbuf) { 554 goto exit; 555 } 556 557 if (deflateInit(&comp_param[i].stream, 558 migrate_compress_level()) != Z_OK) { 559 g_free(comp_param[i].originbuf); 560 goto exit; 561 } 562 563 /* comp_param[i].file is just used as a dummy buffer to save data, 564 * set its ops to empty. 565 */ 566 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops); 567 comp_param[i].done = true; 568 comp_param[i].quit = false; 569 qemu_mutex_init(&comp_param[i].mutex); 570 qemu_cond_init(&comp_param[i].cond); 571 qemu_thread_create(compress_threads + i, "compress", 572 do_data_compress, comp_param + i, 573 QEMU_THREAD_JOINABLE); 574 } 575 return 0; 576 577 exit: 578 compress_threads_save_cleanup(); 579 return -1; 580 } 581 582 /** 583 * save_page_header: write page header to wire 584 * 585 * If this is the 1st block, it also writes the block identification 586 * 587 * Returns the number of bytes written 588 * 589 * @f: QEMUFile where to send the data 590 * @block: block that contains the page we want to send 591 * @offset: offset inside the block for the page 592 * in the lower bits, it contains flags 593 */ 594 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block, 595 ram_addr_t offset) 596 { 597 size_t size, len; 598 599 if (block == rs->last_sent_block) { 600 offset |= RAM_SAVE_FLAG_CONTINUE; 601 } 602 qemu_put_be64(f, offset); 603 size = 8; 604 605 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) { 606 len = strlen(block->idstr); 607 qemu_put_byte(f, len); 608 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 609 size += 1 + len; 610 rs->last_sent_block = block; 611 } 612 return size; 613 } 614 615 /** 616 * mig_throttle_guest_down: throotle down the guest 617 * 618 * Reduce amount of guest cpu execution to hopefully slow down memory 619 * writes. If guest dirty memory rate is reduced below the rate at 620 * which we can transfer pages to the destination then we should be 621 * able to complete migration. Some workloads dirty memory way too 622 * fast and will not effectively converge, even with auto-converge. 623 */ 624 static void mig_throttle_guest_down(uint64_t bytes_dirty_period, 625 uint64_t bytes_dirty_threshold) 626 { 627 MigrationState *s = migrate_get_current(); 628 uint64_t pct_initial = s->parameters.cpu_throttle_initial; 629 uint64_t pct_increment = s->parameters.cpu_throttle_increment; 630 bool pct_tailslow = s->parameters.cpu_throttle_tailslow; 631 int pct_max = s->parameters.max_cpu_throttle; 632 633 uint64_t throttle_now = cpu_throttle_get_percentage(); 634 uint64_t cpu_now, cpu_ideal, throttle_inc; 635 636 /* We have not started throttling yet. Let's start it. */ 637 if (!cpu_throttle_active()) { 638 cpu_throttle_set(pct_initial); 639 } else { 640 /* Throttling already on, just increase the rate */ 641 if (!pct_tailslow) { 642 throttle_inc = pct_increment; 643 } else { 644 /* Compute the ideal CPU percentage used by Guest, which may 645 * make the dirty rate match the dirty rate threshold. */ 646 cpu_now = 100 - throttle_now; 647 cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 / 648 bytes_dirty_period); 649 throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment); 650 } 651 cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max)); 652 } 653 } 654 655 /** 656 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache 657 * 658 * @rs: current RAM state 659 * @current_addr: address for the zero page 660 * 661 * Update the xbzrle cache to reflect a page that's been sent as all 0. 662 * The important thing is that a stale (not-yet-0'd) page be replaced 663 * by the new data. 664 * As a bonus, if the page wasn't in the cache it gets added so that 665 * when a small write is made into the 0'd page it gets XBZRLE sent. 666 */ 667 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr) 668 { 669 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 670 return; 671 } 672 673 /* We don't care if this fails to allocate a new cache page 674 * as long as it updated an old one */ 675 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, 676 ram_counters.dirty_sync_count); 677 } 678 679 #define ENCODING_FLAG_XBZRLE 0x1 680 681 /** 682 * save_xbzrle_page: compress and send current page 683 * 684 * Returns: 1 means that we wrote the page 685 * 0 means that page is identical to the one already sent 686 * -1 means that xbzrle would be longer than normal 687 * 688 * @rs: current RAM state 689 * @current_data: pointer to the address of the page contents 690 * @current_addr: addr of the page 691 * @block: block that contains the page we want to send 692 * @offset: offset inside the block for the page 693 * @last_stage: if we are at the completion stage 694 */ 695 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data, 696 ram_addr_t current_addr, RAMBlock *block, 697 ram_addr_t offset, bool last_stage) 698 { 699 int encoded_len = 0, bytes_xbzrle; 700 uint8_t *prev_cached_page; 701 702 if (!cache_is_cached(XBZRLE.cache, current_addr, 703 ram_counters.dirty_sync_count)) { 704 xbzrle_counters.cache_miss++; 705 if (!last_stage) { 706 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 707 ram_counters.dirty_sync_count) == -1) { 708 return -1; 709 } else { 710 /* update *current_data when the page has been 711 inserted into cache */ 712 *current_data = get_cached_data(XBZRLE.cache, current_addr); 713 } 714 } 715 return -1; 716 } 717 718 /* 719 * Reaching here means the page has hit the xbzrle cache, no matter what 720 * encoding result it is (normal encoding, overflow or skipping the page), 721 * count the page as encoded. This is used to calculate the encoding rate. 722 * 723 * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB, 724 * 2nd page turns out to be skipped (i.e. no new bytes written to the 725 * page), the overall encoding rate will be 8KB / 2KB = 4, which has the 726 * skipped page included. In this way, the encoding rate can tell if the 727 * guest page is good for xbzrle encoding. 728 */ 729 xbzrle_counters.pages++; 730 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 731 732 /* save current buffer into memory */ 733 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 734 735 /* XBZRLE encoding (if there is no overflow) */ 736 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 737 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 738 TARGET_PAGE_SIZE); 739 740 /* 741 * Update the cache contents, so that it corresponds to the data 742 * sent, in all cases except where we skip the page. 743 */ 744 if (!last_stage && encoded_len != 0) { 745 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 746 /* 747 * In the case where we couldn't compress, ensure that the caller 748 * sends the data from the cache, since the guest might have 749 * changed the RAM since we copied it. 750 */ 751 *current_data = prev_cached_page; 752 } 753 754 if (encoded_len == 0) { 755 trace_save_xbzrle_page_skipping(); 756 return 0; 757 } else if (encoded_len == -1) { 758 trace_save_xbzrle_page_overflow(); 759 xbzrle_counters.overflow++; 760 xbzrle_counters.bytes += TARGET_PAGE_SIZE; 761 return -1; 762 } 763 764 /* Send XBZRLE based compressed page */ 765 bytes_xbzrle = save_page_header(rs, rs->f, block, 766 offset | RAM_SAVE_FLAG_XBZRLE); 767 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE); 768 qemu_put_be16(rs->f, encoded_len); 769 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len); 770 bytes_xbzrle += encoded_len + 1 + 2; 771 /* 772 * Like compressed_size (please see update_compress_thread_counts), 773 * the xbzrle encoded bytes don't count the 8 byte header with 774 * RAM_SAVE_FLAG_CONTINUE. 775 */ 776 xbzrle_counters.bytes += bytes_xbzrle - 8; 777 ram_counters.transferred += bytes_xbzrle; 778 779 return 1; 780 } 781 782 /** 783 * migration_bitmap_find_dirty: find the next dirty page from start 784 * 785 * Returns the page offset within memory region of the start of a dirty page 786 * 787 * @rs: current RAM state 788 * @rb: RAMBlock where to search for dirty pages 789 * @start: page where we start the search 790 */ 791 static inline 792 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, 793 unsigned long start) 794 { 795 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 796 unsigned long *bitmap = rb->bmap; 797 unsigned long next; 798 799 if (ramblock_is_ignored(rb)) { 800 return size; 801 } 802 803 /* 804 * When the free page optimization is enabled, we need to check the bitmap 805 * to send the non-free pages rather than all the pages in the bulk stage. 806 */ 807 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) { 808 next = start + 1; 809 } else { 810 next = find_next_bit(bitmap, size, start); 811 } 812 813 return next; 814 } 815 816 static inline bool migration_bitmap_clear_dirty(RAMState *rs, 817 RAMBlock *rb, 818 unsigned long page) 819 { 820 bool ret; 821 822 QEMU_LOCK_GUARD(&rs->bitmap_mutex); 823 824 /* 825 * Clear dirty bitmap if needed. This _must_ be called before we 826 * send any of the page in the chunk because we need to make sure 827 * we can capture further page content changes when we sync dirty 828 * log the next time. So as long as we are going to send any of 829 * the page in the chunk we clear the remote dirty bitmap for all. 830 * Clearing it earlier won't be a problem, but too late will. 831 */ 832 if (rb->clear_bmap && clear_bmap_test_and_clear(rb, page)) { 833 uint8_t shift = rb->clear_bmap_shift; 834 hwaddr size = 1ULL << (TARGET_PAGE_BITS + shift); 835 hwaddr start = (((ram_addr_t)page) << TARGET_PAGE_BITS) & (-size); 836 837 /* 838 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this 839 * can make things easier sometimes since then start address 840 * of the small chunk will always be 64 pages aligned so the 841 * bitmap will always be aligned to unsigned long. We should 842 * even be able to remove this restriction but I'm simply 843 * keeping it. 844 */ 845 assert(shift >= 6); 846 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page); 847 memory_region_clear_dirty_bitmap(rb->mr, start, size); 848 } 849 850 ret = test_and_clear_bit(page, rb->bmap); 851 852 if (ret) { 853 rs->migration_dirty_pages--; 854 } 855 856 return ret; 857 } 858 859 /* Called with RCU critical section */ 860 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb) 861 { 862 uint64_t new_dirty_pages = 863 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length); 864 865 rs->migration_dirty_pages += new_dirty_pages; 866 rs->num_dirty_pages_period += new_dirty_pages; 867 } 868 869 /** 870 * ram_pagesize_summary: calculate all the pagesizes of a VM 871 * 872 * Returns a summary bitmap of the page sizes of all RAMBlocks 873 * 874 * For VMs with just normal pages this is equivalent to the host page 875 * size. If it's got some huge pages then it's the OR of all the 876 * different page sizes. 877 */ 878 uint64_t ram_pagesize_summary(void) 879 { 880 RAMBlock *block; 881 uint64_t summary = 0; 882 883 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 884 summary |= block->page_size; 885 } 886 887 return summary; 888 } 889 890 uint64_t ram_get_total_transferred_pages(void) 891 { 892 return ram_counters.normal + ram_counters.duplicate + 893 compression_counters.pages + xbzrle_counters.pages; 894 } 895 896 static void migration_update_rates(RAMState *rs, int64_t end_time) 897 { 898 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev; 899 double compressed_size; 900 901 /* calculate period counters */ 902 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000 903 / (end_time - rs->time_last_bitmap_sync); 904 905 if (!page_count) { 906 return; 907 } 908 909 if (migrate_use_xbzrle()) { 910 double encoded_size, unencoded_size; 911 912 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss - 913 rs->xbzrle_cache_miss_prev) / page_count; 914 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; 915 unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) * 916 TARGET_PAGE_SIZE; 917 encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev; 918 if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) { 919 xbzrle_counters.encoding_rate = 0; 920 } else { 921 xbzrle_counters.encoding_rate = unencoded_size / encoded_size; 922 } 923 rs->xbzrle_pages_prev = xbzrle_counters.pages; 924 rs->xbzrle_bytes_prev = xbzrle_counters.bytes; 925 } 926 927 if (migrate_use_compression()) { 928 compression_counters.busy_rate = (double)(compression_counters.busy - 929 rs->compress_thread_busy_prev) / page_count; 930 rs->compress_thread_busy_prev = compression_counters.busy; 931 932 compressed_size = compression_counters.compressed_size - 933 rs->compressed_size_prev; 934 if (compressed_size) { 935 double uncompressed_size = (compression_counters.pages - 936 rs->compress_pages_prev) * TARGET_PAGE_SIZE; 937 938 /* Compression-Ratio = Uncompressed-size / Compressed-size */ 939 compression_counters.compression_rate = 940 uncompressed_size / compressed_size; 941 942 rs->compress_pages_prev = compression_counters.pages; 943 rs->compressed_size_prev = compression_counters.compressed_size; 944 } 945 } 946 } 947 948 static void migration_trigger_throttle(RAMState *rs) 949 { 950 MigrationState *s = migrate_get_current(); 951 uint64_t threshold = s->parameters.throttle_trigger_threshold; 952 953 uint64_t bytes_xfer_period = ram_counters.transferred - rs->bytes_xfer_prev; 954 uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE; 955 uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100; 956 957 /* During block migration the auto-converge logic incorrectly detects 958 * that ram migration makes no progress. Avoid this by disabling the 959 * throttling logic during the bulk phase of block migration. */ 960 if (migrate_auto_converge() && !blk_mig_bulk_active()) { 961 /* The following detection logic can be refined later. For now: 962 Check to see if the ratio between dirtied bytes and the approx. 963 amount of bytes that just got transferred since the last time 964 we were in this routine reaches the threshold. If that happens 965 twice, start or increase throttling. */ 966 967 if ((bytes_dirty_period > bytes_dirty_threshold) && 968 (++rs->dirty_rate_high_cnt >= 2)) { 969 trace_migration_throttle(); 970 rs->dirty_rate_high_cnt = 0; 971 mig_throttle_guest_down(bytes_dirty_period, 972 bytes_dirty_threshold); 973 } 974 } 975 } 976 977 static void migration_bitmap_sync(RAMState *rs) 978 { 979 RAMBlock *block; 980 int64_t end_time; 981 982 ram_counters.dirty_sync_count++; 983 984 if (!rs->time_last_bitmap_sync) { 985 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 986 } 987 988 trace_migration_bitmap_sync_start(); 989 memory_global_dirty_log_sync(); 990 991 qemu_mutex_lock(&rs->bitmap_mutex); 992 WITH_RCU_READ_LOCK_GUARD() { 993 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 994 ramblock_sync_dirty_bitmap(rs, block); 995 } 996 ram_counters.remaining = ram_bytes_remaining(); 997 } 998 qemu_mutex_unlock(&rs->bitmap_mutex); 999 1000 memory_global_after_dirty_log_sync(); 1001 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); 1002 1003 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1004 1005 /* more than 1 second = 1000 millisecons */ 1006 if (end_time > rs->time_last_bitmap_sync + 1000) { 1007 migration_trigger_throttle(rs); 1008 1009 migration_update_rates(rs, end_time); 1010 1011 rs->target_page_count_prev = rs->target_page_count; 1012 1013 /* reset period counters */ 1014 rs->time_last_bitmap_sync = end_time; 1015 rs->num_dirty_pages_period = 0; 1016 rs->bytes_xfer_prev = ram_counters.transferred; 1017 } 1018 if (migrate_use_events()) { 1019 qapi_event_send_migration_pass(ram_counters.dirty_sync_count); 1020 } 1021 } 1022 1023 static void migration_bitmap_sync_precopy(RAMState *rs) 1024 { 1025 Error *local_err = NULL; 1026 1027 /* 1028 * The current notifier usage is just an optimization to migration, so we 1029 * don't stop the normal migration process in the error case. 1030 */ 1031 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) { 1032 error_report_err(local_err); 1033 local_err = NULL; 1034 } 1035 1036 migration_bitmap_sync(rs); 1037 1038 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) { 1039 error_report_err(local_err); 1040 } 1041 } 1042 1043 /** 1044 * save_zero_page_to_file: send the zero page to the file 1045 * 1046 * Returns the size of data written to the file, 0 means the page is not 1047 * a zero page 1048 * 1049 * @rs: current RAM state 1050 * @file: the file where the data is saved 1051 * @block: block that contains the page we want to send 1052 * @offset: offset inside the block for the page 1053 */ 1054 static int save_zero_page_to_file(RAMState *rs, QEMUFile *file, 1055 RAMBlock *block, ram_addr_t offset) 1056 { 1057 uint8_t *p = block->host + offset; 1058 int len = 0; 1059 1060 if (is_zero_range(p, TARGET_PAGE_SIZE)) { 1061 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO); 1062 qemu_put_byte(file, 0); 1063 len += 1; 1064 } 1065 return len; 1066 } 1067 1068 /** 1069 * save_zero_page: send the zero page to the stream 1070 * 1071 * Returns the number of pages written. 1072 * 1073 * @rs: current RAM state 1074 * @block: block that contains the page we want to send 1075 * @offset: offset inside the block for the page 1076 */ 1077 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) 1078 { 1079 int len = save_zero_page_to_file(rs, rs->f, block, offset); 1080 1081 if (len) { 1082 ram_counters.duplicate++; 1083 ram_counters.transferred += len; 1084 return 1; 1085 } 1086 return -1; 1087 } 1088 1089 static void ram_release_pages(const char *rbname, uint64_t offset, int pages) 1090 { 1091 if (!migrate_release_ram() || !migration_in_postcopy()) { 1092 return; 1093 } 1094 1095 ram_discard_range(rbname, offset, ((ram_addr_t)pages) << TARGET_PAGE_BITS); 1096 } 1097 1098 /* 1099 * @pages: the number of pages written by the control path, 1100 * < 0 - error 1101 * > 0 - number of pages written 1102 * 1103 * Return true if the pages has been saved, otherwise false is returned. 1104 */ 1105 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, 1106 int *pages) 1107 { 1108 uint64_t bytes_xmit = 0; 1109 int ret; 1110 1111 *pages = -1; 1112 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE, 1113 &bytes_xmit); 1114 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) { 1115 return false; 1116 } 1117 1118 if (bytes_xmit) { 1119 ram_counters.transferred += bytes_xmit; 1120 *pages = 1; 1121 } 1122 1123 if (ret == RAM_SAVE_CONTROL_DELAYED) { 1124 return true; 1125 } 1126 1127 if (bytes_xmit > 0) { 1128 ram_counters.normal++; 1129 } else if (bytes_xmit == 0) { 1130 ram_counters.duplicate++; 1131 } 1132 1133 return true; 1134 } 1135 1136 /* 1137 * directly send the page to the stream 1138 * 1139 * Returns the number of pages written. 1140 * 1141 * @rs: current RAM state 1142 * @block: block that contains the page we want to send 1143 * @offset: offset inside the block for the page 1144 * @buf: the page to be sent 1145 * @async: send to page asyncly 1146 */ 1147 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, 1148 uint8_t *buf, bool async) 1149 { 1150 ram_counters.transferred += save_page_header(rs, rs->f, block, 1151 offset | RAM_SAVE_FLAG_PAGE); 1152 if (async) { 1153 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE, 1154 migrate_release_ram() & 1155 migration_in_postcopy()); 1156 } else { 1157 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE); 1158 } 1159 ram_counters.transferred += TARGET_PAGE_SIZE; 1160 ram_counters.normal++; 1161 return 1; 1162 } 1163 1164 /** 1165 * ram_save_page: send the given page to the stream 1166 * 1167 * Returns the number of pages written. 1168 * < 0 - error 1169 * >=0 - Number of pages written - this might legally be 0 1170 * if xbzrle noticed the page was the same. 1171 * 1172 * @rs: current RAM state 1173 * @block: block that contains the page we want to send 1174 * @offset: offset inside the block for the page 1175 * @last_stage: if we are at the completion stage 1176 */ 1177 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage) 1178 { 1179 int pages = -1; 1180 uint8_t *p; 1181 bool send_async = true; 1182 RAMBlock *block = pss->block; 1183 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 1184 ram_addr_t current_addr = block->offset + offset; 1185 1186 p = block->host + offset; 1187 trace_ram_save_page(block->idstr, (uint64_t)offset, p); 1188 1189 XBZRLE_cache_lock(); 1190 if (!rs->ram_bulk_stage && !migration_in_postcopy() && 1191 migrate_use_xbzrle()) { 1192 pages = save_xbzrle_page(rs, &p, current_addr, block, 1193 offset, last_stage); 1194 if (!last_stage) { 1195 /* Can't send this cached data async, since the cache page 1196 * might get updated before it gets to the wire 1197 */ 1198 send_async = false; 1199 } 1200 } 1201 1202 /* XBZRLE overflow or normal page */ 1203 if (pages == -1) { 1204 pages = save_normal_page(rs, block, offset, p, send_async); 1205 } 1206 1207 XBZRLE_cache_unlock(); 1208 1209 return pages; 1210 } 1211 1212 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block, 1213 ram_addr_t offset) 1214 { 1215 if (multifd_queue_page(rs->f, block, offset) < 0) { 1216 return -1; 1217 } 1218 ram_counters.normal++; 1219 1220 return 1; 1221 } 1222 1223 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, 1224 ram_addr_t offset, uint8_t *source_buf) 1225 { 1226 RAMState *rs = ram_state; 1227 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK); 1228 bool zero_page = false; 1229 int ret; 1230 1231 if (save_zero_page_to_file(rs, f, block, offset)) { 1232 zero_page = true; 1233 goto exit; 1234 } 1235 1236 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE); 1237 1238 /* 1239 * copy it to a internal buffer to avoid it being modified by VM 1240 * so that we can catch up the error during compression and 1241 * decompression 1242 */ 1243 memcpy(source_buf, p, TARGET_PAGE_SIZE); 1244 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE); 1245 if (ret < 0) { 1246 qemu_file_set_error(migrate_get_current()->to_dst_file, ret); 1247 error_report("compressed data failed!"); 1248 return false; 1249 } 1250 1251 exit: 1252 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1); 1253 return zero_page; 1254 } 1255 1256 static void 1257 update_compress_thread_counts(const CompressParam *param, int bytes_xmit) 1258 { 1259 ram_counters.transferred += bytes_xmit; 1260 1261 if (param->zero_page) { 1262 ram_counters.duplicate++; 1263 return; 1264 } 1265 1266 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */ 1267 compression_counters.compressed_size += bytes_xmit - 8; 1268 compression_counters.pages++; 1269 } 1270 1271 static bool save_page_use_compression(RAMState *rs); 1272 1273 static void flush_compressed_data(RAMState *rs) 1274 { 1275 int idx, len, thread_count; 1276 1277 if (!save_page_use_compression(rs)) { 1278 return; 1279 } 1280 thread_count = migrate_compress_threads(); 1281 1282 qemu_mutex_lock(&comp_done_lock); 1283 for (idx = 0; idx < thread_count; idx++) { 1284 while (!comp_param[idx].done) { 1285 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 1286 } 1287 } 1288 qemu_mutex_unlock(&comp_done_lock); 1289 1290 for (idx = 0; idx < thread_count; idx++) { 1291 qemu_mutex_lock(&comp_param[idx].mutex); 1292 if (!comp_param[idx].quit) { 1293 len = qemu_put_qemu_file(rs->f, comp_param[idx].file); 1294 /* 1295 * it's safe to fetch zero_page without holding comp_done_lock 1296 * as there is no further request submitted to the thread, 1297 * i.e, the thread should be waiting for a request at this point. 1298 */ 1299 update_compress_thread_counts(&comp_param[idx], len); 1300 } 1301 qemu_mutex_unlock(&comp_param[idx].mutex); 1302 } 1303 } 1304 1305 static inline void set_compress_params(CompressParam *param, RAMBlock *block, 1306 ram_addr_t offset) 1307 { 1308 param->block = block; 1309 param->offset = offset; 1310 } 1311 1312 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block, 1313 ram_addr_t offset) 1314 { 1315 int idx, thread_count, bytes_xmit = -1, pages = -1; 1316 bool wait = migrate_compress_wait_thread(); 1317 1318 thread_count = migrate_compress_threads(); 1319 qemu_mutex_lock(&comp_done_lock); 1320 retry: 1321 for (idx = 0; idx < thread_count; idx++) { 1322 if (comp_param[idx].done) { 1323 comp_param[idx].done = false; 1324 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file); 1325 qemu_mutex_lock(&comp_param[idx].mutex); 1326 set_compress_params(&comp_param[idx], block, offset); 1327 qemu_cond_signal(&comp_param[idx].cond); 1328 qemu_mutex_unlock(&comp_param[idx].mutex); 1329 pages = 1; 1330 update_compress_thread_counts(&comp_param[idx], bytes_xmit); 1331 break; 1332 } 1333 } 1334 1335 /* 1336 * wait for the free thread if the user specifies 'compress-wait-thread', 1337 * otherwise we will post the page out in the main thread as normal page. 1338 */ 1339 if (pages < 0 && wait) { 1340 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 1341 goto retry; 1342 } 1343 qemu_mutex_unlock(&comp_done_lock); 1344 1345 return pages; 1346 } 1347 1348 /** 1349 * find_dirty_block: find the next dirty page and update any state 1350 * associated with the search process. 1351 * 1352 * Returns true if a page is found 1353 * 1354 * @rs: current RAM state 1355 * @pss: data about the state of the current dirty page scan 1356 * @again: set to false if the search has scanned the whole of RAM 1357 */ 1358 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again) 1359 { 1360 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page); 1361 if (pss->complete_round && pss->block == rs->last_seen_block && 1362 pss->page >= rs->last_page) { 1363 /* 1364 * We've been once around the RAM and haven't found anything. 1365 * Give up. 1366 */ 1367 *again = false; 1368 return false; 1369 } 1370 if ((((ram_addr_t)pss->page) << TARGET_PAGE_BITS) 1371 >= pss->block->used_length) { 1372 /* Didn't find anything in this RAM Block */ 1373 pss->page = 0; 1374 pss->block = QLIST_NEXT_RCU(pss->block, next); 1375 if (!pss->block) { 1376 /* 1377 * If memory migration starts over, we will meet a dirtied page 1378 * which may still exists in compression threads's ring, so we 1379 * should flush the compressed data to make sure the new page 1380 * is not overwritten by the old one in the destination. 1381 * 1382 * Also If xbzrle is on, stop using the data compression at this 1383 * point. In theory, xbzrle can do better than compression. 1384 */ 1385 flush_compressed_data(rs); 1386 1387 /* Hit the end of the list */ 1388 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 1389 /* Flag that we've looped */ 1390 pss->complete_round = true; 1391 rs->ram_bulk_stage = false; 1392 } 1393 /* Didn't find anything this time, but try again on the new block */ 1394 *again = true; 1395 return false; 1396 } else { 1397 /* Can go around again, but... */ 1398 *again = true; 1399 /* We've found something so probably don't need to */ 1400 return true; 1401 } 1402 } 1403 1404 /** 1405 * unqueue_page: gets a page of the queue 1406 * 1407 * Helper for 'get_queued_page' - gets a page off the queue 1408 * 1409 * Returns the block of the page (or NULL if none available) 1410 * 1411 * @rs: current RAM state 1412 * @offset: used to return the offset within the RAMBlock 1413 */ 1414 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) 1415 { 1416 RAMBlock *block = NULL; 1417 1418 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) { 1419 return NULL; 1420 } 1421 1422 QEMU_LOCK_GUARD(&rs->src_page_req_mutex); 1423 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 1424 struct RAMSrcPageRequest *entry = 1425 QSIMPLEQ_FIRST(&rs->src_page_requests); 1426 block = entry->rb; 1427 *offset = entry->offset; 1428 1429 if (entry->len > TARGET_PAGE_SIZE) { 1430 entry->len -= TARGET_PAGE_SIZE; 1431 entry->offset += TARGET_PAGE_SIZE; 1432 } else { 1433 memory_region_unref(block->mr); 1434 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1435 g_free(entry); 1436 migration_consume_urgent_request(); 1437 } 1438 } 1439 1440 return block; 1441 } 1442 1443 #if defined(__linux__) 1444 /** 1445 * poll_fault_page: try to get next UFFD write fault page and, if pending fault 1446 * is found, return RAM block pointer and page offset 1447 * 1448 * Returns pointer to the RAMBlock containing faulting page, 1449 * NULL if no write faults are pending 1450 * 1451 * @rs: current RAM state 1452 * @offset: page offset from the beginning of the block 1453 */ 1454 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset) 1455 { 1456 struct uffd_msg uffd_msg; 1457 void *page_address; 1458 RAMBlock *block; 1459 int res; 1460 1461 if (!migrate_background_snapshot()) { 1462 return NULL; 1463 } 1464 1465 res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1); 1466 if (res <= 0) { 1467 return NULL; 1468 } 1469 1470 page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address; 1471 block = qemu_ram_block_from_host(page_address, false, offset); 1472 assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0); 1473 return block; 1474 } 1475 1476 /** 1477 * ram_save_release_protection: release UFFD write protection after 1478 * a range of pages has been saved 1479 * 1480 * @rs: current RAM state 1481 * @pss: page-search-status structure 1482 * @start_page: index of the first page in the range relative to pss->block 1483 * 1484 * Returns 0 on success, negative value in case of an error 1485 */ 1486 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss, 1487 unsigned long start_page) 1488 { 1489 int res = 0; 1490 1491 /* Check if page is from UFFD-managed region. */ 1492 if (pss->block->flags & RAM_UF_WRITEPROTECT) { 1493 void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS); 1494 uint64_t run_length = (pss->page - start_page + 1) << TARGET_PAGE_BITS; 1495 1496 /* Flush async buffers before un-protect. */ 1497 qemu_fflush(rs->f); 1498 /* Un-protect memory range. */ 1499 res = uffd_change_protection(rs->uffdio_fd, page_address, run_length, 1500 false, false); 1501 } 1502 1503 return res; 1504 } 1505 1506 /* ram_write_tracking_available: check if kernel supports required UFFD features 1507 * 1508 * Returns true if supports, false otherwise 1509 */ 1510 bool ram_write_tracking_available(void) 1511 { 1512 uint64_t uffd_features; 1513 int res; 1514 1515 res = uffd_query_features(&uffd_features); 1516 return (res == 0 && 1517 (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0); 1518 } 1519 1520 /* ram_write_tracking_compatible: check if guest configuration is 1521 * compatible with 'write-tracking' 1522 * 1523 * Returns true if compatible, false otherwise 1524 */ 1525 bool ram_write_tracking_compatible(void) 1526 { 1527 const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT); 1528 int uffd_fd; 1529 RAMBlock *block; 1530 bool ret = false; 1531 1532 /* Open UFFD file descriptor */ 1533 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false); 1534 if (uffd_fd < 0) { 1535 return false; 1536 } 1537 1538 RCU_READ_LOCK_GUARD(); 1539 1540 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1541 uint64_t uffd_ioctls; 1542 1543 /* Nothing to do with read-only and MMIO-writable regions */ 1544 if (block->mr->readonly || block->mr->rom_device) { 1545 continue; 1546 } 1547 /* Try to register block memory via UFFD-IO to track writes */ 1548 if (uffd_register_memory(uffd_fd, block->host, block->max_length, 1549 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) { 1550 goto out; 1551 } 1552 if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) { 1553 goto out; 1554 } 1555 } 1556 ret = true; 1557 1558 out: 1559 uffd_close_fd(uffd_fd); 1560 return ret; 1561 } 1562 1563 /* 1564 * ram_block_populate_pages: populate memory in the RAM block by reading 1565 * an integer from the beginning of each page. 1566 * 1567 * Since it's solely used for userfault_fd WP feature, here we just 1568 * hardcode page size to qemu_real_host_page_size. 1569 * 1570 * @block: RAM block to populate 1571 */ 1572 static void ram_block_populate_pages(RAMBlock *block) 1573 { 1574 char *ptr = (char *) block->host; 1575 1576 for (ram_addr_t offset = 0; offset < block->used_length; 1577 offset += qemu_real_host_page_size) { 1578 char tmp = *(ptr + offset); 1579 1580 /* Don't optimize the read out */ 1581 asm volatile("" : "+r" (tmp)); 1582 } 1583 } 1584 1585 /* 1586 * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking 1587 */ 1588 void ram_write_tracking_prepare(void) 1589 { 1590 RAMBlock *block; 1591 1592 RCU_READ_LOCK_GUARD(); 1593 1594 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1595 /* Nothing to do with read-only and MMIO-writable regions */ 1596 if (block->mr->readonly || block->mr->rom_device) { 1597 continue; 1598 } 1599 1600 /* 1601 * Populate pages of the RAM block before enabling userfault_fd 1602 * write protection. 1603 * 1604 * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with 1605 * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip 1606 * pages with pte_none() entries in page table. 1607 */ 1608 ram_block_populate_pages(block); 1609 } 1610 } 1611 1612 /* 1613 * ram_write_tracking_start: start UFFD-WP memory tracking 1614 * 1615 * Returns 0 for success or negative value in case of error 1616 */ 1617 int ram_write_tracking_start(void) 1618 { 1619 int uffd_fd; 1620 RAMState *rs = ram_state; 1621 RAMBlock *block; 1622 1623 /* Open UFFD file descriptor */ 1624 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true); 1625 if (uffd_fd < 0) { 1626 return uffd_fd; 1627 } 1628 rs->uffdio_fd = uffd_fd; 1629 1630 RCU_READ_LOCK_GUARD(); 1631 1632 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1633 /* Nothing to do with read-only and MMIO-writable regions */ 1634 if (block->mr->readonly || block->mr->rom_device) { 1635 continue; 1636 } 1637 1638 /* Register block memory with UFFD to track writes */ 1639 if (uffd_register_memory(rs->uffdio_fd, block->host, 1640 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) { 1641 goto fail; 1642 } 1643 /* Apply UFFD write protection to the block memory range */ 1644 if (uffd_change_protection(rs->uffdio_fd, block->host, 1645 block->max_length, true, false)) { 1646 goto fail; 1647 } 1648 block->flags |= RAM_UF_WRITEPROTECT; 1649 memory_region_ref(block->mr); 1650 1651 trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size, 1652 block->host, block->max_length); 1653 } 1654 1655 return 0; 1656 1657 fail: 1658 error_report("ram_write_tracking_start() failed: restoring initial memory state"); 1659 1660 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1661 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) { 1662 continue; 1663 } 1664 /* 1665 * In case some memory block failed to be write-protected 1666 * remove protection and unregister all succeeded RAM blocks 1667 */ 1668 uffd_change_protection(rs->uffdio_fd, block->host, block->max_length, 1669 false, false); 1670 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length); 1671 /* Cleanup flags and remove reference */ 1672 block->flags &= ~RAM_UF_WRITEPROTECT; 1673 memory_region_unref(block->mr); 1674 } 1675 1676 uffd_close_fd(uffd_fd); 1677 rs->uffdio_fd = -1; 1678 return -1; 1679 } 1680 1681 /** 1682 * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection 1683 */ 1684 void ram_write_tracking_stop(void) 1685 { 1686 RAMState *rs = ram_state; 1687 RAMBlock *block; 1688 1689 RCU_READ_LOCK_GUARD(); 1690 1691 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1692 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) { 1693 continue; 1694 } 1695 /* Remove protection and unregister all affected RAM blocks */ 1696 uffd_change_protection(rs->uffdio_fd, block->host, block->max_length, 1697 false, false); 1698 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length); 1699 1700 trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size, 1701 block->host, block->max_length); 1702 1703 /* Cleanup flags and remove reference */ 1704 block->flags &= ~RAM_UF_WRITEPROTECT; 1705 memory_region_unref(block->mr); 1706 } 1707 1708 /* Finally close UFFD file descriptor */ 1709 uffd_close_fd(rs->uffdio_fd); 1710 rs->uffdio_fd = -1; 1711 } 1712 1713 #else 1714 /* No target OS support, stubs just fail or ignore */ 1715 1716 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset) 1717 { 1718 (void) rs; 1719 (void) offset; 1720 1721 return NULL; 1722 } 1723 1724 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss, 1725 unsigned long start_page) 1726 { 1727 (void) rs; 1728 (void) pss; 1729 (void) start_page; 1730 1731 return 0; 1732 } 1733 1734 bool ram_write_tracking_available(void) 1735 { 1736 return false; 1737 } 1738 1739 bool ram_write_tracking_compatible(void) 1740 { 1741 assert(0); 1742 return false; 1743 } 1744 1745 int ram_write_tracking_start(void) 1746 { 1747 assert(0); 1748 return -1; 1749 } 1750 1751 void ram_write_tracking_stop(void) 1752 { 1753 assert(0); 1754 } 1755 #endif /* defined(__linux__) */ 1756 1757 /** 1758 * get_queued_page: unqueue a page from the postcopy requests 1759 * 1760 * Skips pages that are already sent (!dirty) 1761 * 1762 * Returns true if a queued page is found 1763 * 1764 * @rs: current RAM state 1765 * @pss: data about the state of the current dirty page scan 1766 */ 1767 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) 1768 { 1769 RAMBlock *block; 1770 ram_addr_t offset; 1771 bool dirty; 1772 1773 do { 1774 block = unqueue_page(rs, &offset); 1775 /* 1776 * We're sending this page, and since it's postcopy nothing else 1777 * will dirty it, and we must make sure it doesn't get sent again 1778 * even if this queue request was received after the background 1779 * search already sent it. 1780 */ 1781 if (block) { 1782 unsigned long page; 1783 1784 page = offset >> TARGET_PAGE_BITS; 1785 dirty = test_bit(page, block->bmap); 1786 if (!dirty) { 1787 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, 1788 page); 1789 } else { 1790 trace_get_queued_page(block->idstr, (uint64_t)offset, page); 1791 } 1792 } 1793 1794 } while (block && !dirty); 1795 1796 if (!block) { 1797 /* 1798 * Poll write faults too if background snapshot is enabled; that's 1799 * when we have vcpus got blocked by the write protected pages. 1800 */ 1801 block = poll_fault_page(rs, &offset); 1802 } 1803 1804 if (block) { 1805 /* 1806 * As soon as we start servicing pages out of order, then we have 1807 * to kill the bulk stage, since the bulk stage assumes 1808 * in (migration_bitmap_find_and_reset_dirty) that every page is 1809 * dirty, that's no longer true. 1810 */ 1811 rs->ram_bulk_stage = false; 1812 1813 /* 1814 * We want the background search to continue from the queued page 1815 * since the guest is likely to want other pages near to the page 1816 * it just requested. 1817 */ 1818 pss->block = block; 1819 pss->page = offset >> TARGET_PAGE_BITS; 1820 1821 /* 1822 * This unqueued page would break the "one round" check, even is 1823 * really rare. 1824 */ 1825 pss->complete_round = false; 1826 } 1827 1828 return !!block; 1829 } 1830 1831 /** 1832 * migration_page_queue_free: drop any remaining pages in the ram 1833 * request queue 1834 * 1835 * It should be empty at the end anyway, but in error cases there may 1836 * be some left. in case that there is any page left, we drop it. 1837 * 1838 */ 1839 static void migration_page_queue_free(RAMState *rs) 1840 { 1841 struct RAMSrcPageRequest *mspr, *next_mspr; 1842 /* This queue generally should be empty - but in the case of a failed 1843 * migration might have some droppings in. 1844 */ 1845 RCU_READ_LOCK_GUARD(); 1846 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { 1847 memory_region_unref(mspr->rb->mr); 1848 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1849 g_free(mspr); 1850 } 1851 } 1852 1853 /** 1854 * ram_save_queue_pages: queue the page for transmission 1855 * 1856 * A request from postcopy destination for example. 1857 * 1858 * Returns zero on success or negative on error 1859 * 1860 * @rbname: Name of the RAMBLock of the request. NULL means the 1861 * same that last one. 1862 * @start: starting address from the start of the RAMBlock 1863 * @len: length (in bytes) to send 1864 */ 1865 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len) 1866 { 1867 RAMBlock *ramblock; 1868 RAMState *rs = ram_state; 1869 1870 ram_counters.postcopy_requests++; 1871 RCU_READ_LOCK_GUARD(); 1872 1873 if (!rbname) { 1874 /* Reuse last RAMBlock */ 1875 ramblock = rs->last_req_rb; 1876 1877 if (!ramblock) { 1878 /* 1879 * Shouldn't happen, we can't reuse the last RAMBlock if 1880 * it's the 1st request. 1881 */ 1882 error_report("ram_save_queue_pages no previous block"); 1883 return -1; 1884 } 1885 } else { 1886 ramblock = qemu_ram_block_by_name(rbname); 1887 1888 if (!ramblock) { 1889 /* We shouldn't be asked for a non-existent RAMBlock */ 1890 error_report("ram_save_queue_pages no block '%s'", rbname); 1891 return -1; 1892 } 1893 rs->last_req_rb = ramblock; 1894 } 1895 trace_ram_save_queue_pages(ramblock->idstr, start, len); 1896 if (start + len > ramblock->used_length) { 1897 error_report("%s request overrun start=" RAM_ADDR_FMT " len=" 1898 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 1899 __func__, start, len, ramblock->used_length); 1900 return -1; 1901 } 1902 1903 struct RAMSrcPageRequest *new_entry = 1904 g_malloc0(sizeof(struct RAMSrcPageRequest)); 1905 new_entry->rb = ramblock; 1906 new_entry->offset = start; 1907 new_entry->len = len; 1908 1909 memory_region_ref(ramblock->mr); 1910 qemu_mutex_lock(&rs->src_page_req_mutex); 1911 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); 1912 migration_make_urgent_request(); 1913 qemu_mutex_unlock(&rs->src_page_req_mutex); 1914 1915 return 0; 1916 } 1917 1918 static bool save_page_use_compression(RAMState *rs) 1919 { 1920 if (!migrate_use_compression()) { 1921 return false; 1922 } 1923 1924 /* 1925 * If xbzrle is on, stop using the data compression after first 1926 * round of migration even if compression is enabled. In theory, 1927 * xbzrle can do better than compression. 1928 */ 1929 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 1930 return true; 1931 } 1932 1933 return false; 1934 } 1935 1936 /* 1937 * try to compress the page before posting it out, return true if the page 1938 * has been properly handled by compression, otherwise needs other 1939 * paths to handle it 1940 */ 1941 static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) 1942 { 1943 if (!save_page_use_compression(rs)) { 1944 return false; 1945 } 1946 1947 /* 1948 * When starting the process of a new block, the first page of 1949 * the block should be sent out before other pages in the same 1950 * block, and all the pages in last block should have been sent 1951 * out, keeping this order is important, because the 'cont' flag 1952 * is used to avoid resending the block name. 1953 * 1954 * We post the fist page as normal page as compression will take 1955 * much CPU resource. 1956 */ 1957 if (block != rs->last_sent_block) { 1958 flush_compressed_data(rs); 1959 return false; 1960 } 1961 1962 if (compress_page_with_multi_thread(rs, block, offset) > 0) { 1963 return true; 1964 } 1965 1966 compression_counters.busy++; 1967 return false; 1968 } 1969 1970 /** 1971 * ram_save_target_page: save one target page 1972 * 1973 * Returns the number of pages written 1974 * 1975 * @rs: current RAM state 1976 * @pss: data about the page we want to send 1977 * @last_stage: if we are at the completion stage 1978 */ 1979 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss, 1980 bool last_stage) 1981 { 1982 RAMBlock *block = pss->block; 1983 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 1984 int res; 1985 1986 if (control_save_page(rs, block, offset, &res)) { 1987 return res; 1988 } 1989 1990 if (save_compress_page(rs, block, offset)) { 1991 return 1; 1992 } 1993 1994 res = save_zero_page(rs, block, offset); 1995 if (res > 0) { 1996 /* Must let xbzrle know, otherwise a previous (now 0'd) cached 1997 * page would be stale 1998 */ 1999 if (!save_page_use_compression(rs)) { 2000 XBZRLE_cache_lock(); 2001 xbzrle_cache_zero_page(rs, block->offset + offset); 2002 XBZRLE_cache_unlock(); 2003 } 2004 ram_release_pages(block->idstr, offset, res); 2005 return res; 2006 } 2007 2008 /* 2009 * Do not use multifd for: 2010 * 1. Compression as the first page in the new block should be posted out 2011 * before sending the compressed page 2012 * 2. In postcopy as one whole host page should be placed 2013 */ 2014 if (!save_page_use_compression(rs) && migrate_use_multifd() 2015 && !migration_in_postcopy()) { 2016 return ram_save_multifd_page(rs, block, offset); 2017 } 2018 2019 return ram_save_page(rs, pss, last_stage); 2020 } 2021 2022 /** 2023 * ram_save_host_page: save a whole host page 2024 * 2025 * Starting at *offset send pages up to the end of the current host 2026 * page. It's valid for the initial offset to point into the middle of 2027 * a host page in which case the remainder of the hostpage is sent. 2028 * Only dirty target pages are sent. Note that the host page size may 2029 * be a huge page for this block. 2030 * The saving stops at the boundary of the used_length of the block 2031 * if the RAMBlock isn't a multiple of the host page size. 2032 * 2033 * Returns the number of pages written or negative on error 2034 * 2035 * @rs: current RAM state 2036 * @ms: current migration state 2037 * @pss: data about the page we want to send 2038 * @last_stage: if we are at the completion stage 2039 */ 2040 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss, 2041 bool last_stage) 2042 { 2043 int tmppages, pages = 0; 2044 size_t pagesize_bits = 2045 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2046 unsigned long start_page = pss->page; 2047 int res; 2048 2049 if (ramblock_is_ignored(pss->block)) { 2050 error_report("block %s should not be migrated !", pss->block->idstr); 2051 return 0; 2052 } 2053 2054 do { 2055 /* Check the pages is dirty and if it is send it */ 2056 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) { 2057 pss->page++; 2058 continue; 2059 } 2060 2061 tmppages = ram_save_target_page(rs, pss, last_stage); 2062 if (tmppages < 0) { 2063 return tmppages; 2064 } 2065 2066 pages += tmppages; 2067 pss->page++; 2068 /* Allow rate limiting to happen in the middle of huge pages */ 2069 migration_rate_limit(); 2070 } while ((pss->page & (pagesize_bits - 1)) && 2071 offset_in_ramblock(pss->block, 2072 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)); 2073 /* The offset we leave with is the last one we looked at */ 2074 pss->page--; 2075 2076 res = ram_save_release_protection(rs, pss, start_page); 2077 return (res < 0 ? res : pages); 2078 } 2079 2080 /** 2081 * ram_find_and_save_block: finds a dirty page and sends it to f 2082 * 2083 * Called within an RCU critical section. 2084 * 2085 * Returns the number of pages written where zero means no dirty pages, 2086 * or negative on error 2087 * 2088 * @rs: current RAM state 2089 * @last_stage: if we are at the completion stage 2090 * 2091 * On systems where host-page-size > target-page-size it will send all the 2092 * pages in a host page that are dirty. 2093 */ 2094 2095 static int ram_find_and_save_block(RAMState *rs, bool last_stage) 2096 { 2097 PageSearchStatus pss; 2098 int pages = 0; 2099 bool again, found; 2100 2101 /* No dirty page as there is zero RAM */ 2102 if (!ram_bytes_total()) { 2103 return pages; 2104 } 2105 2106 pss.block = rs->last_seen_block; 2107 pss.page = rs->last_page; 2108 pss.complete_round = false; 2109 2110 if (!pss.block) { 2111 pss.block = QLIST_FIRST_RCU(&ram_list.blocks); 2112 } 2113 2114 do { 2115 again = true; 2116 found = get_queued_page(rs, &pss); 2117 2118 if (!found) { 2119 /* priority queue empty, so just search for something dirty */ 2120 found = find_dirty_block(rs, &pss, &again); 2121 } 2122 2123 if (found) { 2124 pages = ram_save_host_page(rs, &pss, last_stage); 2125 } 2126 } while (!pages && again); 2127 2128 rs->last_seen_block = pss.block; 2129 rs->last_page = pss.page; 2130 2131 return pages; 2132 } 2133 2134 void acct_update_position(QEMUFile *f, size_t size, bool zero) 2135 { 2136 uint64_t pages = size / TARGET_PAGE_SIZE; 2137 2138 if (zero) { 2139 ram_counters.duplicate += pages; 2140 } else { 2141 ram_counters.normal += pages; 2142 ram_counters.transferred += size; 2143 qemu_update_position(f, size); 2144 } 2145 } 2146 2147 static uint64_t ram_bytes_total_common(bool count_ignored) 2148 { 2149 RAMBlock *block; 2150 uint64_t total = 0; 2151 2152 RCU_READ_LOCK_GUARD(); 2153 2154 if (count_ignored) { 2155 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2156 total += block->used_length; 2157 } 2158 } else { 2159 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2160 total += block->used_length; 2161 } 2162 } 2163 return total; 2164 } 2165 2166 uint64_t ram_bytes_total(void) 2167 { 2168 return ram_bytes_total_common(false); 2169 } 2170 2171 static void xbzrle_load_setup(void) 2172 { 2173 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 2174 } 2175 2176 static void xbzrle_load_cleanup(void) 2177 { 2178 g_free(XBZRLE.decoded_buf); 2179 XBZRLE.decoded_buf = NULL; 2180 } 2181 2182 static void ram_state_cleanup(RAMState **rsp) 2183 { 2184 if (*rsp) { 2185 migration_page_queue_free(*rsp); 2186 qemu_mutex_destroy(&(*rsp)->bitmap_mutex); 2187 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex); 2188 g_free(*rsp); 2189 *rsp = NULL; 2190 } 2191 } 2192 2193 static void xbzrle_cleanup(void) 2194 { 2195 XBZRLE_cache_lock(); 2196 if (XBZRLE.cache) { 2197 cache_fini(XBZRLE.cache); 2198 g_free(XBZRLE.encoded_buf); 2199 g_free(XBZRLE.current_buf); 2200 g_free(XBZRLE.zero_target_page); 2201 XBZRLE.cache = NULL; 2202 XBZRLE.encoded_buf = NULL; 2203 XBZRLE.current_buf = NULL; 2204 XBZRLE.zero_target_page = NULL; 2205 } 2206 XBZRLE_cache_unlock(); 2207 } 2208 2209 static void ram_save_cleanup(void *opaque) 2210 { 2211 RAMState **rsp = opaque; 2212 RAMBlock *block; 2213 2214 /* We don't use dirty log with background snapshots */ 2215 if (!migrate_background_snapshot()) { 2216 /* caller have hold iothread lock or is in a bh, so there is 2217 * no writing race against the migration bitmap 2218 */ 2219 memory_global_dirty_log_stop(); 2220 } 2221 2222 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2223 g_free(block->clear_bmap); 2224 block->clear_bmap = NULL; 2225 g_free(block->bmap); 2226 block->bmap = NULL; 2227 } 2228 2229 xbzrle_cleanup(); 2230 compress_threads_save_cleanup(); 2231 ram_state_cleanup(rsp); 2232 } 2233 2234 static void ram_state_reset(RAMState *rs) 2235 { 2236 rs->last_seen_block = NULL; 2237 rs->last_sent_block = NULL; 2238 rs->last_page = 0; 2239 rs->last_version = ram_list.version; 2240 rs->ram_bulk_stage = true; 2241 rs->fpo_enabled = false; 2242 } 2243 2244 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 2245 2246 /* 2247 * 'expected' is the value you expect the bitmap mostly to be full 2248 * of; it won't bother printing lines that are all this value. 2249 * If 'todump' is null the migration bitmap is dumped. 2250 */ 2251 void ram_debug_dump_bitmap(unsigned long *todump, bool expected, 2252 unsigned long pages) 2253 { 2254 int64_t cur; 2255 int64_t linelen = 128; 2256 char linebuf[129]; 2257 2258 for (cur = 0; cur < pages; cur += linelen) { 2259 int64_t curb; 2260 bool found = false; 2261 /* 2262 * Last line; catch the case where the line length 2263 * is longer than remaining ram 2264 */ 2265 if (cur + linelen > pages) { 2266 linelen = pages - cur; 2267 } 2268 for (curb = 0; curb < linelen; curb++) { 2269 bool thisbit = test_bit(cur + curb, todump); 2270 linebuf[curb] = thisbit ? '1' : '.'; 2271 found = found || (thisbit != expected); 2272 } 2273 if (found) { 2274 linebuf[curb] = '\0'; 2275 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf); 2276 } 2277 } 2278 } 2279 2280 /* **** functions for postcopy ***** */ 2281 2282 void ram_postcopy_migrated_memory_release(MigrationState *ms) 2283 { 2284 struct RAMBlock *block; 2285 2286 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2287 unsigned long *bitmap = block->bmap; 2288 unsigned long range = block->used_length >> TARGET_PAGE_BITS; 2289 unsigned long run_start = find_next_zero_bit(bitmap, range, 0); 2290 2291 while (run_start < range) { 2292 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); 2293 ram_discard_range(block->idstr, 2294 ((ram_addr_t)run_start) << TARGET_PAGE_BITS, 2295 ((ram_addr_t)(run_end - run_start)) 2296 << TARGET_PAGE_BITS); 2297 run_start = find_next_zero_bit(bitmap, range, run_end + 1); 2298 } 2299 } 2300 } 2301 2302 /** 2303 * postcopy_send_discard_bm_ram: discard a RAMBlock 2304 * 2305 * Returns zero on success 2306 * 2307 * Callback from postcopy_each_ram_send_discard for each RAMBlock 2308 * 2309 * @ms: current migration state 2310 * @block: RAMBlock to discard 2311 */ 2312 static int postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block) 2313 { 2314 unsigned long end = block->used_length >> TARGET_PAGE_BITS; 2315 unsigned long current; 2316 unsigned long *bitmap = block->bmap; 2317 2318 for (current = 0; current < end; ) { 2319 unsigned long one = find_next_bit(bitmap, end, current); 2320 unsigned long zero, discard_length; 2321 2322 if (one >= end) { 2323 break; 2324 } 2325 2326 zero = find_next_zero_bit(bitmap, end, one + 1); 2327 2328 if (zero >= end) { 2329 discard_length = end - one; 2330 } else { 2331 discard_length = zero - one; 2332 } 2333 postcopy_discard_send_range(ms, one, discard_length); 2334 current = one + discard_length; 2335 } 2336 2337 return 0; 2338 } 2339 2340 /** 2341 * postcopy_each_ram_send_discard: discard all RAMBlocks 2342 * 2343 * Returns 0 for success or negative for error 2344 * 2345 * Utility for the outgoing postcopy code. 2346 * Calls postcopy_send_discard_bm_ram for each RAMBlock 2347 * passing it bitmap indexes and name. 2348 * (qemu_ram_foreach_block ends up passing unscaled lengths 2349 * which would mean postcopy code would have to deal with target page) 2350 * 2351 * @ms: current migration state 2352 */ 2353 static int postcopy_each_ram_send_discard(MigrationState *ms) 2354 { 2355 struct RAMBlock *block; 2356 int ret; 2357 2358 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2359 postcopy_discard_send_init(ms, block->idstr); 2360 2361 /* 2362 * Postcopy sends chunks of bitmap over the wire, but it 2363 * just needs indexes at this point, avoids it having 2364 * target page specific code. 2365 */ 2366 ret = postcopy_send_discard_bm_ram(ms, block); 2367 postcopy_discard_send_finish(ms); 2368 if (ret) { 2369 return ret; 2370 } 2371 } 2372 2373 return 0; 2374 } 2375 2376 /** 2377 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages 2378 * 2379 * Helper for postcopy_chunk_hostpages; it's called twice to 2380 * canonicalize the two bitmaps, that are similar, but one is 2381 * inverted. 2382 * 2383 * Postcopy requires that all target pages in a hostpage are dirty or 2384 * clean, not a mix. This function canonicalizes the bitmaps. 2385 * 2386 * @ms: current migration state 2387 * @block: block that contains the page we want to canonicalize 2388 */ 2389 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block) 2390 { 2391 RAMState *rs = ram_state; 2392 unsigned long *bitmap = block->bmap; 2393 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; 2394 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 2395 unsigned long run_start; 2396 2397 if (block->page_size == TARGET_PAGE_SIZE) { 2398 /* Easy case - TPS==HPS for a non-huge page RAMBlock */ 2399 return; 2400 } 2401 2402 /* Find a dirty page */ 2403 run_start = find_next_bit(bitmap, pages, 0); 2404 2405 while (run_start < pages) { 2406 2407 /* 2408 * If the start of this run of pages is in the middle of a host 2409 * page, then we need to fixup this host page. 2410 */ 2411 if (QEMU_IS_ALIGNED(run_start, host_ratio)) { 2412 /* Find the end of this run */ 2413 run_start = find_next_zero_bit(bitmap, pages, run_start + 1); 2414 /* 2415 * If the end isn't at the start of a host page, then the 2416 * run doesn't finish at the end of a host page 2417 * and we need to discard. 2418 */ 2419 } 2420 2421 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) { 2422 unsigned long page; 2423 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start, 2424 host_ratio); 2425 run_start = QEMU_ALIGN_UP(run_start, host_ratio); 2426 2427 /* Clean up the bitmap */ 2428 for (page = fixup_start_addr; 2429 page < fixup_start_addr + host_ratio; page++) { 2430 /* 2431 * Remark them as dirty, updating the count for any pages 2432 * that weren't previously dirty. 2433 */ 2434 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); 2435 } 2436 } 2437 2438 /* Find the next dirty page for the next iteration */ 2439 run_start = find_next_bit(bitmap, pages, run_start); 2440 } 2441 } 2442 2443 /** 2444 * postcopy_chunk_hostpages: discard any partially sent host page 2445 * 2446 * Utility for the outgoing postcopy code. 2447 * 2448 * Discard any partially sent host-page size chunks, mark any partially 2449 * dirty host-page size chunks as all dirty. In this case the host-page 2450 * is the host-page for the particular RAMBlock, i.e. it might be a huge page 2451 * 2452 * Returns zero on success 2453 * 2454 * @ms: current migration state 2455 * @block: block we want to work with 2456 */ 2457 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block) 2458 { 2459 postcopy_discard_send_init(ms, block->idstr); 2460 2461 /* 2462 * Ensure that all partially dirty host pages are made fully dirty. 2463 */ 2464 postcopy_chunk_hostpages_pass(ms, block); 2465 2466 postcopy_discard_send_finish(ms); 2467 return 0; 2468 } 2469 2470 /** 2471 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap 2472 * 2473 * Returns zero on success 2474 * 2475 * Transmit the set of pages to be discarded after precopy to the target 2476 * these are pages that: 2477 * a) Have been previously transmitted but are now dirty again 2478 * b) Pages that have never been transmitted, this ensures that 2479 * any pages on the destination that have been mapped by background 2480 * tasks get discarded (transparent huge pages is the specific concern) 2481 * Hopefully this is pretty sparse 2482 * 2483 * @ms: current migration state 2484 */ 2485 int ram_postcopy_send_discard_bitmap(MigrationState *ms) 2486 { 2487 RAMState *rs = ram_state; 2488 RAMBlock *block; 2489 int ret; 2490 2491 RCU_READ_LOCK_GUARD(); 2492 2493 /* This should be our last sync, the src is now paused */ 2494 migration_bitmap_sync(rs); 2495 2496 /* Easiest way to make sure we don't resume in the middle of a host-page */ 2497 rs->last_seen_block = NULL; 2498 rs->last_sent_block = NULL; 2499 rs->last_page = 0; 2500 2501 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2502 /* Deal with TPS != HPS and huge pages */ 2503 ret = postcopy_chunk_hostpages(ms, block); 2504 if (ret) { 2505 return ret; 2506 } 2507 2508 #ifdef DEBUG_POSTCOPY 2509 ram_debug_dump_bitmap(block->bmap, true, 2510 block->used_length >> TARGET_PAGE_BITS); 2511 #endif 2512 } 2513 trace_ram_postcopy_send_discard_bitmap(); 2514 2515 return postcopy_each_ram_send_discard(ms); 2516 } 2517 2518 /** 2519 * ram_discard_range: discard dirtied pages at the beginning of postcopy 2520 * 2521 * Returns zero on success 2522 * 2523 * @rbname: name of the RAMBlock of the request. NULL means the 2524 * same that last one. 2525 * @start: RAMBlock starting page 2526 * @length: RAMBlock size 2527 */ 2528 int ram_discard_range(const char *rbname, uint64_t start, size_t length) 2529 { 2530 trace_ram_discard_range(rbname, start, length); 2531 2532 RCU_READ_LOCK_GUARD(); 2533 RAMBlock *rb = qemu_ram_block_by_name(rbname); 2534 2535 if (!rb) { 2536 error_report("ram_discard_range: Failed to find block '%s'", rbname); 2537 return -1; 2538 } 2539 2540 /* 2541 * On source VM, we don't need to update the received bitmap since 2542 * we don't even have one. 2543 */ 2544 if (rb->receivedmap) { 2545 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(), 2546 length >> qemu_target_page_bits()); 2547 } 2548 2549 return ram_block_discard_range(rb, start, length); 2550 } 2551 2552 /* 2553 * For every allocation, we will try not to crash the VM if the 2554 * allocation failed. 2555 */ 2556 static int xbzrle_init(void) 2557 { 2558 Error *local_err = NULL; 2559 2560 if (!migrate_use_xbzrle()) { 2561 return 0; 2562 } 2563 2564 XBZRLE_cache_lock(); 2565 2566 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE); 2567 if (!XBZRLE.zero_target_page) { 2568 error_report("%s: Error allocating zero page", __func__); 2569 goto err_out; 2570 } 2571 2572 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(), 2573 TARGET_PAGE_SIZE, &local_err); 2574 if (!XBZRLE.cache) { 2575 error_report_err(local_err); 2576 goto free_zero_page; 2577 } 2578 2579 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 2580 if (!XBZRLE.encoded_buf) { 2581 error_report("%s: Error allocating encoded_buf", __func__); 2582 goto free_cache; 2583 } 2584 2585 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 2586 if (!XBZRLE.current_buf) { 2587 error_report("%s: Error allocating current_buf", __func__); 2588 goto free_encoded_buf; 2589 } 2590 2591 /* We are all good */ 2592 XBZRLE_cache_unlock(); 2593 return 0; 2594 2595 free_encoded_buf: 2596 g_free(XBZRLE.encoded_buf); 2597 XBZRLE.encoded_buf = NULL; 2598 free_cache: 2599 cache_fini(XBZRLE.cache); 2600 XBZRLE.cache = NULL; 2601 free_zero_page: 2602 g_free(XBZRLE.zero_target_page); 2603 XBZRLE.zero_target_page = NULL; 2604 err_out: 2605 XBZRLE_cache_unlock(); 2606 return -ENOMEM; 2607 } 2608 2609 static int ram_state_init(RAMState **rsp) 2610 { 2611 *rsp = g_try_new0(RAMState, 1); 2612 2613 if (!*rsp) { 2614 error_report("%s: Init ramstate fail", __func__); 2615 return -1; 2616 } 2617 2618 qemu_mutex_init(&(*rsp)->bitmap_mutex); 2619 qemu_mutex_init(&(*rsp)->src_page_req_mutex); 2620 QSIMPLEQ_INIT(&(*rsp)->src_page_requests); 2621 2622 /* 2623 * Count the total number of pages used by ram blocks not including any 2624 * gaps due to alignment or unplugs. 2625 * This must match with the initial values of dirty bitmap. 2626 */ 2627 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS; 2628 ram_state_reset(*rsp); 2629 2630 return 0; 2631 } 2632 2633 static void ram_list_init_bitmaps(void) 2634 { 2635 MigrationState *ms = migrate_get_current(); 2636 RAMBlock *block; 2637 unsigned long pages; 2638 uint8_t shift; 2639 2640 /* Skip setting bitmap if there is no RAM */ 2641 if (ram_bytes_total()) { 2642 shift = ms->clear_bitmap_shift; 2643 if (shift > CLEAR_BITMAP_SHIFT_MAX) { 2644 error_report("clear_bitmap_shift (%u) too big, using " 2645 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX); 2646 shift = CLEAR_BITMAP_SHIFT_MAX; 2647 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) { 2648 error_report("clear_bitmap_shift (%u) too small, using " 2649 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN); 2650 shift = CLEAR_BITMAP_SHIFT_MIN; 2651 } 2652 2653 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2654 pages = block->max_length >> TARGET_PAGE_BITS; 2655 /* 2656 * The initial dirty bitmap for migration must be set with all 2657 * ones to make sure we'll migrate every guest RAM page to 2658 * destination. 2659 * Here we set RAMBlock.bmap all to 1 because when rebegin a 2660 * new migration after a failed migration, ram_list. 2661 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole 2662 * guest memory. 2663 */ 2664 block->bmap = bitmap_new(pages); 2665 bitmap_set(block->bmap, 0, pages); 2666 block->clear_bmap_shift = shift; 2667 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift)); 2668 } 2669 } 2670 } 2671 2672 static void ram_init_bitmaps(RAMState *rs) 2673 { 2674 /* For memory_global_dirty_log_start below. */ 2675 qemu_mutex_lock_iothread(); 2676 qemu_mutex_lock_ramlist(); 2677 2678 WITH_RCU_READ_LOCK_GUARD() { 2679 ram_list_init_bitmaps(); 2680 /* We don't use dirty log with background snapshots */ 2681 if (!migrate_background_snapshot()) { 2682 memory_global_dirty_log_start(); 2683 migration_bitmap_sync_precopy(rs); 2684 } 2685 } 2686 qemu_mutex_unlock_ramlist(); 2687 qemu_mutex_unlock_iothread(); 2688 } 2689 2690 static int ram_init_all(RAMState **rsp) 2691 { 2692 if (ram_state_init(rsp)) { 2693 return -1; 2694 } 2695 2696 if (xbzrle_init()) { 2697 ram_state_cleanup(rsp); 2698 return -1; 2699 } 2700 2701 ram_init_bitmaps(*rsp); 2702 2703 return 0; 2704 } 2705 2706 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out) 2707 { 2708 RAMBlock *block; 2709 uint64_t pages = 0; 2710 2711 /* 2712 * Postcopy is not using xbzrle/compression, so no need for that. 2713 * Also, since source are already halted, we don't need to care 2714 * about dirty page logging as well. 2715 */ 2716 2717 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2718 pages += bitmap_count_one(block->bmap, 2719 block->used_length >> TARGET_PAGE_BITS); 2720 } 2721 2722 /* This may not be aligned with current bitmaps. Recalculate. */ 2723 rs->migration_dirty_pages = pages; 2724 2725 rs->last_seen_block = NULL; 2726 rs->last_sent_block = NULL; 2727 rs->last_page = 0; 2728 rs->last_version = ram_list.version; 2729 /* 2730 * Disable the bulk stage, otherwise we'll resend the whole RAM no 2731 * matter what we have sent. 2732 */ 2733 rs->ram_bulk_stage = false; 2734 2735 /* Update RAMState cache of output QEMUFile */ 2736 rs->f = out; 2737 2738 trace_ram_state_resume_prepare(pages); 2739 } 2740 2741 /* 2742 * This function clears bits of the free pages reported by the caller from the 2743 * migration dirty bitmap. @addr is the host address corresponding to the 2744 * start of the continuous guest free pages, and @len is the total bytes of 2745 * those pages. 2746 */ 2747 void qemu_guest_free_page_hint(void *addr, size_t len) 2748 { 2749 RAMBlock *block; 2750 ram_addr_t offset; 2751 size_t used_len, start, npages; 2752 MigrationState *s = migrate_get_current(); 2753 2754 /* This function is currently expected to be used during live migration */ 2755 if (!migration_is_setup_or_active(s->state)) { 2756 return; 2757 } 2758 2759 for (; len > 0; len -= used_len, addr += used_len) { 2760 block = qemu_ram_block_from_host(addr, false, &offset); 2761 if (unlikely(!block || offset >= block->used_length)) { 2762 /* 2763 * The implementation might not support RAMBlock resize during 2764 * live migration, but it could happen in theory with future 2765 * updates. So we add a check here to capture that case. 2766 */ 2767 error_report_once("%s unexpected error", __func__); 2768 return; 2769 } 2770 2771 if (len <= block->used_length - offset) { 2772 used_len = len; 2773 } else { 2774 used_len = block->used_length - offset; 2775 } 2776 2777 start = offset >> TARGET_PAGE_BITS; 2778 npages = used_len >> TARGET_PAGE_BITS; 2779 2780 qemu_mutex_lock(&ram_state->bitmap_mutex); 2781 ram_state->migration_dirty_pages -= 2782 bitmap_count_one_with_offset(block->bmap, start, npages); 2783 bitmap_clear(block->bmap, start, npages); 2784 qemu_mutex_unlock(&ram_state->bitmap_mutex); 2785 } 2786 } 2787 2788 /* 2789 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has 2790 * long-running RCU critical section. When rcu-reclaims in the code 2791 * start to become numerous it will be necessary to reduce the 2792 * granularity of these critical sections. 2793 */ 2794 2795 /** 2796 * ram_save_setup: Setup RAM for migration 2797 * 2798 * Returns zero to indicate success and negative for error 2799 * 2800 * @f: QEMUFile where to send the data 2801 * @opaque: RAMState pointer 2802 */ 2803 static int ram_save_setup(QEMUFile *f, void *opaque) 2804 { 2805 RAMState **rsp = opaque; 2806 RAMBlock *block; 2807 2808 if (compress_threads_save_setup()) { 2809 return -1; 2810 } 2811 2812 /* migration has already setup the bitmap, reuse it. */ 2813 if (!migration_in_colo_state()) { 2814 if (ram_init_all(rsp) != 0) { 2815 compress_threads_save_cleanup(); 2816 return -1; 2817 } 2818 } 2819 (*rsp)->f = f; 2820 2821 WITH_RCU_READ_LOCK_GUARD() { 2822 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE); 2823 2824 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2825 qemu_put_byte(f, strlen(block->idstr)); 2826 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 2827 qemu_put_be64(f, block->used_length); 2828 if (migrate_postcopy_ram() && block->page_size != 2829 qemu_host_page_size) { 2830 qemu_put_be64(f, block->page_size); 2831 } 2832 if (migrate_ignore_shared()) { 2833 qemu_put_be64(f, block->mr->addr); 2834 } 2835 } 2836 } 2837 2838 ram_control_before_iterate(f, RAM_CONTROL_SETUP); 2839 ram_control_after_iterate(f, RAM_CONTROL_SETUP); 2840 2841 multifd_send_sync_main(f); 2842 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 2843 qemu_fflush(f); 2844 2845 return 0; 2846 } 2847 2848 /** 2849 * ram_save_iterate: iterative stage for migration 2850 * 2851 * Returns zero to indicate success and negative for error 2852 * 2853 * @f: QEMUFile where to send the data 2854 * @opaque: RAMState pointer 2855 */ 2856 static int ram_save_iterate(QEMUFile *f, void *opaque) 2857 { 2858 RAMState **temp = opaque; 2859 RAMState *rs = *temp; 2860 int ret = 0; 2861 int i; 2862 int64_t t0; 2863 int done = 0; 2864 2865 if (blk_mig_bulk_active()) { 2866 /* Avoid transferring ram during bulk phase of block migration as 2867 * the bulk phase will usually take a long time and transferring 2868 * ram updates during that time is pointless. */ 2869 goto out; 2870 } 2871 2872 WITH_RCU_READ_LOCK_GUARD() { 2873 if (ram_list.version != rs->last_version) { 2874 ram_state_reset(rs); 2875 } 2876 2877 /* Read version before ram_list.blocks */ 2878 smp_rmb(); 2879 2880 ram_control_before_iterate(f, RAM_CONTROL_ROUND); 2881 2882 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2883 i = 0; 2884 while ((ret = qemu_file_rate_limit(f)) == 0 || 2885 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 2886 int pages; 2887 2888 if (qemu_file_get_error(f)) { 2889 break; 2890 } 2891 2892 pages = ram_find_and_save_block(rs, false); 2893 /* no more pages to sent */ 2894 if (pages == 0) { 2895 done = 1; 2896 break; 2897 } 2898 2899 if (pages < 0) { 2900 qemu_file_set_error(f, pages); 2901 break; 2902 } 2903 2904 rs->target_page_count += pages; 2905 2906 /* 2907 * During postcopy, it is necessary to make sure one whole host 2908 * page is sent in one chunk. 2909 */ 2910 if (migrate_postcopy_ram()) { 2911 flush_compressed_data(rs); 2912 } 2913 2914 /* 2915 * we want to check in the 1st loop, just in case it was the 1st 2916 * time and we had to sync the dirty bitmap. 2917 * qemu_clock_get_ns() is a bit expensive, so we only check each 2918 * some iterations 2919 */ 2920 if ((i & 63) == 0) { 2921 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 2922 1000000; 2923 if (t1 > MAX_WAIT) { 2924 trace_ram_save_iterate_big_wait(t1, i); 2925 break; 2926 } 2927 } 2928 i++; 2929 } 2930 } 2931 2932 /* 2933 * Must occur before EOS (or any QEMUFile operation) 2934 * because of RDMA protocol. 2935 */ 2936 ram_control_after_iterate(f, RAM_CONTROL_ROUND); 2937 2938 out: 2939 if (ret >= 0 2940 && migration_is_setup_or_active(migrate_get_current()->state)) { 2941 multifd_send_sync_main(rs->f); 2942 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 2943 qemu_fflush(f); 2944 ram_counters.transferred += 8; 2945 2946 ret = qemu_file_get_error(f); 2947 } 2948 if (ret < 0) { 2949 return ret; 2950 } 2951 2952 return done; 2953 } 2954 2955 /** 2956 * ram_save_complete: function called to send the remaining amount of ram 2957 * 2958 * Returns zero to indicate success or negative on error 2959 * 2960 * Called with iothread lock 2961 * 2962 * @f: QEMUFile where to send the data 2963 * @opaque: RAMState pointer 2964 */ 2965 static int ram_save_complete(QEMUFile *f, void *opaque) 2966 { 2967 RAMState **temp = opaque; 2968 RAMState *rs = *temp; 2969 int ret = 0; 2970 2971 WITH_RCU_READ_LOCK_GUARD() { 2972 if (!migration_in_postcopy()) { 2973 migration_bitmap_sync_precopy(rs); 2974 } 2975 2976 ram_control_before_iterate(f, RAM_CONTROL_FINISH); 2977 2978 /* try transferring iterative blocks of memory */ 2979 2980 /* flush all remaining blocks regardless of rate limiting */ 2981 while (true) { 2982 int pages; 2983 2984 pages = ram_find_and_save_block(rs, !migration_in_colo_state()); 2985 /* no more blocks to sent */ 2986 if (pages == 0) { 2987 break; 2988 } 2989 if (pages < 0) { 2990 ret = pages; 2991 break; 2992 } 2993 } 2994 2995 flush_compressed_data(rs); 2996 ram_control_after_iterate(f, RAM_CONTROL_FINISH); 2997 } 2998 2999 if (ret >= 0) { 3000 multifd_send_sync_main(rs->f); 3001 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3002 qemu_fflush(f); 3003 } 3004 3005 return ret; 3006 } 3007 3008 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size, 3009 uint64_t *res_precopy_only, 3010 uint64_t *res_compatible, 3011 uint64_t *res_postcopy_only) 3012 { 3013 RAMState **temp = opaque; 3014 RAMState *rs = *temp; 3015 uint64_t remaining_size; 3016 3017 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3018 3019 if (!migration_in_postcopy() && 3020 remaining_size < max_size) { 3021 qemu_mutex_lock_iothread(); 3022 WITH_RCU_READ_LOCK_GUARD() { 3023 migration_bitmap_sync_precopy(rs); 3024 } 3025 qemu_mutex_unlock_iothread(); 3026 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3027 } 3028 3029 if (migrate_postcopy_ram()) { 3030 /* We can do postcopy, and all the data is postcopiable */ 3031 *res_compatible += remaining_size; 3032 } else { 3033 *res_precopy_only += remaining_size; 3034 } 3035 } 3036 3037 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 3038 { 3039 unsigned int xh_len; 3040 int xh_flags; 3041 uint8_t *loaded_data; 3042 3043 /* extract RLE header */ 3044 xh_flags = qemu_get_byte(f); 3045 xh_len = qemu_get_be16(f); 3046 3047 if (xh_flags != ENCODING_FLAG_XBZRLE) { 3048 error_report("Failed to load XBZRLE page - wrong compression!"); 3049 return -1; 3050 } 3051 3052 if (xh_len > TARGET_PAGE_SIZE) { 3053 error_report("Failed to load XBZRLE page - len overflow!"); 3054 return -1; 3055 } 3056 loaded_data = XBZRLE.decoded_buf; 3057 /* load data and decode */ 3058 /* it can change loaded_data to point to an internal buffer */ 3059 qemu_get_buffer_in_place(f, &loaded_data, xh_len); 3060 3061 /* decode RLE */ 3062 if (xbzrle_decode_buffer(loaded_data, xh_len, host, 3063 TARGET_PAGE_SIZE) == -1) { 3064 error_report("Failed to load XBZRLE page - decode error!"); 3065 return -1; 3066 } 3067 3068 return 0; 3069 } 3070 3071 /** 3072 * ram_block_from_stream: read a RAMBlock id from the migration stream 3073 * 3074 * Must be called from within a rcu critical section. 3075 * 3076 * Returns a pointer from within the RCU-protected ram_list. 3077 * 3078 * @f: QEMUFile where to read the data from 3079 * @flags: Page flags (mostly to see if it's a continuation of previous block) 3080 */ 3081 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags) 3082 { 3083 static RAMBlock *block; 3084 char id[256]; 3085 uint8_t len; 3086 3087 if (flags & RAM_SAVE_FLAG_CONTINUE) { 3088 if (!block) { 3089 error_report("Ack, bad migration stream!"); 3090 return NULL; 3091 } 3092 return block; 3093 } 3094 3095 len = qemu_get_byte(f); 3096 qemu_get_buffer(f, (uint8_t *)id, len); 3097 id[len] = 0; 3098 3099 block = qemu_ram_block_by_name(id); 3100 if (!block) { 3101 error_report("Can't find block %s", id); 3102 return NULL; 3103 } 3104 3105 if (ramblock_is_ignored(block)) { 3106 error_report("block %s should not be migrated !", id); 3107 return NULL; 3108 } 3109 3110 return block; 3111 } 3112 3113 static inline void *host_from_ram_block_offset(RAMBlock *block, 3114 ram_addr_t offset) 3115 { 3116 if (!offset_in_ramblock(block, offset)) { 3117 return NULL; 3118 } 3119 3120 return block->host + offset; 3121 } 3122 3123 static inline void *colo_cache_from_block_offset(RAMBlock *block, 3124 ram_addr_t offset, bool record_bitmap) 3125 { 3126 if (!offset_in_ramblock(block, offset)) { 3127 return NULL; 3128 } 3129 if (!block->colo_cache) { 3130 error_report("%s: colo_cache is NULL in block :%s", 3131 __func__, block->idstr); 3132 return NULL; 3133 } 3134 3135 /* 3136 * During colo checkpoint, we need bitmap of these migrated pages. 3137 * It help us to decide which pages in ram cache should be flushed 3138 * into VM's RAM later. 3139 */ 3140 if (record_bitmap && 3141 !test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) { 3142 ram_state->migration_dirty_pages++; 3143 } 3144 return block->colo_cache + offset; 3145 } 3146 3147 /** 3148 * ram_handle_compressed: handle the zero page case 3149 * 3150 * If a page (or a whole RDMA chunk) has been 3151 * determined to be zero, then zap it. 3152 * 3153 * @host: host address for the zero page 3154 * @ch: what the page is filled from. We only support zero 3155 * @size: size of the zero page 3156 */ 3157 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) 3158 { 3159 if (ch != 0 || !is_zero_range(host, size)) { 3160 memset(host, ch, size); 3161 } 3162 } 3163 3164 /* return the size after decompression, or negative value on error */ 3165 static int 3166 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len, 3167 const uint8_t *source, size_t source_len) 3168 { 3169 int err; 3170 3171 err = inflateReset(stream); 3172 if (err != Z_OK) { 3173 return -1; 3174 } 3175 3176 stream->avail_in = source_len; 3177 stream->next_in = (uint8_t *)source; 3178 stream->avail_out = dest_len; 3179 stream->next_out = dest; 3180 3181 err = inflate(stream, Z_NO_FLUSH); 3182 if (err != Z_STREAM_END) { 3183 return -1; 3184 } 3185 3186 return stream->total_out; 3187 } 3188 3189 static void *do_data_decompress(void *opaque) 3190 { 3191 DecompressParam *param = opaque; 3192 unsigned long pagesize; 3193 uint8_t *des; 3194 int len, ret; 3195 3196 qemu_mutex_lock(¶m->mutex); 3197 while (!param->quit) { 3198 if (param->des) { 3199 des = param->des; 3200 len = param->len; 3201 param->des = 0; 3202 qemu_mutex_unlock(¶m->mutex); 3203 3204 pagesize = TARGET_PAGE_SIZE; 3205 3206 ret = qemu_uncompress_data(¶m->stream, des, pagesize, 3207 param->compbuf, len); 3208 if (ret < 0 && migrate_get_current()->decompress_error_check) { 3209 error_report("decompress data failed"); 3210 qemu_file_set_error(decomp_file, ret); 3211 } 3212 3213 qemu_mutex_lock(&decomp_done_lock); 3214 param->done = true; 3215 qemu_cond_signal(&decomp_done_cond); 3216 qemu_mutex_unlock(&decomp_done_lock); 3217 3218 qemu_mutex_lock(¶m->mutex); 3219 } else { 3220 qemu_cond_wait(¶m->cond, ¶m->mutex); 3221 } 3222 } 3223 qemu_mutex_unlock(¶m->mutex); 3224 3225 return NULL; 3226 } 3227 3228 static int wait_for_decompress_done(void) 3229 { 3230 int idx, thread_count; 3231 3232 if (!migrate_use_compression()) { 3233 return 0; 3234 } 3235 3236 thread_count = migrate_decompress_threads(); 3237 qemu_mutex_lock(&decomp_done_lock); 3238 for (idx = 0; idx < thread_count; idx++) { 3239 while (!decomp_param[idx].done) { 3240 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 3241 } 3242 } 3243 qemu_mutex_unlock(&decomp_done_lock); 3244 return qemu_file_get_error(decomp_file); 3245 } 3246 3247 static void compress_threads_load_cleanup(void) 3248 { 3249 int i, thread_count; 3250 3251 if (!migrate_use_compression()) { 3252 return; 3253 } 3254 thread_count = migrate_decompress_threads(); 3255 for (i = 0; i < thread_count; i++) { 3256 /* 3257 * we use it as a indicator which shows if the thread is 3258 * properly init'd or not 3259 */ 3260 if (!decomp_param[i].compbuf) { 3261 break; 3262 } 3263 3264 qemu_mutex_lock(&decomp_param[i].mutex); 3265 decomp_param[i].quit = true; 3266 qemu_cond_signal(&decomp_param[i].cond); 3267 qemu_mutex_unlock(&decomp_param[i].mutex); 3268 } 3269 for (i = 0; i < thread_count; i++) { 3270 if (!decomp_param[i].compbuf) { 3271 break; 3272 } 3273 3274 qemu_thread_join(decompress_threads + i); 3275 qemu_mutex_destroy(&decomp_param[i].mutex); 3276 qemu_cond_destroy(&decomp_param[i].cond); 3277 inflateEnd(&decomp_param[i].stream); 3278 g_free(decomp_param[i].compbuf); 3279 decomp_param[i].compbuf = NULL; 3280 } 3281 g_free(decompress_threads); 3282 g_free(decomp_param); 3283 decompress_threads = NULL; 3284 decomp_param = NULL; 3285 decomp_file = NULL; 3286 } 3287 3288 static int compress_threads_load_setup(QEMUFile *f) 3289 { 3290 int i, thread_count; 3291 3292 if (!migrate_use_compression()) { 3293 return 0; 3294 } 3295 3296 thread_count = migrate_decompress_threads(); 3297 decompress_threads = g_new0(QemuThread, thread_count); 3298 decomp_param = g_new0(DecompressParam, thread_count); 3299 qemu_mutex_init(&decomp_done_lock); 3300 qemu_cond_init(&decomp_done_cond); 3301 decomp_file = f; 3302 for (i = 0; i < thread_count; i++) { 3303 if (inflateInit(&decomp_param[i].stream) != Z_OK) { 3304 goto exit; 3305 } 3306 3307 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); 3308 qemu_mutex_init(&decomp_param[i].mutex); 3309 qemu_cond_init(&decomp_param[i].cond); 3310 decomp_param[i].done = true; 3311 decomp_param[i].quit = false; 3312 qemu_thread_create(decompress_threads + i, "decompress", 3313 do_data_decompress, decomp_param + i, 3314 QEMU_THREAD_JOINABLE); 3315 } 3316 return 0; 3317 exit: 3318 compress_threads_load_cleanup(); 3319 return -1; 3320 } 3321 3322 static void decompress_data_with_multi_threads(QEMUFile *f, 3323 void *host, int len) 3324 { 3325 int idx, thread_count; 3326 3327 thread_count = migrate_decompress_threads(); 3328 QEMU_LOCK_GUARD(&decomp_done_lock); 3329 while (true) { 3330 for (idx = 0; idx < thread_count; idx++) { 3331 if (decomp_param[idx].done) { 3332 decomp_param[idx].done = false; 3333 qemu_mutex_lock(&decomp_param[idx].mutex); 3334 qemu_get_buffer(f, decomp_param[idx].compbuf, len); 3335 decomp_param[idx].des = host; 3336 decomp_param[idx].len = len; 3337 qemu_cond_signal(&decomp_param[idx].cond); 3338 qemu_mutex_unlock(&decomp_param[idx].mutex); 3339 break; 3340 } 3341 } 3342 if (idx < thread_count) { 3343 break; 3344 } else { 3345 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 3346 } 3347 } 3348 } 3349 3350 /* 3351 * we must set ram_bulk_stage to false, otherwise in 3352 * migation_bitmap_find_dirty the bitmap will be unused and 3353 * all the pages in ram cache wil be flushed to the ram of 3354 * secondary VM. 3355 */ 3356 static void colo_init_ram_state(void) 3357 { 3358 ram_state_init(&ram_state); 3359 ram_state->ram_bulk_stage = false; 3360 } 3361 3362 /* 3363 * colo cache: this is for secondary VM, we cache the whole 3364 * memory of the secondary VM, it is need to hold the global lock 3365 * to call this helper. 3366 */ 3367 int colo_init_ram_cache(void) 3368 { 3369 RAMBlock *block; 3370 3371 WITH_RCU_READ_LOCK_GUARD() { 3372 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3373 block->colo_cache = qemu_anon_ram_alloc(block->used_length, 3374 NULL, 3375 false); 3376 if (!block->colo_cache) { 3377 error_report("%s: Can't alloc memory for COLO cache of block %s," 3378 "size 0x" RAM_ADDR_FMT, __func__, block->idstr, 3379 block->used_length); 3380 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3381 if (block->colo_cache) { 3382 qemu_anon_ram_free(block->colo_cache, block->used_length); 3383 block->colo_cache = NULL; 3384 } 3385 } 3386 return -errno; 3387 } 3388 } 3389 } 3390 3391 /* 3392 * Record the dirty pages that sent by PVM, we use this dirty bitmap together 3393 * with to decide which page in cache should be flushed into SVM's RAM. Here 3394 * we use the same name 'ram_bitmap' as for migration. 3395 */ 3396 if (ram_bytes_total()) { 3397 RAMBlock *block; 3398 3399 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3400 unsigned long pages = block->max_length >> TARGET_PAGE_BITS; 3401 block->bmap = bitmap_new(pages); 3402 } 3403 } 3404 3405 colo_init_ram_state(); 3406 return 0; 3407 } 3408 3409 /* TODO: duplicated with ram_init_bitmaps */ 3410 void colo_incoming_start_dirty_log(void) 3411 { 3412 RAMBlock *block = NULL; 3413 /* For memory_global_dirty_log_start below. */ 3414 qemu_mutex_lock_iothread(); 3415 qemu_mutex_lock_ramlist(); 3416 3417 memory_global_dirty_log_sync(); 3418 WITH_RCU_READ_LOCK_GUARD() { 3419 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3420 ramblock_sync_dirty_bitmap(ram_state, block); 3421 /* Discard this dirty bitmap record */ 3422 bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS); 3423 } 3424 memory_global_dirty_log_start(); 3425 } 3426 ram_state->migration_dirty_pages = 0; 3427 qemu_mutex_unlock_ramlist(); 3428 qemu_mutex_unlock_iothread(); 3429 } 3430 3431 /* It is need to hold the global lock to call this helper */ 3432 void colo_release_ram_cache(void) 3433 { 3434 RAMBlock *block; 3435 3436 memory_global_dirty_log_stop(); 3437 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3438 g_free(block->bmap); 3439 block->bmap = NULL; 3440 } 3441 3442 WITH_RCU_READ_LOCK_GUARD() { 3443 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3444 if (block->colo_cache) { 3445 qemu_anon_ram_free(block->colo_cache, block->used_length); 3446 block->colo_cache = NULL; 3447 } 3448 } 3449 } 3450 ram_state_cleanup(&ram_state); 3451 } 3452 3453 /** 3454 * ram_load_setup: Setup RAM for migration incoming side 3455 * 3456 * Returns zero to indicate success and negative for error 3457 * 3458 * @f: QEMUFile where to receive the data 3459 * @opaque: RAMState pointer 3460 */ 3461 static int ram_load_setup(QEMUFile *f, void *opaque) 3462 { 3463 if (compress_threads_load_setup(f)) { 3464 return -1; 3465 } 3466 3467 xbzrle_load_setup(); 3468 ramblock_recv_map_init(); 3469 3470 return 0; 3471 } 3472 3473 static int ram_load_cleanup(void *opaque) 3474 { 3475 RAMBlock *rb; 3476 3477 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3478 qemu_ram_block_writeback(rb); 3479 } 3480 3481 xbzrle_load_cleanup(); 3482 compress_threads_load_cleanup(); 3483 3484 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3485 g_free(rb->receivedmap); 3486 rb->receivedmap = NULL; 3487 } 3488 3489 return 0; 3490 } 3491 3492 /** 3493 * ram_postcopy_incoming_init: allocate postcopy data structures 3494 * 3495 * Returns 0 for success and negative if there was one error 3496 * 3497 * @mis: current migration incoming state 3498 * 3499 * Allocate data structures etc needed by incoming migration with 3500 * postcopy-ram. postcopy-ram's similarly names 3501 * postcopy_ram_incoming_init does the work. 3502 */ 3503 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 3504 { 3505 return postcopy_ram_incoming_init(mis); 3506 } 3507 3508 /** 3509 * ram_load_postcopy: load a page in postcopy case 3510 * 3511 * Returns 0 for success or -errno in case of error 3512 * 3513 * Called in postcopy mode by ram_load(). 3514 * rcu_read_lock is taken prior to this being called. 3515 * 3516 * @f: QEMUFile where to send the data 3517 */ 3518 static int ram_load_postcopy(QEMUFile *f) 3519 { 3520 int flags = 0, ret = 0; 3521 bool place_needed = false; 3522 bool matches_target_page_size = false; 3523 MigrationIncomingState *mis = migration_incoming_get_current(); 3524 /* Temporary page that is later 'placed' */ 3525 void *postcopy_host_page = mis->postcopy_tmp_page; 3526 void *this_host = NULL; 3527 bool all_zero = true; 3528 int target_pages = 0; 3529 3530 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 3531 ram_addr_t addr; 3532 void *host = NULL; 3533 void *page_buffer = NULL; 3534 void *place_source = NULL; 3535 RAMBlock *block = NULL; 3536 uint8_t ch; 3537 int len; 3538 3539 addr = qemu_get_be64(f); 3540 3541 /* 3542 * If qemu file error, we should stop here, and then "addr" 3543 * may be invalid 3544 */ 3545 ret = qemu_file_get_error(f); 3546 if (ret) { 3547 break; 3548 } 3549 3550 flags = addr & ~TARGET_PAGE_MASK; 3551 addr &= TARGET_PAGE_MASK; 3552 3553 trace_ram_load_postcopy_loop((uint64_t)addr, flags); 3554 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 3555 RAM_SAVE_FLAG_COMPRESS_PAGE)) { 3556 block = ram_block_from_stream(f, flags); 3557 3558 host = host_from_ram_block_offset(block, addr); 3559 if (!host) { 3560 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 3561 ret = -EINVAL; 3562 break; 3563 } 3564 target_pages++; 3565 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE; 3566 /* 3567 * Postcopy requires that we place whole host pages atomically; 3568 * these may be huge pages for RAMBlocks that are backed by 3569 * hugetlbfs. 3570 * To make it atomic, the data is read into a temporary page 3571 * that's moved into place later. 3572 * The migration protocol uses, possibly smaller, target-pages 3573 * however the source ensures it always sends all the components 3574 * of a host page in one chunk. 3575 */ 3576 page_buffer = postcopy_host_page + 3577 ((uintptr_t)host & (block->page_size - 1)); 3578 if (target_pages == 1) { 3579 this_host = (void *)QEMU_ALIGN_DOWN((uintptr_t)host, 3580 block->page_size); 3581 } else { 3582 /* not the 1st TP within the HP */ 3583 if (QEMU_ALIGN_DOWN((uintptr_t)host, block->page_size) != 3584 (uintptr_t)this_host) { 3585 error_report("Non-same host page %p/%p", 3586 host, this_host); 3587 ret = -EINVAL; 3588 break; 3589 } 3590 } 3591 3592 /* 3593 * If it's the last part of a host page then we place the host 3594 * page 3595 */ 3596 if (target_pages == (block->page_size / TARGET_PAGE_SIZE)) { 3597 place_needed = true; 3598 } 3599 place_source = postcopy_host_page; 3600 } 3601 3602 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 3603 case RAM_SAVE_FLAG_ZERO: 3604 ch = qemu_get_byte(f); 3605 /* 3606 * Can skip to set page_buffer when 3607 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE). 3608 */ 3609 if (ch || !matches_target_page_size) { 3610 memset(page_buffer, ch, TARGET_PAGE_SIZE); 3611 } 3612 if (ch) { 3613 all_zero = false; 3614 } 3615 break; 3616 3617 case RAM_SAVE_FLAG_PAGE: 3618 all_zero = false; 3619 if (!matches_target_page_size) { 3620 /* For huge pages, we always use temporary buffer */ 3621 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 3622 } else { 3623 /* 3624 * For small pages that matches target page size, we 3625 * avoid the qemu_file copy. Instead we directly use 3626 * the buffer of QEMUFile to place the page. Note: we 3627 * cannot do any QEMUFile operation before using that 3628 * buffer to make sure the buffer is valid when 3629 * placing the page. 3630 */ 3631 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 3632 TARGET_PAGE_SIZE); 3633 } 3634 break; 3635 case RAM_SAVE_FLAG_COMPRESS_PAGE: 3636 all_zero = false; 3637 len = qemu_get_be32(f); 3638 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 3639 error_report("Invalid compressed data length: %d", len); 3640 ret = -EINVAL; 3641 break; 3642 } 3643 decompress_data_with_multi_threads(f, page_buffer, len); 3644 break; 3645 3646 case RAM_SAVE_FLAG_EOS: 3647 /* normal exit */ 3648 multifd_recv_sync_main(); 3649 break; 3650 default: 3651 error_report("Unknown combination of migration flags: 0x%x" 3652 " (postcopy mode)", flags); 3653 ret = -EINVAL; 3654 break; 3655 } 3656 3657 /* Got the whole host page, wait for decompress before placing. */ 3658 if (place_needed) { 3659 ret |= wait_for_decompress_done(); 3660 } 3661 3662 /* Detect for any possible file errors */ 3663 if (!ret && qemu_file_get_error(f)) { 3664 ret = qemu_file_get_error(f); 3665 } 3666 3667 if (!ret && place_needed) { 3668 /* This gets called at the last target page in the host page */ 3669 void *place_dest = (void *)QEMU_ALIGN_DOWN((uintptr_t)host, 3670 block->page_size); 3671 3672 if (all_zero) { 3673 ret = postcopy_place_page_zero(mis, place_dest, 3674 block); 3675 } else { 3676 ret = postcopy_place_page(mis, place_dest, 3677 place_source, block); 3678 } 3679 place_needed = false; 3680 target_pages = 0; 3681 /* Assume we have a zero page until we detect something different */ 3682 all_zero = true; 3683 } 3684 } 3685 3686 return ret; 3687 } 3688 3689 static bool postcopy_is_advised(void) 3690 { 3691 PostcopyState ps = postcopy_state_get(); 3692 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END; 3693 } 3694 3695 static bool postcopy_is_running(void) 3696 { 3697 PostcopyState ps = postcopy_state_get(); 3698 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END; 3699 } 3700 3701 /* 3702 * Flush content of RAM cache into SVM's memory. 3703 * Only flush the pages that be dirtied by PVM or SVM or both. 3704 */ 3705 void colo_flush_ram_cache(void) 3706 { 3707 RAMBlock *block = NULL; 3708 void *dst_host; 3709 void *src_host; 3710 unsigned long offset = 0; 3711 3712 memory_global_dirty_log_sync(); 3713 WITH_RCU_READ_LOCK_GUARD() { 3714 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3715 ramblock_sync_dirty_bitmap(ram_state, block); 3716 } 3717 } 3718 3719 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages); 3720 WITH_RCU_READ_LOCK_GUARD() { 3721 block = QLIST_FIRST_RCU(&ram_list.blocks); 3722 3723 while (block) { 3724 offset = migration_bitmap_find_dirty(ram_state, block, offset); 3725 3726 if (((ram_addr_t)offset) << TARGET_PAGE_BITS 3727 >= block->used_length) { 3728 offset = 0; 3729 block = QLIST_NEXT_RCU(block, next); 3730 } else { 3731 migration_bitmap_clear_dirty(ram_state, block, offset); 3732 dst_host = block->host 3733 + (((ram_addr_t)offset) << TARGET_PAGE_BITS); 3734 src_host = block->colo_cache 3735 + (((ram_addr_t)offset) << TARGET_PAGE_BITS); 3736 memcpy(dst_host, src_host, TARGET_PAGE_SIZE); 3737 } 3738 } 3739 } 3740 trace_colo_flush_ram_cache_end(); 3741 } 3742 3743 /** 3744 * ram_load_precopy: load pages in precopy case 3745 * 3746 * Returns 0 for success or -errno in case of error 3747 * 3748 * Called in precopy mode by ram_load(). 3749 * rcu_read_lock is taken prior to this being called. 3750 * 3751 * @f: QEMUFile where to send the data 3752 */ 3753 static int ram_load_precopy(QEMUFile *f) 3754 { 3755 int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0; 3756 /* ADVISE is earlier, it shows the source has the postcopy capability on */ 3757 bool postcopy_advised = postcopy_is_advised(); 3758 if (!migrate_use_compression()) { 3759 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE; 3760 } 3761 3762 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 3763 ram_addr_t addr, total_ram_bytes; 3764 void *host = NULL, *host_bak = NULL; 3765 uint8_t ch; 3766 3767 /* 3768 * Yield periodically to let main loop run, but an iteration of 3769 * the main loop is expensive, so do it each some iterations 3770 */ 3771 if ((i & 32767) == 0 && qemu_in_coroutine()) { 3772 aio_co_schedule(qemu_get_current_aio_context(), 3773 qemu_coroutine_self()); 3774 qemu_coroutine_yield(); 3775 } 3776 i++; 3777 3778 addr = qemu_get_be64(f); 3779 flags = addr & ~TARGET_PAGE_MASK; 3780 addr &= TARGET_PAGE_MASK; 3781 3782 if (flags & invalid_flags) { 3783 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) { 3784 error_report("Received an unexpected compressed page"); 3785 } 3786 3787 ret = -EINVAL; 3788 break; 3789 } 3790 3791 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 3792 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { 3793 RAMBlock *block = ram_block_from_stream(f, flags); 3794 3795 host = host_from_ram_block_offset(block, addr); 3796 /* 3797 * After going into COLO stage, we should not load the page 3798 * into SVM's memory directly, we put them into colo_cache firstly. 3799 * NOTE: We need to keep a copy of SVM's ram in colo_cache. 3800 * Previously, we copied all these memory in preparing stage of COLO 3801 * while we need to stop VM, which is a time-consuming process. 3802 * Here we optimize it by a trick, back-up every page while in 3803 * migration process while COLO is enabled, though it affects the 3804 * speed of the migration, but it obviously reduce the downtime of 3805 * back-up all SVM'S memory in COLO preparing stage. 3806 */ 3807 if (migration_incoming_colo_enabled()) { 3808 if (migration_incoming_in_colo_state()) { 3809 /* In COLO stage, put all pages into cache temporarily */ 3810 host = colo_cache_from_block_offset(block, addr, true); 3811 } else { 3812 /* 3813 * In migration stage but before COLO stage, 3814 * Put all pages into both cache and SVM's memory. 3815 */ 3816 host_bak = colo_cache_from_block_offset(block, addr, false); 3817 } 3818 } 3819 if (!host) { 3820 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 3821 ret = -EINVAL; 3822 break; 3823 } 3824 if (!migration_incoming_in_colo_state()) { 3825 ramblock_recv_bitmap_set(block, host); 3826 } 3827 3828 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); 3829 } 3830 3831 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 3832 case RAM_SAVE_FLAG_MEM_SIZE: 3833 /* Synchronize RAM block list */ 3834 total_ram_bytes = addr; 3835 while (!ret && total_ram_bytes) { 3836 RAMBlock *block; 3837 char id[256]; 3838 ram_addr_t length; 3839 3840 len = qemu_get_byte(f); 3841 qemu_get_buffer(f, (uint8_t *)id, len); 3842 id[len] = 0; 3843 length = qemu_get_be64(f); 3844 3845 block = qemu_ram_block_by_name(id); 3846 if (block && !qemu_ram_is_migratable(block)) { 3847 error_report("block %s should not be migrated !", id); 3848 ret = -EINVAL; 3849 } else if (block) { 3850 if (length != block->used_length) { 3851 Error *local_err = NULL; 3852 3853 ret = qemu_ram_resize(block, length, 3854 &local_err); 3855 if (local_err) { 3856 error_report_err(local_err); 3857 } 3858 } 3859 /* For postcopy we need to check hugepage sizes match */ 3860 if (postcopy_advised && migrate_postcopy_ram() && 3861 block->page_size != qemu_host_page_size) { 3862 uint64_t remote_page_size = qemu_get_be64(f); 3863 if (remote_page_size != block->page_size) { 3864 error_report("Mismatched RAM page size %s " 3865 "(local) %zd != %" PRId64, 3866 id, block->page_size, 3867 remote_page_size); 3868 ret = -EINVAL; 3869 } 3870 } 3871 if (migrate_ignore_shared()) { 3872 hwaddr addr = qemu_get_be64(f); 3873 if (ramblock_is_ignored(block) && 3874 block->mr->addr != addr) { 3875 error_report("Mismatched GPAs for block %s " 3876 "%" PRId64 "!= %" PRId64, 3877 id, (uint64_t)addr, 3878 (uint64_t)block->mr->addr); 3879 ret = -EINVAL; 3880 } 3881 } 3882 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG, 3883 block->idstr); 3884 } else { 3885 error_report("Unknown ramblock \"%s\", cannot " 3886 "accept migration", id); 3887 ret = -EINVAL; 3888 } 3889 3890 total_ram_bytes -= length; 3891 } 3892 break; 3893 3894 case RAM_SAVE_FLAG_ZERO: 3895 ch = qemu_get_byte(f); 3896 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); 3897 break; 3898 3899 case RAM_SAVE_FLAG_PAGE: 3900 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 3901 break; 3902 3903 case RAM_SAVE_FLAG_COMPRESS_PAGE: 3904 len = qemu_get_be32(f); 3905 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 3906 error_report("Invalid compressed data length: %d", len); 3907 ret = -EINVAL; 3908 break; 3909 } 3910 decompress_data_with_multi_threads(f, host, len); 3911 break; 3912 3913 case RAM_SAVE_FLAG_XBZRLE: 3914 if (load_xbzrle(f, addr, host) < 0) { 3915 error_report("Failed to decompress XBZRLE page at " 3916 RAM_ADDR_FMT, addr); 3917 ret = -EINVAL; 3918 break; 3919 } 3920 break; 3921 case RAM_SAVE_FLAG_EOS: 3922 /* normal exit */ 3923 multifd_recv_sync_main(); 3924 break; 3925 default: 3926 if (flags & RAM_SAVE_FLAG_HOOK) { 3927 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL); 3928 } else { 3929 error_report("Unknown combination of migration flags: 0x%x", 3930 flags); 3931 ret = -EINVAL; 3932 } 3933 } 3934 if (!ret) { 3935 ret = qemu_file_get_error(f); 3936 } 3937 if (!ret && host_bak) { 3938 memcpy(host_bak, host, TARGET_PAGE_SIZE); 3939 } 3940 } 3941 3942 ret |= wait_for_decompress_done(); 3943 return ret; 3944 } 3945 3946 static int ram_load(QEMUFile *f, void *opaque, int version_id) 3947 { 3948 int ret = 0; 3949 static uint64_t seq_iter; 3950 /* 3951 * If system is running in postcopy mode, page inserts to host memory must 3952 * be atomic 3953 */ 3954 bool postcopy_running = postcopy_is_running(); 3955 3956 seq_iter++; 3957 3958 if (version_id != 4) { 3959 return -EINVAL; 3960 } 3961 3962 /* 3963 * This RCU critical section can be very long running. 3964 * When RCU reclaims in the code start to become numerous, 3965 * it will be necessary to reduce the granularity of this 3966 * critical section. 3967 */ 3968 WITH_RCU_READ_LOCK_GUARD() { 3969 if (postcopy_running) { 3970 ret = ram_load_postcopy(f); 3971 } else { 3972 ret = ram_load_precopy(f); 3973 } 3974 } 3975 trace_ram_load_complete(ret, seq_iter); 3976 3977 return ret; 3978 } 3979 3980 static bool ram_has_postcopy(void *opaque) 3981 { 3982 RAMBlock *rb; 3983 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3984 if (ramblock_is_pmem(rb)) { 3985 info_report("Block: %s, host: %p is a nvdimm memory, postcopy" 3986 "is not supported now!", rb->idstr, rb->host); 3987 return false; 3988 } 3989 } 3990 3991 return migrate_postcopy_ram(); 3992 } 3993 3994 /* Sync all the dirty bitmap with destination VM. */ 3995 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs) 3996 { 3997 RAMBlock *block; 3998 QEMUFile *file = s->to_dst_file; 3999 int ramblock_count = 0; 4000 4001 trace_ram_dirty_bitmap_sync_start(); 4002 4003 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4004 qemu_savevm_send_recv_bitmap(file, block->idstr); 4005 trace_ram_dirty_bitmap_request(block->idstr); 4006 ramblock_count++; 4007 } 4008 4009 trace_ram_dirty_bitmap_sync_wait(); 4010 4011 /* Wait until all the ramblocks' dirty bitmap synced */ 4012 while (ramblock_count--) { 4013 qemu_sem_wait(&s->rp_state.rp_sem); 4014 } 4015 4016 trace_ram_dirty_bitmap_sync_complete(); 4017 4018 return 0; 4019 } 4020 4021 static void ram_dirty_bitmap_reload_notify(MigrationState *s) 4022 { 4023 qemu_sem_post(&s->rp_state.rp_sem); 4024 } 4025 4026 /* 4027 * Read the received bitmap, revert it as the initial dirty bitmap. 4028 * This is only used when the postcopy migration is paused but wants 4029 * to resume from a middle point. 4030 */ 4031 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block) 4032 { 4033 int ret = -EINVAL; 4034 QEMUFile *file = s->rp_state.from_dst_file; 4035 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS; 4036 uint64_t local_size = DIV_ROUND_UP(nbits, 8); 4037 uint64_t size, end_mark; 4038 4039 trace_ram_dirty_bitmap_reload_begin(block->idstr); 4040 4041 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) { 4042 error_report("%s: incorrect state %s", __func__, 4043 MigrationStatus_str(s->state)); 4044 return -EINVAL; 4045 } 4046 4047 /* 4048 * Note: see comments in ramblock_recv_bitmap_send() on why we 4049 * need the endianness conversion, and the paddings. 4050 */ 4051 local_size = ROUND_UP(local_size, 8); 4052 4053 /* Add paddings */ 4054 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 4055 4056 size = qemu_get_be64(file); 4057 4058 /* The size of the bitmap should match with our ramblock */ 4059 if (size != local_size) { 4060 error_report("%s: ramblock '%s' bitmap size mismatch " 4061 "(0x%"PRIx64" != 0x%"PRIx64")", __func__, 4062 block->idstr, size, local_size); 4063 ret = -EINVAL; 4064 goto out; 4065 } 4066 4067 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size); 4068 end_mark = qemu_get_be64(file); 4069 4070 ret = qemu_file_get_error(file); 4071 if (ret || size != local_size) { 4072 error_report("%s: read bitmap failed for ramblock '%s': %d" 4073 " (size 0x%"PRIx64", got: 0x%"PRIx64")", 4074 __func__, block->idstr, ret, local_size, size); 4075 ret = -EIO; 4076 goto out; 4077 } 4078 4079 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) { 4080 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIx64, 4081 __func__, block->idstr, end_mark); 4082 ret = -EINVAL; 4083 goto out; 4084 } 4085 4086 /* 4087 * Endianness conversion. We are during postcopy (though paused). 4088 * The dirty bitmap won't change. We can directly modify it. 4089 */ 4090 bitmap_from_le(block->bmap, le_bitmap, nbits); 4091 4092 /* 4093 * What we received is "received bitmap". Revert it as the initial 4094 * dirty bitmap for this ramblock. 4095 */ 4096 bitmap_complement(block->bmap, block->bmap, nbits); 4097 4098 trace_ram_dirty_bitmap_reload_complete(block->idstr); 4099 4100 /* 4101 * We succeeded to sync bitmap for current ramblock. If this is 4102 * the last one to sync, we need to notify the main send thread. 4103 */ 4104 ram_dirty_bitmap_reload_notify(s); 4105 4106 ret = 0; 4107 out: 4108 g_free(le_bitmap); 4109 return ret; 4110 } 4111 4112 static int ram_resume_prepare(MigrationState *s, void *opaque) 4113 { 4114 RAMState *rs = *(RAMState **)opaque; 4115 int ret; 4116 4117 ret = ram_dirty_bitmap_sync_all(s, rs); 4118 if (ret) { 4119 return ret; 4120 } 4121 4122 ram_state_resume_prepare(rs, s->to_dst_file); 4123 4124 return 0; 4125 } 4126 4127 static SaveVMHandlers savevm_ram_handlers = { 4128 .save_setup = ram_save_setup, 4129 .save_live_iterate = ram_save_iterate, 4130 .save_live_complete_postcopy = ram_save_complete, 4131 .save_live_complete_precopy = ram_save_complete, 4132 .has_postcopy = ram_has_postcopy, 4133 .save_live_pending = ram_save_pending, 4134 .load_state = ram_load, 4135 .save_cleanup = ram_save_cleanup, 4136 .load_setup = ram_load_setup, 4137 .load_cleanup = ram_load_cleanup, 4138 .resume_prepare = ram_resume_prepare, 4139 }; 4140 4141 void ram_mig_init(void) 4142 { 4143 qemu_mutex_init(&XBZRLE.lock); 4144 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state); 4145 } 4146