1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "cpu.h" 31 #include <zlib.h> 32 #include "qemu/cutils.h" 33 #include "qemu/bitops.h" 34 #include "qemu/bitmap.h" 35 #include "qemu/main-loop.h" 36 #include "qemu/pmem.h" 37 #include "xbzrle.h" 38 #include "ram.h" 39 #include "migration.h" 40 #include "socket.h" 41 #include "migration/register.h" 42 #include "migration/misc.h" 43 #include "qemu-file.h" 44 #include "postcopy-ram.h" 45 #include "page_cache.h" 46 #include "qemu/error-report.h" 47 #include "qapi/error.h" 48 #include "qapi/qapi-events-migration.h" 49 #include "qapi/qmp/qerror.h" 50 #include "trace.h" 51 #include "exec/ram_addr.h" 52 #include "exec/target_page.h" 53 #include "qemu/rcu_queue.h" 54 #include "migration/colo.h" 55 #include "block.h" 56 #include "sysemu/sysemu.h" 57 #include "qemu/uuid.h" 58 #include "savevm.h" 59 #include "qemu/iov.h" 60 61 /***********************************************************/ 62 /* ram save/restore */ 63 64 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it 65 * worked for pages that where filled with the same char. We switched 66 * it to only search for the zero value. And to avoid confusion with 67 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it. 68 */ 69 70 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ 71 #define RAM_SAVE_FLAG_ZERO 0x02 72 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 73 #define RAM_SAVE_FLAG_PAGE 0x08 74 #define RAM_SAVE_FLAG_EOS 0x10 75 #define RAM_SAVE_FLAG_CONTINUE 0x20 76 #define RAM_SAVE_FLAG_XBZRLE 0x40 77 /* 0x80 is reserved in migration.h start with 0x100 next */ 78 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 79 80 static inline bool is_zero_range(uint8_t *p, uint64_t size) 81 { 82 return buffer_is_zero(p, size); 83 } 84 85 XBZRLECacheStats xbzrle_counters; 86 87 /* struct contains XBZRLE cache and a static page 88 used by the compression */ 89 static struct { 90 /* buffer used for XBZRLE encoding */ 91 uint8_t *encoded_buf; 92 /* buffer for storing page content */ 93 uint8_t *current_buf; 94 /* Cache for XBZRLE, Protected by lock. */ 95 PageCache *cache; 96 QemuMutex lock; 97 /* it will store a page full of zeros */ 98 uint8_t *zero_target_page; 99 /* buffer used for XBZRLE decoding */ 100 uint8_t *decoded_buf; 101 } XBZRLE; 102 103 static void XBZRLE_cache_lock(void) 104 { 105 if (migrate_use_xbzrle()) 106 qemu_mutex_lock(&XBZRLE.lock); 107 } 108 109 static void XBZRLE_cache_unlock(void) 110 { 111 if (migrate_use_xbzrle()) 112 qemu_mutex_unlock(&XBZRLE.lock); 113 } 114 115 /** 116 * xbzrle_cache_resize: resize the xbzrle cache 117 * 118 * This function is called from qmp_migrate_set_cache_size in main 119 * thread, possibly while a migration is in progress. A running 120 * migration may be using the cache and might finish during this call, 121 * hence changes to the cache are protected by XBZRLE.lock(). 122 * 123 * Returns 0 for success or -1 for error 124 * 125 * @new_size: new cache size 126 * @errp: set *errp if the check failed, with reason 127 */ 128 int xbzrle_cache_resize(int64_t new_size, Error **errp) 129 { 130 PageCache *new_cache; 131 int64_t ret = 0; 132 133 /* Check for truncation */ 134 if (new_size != (size_t)new_size) { 135 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", 136 "exceeding address space"); 137 return -1; 138 } 139 140 if (new_size == migrate_xbzrle_cache_size()) { 141 /* nothing to do */ 142 return 0; 143 } 144 145 XBZRLE_cache_lock(); 146 147 if (XBZRLE.cache != NULL) { 148 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp); 149 if (!new_cache) { 150 ret = -1; 151 goto out; 152 } 153 154 cache_fini(XBZRLE.cache); 155 XBZRLE.cache = new_cache; 156 } 157 out: 158 XBZRLE_cache_unlock(); 159 return ret; 160 } 161 162 static bool ramblock_is_ignored(RAMBlock *block) 163 { 164 return !qemu_ram_is_migratable(block) || 165 (migrate_ignore_shared() && qemu_ram_is_shared(block)); 166 } 167 168 /* Should be holding either ram_list.mutex, or the RCU lock. */ 169 #define RAMBLOCK_FOREACH_NOT_IGNORED(block) \ 170 INTERNAL_RAMBLOCK_FOREACH(block) \ 171 if (ramblock_is_ignored(block)) {} else 172 173 #define RAMBLOCK_FOREACH_MIGRATABLE(block) \ 174 INTERNAL_RAMBLOCK_FOREACH(block) \ 175 if (!qemu_ram_is_migratable(block)) {} else 176 177 #undef RAMBLOCK_FOREACH 178 179 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque) 180 { 181 RAMBlock *block; 182 int ret = 0; 183 184 rcu_read_lock(); 185 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 186 ret = func(block, opaque); 187 if (ret) { 188 break; 189 } 190 } 191 rcu_read_unlock(); 192 return ret; 193 } 194 195 static void ramblock_recv_map_init(void) 196 { 197 RAMBlock *rb; 198 199 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 200 assert(!rb->receivedmap); 201 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits()); 202 } 203 } 204 205 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr) 206 { 207 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb), 208 rb->receivedmap); 209 } 210 211 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset) 212 { 213 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); 214 } 215 216 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr) 217 { 218 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap); 219 } 220 221 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr, 222 size_t nr) 223 { 224 bitmap_set_atomic(rb->receivedmap, 225 ramblock_recv_bitmap_offset(host_addr, rb), 226 nr); 227 } 228 229 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL) 230 231 /* 232 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes). 233 * 234 * Returns >0 if success with sent bytes, or <0 if error. 235 */ 236 int64_t ramblock_recv_bitmap_send(QEMUFile *file, 237 const char *block_name) 238 { 239 RAMBlock *block = qemu_ram_block_by_name(block_name); 240 unsigned long *le_bitmap, nbits; 241 uint64_t size; 242 243 if (!block) { 244 error_report("%s: invalid block name: %s", __func__, block_name); 245 return -1; 246 } 247 248 nbits = block->used_length >> TARGET_PAGE_BITS; 249 250 /* 251 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit 252 * machines we may need 4 more bytes for padding (see below 253 * comment). So extend it a bit before hand. 254 */ 255 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 256 257 /* 258 * Always use little endian when sending the bitmap. This is 259 * required that when source and destination VMs are not using the 260 * same endianess. (Note: big endian won't work.) 261 */ 262 bitmap_to_le(le_bitmap, block->receivedmap, nbits); 263 264 /* Size of the bitmap, in bytes */ 265 size = DIV_ROUND_UP(nbits, 8); 266 267 /* 268 * size is always aligned to 8 bytes for 64bit machines, but it 269 * may not be true for 32bit machines. We need this padding to 270 * make sure the migration can survive even between 32bit and 271 * 64bit machines. 272 */ 273 size = ROUND_UP(size, 8); 274 275 qemu_put_be64(file, size); 276 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size); 277 /* 278 * Mark as an end, in case the middle part is screwed up due to 279 * some "misterious" reason. 280 */ 281 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING); 282 qemu_fflush(file); 283 284 g_free(le_bitmap); 285 286 if (qemu_file_get_error(file)) { 287 return qemu_file_get_error(file); 288 } 289 290 return size + sizeof(size); 291 } 292 293 /* 294 * An outstanding page request, on the source, having been received 295 * and queued 296 */ 297 struct RAMSrcPageRequest { 298 RAMBlock *rb; 299 hwaddr offset; 300 hwaddr len; 301 302 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; 303 }; 304 305 /* State of RAM for migration */ 306 struct RAMState { 307 /* QEMUFile used for this migration */ 308 QEMUFile *f; 309 /* Last block that we have visited searching for dirty pages */ 310 RAMBlock *last_seen_block; 311 /* Last block from where we have sent data */ 312 RAMBlock *last_sent_block; 313 /* Last dirty target page we have sent */ 314 ram_addr_t last_page; 315 /* last ram version we have seen */ 316 uint32_t last_version; 317 /* We are in the first round */ 318 bool ram_bulk_stage; 319 /* The free page optimization is enabled */ 320 bool fpo_enabled; 321 /* How many times we have dirty too many pages */ 322 int dirty_rate_high_cnt; 323 /* these variables are used for bitmap sync */ 324 /* last time we did a full bitmap_sync */ 325 int64_t time_last_bitmap_sync; 326 /* bytes transferred at start_time */ 327 uint64_t bytes_xfer_prev; 328 /* number of dirty pages since start_time */ 329 uint64_t num_dirty_pages_period; 330 /* xbzrle misses since the beginning of the period */ 331 uint64_t xbzrle_cache_miss_prev; 332 333 /* compression statistics since the beginning of the period */ 334 /* amount of count that no free thread to compress data */ 335 uint64_t compress_thread_busy_prev; 336 /* amount bytes after compression */ 337 uint64_t compressed_size_prev; 338 /* amount of compressed pages */ 339 uint64_t compress_pages_prev; 340 341 /* total handled target pages at the beginning of period */ 342 uint64_t target_page_count_prev; 343 /* total handled target pages since start */ 344 uint64_t target_page_count; 345 /* number of dirty bits in the bitmap */ 346 uint64_t migration_dirty_pages; 347 /* Protects modification of the bitmap and migration dirty pages */ 348 QemuMutex bitmap_mutex; 349 /* The RAMBlock used in the last src_page_requests */ 350 RAMBlock *last_req_rb; 351 /* Queue of outstanding page requests from the destination */ 352 QemuMutex src_page_req_mutex; 353 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests; 354 }; 355 typedef struct RAMState RAMState; 356 357 static RAMState *ram_state; 358 359 static NotifierWithReturnList precopy_notifier_list; 360 361 void precopy_infrastructure_init(void) 362 { 363 notifier_with_return_list_init(&precopy_notifier_list); 364 } 365 366 void precopy_add_notifier(NotifierWithReturn *n) 367 { 368 notifier_with_return_list_add(&precopy_notifier_list, n); 369 } 370 371 void precopy_remove_notifier(NotifierWithReturn *n) 372 { 373 notifier_with_return_remove(n); 374 } 375 376 int precopy_notify(PrecopyNotifyReason reason, Error **errp) 377 { 378 PrecopyNotifyData pnd; 379 pnd.reason = reason; 380 pnd.errp = errp; 381 382 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd); 383 } 384 385 void precopy_enable_free_page_optimization(void) 386 { 387 if (!ram_state) { 388 return; 389 } 390 391 ram_state->fpo_enabled = true; 392 } 393 394 uint64_t ram_bytes_remaining(void) 395 { 396 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) : 397 0; 398 } 399 400 MigrationStats ram_counters; 401 402 /* used by the search for pages to send */ 403 struct PageSearchStatus { 404 /* Current block being searched */ 405 RAMBlock *block; 406 /* Current page to search from */ 407 unsigned long page; 408 /* Set once we wrap around */ 409 bool complete_round; 410 }; 411 typedef struct PageSearchStatus PageSearchStatus; 412 413 CompressionStats compression_counters; 414 415 struct CompressParam { 416 bool done; 417 bool quit; 418 bool zero_page; 419 QEMUFile *file; 420 QemuMutex mutex; 421 QemuCond cond; 422 RAMBlock *block; 423 ram_addr_t offset; 424 425 /* internally used fields */ 426 z_stream stream; 427 uint8_t *originbuf; 428 }; 429 typedef struct CompressParam CompressParam; 430 431 struct DecompressParam { 432 bool done; 433 bool quit; 434 QemuMutex mutex; 435 QemuCond cond; 436 void *des; 437 uint8_t *compbuf; 438 int len; 439 z_stream stream; 440 }; 441 typedef struct DecompressParam DecompressParam; 442 443 static CompressParam *comp_param; 444 static QemuThread *compress_threads; 445 /* comp_done_cond is used to wake up the migration thread when 446 * one of the compression threads has finished the compression. 447 * comp_done_lock is used to co-work with comp_done_cond. 448 */ 449 static QemuMutex comp_done_lock; 450 static QemuCond comp_done_cond; 451 /* The empty QEMUFileOps will be used by file in CompressParam */ 452 static const QEMUFileOps empty_ops = { }; 453 454 static QEMUFile *decomp_file; 455 static DecompressParam *decomp_param; 456 static QemuThread *decompress_threads; 457 static QemuMutex decomp_done_lock; 458 static QemuCond decomp_done_cond; 459 460 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, 461 ram_addr_t offset, uint8_t *source_buf); 462 463 static void *do_data_compress(void *opaque) 464 { 465 CompressParam *param = opaque; 466 RAMBlock *block; 467 ram_addr_t offset; 468 bool zero_page; 469 470 qemu_mutex_lock(¶m->mutex); 471 while (!param->quit) { 472 if (param->block) { 473 block = param->block; 474 offset = param->offset; 475 param->block = NULL; 476 qemu_mutex_unlock(¶m->mutex); 477 478 zero_page = do_compress_ram_page(param->file, ¶m->stream, 479 block, offset, param->originbuf); 480 481 qemu_mutex_lock(&comp_done_lock); 482 param->done = true; 483 param->zero_page = zero_page; 484 qemu_cond_signal(&comp_done_cond); 485 qemu_mutex_unlock(&comp_done_lock); 486 487 qemu_mutex_lock(¶m->mutex); 488 } else { 489 qemu_cond_wait(¶m->cond, ¶m->mutex); 490 } 491 } 492 qemu_mutex_unlock(¶m->mutex); 493 494 return NULL; 495 } 496 497 static void compress_threads_save_cleanup(void) 498 { 499 int i, thread_count; 500 501 if (!migrate_use_compression() || !comp_param) { 502 return; 503 } 504 505 thread_count = migrate_compress_threads(); 506 for (i = 0; i < thread_count; i++) { 507 /* 508 * we use it as a indicator which shows if the thread is 509 * properly init'd or not 510 */ 511 if (!comp_param[i].file) { 512 break; 513 } 514 515 qemu_mutex_lock(&comp_param[i].mutex); 516 comp_param[i].quit = true; 517 qemu_cond_signal(&comp_param[i].cond); 518 qemu_mutex_unlock(&comp_param[i].mutex); 519 520 qemu_thread_join(compress_threads + i); 521 qemu_mutex_destroy(&comp_param[i].mutex); 522 qemu_cond_destroy(&comp_param[i].cond); 523 deflateEnd(&comp_param[i].stream); 524 g_free(comp_param[i].originbuf); 525 qemu_fclose(comp_param[i].file); 526 comp_param[i].file = NULL; 527 } 528 qemu_mutex_destroy(&comp_done_lock); 529 qemu_cond_destroy(&comp_done_cond); 530 g_free(compress_threads); 531 g_free(comp_param); 532 compress_threads = NULL; 533 comp_param = NULL; 534 } 535 536 static int compress_threads_save_setup(void) 537 { 538 int i, thread_count; 539 540 if (!migrate_use_compression()) { 541 return 0; 542 } 543 thread_count = migrate_compress_threads(); 544 compress_threads = g_new0(QemuThread, thread_count); 545 comp_param = g_new0(CompressParam, thread_count); 546 qemu_cond_init(&comp_done_cond); 547 qemu_mutex_init(&comp_done_lock); 548 for (i = 0; i < thread_count; i++) { 549 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE); 550 if (!comp_param[i].originbuf) { 551 goto exit; 552 } 553 554 if (deflateInit(&comp_param[i].stream, 555 migrate_compress_level()) != Z_OK) { 556 g_free(comp_param[i].originbuf); 557 goto exit; 558 } 559 560 /* comp_param[i].file is just used as a dummy buffer to save data, 561 * set its ops to empty. 562 */ 563 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops); 564 comp_param[i].done = true; 565 comp_param[i].quit = false; 566 qemu_mutex_init(&comp_param[i].mutex); 567 qemu_cond_init(&comp_param[i].cond); 568 qemu_thread_create(compress_threads + i, "compress", 569 do_data_compress, comp_param + i, 570 QEMU_THREAD_JOINABLE); 571 } 572 return 0; 573 574 exit: 575 compress_threads_save_cleanup(); 576 return -1; 577 } 578 579 /* Multiple fd's */ 580 581 #define MULTIFD_MAGIC 0x11223344U 582 #define MULTIFD_VERSION 1 583 584 #define MULTIFD_FLAG_SYNC (1 << 0) 585 586 /* This value needs to be a multiple of qemu_target_page_size() */ 587 #define MULTIFD_PACKET_SIZE (512 * 1024) 588 589 typedef struct { 590 uint32_t magic; 591 uint32_t version; 592 unsigned char uuid[16]; /* QemuUUID */ 593 uint8_t id; 594 uint8_t unused1[7]; /* Reserved for future use */ 595 uint64_t unused2[4]; /* Reserved for future use */ 596 } __attribute__((packed)) MultiFDInit_t; 597 598 typedef struct { 599 uint32_t magic; 600 uint32_t version; 601 uint32_t flags; 602 /* maximum number of allocated pages */ 603 uint32_t pages_alloc; 604 uint32_t pages_used; 605 /* size of the next packet that contains pages */ 606 uint32_t next_packet_size; 607 uint64_t packet_num; 608 uint64_t unused[4]; /* Reserved for future use */ 609 char ramblock[256]; 610 uint64_t offset[]; 611 } __attribute__((packed)) MultiFDPacket_t; 612 613 typedef struct { 614 /* number of used pages */ 615 uint32_t used; 616 /* number of allocated pages */ 617 uint32_t allocated; 618 /* global number of generated multifd packets */ 619 uint64_t packet_num; 620 /* offset of each page */ 621 ram_addr_t *offset; 622 /* pointer to each page */ 623 struct iovec *iov; 624 RAMBlock *block; 625 } MultiFDPages_t; 626 627 typedef struct { 628 /* this fields are not changed once the thread is created */ 629 /* channel number */ 630 uint8_t id; 631 /* channel thread name */ 632 char *name; 633 /* channel thread id */ 634 QemuThread thread; 635 /* communication channel */ 636 QIOChannel *c; 637 /* sem where to wait for more work */ 638 QemuSemaphore sem; 639 /* this mutex protects the following parameters */ 640 QemuMutex mutex; 641 /* is this channel thread running */ 642 bool running; 643 /* should this thread finish */ 644 bool quit; 645 /* thread has work to do */ 646 int pending_job; 647 /* array of pages to sent */ 648 MultiFDPages_t *pages; 649 /* packet allocated len */ 650 uint32_t packet_len; 651 /* pointer to the packet */ 652 MultiFDPacket_t *packet; 653 /* multifd flags for each packet */ 654 uint32_t flags; 655 /* size of the next packet that contains pages */ 656 uint32_t next_packet_size; 657 /* global number of generated multifd packets */ 658 uint64_t packet_num; 659 /* thread local variables */ 660 /* packets sent through this channel */ 661 uint64_t num_packets; 662 /* pages sent through this channel */ 663 uint64_t num_pages; 664 /* syncs main thread and channels */ 665 QemuSemaphore sem_sync; 666 } MultiFDSendParams; 667 668 typedef struct { 669 /* this fields are not changed once the thread is created */ 670 /* channel number */ 671 uint8_t id; 672 /* channel thread name */ 673 char *name; 674 /* channel thread id */ 675 QemuThread thread; 676 /* communication channel */ 677 QIOChannel *c; 678 /* this mutex protects the following parameters */ 679 QemuMutex mutex; 680 /* is this channel thread running */ 681 bool running; 682 /* should this thread finish */ 683 bool quit; 684 /* array of pages to receive */ 685 MultiFDPages_t *pages; 686 /* packet allocated len */ 687 uint32_t packet_len; 688 /* pointer to the packet */ 689 MultiFDPacket_t *packet; 690 /* multifd flags for each packet */ 691 uint32_t flags; 692 /* global number of generated multifd packets */ 693 uint64_t packet_num; 694 /* thread local variables */ 695 /* size of the next packet that contains pages */ 696 uint32_t next_packet_size; 697 /* packets sent through this channel */ 698 uint64_t num_packets; 699 /* pages sent through this channel */ 700 uint64_t num_pages; 701 /* syncs main thread and channels */ 702 QemuSemaphore sem_sync; 703 } MultiFDRecvParams; 704 705 static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp) 706 { 707 MultiFDInit_t msg; 708 int ret; 709 710 msg.magic = cpu_to_be32(MULTIFD_MAGIC); 711 msg.version = cpu_to_be32(MULTIFD_VERSION); 712 msg.id = p->id; 713 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid)); 714 715 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp); 716 if (ret != 0) { 717 return -1; 718 } 719 return 0; 720 } 721 722 static int multifd_recv_initial_packet(QIOChannel *c, Error **errp) 723 { 724 MultiFDInit_t msg; 725 int ret; 726 727 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp); 728 if (ret != 0) { 729 return -1; 730 } 731 732 msg.magic = be32_to_cpu(msg.magic); 733 msg.version = be32_to_cpu(msg.version); 734 735 if (msg.magic != MULTIFD_MAGIC) { 736 error_setg(errp, "multifd: received packet magic %x " 737 "expected %x", msg.magic, MULTIFD_MAGIC); 738 return -1; 739 } 740 741 if (msg.version != MULTIFD_VERSION) { 742 error_setg(errp, "multifd: received packet version %d " 743 "expected %d", msg.version, MULTIFD_VERSION); 744 return -1; 745 } 746 747 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) { 748 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid); 749 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid); 750 751 error_setg(errp, "multifd: received uuid '%s' and expected " 752 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id); 753 g_free(uuid); 754 g_free(msg_uuid); 755 return -1; 756 } 757 758 if (msg.id > migrate_multifd_channels()) { 759 error_setg(errp, "multifd: received channel version %d " 760 "expected %d", msg.version, MULTIFD_VERSION); 761 return -1; 762 } 763 764 return msg.id; 765 } 766 767 static MultiFDPages_t *multifd_pages_init(size_t size) 768 { 769 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1); 770 771 pages->allocated = size; 772 pages->iov = g_new0(struct iovec, size); 773 pages->offset = g_new0(ram_addr_t, size); 774 775 return pages; 776 } 777 778 static void multifd_pages_clear(MultiFDPages_t *pages) 779 { 780 pages->used = 0; 781 pages->allocated = 0; 782 pages->packet_num = 0; 783 pages->block = NULL; 784 g_free(pages->iov); 785 pages->iov = NULL; 786 g_free(pages->offset); 787 pages->offset = NULL; 788 g_free(pages); 789 } 790 791 static void multifd_send_fill_packet(MultiFDSendParams *p) 792 { 793 MultiFDPacket_t *packet = p->packet; 794 uint32_t page_max = MULTIFD_PACKET_SIZE / qemu_target_page_size(); 795 int i; 796 797 packet->magic = cpu_to_be32(MULTIFD_MAGIC); 798 packet->version = cpu_to_be32(MULTIFD_VERSION); 799 packet->flags = cpu_to_be32(p->flags); 800 packet->pages_alloc = cpu_to_be32(page_max); 801 packet->pages_used = cpu_to_be32(p->pages->used); 802 packet->next_packet_size = cpu_to_be32(p->next_packet_size); 803 packet->packet_num = cpu_to_be64(p->packet_num); 804 805 if (p->pages->block) { 806 strncpy(packet->ramblock, p->pages->block->idstr, 256); 807 } 808 809 for (i = 0; i < p->pages->used; i++) { 810 packet->offset[i] = cpu_to_be64(p->pages->offset[i]); 811 } 812 } 813 814 static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp) 815 { 816 MultiFDPacket_t *packet = p->packet; 817 uint32_t pages_max = MULTIFD_PACKET_SIZE / qemu_target_page_size(); 818 RAMBlock *block; 819 int i; 820 821 packet->magic = be32_to_cpu(packet->magic); 822 if (packet->magic != MULTIFD_MAGIC) { 823 error_setg(errp, "multifd: received packet " 824 "magic %x and expected magic %x", 825 packet->magic, MULTIFD_MAGIC); 826 return -1; 827 } 828 829 packet->version = be32_to_cpu(packet->version); 830 if (packet->version != MULTIFD_VERSION) { 831 error_setg(errp, "multifd: received packet " 832 "version %d and expected version %d", 833 packet->version, MULTIFD_VERSION); 834 return -1; 835 } 836 837 p->flags = be32_to_cpu(packet->flags); 838 839 packet->pages_alloc = be32_to_cpu(packet->pages_alloc); 840 /* 841 * If we recevied a packet that is 100 times bigger than expected 842 * just stop migration. It is a magic number. 843 */ 844 if (packet->pages_alloc > pages_max * 100) { 845 error_setg(errp, "multifd: received packet " 846 "with size %d and expected a maximum size of %d", 847 packet->pages_alloc, pages_max * 100) ; 848 return -1; 849 } 850 /* 851 * We received a packet that is bigger than expected but inside 852 * reasonable limits (see previous comment). Just reallocate. 853 */ 854 if (packet->pages_alloc > p->pages->allocated) { 855 multifd_pages_clear(p->pages); 856 p->pages = multifd_pages_init(packet->pages_alloc); 857 } 858 859 p->pages->used = be32_to_cpu(packet->pages_used); 860 if (p->pages->used > packet->pages_alloc) { 861 error_setg(errp, "multifd: received packet " 862 "with %d pages and expected maximum pages are %d", 863 p->pages->used, packet->pages_alloc) ; 864 return -1; 865 } 866 867 p->next_packet_size = be32_to_cpu(packet->next_packet_size); 868 p->packet_num = be64_to_cpu(packet->packet_num); 869 870 if (p->pages->used) { 871 /* make sure that ramblock is 0 terminated */ 872 packet->ramblock[255] = 0; 873 block = qemu_ram_block_by_name(packet->ramblock); 874 if (!block) { 875 error_setg(errp, "multifd: unknown ram block %s", 876 packet->ramblock); 877 return -1; 878 } 879 } 880 881 for (i = 0; i < p->pages->used; i++) { 882 ram_addr_t offset = be64_to_cpu(packet->offset[i]); 883 884 if (offset > (block->used_length - TARGET_PAGE_SIZE)) { 885 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT 886 " (max " RAM_ADDR_FMT ")", 887 offset, block->max_length); 888 return -1; 889 } 890 p->pages->iov[i].iov_base = block->host + offset; 891 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE; 892 } 893 894 return 0; 895 } 896 897 struct { 898 MultiFDSendParams *params; 899 /* array of pages to sent */ 900 MultiFDPages_t *pages; 901 /* global number of generated multifd packets */ 902 uint64_t packet_num; 903 /* send channels ready */ 904 QemuSemaphore channels_ready; 905 } *multifd_send_state; 906 907 /* 908 * How we use multifd_send_state->pages and channel->pages? 909 * 910 * We create a pages for each channel, and a main one. Each time that 911 * we need to send a batch of pages we interchange the ones between 912 * multifd_send_state and the channel that is sending it. There are 913 * two reasons for that: 914 * - to not have to do so many mallocs during migration 915 * - to make easier to know what to free at the end of migration 916 * 917 * This way we always know who is the owner of each "pages" struct, 918 * and we don't need any locking. It belongs to the migration thread 919 * or to the channel thread. Switching is safe because the migration 920 * thread is using the channel mutex when changing it, and the channel 921 * have to had finish with its own, otherwise pending_job can't be 922 * false. 923 */ 924 925 static int multifd_send_pages(RAMState *rs) 926 { 927 int i; 928 static int next_channel; 929 MultiFDSendParams *p = NULL; /* make happy gcc */ 930 MultiFDPages_t *pages = multifd_send_state->pages; 931 uint64_t transferred; 932 933 qemu_sem_wait(&multifd_send_state->channels_ready); 934 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) { 935 p = &multifd_send_state->params[i]; 936 937 qemu_mutex_lock(&p->mutex); 938 if (p->quit) { 939 error_report("%s: channel %d has already quit!", __func__, i); 940 qemu_mutex_unlock(&p->mutex); 941 return -1; 942 } 943 if (!p->pending_job) { 944 p->pending_job++; 945 next_channel = (i + 1) % migrate_multifd_channels(); 946 break; 947 } 948 qemu_mutex_unlock(&p->mutex); 949 } 950 p->pages->used = 0; 951 952 p->packet_num = multifd_send_state->packet_num++; 953 p->pages->block = NULL; 954 multifd_send_state->pages = p->pages; 955 p->pages = pages; 956 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len; 957 qemu_file_update_transfer(rs->f, transferred); 958 ram_counters.multifd_bytes += transferred; 959 ram_counters.transferred += transferred;; 960 qemu_mutex_unlock(&p->mutex); 961 qemu_sem_post(&p->sem); 962 963 return 1; 964 } 965 966 static int multifd_queue_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) 967 { 968 MultiFDPages_t *pages = multifd_send_state->pages; 969 970 if (!pages->block) { 971 pages->block = block; 972 } 973 974 if (pages->block == block) { 975 pages->offset[pages->used] = offset; 976 pages->iov[pages->used].iov_base = block->host + offset; 977 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE; 978 pages->used++; 979 980 if (pages->used < pages->allocated) { 981 return 1; 982 } 983 } 984 985 if (multifd_send_pages(rs) < 0) { 986 return -1; 987 } 988 989 if (pages->block != block) { 990 return multifd_queue_page(rs, block, offset); 991 } 992 993 return 1; 994 } 995 996 static void multifd_send_terminate_threads(Error *err) 997 { 998 int i; 999 1000 trace_multifd_send_terminate_threads(err != NULL); 1001 1002 if (err) { 1003 MigrationState *s = migrate_get_current(); 1004 migrate_set_error(s, err); 1005 if (s->state == MIGRATION_STATUS_SETUP || 1006 s->state == MIGRATION_STATUS_PRE_SWITCHOVER || 1007 s->state == MIGRATION_STATUS_DEVICE || 1008 s->state == MIGRATION_STATUS_ACTIVE) { 1009 migrate_set_state(&s->state, s->state, 1010 MIGRATION_STATUS_FAILED); 1011 } 1012 } 1013 1014 for (i = 0; i < migrate_multifd_channels(); i++) { 1015 MultiFDSendParams *p = &multifd_send_state->params[i]; 1016 1017 qemu_mutex_lock(&p->mutex); 1018 p->quit = true; 1019 qemu_sem_post(&p->sem); 1020 qemu_mutex_unlock(&p->mutex); 1021 } 1022 } 1023 1024 void multifd_save_cleanup(void) 1025 { 1026 int i; 1027 1028 if (!migrate_use_multifd()) { 1029 return; 1030 } 1031 multifd_send_terminate_threads(NULL); 1032 for (i = 0; i < migrate_multifd_channels(); i++) { 1033 MultiFDSendParams *p = &multifd_send_state->params[i]; 1034 1035 if (p->running) { 1036 qemu_thread_join(&p->thread); 1037 } 1038 socket_send_channel_destroy(p->c); 1039 p->c = NULL; 1040 qemu_mutex_destroy(&p->mutex); 1041 qemu_sem_destroy(&p->sem); 1042 qemu_sem_destroy(&p->sem_sync); 1043 g_free(p->name); 1044 p->name = NULL; 1045 multifd_pages_clear(p->pages); 1046 p->pages = NULL; 1047 p->packet_len = 0; 1048 g_free(p->packet); 1049 p->packet = NULL; 1050 } 1051 qemu_sem_destroy(&multifd_send_state->channels_ready); 1052 g_free(multifd_send_state->params); 1053 multifd_send_state->params = NULL; 1054 multifd_pages_clear(multifd_send_state->pages); 1055 multifd_send_state->pages = NULL; 1056 g_free(multifd_send_state); 1057 multifd_send_state = NULL; 1058 } 1059 1060 static void multifd_send_sync_main(RAMState *rs) 1061 { 1062 int i; 1063 1064 if (!migrate_use_multifd()) { 1065 return; 1066 } 1067 if (multifd_send_state->pages->used) { 1068 if (multifd_send_pages(rs) < 0) { 1069 error_report("%s: multifd_send_pages fail", __func__); 1070 return; 1071 } 1072 } 1073 for (i = 0; i < migrate_multifd_channels(); i++) { 1074 MultiFDSendParams *p = &multifd_send_state->params[i]; 1075 1076 trace_multifd_send_sync_main_signal(p->id); 1077 1078 qemu_mutex_lock(&p->mutex); 1079 1080 if (p->quit) { 1081 error_report("%s: channel %d has already quit", __func__, i); 1082 qemu_mutex_unlock(&p->mutex); 1083 return; 1084 } 1085 1086 p->packet_num = multifd_send_state->packet_num++; 1087 p->flags |= MULTIFD_FLAG_SYNC; 1088 p->pending_job++; 1089 qemu_file_update_transfer(rs->f, p->packet_len); 1090 ram_counters.multifd_bytes += p->packet_len; 1091 ram_counters.transferred += p->packet_len; 1092 qemu_mutex_unlock(&p->mutex); 1093 qemu_sem_post(&p->sem); 1094 } 1095 for (i = 0; i < migrate_multifd_channels(); i++) { 1096 MultiFDSendParams *p = &multifd_send_state->params[i]; 1097 1098 trace_multifd_send_sync_main_wait(p->id); 1099 qemu_sem_wait(&p->sem_sync); 1100 } 1101 trace_multifd_send_sync_main(multifd_send_state->packet_num); 1102 } 1103 1104 static void *multifd_send_thread(void *opaque) 1105 { 1106 MultiFDSendParams *p = opaque; 1107 Error *local_err = NULL; 1108 int ret = 0; 1109 uint32_t flags = 0; 1110 1111 trace_multifd_send_thread_start(p->id); 1112 rcu_register_thread(); 1113 1114 if (multifd_send_initial_packet(p, &local_err) < 0) { 1115 ret = -1; 1116 goto out; 1117 } 1118 /* initial packet */ 1119 p->num_packets = 1; 1120 1121 while (true) { 1122 qemu_sem_wait(&p->sem); 1123 qemu_mutex_lock(&p->mutex); 1124 1125 if (p->pending_job) { 1126 uint32_t used = p->pages->used; 1127 uint64_t packet_num = p->packet_num; 1128 flags = p->flags; 1129 1130 p->next_packet_size = used * qemu_target_page_size(); 1131 multifd_send_fill_packet(p); 1132 p->flags = 0; 1133 p->num_packets++; 1134 p->num_pages += used; 1135 p->pages->used = 0; 1136 qemu_mutex_unlock(&p->mutex); 1137 1138 trace_multifd_send(p->id, packet_num, used, flags, 1139 p->next_packet_size); 1140 1141 ret = qio_channel_write_all(p->c, (void *)p->packet, 1142 p->packet_len, &local_err); 1143 if (ret != 0) { 1144 break; 1145 } 1146 1147 if (used) { 1148 ret = qio_channel_writev_all(p->c, p->pages->iov, 1149 used, &local_err); 1150 if (ret != 0) { 1151 break; 1152 } 1153 } 1154 1155 qemu_mutex_lock(&p->mutex); 1156 p->pending_job--; 1157 qemu_mutex_unlock(&p->mutex); 1158 1159 if (flags & MULTIFD_FLAG_SYNC) { 1160 qemu_sem_post(&p->sem_sync); 1161 } 1162 qemu_sem_post(&multifd_send_state->channels_ready); 1163 } else if (p->quit) { 1164 qemu_mutex_unlock(&p->mutex); 1165 break; 1166 } else { 1167 qemu_mutex_unlock(&p->mutex); 1168 /* sometimes there are spurious wakeups */ 1169 } 1170 } 1171 1172 out: 1173 if (local_err) { 1174 trace_multifd_send_error(p->id); 1175 multifd_send_terminate_threads(local_err); 1176 } 1177 1178 /* 1179 * Error happen, I will exit, but I can't just leave, tell 1180 * who pay attention to me. 1181 */ 1182 if (ret != 0) { 1183 qemu_sem_post(&p->sem_sync); 1184 qemu_sem_post(&multifd_send_state->channels_ready); 1185 } 1186 1187 qemu_mutex_lock(&p->mutex); 1188 p->running = false; 1189 qemu_mutex_unlock(&p->mutex); 1190 1191 rcu_unregister_thread(); 1192 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages); 1193 1194 return NULL; 1195 } 1196 1197 static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque) 1198 { 1199 MultiFDSendParams *p = opaque; 1200 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task)); 1201 Error *local_err = NULL; 1202 1203 trace_multifd_new_send_channel_async(p->id); 1204 if (qio_task_propagate_error(task, &local_err)) { 1205 migrate_set_error(migrate_get_current(), local_err); 1206 multifd_save_cleanup(); 1207 } else { 1208 p->c = QIO_CHANNEL(sioc); 1209 qio_channel_set_delay(p->c, false); 1210 p->running = true; 1211 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p, 1212 QEMU_THREAD_JOINABLE); 1213 } 1214 } 1215 1216 int multifd_save_setup(void) 1217 { 1218 int thread_count; 1219 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size(); 1220 uint8_t i; 1221 1222 if (!migrate_use_multifd()) { 1223 return 0; 1224 } 1225 thread_count = migrate_multifd_channels(); 1226 multifd_send_state = g_malloc0(sizeof(*multifd_send_state)); 1227 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count); 1228 multifd_send_state->pages = multifd_pages_init(page_count); 1229 qemu_sem_init(&multifd_send_state->channels_ready, 0); 1230 1231 for (i = 0; i < thread_count; i++) { 1232 MultiFDSendParams *p = &multifd_send_state->params[i]; 1233 1234 qemu_mutex_init(&p->mutex); 1235 qemu_sem_init(&p->sem, 0); 1236 qemu_sem_init(&p->sem_sync, 0); 1237 p->quit = false; 1238 p->pending_job = 0; 1239 p->id = i; 1240 p->pages = multifd_pages_init(page_count); 1241 p->packet_len = sizeof(MultiFDPacket_t) 1242 + sizeof(ram_addr_t) * page_count; 1243 p->packet = g_malloc0(p->packet_len); 1244 p->name = g_strdup_printf("multifdsend_%d", i); 1245 socket_send_channel_create(multifd_new_send_channel_async, p); 1246 } 1247 return 0; 1248 } 1249 1250 struct { 1251 MultiFDRecvParams *params; 1252 /* number of created threads */ 1253 int count; 1254 /* syncs main thread and channels */ 1255 QemuSemaphore sem_sync; 1256 /* global number of generated multifd packets */ 1257 uint64_t packet_num; 1258 } *multifd_recv_state; 1259 1260 static void multifd_recv_terminate_threads(Error *err) 1261 { 1262 int i; 1263 1264 trace_multifd_recv_terminate_threads(err != NULL); 1265 1266 if (err) { 1267 MigrationState *s = migrate_get_current(); 1268 migrate_set_error(s, err); 1269 if (s->state == MIGRATION_STATUS_SETUP || 1270 s->state == MIGRATION_STATUS_ACTIVE) { 1271 migrate_set_state(&s->state, s->state, 1272 MIGRATION_STATUS_FAILED); 1273 } 1274 } 1275 1276 for (i = 0; i < migrate_multifd_channels(); i++) { 1277 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1278 1279 qemu_mutex_lock(&p->mutex); 1280 p->quit = true; 1281 /* We could arrive here for two reasons: 1282 - normal quit, i.e. everything went fine, just finished 1283 - error quit: We close the channels so the channel threads 1284 finish the qio_channel_read_all_eof() */ 1285 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL); 1286 qemu_mutex_unlock(&p->mutex); 1287 } 1288 } 1289 1290 int multifd_load_cleanup(Error **errp) 1291 { 1292 int i; 1293 int ret = 0; 1294 1295 if (!migrate_use_multifd()) { 1296 return 0; 1297 } 1298 multifd_recv_terminate_threads(NULL); 1299 for (i = 0; i < migrate_multifd_channels(); i++) { 1300 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1301 1302 if (p->running) { 1303 p->quit = true; 1304 /* 1305 * multifd_recv_thread may hung at MULTIFD_FLAG_SYNC handle code, 1306 * however try to wakeup it without harm in cleanup phase. 1307 */ 1308 qemu_sem_post(&p->sem_sync); 1309 qemu_thread_join(&p->thread); 1310 } 1311 object_unref(OBJECT(p->c)); 1312 p->c = NULL; 1313 qemu_mutex_destroy(&p->mutex); 1314 qemu_sem_destroy(&p->sem_sync); 1315 g_free(p->name); 1316 p->name = NULL; 1317 multifd_pages_clear(p->pages); 1318 p->pages = NULL; 1319 p->packet_len = 0; 1320 g_free(p->packet); 1321 p->packet = NULL; 1322 } 1323 qemu_sem_destroy(&multifd_recv_state->sem_sync); 1324 g_free(multifd_recv_state->params); 1325 multifd_recv_state->params = NULL; 1326 g_free(multifd_recv_state); 1327 multifd_recv_state = NULL; 1328 1329 return ret; 1330 } 1331 1332 static void multifd_recv_sync_main(void) 1333 { 1334 int i; 1335 1336 if (!migrate_use_multifd()) { 1337 return; 1338 } 1339 for (i = 0; i < migrate_multifd_channels(); i++) { 1340 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1341 1342 trace_multifd_recv_sync_main_wait(p->id); 1343 qemu_sem_wait(&multifd_recv_state->sem_sync); 1344 } 1345 for (i = 0; i < migrate_multifd_channels(); i++) { 1346 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1347 1348 qemu_mutex_lock(&p->mutex); 1349 if (multifd_recv_state->packet_num < p->packet_num) { 1350 multifd_recv_state->packet_num = p->packet_num; 1351 } 1352 qemu_mutex_unlock(&p->mutex); 1353 trace_multifd_recv_sync_main_signal(p->id); 1354 qemu_sem_post(&p->sem_sync); 1355 } 1356 trace_multifd_recv_sync_main(multifd_recv_state->packet_num); 1357 } 1358 1359 static void *multifd_recv_thread(void *opaque) 1360 { 1361 MultiFDRecvParams *p = opaque; 1362 Error *local_err = NULL; 1363 int ret; 1364 1365 trace_multifd_recv_thread_start(p->id); 1366 rcu_register_thread(); 1367 1368 while (true) { 1369 uint32_t used; 1370 uint32_t flags; 1371 1372 if (p->quit) { 1373 break; 1374 } 1375 1376 ret = qio_channel_read_all_eof(p->c, (void *)p->packet, 1377 p->packet_len, &local_err); 1378 if (ret == 0) { /* EOF */ 1379 break; 1380 } 1381 if (ret == -1) { /* Error */ 1382 break; 1383 } 1384 1385 qemu_mutex_lock(&p->mutex); 1386 ret = multifd_recv_unfill_packet(p, &local_err); 1387 if (ret) { 1388 qemu_mutex_unlock(&p->mutex); 1389 break; 1390 } 1391 1392 used = p->pages->used; 1393 flags = p->flags; 1394 trace_multifd_recv(p->id, p->packet_num, used, flags, 1395 p->next_packet_size); 1396 p->num_packets++; 1397 p->num_pages += used; 1398 qemu_mutex_unlock(&p->mutex); 1399 1400 if (used) { 1401 ret = qio_channel_readv_all(p->c, p->pages->iov, 1402 used, &local_err); 1403 if (ret != 0) { 1404 break; 1405 } 1406 } 1407 1408 if (flags & MULTIFD_FLAG_SYNC) { 1409 qemu_sem_post(&multifd_recv_state->sem_sync); 1410 qemu_sem_wait(&p->sem_sync); 1411 } 1412 } 1413 1414 if (local_err) { 1415 multifd_recv_terminate_threads(local_err); 1416 } 1417 qemu_mutex_lock(&p->mutex); 1418 p->running = false; 1419 qemu_mutex_unlock(&p->mutex); 1420 1421 rcu_unregister_thread(); 1422 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages); 1423 1424 return NULL; 1425 } 1426 1427 int multifd_load_setup(void) 1428 { 1429 int thread_count; 1430 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size(); 1431 uint8_t i; 1432 1433 if (!migrate_use_multifd()) { 1434 return 0; 1435 } 1436 thread_count = migrate_multifd_channels(); 1437 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state)); 1438 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count); 1439 atomic_set(&multifd_recv_state->count, 0); 1440 qemu_sem_init(&multifd_recv_state->sem_sync, 0); 1441 1442 for (i = 0; i < thread_count; i++) { 1443 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1444 1445 qemu_mutex_init(&p->mutex); 1446 qemu_sem_init(&p->sem_sync, 0); 1447 p->quit = false; 1448 p->id = i; 1449 p->pages = multifd_pages_init(page_count); 1450 p->packet_len = sizeof(MultiFDPacket_t) 1451 + sizeof(ram_addr_t) * page_count; 1452 p->packet = g_malloc0(p->packet_len); 1453 p->name = g_strdup_printf("multifdrecv_%d", i); 1454 } 1455 return 0; 1456 } 1457 1458 bool multifd_recv_all_channels_created(void) 1459 { 1460 int thread_count = migrate_multifd_channels(); 1461 1462 if (!migrate_use_multifd()) { 1463 return true; 1464 } 1465 1466 return thread_count == atomic_read(&multifd_recv_state->count); 1467 } 1468 1469 /* 1470 * Try to receive all multifd channels to get ready for the migration. 1471 * - Return true and do not set @errp when correctly receving all channels; 1472 * - Return false and do not set @errp when correctly receiving the current one; 1473 * - Return false and set @errp when failing to receive the current channel. 1474 */ 1475 bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp) 1476 { 1477 MultiFDRecvParams *p; 1478 Error *local_err = NULL; 1479 int id; 1480 1481 id = multifd_recv_initial_packet(ioc, &local_err); 1482 if (id < 0) { 1483 multifd_recv_terminate_threads(local_err); 1484 error_propagate_prepend(errp, local_err, 1485 "failed to receive packet" 1486 " via multifd channel %d: ", 1487 atomic_read(&multifd_recv_state->count)); 1488 return false; 1489 } 1490 trace_multifd_recv_new_channel(id); 1491 1492 p = &multifd_recv_state->params[id]; 1493 if (p->c != NULL) { 1494 error_setg(&local_err, "multifd: received id '%d' already setup'", 1495 id); 1496 multifd_recv_terminate_threads(local_err); 1497 error_propagate(errp, local_err); 1498 return false; 1499 } 1500 p->c = ioc; 1501 object_ref(OBJECT(ioc)); 1502 /* initial packet */ 1503 p->num_packets = 1; 1504 1505 p->running = true; 1506 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p, 1507 QEMU_THREAD_JOINABLE); 1508 atomic_inc(&multifd_recv_state->count); 1509 return atomic_read(&multifd_recv_state->count) == 1510 migrate_multifd_channels(); 1511 } 1512 1513 /** 1514 * save_page_header: write page header to wire 1515 * 1516 * If this is the 1st block, it also writes the block identification 1517 * 1518 * Returns the number of bytes written 1519 * 1520 * @f: QEMUFile where to send the data 1521 * @block: block that contains the page we want to send 1522 * @offset: offset inside the block for the page 1523 * in the lower bits, it contains flags 1524 */ 1525 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block, 1526 ram_addr_t offset) 1527 { 1528 size_t size, len; 1529 1530 if (block == rs->last_sent_block) { 1531 offset |= RAM_SAVE_FLAG_CONTINUE; 1532 } 1533 qemu_put_be64(f, offset); 1534 size = 8; 1535 1536 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) { 1537 len = strlen(block->idstr); 1538 qemu_put_byte(f, len); 1539 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 1540 size += 1 + len; 1541 rs->last_sent_block = block; 1542 } 1543 return size; 1544 } 1545 1546 /** 1547 * mig_throttle_guest_down: throotle down the guest 1548 * 1549 * Reduce amount of guest cpu execution to hopefully slow down memory 1550 * writes. If guest dirty memory rate is reduced below the rate at 1551 * which we can transfer pages to the destination then we should be 1552 * able to complete migration. Some workloads dirty memory way too 1553 * fast and will not effectively converge, even with auto-converge. 1554 */ 1555 static void mig_throttle_guest_down(void) 1556 { 1557 MigrationState *s = migrate_get_current(); 1558 uint64_t pct_initial = s->parameters.cpu_throttle_initial; 1559 uint64_t pct_icrement = s->parameters.cpu_throttle_increment; 1560 int pct_max = s->parameters.max_cpu_throttle; 1561 1562 /* We have not started throttling yet. Let's start it. */ 1563 if (!cpu_throttle_active()) { 1564 cpu_throttle_set(pct_initial); 1565 } else { 1566 /* Throttling already on, just increase the rate */ 1567 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement, 1568 pct_max)); 1569 } 1570 } 1571 1572 /** 1573 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache 1574 * 1575 * @rs: current RAM state 1576 * @current_addr: address for the zero page 1577 * 1578 * Update the xbzrle cache to reflect a page that's been sent as all 0. 1579 * The important thing is that a stale (not-yet-0'd) page be replaced 1580 * by the new data. 1581 * As a bonus, if the page wasn't in the cache it gets added so that 1582 * when a small write is made into the 0'd page it gets XBZRLE sent. 1583 */ 1584 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr) 1585 { 1586 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 1587 return; 1588 } 1589 1590 /* We don't care if this fails to allocate a new cache page 1591 * as long as it updated an old one */ 1592 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, 1593 ram_counters.dirty_sync_count); 1594 } 1595 1596 #define ENCODING_FLAG_XBZRLE 0x1 1597 1598 /** 1599 * save_xbzrle_page: compress and send current page 1600 * 1601 * Returns: 1 means that we wrote the page 1602 * 0 means that page is identical to the one already sent 1603 * -1 means that xbzrle would be longer than normal 1604 * 1605 * @rs: current RAM state 1606 * @current_data: pointer to the address of the page contents 1607 * @current_addr: addr of the page 1608 * @block: block that contains the page we want to send 1609 * @offset: offset inside the block for the page 1610 * @last_stage: if we are at the completion stage 1611 */ 1612 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data, 1613 ram_addr_t current_addr, RAMBlock *block, 1614 ram_addr_t offset, bool last_stage) 1615 { 1616 int encoded_len = 0, bytes_xbzrle; 1617 uint8_t *prev_cached_page; 1618 1619 if (!cache_is_cached(XBZRLE.cache, current_addr, 1620 ram_counters.dirty_sync_count)) { 1621 xbzrle_counters.cache_miss++; 1622 if (!last_stage) { 1623 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 1624 ram_counters.dirty_sync_count) == -1) { 1625 return -1; 1626 } else { 1627 /* update *current_data when the page has been 1628 inserted into cache */ 1629 *current_data = get_cached_data(XBZRLE.cache, current_addr); 1630 } 1631 } 1632 return -1; 1633 } 1634 1635 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 1636 1637 /* save current buffer into memory */ 1638 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 1639 1640 /* XBZRLE encoding (if there is no overflow) */ 1641 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 1642 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 1643 TARGET_PAGE_SIZE); 1644 1645 /* 1646 * Update the cache contents, so that it corresponds to the data 1647 * sent, in all cases except where we skip the page. 1648 */ 1649 if (!last_stage && encoded_len != 0) { 1650 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 1651 /* 1652 * In the case where we couldn't compress, ensure that the caller 1653 * sends the data from the cache, since the guest might have 1654 * changed the RAM since we copied it. 1655 */ 1656 *current_data = prev_cached_page; 1657 } 1658 1659 if (encoded_len == 0) { 1660 trace_save_xbzrle_page_skipping(); 1661 return 0; 1662 } else if (encoded_len == -1) { 1663 trace_save_xbzrle_page_overflow(); 1664 xbzrle_counters.overflow++; 1665 return -1; 1666 } 1667 1668 /* Send XBZRLE based compressed page */ 1669 bytes_xbzrle = save_page_header(rs, rs->f, block, 1670 offset | RAM_SAVE_FLAG_XBZRLE); 1671 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE); 1672 qemu_put_be16(rs->f, encoded_len); 1673 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len); 1674 bytes_xbzrle += encoded_len + 1 + 2; 1675 xbzrle_counters.pages++; 1676 xbzrle_counters.bytes += bytes_xbzrle; 1677 ram_counters.transferred += bytes_xbzrle; 1678 1679 return 1; 1680 } 1681 1682 /** 1683 * migration_bitmap_find_dirty: find the next dirty page from start 1684 * 1685 * Returns the page offset within memory region of the start of a dirty page 1686 * 1687 * @rs: current RAM state 1688 * @rb: RAMBlock where to search for dirty pages 1689 * @start: page where we start the search 1690 */ 1691 static inline 1692 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, 1693 unsigned long start) 1694 { 1695 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 1696 unsigned long *bitmap = rb->bmap; 1697 unsigned long next; 1698 1699 if (ramblock_is_ignored(rb)) { 1700 return size; 1701 } 1702 1703 /* 1704 * When the free page optimization is enabled, we need to check the bitmap 1705 * to send the non-free pages rather than all the pages in the bulk stage. 1706 */ 1707 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) { 1708 next = start + 1; 1709 } else { 1710 next = find_next_bit(bitmap, size, start); 1711 } 1712 1713 return next; 1714 } 1715 1716 static inline bool migration_bitmap_clear_dirty(RAMState *rs, 1717 RAMBlock *rb, 1718 unsigned long page) 1719 { 1720 bool ret; 1721 1722 qemu_mutex_lock(&rs->bitmap_mutex); 1723 1724 /* 1725 * Clear dirty bitmap if needed. This _must_ be called before we 1726 * send any of the page in the chunk because we need to make sure 1727 * we can capture further page content changes when we sync dirty 1728 * log the next time. So as long as we are going to send any of 1729 * the page in the chunk we clear the remote dirty bitmap for all. 1730 * Clearing it earlier won't be a problem, but too late will. 1731 */ 1732 if (rb->clear_bmap && clear_bmap_test_and_clear(rb, page)) { 1733 uint8_t shift = rb->clear_bmap_shift; 1734 hwaddr size = 1ULL << (TARGET_PAGE_BITS + shift); 1735 hwaddr start = (page << TARGET_PAGE_BITS) & (-size); 1736 1737 /* 1738 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this 1739 * can make things easier sometimes since then start address 1740 * of the small chunk will always be 64 pages aligned so the 1741 * bitmap will always be aligned to unsigned long. We should 1742 * even be able to remove this restriction but I'm simply 1743 * keeping it. 1744 */ 1745 assert(shift >= 6); 1746 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page); 1747 memory_region_clear_dirty_bitmap(rb->mr, start, size); 1748 } 1749 1750 ret = test_and_clear_bit(page, rb->bmap); 1751 1752 if (ret) { 1753 rs->migration_dirty_pages--; 1754 } 1755 qemu_mutex_unlock(&rs->bitmap_mutex); 1756 1757 return ret; 1758 } 1759 1760 /* Called with RCU critical section */ 1761 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb) 1762 { 1763 rs->migration_dirty_pages += 1764 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length, 1765 &rs->num_dirty_pages_period); 1766 } 1767 1768 /** 1769 * ram_pagesize_summary: calculate all the pagesizes of a VM 1770 * 1771 * Returns a summary bitmap of the page sizes of all RAMBlocks 1772 * 1773 * For VMs with just normal pages this is equivalent to the host page 1774 * size. If it's got some huge pages then it's the OR of all the 1775 * different page sizes. 1776 */ 1777 uint64_t ram_pagesize_summary(void) 1778 { 1779 RAMBlock *block; 1780 uint64_t summary = 0; 1781 1782 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1783 summary |= block->page_size; 1784 } 1785 1786 return summary; 1787 } 1788 1789 uint64_t ram_get_total_transferred_pages(void) 1790 { 1791 return ram_counters.normal + ram_counters.duplicate + 1792 compression_counters.pages + xbzrle_counters.pages; 1793 } 1794 1795 static void migration_update_rates(RAMState *rs, int64_t end_time) 1796 { 1797 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev; 1798 double compressed_size; 1799 1800 /* calculate period counters */ 1801 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000 1802 / (end_time - rs->time_last_bitmap_sync); 1803 1804 if (!page_count) { 1805 return; 1806 } 1807 1808 if (migrate_use_xbzrle()) { 1809 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss - 1810 rs->xbzrle_cache_miss_prev) / page_count; 1811 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; 1812 } 1813 1814 if (migrate_use_compression()) { 1815 compression_counters.busy_rate = (double)(compression_counters.busy - 1816 rs->compress_thread_busy_prev) / page_count; 1817 rs->compress_thread_busy_prev = compression_counters.busy; 1818 1819 compressed_size = compression_counters.compressed_size - 1820 rs->compressed_size_prev; 1821 if (compressed_size) { 1822 double uncompressed_size = (compression_counters.pages - 1823 rs->compress_pages_prev) * TARGET_PAGE_SIZE; 1824 1825 /* Compression-Ratio = Uncompressed-size / Compressed-size */ 1826 compression_counters.compression_rate = 1827 uncompressed_size / compressed_size; 1828 1829 rs->compress_pages_prev = compression_counters.pages; 1830 rs->compressed_size_prev = compression_counters.compressed_size; 1831 } 1832 } 1833 } 1834 1835 static void migration_bitmap_sync(RAMState *rs) 1836 { 1837 RAMBlock *block; 1838 int64_t end_time; 1839 uint64_t bytes_xfer_now; 1840 1841 ram_counters.dirty_sync_count++; 1842 1843 if (!rs->time_last_bitmap_sync) { 1844 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1845 } 1846 1847 trace_migration_bitmap_sync_start(); 1848 memory_global_dirty_log_sync(); 1849 1850 qemu_mutex_lock(&rs->bitmap_mutex); 1851 rcu_read_lock(); 1852 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1853 ramblock_sync_dirty_bitmap(rs, block); 1854 } 1855 ram_counters.remaining = ram_bytes_remaining(); 1856 rcu_read_unlock(); 1857 qemu_mutex_unlock(&rs->bitmap_mutex); 1858 1859 memory_global_after_dirty_log_sync(); 1860 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); 1861 1862 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1863 1864 /* more than 1 second = 1000 millisecons */ 1865 if (end_time > rs->time_last_bitmap_sync + 1000) { 1866 bytes_xfer_now = ram_counters.transferred; 1867 1868 /* During block migration the auto-converge logic incorrectly detects 1869 * that ram migration makes no progress. Avoid this by disabling the 1870 * throttling logic during the bulk phase of block migration. */ 1871 if (migrate_auto_converge() && !blk_mig_bulk_active()) { 1872 /* The following detection logic can be refined later. For now: 1873 Check to see if the dirtied bytes is 50% more than the approx. 1874 amount of bytes that just got transferred since the last time we 1875 were in this routine. If that happens twice, start or increase 1876 throttling */ 1877 1878 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE > 1879 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) && 1880 (++rs->dirty_rate_high_cnt >= 2)) { 1881 trace_migration_throttle(); 1882 rs->dirty_rate_high_cnt = 0; 1883 mig_throttle_guest_down(); 1884 } 1885 } 1886 1887 migration_update_rates(rs, end_time); 1888 1889 rs->target_page_count_prev = rs->target_page_count; 1890 1891 /* reset period counters */ 1892 rs->time_last_bitmap_sync = end_time; 1893 rs->num_dirty_pages_period = 0; 1894 rs->bytes_xfer_prev = bytes_xfer_now; 1895 } 1896 if (migrate_use_events()) { 1897 qapi_event_send_migration_pass(ram_counters.dirty_sync_count); 1898 } 1899 } 1900 1901 static void migration_bitmap_sync_precopy(RAMState *rs) 1902 { 1903 Error *local_err = NULL; 1904 1905 /* 1906 * The current notifier usage is just an optimization to migration, so we 1907 * don't stop the normal migration process in the error case. 1908 */ 1909 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) { 1910 error_report_err(local_err); 1911 } 1912 1913 migration_bitmap_sync(rs); 1914 1915 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) { 1916 error_report_err(local_err); 1917 } 1918 } 1919 1920 /** 1921 * save_zero_page_to_file: send the zero page to the file 1922 * 1923 * Returns the size of data written to the file, 0 means the page is not 1924 * a zero page 1925 * 1926 * @rs: current RAM state 1927 * @file: the file where the data is saved 1928 * @block: block that contains the page we want to send 1929 * @offset: offset inside the block for the page 1930 */ 1931 static int save_zero_page_to_file(RAMState *rs, QEMUFile *file, 1932 RAMBlock *block, ram_addr_t offset) 1933 { 1934 uint8_t *p = block->host + offset; 1935 int len = 0; 1936 1937 if (is_zero_range(p, TARGET_PAGE_SIZE)) { 1938 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO); 1939 qemu_put_byte(file, 0); 1940 len += 1; 1941 } 1942 return len; 1943 } 1944 1945 /** 1946 * save_zero_page: send the zero page to the stream 1947 * 1948 * Returns the number of pages written. 1949 * 1950 * @rs: current RAM state 1951 * @block: block that contains the page we want to send 1952 * @offset: offset inside the block for the page 1953 */ 1954 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) 1955 { 1956 int len = save_zero_page_to_file(rs, rs->f, block, offset); 1957 1958 if (len) { 1959 ram_counters.duplicate++; 1960 ram_counters.transferred += len; 1961 return 1; 1962 } 1963 return -1; 1964 } 1965 1966 static void ram_release_pages(const char *rbname, uint64_t offset, int pages) 1967 { 1968 if (!migrate_release_ram() || !migration_in_postcopy()) { 1969 return; 1970 } 1971 1972 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS); 1973 } 1974 1975 /* 1976 * @pages: the number of pages written by the control path, 1977 * < 0 - error 1978 * > 0 - number of pages written 1979 * 1980 * Return true if the pages has been saved, otherwise false is returned. 1981 */ 1982 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, 1983 int *pages) 1984 { 1985 uint64_t bytes_xmit = 0; 1986 int ret; 1987 1988 *pages = -1; 1989 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE, 1990 &bytes_xmit); 1991 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) { 1992 return false; 1993 } 1994 1995 if (bytes_xmit) { 1996 ram_counters.transferred += bytes_xmit; 1997 *pages = 1; 1998 } 1999 2000 if (ret == RAM_SAVE_CONTROL_DELAYED) { 2001 return true; 2002 } 2003 2004 if (bytes_xmit > 0) { 2005 ram_counters.normal++; 2006 } else if (bytes_xmit == 0) { 2007 ram_counters.duplicate++; 2008 } 2009 2010 return true; 2011 } 2012 2013 /* 2014 * directly send the page to the stream 2015 * 2016 * Returns the number of pages written. 2017 * 2018 * @rs: current RAM state 2019 * @block: block that contains the page we want to send 2020 * @offset: offset inside the block for the page 2021 * @buf: the page to be sent 2022 * @async: send to page asyncly 2023 */ 2024 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, 2025 uint8_t *buf, bool async) 2026 { 2027 ram_counters.transferred += save_page_header(rs, rs->f, block, 2028 offset | RAM_SAVE_FLAG_PAGE); 2029 if (async) { 2030 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE, 2031 migrate_release_ram() & 2032 migration_in_postcopy()); 2033 } else { 2034 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE); 2035 } 2036 ram_counters.transferred += TARGET_PAGE_SIZE; 2037 ram_counters.normal++; 2038 return 1; 2039 } 2040 2041 /** 2042 * ram_save_page: send the given page to the stream 2043 * 2044 * Returns the number of pages written. 2045 * < 0 - error 2046 * >=0 - Number of pages written - this might legally be 0 2047 * if xbzrle noticed the page was the same. 2048 * 2049 * @rs: current RAM state 2050 * @block: block that contains the page we want to send 2051 * @offset: offset inside the block for the page 2052 * @last_stage: if we are at the completion stage 2053 */ 2054 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage) 2055 { 2056 int pages = -1; 2057 uint8_t *p; 2058 bool send_async = true; 2059 RAMBlock *block = pss->block; 2060 ram_addr_t offset = pss->page << TARGET_PAGE_BITS; 2061 ram_addr_t current_addr = block->offset + offset; 2062 2063 p = block->host + offset; 2064 trace_ram_save_page(block->idstr, (uint64_t)offset, p); 2065 2066 XBZRLE_cache_lock(); 2067 if (!rs->ram_bulk_stage && !migration_in_postcopy() && 2068 migrate_use_xbzrle()) { 2069 pages = save_xbzrle_page(rs, &p, current_addr, block, 2070 offset, last_stage); 2071 if (!last_stage) { 2072 /* Can't send this cached data async, since the cache page 2073 * might get updated before it gets to the wire 2074 */ 2075 send_async = false; 2076 } 2077 } 2078 2079 /* XBZRLE overflow or normal page */ 2080 if (pages == -1) { 2081 pages = save_normal_page(rs, block, offset, p, send_async); 2082 } 2083 2084 XBZRLE_cache_unlock(); 2085 2086 return pages; 2087 } 2088 2089 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block, 2090 ram_addr_t offset) 2091 { 2092 if (multifd_queue_page(rs, block, offset) < 0) { 2093 return -1; 2094 } 2095 ram_counters.normal++; 2096 2097 return 1; 2098 } 2099 2100 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, 2101 ram_addr_t offset, uint8_t *source_buf) 2102 { 2103 RAMState *rs = ram_state; 2104 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK); 2105 bool zero_page = false; 2106 int ret; 2107 2108 if (save_zero_page_to_file(rs, f, block, offset)) { 2109 zero_page = true; 2110 goto exit; 2111 } 2112 2113 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE); 2114 2115 /* 2116 * copy it to a internal buffer to avoid it being modified by VM 2117 * so that we can catch up the error during compression and 2118 * decompression 2119 */ 2120 memcpy(source_buf, p, TARGET_PAGE_SIZE); 2121 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE); 2122 if (ret < 0) { 2123 qemu_file_set_error(migrate_get_current()->to_dst_file, ret); 2124 error_report("compressed data failed!"); 2125 return false; 2126 } 2127 2128 exit: 2129 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1); 2130 return zero_page; 2131 } 2132 2133 static void 2134 update_compress_thread_counts(const CompressParam *param, int bytes_xmit) 2135 { 2136 ram_counters.transferred += bytes_xmit; 2137 2138 if (param->zero_page) { 2139 ram_counters.duplicate++; 2140 return; 2141 } 2142 2143 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */ 2144 compression_counters.compressed_size += bytes_xmit - 8; 2145 compression_counters.pages++; 2146 } 2147 2148 static bool save_page_use_compression(RAMState *rs); 2149 2150 static void flush_compressed_data(RAMState *rs) 2151 { 2152 int idx, len, thread_count; 2153 2154 if (!save_page_use_compression(rs)) { 2155 return; 2156 } 2157 thread_count = migrate_compress_threads(); 2158 2159 qemu_mutex_lock(&comp_done_lock); 2160 for (idx = 0; idx < thread_count; idx++) { 2161 while (!comp_param[idx].done) { 2162 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 2163 } 2164 } 2165 qemu_mutex_unlock(&comp_done_lock); 2166 2167 for (idx = 0; idx < thread_count; idx++) { 2168 qemu_mutex_lock(&comp_param[idx].mutex); 2169 if (!comp_param[idx].quit) { 2170 len = qemu_put_qemu_file(rs->f, comp_param[idx].file); 2171 /* 2172 * it's safe to fetch zero_page without holding comp_done_lock 2173 * as there is no further request submitted to the thread, 2174 * i.e, the thread should be waiting for a request at this point. 2175 */ 2176 update_compress_thread_counts(&comp_param[idx], len); 2177 } 2178 qemu_mutex_unlock(&comp_param[idx].mutex); 2179 } 2180 } 2181 2182 static inline void set_compress_params(CompressParam *param, RAMBlock *block, 2183 ram_addr_t offset) 2184 { 2185 param->block = block; 2186 param->offset = offset; 2187 } 2188 2189 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block, 2190 ram_addr_t offset) 2191 { 2192 int idx, thread_count, bytes_xmit = -1, pages = -1; 2193 bool wait = migrate_compress_wait_thread(); 2194 2195 thread_count = migrate_compress_threads(); 2196 qemu_mutex_lock(&comp_done_lock); 2197 retry: 2198 for (idx = 0; idx < thread_count; idx++) { 2199 if (comp_param[idx].done) { 2200 comp_param[idx].done = false; 2201 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file); 2202 qemu_mutex_lock(&comp_param[idx].mutex); 2203 set_compress_params(&comp_param[idx], block, offset); 2204 qemu_cond_signal(&comp_param[idx].cond); 2205 qemu_mutex_unlock(&comp_param[idx].mutex); 2206 pages = 1; 2207 update_compress_thread_counts(&comp_param[idx], bytes_xmit); 2208 break; 2209 } 2210 } 2211 2212 /* 2213 * wait for the free thread if the user specifies 'compress-wait-thread', 2214 * otherwise we will post the page out in the main thread as normal page. 2215 */ 2216 if (pages < 0 && wait) { 2217 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 2218 goto retry; 2219 } 2220 qemu_mutex_unlock(&comp_done_lock); 2221 2222 return pages; 2223 } 2224 2225 /** 2226 * find_dirty_block: find the next dirty page and update any state 2227 * associated with the search process. 2228 * 2229 * Returns true if a page is found 2230 * 2231 * @rs: current RAM state 2232 * @pss: data about the state of the current dirty page scan 2233 * @again: set to false if the search has scanned the whole of RAM 2234 */ 2235 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again) 2236 { 2237 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page); 2238 if (pss->complete_round && pss->block == rs->last_seen_block && 2239 pss->page >= rs->last_page) { 2240 /* 2241 * We've been once around the RAM and haven't found anything. 2242 * Give up. 2243 */ 2244 *again = false; 2245 return false; 2246 } 2247 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) { 2248 /* Didn't find anything in this RAM Block */ 2249 pss->page = 0; 2250 pss->block = QLIST_NEXT_RCU(pss->block, next); 2251 if (!pss->block) { 2252 /* 2253 * If memory migration starts over, we will meet a dirtied page 2254 * which may still exists in compression threads's ring, so we 2255 * should flush the compressed data to make sure the new page 2256 * is not overwritten by the old one in the destination. 2257 * 2258 * Also If xbzrle is on, stop using the data compression at this 2259 * point. In theory, xbzrle can do better than compression. 2260 */ 2261 flush_compressed_data(rs); 2262 2263 /* Hit the end of the list */ 2264 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 2265 /* Flag that we've looped */ 2266 pss->complete_round = true; 2267 rs->ram_bulk_stage = false; 2268 } 2269 /* Didn't find anything this time, but try again on the new block */ 2270 *again = true; 2271 return false; 2272 } else { 2273 /* Can go around again, but... */ 2274 *again = true; 2275 /* We've found something so probably don't need to */ 2276 return true; 2277 } 2278 } 2279 2280 /** 2281 * unqueue_page: gets a page of the queue 2282 * 2283 * Helper for 'get_queued_page' - gets a page off the queue 2284 * 2285 * Returns the block of the page (or NULL if none available) 2286 * 2287 * @rs: current RAM state 2288 * @offset: used to return the offset within the RAMBlock 2289 */ 2290 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) 2291 { 2292 RAMBlock *block = NULL; 2293 2294 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) { 2295 return NULL; 2296 } 2297 2298 qemu_mutex_lock(&rs->src_page_req_mutex); 2299 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 2300 struct RAMSrcPageRequest *entry = 2301 QSIMPLEQ_FIRST(&rs->src_page_requests); 2302 block = entry->rb; 2303 *offset = entry->offset; 2304 2305 if (entry->len > TARGET_PAGE_SIZE) { 2306 entry->len -= TARGET_PAGE_SIZE; 2307 entry->offset += TARGET_PAGE_SIZE; 2308 } else { 2309 memory_region_unref(block->mr); 2310 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 2311 g_free(entry); 2312 migration_consume_urgent_request(); 2313 } 2314 } 2315 qemu_mutex_unlock(&rs->src_page_req_mutex); 2316 2317 return block; 2318 } 2319 2320 /** 2321 * get_queued_page: unqueue a page from the postcopy requests 2322 * 2323 * Skips pages that are already sent (!dirty) 2324 * 2325 * Returns true if a queued page is found 2326 * 2327 * @rs: current RAM state 2328 * @pss: data about the state of the current dirty page scan 2329 */ 2330 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) 2331 { 2332 RAMBlock *block; 2333 ram_addr_t offset; 2334 bool dirty; 2335 2336 do { 2337 block = unqueue_page(rs, &offset); 2338 /* 2339 * We're sending this page, and since it's postcopy nothing else 2340 * will dirty it, and we must make sure it doesn't get sent again 2341 * even if this queue request was received after the background 2342 * search already sent it. 2343 */ 2344 if (block) { 2345 unsigned long page; 2346 2347 page = offset >> TARGET_PAGE_BITS; 2348 dirty = test_bit(page, block->bmap); 2349 if (!dirty) { 2350 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, 2351 page, test_bit(page, block->unsentmap)); 2352 } else { 2353 trace_get_queued_page(block->idstr, (uint64_t)offset, page); 2354 } 2355 } 2356 2357 } while (block && !dirty); 2358 2359 if (block) { 2360 /* 2361 * As soon as we start servicing pages out of order, then we have 2362 * to kill the bulk stage, since the bulk stage assumes 2363 * in (migration_bitmap_find_and_reset_dirty) that every page is 2364 * dirty, that's no longer true. 2365 */ 2366 rs->ram_bulk_stage = false; 2367 2368 /* 2369 * We want the background search to continue from the queued page 2370 * since the guest is likely to want other pages near to the page 2371 * it just requested. 2372 */ 2373 pss->block = block; 2374 pss->page = offset >> TARGET_PAGE_BITS; 2375 2376 /* 2377 * This unqueued page would break the "one round" check, even is 2378 * really rare. 2379 */ 2380 pss->complete_round = false; 2381 } 2382 2383 return !!block; 2384 } 2385 2386 /** 2387 * migration_page_queue_free: drop any remaining pages in the ram 2388 * request queue 2389 * 2390 * It should be empty at the end anyway, but in error cases there may 2391 * be some left. in case that there is any page left, we drop it. 2392 * 2393 */ 2394 static void migration_page_queue_free(RAMState *rs) 2395 { 2396 struct RAMSrcPageRequest *mspr, *next_mspr; 2397 /* This queue generally should be empty - but in the case of a failed 2398 * migration might have some droppings in. 2399 */ 2400 rcu_read_lock(); 2401 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { 2402 memory_region_unref(mspr->rb->mr); 2403 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 2404 g_free(mspr); 2405 } 2406 rcu_read_unlock(); 2407 } 2408 2409 /** 2410 * ram_save_queue_pages: queue the page for transmission 2411 * 2412 * A request from postcopy destination for example. 2413 * 2414 * Returns zero on success or negative on error 2415 * 2416 * @rbname: Name of the RAMBLock of the request. NULL means the 2417 * same that last one. 2418 * @start: starting address from the start of the RAMBlock 2419 * @len: length (in bytes) to send 2420 */ 2421 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len) 2422 { 2423 RAMBlock *ramblock; 2424 RAMState *rs = ram_state; 2425 2426 ram_counters.postcopy_requests++; 2427 rcu_read_lock(); 2428 if (!rbname) { 2429 /* Reuse last RAMBlock */ 2430 ramblock = rs->last_req_rb; 2431 2432 if (!ramblock) { 2433 /* 2434 * Shouldn't happen, we can't reuse the last RAMBlock if 2435 * it's the 1st request. 2436 */ 2437 error_report("ram_save_queue_pages no previous block"); 2438 goto err; 2439 } 2440 } else { 2441 ramblock = qemu_ram_block_by_name(rbname); 2442 2443 if (!ramblock) { 2444 /* We shouldn't be asked for a non-existent RAMBlock */ 2445 error_report("ram_save_queue_pages no block '%s'", rbname); 2446 goto err; 2447 } 2448 rs->last_req_rb = ramblock; 2449 } 2450 trace_ram_save_queue_pages(ramblock->idstr, start, len); 2451 if (start+len > ramblock->used_length) { 2452 error_report("%s request overrun start=" RAM_ADDR_FMT " len=" 2453 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 2454 __func__, start, len, ramblock->used_length); 2455 goto err; 2456 } 2457 2458 struct RAMSrcPageRequest *new_entry = 2459 g_malloc0(sizeof(struct RAMSrcPageRequest)); 2460 new_entry->rb = ramblock; 2461 new_entry->offset = start; 2462 new_entry->len = len; 2463 2464 memory_region_ref(ramblock->mr); 2465 qemu_mutex_lock(&rs->src_page_req_mutex); 2466 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); 2467 migration_make_urgent_request(); 2468 qemu_mutex_unlock(&rs->src_page_req_mutex); 2469 rcu_read_unlock(); 2470 2471 return 0; 2472 2473 err: 2474 rcu_read_unlock(); 2475 return -1; 2476 } 2477 2478 static bool save_page_use_compression(RAMState *rs) 2479 { 2480 if (!migrate_use_compression()) { 2481 return false; 2482 } 2483 2484 /* 2485 * If xbzrle is on, stop using the data compression after first 2486 * round of migration even if compression is enabled. In theory, 2487 * xbzrle can do better than compression. 2488 */ 2489 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 2490 return true; 2491 } 2492 2493 return false; 2494 } 2495 2496 /* 2497 * try to compress the page before posting it out, return true if the page 2498 * has been properly handled by compression, otherwise needs other 2499 * paths to handle it 2500 */ 2501 static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) 2502 { 2503 if (!save_page_use_compression(rs)) { 2504 return false; 2505 } 2506 2507 /* 2508 * When starting the process of a new block, the first page of 2509 * the block should be sent out before other pages in the same 2510 * block, and all the pages in last block should have been sent 2511 * out, keeping this order is important, because the 'cont' flag 2512 * is used to avoid resending the block name. 2513 * 2514 * We post the fist page as normal page as compression will take 2515 * much CPU resource. 2516 */ 2517 if (block != rs->last_sent_block) { 2518 flush_compressed_data(rs); 2519 return false; 2520 } 2521 2522 if (compress_page_with_multi_thread(rs, block, offset) > 0) { 2523 return true; 2524 } 2525 2526 compression_counters.busy++; 2527 return false; 2528 } 2529 2530 /** 2531 * ram_save_target_page: save one target page 2532 * 2533 * Returns the number of pages written 2534 * 2535 * @rs: current RAM state 2536 * @pss: data about the page we want to send 2537 * @last_stage: if we are at the completion stage 2538 */ 2539 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss, 2540 bool last_stage) 2541 { 2542 RAMBlock *block = pss->block; 2543 ram_addr_t offset = pss->page << TARGET_PAGE_BITS; 2544 int res; 2545 2546 if (control_save_page(rs, block, offset, &res)) { 2547 return res; 2548 } 2549 2550 if (save_compress_page(rs, block, offset)) { 2551 return 1; 2552 } 2553 2554 res = save_zero_page(rs, block, offset); 2555 if (res > 0) { 2556 /* Must let xbzrle know, otherwise a previous (now 0'd) cached 2557 * page would be stale 2558 */ 2559 if (!save_page_use_compression(rs)) { 2560 XBZRLE_cache_lock(); 2561 xbzrle_cache_zero_page(rs, block->offset + offset); 2562 XBZRLE_cache_unlock(); 2563 } 2564 ram_release_pages(block->idstr, offset, res); 2565 return res; 2566 } 2567 2568 /* 2569 * do not use multifd for compression as the first page in the new 2570 * block should be posted out before sending the compressed page 2571 */ 2572 if (!save_page_use_compression(rs) && migrate_use_multifd()) { 2573 return ram_save_multifd_page(rs, block, offset); 2574 } 2575 2576 return ram_save_page(rs, pss, last_stage); 2577 } 2578 2579 /** 2580 * ram_save_host_page: save a whole host page 2581 * 2582 * Starting at *offset send pages up to the end of the current host 2583 * page. It's valid for the initial offset to point into the middle of 2584 * a host page in which case the remainder of the hostpage is sent. 2585 * Only dirty target pages are sent. Note that the host page size may 2586 * be a huge page for this block. 2587 * The saving stops at the boundary of the used_length of the block 2588 * if the RAMBlock isn't a multiple of the host page size. 2589 * 2590 * Returns the number of pages written or negative on error 2591 * 2592 * @rs: current RAM state 2593 * @ms: current migration state 2594 * @pss: data about the page we want to send 2595 * @last_stage: if we are at the completion stage 2596 */ 2597 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss, 2598 bool last_stage) 2599 { 2600 int tmppages, pages = 0; 2601 size_t pagesize_bits = 2602 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2603 2604 if (ramblock_is_ignored(pss->block)) { 2605 error_report("block %s should not be migrated !", pss->block->idstr); 2606 return 0; 2607 } 2608 2609 do { 2610 /* Check the pages is dirty and if it is send it */ 2611 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) { 2612 pss->page++; 2613 continue; 2614 } 2615 2616 tmppages = ram_save_target_page(rs, pss, last_stage); 2617 if (tmppages < 0) { 2618 return tmppages; 2619 } 2620 2621 pages += tmppages; 2622 if (pss->block->unsentmap) { 2623 clear_bit(pss->page, pss->block->unsentmap); 2624 } 2625 2626 pss->page++; 2627 } while ((pss->page & (pagesize_bits - 1)) && 2628 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS)); 2629 2630 /* The offset we leave with is the last one we looked at */ 2631 pss->page--; 2632 return pages; 2633 } 2634 2635 /** 2636 * ram_find_and_save_block: finds a dirty page and sends it to f 2637 * 2638 * Called within an RCU critical section. 2639 * 2640 * Returns the number of pages written where zero means no dirty pages, 2641 * or negative on error 2642 * 2643 * @rs: current RAM state 2644 * @last_stage: if we are at the completion stage 2645 * 2646 * On systems where host-page-size > target-page-size it will send all the 2647 * pages in a host page that are dirty. 2648 */ 2649 2650 static int ram_find_and_save_block(RAMState *rs, bool last_stage) 2651 { 2652 PageSearchStatus pss; 2653 int pages = 0; 2654 bool again, found; 2655 2656 /* No dirty page as there is zero RAM */ 2657 if (!ram_bytes_total()) { 2658 return pages; 2659 } 2660 2661 pss.block = rs->last_seen_block; 2662 pss.page = rs->last_page; 2663 pss.complete_round = false; 2664 2665 if (!pss.block) { 2666 pss.block = QLIST_FIRST_RCU(&ram_list.blocks); 2667 } 2668 2669 do { 2670 again = true; 2671 found = get_queued_page(rs, &pss); 2672 2673 if (!found) { 2674 /* priority queue empty, so just search for something dirty */ 2675 found = find_dirty_block(rs, &pss, &again); 2676 } 2677 2678 if (found) { 2679 pages = ram_save_host_page(rs, &pss, last_stage); 2680 } 2681 } while (!pages && again); 2682 2683 rs->last_seen_block = pss.block; 2684 rs->last_page = pss.page; 2685 2686 return pages; 2687 } 2688 2689 void acct_update_position(QEMUFile *f, size_t size, bool zero) 2690 { 2691 uint64_t pages = size / TARGET_PAGE_SIZE; 2692 2693 if (zero) { 2694 ram_counters.duplicate += pages; 2695 } else { 2696 ram_counters.normal += pages; 2697 ram_counters.transferred += size; 2698 qemu_update_position(f, size); 2699 } 2700 } 2701 2702 static uint64_t ram_bytes_total_common(bool count_ignored) 2703 { 2704 RAMBlock *block; 2705 uint64_t total = 0; 2706 2707 rcu_read_lock(); 2708 if (count_ignored) { 2709 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2710 total += block->used_length; 2711 } 2712 } else { 2713 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2714 total += block->used_length; 2715 } 2716 } 2717 rcu_read_unlock(); 2718 return total; 2719 } 2720 2721 uint64_t ram_bytes_total(void) 2722 { 2723 return ram_bytes_total_common(false); 2724 } 2725 2726 static void xbzrle_load_setup(void) 2727 { 2728 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 2729 } 2730 2731 static void xbzrle_load_cleanup(void) 2732 { 2733 g_free(XBZRLE.decoded_buf); 2734 XBZRLE.decoded_buf = NULL; 2735 } 2736 2737 static void ram_state_cleanup(RAMState **rsp) 2738 { 2739 if (*rsp) { 2740 migration_page_queue_free(*rsp); 2741 qemu_mutex_destroy(&(*rsp)->bitmap_mutex); 2742 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex); 2743 g_free(*rsp); 2744 *rsp = NULL; 2745 } 2746 } 2747 2748 static void xbzrle_cleanup(void) 2749 { 2750 XBZRLE_cache_lock(); 2751 if (XBZRLE.cache) { 2752 cache_fini(XBZRLE.cache); 2753 g_free(XBZRLE.encoded_buf); 2754 g_free(XBZRLE.current_buf); 2755 g_free(XBZRLE.zero_target_page); 2756 XBZRLE.cache = NULL; 2757 XBZRLE.encoded_buf = NULL; 2758 XBZRLE.current_buf = NULL; 2759 XBZRLE.zero_target_page = NULL; 2760 } 2761 XBZRLE_cache_unlock(); 2762 } 2763 2764 static void ram_save_cleanup(void *opaque) 2765 { 2766 RAMState **rsp = opaque; 2767 RAMBlock *block; 2768 2769 /* caller have hold iothread lock or is in a bh, so there is 2770 * no writing race against the migration bitmap 2771 */ 2772 memory_global_dirty_log_stop(); 2773 2774 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2775 g_free(block->clear_bmap); 2776 block->clear_bmap = NULL; 2777 g_free(block->bmap); 2778 block->bmap = NULL; 2779 g_free(block->unsentmap); 2780 block->unsentmap = NULL; 2781 } 2782 2783 xbzrle_cleanup(); 2784 compress_threads_save_cleanup(); 2785 ram_state_cleanup(rsp); 2786 } 2787 2788 static void ram_state_reset(RAMState *rs) 2789 { 2790 rs->last_seen_block = NULL; 2791 rs->last_sent_block = NULL; 2792 rs->last_page = 0; 2793 rs->last_version = ram_list.version; 2794 rs->ram_bulk_stage = true; 2795 rs->fpo_enabled = false; 2796 } 2797 2798 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 2799 2800 /* 2801 * 'expected' is the value you expect the bitmap mostly to be full 2802 * of; it won't bother printing lines that are all this value. 2803 * If 'todump' is null the migration bitmap is dumped. 2804 */ 2805 void ram_debug_dump_bitmap(unsigned long *todump, bool expected, 2806 unsigned long pages) 2807 { 2808 int64_t cur; 2809 int64_t linelen = 128; 2810 char linebuf[129]; 2811 2812 for (cur = 0; cur < pages; cur += linelen) { 2813 int64_t curb; 2814 bool found = false; 2815 /* 2816 * Last line; catch the case where the line length 2817 * is longer than remaining ram 2818 */ 2819 if (cur + linelen > pages) { 2820 linelen = pages - cur; 2821 } 2822 for (curb = 0; curb < linelen; curb++) { 2823 bool thisbit = test_bit(cur + curb, todump); 2824 linebuf[curb] = thisbit ? '1' : '.'; 2825 found = found || (thisbit != expected); 2826 } 2827 if (found) { 2828 linebuf[curb] = '\0'; 2829 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf); 2830 } 2831 } 2832 } 2833 2834 /* **** functions for postcopy ***** */ 2835 2836 void ram_postcopy_migrated_memory_release(MigrationState *ms) 2837 { 2838 struct RAMBlock *block; 2839 2840 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2841 unsigned long *bitmap = block->bmap; 2842 unsigned long range = block->used_length >> TARGET_PAGE_BITS; 2843 unsigned long run_start = find_next_zero_bit(bitmap, range, 0); 2844 2845 while (run_start < range) { 2846 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); 2847 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS, 2848 (run_end - run_start) << TARGET_PAGE_BITS); 2849 run_start = find_next_zero_bit(bitmap, range, run_end + 1); 2850 } 2851 } 2852 } 2853 2854 /** 2855 * postcopy_send_discard_bm_ram: discard a RAMBlock 2856 * 2857 * Returns zero on success 2858 * 2859 * Callback from postcopy_each_ram_send_discard for each RAMBlock 2860 * Note: At this point the 'unsentmap' is the processed bitmap combined 2861 * with the dirtymap; so a '1' means it's either dirty or unsent. 2862 * 2863 * @ms: current migration state 2864 * @block: RAMBlock to discard 2865 */ 2866 static int postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block) 2867 { 2868 unsigned long end = block->used_length >> TARGET_PAGE_BITS; 2869 unsigned long current; 2870 unsigned long *unsentmap = block->unsentmap; 2871 2872 for (current = 0; current < end; ) { 2873 unsigned long one = find_next_bit(unsentmap, end, current); 2874 unsigned long zero, discard_length; 2875 2876 if (one >= end) { 2877 break; 2878 } 2879 2880 zero = find_next_zero_bit(unsentmap, end, one + 1); 2881 2882 if (zero >= end) { 2883 discard_length = end - one; 2884 } else { 2885 discard_length = zero - one; 2886 } 2887 postcopy_discard_send_range(ms, one, discard_length); 2888 current = one + discard_length; 2889 } 2890 2891 return 0; 2892 } 2893 2894 /** 2895 * postcopy_each_ram_send_discard: discard all RAMBlocks 2896 * 2897 * Returns 0 for success or negative for error 2898 * 2899 * Utility for the outgoing postcopy code. 2900 * Calls postcopy_send_discard_bm_ram for each RAMBlock 2901 * passing it bitmap indexes and name. 2902 * (qemu_ram_foreach_block ends up passing unscaled lengths 2903 * which would mean postcopy code would have to deal with target page) 2904 * 2905 * @ms: current migration state 2906 */ 2907 static int postcopy_each_ram_send_discard(MigrationState *ms) 2908 { 2909 struct RAMBlock *block; 2910 int ret; 2911 2912 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2913 postcopy_discard_send_init(ms, block->idstr); 2914 2915 /* 2916 * Postcopy sends chunks of bitmap over the wire, but it 2917 * just needs indexes at this point, avoids it having 2918 * target page specific code. 2919 */ 2920 ret = postcopy_send_discard_bm_ram(ms, block); 2921 postcopy_discard_send_finish(ms); 2922 if (ret) { 2923 return ret; 2924 } 2925 } 2926 2927 return 0; 2928 } 2929 2930 /** 2931 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages 2932 * 2933 * Helper for postcopy_chunk_hostpages; it's called twice to 2934 * canonicalize the two bitmaps, that are similar, but one is 2935 * inverted. 2936 * 2937 * Postcopy requires that all target pages in a hostpage are dirty or 2938 * clean, not a mix. This function canonicalizes the bitmaps. 2939 * 2940 * @ms: current migration state 2941 * @unsent_pass: if true we need to canonicalize partially unsent host pages 2942 * otherwise we need to canonicalize partially dirty host pages 2943 * @block: block that contains the page we want to canonicalize 2944 */ 2945 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass, 2946 RAMBlock *block) 2947 { 2948 RAMState *rs = ram_state; 2949 unsigned long *bitmap = block->bmap; 2950 unsigned long *unsentmap = block->unsentmap; 2951 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; 2952 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 2953 unsigned long run_start; 2954 2955 if (block->page_size == TARGET_PAGE_SIZE) { 2956 /* Easy case - TPS==HPS for a non-huge page RAMBlock */ 2957 return; 2958 } 2959 2960 if (unsent_pass) { 2961 /* Find a sent page */ 2962 run_start = find_next_zero_bit(unsentmap, pages, 0); 2963 } else { 2964 /* Find a dirty page */ 2965 run_start = find_next_bit(bitmap, pages, 0); 2966 } 2967 2968 while (run_start < pages) { 2969 2970 /* 2971 * If the start of this run of pages is in the middle of a host 2972 * page, then we need to fixup this host page. 2973 */ 2974 if (QEMU_IS_ALIGNED(run_start, host_ratio)) { 2975 /* Find the end of this run */ 2976 if (unsent_pass) { 2977 run_start = find_next_bit(unsentmap, pages, run_start + 1); 2978 } else { 2979 run_start = find_next_zero_bit(bitmap, pages, run_start + 1); 2980 } 2981 /* 2982 * If the end isn't at the start of a host page, then the 2983 * run doesn't finish at the end of a host page 2984 * and we need to discard. 2985 */ 2986 } 2987 2988 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) { 2989 unsigned long page; 2990 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start, 2991 host_ratio); 2992 run_start = QEMU_ALIGN_UP(run_start, host_ratio); 2993 2994 /* Tell the destination to discard this page */ 2995 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) { 2996 /* For the unsent_pass we: 2997 * discard partially sent pages 2998 * For the !unsent_pass (dirty) we: 2999 * discard partially dirty pages that were sent 3000 * (any partially sent pages were already discarded 3001 * by the previous unsent_pass) 3002 */ 3003 postcopy_discard_send_range(ms, fixup_start_addr, host_ratio); 3004 } 3005 3006 /* Clean up the bitmap */ 3007 for (page = fixup_start_addr; 3008 page < fixup_start_addr + host_ratio; page++) { 3009 /* All pages in this host page are now not sent */ 3010 set_bit(page, unsentmap); 3011 3012 /* 3013 * Remark them as dirty, updating the count for any pages 3014 * that weren't previously dirty. 3015 */ 3016 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); 3017 } 3018 } 3019 3020 if (unsent_pass) { 3021 /* Find the next sent page for the next iteration */ 3022 run_start = find_next_zero_bit(unsentmap, pages, run_start); 3023 } else { 3024 /* Find the next dirty page for the next iteration */ 3025 run_start = find_next_bit(bitmap, pages, run_start); 3026 } 3027 } 3028 } 3029 3030 /** 3031 * postcopy_chunk_hostpages: discard any partially sent host page 3032 * 3033 * Utility for the outgoing postcopy code. 3034 * 3035 * Discard any partially sent host-page size chunks, mark any partially 3036 * dirty host-page size chunks as all dirty. In this case the host-page 3037 * is the host-page for the particular RAMBlock, i.e. it might be a huge page 3038 * 3039 * Returns zero on success 3040 * 3041 * @ms: current migration state 3042 * @block: block we want to work with 3043 */ 3044 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block) 3045 { 3046 postcopy_discard_send_init(ms, block->idstr); 3047 3048 /* First pass: Discard all partially sent host pages */ 3049 postcopy_chunk_hostpages_pass(ms, true, block); 3050 /* 3051 * Second pass: Ensure that all partially dirty host pages are made 3052 * fully dirty. 3053 */ 3054 postcopy_chunk_hostpages_pass(ms, false, block); 3055 3056 postcopy_discard_send_finish(ms); 3057 return 0; 3058 } 3059 3060 /** 3061 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap 3062 * 3063 * Returns zero on success 3064 * 3065 * Transmit the set of pages to be discarded after precopy to the target 3066 * these are pages that: 3067 * a) Have been previously transmitted but are now dirty again 3068 * b) Pages that have never been transmitted, this ensures that 3069 * any pages on the destination that have been mapped by background 3070 * tasks get discarded (transparent huge pages is the specific concern) 3071 * Hopefully this is pretty sparse 3072 * 3073 * @ms: current migration state 3074 */ 3075 int ram_postcopy_send_discard_bitmap(MigrationState *ms) 3076 { 3077 RAMState *rs = ram_state; 3078 RAMBlock *block; 3079 int ret; 3080 3081 rcu_read_lock(); 3082 3083 /* This should be our last sync, the src is now paused */ 3084 migration_bitmap_sync(rs); 3085 3086 /* Easiest way to make sure we don't resume in the middle of a host-page */ 3087 rs->last_seen_block = NULL; 3088 rs->last_sent_block = NULL; 3089 rs->last_page = 0; 3090 3091 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3092 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 3093 unsigned long *bitmap = block->bmap; 3094 unsigned long *unsentmap = block->unsentmap; 3095 3096 if (!unsentmap) { 3097 /* We don't have a safe way to resize the sentmap, so 3098 * if the bitmap was resized it will be NULL at this 3099 * point. 3100 */ 3101 error_report("migration ram resized during precopy phase"); 3102 rcu_read_unlock(); 3103 return -EINVAL; 3104 } 3105 /* Deal with TPS != HPS and huge pages */ 3106 ret = postcopy_chunk_hostpages(ms, block); 3107 if (ret) { 3108 rcu_read_unlock(); 3109 return ret; 3110 } 3111 3112 /* 3113 * Update the unsentmap to be unsentmap = unsentmap | dirty 3114 */ 3115 bitmap_or(unsentmap, unsentmap, bitmap, pages); 3116 #ifdef DEBUG_POSTCOPY 3117 ram_debug_dump_bitmap(unsentmap, true, pages); 3118 #endif 3119 } 3120 trace_ram_postcopy_send_discard_bitmap(); 3121 3122 ret = postcopy_each_ram_send_discard(ms); 3123 rcu_read_unlock(); 3124 3125 return ret; 3126 } 3127 3128 /** 3129 * ram_discard_range: discard dirtied pages at the beginning of postcopy 3130 * 3131 * Returns zero on success 3132 * 3133 * @rbname: name of the RAMBlock of the request. NULL means the 3134 * same that last one. 3135 * @start: RAMBlock starting page 3136 * @length: RAMBlock size 3137 */ 3138 int ram_discard_range(const char *rbname, uint64_t start, size_t length) 3139 { 3140 int ret = -1; 3141 3142 trace_ram_discard_range(rbname, start, length); 3143 3144 rcu_read_lock(); 3145 RAMBlock *rb = qemu_ram_block_by_name(rbname); 3146 3147 if (!rb) { 3148 error_report("ram_discard_range: Failed to find block '%s'", rbname); 3149 goto err; 3150 } 3151 3152 /* 3153 * On source VM, we don't need to update the received bitmap since 3154 * we don't even have one. 3155 */ 3156 if (rb->receivedmap) { 3157 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(), 3158 length >> qemu_target_page_bits()); 3159 } 3160 3161 ret = ram_block_discard_range(rb, start, length); 3162 3163 err: 3164 rcu_read_unlock(); 3165 3166 return ret; 3167 } 3168 3169 /* 3170 * For every allocation, we will try not to crash the VM if the 3171 * allocation failed. 3172 */ 3173 static int xbzrle_init(void) 3174 { 3175 Error *local_err = NULL; 3176 3177 if (!migrate_use_xbzrle()) { 3178 return 0; 3179 } 3180 3181 XBZRLE_cache_lock(); 3182 3183 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE); 3184 if (!XBZRLE.zero_target_page) { 3185 error_report("%s: Error allocating zero page", __func__); 3186 goto err_out; 3187 } 3188 3189 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(), 3190 TARGET_PAGE_SIZE, &local_err); 3191 if (!XBZRLE.cache) { 3192 error_report_err(local_err); 3193 goto free_zero_page; 3194 } 3195 3196 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 3197 if (!XBZRLE.encoded_buf) { 3198 error_report("%s: Error allocating encoded_buf", __func__); 3199 goto free_cache; 3200 } 3201 3202 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 3203 if (!XBZRLE.current_buf) { 3204 error_report("%s: Error allocating current_buf", __func__); 3205 goto free_encoded_buf; 3206 } 3207 3208 /* We are all good */ 3209 XBZRLE_cache_unlock(); 3210 return 0; 3211 3212 free_encoded_buf: 3213 g_free(XBZRLE.encoded_buf); 3214 XBZRLE.encoded_buf = NULL; 3215 free_cache: 3216 cache_fini(XBZRLE.cache); 3217 XBZRLE.cache = NULL; 3218 free_zero_page: 3219 g_free(XBZRLE.zero_target_page); 3220 XBZRLE.zero_target_page = NULL; 3221 err_out: 3222 XBZRLE_cache_unlock(); 3223 return -ENOMEM; 3224 } 3225 3226 static int ram_state_init(RAMState **rsp) 3227 { 3228 *rsp = g_try_new0(RAMState, 1); 3229 3230 if (!*rsp) { 3231 error_report("%s: Init ramstate fail", __func__); 3232 return -1; 3233 } 3234 3235 qemu_mutex_init(&(*rsp)->bitmap_mutex); 3236 qemu_mutex_init(&(*rsp)->src_page_req_mutex); 3237 QSIMPLEQ_INIT(&(*rsp)->src_page_requests); 3238 3239 /* 3240 * Count the total number of pages used by ram blocks not including any 3241 * gaps due to alignment or unplugs. 3242 * This must match with the initial values of dirty bitmap. 3243 */ 3244 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS; 3245 ram_state_reset(*rsp); 3246 3247 return 0; 3248 } 3249 3250 static void ram_list_init_bitmaps(void) 3251 { 3252 MigrationState *ms = migrate_get_current(); 3253 RAMBlock *block; 3254 unsigned long pages; 3255 uint8_t shift; 3256 3257 /* Skip setting bitmap if there is no RAM */ 3258 if (ram_bytes_total()) { 3259 shift = ms->clear_bitmap_shift; 3260 if (shift > CLEAR_BITMAP_SHIFT_MAX) { 3261 error_report("clear_bitmap_shift (%u) too big, using " 3262 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX); 3263 shift = CLEAR_BITMAP_SHIFT_MAX; 3264 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) { 3265 error_report("clear_bitmap_shift (%u) too small, using " 3266 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN); 3267 shift = CLEAR_BITMAP_SHIFT_MIN; 3268 } 3269 3270 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3271 pages = block->max_length >> TARGET_PAGE_BITS; 3272 /* 3273 * The initial dirty bitmap for migration must be set with all 3274 * ones to make sure we'll migrate every guest RAM page to 3275 * destination. 3276 * Here we set RAMBlock.bmap all to 1 because when rebegin a 3277 * new migration after a failed migration, ram_list. 3278 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole 3279 * guest memory. 3280 */ 3281 block->bmap = bitmap_new(pages); 3282 bitmap_set(block->bmap, 0, pages); 3283 block->clear_bmap_shift = shift; 3284 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift)); 3285 if (migrate_postcopy_ram()) { 3286 block->unsentmap = bitmap_new(pages); 3287 bitmap_set(block->unsentmap, 0, pages); 3288 } 3289 } 3290 } 3291 } 3292 3293 static void ram_init_bitmaps(RAMState *rs) 3294 { 3295 /* For memory_global_dirty_log_start below. */ 3296 qemu_mutex_lock_iothread(); 3297 qemu_mutex_lock_ramlist(); 3298 rcu_read_lock(); 3299 3300 ram_list_init_bitmaps(); 3301 memory_global_dirty_log_start(); 3302 migration_bitmap_sync_precopy(rs); 3303 3304 rcu_read_unlock(); 3305 qemu_mutex_unlock_ramlist(); 3306 qemu_mutex_unlock_iothread(); 3307 } 3308 3309 static int ram_init_all(RAMState **rsp) 3310 { 3311 if (ram_state_init(rsp)) { 3312 return -1; 3313 } 3314 3315 if (xbzrle_init()) { 3316 ram_state_cleanup(rsp); 3317 return -1; 3318 } 3319 3320 ram_init_bitmaps(*rsp); 3321 3322 return 0; 3323 } 3324 3325 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out) 3326 { 3327 RAMBlock *block; 3328 uint64_t pages = 0; 3329 3330 /* 3331 * Postcopy is not using xbzrle/compression, so no need for that. 3332 * Also, since source are already halted, we don't need to care 3333 * about dirty page logging as well. 3334 */ 3335 3336 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3337 pages += bitmap_count_one(block->bmap, 3338 block->used_length >> TARGET_PAGE_BITS); 3339 } 3340 3341 /* This may not be aligned with current bitmaps. Recalculate. */ 3342 rs->migration_dirty_pages = pages; 3343 3344 rs->last_seen_block = NULL; 3345 rs->last_sent_block = NULL; 3346 rs->last_page = 0; 3347 rs->last_version = ram_list.version; 3348 /* 3349 * Disable the bulk stage, otherwise we'll resend the whole RAM no 3350 * matter what we have sent. 3351 */ 3352 rs->ram_bulk_stage = false; 3353 3354 /* Update RAMState cache of output QEMUFile */ 3355 rs->f = out; 3356 3357 trace_ram_state_resume_prepare(pages); 3358 } 3359 3360 /* 3361 * This function clears bits of the free pages reported by the caller from the 3362 * migration dirty bitmap. @addr is the host address corresponding to the 3363 * start of the continuous guest free pages, and @len is the total bytes of 3364 * those pages. 3365 */ 3366 void qemu_guest_free_page_hint(void *addr, size_t len) 3367 { 3368 RAMBlock *block; 3369 ram_addr_t offset; 3370 size_t used_len, start, npages; 3371 MigrationState *s = migrate_get_current(); 3372 3373 /* This function is currently expected to be used during live migration */ 3374 if (!migration_is_setup_or_active(s->state)) { 3375 return; 3376 } 3377 3378 for (; len > 0; len -= used_len, addr += used_len) { 3379 block = qemu_ram_block_from_host(addr, false, &offset); 3380 if (unlikely(!block || offset >= block->used_length)) { 3381 /* 3382 * The implementation might not support RAMBlock resize during 3383 * live migration, but it could happen in theory with future 3384 * updates. So we add a check here to capture that case. 3385 */ 3386 error_report_once("%s unexpected error", __func__); 3387 return; 3388 } 3389 3390 if (len <= block->used_length - offset) { 3391 used_len = len; 3392 } else { 3393 used_len = block->used_length - offset; 3394 } 3395 3396 start = offset >> TARGET_PAGE_BITS; 3397 npages = used_len >> TARGET_PAGE_BITS; 3398 3399 qemu_mutex_lock(&ram_state->bitmap_mutex); 3400 ram_state->migration_dirty_pages -= 3401 bitmap_count_one_with_offset(block->bmap, start, npages); 3402 bitmap_clear(block->bmap, start, npages); 3403 qemu_mutex_unlock(&ram_state->bitmap_mutex); 3404 } 3405 } 3406 3407 /* 3408 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has 3409 * long-running RCU critical section. When rcu-reclaims in the code 3410 * start to become numerous it will be necessary to reduce the 3411 * granularity of these critical sections. 3412 */ 3413 3414 /** 3415 * ram_save_setup: Setup RAM for migration 3416 * 3417 * Returns zero to indicate success and negative for error 3418 * 3419 * @f: QEMUFile where to send the data 3420 * @opaque: RAMState pointer 3421 */ 3422 static int ram_save_setup(QEMUFile *f, void *opaque) 3423 { 3424 RAMState **rsp = opaque; 3425 RAMBlock *block; 3426 3427 if (compress_threads_save_setup()) { 3428 return -1; 3429 } 3430 3431 /* migration has already setup the bitmap, reuse it. */ 3432 if (!migration_in_colo_state()) { 3433 if (ram_init_all(rsp) != 0) { 3434 compress_threads_save_cleanup(); 3435 return -1; 3436 } 3437 } 3438 (*rsp)->f = f; 3439 3440 rcu_read_lock(); 3441 3442 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE); 3443 3444 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3445 qemu_put_byte(f, strlen(block->idstr)); 3446 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 3447 qemu_put_be64(f, block->used_length); 3448 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) { 3449 qemu_put_be64(f, block->page_size); 3450 } 3451 if (migrate_ignore_shared()) { 3452 qemu_put_be64(f, block->mr->addr); 3453 } 3454 } 3455 3456 rcu_read_unlock(); 3457 3458 ram_control_before_iterate(f, RAM_CONTROL_SETUP); 3459 ram_control_after_iterate(f, RAM_CONTROL_SETUP); 3460 3461 multifd_send_sync_main(*rsp); 3462 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3463 qemu_fflush(f); 3464 3465 return 0; 3466 } 3467 3468 /** 3469 * ram_save_iterate: iterative stage for migration 3470 * 3471 * Returns zero to indicate success and negative for error 3472 * 3473 * @f: QEMUFile where to send the data 3474 * @opaque: RAMState pointer 3475 */ 3476 static int ram_save_iterate(QEMUFile *f, void *opaque) 3477 { 3478 RAMState **temp = opaque; 3479 RAMState *rs = *temp; 3480 int ret; 3481 int i; 3482 int64_t t0; 3483 int done = 0; 3484 3485 if (blk_mig_bulk_active()) { 3486 /* Avoid transferring ram during bulk phase of block migration as 3487 * the bulk phase will usually take a long time and transferring 3488 * ram updates during that time is pointless. */ 3489 goto out; 3490 } 3491 3492 rcu_read_lock(); 3493 if (ram_list.version != rs->last_version) { 3494 ram_state_reset(rs); 3495 } 3496 3497 /* Read version before ram_list.blocks */ 3498 smp_rmb(); 3499 3500 ram_control_before_iterate(f, RAM_CONTROL_ROUND); 3501 3502 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 3503 i = 0; 3504 while ((ret = qemu_file_rate_limit(f)) == 0 || 3505 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 3506 int pages; 3507 3508 if (qemu_file_get_error(f)) { 3509 break; 3510 } 3511 3512 pages = ram_find_and_save_block(rs, false); 3513 /* no more pages to sent */ 3514 if (pages == 0) { 3515 done = 1; 3516 break; 3517 } 3518 3519 if (pages < 0) { 3520 qemu_file_set_error(f, pages); 3521 break; 3522 } 3523 3524 rs->target_page_count += pages; 3525 3526 /* we want to check in the 1st loop, just in case it was the 1st time 3527 and we had to sync the dirty bitmap. 3528 qemu_clock_get_ns() is a bit expensive, so we only check each some 3529 iterations 3530 */ 3531 if ((i & 63) == 0) { 3532 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000; 3533 if (t1 > MAX_WAIT) { 3534 trace_ram_save_iterate_big_wait(t1, i); 3535 break; 3536 } 3537 } 3538 i++; 3539 } 3540 rcu_read_unlock(); 3541 3542 /* 3543 * Must occur before EOS (or any QEMUFile operation) 3544 * because of RDMA protocol. 3545 */ 3546 ram_control_after_iterate(f, RAM_CONTROL_ROUND); 3547 3548 out: 3549 multifd_send_sync_main(rs); 3550 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3551 qemu_fflush(f); 3552 ram_counters.transferred += 8; 3553 3554 ret = qemu_file_get_error(f); 3555 if (ret < 0) { 3556 return ret; 3557 } 3558 3559 return done; 3560 } 3561 3562 /** 3563 * ram_save_complete: function called to send the remaining amount of ram 3564 * 3565 * Returns zero to indicate success or negative on error 3566 * 3567 * Called with iothread lock 3568 * 3569 * @f: QEMUFile where to send the data 3570 * @opaque: RAMState pointer 3571 */ 3572 static int ram_save_complete(QEMUFile *f, void *opaque) 3573 { 3574 RAMState **temp = opaque; 3575 RAMState *rs = *temp; 3576 int ret = 0; 3577 3578 rcu_read_lock(); 3579 3580 if (!migration_in_postcopy()) { 3581 migration_bitmap_sync_precopy(rs); 3582 } 3583 3584 ram_control_before_iterate(f, RAM_CONTROL_FINISH); 3585 3586 /* try transferring iterative blocks of memory */ 3587 3588 /* flush all remaining blocks regardless of rate limiting */ 3589 while (true) { 3590 int pages; 3591 3592 pages = ram_find_and_save_block(rs, !migration_in_colo_state()); 3593 /* no more blocks to sent */ 3594 if (pages == 0) { 3595 break; 3596 } 3597 if (pages < 0) { 3598 ret = pages; 3599 break; 3600 } 3601 } 3602 3603 flush_compressed_data(rs); 3604 ram_control_after_iterate(f, RAM_CONTROL_FINISH); 3605 3606 rcu_read_unlock(); 3607 3608 multifd_send_sync_main(rs); 3609 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3610 qemu_fflush(f); 3611 3612 return ret; 3613 } 3614 3615 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size, 3616 uint64_t *res_precopy_only, 3617 uint64_t *res_compatible, 3618 uint64_t *res_postcopy_only) 3619 { 3620 RAMState **temp = opaque; 3621 RAMState *rs = *temp; 3622 uint64_t remaining_size; 3623 3624 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3625 3626 if (!migration_in_postcopy() && 3627 remaining_size < max_size) { 3628 qemu_mutex_lock_iothread(); 3629 rcu_read_lock(); 3630 migration_bitmap_sync_precopy(rs); 3631 rcu_read_unlock(); 3632 qemu_mutex_unlock_iothread(); 3633 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3634 } 3635 3636 if (migrate_postcopy_ram()) { 3637 /* We can do postcopy, and all the data is postcopiable */ 3638 *res_compatible += remaining_size; 3639 } else { 3640 *res_precopy_only += remaining_size; 3641 } 3642 } 3643 3644 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 3645 { 3646 unsigned int xh_len; 3647 int xh_flags; 3648 uint8_t *loaded_data; 3649 3650 /* extract RLE header */ 3651 xh_flags = qemu_get_byte(f); 3652 xh_len = qemu_get_be16(f); 3653 3654 if (xh_flags != ENCODING_FLAG_XBZRLE) { 3655 error_report("Failed to load XBZRLE page - wrong compression!"); 3656 return -1; 3657 } 3658 3659 if (xh_len > TARGET_PAGE_SIZE) { 3660 error_report("Failed to load XBZRLE page - len overflow!"); 3661 return -1; 3662 } 3663 loaded_data = XBZRLE.decoded_buf; 3664 /* load data and decode */ 3665 /* it can change loaded_data to point to an internal buffer */ 3666 qemu_get_buffer_in_place(f, &loaded_data, xh_len); 3667 3668 /* decode RLE */ 3669 if (xbzrle_decode_buffer(loaded_data, xh_len, host, 3670 TARGET_PAGE_SIZE) == -1) { 3671 error_report("Failed to load XBZRLE page - decode error!"); 3672 return -1; 3673 } 3674 3675 return 0; 3676 } 3677 3678 /** 3679 * ram_block_from_stream: read a RAMBlock id from the migration stream 3680 * 3681 * Must be called from within a rcu critical section. 3682 * 3683 * Returns a pointer from within the RCU-protected ram_list. 3684 * 3685 * @f: QEMUFile where to read the data from 3686 * @flags: Page flags (mostly to see if it's a continuation of previous block) 3687 */ 3688 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags) 3689 { 3690 static RAMBlock *block = NULL; 3691 char id[256]; 3692 uint8_t len; 3693 3694 if (flags & RAM_SAVE_FLAG_CONTINUE) { 3695 if (!block) { 3696 error_report("Ack, bad migration stream!"); 3697 return NULL; 3698 } 3699 return block; 3700 } 3701 3702 len = qemu_get_byte(f); 3703 qemu_get_buffer(f, (uint8_t *)id, len); 3704 id[len] = 0; 3705 3706 block = qemu_ram_block_by_name(id); 3707 if (!block) { 3708 error_report("Can't find block %s", id); 3709 return NULL; 3710 } 3711 3712 if (ramblock_is_ignored(block)) { 3713 error_report("block %s should not be migrated !", id); 3714 return NULL; 3715 } 3716 3717 return block; 3718 } 3719 3720 static inline void *host_from_ram_block_offset(RAMBlock *block, 3721 ram_addr_t offset) 3722 { 3723 if (!offset_in_ramblock(block, offset)) { 3724 return NULL; 3725 } 3726 3727 return block->host + offset; 3728 } 3729 3730 static inline void *colo_cache_from_block_offset(RAMBlock *block, 3731 ram_addr_t offset) 3732 { 3733 if (!offset_in_ramblock(block, offset)) { 3734 return NULL; 3735 } 3736 if (!block->colo_cache) { 3737 error_report("%s: colo_cache is NULL in block :%s", 3738 __func__, block->idstr); 3739 return NULL; 3740 } 3741 3742 /* 3743 * During colo checkpoint, we need bitmap of these migrated pages. 3744 * It help us to decide which pages in ram cache should be flushed 3745 * into VM's RAM later. 3746 */ 3747 if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) { 3748 ram_state->migration_dirty_pages++; 3749 } 3750 return block->colo_cache + offset; 3751 } 3752 3753 /** 3754 * ram_handle_compressed: handle the zero page case 3755 * 3756 * If a page (or a whole RDMA chunk) has been 3757 * determined to be zero, then zap it. 3758 * 3759 * @host: host address for the zero page 3760 * @ch: what the page is filled from. We only support zero 3761 * @size: size of the zero page 3762 */ 3763 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) 3764 { 3765 if (ch != 0 || !is_zero_range(host, size)) { 3766 memset(host, ch, size); 3767 } 3768 } 3769 3770 /* return the size after decompression, or negative value on error */ 3771 static int 3772 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len, 3773 const uint8_t *source, size_t source_len) 3774 { 3775 int err; 3776 3777 err = inflateReset(stream); 3778 if (err != Z_OK) { 3779 return -1; 3780 } 3781 3782 stream->avail_in = source_len; 3783 stream->next_in = (uint8_t *)source; 3784 stream->avail_out = dest_len; 3785 stream->next_out = dest; 3786 3787 err = inflate(stream, Z_NO_FLUSH); 3788 if (err != Z_STREAM_END) { 3789 return -1; 3790 } 3791 3792 return stream->total_out; 3793 } 3794 3795 static void *do_data_decompress(void *opaque) 3796 { 3797 DecompressParam *param = opaque; 3798 unsigned long pagesize; 3799 uint8_t *des; 3800 int len, ret; 3801 3802 qemu_mutex_lock(¶m->mutex); 3803 while (!param->quit) { 3804 if (param->des) { 3805 des = param->des; 3806 len = param->len; 3807 param->des = 0; 3808 qemu_mutex_unlock(¶m->mutex); 3809 3810 pagesize = TARGET_PAGE_SIZE; 3811 3812 ret = qemu_uncompress_data(¶m->stream, des, pagesize, 3813 param->compbuf, len); 3814 if (ret < 0 && migrate_get_current()->decompress_error_check) { 3815 error_report("decompress data failed"); 3816 qemu_file_set_error(decomp_file, ret); 3817 } 3818 3819 qemu_mutex_lock(&decomp_done_lock); 3820 param->done = true; 3821 qemu_cond_signal(&decomp_done_cond); 3822 qemu_mutex_unlock(&decomp_done_lock); 3823 3824 qemu_mutex_lock(¶m->mutex); 3825 } else { 3826 qemu_cond_wait(¶m->cond, ¶m->mutex); 3827 } 3828 } 3829 qemu_mutex_unlock(¶m->mutex); 3830 3831 return NULL; 3832 } 3833 3834 static int wait_for_decompress_done(void) 3835 { 3836 int idx, thread_count; 3837 3838 if (!migrate_use_compression()) { 3839 return 0; 3840 } 3841 3842 thread_count = migrate_decompress_threads(); 3843 qemu_mutex_lock(&decomp_done_lock); 3844 for (idx = 0; idx < thread_count; idx++) { 3845 while (!decomp_param[idx].done) { 3846 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 3847 } 3848 } 3849 qemu_mutex_unlock(&decomp_done_lock); 3850 return qemu_file_get_error(decomp_file); 3851 } 3852 3853 static void compress_threads_load_cleanup(void) 3854 { 3855 int i, thread_count; 3856 3857 if (!migrate_use_compression()) { 3858 return; 3859 } 3860 thread_count = migrate_decompress_threads(); 3861 for (i = 0; i < thread_count; i++) { 3862 /* 3863 * we use it as a indicator which shows if the thread is 3864 * properly init'd or not 3865 */ 3866 if (!decomp_param[i].compbuf) { 3867 break; 3868 } 3869 3870 qemu_mutex_lock(&decomp_param[i].mutex); 3871 decomp_param[i].quit = true; 3872 qemu_cond_signal(&decomp_param[i].cond); 3873 qemu_mutex_unlock(&decomp_param[i].mutex); 3874 } 3875 for (i = 0; i < thread_count; i++) { 3876 if (!decomp_param[i].compbuf) { 3877 break; 3878 } 3879 3880 qemu_thread_join(decompress_threads + i); 3881 qemu_mutex_destroy(&decomp_param[i].mutex); 3882 qemu_cond_destroy(&decomp_param[i].cond); 3883 inflateEnd(&decomp_param[i].stream); 3884 g_free(decomp_param[i].compbuf); 3885 decomp_param[i].compbuf = NULL; 3886 } 3887 g_free(decompress_threads); 3888 g_free(decomp_param); 3889 decompress_threads = NULL; 3890 decomp_param = NULL; 3891 decomp_file = NULL; 3892 } 3893 3894 static int compress_threads_load_setup(QEMUFile *f) 3895 { 3896 int i, thread_count; 3897 3898 if (!migrate_use_compression()) { 3899 return 0; 3900 } 3901 3902 thread_count = migrate_decompress_threads(); 3903 decompress_threads = g_new0(QemuThread, thread_count); 3904 decomp_param = g_new0(DecompressParam, thread_count); 3905 qemu_mutex_init(&decomp_done_lock); 3906 qemu_cond_init(&decomp_done_cond); 3907 decomp_file = f; 3908 for (i = 0; i < thread_count; i++) { 3909 if (inflateInit(&decomp_param[i].stream) != Z_OK) { 3910 goto exit; 3911 } 3912 3913 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); 3914 qemu_mutex_init(&decomp_param[i].mutex); 3915 qemu_cond_init(&decomp_param[i].cond); 3916 decomp_param[i].done = true; 3917 decomp_param[i].quit = false; 3918 qemu_thread_create(decompress_threads + i, "decompress", 3919 do_data_decompress, decomp_param + i, 3920 QEMU_THREAD_JOINABLE); 3921 } 3922 return 0; 3923 exit: 3924 compress_threads_load_cleanup(); 3925 return -1; 3926 } 3927 3928 static void decompress_data_with_multi_threads(QEMUFile *f, 3929 void *host, int len) 3930 { 3931 int idx, thread_count; 3932 3933 thread_count = migrate_decompress_threads(); 3934 qemu_mutex_lock(&decomp_done_lock); 3935 while (true) { 3936 for (idx = 0; idx < thread_count; idx++) { 3937 if (decomp_param[idx].done) { 3938 decomp_param[idx].done = false; 3939 qemu_mutex_lock(&decomp_param[idx].mutex); 3940 qemu_get_buffer(f, decomp_param[idx].compbuf, len); 3941 decomp_param[idx].des = host; 3942 decomp_param[idx].len = len; 3943 qemu_cond_signal(&decomp_param[idx].cond); 3944 qemu_mutex_unlock(&decomp_param[idx].mutex); 3945 break; 3946 } 3947 } 3948 if (idx < thread_count) { 3949 break; 3950 } else { 3951 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 3952 } 3953 } 3954 qemu_mutex_unlock(&decomp_done_lock); 3955 } 3956 3957 /* 3958 * colo cache: this is for secondary VM, we cache the whole 3959 * memory of the secondary VM, it is need to hold the global lock 3960 * to call this helper. 3961 */ 3962 int colo_init_ram_cache(void) 3963 { 3964 RAMBlock *block; 3965 3966 rcu_read_lock(); 3967 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3968 block->colo_cache = qemu_anon_ram_alloc(block->used_length, 3969 NULL, 3970 false); 3971 if (!block->colo_cache) { 3972 error_report("%s: Can't alloc memory for COLO cache of block %s," 3973 "size 0x" RAM_ADDR_FMT, __func__, block->idstr, 3974 block->used_length); 3975 goto out_locked; 3976 } 3977 memcpy(block->colo_cache, block->host, block->used_length); 3978 } 3979 rcu_read_unlock(); 3980 /* 3981 * Record the dirty pages that sent by PVM, we use this dirty bitmap together 3982 * with to decide which page in cache should be flushed into SVM's RAM. Here 3983 * we use the same name 'ram_bitmap' as for migration. 3984 */ 3985 if (ram_bytes_total()) { 3986 RAMBlock *block; 3987 3988 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3989 unsigned long pages = block->max_length >> TARGET_PAGE_BITS; 3990 3991 block->bmap = bitmap_new(pages); 3992 bitmap_set(block->bmap, 0, pages); 3993 } 3994 } 3995 ram_state = g_new0(RAMState, 1); 3996 ram_state->migration_dirty_pages = 0; 3997 qemu_mutex_init(&ram_state->bitmap_mutex); 3998 memory_global_dirty_log_start(); 3999 4000 return 0; 4001 4002 out_locked: 4003 4004 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4005 if (block->colo_cache) { 4006 qemu_anon_ram_free(block->colo_cache, block->used_length); 4007 block->colo_cache = NULL; 4008 } 4009 } 4010 4011 rcu_read_unlock(); 4012 return -errno; 4013 } 4014 4015 /* It is need to hold the global lock to call this helper */ 4016 void colo_release_ram_cache(void) 4017 { 4018 RAMBlock *block; 4019 4020 memory_global_dirty_log_stop(); 4021 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4022 g_free(block->bmap); 4023 block->bmap = NULL; 4024 } 4025 4026 rcu_read_lock(); 4027 4028 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4029 if (block->colo_cache) { 4030 qemu_anon_ram_free(block->colo_cache, block->used_length); 4031 block->colo_cache = NULL; 4032 } 4033 } 4034 4035 rcu_read_unlock(); 4036 qemu_mutex_destroy(&ram_state->bitmap_mutex); 4037 g_free(ram_state); 4038 ram_state = NULL; 4039 } 4040 4041 /** 4042 * ram_load_setup: Setup RAM for migration incoming side 4043 * 4044 * Returns zero to indicate success and negative for error 4045 * 4046 * @f: QEMUFile where to receive the data 4047 * @opaque: RAMState pointer 4048 */ 4049 static int ram_load_setup(QEMUFile *f, void *opaque) 4050 { 4051 if (compress_threads_load_setup(f)) { 4052 return -1; 4053 } 4054 4055 xbzrle_load_setup(); 4056 ramblock_recv_map_init(); 4057 4058 return 0; 4059 } 4060 4061 static int ram_load_cleanup(void *opaque) 4062 { 4063 RAMBlock *rb; 4064 4065 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 4066 if (ramblock_is_pmem(rb)) { 4067 pmem_persist(rb->host, rb->used_length); 4068 } 4069 } 4070 4071 xbzrle_load_cleanup(); 4072 compress_threads_load_cleanup(); 4073 4074 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 4075 g_free(rb->receivedmap); 4076 rb->receivedmap = NULL; 4077 } 4078 4079 return 0; 4080 } 4081 4082 /** 4083 * ram_postcopy_incoming_init: allocate postcopy data structures 4084 * 4085 * Returns 0 for success and negative if there was one error 4086 * 4087 * @mis: current migration incoming state 4088 * 4089 * Allocate data structures etc needed by incoming migration with 4090 * postcopy-ram. postcopy-ram's similarly names 4091 * postcopy_ram_incoming_init does the work. 4092 */ 4093 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 4094 { 4095 return postcopy_ram_incoming_init(mis); 4096 } 4097 4098 /** 4099 * ram_load_postcopy: load a page in postcopy case 4100 * 4101 * Returns 0 for success or -errno in case of error 4102 * 4103 * Called in postcopy mode by ram_load(). 4104 * rcu_read_lock is taken prior to this being called. 4105 * 4106 * @f: QEMUFile where to send the data 4107 */ 4108 static int ram_load_postcopy(QEMUFile *f) 4109 { 4110 int flags = 0, ret = 0; 4111 bool place_needed = false; 4112 bool matches_target_page_size = false; 4113 MigrationIncomingState *mis = migration_incoming_get_current(); 4114 /* Temporary page that is later 'placed' */ 4115 void *postcopy_host_page = postcopy_get_tmp_page(mis); 4116 void *last_host = NULL; 4117 bool all_zero = false; 4118 4119 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 4120 ram_addr_t addr; 4121 void *host = NULL; 4122 void *page_buffer = NULL; 4123 void *place_source = NULL; 4124 RAMBlock *block = NULL; 4125 uint8_t ch; 4126 4127 addr = qemu_get_be64(f); 4128 4129 /* 4130 * If qemu file error, we should stop here, and then "addr" 4131 * may be invalid 4132 */ 4133 ret = qemu_file_get_error(f); 4134 if (ret) { 4135 break; 4136 } 4137 4138 flags = addr & ~TARGET_PAGE_MASK; 4139 addr &= TARGET_PAGE_MASK; 4140 4141 trace_ram_load_postcopy_loop((uint64_t)addr, flags); 4142 place_needed = false; 4143 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) { 4144 block = ram_block_from_stream(f, flags); 4145 4146 host = host_from_ram_block_offset(block, addr); 4147 if (!host) { 4148 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 4149 ret = -EINVAL; 4150 break; 4151 } 4152 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE; 4153 /* 4154 * Postcopy requires that we place whole host pages atomically; 4155 * these may be huge pages for RAMBlocks that are backed by 4156 * hugetlbfs. 4157 * To make it atomic, the data is read into a temporary page 4158 * that's moved into place later. 4159 * The migration protocol uses, possibly smaller, target-pages 4160 * however the source ensures it always sends all the components 4161 * of a host page in order. 4162 */ 4163 page_buffer = postcopy_host_page + 4164 ((uintptr_t)host & (block->page_size - 1)); 4165 /* If all TP are zero then we can optimise the place */ 4166 if (!((uintptr_t)host & (block->page_size - 1))) { 4167 all_zero = true; 4168 } else { 4169 /* not the 1st TP within the HP */ 4170 if (host != (last_host + TARGET_PAGE_SIZE)) { 4171 error_report("Non-sequential target page %p/%p", 4172 host, last_host); 4173 ret = -EINVAL; 4174 break; 4175 } 4176 } 4177 4178 4179 /* 4180 * If it's the last part of a host page then we place the host 4181 * page 4182 */ 4183 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) & 4184 (block->page_size - 1)) == 0; 4185 place_source = postcopy_host_page; 4186 } 4187 last_host = host; 4188 4189 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 4190 case RAM_SAVE_FLAG_ZERO: 4191 ch = qemu_get_byte(f); 4192 memset(page_buffer, ch, TARGET_PAGE_SIZE); 4193 if (ch) { 4194 all_zero = false; 4195 } 4196 break; 4197 4198 case RAM_SAVE_FLAG_PAGE: 4199 all_zero = false; 4200 if (!matches_target_page_size) { 4201 /* For huge pages, we always use temporary buffer */ 4202 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 4203 } else { 4204 /* 4205 * For small pages that matches target page size, we 4206 * avoid the qemu_file copy. Instead we directly use 4207 * the buffer of QEMUFile to place the page. Note: we 4208 * cannot do any QEMUFile operation before using that 4209 * buffer to make sure the buffer is valid when 4210 * placing the page. 4211 */ 4212 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 4213 TARGET_PAGE_SIZE); 4214 } 4215 break; 4216 case RAM_SAVE_FLAG_EOS: 4217 /* normal exit */ 4218 multifd_recv_sync_main(); 4219 break; 4220 default: 4221 error_report("Unknown combination of migration flags: %#x" 4222 " (postcopy mode)", flags); 4223 ret = -EINVAL; 4224 break; 4225 } 4226 4227 /* Detect for any possible file errors */ 4228 if (!ret && qemu_file_get_error(f)) { 4229 ret = qemu_file_get_error(f); 4230 } 4231 4232 if (!ret && place_needed) { 4233 /* This gets called at the last target page in the host page */ 4234 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size; 4235 4236 if (all_zero) { 4237 ret = postcopy_place_page_zero(mis, place_dest, 4238 block); 4239 } else { 4240 ret = postcopy_place_page(mis, place_dest, 4241 place_source, block); 4242 } 4243 } 4244 } 4245 4246 return ret; 4247 } 4248 4249 static bool postcopy_is_advised(void) 4250 { 4251 PostcopyState ps = postcopy_state_get(); 4252 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END; 4253 } 4254 4255 static bool postcopy_is_running(void) 4256 { 4257 PostcopyState ps = postcopy_state_get(); 4258 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END; 4259 } 4260 4261 /* 4262 * Flush content of RAM cache into SVM's memory. 4263 * Only flush the pages that be dirtied by PVM or SVM or both. 4264 */ 4265 static void colo_flush_ram_cache(void) 4266 { 4267 RAMBlock *block = NULL; 4268 void *dst_host; 4269 void *src_host; 4270 unsigned long offset = 0; 4271 4272 memory_global_dirty_log_sync(); 4273 rcu_read_lock(); 4274 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4275 ramblock_sync_dirty_bitmap(ram_state, block); 4276 } 4277 rcu_read_unlock(); 4278 4279 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages); 4280 rcu_read_lock(); 4281 block = QLIST_FIRST_RCU(&ram_list.blocks); 4282 4283 while (block) { 4284 offset = migration_bitmap_find_dirty(ram_state, block, offset); 4285 4286 if (offset << TARGET_PAGE_BITS >= block->used_length) { 4287 offset = 0; 4288 block = QLIST_NEXT_RCU(block, next); 4289 } else { 4290 migration_bitmap_clear_dirty(ram_state, block, offset); 4291 dst_host = block->host + (offset << TARGET_PAGE_BITS); 4292 src_host = block->colo_cache + (offset << TARGET_PAGE_BITS); 4293 memcpy(dst_host, src_host, TARGET_PAGE_SIZE); 4294 } 4295 } 4296 4297 rcu_read_unlock(); 4298 trace_colo_flush_ram_cache_end(); 4299 } 4300 4301 /** 4302 * ram_load_precopy: load pages in precopy case 4303 * 4304 * Returns 0 for success or -errno in case of error 4305 * 4306 * Called in precopy mode by ram_load(). 4307 * rcu_read_lock is taken prior to this being called. 4308 * 4309 * @f: QEMUFile where to send the data 4310 */ 4311 static int ram_load_precopy(QEMUFile *f) 4312 { 4313 int flags = 0, ret = 0, invalid_flags = 0, len = 0; 4314 /* ADVISE is earlier, it shows the source has the postcopy capability on */ 4315 bool postcopy_advised = postcopy_is_advised(); 4316 if (!migrate_use_compression()) { 4317 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE; 4318 } 4319 4320 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 4321 ram_addr_t addr, total_ram_bytes; 4322 void *host = NULL; 4323 uint8_t ch; 4324 4325 addr = qemu_get_be64(f); 4326 flags = addr & ~TARGET_PAGE_MASK; 4327 addr &= TARGET_PAGE_MASK; 4328 4329 if (flags & invalid_flags) { 4330 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) { 4331 error_report("Received an unexpected compressed page"); 4332 } 4333 4334 ret = -EINVAL; 4335 break; 4336 } 4337 4338 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 4339 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { 4340 RAMBlock *block = ram_block_from_stream(f, flags); 4341 4342 /* 4343 * After going into COLO, we should load the Page into colo_cache. 4344 */ 4345 if (migration_incoming_in_colo_state()) { 4346 host = colo_cache_from_block_offset(block, addr); 4347 } else { 4348 host = host_from_ram_block_offset(block, addr); 4349 } 4350 if (!host) { 4351 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 4352 ret = -EINVAL; 4353 break; 4354 } 4355 4356 if (!migration_incoming_in_colo_state()) { 4357 ramblock_recv_bitmap_set(block, host); 4358 } 4359 4360 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); 4361 } 4362 4363 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 4364 case RAM_SAVE_FLAG_MEM_SIZE: 4365 /* Synchronize RAM block list */ 4366 total_ram_bytes = addr; 4367 while (!ret && total_ram_bytes) { 4368 RAMBlock *block; 4369 char id[256]; 4370 ram_addr_t length; 4371 4372 len = qemu_get_byte(f); 4373 qemu_get_buffer(f, (uint8_t *)id, len); 4374 id[len] = 0; 4375 length = qemu_get_be64(f); 4376 4377 block = qemu_ram_block_by_name(id); 4378 if (block && !qemu_ram_is_migratable(block)) { 4379 error_report("block %s should not be migrated !", id); 4380 ret = -EINVAL; 4381 } else if (block) { 4382 if (length != block->used_length) { 4383 Error *local_err = NULL; 4384 4385 ret = qemu_ram_resize(block, length, 4386 &local_err); 4387 if (local_err) { 4388 error_report_err(local_err); 4389 } 4390 } 4391 /* For postcopy we need to check hugepage sizes match */ 4392 if (postcopy_advised && 4393 block->page_size != qemu_host_page_size) { 4394 uint64_t remote_page_size = qemu_get_be64(f); 4395 if (remote_page_size != block->page_size) { 4396 error_report("Mismatched RAM page size %s " 4397 "(local) %zd != %" PRId64, 4398 id, block->page_size, 4399 remote_page_size); 4400 ret = -EINVAL; 4401 } 4402 } 4403 if (migrate_ignore_shared()) { 4404 hwaddr addr = qemu_get_be64(f); 4405 if (ramblock_is_ignored(block) && 4406 block->mr->addr != addr) { 4407 error_report("Mismatched GPAs for block %s " 4408 "%" PRId64 "!= %" PRId64, 4409 id, (uint64_t)addr, 4410 (uint64_t)block->mr->addr); 4411 ret = -EINVAL; 4412 } 4413 } 4414 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG, 4415 block->idstr); 4416 } else { 4417 error_report("Unknown ramblock \"%s\", cannot " 4418 "accept migration", id); 4419 ret = -EINVAL; 4420 } 4421 4422 total_ram_bytes -= length; 4423 } 4424 break; 4425 4426 case RAM_SAVE_FLAG_ZERO: 4427 ch = qemu_get_byte(f); 4428 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); 4429 break; 4430 4431 case RAM_SAVE_FLAG_PAGE: 4432 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 4433 break; 4434 4435 case RAM_SAVE_FLAG_COMPRESS_PAGE: 4436 len = qemu_get_be32(f); 4437 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 4438 error_report("Invalid compressed data length: %d", len); 4439 ret = -EINVAL; 4440 break; 4441 } 4442 decompress_data_with_multi_threads(f, host, len); 4443 break; 4444 4445 case RAM_SAVE_FLAG_XBZRLE: 4446 if (load_xbzrle(f, addr, host) < 0) { 4447 error_report("Failed to decompress XBZRLE page at " 4448 RAM_ADDR_FMT, addr); 4449 ret = -EINVAL; 4450 break; 4451 } 4452 break; 4453 case RAM_SAVE_FLAG_EOS: 4454 /* normal exit */ 4455 multifd_recv_sync_main(); 4456 break; 4457 default: 4458 if (flags & RAM_SAVE_FLAG_HOOK) { 4459 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL); 4460 } else { 4461 error_report("Unknown combination of migration flags: %#x", 4462 flags); 4463 ret = -EINVAL; 4464 } 4465 } 4466 if (!ret) { 4467 ret = qemu_file_get_error(f); 4468 } 4469 } 4470 4471 return ret; 4472 } 4473 4474 static int ram_load(QEMUFile *f, void *opaque, int version_id) 4475 { 4476 int ret = 0; 4477 static uint64_t seq_iter; 4478 /* 4479 * If system is running in postcopy mode, page inserts to host memory must 4480 * be atomic 4481 */ 4482 bool postcopy_running = postcopy_is_running(); 4483 4484 seq_iter++; 4485 4486 if (version_id != 4) { 4487 return -EINVAL; 4488 } 4489 4490 /* 4491 * This RCU critical section can be very long running. 4492 * When RCU reclaims in the code start to become numerous, 4493 * it will be necessary to reduce the granularity of this 4494 * critical section. 4495 */ 4496 rcu_read_lock(); 4497 4498 if (postcopy_running) { 4499 ret = ram_load_postcopy(f); 4500 } else { 4501 ret = ram_load_precopy(f); 4502 } 4503 4504 ret |= wait_for_decompress_done(); 4505 rcu_read_unlock(); 4506 trace_ram_load_complete(ret, seq_iter); 4507 4508 if (!ret && migration_incoming_in_colo_state()) { 4509 colo_flush_ram_cache(); 4510 } 4511 return ret; 4512 } 4513 4514 static bool ram_has_postcopy(void *opaque) 4515 { 4516 RAMBlock *rb; 4517 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 4518 if (ramblock_is_pmem(rb)) { 4519 info_report("Block: %s, host: %p is a nvdimm memory, postcopy" 4520 "is not supported now!", rb->idstr, rb->host); 4521 return false; 4522 } 4523 } 4524 4525 return migrate_postcopy_ram(); 4526 } 4527 4528 /* Sync all the dirty bitmap with destination VM. */ 4529 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs) 4530 { 4531 RAMBlock *block; 4532 QEMUFile *file = s->to_dst_file; 4533 int ramblock_count = 0; 4534 4535 trace_ram_dirty_bitmap_sync_start(); 4536 4537 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4538 qemu_savevm_send_recv_bitmap(file, block->idstr); 4539 trace_ram_dirty_bitmap_request(block->idstr); 4540 ramblock_count++; 4541 } 4542 4543 trace_ram_dirty_bitmap_sync_wait(); 4544 4545 /* Wait until all the ramblocks' dirty bitmap synced */ 4546 while (ramblock_count--) { 4547 qemu_sem_wait(&s->rp_state.rp_sem); 4548 } 4549 4550 trace_ram_dirty_bitmap_sync_complete(); 4551 4552 return 0; 4553 } 4554 4555 static void ram_dirty_bitmap_reload_notify(MigrationState *s) 4556 { 4557 qemu_sem_post(&s->rp_state.rp_sem); 4558 } 4559 4560 /* 4561 * Read the received bitmap, revert it as the initial dirty bitmap. 4562 * This is only used when the postcopy migration is paused but wants 4563 * to resume from a middle point. 4564 */ 4565 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block) 4566 { 4567 int ret = -EINVAL; 4568 QEMUFile *file = s->rp_state.from_dst_file; 4569 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS; 4570 uint64_t local_size = DIV_ROUND_UP(nbits, 8); 4571 uint64_t size, end_mark; 4572 4573 trace_ram_dirty_bitmap_reload_begin(block->idstr); 4574 4575 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) { 4576 error_report("%s: incorrect state %s", __func__, 4577 MigrationStatus_str(s->state)); 4578 return -EINVAL; 4579 } 4580 4581 /* 4582 * Note: see comments in ramblock_recv_bitmap_send() on why we 4583 * need the endianess convertion, and the paddings. 4584 */ 4585 local_size = ROUND_UP(local_size, 8); 4586 4587 /* Add paddings */ 4588 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 4589 4590 size = qemu_get_be64(file); 4591 4592 /* The size of the bitmap should match with our ramblock */ 4593 if (size != local_size) { 4594 error_report("%s: ramblock '%s' bitmap size mismatch " 4595 "(0x%"PRIx64" != 0x%"PRIx64")", __func__, 4596 block->idstr, size, local_size); 4597 ret = -EINVAL; 4598 goto out; 4599 } 4600 4601 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size); 4602 end_mark = qemu_get_be64(file); 4603 4604 ret = qemu_file_get_error(file); 4605 if (ret || size != local_size) { 4606 error_report("%s: read bitmap failed for ramblock '%s': %d" 4607 " (size 0x%"PRIx64", got: 0x%"PRIx64")", 4608 __func__, block->idstr, ret, local_size, size); 4609 ret = -EIO; 4610 goto out; 4611 } 4612 4613 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) { 4614 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64, 4615 __func__, block->idstr, end_mark); 4616 ret = -EINVAL; 4617 goto out; 4618 } 4619 4620 /* 4621 * Endianess convertion. We are during postcopy (though paused). 4622 * The dirty bitmap won't change. We can directly modify it. 4623 */ 4624 bitmap_from_le(block->bmap, le_bitmap, nbits); 4625 4626 /* 4627 * What we received is "received bitmap". Revert it as the initial 4628 * dirty bitmap for this ramblock. 4629 */ 4630 bitmap_complement(block->bmap, block->bmap, nbits); 4631 4632 trace_ram_dirty_bitmap_reload_complete(block->idstr); 4633 4634 /* 4635 * We succeeded to sync bitmap for current ramblock. If this is 4636 * the last one to sync, we need to notify the main send thread. 4637 */ 4638 ram_dirty_bitmap_reload_notify(s); 4639 4640 ret = 0; 4641 out: 4642 g_free(le_bitmap); 4643 return ret; 4644 } 4645 4646 static int ram_resume_prepare(MigrationState *s, void *opaque) 4647 { 4648 RAMState *rs = *(RAMState **)opaque; 4649 int ret; 4650 4651 ret = ram_dirty_bitmap_sync_all(s, rs); 4652 if (ret) { 4653 return ret; 4654 } 4655 4656 ram_state_resume_prepare(rs, s->to_dst_file); 4657 4658 return 0; 4659 } 4660 4661 static SaveVMHandlers savevm_ram_handlers = { 4662 .save_setup = ram_save_setup, 4663 .save_live_iterate = ram_save_iterate, 4664 .save_live_complete_postcopy = ram_save_complete, 4665 .save_live_complete_precopy = ram_save_complete, 4666 .has_postcopy = ram_has_postcopy, 4667 .save_live_pending = ram_save_pending, 4668 .load_state = ram_load, 4669 .save_cleanup = ram_save_cleanup, 4670 .load_setup = ram_load_setup, 4671 .load_cleanup = ram_load_cleanup, 4672 .resume_prepare = ram_resume_prepare, 4673 }; 4674 4675 void ram_mig_init(void) 4676 { 4677 qemu_mutex_init(&XBZRLE.lock); 4678 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state); 4679 } 4680