1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 #include "qemu/osdep.h" 29 #include "cpu.h" 30 #include <zlib.h> 31 #include "qapi-event.h" 32 #include "qemu/cutils.h" 33 #include "qemu/bitops.h" 34 #include "qemu/bitmap.h" 35 #include "qemu/main-loop.h" 36 #include "xbzrle.h" 37 #include "ram.h" 38 #include "migration.h" 39 #include "migration/register.h" 40 #include "migration/misc.h" 41 #include "qemu-file.h" 42 #include "postcopy-ram.h" 43 #include "migration/page_cache.h" 44 #include "qemu/error-report.h" 45 #include "trace.h" 46 #include "exec/ram_addr.h" 47 #include "qemu/rcu_queue.h" 48 #include "migration/colo.h" 49 50 /***********************************************************/ 51 /* ram save/restore */ 52 53 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it 54 * worked for pages that where filled with the same char. We switched 55 * it to only search for the zero value. And to avoid confusion with 56 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it. 57 */ 58 59 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ 60 #define RAM_SAVE_FLAG_ZERO 0x02 61 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 62 #define RAM_SAVE_FLAG_PAGE 0x08 63 #define RAM_SAVE_FLAG_EOS 0x10 64 #define RAM_SAVE_FLAG_CONTINUE 0x20 65 #define RAM_SAVE_FLAG_XBZRLE 0x40 66 /* 0x80 is reserved in migration.h start with 0x100 next */ 67 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 68 69 static inline bool is_zero_range(uint8_t *p, uint64_t size) 70 { 71 return buffer_is_zero(p, size); 72 } 73 74 XBZRLECacheStats xbzrle_counters; 75 76 /* struct contains XBZRLE cache and a static page 77 used by the compression */ 78 static struct { 79 /* buffer used for XBZRLE encoding */ 80 uint8_t *encoded_buf; 81 /* buffer for storing page content */ 82 uint8_t *current_buf; 83 /* Cache for XBZRLE, Protected by lock. */ 84 PageCache *cache; 85 QemuMutex lock; 86 /* it will store a page full of zeros */ 87 uint8_t *zero_target_page; 88 /* buffer used for XBZRLE decoding */ 89 uint8_t *decoded_buf; 90 } XBZRLE; 91 92 static void XBZRLE_cache_lock(void) 93 { 94 if (migrate_use_xbzrle()) 95 qemu_mutex_lock(&XBZRLE.lock); 96 } 97 98 static void XBZRLE_cache_unlock(void) 99 { 100 if (migrate_use_xbzrle()) 101 qemu_mutex_unlock(&XBZRLE.lock); 102 } 103 104 /** 105 * xbzrle_cache_resize: resize the xbzrle cache 106 * 107 * This function is called from qmp_migrate_set_cache_size in main 108 * thread, possibly while a migration is in progress. A running 109 * migration may be using the cache and might finish during this call, 110 * hence changes to the cache are protected by XBZRLE.lock(). 111 * 112 * Returns the new_size or negative in case of error. 113 * 114 * @new_size: new cache size 115 */ 116 int64_t xbzrle_cache_resize(int64_t new_size) 117 { 118 PageCache *new_cache; 119 int64_t ret; 120 121 if (new_size < TARGET_PAGE_SIZE) { 122 return -1; 123 } 124 125 XBZRLE_cache_lock(); 126 127 if (XBZRLE.cache != NULL) { 128 if (pow2floor(new_size) == migrate_xbzrle_cache_size()) { 129 goto out_new_size; 130 } 131 new_cache = cache_init(new_size / TARGET_PAGE_SIZE, 132 TARGET_PAGE_SIZE); 133 if (!new_cache) { 134 error_report("Error creating cache"); 135 ret = -1; 136 goto out; 137 } 138 139 cache_fini(XBZRLE.cache); 140 XBZRLE.cache = new_cache; 141 } 142 143 out_new_size: 144 ret = pow2floor(new_size); 145 out: 146 XBZRLE_cache_unlock(); 147 return ret; 148 } 149 150 /* 151 * An outstanding page request, on the source, having been received 152 * and queued 153 */ 154 struct RAMSrcPageRequest { 155 RAMBlock *rb; 156 hwaddr offset; 157 hwaddr len; 158 159 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; 160 }; 161 162 /* State of RAM for migration */ 163 struct RAMState { 164 /* QEMUFile used for this migration */ 165 QEMUFile *f; 166 /* Last block that we have visited searching for dirty pages */ 167 RAMBlock *last_seen_block; 168 /* Last block from where we have sent data */ 169 RAMBlock *last_sent_block; 170 /* Last dirty target page we have sent */ 171 ram_addr_t last_page; 172 /* last ram version we have seen */ 173 uint32_t last_version; 174 /* We are in the first round */ 175 bool ram_bulk_stage; 176 /* How many times we have dirty too many pages */ 177 int dirty_rate_high_cnt; 178 /* these variables are used for bitmap sync */ 179 /* last time we did a full bitmap_sync */ 180 int64_t time_last_bitmap_sync; 181 /* bytes transferred at start_time */ 182 uint64_t bytes_xfer_prev; 183 /* number of dirty pages since start_time */ 184 uint64_t num_dirty_pages_period; 185 /* xbzrle misses since the beginning of the period */ 186 uint64_t xbzrle_cache_miss_prev; 187 /* number of iterations at the beginning of period */ 188 uint64_t iterations_prev; 189 /* Iterations since start */ 190 uint64_t iterations; 191 /* protects modification of the bitmap */ 192 uint64_t migration_dirty_pages; 193 /* number of dirty bits in the bitmap */ 194 QemuMutex bitmap_mutex; 195 /* The RAMBlock used in the last src_page_requests */ 196 RAMBlock *last_req_rb; 197 /* Queue of outstanding page requests from the destination */ 198 QemuMutex src_page_req_mutex; 199 QSIMPLEQ_HEAD(src_page_requests, RAMSrcPageRequest) src_page_requests; 200 }; 201 typedef struct RAMState RAMState; 202 203 static RAMState *ram_state; 204 205 uint64_t ram_bytes_remaining(void) 206 { 207 return ram_state->migration_dirty_pages * TARGET_PAGE_SIZE; 208 } 209 210 MigrationStats ram_counters; 211 212 /* used by the search for pages to send */ 213 struct PageSearchStatus { 214 /* Current block being searched */ 215 RAMBlock *block; 216 /* Current page to search from */ 217 unsigned long page; 218 /* Set once we wrap around */ 219 bool complete_round; 220 }; 221 typedef struct PageSearchStatus PageSearchStatus; 222 223 struct CompressParam { 224 bool done; 225 bool quit; 226 QEMUFile *file; 227 QemuMutex mutex; 228 QemuCond cond; 229 RAMBlock *block; 230 ram_addr_t offset; 231 }; 232 typedef struct CompressParam CompressParam; 233 234 struct DecompressParam { 235 bool done; 236 bool quit; 237 QemuMutex mutex; 238 QemuCond cond; 239 void *des; 240 uint8_t *compbuf; 241 int len; 242 }; 243 typedef struct DecompressParam DecompressParam; 244 245 static CompressParam *comp_param; 246 static QemuThread *compress_threads; 247 /* comp_done_cond is used to wake up the migration thread when 248 * one of the compression threads has finished the compression. 249 * comp_done_lock is used to co-work with comp_done_cond. 250 */ 251 static QemuMutex comp_done_lock; 252 static QemuCond comp_done_cond; 253 /* The empty QEMUFileOps will be used by file in CompressParam */ 254 static const QEMUFileOps empty_ops = { }; 255 256 static DecompressParam *decomp_param; 257 static QemuThread *decompress_threads; 258 static QemuMutex decomp_done_lock; 259 static QemuCond decomp_done_cond; 260 261 static int do_compress_ram_page(QEMUFile *f, RAMBlock *block, 262 ram_addr_t offset); 263 264 static void *do_data_compress(void *opaque) 265 { 266 CompressParam *param = opaque; 267 RAMBlock *block; 268 ram_addr_t offset; 269 270 qemu_mutex_lock(¶m->mutex); 271 while (!param->quit) { 272 if (param->block) { 273 block = param->block; 274 offset = param->offset; 275 param->block = NULL; 276 qemu_mutex_unlock(¶m->mutex); 277 278 do_compress_ram_page(param->file, block, offset); 279 280 qemu_mutex_lock(&comp_done_lock); 281 param->done = true; 282 qemu_cond_signal(&comp_done_cond); 283 qemu_mutex_unlock(&comp_done_lock); 284 285 qemu_mutex_lock(¶m->mutex); 286 } else { 287 qemu_cond_wait(¶m->cond, ¶m->mutex); 288 } 289 } 290 qemu_mutex_unlock(¶m->mutex); 291 292 return NULL; 293 } 294 295 static inline void terminate_compression_threads(void) 296 { 297 int idx, thread_count; 298 299 thread_count = migrate_compress_threads(); 300 301 for (idx = 0; idx < thread_count; idx++) { 302 qemu_mutex_lock(&comp_param[idx].mutex); 303 comp_param[idx].quit = true; 304 qemu_cond_signal(&comp_param[idx].cond); 305 qemu_mutex_unlock(&comp_param[idx].mutex); 306 } 307 } 308 309 static void compress_threads_save_cleanup(void) 310 { 311 int i, thread_count; 312 313 if (!migrate_use_compression()) { 314 return; 315 } 316 terminate_compression_threads(); 317 thread_count = migrate_compress_threads(); 318 for (i = 0; i < thread_count; i++) { 319 qemu_thread_join(compress_threads + i); 320 qemu_fclose(comp_param[i].file); 321 qemu_mutex_destroy(&comp_param[i].mutex); 322 qemu_cond_destroy(&comp_param[i].cond); 323 } 324 qemu_mutex_destroy(&comp_done_lock); 325 qemu_cond_destroy(&comp_done_cond); 326 g_free(compress_threads); 327 g_free(comp_param); 328 compress_threads = NULL; 329 comp_param = NULL; 330 } 331 332 static void compress_threads_save_setup(void) 333 { 334 int i, thread_count; 335 336 if (!migrate_use_compression()) { 337 return; 338 } 339 thread_count = migrate_compress_threads(); 340 compress_threads = g_new0(QemuThread, thread_count); 341 comp_param = g_new0(CompressParam, thread_count); 342 qemu_cond_init(&comp_done_cond); 343 qemu_mutex_init(&comp_done_lock); 344 for (i = 0; i < thread_count; i++) { 345 /* comp_param[i].file is just used as a dummy buffer to save data, 346 * set its ops to empty. 347 */ 348 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops); 349 comp_param[i].done = true; 350 comp_param[i].quit = false; 351 qemu_mutex_init(&comp_param[i].mutex); 352 qemu_cond_init(&comp_param[i].cond); 353 qemu_thread_create(compress_threads + i, "compress", 354 do_data_compress, comp_param + i, 355 QEMU_THREAD_JOINABLE); 356 } 357 } 358 359 /** 360 * save_page_header: write page header to wire 361 * 362 * If this is the 1st block, it also writes the block identification 363 * 364 * Returns the number of bytes written 365 * 366 * @f: QEMUFile where to send the data 367 * @block: block that contains the page we want to send 368 * @offset: offset inside the block for the page 369 * in the lower bits, it contains flags 370 */ 371 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block, 372 ram_addr_t offset) 373 { 374 size_t size, len; 375 376 if (block == rs->last_sent_block) { 377 offset |= RAM_SAVE_FLAG_CONTINUE; 378 } 379 qemu_put_be64(f, offset); 380 size = 8; 381 382 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) { 383 len = strlen(block->idstr); 384 qemu_put_byte(f, len); 385 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 386 size += 1 + len; 387 rs->last_sent_block = block; 388 } 389 return size; 390 } 391 392 /** 393 * mig_throttle_guest_down: throotle down the guest 394 * 395 * Reduce amount of guest cpu execution to hopefully slow down memory 396 * writes. If guest dirty memory rate is reduced below the rate at 397 * which we can transfer pages to the destination then we should be 398 * able to complete migration. Some workloads dirty memory way too 399 * fast and will not effectively converge, even with auto-converge. 400 */ 401 static void mig_throttle_guest_down(void) 402 { 403 MigrationState *s = migrate_get_current(); 404 uint64_t pct_initial = s->parameters.cpu_throttle_initial; 405 uint64_t pct_icrement = s->parameters.cpu_throttle_increment; 406 407 /* We have not started throttling yet. Let's start it. */ 408 if (!cpu_throttle_active()) { 409 cpu_throttle_set(pct_initial); 410 } else { 411 /* Throttling already on, just increase the rate */ 412 cpu_throttle_set(cpu_throttle_get_percentage() + pct_icrement); 413 } 414 } 415 416 /** 417 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache 418 * 419 * @rs: current RAM state 420 * @current_addr: address for the zero page 421 * 422 * Update the xbzrle cache to reflect a page that's been sent as all 0. 423 * The important thing is that a stale (not-yet-0'd) page be replaced 424 * by the new data. 425 * As a bonus, if the page wasn't in the cache it gets added so that 426 * when a small write is made into the 0'd page it gets XBZRLE sent. 427 */ 428 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr) 429 { 430 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 431 return; 432 } 433 434 /* We don't care if this fails to allocate a new cache page 435 * as long as it updated an old one */ 436 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, 437 ram_counters.dirty_sync_count); 438 } 439 440 #define ENCODING_FLAG_XBZRLE 0x1 441 442 /** 443 * save_xbzrle_page: compress and send current page 444 * 445 * Returns: 1 means that we wrote the page 446 * 0 means that page is identical to the one already sent 447 * -1 means that xbzrle would be longer than normal 448 * 449 * @rs: current RAM state 450 * @current_data: pointer to the address of the page contents 451 * @current_addr: addr of the page 452 * @block: block that contains the page we want to send 453 * @offset: offset inside the block for the page 454 * @last_stage: if we are at the completion stage 455 */ 456 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data, 457 ram_addr_t current_addr, RAMBlock *block, 458 ram_addr_t offset, bool last_stage) 459 { 460 int encoded_len = 0, bytes_xbzrle; 461 uint8_t *prev_cached_page; 462 463 if (!cache_is_cached(XBZRLE.cache, current_addr, 464 ram_counters.dirty_sync_count)) { 465 xbzrle_counters.cache_miss++; 466 if (!last_stage) { 467 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 468 ram_counters.dirty_sync_count) == -1) { 469 return -1; 470 } else { 471 /* update *current_data when the page has been 472 inserted into cache */ 473 *current_data = get_cached_data(XBZRLE.cache, current_addr); 474 } 475 } 476 return -1; 477 } 478 479 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 480 481 /* save current buffer into memory */ 482 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 483 484 /* XBZRLE encoding (if there is no overflow) */ 485 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 486 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 487 TARGET_PAGE_SIZE); 488 if (encoded_len == 0) { 489 trace_save_xbzrle_page_skipping(); 490 return 0; 491 } else if (encoded_len == -1) { 492 trace_save_xbzrle_page_overflow(); 493 xbzrle_counters.overflow++; 494 /* update data in the cache */ 495 if (!last_stage) { 496 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE); 497 *current_data = prev_cached_page; 498 } 499 return -1; 500 } 501 502 /* we need to update the data in the cache, in order to get the same data */ 503 if (!last_stage) { 504 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 505 } 506 507 /* Send XBZRLE based compressed page */ 508 bytes_xbzrle = save_page_header(rs, rs->f, block, 509 offset | RAM_SAVE_FLAG_XBZRLE); 510 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE); 511 qemu_put_be16(rs->f, encoded_len); 512 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len); 513 bytes_xbzrle += encoded_len + 1 + 2; 514 xbzrle_counters.pages++; 515 xbzrle_counters.bytes += bytes_xbzrle; 516 ram_counters.transferred += bytes_xbzrle; 517 518 return 1; 519 } 520 521 /** 522 * migration_bitmap_find_dirty: find the next dirty page from start 523 * 524 * Called with rcu_read_lock() to protect migration_bitmap 525 * 526 * Returns the byte offset within memory region of the start of a dirty page 527 * 528 * @rs: current RAM state 529 * @rb: RAMBlock where to search for dirty pages 530 * @start: page where we start the search 531 */ 532 static inline 533 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, 534 unsigned long start) 535 { 536 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 537 unsigned long *bitmap = rb->bmap; 538 unsigned long next; 539 540 if (rs->ram_bulk_stage && start > 0) { 541 next = start + 1; 542 } else { 543 next = find_next_bit(bitmap, size, start); 544 } 545 546 return next; 547 } 548 549 static inline bool migration_bitmap_clear_dirty(RAMState *rs, 550 RAMBlock *rb, 551 unsigned long page) 552 { 553 bool ret; 554 555 ret = test_and_clear_bit(page, rb->bmap); 556 557 if (ret) { 558 rs->migration_dirty_pages--; 559 } 560 return ret; 561 } 562 563 static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb, 564 ram_addr_t start, ram_addr_t length) 565 { 566 rs->migration_dirty_pages += 567 cpu_physical_memory_sync_dirty_bitmap(rb, start, length, 568 &rs->num_dirty_pages_period); 569 } 570 571 /** 572 * ram_pagesize_summary: calculate all the pagesizes of a VM 573 * 574 * Returns a summary bitmap of the page sizes of all RAMBlocks 575 * 576 * For VMs with just normal pages this is equivalent to the host page 577 * size. If it's got some huge pages then it's the OR of all the 578 * different page sizes. 579 */ 580 uint64_t ram_pagesize_summary(void) 581 { 582 RAMBlock *block; 583 uint64_t summary = 0; 584 585 RAMBLOCK_FOREACH(block) { 586 summary |= block->page_size; 587 } 588 589 return summary; 590 } 591 592 static void migration_bitmap_sync(RAMState *rs) 593 { 594 RAMBlock *block; 595 int64_t end_time; 596 uint64_t bytes_xfer_now; 597 598 ram_counters.dirty_sync_count++; 599 600 if (!rs->time_last_bitmap_sync) { 601 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 602 } 603 604 trace_migration_bitmap_sync_start(); 605 memory_global_dirty_log_sync(); 606 607 qemu_mutex_lock(&rs->bitmap_mutex); 608 rcu_read_lock(); 609 RAMBLOCK_FOREACH(block) { 610 migration_bitmap_sync_range(rs, block, 0, block->used_length); 611 } 612 rcu_read_unlock(); 613 qemu_mutex_unlock(&rs->bitmap_mutex); 614 615 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); 616 617 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 618 619 /* more than 1 second = 1000 millisecons */ 620 if (end_time > rs->time_last_bitmap_sync + 1000) { 621 /* calculate period counters */ 622 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000 623 / (end_time - rs->time_last_bitmap_sync); 624 bytes_xfer_now = ram_counters.transferred; 625 626 if (migrate_auto_converge()) { 627 /* The following detection logic can be refined later. For now: 628 Check to see if the dirtied bytes is 50% more than the approx. 629 amount of bytes that just got transferred since the last time we 630 were in this routine. If that happens twice, start or increase 631 throttling */ 632 633 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE > 634 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) && 635 (++rs->dirty_rate_high_cnt >= 2)) { 636 trace_migration_throttle(); 637 rs->dirty_rate_high_cnt = 0; 638 mig_throttle_guest_down(); 639 } 640 } 641 642 if (migrate_use_xbzrle()) { 643 if (rs->iterations_prev != rs->iterations) { 644 xbzrle_counters.cache_miss_rate = 645 (double)(xbzrle_counters.cache_miss - 646 rs->xbzrle_cache_miss_prev) / 647 (rs->iterations - rs->iterations_prev); 648 } 649 rs->iterations_prev = rs->iterations; 650 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; 651 } 652 653 /* reset period counters */ 654 rs->time_last_bitmap_sync = end_time; 655 rs->num_dirty_pages_period = 0; 656 rs->bytes_xfer_prev = bytes_xfer_now; 657 } 658 if (migrate_use_events()) { 659 qapi_event_send_migration_pass(ram_counters.dirty_sync_count, NULL); 660 } 661 } 662 663 /** 664 * save_zero_page: send the zero page to the stream 665 * 666 * Returns the number of pages written. 667 * 668 * @rs: current RAM state 669 * @block: block that contains the page we want to send 670 * @offset: offset inside the block for the page 671 * @p: pointer to the page 672 */ 673 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, 674 uint8_t *p) 675 { 676 int pages = -1; 677 678 if (is_zero_range(p, TARGET_PAGE_SIZE)) { 679 ram_counters.duplicate++; 680 ram_counters.transferred += 681 save_page_header(rs, rs->f, block, offset | RAM_SAVE_FLAG_ZERO); 682 qemu_put_byte(rs->f, 0); 683 ram_counters.transferred += 1; 684 pages = 1; 685 } 686 687 return pages; 688 } 689 690 static void ram_release_pages(const char *rbname, uint64_t offset, int pages) 691 { 692 if (!migrate_release_ram() || !migration_in_postcopy()) { 693 return; 694 } 695 696 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS); 697 } 698 699 /** 700 * ram_save_page: send the given page to the stream 701 * 702 * Returns the number of pages written. 703 * < 0 - error 704 * >=0 - Number of pages written - this might legally be 0 705 * if xbzrle noticed the page was the same. 706 * 707 * @rs: current RAM state 708 * @block: block that contains the page we want to send 709 * @offset: offset inside the block for the page 710 * @last_stage: if we are at the completion stage 711 */ 712 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage) 713 { 714 int pages = -1; 715 uint64_t bytes_xmit; 716 ram_addr_t current_addr; 717 uint8_t *p; 718 int ret; 719 bool send_async = true; 720 RAMBlock *block = pss->block; 721 ram_addr_t offset = pss->page << TARGET_PAGE_BITS; 722 723 p = block->host + offset; 724 trace_ram_save_page(block->idstr, (uint64_t)offset, p); 725 726 /* In doubt sent page as normal */ 727 bytes_xmit = 0; 728 ret = ram_control_save_page(rs->f, block->offset, 729 offset, TARGET_PAGE_SIZE, &bytes_xmit); 730 if (bytes_xmit) { 731 ram_counters.transferred += bytes_xmit; 732 pages = 1; 733 } 734 735 XBZRLE_cache_lock(); 736 737 current_addr = block->offset + offset; 738 739 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) { 740 if (ret != RAM_SAVE_CONTROL_DELAYED) { 741 if (bytes_xmit > 0) { 742 ram_counters.normal++; 743 } else if (bytes_xmit == 0) { 744 ram_counters.duplicate++; 745 } 746 } 747 } else { 748 pages = save_zero_page(rs, block, offset, p); 749 if (pages > 0) { 750 /* Must let xbzrle know, otherwise a previous (now 0'd) cached 751 * page would be stale 752 */ 753 xbzrle_cache_zero_page(rs, current_addr); 754 ram_release_pages(block->idstr, offset, pages); 755 } else if (!rs->ram_bulk_stage && 756 !migration_in_postcopy() && migrate_use_xbzrle()) { 757 pages = save_xbzrle_page(rs, &p, current_addr, block, 758 offset, last_stage); 759 if (!last_stage) { 760 /* Can't send this cached data async, since the cache page 761 * might get updated before it gets to the wire 762 */ 763 send_async = false; 764 } 765 } 766 } 767 768 /* XBZRLE overflow or normal page */ 769 if (pages == -1) { 770 ram_counters.transferred += 771 save_page_header(rs, rs->f, block, offset | RAM_SAVE_FLAG_PAGE); 772 if (send_async) { 773 qemu_put_buffer_async(rs->f, p, TARGET_PAGE_SIZE, 774 migrate_release_ram() & 775 migration_in_postcopy()); 776 } else { 777 qemu_put_buffer(rs->f, p, TARGET_PAGE_SIZE); 778 } 779 ram_counters.transferred += TARGET_PAGE_SIZE; 780 pages = 1; 781 ram_counters.normal++; 782 } 783 784 XBZRLE_cache_unlock(); 785 786 return pages; 787 } 788 789 static int do_compress_ram_page(QEMUFile *f, RAMBlock *block, 790 ram_addr_t offset) 791 { 792 RAMState *rs = ram_state; 793 int bytes_sent, blen; 794 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK); 795 796 bytes_sent = save_page_header(rs, f, block, offset | 797 RAM_SAVE_FLAG_COMPRESS_PAGE); 798 blen = qemu_put_compression_data(f, p, TARGET_PAGE_SIZE, 799 migrate_compress_level()); 800 if (blen < 0) { 801 bytes_sent = 0; 802 qemu_file_set_error(migrate_get_current()->to_dst_file, blen); 803 error_report("compressed data failed!"); 804 } else { 805 bytes_sent += blen; 806 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1); 807 } 808 809 return bytes_sent; 810 } 811 812 static void flush_compressed_data(RAMState *rs) 813 { 814 int idx, len, thread_count; 815 816 if (!migrate_use_compression()) { 817 return; 818 } 819 thread_count = migrate_compress_threads(); 820 821 qemu_mutex_lock(&comp_done_lock); 822 for (idx = 0; idx < thread_count; idx++) { 823 while (!comp_param[idx].done) { 824 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 825 } 826 } 827 qemu_mutex_unlock(&comp_done_lock); 828 829 for (idx = 0; idx < thread_count; idx++) { 830 qemu_mutex_lock(&comp_param[idx].mutex); 831 if (!comp_param[idx].quit) { 832 len = qemu_put_qemu_file(rs->f, comp_param[idx].file); 833 ram_counters.transferred += len; 834 } 835 qemu_mutex_unlock(&comp_param[idx].mutex); 836 } 837 } 838 839 static inline void set_compress_params(CompressParam *param, RAMBlock *block, 840 ram_addr_t offset) 841 { 842 param->block = block; 843 param->offset = offset; 844 } 845 846 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block, 847 ram_addr_t offset) 848 { 849 int idx, thread_count, bytes_xmit = -1, pages = -1; 850 851 thread_count = migrate_compress_threads(); 852 qemu_mutex_lock(&comp_done_lock); 853 while (true) { 854 for (idx = 0; idx < thread_count; idx++) { 855 if (comp_param[idx].done) { 856 comp_param[idx].done = false; 857 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file); 858 qemu_mutex_lock(&comp_param[idx].mutex); 859 set_compress_params(&comp_param[idx], block, offset); 860 qemu_cond_signal(&comp_param[idx].cond); 861 qemu_mutex_unlock(&comp_param[idx].mutex); 862 pages = 1; 863 ram_counters.normal++; 864 ram_counters.transferred += bytes_xmit; 865 break; 866 } 867 } 868 if (pages > 0) { 869 break; 870 } else { 871 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 872 } 873 } 874 qemu_mutex_unlock(&comp_done_lock); 875 876 return pages; 877 } 878 879 /** 880 * ram_save_compressed_page: compress the given page and send it to the stream 881 * 882 * Returns the number of pages written. 883 * 884 * @rs: current RAM state 885 * @block: block that contains the page we want to send 886 * @offset: offset inside the block for the page 887 * @last_stage: if we are at the completion stage 888 */ 889 static int ram_save_compressed_page(RAMState *rs, PageSearchStatus *pss, 890 bool last_stage) 891 { 892 int pages = -1; 893 uint64_t bytes_xmit = 0; 894 uint8_t *p; 895 int ret, blen; 896 RAMBlock *block = pss->block; 897 ram_addr_t offset = pss->page << TARGET_PAGE_BITS; 898 899 p = block->host + offset; 900 901 ret = ram_control_save_page(rs->f, block->offset, 902 offset, TARGET_PAGE_SIZE, &bytes_xmit); 903 if (bytes_xmit) { 904 ram_counters.transferred += bytes_xmit; 905 pages = 1; 906 } 907 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) { 908 if (ret != RAM_SAVE_CONTROL_DELAYED) { 909 if (bytes_xmit > 0) { 910 ram_counters.normal++; 911 } else if (bytes_xmit == 0) { 912 ram_counters.duplicate++; 913 } 914 } 915 } else { 916 /* When starting the process of a new block, the first page of 917 * the block should be sent out before other pages in the same 918 * block, and all the pages in last block should have been sent 919 * out, keeping this order is important, because the 'cont' flag 920 * is used to avoid resending the block name. 921 */ 922 if (block != rs->last_sent_block) { 923 flush_compressed_data(rs); 924 pages = save_zero_page(rs, block, offset, p); 925 if (pages == -1) { 926 /* Make sure the first page is sent out before other pages */ 927 bytes_xmit = save_page_header(rs, rs->f, block, offset | 928 RAM_SAVE_FLAG_COMPRESS_PAGE); 929 blen = qemu_put_compression_data(rs->f, p, TARGET_PAGE_SIZE, 930 migrate_compress_level()); 931 if (blen > 0) { 932 ram_counters.transferred += bytes_xmit + blen; 933 ram_counters.normal++; 934 pages = 1; 935 } else { 936 qemu_file_set_error(rs->f, blen); 937 error_report("compressed data failed!"); 938 } 939 } 940 if (pages > 0) { 941 ram_release_pages(block->idstr, offset, pages); 942 } 943 } else { 944 pages = save_zero_page(rs, block, offset, p); 945 if (pages == -1) { 946 pages = compress_page_with_multi_thread(rs, block, offset); 947 } else { 948 ram_release_pages(block->idstr, offset, pages); 949 } 950 } 951 } 952 953 return pages; 954 } 955 956 /** 957 * find_dirty_block: find the next dirty page and update any state 958 * associated with the search process. 959 * 960 * Returns if a page is found 961 * 962 * @rs: current RAM state 963 * @pss: data about the state of the current dirty page scan 964 * @again: set to false if the search has scanned the whole of RAM 965 */ 966 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again) 967 { 968 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page); 969 if (pss->complete_round && pss->block == rs->last_seen_block && 970 pss->page >= rs->last_page) { 971 /* 972 * We've been once around the RAM and haven't found anything. 973 * Give up. 974 */ 975 *again = false; 976 return false; 977 } 978 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) { 979 /* Didn't find anything in this RAM Block */ 980 pss->page = 0; 981 pss->block = QLIST_NEXT_RCU(pss->block, next); 982 if (!pss->block) { 983 /* Hit the end of the list */ 984 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 985 /* Flag that we've looped */ 986 pss->complete_round = true; 987 rs->ram_bulk_stage = false; 988 if (migrate_use_xbzrle()) { 989 /* If xbzrle is on, stop using the data compression at this 990 * point. In theory, xbzrle can do better than compression. 991 */ 992 flush_compressed_data(rs); 993 } 994 } 995 /* Didn't find anything this time, but try again on the new block */ 996 *again = true; 997 return false; 998 } else { 999 /* Can go around again, but... */ 1000 *again = true; 1001 /* We've found something so probably don't need to */ 1002 return true; 1003 } 1004 } 1005 1006 /** 1007 * unqueue_page: gets a page of the queue 1008 * 1009 * Helper for 'get_queued_page' - gets a page off the queue 1010 * 1011 * Returns the block of the page (or NULL if none available) 1012 * 1013 * @rs: current RAM state 1014 * @offset: used to return the offset within the RAMBlock 1015 */ 1016 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) 1017 { 1018 RAMBlock *block = NULL; 1019 1020 qemu_mutex_lock(&rs->src_page_req_mutex); 1021 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 1022 struct RAMSrcPageRequest *entry = 1023 QSIMPLEQ_FIRST(&rs->src_page_requests); 1024 block = entry->rb; 1025 *offset = entry->offset; 1026 1027 if (entry->len > TARGET_PAGE_SIZE) { 1028 entry->len -= TARGET_PAGE_SIZE; 1029 entry->offset += TARGET_PAGE_SIZE; 1030 } else { 1031 memory_region_unref(block->mr); 1032 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1033 g_free(entry); 1034 } 1035 } 1036 qemu_mutex_unlock(&rs->src_page_req_mutex); 1037 1038 return block; 1039 } 1040 1041 /** 1042 * get_queued_page: unqueue a page from the postocpy requests 1043 * 1044 * Skips pages that are already sent (!dirty) 1045 * 1046 * Returns if a queued page is found 1047 * 1048 * @rs: current RAM state 1049 * @pss: data about the state of the current dirty page scan 1050 */ 1051 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) 1052 { 1053 RAMBlock *block; 1054 ram_addr_t offset; 1055 bool dirty; 1056 1057 do { 1058 block = unqueue_page(rs, &offset); 1059 /* 1060 * We're sending this page, and since it's postcopy nothing else 1061 * will dirty it, and we must make sure it doesn't get sent again 1062 * even if this queue request was received after the background 1063 * search already sent it. 1064 */ 1065 if (block) { 1066 unsigned long page; 1067 1068 page = offset >> TARGET_PAGE_BITS; 1069 dirty = test_bit(page, block->bmap); 1070 if (!dirty) { 1071 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, 1072 page, test_bit(page, block->unsentmap)); 1073 } else { 1074 trace_get_queued_page(block->idstr, (uint64_t)offset, page); 1075 } 1076 } 1077 1078 } while (block && !dirty); 1079 1080 if (block) { 1081 /* 1082 * As soon as we start servicing pages out of order, then we have 1083 * to kill the bulk stage, since the bulk stage assumes 1084 * in (migration_bitmap_find_and_reset_dirty) that every page is 1085 * dirty, that's no longer true. 1086 */ 1087 rs->ram_bulk_stage = false; 1088 1089 /* 1090 * We want the background search to continue from the queued page 1091 * since the guest is likely to want other pages near to the page 1092 * it just requested. 1093 */ 1094 pss->block = block; 1095 pss->page = offset >> TARGET_PAGE_BITS; 1096 } 1097 1098 return !!block; 1099 } 1100 1101 /** 1102 * migration_page_queue_free: drop any remaining pages in the ram 1103 * request queue 1104 * 1105 * It should be empty at the end anyway, but in error cases there may 1106 * be some left. in case that there is any page left, we drop it. 1107 * 1108 */ 1109 static void migration_page_queue_free(RAMState *rs) 1110 { 1111 struct RAMSrcPageRequest *mspr, *next_mspr; 1112 /* This queue generally should be empty - but in the case of a failed 1113 * migration might have some droppings in. 1114 */ 1115 rcu_read_lock(); 1116 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { 1117 memory_region_unref(mspr->rb->mr); 1118 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1119 g_free(mspr); 1120 } 1121 rcu_read_unlock(); 1122 } 1123 1124 /** 1125 * ram_save_queue_pages: queue the page for transmission 1126 * 1127 * A request from postcopy destination for example. 1128 * 1129 * Returns zero on success or negative on error 1130 * 1131 * @rbname: Name of the RAMBLock of the request. NULL means the 1132 * same that last one. 1133 * @start: starting address from the start of the RAMBlock 1134 * @len: length (in bytes) to send 1135 */ 1136 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len) 1137 { 1138 RAMBlock *ramblock; 1139 RAMState *rs = ram_state; 1140 1141 ram_counters.postcopy_requests++; 1142 rcu_read_lock(); 1143 if (!rbname) { 1144 /* Reuse last RAMBlock */ 1145 ramblock = rs->last_req_rb; 1146 1147 if (!ramblock) { 1148 /* 1149 * Shouldn't happen, we can't reuse the last RAMBlock if 1150 * it's the 1st request. 1151 */ 1152 error_report("ram_save_queue_pages no previous block"); 1153 goto err; 1154 } 1155 } else { 1156 ramblock = qemu_ram_block_by_name(rbname); 1157 1158 if (!ramblock) { 1159 /* We shouldn't be asked for a non-existent RAMBlock */ 1160 error_report("ram_save_queue_pages no block '%s'", rbname); 1161 goto err; 1162 } 1163 rs->last_req_rb = ramblock; 1164 } 1165 trace_ram_save_queue_pages(ramblock->idstr, start, len); 1166 if (start+len > ramblock->used_length) { 1167 error_report("%s request overrun start=" RAM_ADDR_FMT " len=" 1168 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 1169 __func__, start, len, ramblock->used_length); 1170 goto err; 1171 } 1172 1173 struct RAMSrcPageRequest *new_entry = 1174 g_malloc0(sizeof(struct RAMSrcPageRequest)); 1175 new_entry->rb = ramblock; 1176 new_entry->offset = start; 1177 new_entry->len = len; 1178 1179 memory_region_ref(ramblock->mr); 1180 qemu_mutex_lock(&rs->src_page_req_mutex); 1181 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); 1182 qemu_mutex_unlock(&rs->src_page_req_mutex); 1183 rcu_read_unlock(); 1184 1185 return 0; 1186 1187 err: 1188 rcu_read_unlock(); 1189 return -1; 1190 } 1191 1192 /** 1193 * ram_save_target_page: save one target page 1194 * 1195 * Returns the number of pages written 1196 * 1197 * @rs: current RAM state 1198 * @ms: current migration state 1199 * @pss: data about the page we want to send 1200 * @last_stage: if we are at the completion stage 1201 */ 1202 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss, 1203 bool last_stage) 1204 { 1205 int res = 0; 1206 1207 /* Check the pages is dirty and if it is send it */ 1208 if (migration_bitmap_clear_dirty(rs, pss->block, pss->page)) { 1209 /* 1210 * If xbzrle is on, stop using the data compression after first 1211 * round of migration even if compression is enabled. In theory, 1212 * xbzrle can do better than compression. 1213 */ 1214 if (migrate_use_compression() && 1215 (rs->ram_bulk_stage || !migrate_use_xbzrle())) { 1216 res = ram_save_compressed_page(rs, pss, last_stage); 1217 } else { 1218 res = ram_save_page(rs, pss, last_stage); 1219 } 1220 1221 if (res < 0) { 1222 return res; 1223 } 1224 if (pss->block->unsentmap) { 1225 clear_bit(pss->page, pss->block->unsentmap); 1226 } 1227 } 1228 1229 return res; 1230 } 1231 1232 /** 1233 * ram_save_host_page: save a whole host page 1234 * 1235 * Starting at *offset send pages up to the end of the current host 1236 * page. It's valid for the initial offset to point into the middle of 1237 * a host page in which case the remainder of the hostpage is sent. 1238 * Only dirty target pages are sent. Note that the host page size may 1239 * be a huge page for this block. 1240 * The saving stops at the boundary of the used_length of the block 1241 * if the RAMBlock isn't a multiple of the host page size. 1242 * 1243 * Returns the number of pages written or negative on error 1244 * 1245 * @rs: current RAM state 1246 * @ms: current migration state 1247 * @pss: data about the page we want to send 1248 * @last_stage: if we are at the completion stage 1249 */ 1250 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss, 1251 bool last_stage) 1252 { 1253 int tmppages, pages = 0; 1254 size_t pagesize_bits = 1255 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 1256 1257 do { 1258 tmppages = ram_save_target_page(rs, pss, last_stage); 1259 if (tmppages < 0) { 1260 return tmppages; 1261 } 1262 1263 pages += tmppages; 1264 pss->page++; 1265 } while ((pss->page & (pagesize_bits - 1)) && 1266 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS)); 1267 1268 /* The offset we leave with is the last one we looked at */ 1269 pss->page--; 1270 return pages; 1271 } 1272 1273 /** 1274 * ram_find_and_save_block: finds a dirty page and sends it to f 1275 * 1276 * Called within an RCU critical section. 1277 * 1278 * Returns the number of pages written where zero means no dirty pages 1279 * 1280 * @rs: current RAM state 1281 * @last_stage: if we are at the completion stage 1282 * 1283 * On systems where host-page-size > target-page-size it will send all the 1284 * pages in a host page that are dirty. 1285 */ 1286 1287 static int ram_find_and_save_block(RAMState *rs, bool last_stage) 1288 { 1289 PageSearchStatus pss; 1290 int pages = 0; 1291 bool again, found; 1292 1293 /* No dirty page as there is zero RAM */ 1294 if (!ram_bytes_total()) { 1295 return pages; 1296 } 1297 1298 pss.block = rs->last_seen_block; 1299 pss.page = rs->last_page; 1300 pss.complete_round = false; 1301 1302 if (!pss.block) { 1303 pss.block = QLIST_FIRST_RCU(&ram_list.blocks); 1304 } 1305 1306 do { 1307 again = true; 1308 found = get_queued_page(rs, &pss); 1309 1310 if (!found) { 1311 /* priority queue empty, so just search for something dirty */ 1312 found = find_dirty_block(rs, &pss, &again); 1313 } 1314 1315 if (found) { 1316 pages = ram_save_host_page(rs, &pss, last_stage); 1317 } 1318 } while (!pages && again); 1319 1320 rs->last_seen_block = pss.block; 1321 rs->last_page = pss.page; 1322 1323 return pages; 1324 } 1325 1326 void acct_update_position(QEMUFile *f, size_t size, bool zero) 1327 { 1328 uint64_t pages = size / TARGET_PAGE_SIZE; 1329 1330 if (zero) { 1331 ram_counters.duplicate += pages; 1332 } else { 1333 ram_counters.normal += pages; 1334 ram_counters.transferred += size; 1335 qemu_update_position(f, size); 1336 } 1337 } 1338 1339 uint64_t ram_bytes_total(void) 1340 { 1341 RAMBlock *block; 1342 uint64_t total = 0; 1343 1344 rcu_read_lock(); 1345 RAMBLOCK_FOREACH(block) { 1346 total += block->used_length; 1347 } 1348 rcu_read_unlock(); 1349 return total; 1350 } 1351 1352 static void xbzrle_load_setup(void) 1353 { 1354 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 1355 } 1356 1357 static void xbzrle_load_cleanup(void) 1358 { 1359 g_free(XBZRLE.decoded_buf); 1360 XBZRLE.decoded_buf = NULL; 1361 } 1362 1363 static void ram_save_cleanup(void *opaque) 1364 { 1365 RAMState **rsp = opaque; 1366 RAMBlock *block; 1367 1368 /* caller have hold iothread lock or is in a bh, so there is 1369 * no writing race against this migration_bitmap 1370 */ 1371 memory_global_dirty_log_stop(); 1372 1373 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { 1374 g_free(block->bmap); 1375 block->bmap = NULL; 1376 g_free(block->unsentmap); 1377 block->unsentmap = NULL; 1378 } 1379 1380 XBZRLE_cache_lock(); 1381 if (XBZRLE.cache) { 1382 cache_fini(XBZRLE.cache); 1383 g_free(XBZRLE.encoded_buf); 1384 g_free(XBZRLE.current_buf); 1385 g_free(XBZRLE.zero_target_page); 1386 XBZRLE.cache = NULL; 1387 XBZRLE.encoded_buf = NULL; 1388 XBZRLE.current_buf = NULL; 1389 XBZRLE.zero_target_page = NULL; 1390 } 1391 XBZRLE_cache_unlock(); 1392 migration_page_queue_free(*rsp); 1393 compress_threads_save_cleanup(); 1394 g_free(*rsp); 1395 *rsp = NULL; 1396 } 1397 1398 static void ram_state_reset(RAMState *rs) 1399 { 1400 rs->last_seen_block = NULL; 1401 rs->last_sent_block = NULL; 1402 rs->last_page = 0; 1403 rs->last_version = ram_list.version; 1404 rs->ram_bulk_stage = true; 1405 } 1406 1407 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 1408 1409 /* 1410 * 'expected' is the value you expect the bitmap mostly to be full 1411 * of; it won't bother printing lines that are all this value. 1412 * If 'todump' is null the migration bitmap is dumped. 1413 */ 1414 void ram_debug_dump_bitmap(unsigned long *todump, bool expected, 1415 unsigned long pages) 1416 { 1417 int64_t cur; 1418 int64_t linelen = 128; 1419 char linebuf[129]; 1420 1421 for (cur = 0; cur < pages; cur += linelen) { 1422 int64_t curb; 1423 bool found = false; 1424 /* 1425 * Last line; catch the case where the line length 1426 * is longer than remaining ram 1427 */ 1428 if (cur + linelen > pages) { 1429 linelen = pages - cur; 1430 } 1431 for (curb = 0; curb < linelen; curb++) { 1432 bool thisbit = test_bit(cur + curb, todump); 1433 linebuf[curb] = thisbit ? '1' : '.'; 1434 found = found || (thisbit != expected); 1435 } 1436 if (found) { 1437 linebuf[curb] = '\0'; 1438 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf); 1439 } 1440 } 1441 } 1442 1443 /* **** functions for postcopy ***** */ 1444 1445 void ram_postcopy_migrated_memory_release(MigrationState *ms) 1446 { 1447 struct RAMBlock *block; 1448 1449 RAMBLOCK_FOREACH(block) { 1450 unsigned long *bitmap = block->bmap; 1451 unsigned long range = block->used_length >> TARGET_PAGE_BITS; 1452 unsigned long run_start = find_next_zero_bit(bitmap, range, 0); 1453 1454 while (run_start < range) { 1455 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); 1456 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS, 1457 (run_end - run_start) << TARGET_PAGE_BITS); 1458 run_start = find_next_zero_bit(bitmap, range, run_end + 1); 1459 } 1460 } 1461 } 1462 1463 /** 1464 * postcopy_send_discard_bm_ram: discard a RAMBlock 1465 * 1466 * Returns zero on success 1467 * 1468 * Callback from postcopy_each_ram_send_discard for each RAMBlock 1469 * Note: At this point the 'unsentmap' is the processed bitmap combined 1470 * with the dirtymap; so a '1' means it's either dirty or unsent. 1471 * 1472 * @ms: current migration state 1473 * @pds: state for postcopy 1474 * @start: RAMBlock starting page 1475 * @length: RAMBlock size 1476 */ 1477 static int postcopy_send_discard_bm_ram(MigrationState *ms, 1478 PostcopyDiscardState *pds, 1479 RAMBlock *block) 1480 { 1481 unsigned long end = block->used_length >> TARGET_PAGE_BITS; 1482 unsigned long current; 1483 unsigned long *unsentmap = block->unsentmap; 1484 1485 for (current = 0; current < end; ) { 1486 unsigned long one = find_next_bit(unsentmap, end, current); 1487 1488 if (one <= end) { 1489 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1); 1490 unsigned long discard_length; 1491 1492 if (zero >= end) { 1493 discard_length = end - one; 1494 } else { 1495 discard_length = zero - one; 1496 } 1497 if (discard_length) { 1498 postcopy_discard_send_range(ms, pds, one, discard_length); 1499 } 1500 current = one + discard_length; 1501 } else { 1502 current = one; 1503 } 1504 } 1505 1506 return 0; 1507 } 1508 1509 /** 1510 * postcopy_each_ram_send_discard: discard all RAMBlocks 1511 * 1512 * Returns 0 for success or negative for error 1513 * 1514 * Utility for the outgoing postcopy code. 1515 * Calls postcopy_send_discard_bm_ram for each RAMBlock 1516 * passing it bitmap indexes and name. 1517 * (qemu_ram_foreach_block ends up passing unscaled lengths 1518 * which would mean postcopy code would have to deal with target page) 1519 * 1520 * @ms: current migration state 1521 */ 1522 static int postcopy_each_ram_send_discard(MigrationState *ms) 1523 { 1524 struct RAMBlock *block; 1525 int ret; 1526 1527 RAMBLOCK_FOREACH(block) { 1528 PostcopyDiscardState *pds = 1529 postcopy_discard_send_init(ms, block->idstr); 1530 1531 /* 1532 * Postcopy sends chunks of bitmap over the wire, but it 1533 * just needs indexes at this point, avoids it having 1534 * target page specific code. 1535 */ 1536 ret = postcopy_send_discard_bm_ram(ms, pds, block); 1537 postcopy_discard_send_finish(ms, pds); 1538 if (ret) { 1539 return ret; 1540 } 1541 } 1542 1543 return 0; 1544 } 1545 1546 /** 1547 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages 1548 * 1549 * Helper for postcopy_chunk_hostpages; it's called twice to 1550 * canonicalize the two bitmaps, that are similar, but one is 1551 * inverted. 1552 * 1553 * Postcopy requires that all target pages in a hostpage are dirty or 1554 * clean, not a mix. This function canonicalizes the bitmaps. 1555 * 1556 * @ms: current migration state 1557 * @unsent_pass: if true we need to canonicalize partially unsent host pages 1558 * otherwise we need to canonicalize partially dirty host pages 1559 * @block: block that contains the page we want to canonicalize 1560 * @pds: state for postcopy 1561 */ 1562 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass, 1563 RAMBlock *block, 1564 PostcopyDiscardState *pds) 1565 { 1566 RAMState *rs = ram_state; 1567 unsigned long *bitmap = block->bmap; 1568 unsigned long *unsentmap = block->unsentmap; 1569 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; 1570 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 1571 unsigned long run_start; 1572 1573 if (block->page_size == TARGET_PAGE_SIZE) { 1574 /* Easy case - TPS==HPS for a non-huge page RAMBlock */ 1575 return; 1576 } 1577 1578 if (unsent_pass) { 1579 /* Find a sent page */ 1580 run_start = find_next_zero_bit(unsentmap, pages, 0); 1581 } else { 1582 /* Find a dirty page */ 1583 run_start = find_next_bit(bitmap, pages, 0); 1584 } 1585 1586 while (run_start < pages) { 1587 bool do_fixup = false; 1588 unsigned long fixup_start_addr; 1589 unsigned long host_offset; 1590 1591 /* 1592 * If the start of this run of pages is in the middle of a host 1593 * page, then we need to fixup this host page. 1594 */ 1595 host_offset = run_start % host_ratio; 1596 if (host_offset) { 1597 do_fixup = true; 1598 run_start -= host_offset; 1599 fixup_start_addr = run_start; 1600 /* For the next pass */ 1601 run_start = run_start + host_ratio; 1602 } else { 1603 /* Find the end of this run */ 1604 unsigned long run_end; 1605 if (unsent_pass) { 1606 run_end = find_next_bit(unsentmap, pages, run_start + 1); 1607 } else { 1608 run_end = find_next_zero_bit(bitmap, pages, run_start + 1); 1609 } 1610 /* 1611 * If the end isn't at the start of a host page, then the 1612 * run doesn't finish at the end of a host page 1613 * and we need to discard. 1614 */ 1615 host_offset = run_end % host_ratio; 1616 if (host_offset) { 1617 do_fixup = true; 1618 fixup_start_addr = run_end - host_offset; 1619 /* 1620 * This host page has gone, the next loop iteration starts 1621 * from after the fixup 1622 */ 1623 run_start = fixup_start_addr + host_ratio; 1624 } else { 1625 /* 1626 * No discards on this iteration, next loop starts from 1627 * next sent/dirty page 1628 */ 1629 run_start = run_end + 1; 1630 } 1631 } 1632 1633 if (do_fixup) { 1634 unsigned long page; 1635 1636 /* Tell the destination to discard this page */ 1637 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) { 1638 /* For the unsent_pass we: 1639 * discard partially sent pages 1640 * For the !unsent_pass (dirty) we: 1641 * discard partially dirty pages that were sent 1642 * (any partially sent pages were already discarded 1643 * by the previous unsent_pass) 1644 */ 1645 postcopy_discard_send_range(ms, pds, fixup_start_addr, 1646 host_ratio); 1647 } 1648 1649 /* Clean up the bitmap */ 1650 for (page = fixup_start_addr; 1651 page < fixup_start_addr + host_ratio; page++) { 1652 /* All pages in this host page are now not sent */ 1653 set_bit(page, unsentmap); 1654 1655 /* 1656 * Remark them as dirty, updating the count for any pages 1657 * that weren't previously dirty. 1658 */ 1659 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); 1660 } 1661 } 1662 1663 if (unsent_pass) { 1664 /* Find the next sent page for the next iteration */ 1665 run_start = find_next_zero_bit(unsentmap, pages, run_start); 1666 } else { 1667 /* Find the next dirty page for the next iteration */ 1668 run_start = find_next_bit(bitmap, pages, run_start); 1669 } 1670 } 1671 } 1672 1673 /** 1674 * postcopy_chuck_hostpages: discrad any partially sent host page 1675 * 1676 * Utility for the outgoing postcopy code. 1677 * 1678 * Discard any partially sent host-page size chunks, mark any partially 1679 * dirty host-page size chunks as all dirty. In this case the host-page 1680 * is the host-page for the particular RAMBlock, i.e. it might be a huge page 1681 * 1682 * Returns zero on success 1683 * 1684 * @ms: current migration state 1685 * @block: block we want to work with 1686 */ 1687 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block) 1688 { 1689 PostcopyDiscardState *pds = 1690 postcopy_discard_send_init(ms, block->idstr); 1691 1692 /* First pass: Discard all partially sent host pages */ 1693 postcopy_chunk_hostpages_pass(ms, true, block, pds); 1694 /* 1695 * Second pass: Ensure that all partially dirty host pages are made 1696 * fully dirty. 1697 */ 1698 postcopy_chunk_hostpages_pass(ms, false, block, pds); 1699 1700 postcopy_discard_send_finish(ms, pds); 1701 return 0; 1702 } 1703 1704 /** 1705 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap 1706 * 1707 * Returns zero on success 1708 * 1709 * Transmit the set of pages to be discarded after precopy to the target 1710 * these are pages that: 1711 * a) Have been previously transmitted but are now dirty again 1712 * b) Pages that have never been transmitted, this ensures that 1713 * any pages on the destination that have been mapped by background 1714 * tasks get discarded (transparent huge pages is the specific concern) 1715 * Hopefully this is pretty sparse 1716 * 1717 * @ms: current migration state 1718 */ 1719 int ram_postcopy_send_discard_bitmap(MigrationState *ms) 1720 { 1721 RAMState *rs = ram_state; 1722 RAMBlock *block; 1723 int ret; 1724 1725 rcu_read_lock(); 1726 1727 /* This should be our last sync, the src is now paused */ 1728 migration_bitmap_sync(rs); 1729 1730 /* Easiest way to make sure we don't resume in the middle of a host-page */ 1731 rs->last_seen_block = NULL; 1732 rs->last_sent_block = NULL; 1733 rs->last_page = 0; 1734 1735 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { 1736 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 1737 unsigned long *bitmap = block->bmap; 1738 unsigned long *unsentmap = block->unsentmap; 1739 1740 if (!unsentmap) { 1741 /* We don't have a safe way to resize the sentmap, so 1742 * if the bitmap was resized it will be NULL at this 1743 * point. 1744 */ 1745 error_report("migration ram resized during precopy phase"); 1746 rcu_read_unlock(); 1747 return -EINVAL; 1748 } 1749 /* Deal with TPS != HPS and huge pages */ 1750 ret = postcopy_chunk_hostpages(ms, block); 1751 if (ret) { 1752 rcu_read_unlock(); 1753 return ret; 1754 } 1755 1756 /* 1757 * Update the unsentmap to be unsentmap = unsentmap | dirty 1758 */ 1759 bitmap_or(unsentmap, unsentmap, bitmap, pages); 1760 #ifdef DEBUG_POSTCOPY 1761 ram_debug_dump_bitmap(unsentmap, true, pages); 1762 #endif 1763 } 1764 trace_ram_postcopy_send_discard_bitmap(); 1765 1766 ret = postcopy_each_ram_send_discard(ms); 1767 rcu_read_unlock(); 1768 1769 return ret; 1770 } 1771 1772 /** 1773 * ram_discard_range: discard dirtied pages at the beginning of postcopy 1774 * 1775 * Returns zero on success 1776 * 1777 * @rbname: name of the RAMBlock of the request. NULL means the 1778 * same that last one. 1779 * @start: RAMBlock starting page 1780 * @length: RAMBlock size 1781 */ 1782 int ram_discard_range(const char *rbname, uint64_t start, size_t length) 1783 { 1784 int ret = -1; 1785 1786 trace_ram_discard_range(rbname, start, length); 1787 1788 rcu_read_lock(); 1789 RAMBlock *rb = qemu_ram_block_by_name(rbname); 1790 1791 if (!rb) { 1792 error_report("ram_discard_range: Failed to find block '%s'", rbname); 1793 goto err; 1794 } 1795 1796 ret = ram_block_discard_range(rb, start, length); 1797 1798 err: 1799 rcu_read_unlock(); 1800 1801 return ret; 1802 } 1803 1804 static int ram_state_init(RAMState **rsp) 1805 { 1806 *rsp = g_new0(RAMState, 1); 1807 1808 qemu_mutex_init(&(*rsp)->bitmap_mutex); 1809 qemu_mutex_init(&(*rsp)->src_page_req_mutex); 1810 QSIMPLEQ_INIT(&(*rsp)->src_page_requests); 1811 1812 if (migrate_use_xbzrle()) { 1813 XBZRLE_cache_lock(); 1814 XBZRLE.zero_target_page = g_malloc0(TARGET_PAGE_SIZE); 1815 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() / 1816 TARGET_PAGE_SIZE, 1817 TARGET_PAGE_SIZE); 1818 if (!XBZRLE.cache) { 1819 XBZRLE_cache_unlock(); 1820 error_report("Error creating cache"); 1821 g_free(*rsp); 1822 *rsp = NULL; 1823 return -1; 1824 } 1825 XBZRLE_cache_unlock(); 1826 1827 /* We prefer not to abort if there is no memory */ 1828 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 1829 if (!XBZRLE.encoded_buf) { 1830 error_report("Error allocating encoded_buf"); 1831 g_free(*rsp); 1832 *rsp = NULL; 1833 return -1; 1834 } 1835 1836 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 1837 if (!XBZRLE.current_buf) { 1838 error_report("Error allocating current_buf"); 1839 g_free(XBZRLE.encoded_buf); 1840 XBZRLE.encoded_buf = NULL; 1841 g_free(*rsp); 1842 *rsp = NULL; 1843 return -1; 1844 } 1845 } 1846 1847 /* For memory_global_dirty_log_start below. */ 1848 qemu_mutex_lock_iothread(); 1849 1850 qemu_mutex_lock_ramlist(); 1851 rcu_read_lock(); 1852 ram_state_reset(*rsp); 1853 1854 /* Skip setting bitmap if there is no RAM */ 1855 if (ram_bytes_total()) { 1856 RAMBlock *block; 1857 1858 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { 1859 unsigned long pages = block->max_length >> TARGET_PAGE_BITS; 1860 1861 block->bmap = bitmap_new(pages); 1862 bitmap_set(block->bmap, 0, pages); 1863 if (migrate_postcopy_ram()) { 1864 block->unsentmap = bitmap_new(pages); 1865 bitmap_set(block->unsentmap, 0, pages); 1866 } 1867 } 1868 } 1869 1870 /* 1871 * Count the total number of pages used by ram blocks not including any 1872 * gaps due to alignment or unplugs. 1873 */ 1874 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS; 1875 1876 memory_global_dirty_log_start(); 1877 migration_bitmap_sync(*rsp); 1878 qemu_mutex_unlock_ramlist(); 1879 qemu_mutex_unlock_iothread(); 1880 rcu_read_unlock(); 1881 1882 return 0; 1883 } 1884 1885 /* 1886 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has 1887 * long-running RCU critical section. When rcu-reclaims in the code 1888 * start to become numerous it will be necessary to reduce the 1889 * granularity of these critical sections. 1890 */ 1891 1892 /** 1893 * ram_save_setup: Setup RAM for migration 1894 * 1895 * Returns zero to indicate success and negative for error 1896 * 1897 * @f: QEMUFile where to send the data 1898 * @opaque: RAMState pointer 1899 */ 1900 static int ram_save_setup(QEMUFile *f, void *opaque) 1901 { 1902 RAMState **rsp = opaque; 1903 RAMBlock *block; 1904 1905 /* migration has already setup the bitmap, reuse it. */ 1906 if (!migration_in_colo_state()) { 1907 if (ram_state_init(rsp) != 0) { 1908 return -1; 1909 } 1910 } 1911 (*rsp)->f = f; 1912 1913 rcu_read_lock(); 1914 1915 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE); 1916 1917 RAMBLOCK_FOREACH(block) { 1918 qemu_put_byte(f, strlen(block->idstr)); 1919 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 1920 qemu_put_be64(f, block->used_length); 1921 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) { 1922 qemu_put_be64(f, block->page_size); 1923 } 1924 } 1925 1926 rcu_read_unlock(); 1927 compress_threads_save_setup(); 1928 1929 ram_control_before_iterate(f, RAM_CONTROL_SETUP); 1930 ram_control_after_iterate(f, RAM_CONTROL_SETUP); 1931 1932 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 1933 1934 return 0; 1935 } 1936 1937 /** 1938 * ram_save_iterate: iterative stage for migration 1939 * 1940 * Returns zero to indicate success and negative for error 1941 * 1942 * @f: QEMUFile where to send the data 1943 * @opaque: RAMState pointer 1944 */ 1945 static int ram_save_iterate(QEMUFile *f, void *opaque) 1946 { 1947 RAMState **temp = opaque; 1948 RAMState *rs = *temp; 1949 int ret; 1950 int i; 1951 int64_t t0; 1952 int done = 0; 1953 1954 rcu_read_lock(); 1955 if (ram_list.version != rs->last_version) { 1956 ram_state_reset(rs); 1957 } 1958 1959 /* Read version before ram_list.blocks */ 1960 smp_rmb(); 1961 1962 ram_control_before_iterate(f, RAM_CONTROL_ROUND); 1963 1964 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 1965 i = 0; 1966 while ((ret = qemu_file_rate_limit(f)) == 0) { 1967 int pages; 1968 1969 pages = ram_find_and_save_block(rs, false); 1970 /* no more pages to sent */ 1971 if (pages == 0) { 1972 done = 1; 1973 break; 1974 } 1975 rs->iterations++; 1976 1977 /* we want to check in the 1st loop, just in case it was the 1st time 1978 and we had to sync the dirty bitmap. 1979 qemu_get_clock_ns() is a bit expensive, so we only check each some 1980 iterations 1981 */ 1982 if ((i & 63) == 0) { 1983 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000; 1984 if (t1 > MAX_WAIT) { 1985 trace_ram_save_iterate_big_wait(t1, i); 1986 break; 1987 } 1988 } 1989 i++; 1990 } 1991 flush_compressed_data(rs); 1992 rcu_read_unlock(); 1993 1994 /* 1995 * Must occur before EOS (or any QEMUFile operation) 1996 * because of RDMA protocol. 1997 */ 1998 ram_control_after_iterate(f, RAM_CONTROL_ROUND); 1999 2000 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 2001 ram_counters.transferred += 8; 2002 2003 ret = qemu_file_get_error(f); 2004 if (ret < 0) { 2005 return ret; 2006 } 2007 2008 return done; 2009 } 2010 2011 /** 2012 * ram_save_complete: function called to send the remaining amount of ram 2013 * 2014 * Returns zero to indicate success 2015 * 2016 * Called with iothread lock 2017 * 2018 * @f: QEMUFile where to send the data 2019 * @opaque: RAMState pointer 2020 */ 2021 static int ram_save_complete(QEMUFile *f, void *opaque) 2022 { 2023 RAMState **temp = opaque; 2024 RAMState *rs = *temp; 2025 2026 rcu_read_lock(); 2027 2028 if (!migration_in_postcopy()) { 2029 migration_bitmap_sync(rs); 2030 } 2031 2032 ram_control_before_iterate(f, RAM_CONTROL_FINISH); 2033 2034 /* try transferring iterative blocks of memory */ 2035 2036 /* flush all remaining blocks regardless of rate limiting */ 2037 while (true) { 2038 int pages; 2039 2040 pages = ram_find_and_save_block(rs, !migration_in_colo_state()); 2041 /* no more blocks to sent */ 2042 if (pages == 0) { 2043 break; 2044 } 2045 } 2046 2047 flush_compressed_data(rs); 2048 ram_control_after_iterate(f, RAM_CONTROL_FINISH); 2049 2050 rcu_read_unlock(); 2051 2052 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 2053 2054 return 0; 2055 } 2056 2057 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size, 2058 uint64_t *non_postcopiable_pending, 2059 uint64_t *postcopiable_pending) 2060 { 2061 RAMState **temp = opaque; 2062 RAMState *rs = *temp; 2063 uint64_t remaining_size; 2064 2065 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 2066 2067 if (!migration_in_postcopy() && 2068 remaining_size < max_size) { 2069 qemu_mutex_lock_iothread(); 2070 rcu_read_lock(); 2071 migration_bitmap_sync(rs); 2072 rcu_read_unlock(); 2073 qemu_mutex_unlock_iothread(); 2074 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 2075 } 2076 2077 /* We can do postcopy, and all the data is postcopiable */ 2078 *postcopiable_pending += remaining_size; 2079 } 2080 2081 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 2082 { 2083 unsigned int xh_len; 2084 int xh_flags; 2085 uint8_t *loaded_data; 2086 2087 /* extract RLE header */ 2088 xh_flags = qemu_get_byte(f); 2089 xh_len = qemu_get_be16(f); 2090 2091 if (xh_flags != ENCODING_FLAG_XBZRLE) { 2092 error_report("Failed to load XBZRLE page - wrong compression!"); 2093 return -1; 2094 } 2095 2096 if (xh_len > TARGET_PAGE_SIZE) { 2097 error_report("Failed to load XBZRLE page - len overflow!"); 2098 return -1; 2099 } 2100 loaded_data = XBZRLE.decoded_buf; 2101 /* load data and decode */ 2102 /* it can change loaded_data to point to an internal buffer */ 2103 qemu_get_buffer_in_place(f, &loaded_data, xh_len); 2104 2105 /* decode RLE */ 2106 if (xbzrle_decode_buffer(loaded_data, xh_len, host, 2107 TARGET_PAGE_SIZE) == -1) { 2108 error_report("Failed to load XBZRLE page - decode error!"); 2109 return -1; 2110 } 2111 2112 return 0; 2113 } 2114 2115 /** 2116 * ram_block_from_stream: read a RAMBlock id from the migration stream 2117 * 2118 * Must be called from within a rcu critical section. 2119 * 2120 * Returns a pointer from within the RCU-protected ram_list. 2121 * 2122 * @f: QEMUFile where to read the data from 2123 * @flags: Page flags (mostly to see if it's a continuation of previous block) 2124 */ 2125 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags) 2126 { 2127 static RAMBlock *block = NULL; 2128 char id[256]; 2129 uint8_t len; 2130 2131 if (flags & RAM_SAVE_FLAG_CONTINUE) { 2132 if (!block) { 2133 error_report("Ack, bad migration stream!"); 2134 return NULL; 2135 } 2136 return block; 2137 } 2138 2139 len = qemu_get_byte(f); 2140 qemu_get_buffer(f, (uint8_t *)id, len); 2141 id[len] = 0; 2142 2143 block = qemu_ram_block_by_name(id); 2144 if (!block) { 2145 error_report("Can't find block %s", id); 2146 return NULL; 2147 } 2148 2149 return block; 2150 } 2151 2152 static inline void *host_from_ram_block_offset(RAMBlock *block, 2153 ram_addr_t offset) 2154 { 2155 if (!offset_in_ramblock(block, offset)) { 2156 return NULL; 2157 } 2158 2159 return block->host + offset; 2160 } 2161 2162 /** 2163 * ram_handle_compressed: handle the zero page case 2164 * 2165 * If a page (or a whole RDMA chunk) has been 2166 * determined to be zero, then zap it. 2167 * 2168 * @host: host address for the zero page 2169 * @ch: what the page is filled from. We only support zero 2170 * @size: size of the zero page 2171 */ 2172 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) 2173 { 2174 if (ch != 0 || !is_zero_range(host, size)) { 2175 memset(host, ch, size); 2176 } 2177 } 2178 2179 static void *do_data_decompress(void *opaque) 2180 { 2181 DecompressParam *param = opaque; 2182 unsigned long pagesize; 2183 uint8_t *des; 2184 int len; 2185 2186 qemu_mutex_lock(¶m->mutex); 2187 while (!param->quit) { 2188 if (param->des) { 2189 des = param->des; 2190 len = param->len; 2191 param->des = 0; 2192 qemu_mutex_unlock(¶m->mutex); 2193 2194 pagesize = TARGET_PAGE_SIZE; 2195 /* uncompress() will return failed in some case, especially 2196 * when the page is dirted when doing the compression, it's 2197 * not a problem because the dirty page will be retransferred 2198 * and uncompress() won't break the data in other pages. 2199 */ 2200 uncompress((Bytef *)des, &pagesize, 2201 (const Bytef *)param->compbuf, len); 2202 2203 qemu_mutex_lock(&decomp_done_lock); 2204 param->done = true; 2205 qemu_cond_signal(&decomp_done_cond); 2206 qemu_mutex_unlock(&decomp_done_lock); 2207 2208 qemu_mutex_lock(¶m->mutex); 2209 } else { 2210 qemu_cond_wait(¶m->cond, ¶m->mutex); 2211 } 2212 } 2213 qemu_mutex_unlock(¶m->mutex); 2214 2215 return NULL; 2216 } 2217 2218 static void wait_for_decompress_done(void) 2219 { 2220 int idx, thread_count; 2221 2222 if (!migrate_use_compression()) { 2223 return; 2224 } 2225 2226 thread_count = migrate_decompress_threads(); 2227 qemu_mutex_lock(&decomp_done_lock); 2228 for (idx = 0; idx < thread_count; idx++) { 2229 while (!decomp_param[idx].done) { 2230 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 2231 } 2232 } 2233 qemu_mutex_unlock(&decomp_done_lock); 2234 } 2235 2236 static void compress_threads_load_setup(void) 2237 { 2238 int i, thread_count; 2239 2240 if (!migrate_use_compression()) { 2241 return; 2242 } 2243 thread_count = migrate_decompress_threads(); 2244 decompress_threads = g_new0(QemuThread, thread_count); 2245 decomp_param = g_new0(DecompressParam, thread_count); 2246 qemu_mutex_init(&decomp_done_lock); 2247 qemu_cond_init(&decomp_done_cond); 2248 for (i = 0; i < thread_count; i++) { 2249 qemu_mutex_init(&decomp_param[i].mutex); 2250 qemu_cond_init(&decomp_param[i].cond); 2251 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); 2252 decomp_param[i].done = true; 2253 decomp_param[i].quit = false; 2254 qemu_thread_create(decompress_threads + i, "decompress", 2255 do_data_decompress, decomp_param + i, 2256 QEMU_THREAD_JOINABLE); 2257 } 2258 } 2259 2260 static void compress_threads_load_cleanup(void) 2261 { 2262 int i, thread_count; 2263 2264 if (!migrate_use_compression()) { 2265 return; 2266 } 2267 thread_count = migrate_decompress_threads(); 2268 for (i = 0; i < thread_count; i++) { 2269 qemu_mutex_lock(&decomp_param[i].mutex); 2270 decomp_param[i].quit = true; 2271 qemu_cond_signal(&decomp_param[i].cond); 2272 qemu_mutex_unlock(&decomp_param[i].mutex); 2273 } 2274 for (i = 0; i < thread_count; i++) { 2275 qemu_thread_join(decompress_threads + i); 2276 qemu_mutex_destroy(&decomp_param[i].mutex); 2277 qemu_cond_destroy(&decomp_param[i].cond); 2278 g_free(decomp_param[i].compbuf); 2279 } 2280 g_free(decompress_threads); 2281 g_free(decomp_param); 2282 decompress_threads = NULL; 2283 decomp_param = NULL; 2284 } 2285 2286 static void decompress_data_with_multi_threads(QEMUFile *f, 2287 void *host, int len) 2288 { 2289 int idx, thread_count; 2290 2291 thread_count = migrate_decompress_threads(); 2292 qemu_mutex_lock(&decomp_done_lock); 2293 while (true) { 2294 for (idx = 0; idx < thread_count; idx++) { 2295 if (decomp_param[idx].done) { 2296 decomp_param[idx].done = false; 2297 qemu_mutex_lock(&decomp_param[idx].mutex); 2298 qemu_get_buffer(f, decomp_param[idx].compbuf, len); 2299 decomp_param[idx].des = host; 2300 decomp_param[idx].len = len; 2301 qemu_cond_signal(&decomp_param[idx].cond); 2302 qemu_mutex_unlock(&decomp_param[idx].mutex); 2303 break; 2304 } 2305 } 2306 if (idx < thread_count) { 2307 break; 2308 } else { 2309 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 2310 } 2311 } 2312 qemu_mutex_unlock(&decomp_done_lock); 2313 } 2314 2315 /** 2316 * ram_load_setup: Setup RAM for migration incoming side 2317 * 2318 * Returns zero to indicate success and negative for error 2319 * 2320 * @f: QEMUFile where to receive the data 2321 * @opaque: RAMState pointer 2322 */ 2323 static int ram_load_setup(QEMUFile *f, void *opaque) 2324 { 2325 xbzrle_load_setup(); 2326 compress_threads_load_setup(); 2327 return 0; 2328 } 2329 2330 static int ram_load_cleanup(void *opaque) 2331 { 2332 xbzrle_load_cleanup(); 2333 compress_threads_load_cleanup(); 2334 return 0; 2335 } 2336 2337 /** 2338 * ram_postcopy_incoming_init: allocate postcopy data structures 2339 * 2340 * Returns 0 for success and negative if there was one error 2341 * 2342 * @mis: current migration incoming state 2343 * 2344 * Allocate data structures etc needed by incoming migration with 2345 * postcopy-ram. postcopy-ram's similarly names 2346 * postcopy_ram_incoming_init does the work. 2347 */ 2348 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 2349 { 2350 unsigned long ram_pages = last_ram_page(); 2351 2352 return postcopy_ram_incoming_init(mis, ram_pages); 2353 } 2354 2355 /** 2356 * ram_load_postcopy: load a page in postcopy case 2357 * 2358 * Returns 0 for success or -errno in case of error 2359 * 2360 * Called in postcopy mode by ram_load(). 2361 * rcu_read_lock is taken prior to this being called. 2362 * 2363 * @f: QEMUFile where to send the data 2364 */ 2365 static int ram_load_postcopy(QEMUFile *f) 2366 { 2367 int flags = 0, ret = 0; 2368 bool place_needed = false; 2369 bool matching_page_sizes = false; 2370 MigrationIncomingState *mis = migration_incoming_get_current(); 2371 /* Temporary page that is later 'placed' */ 2372 void *postcopy_host_page = postcopy_get_tmp_page(mis); 2373 void *last_host = NULL; 2374 bool all_zero = false; 2375 2376 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 2377 ram_addr_t addr; 2378 void *host = NULL; 2379 void *page_buffer = NULL; 2380 void *place_source = NULL; 2381 RAMBlock *block = NULL; 2382 uint8_t ch; 2383 2384 addr = qemu_get_be64(f); 2385 flags = addr & ~TARGET_PAGE_MASK; 2386 addr &= TARGET_PAGE_MASK; 2387 2388 trace_ram_load_postcopy_loop((uint64_t)addr, flags); 2389 place_needed = false; 2390 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) { 2391 block = ram_block_from_stream(f, flags); 2392 2393 host = host_from_ram_block_offset(block, addr); 2394 if (!host) { 2395 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 2396 ret = -EINVAL; 2397 break; 2398 } 2399 matching_page_sizes = block->page_size == TARGET_PAGE_SIZE; 2400 /* 2401 * Postcopy requires that we place whole host pages atomically; 2402 * these may be huge pages for RAMBlocks that are backed by 2403 * hugetlbfs. 2404 * To make it atomic, the data is read into a temporary page 2405 * that's moved into place later. 2406 * The migration protocol uses, possibly smaller, target-pages 2407 * however the source ensures it always sends all the components 2408 * of a host page in order. 2409 */ 2410 page_buffer = postcopy_host_page + 2411 ((uintptr_t)host & (block->page_size - 1)); 2412 /* If all TP are zero then we can optimise the place */ 2413 if (!((uintptr_t)host & (block->page_size - 1))) { 2414 all_zero = true; 2415 } else { 2416 /* not the 1st TP within the HP */ 2417 if (host != (last_host + TARGET_PAGE_SIZE)) { 2418 error_report("Non-sequential target page %p/%p", 2419 host, last_host); 2420 ret = -EINVAL; 2421 break; 2422 } 2423 } 2424 2425 2426 /* 2427 * If it's the last part of a host page then we place the host 2428 * page 2429 */ 2430 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) & 2431 (block->page_size - 1)) == 0; 2432 place_source = postcopy_host_page; 2433 } 2434 last_host = host; 2435 2436 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 2437 case RAM_SAVE_FLAG_ZERO: 2438 ch = qemu_get_byte(f); 2439 memset(page_buffer, ch, TARGET_PAGE_SIZE); 2440 if (ch) { 2441 all_zero = false; 2442 } 2443 break; 2444 2445 case RAM_SAVE_FLAG_PAGE: 2446 all_zero = false; 2447 if (!place_needed || !matching_page_sizes) { 2448 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 2449 } else { 2450 /* Avoids the qemu_file copy during postcopy, which is 2451 * going to do a copy later; can only do it when we 2452 * do this read in one go (matching page sizes) 2453 */ 2454 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 2455 TARGET_PAGE_SIZE); 2456 } 2457 break; 2458 case RAM_SAVE_FLAG_EOS: 2459 /* normal exit */ 2460 break; 2461 default: 2462 error_report("Unknown combination of migration flags: %#x" 2463 " (postcopy mode)", flags); 2464 ret = -EINVAL; 2465 } 2466 2467 if (place_needed) { 2468 /* This gets called at the last target page in the host page */ 2469 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size; 2470 2471 if (all_zero) { 2472 ret = postcopy_place_page_zero(mis, place_dest, 2473 block->page_size); 2474 } else { 2475 ret = postcopy_place_page(mis, place_dest, 2476 place_source, block->page_size); 2477 } 2478 } 2479 if (!ret) { 2480 ret = qemu_file_get_error(f); 2481 } 2482 } 2483 2484 return ret; 2485 } 2486 2487 static int ram_load(QEMUFile *f, void *opaque, int version_id) 2488 { 2489 int flags = 0, ret = 0, invalid_flags = 0; 2490 static uint64_t seq_iter; 2491 int len = 0; 2492 /* 2493 * If system is running in postcopy mode, page inserts to host memory must 2494 * be atomic 2495 */ 2496 bool postcopy_running = postcopy_state_get() >= POSTCOPY_INCOMING_LISTENING; 2497 /* ADVISE is earlier, it shows the source has the postcopy capability on */ 2498 bool postcopy_advised = postcopy_state_get() >= POSTCOPY_INCOMING_ADVISE; 2499 2500 seq_iter++; 2501 2502 if (version_id != 4) { 2503 ret = -EINVAL; 2504 } 2505 2506 if (!migrate_use_compression()) { 2507 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE; 2508 } 2509 /* This RCU critical section can be very long running. 2510 * When RCU reclaims in the code start to become numerous, 2511 * it will be necessary to reduce the granularity of this 2512 * critical section. 2513 */ 2514 rcu_read_lock(); 2515 2516 if (postcopy_running) { 2517 ret = ram_load_postcopy(f); 2518 } 2519 2520 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) { 2521 ram_addr_t addr, total_ram_bytes; 2522 void *host = NULL; 2523 uint8_t ch; 2524 2525 addr = qemu_get_be64(f); 2526 flags = addr & ~TARGET_PAGE_MASK; 2527 addr &= TARGET_PAGE_MASK; 2528 2529 if (flags & invalid_flags) { 2530 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) { 2531 error_report("Received an unexpected compressed page"); 2532 } 2533 2534 ret = -EINVAL; 2535 break; 2536 } 2537 2538 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 2539 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { 2540 RAMBlock *block = ram_block_from_stream(f, flags); 2541 2542 host = host_from_ram_block_offset(block, addr); 2543 if (!host) { 2544 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 2545 ret = -EINVAL; 2546 break; 2547 } 2548 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); 2549 } 2550 2551 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 2552 case RAM_SAVE_FLAG_MEM_SIZE: 2553 /* Synchronize RAM block list */ 2554 total_ram_bytes = addr; 2555 while (!ret && total_ram_bytes) { 2556 RAMBlock *block; 2557 char id[256]; 2558 ram_addr_t length; 2559 2560 len = qemu_get_byte(f); 2561 qemu_get_buffer(f, (uint8_t *)id, len); 2562 id[len] = 0; 2563 length = qemu_get_be64(f); 2564 2565 block = qemu_ram_block_by_name(id); 2566 if (block) { 2567 if (length != block->used_length) { 2568 Error *local_err = NULL; 2569 2570 ret = qemu_ram_resize(block, length, 2571 &local_err); 2572 if (local_err) { 2573 error_report_err(local_err); 2574 } 2575 } 2576 /* For postcopy we need to check hugepage sizes match */ 2577 if (postcopy_advised && 2578 block->page_size != qemu_host_page_size) { 2579 uint64_t remote_page_size = qemu_get_be64(f); 2580 if (remote_page_size != block->page_size) { 2581 error_report("Mismatched RAM page size %s " 2582 "(local) %zd != %" PRId64, 2583 id, block->page_size, 2584 remote_page_size); 2585 ret = -EINVAL; 2586 } 2587 } 2588 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG, 2589 block->idstr); 2590 } else { 2591 error_report("Unknown ramblock \"%s\", cannot " 2592 "accept migration", id); 2593 ret = -EINVAL; 2594 } 2595 2596 total_ram_bytes -= length; 2597 } 2598 break; 2599 2600 case RAM_SAVE_FLAG_ZERO: 2601 ch = qemu_get_byte(f); 2602 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); 2603 break; 2604 2605 case RAM_SAVE_FLAG_PAGE: 2606 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 2607 break; 2608 2609 case RAM_SAVE_FLAG_COMPRESS_PAGE: 2610 len = qemu_get_be32(f); 2611 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 2612 error_report("Invalid compressed data length: %d", len); 2613 ret = -EINVAL; 2614 break; 2615 } 2616 decompress_data_with_multi_threads(f, host, len); 2617 break; 2618 2619 case RAM_SAVE_FLAG_XBZRLE: 2620 if (load_xbzrle(f, addr, host) < 0) { 2621 error_report("Failed to decompress XBZRLE page at " 2622 RAM_ADDR_FMT, addr); 2623 ret = -EINVAL; 2624 break; 2625 } 2626 break; 2627 case RAM_SAVE_FLAG_EOS: 2628 /* normal exit */ 2629 break; 2630 default: 2631 if (flags & RAM_SAVE_FLAG_HOOK) { 2632 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL); 2633 } else { 2634 error_report("Unknown combination of migration flags: %#x", 2635 flags); 2636 ret = -EINVAL; 2637 } 2638 } 2639 if (!ret) { 2640 ret = qemu_file_get_error(f); 2641 } 2642 } 2643 2644 wait_for_decompress_done(); 2645 rcu_read_unlock(); 2646 trace_ram_load_complete(ret, seq_iter); 2647 return ret; 2648 } 2649 2650 static SaveVMHandlers savevm_ram_handlers = { 2651 .save_setup = ram_save_setup, 2652 .save_live_iterate = ram_save_iterate, 2653 .save_live_complete_postcopy = ram_save_complete, 2654 .save_live_complete_precopy = ram_save_complete, 2655 .save_live_pending = ram_save_pending, 2656 .load_state = ram_load, 2657 .save_cleanup = ram_save_cleanup, 2658 .load_setup = ram_load_setup, 2659 .load_cleanup = ram_load_cleanup, 2660 }; 2661 2662 void ram_mig_init(void) 2663 { 2664 qemu_mutex_init(&XBZRLE.lock); 2665 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state); 2666 } 2667