1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "qemu/osdep.h" 25 #include <zlib.h> 26 #include "qemu/error-report.h" 27 #include "qemu/iov.h" 28 #include "migration.h" 29 #include "qemu-file.h" 30 #include "trace.h" 31 #include "qapi/error.h" 32 33 #define IO_BUF_SIZE 32768 34 #define MAX_IOV_SIZE MIN_CONST(IOV_MAX, 64) 35 36 struct QEMUFile { 37 const QEMUFileOps *ops; 38 const QEMUFileHooks *hooks; 39 void *opaque; 40 41 int64_t bytes_xfer; 42 int64_t xfer_limit; 43 44 int64_t pos; /* start of buffer when writing, end of buffer 45 when reading */ 46 int buf_index; 47 int buf_size; /* 0 when writing */ 48 uint8_t buf[IO_BUF_SIZE]; 49 50 DECLARE_BITMAP(may_free, MAX_IOV_SIZE); 51 struct iovec iov[MAX_IOV_SIZE]; 52 unsigned int iovcnt; 53 54 int last_error; 55 Error *last_error_obj; 56 /* has the file has been shutdown */ 57 bool shutdown; 58 /* Whether opaque points to a QIOChannel */ 59 bool has_ioc; 60 }; 61 62 /* 63 * Stop a file from being read/written - not all backing files can do this 64 * typically only sockets can. 65 */ 66 int qemu_file_shutdown(QEMUFile *f) 67 { 68 int ret; 69 70 f->shutdown = true; 71 if (!f->ops->shut_down) { 72 return -ENOSYS; 73 } 74 ret = f->ops->shut_down(f->opaque, true, true, NULL); 75 76 if (!f->last_error) { 77 qemu_file_set_error(f, -EIO); 78 } 79 return ret; 80 } 81 82 /* 83 * Result: QEMUFile* for a 'return path' for comms in the opposite direction 84 * NULL if not available 85 */ 86 QEMUFile *qemu_file_get_return_path(QEMUFile *f) 87 { 88 if (!f->ops->get_return_path) { 89 return NULL; 90 } 91 return f->ops->get_return_path(f->opaque); 92 } 93 94 bool qemu_file_mode_is_not_valid(const char *mode) 95 { 96 if (mode == NULL || 97 (mode[0] != 'r' && mode[0] != 'w') || 98 mode[1] != 'b' || mode[2] != 0) { 99 fprintf(stderr, "qemu_fopen: Argument validity check failed\n"); 100 return true; 101 } 102 103 return false; 104 } 105 106 QEMUFile *qemu_fopen_ops(void *opaque, const QEMUFileOps *ops, bool has_ioc) 107 { 108 QEMUFile *f; 109 110 f = g_new0(QEMUFile, 1); 111 112 f->opaque = opaque; 113 f->ops = ops; 114 f->has_ioc = has_ioc; 115 return f; 116 } 117 118 119 void qemu_file_set_hooks(QEMUFile *f, const QEMUFileHooks *hooks) 120 { 121 f->hooks = hooks; 122 } 123 124 /* 125 * Get last error for stream f with optional Error* 126 * 127 * Return negative error value if there has been an error on previous 128 * operations, return 0 if no error happened. 129 * Optional, it returns Error* in errp, but it may be NULL even if return value 130 * is not 0. 131 * 132 */ 133 int qemu_file_get_error_obj(QEMUFile *f, Error **errp) 134 { 135 if (errp) { 136 *errp = f->last_error_obj ? error_copy(f->last_error_obj) : NULL; 137 } 138 return f->last_error; 139 } 140 141 /* 142 * Set the last error for stream f with optional Error* 143 */ 144 void qemu_file_set_error_obj(QEMUFile *f, int ret, Error *err) 145 { 146 if (f->last_error == 0 && ret) { 147 f->last_error = ret; 148 error_propagate(&f->last_error_obj, err); 149 } else if (err) { 150 error_report_err(err); 151 } 152 } 153 154 /* 155 * Get last error for stream f 156 * 157 * Return negative error value if there has been an error on previous 158 * operations, return 0 if no error happened. 159 * 160 */ 161 int qemu_file_get_error(QEMUFile *f) 162 { 163 return qemu_file_get_error_obj(f, NULL); 164 } 165 166 /* 167 * Set the last error for stream f 168 */ 169 void qemu_file_set_error(QEMUFile *f, int ret) 170 { 171 qemu_file_set_error_obj(f, ret, NULL); 172 } 173 174 bool qemu_file_is_writable(QEMUFile *f) 175 { 176 return f->ops->writev_buffer; 177 } 178 179 static void qemu_iovec_release_ram(QEMUFile *f) 180 { 181 struct iovec iov; 182 unsigned long idx; 183 184 /* Find and release all the contiguous memory ranges marked as may_free. */ 185 idx = find_next_bit(f->may_free, f->iovcnt, 0); 186 if (idx >= f->iovcnt) { 187 return; 188 } 189 iov = f->iov[idx]; 190 191 /* The madvise() in the loop is called for iov within a continuous range and 192 * then reinitialize the iov. And in the end, madvise() is called for the 193 * last iov. 194 */ 195 while ((idx = find_next_bit(f->may_free, f->iovcnt, idx + 1)) < f->iovcnt) { 196 /* check for adjacent buffer and coalesce them */ 197 if (iov.iov_base + iov.iov_len == f->iov[idx].iov_base) { 198 iov.iov_len += f->iov[idx].iov_len; 199 continue; 200 } 201 if (qemu_madvise(iov.iov_base, iov.iov_len, QEMU_MADV_DONTNEED) < 0) { 202 error_report("migrate: madvise DONTNEED failed %p %zd: %s", 203 iov.iov_base, iov.iov_len, strerror(errno)); 204 } 205 iov = f->iov[idx]; 206 } 207 if (qemu_madvise(iov.iov_base, iov.iov_len, QEMU_MADV_DONTNEED) < 0) { 208 error_report("migrate: madvise DONTNEED failed %p %zd: %s", 209 iov.iov_base, iov.iov_len, strerror(errno)); 210 } 211 memset(f->may_free, 0, sizeof(f->may_free)); 212 } 213 214 /** 215 * Flushes QEMUFile buffer 216 * 217 * This will flush all pending data. If data was only partially flushed, it 218 * will set an error state. 219 */ 220 void qemu_fflush(QEMUFile *f) 221 { 222 ssize_t ret = 0; 223 ssize_t expect = 0; 224 Error *local_error = NULL; 225 226 if (!qemu_file_is_writable(f)) { 227 return; 228 } 229 230 if (f->shutdown) { 231 return; 232 } 233 if (f->iovcnt > 0) { 234 expect = iov_size(f->iov, f->iovcnt); 235 ret = f->ops->writev_buffer(f->opaque, f->iov, f->iovcnt, f->pos, 236 &local_error); 237 238 qemu_iovec_release_ram(f); 239 } 240 241 if (ret >= 0) { 242 f->pos += ret; 243 } 244 /* We expect the QEMUFile write impl to send the full 245 * data set we requested, so sanity check that. 246 */ 247 if (ret != expect) { 248 qemu_file_set_error_obj(f, ret < 0 ? ret : -EIO, local_error); 249 } 250 f->buf_index = 0; 251 f->iovcnt = 0; 252 } 253 254 void ram_control_before_iterate(QEMUFile *f, uint64_t flags) 255 { 256 int ret = 0; 257 258 if (f->hooks && f->hooks->before_ram_iterate) { 259 ret = f->hooks->before_ram_iterate(f, f->opaque, flags, NULL); 260 if (ret < 0) { 261 qemu_file_set_error(f, ret); 262 } 263 } 264 } 265 266 void ram_control_after_iterate(QEMUFile *f, uint64_t flags) 267 { 268 int ret = 0; 269 270 if (f->hooks && f->hooks->after_ram_iterate) { 271 ret = f->hooks->after_ram_iterate(f, f->opaque, flags, NULL); 272 if (ret < 0) { 273 qemu_file_set_error(f, ret); 274 } 275 } 276 } 277 278 void ram_control_load_hook(QEMUFile *f, uint64_t flags, void *data) 279 { 280 int ret = -EINVAL; 281 282 if (f->hooks && f->hooks->hook_ram_load) { 283 ret = f->hooks->hook_ram_load(f, f->opaque, flags, data); 284 if (ret < 0) { 285 qemu_file_set_error(f, ret); 286 } 287 } else { 288 /* 289 * Hook is a hook specifically requested by the source sending a flag 290 * that expects there to be a hook on the destination. 291 */ 292 if (flags == RAM_CONTROL_HOOK) { 293 qemu_file_set_error(f, ret); 294 } 295 } 296 } 297 298 size_t ram_control_save_page(QEMUFile *f, ram_addr_t block_offset, 299 ram_addr_t offset, size_t size, 300 uint64_t *bytes_sent) 301 { 302 if (f->hooks && f->hooks->save_page) { 303 int ret = f->hooks->save_page(f, f->opaque, block_offset, 304 offset, size, bytes_sent); 305 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) { 306 f->bytes_xfer += size; 307 } 308 309 if (ret != RAM_SAVE_CONTROL_DELAYED && 310 ret != RAM_SAVE_CONTROL_NOT_SUPP) { 311 if (bytes_sent && *bytes_sent > 0) { 312 qemu_update_position(f, *bytes_sent); 313 } else if (ret < 0) { 314 qemu_file_set_error(f, ret); 315 } 316 } 317 318 return ret; 319 } 320 321 return RAM_SAVE_CONTROL_NOT_SUPP; 322 } 323 324 /* 325 * Attempt to fill the buffer from the underlying file 326 * Returns the number of bytes read, or negative value for an error. 327 * 328 * Note that it can return a partially full buffer even in a not error/not EOF 329 * case if the underlying file descriptor gives a short read, and that can 330 * happen even on a blocking fd. 331 */ 332 static ssize_t qemu_fill_buffer(QEMUFile *f) 333 { 334 int len; 335 int pending; 336 Error *local_error = NULL; 337 338 assert(!qemu_file_is_writable(f)); 339 340 pending = f->buf_size - f->buf_index; 341 if (pending > 0) { 342 memmove(f->buf, f->buf + f->buf_index, pending); 343 } 344 f->buf_index = 0; 345 f->buf_size = pending; 346 347 if (f->shutdown) { 348 return 0; 349 } 350 351 len = f->ops->get_buffer(f->opaque, f->buf + pending, f->pos, 352 IO_BUF_SIZE - pending, &local_error); 353 if (len > 0) { 354 f->buf_size += len; 355 f->pos += len; 356 } else if (len == 0) { 357 qemu_file_set_error_obj(f, -EIO, local_error); 358 } else if (len != -EAGAIN) { 359 qemu_file_set_error_obj(f, len, local_error); 360 } else { 361 error_free(local_error); 362 } 363 364 return len; 365 } 366 367 void qemu_update_position(QEMUFile *f, size_t size) 368 { 369 f->pos += size; 370 } 371 372 /** Closes the file 373 * 374 * Returns negative error value if any error happened on previous operations or 375 * while closing the file. Returns 0 or positive number on success. 376 * 377 * The meaning of return value on success depends on the specific backend 378 * being used. 379 */ 380 int qemu_fclose(QEMUFile *f) 381 { 382 int ret; 383 qemu_fflush(f); 384 ret = qemu_file_get_error(f); 385 386 if (f->ops->close) { 387 int ret2 = f->ops->close(f->opaque, NULL); 388 if (ret >= 0) { 389 ret = ret2; 390 } 391 } 392 /* If any error was spotted before closing, we should report it 393 * instead of the close() return value. 394 */ 395 if (f->last_error) { 396 ret = f->last_error; 397 } 398 error_free(f->last_error_obj); 399 g_free(f); 400 trace_qemu_file_fclose(); 401 return ret; 402 } 403 404 /* 405 * Add buf to iovec. Do flush if iovec is full. 406 * 407 * Return values: 408 * 1 iovec is full and flushed 409 * 0 iovec is not flushed 410 * 411 */ 412 static int add_to_iovec(QEMUFile *f, const uint8_t *buf, size_t size, 413 bool may_free) 414 { 415 /* check for adjacent buffer and coalesce them */ 416 if (f->iovcnt > 0 && buf == f->iov[f->iovcnt - 1].iov_base + 417 f->iov[f->iovcnt - 1].iov_len && 418 may_free == test_bit(f->iovcnt - 1, f->may_free)) 419 { 420 f->iov[f->iovcnt - 1].iov_len += size; 421 } else { 422 if (f->iovcnt >= MAX_IOV_SIZE) { 423 /* Should only happen if a previous fflush failed */ 424 assert(f->shutdown || !qemu_file_is_writable(f)); 425 return 1; 426 } 427 if (may_free) { 428 set_bit(f->iovcnt, f->may_free); 429 } 430 f->iov[f->iovcnt].iov_base = (uint8_t *)buf; 431 f->iov[f->iovcnt++].iov_len = size; 432 } 433 434 if (f->iovcnt >= MAX_IOV_SIZE) { 435 qemu_fflush(f); 436 return 1; 437 } 438 439 return 0; 440 } 441 442 static void add_buf_to_iovec(QEMUFile *f, size_t len) 443 { 444 if (!add_to_iovec(f, f->buf + f->buf_index, len, false)) { 445 f->buf_index += len; 446 if (f->buf_index == IO_BUF_SIZE) { 447 qemu_fflush(f); 448 } 449 } 450 } 451 452 void qemu_put_buffer_async(QEMUFile *f, const uint8_t *buf, size_t size, 453 bool may_free) 454 { 455 if (f->last_error) { 456 return; 457 } 458 459 f->bytes_xfer += size; 460 add_to_iovec(f, buf, size, may_free); 461 } 462 463 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, size_t size) 464 { 465 size_t l; 466 467 if (f->last_error) { 468 return; 469 } 470 471 while (size > 0) { 472 l = IO_BUF_SIZE - f->buf_index; 473 if (l > size) { 474 l = size; 475 } 476 memcpy(f->buf + f->buf_index, buf, l); 477 f->bytes_xfer += l; 478 add_buf_to_iovec(f, l); 479 if (qemu_file_get_error(f)) { 480 break; 481 } 482 buf += l; 483 size -= l; 484 } 485 } 486 487 void qemu_put_byte(QEMUFile *f, int v) 488 { 489 if (f->last_error) { 490 return; 491 } 492 493 f->buf[f->buf_index] = v; 494 f->bytes_xfer++; 495 add_buf_to_iovec(f, 1); 496 } 497 498 void qemu_file_skip(QEMUFile *f, int size) 499 { 500 if (f->buf_index + size <= f->buf_size) { 501 f->buf_index += size; 502 } 503 } 504 505 /* 506 * Read 'size' bytes from file (at 'offset') without moving the 507 * pointer and set 'buf' to point to that data. 508 * 509 * It will return size bytes unless there was an error, in which case it will 510 * return as many as it managed to read (assuming blocking fd's which 511 * all current QEMUFile are) 512 */ 513 size_t qemu_peek_buffer(QEMUFile *f, uint8_t **buf, size_t size, size_t offset) 514 { 515 ssize_t pending; 516 size_t index; 517 518 assert(!qemu_file_is_writable(f)); 519 assert(offset < IO_BUF_SIZE); 520 assert(size <= IO_BUF_SIZE - offset); 521 522 /* The 1st byte to read from */ 523 index = f->buf_index + offset; 524 /* The number of available bytes starting at index */ 525 pending = f->buf_size - index; 526 527 /* 528 * qemu_fill_buffer might return just a few bytes, even when there isn't 529 * an error, so loop collecting them until we get enough. 530 */ 531 while (pending < size) { 532 int received = qemu_fill_buffer(f); 533 534 if (received <= 0) { 535 break; 536 } 537 538 index = f->buf_index + offset; 539 pending = f->buf_size - index; 540 } 541 542 if (pending <= 0) { 543 return 0; 544 } 545 if (size > pending) { 546 size = pending; 547 } 548 549 *buf = f->buf + index; 550 return size; 551 } 552 553 /* 554 * Read 'size' bytes of data from the file into buf. 555 * 'size' can be larger than the internal buffer. 556 * 557 * It will return size bytes unless there was an error, in which case it will 558 * return as many as it managed to read (assuming blocking fd's which 559 * all current QEMUFile are) 560 */ 561 size_t qemu_get_buffer(QEMUFile *f, uint8_t *buf, size_t size) 562 { 563 size_t pending = size; 564 size_t done = 0; 565 566 while (pending > 0) { 567 size_t res; 568 uint8_t *src; 569 570 res = qemu_peek_buffer(f, &src, MIN(pending, IO_BUF_SIZE), 0); 571 if (res == 0) { 572 return done; 573 } 574 memcpy(buf, src, res); 575 qemu_file_skip(f, res); 576 buf += res; 577 pending -= res; 578 done += res; 579 } 580 return done; 581 } 582 583 /* 584 * Read 'size' bytes of data from the file. 585 * 'size' can be larger than the internal buffer. 586 * 587 * The data: 588 * may be held on an internal buffer (in which case *buf is updated 589 * to point to it) that is valid until the next qemu_file operation. 590 * OR 591 * will be copied to the *buf that was passed in. 592 * 593 * The code tries to avoid the copy if possible. 594 * 595 * It will return size bytes unless there was an error, in which case it will 596 * return as many as it managed to read (assuming blocking fd's which 597 * all current QEMUFile are) 598 * 599 * Note: Since **buf may get changed, the caller should take care to 600 * keep a pointer to the original buffer if it needs to deallocate it. 601 */ 602 size_t qemu_get_buffer_in_place(QEMUFile *f, uint8_t **buf, size_t size) 603 { 604 if (size < IO_BUF_SIZE) { 605 size_t res; 606 uint8_t *src = NULL; 607 608 res = qemu_peek_buffer(f, &src, size, 0); 609 610 if (res == size) { 611 qemu_file_skip(f, res); 612 *buf = src; 613 return res; 614 } 615 } 616 617 return qemu_get_buffer(f, *buf, size); 618 } 619 620 /* 621 * Peeks a single byte from the buffer; this isn't guaranteed to work if 622 * offset leaves a gap after the previous read/peeked data. 623 */ 624 int qemu_peek_byte(QEMUFile *f, int offset) 625 { 626 int index = f->buf_index + offset; 627 628 assert(!qemu_file_is_writable(f)); 629 assert(offset < IO_BUF_SIZE); 630 631 if (index >= f->buf_size) { 632 qemu_fill_buffer(f); 633 index = f->buf_index + offset; 634 if (index >= f->buf_size) { 635 return 0; 636 } 637 } 638 return f->buf[index]; 639 } 640 641 int qemu_get_byte(QEMUFile *f) 642 { 643 int result; 644 645 result = qemu_peek_byte(f, 0); 646 qemu_file_skip(f, 1); 647 return result; 648 } 649 650 int64_t qemu_ftell_fast(QEMUFile *f) 651 { 652 int64_t ret = f->pos; 653 int i; 654 655 for (i = 0; i < f->iovcnt; i++) { 656 ret += f->iov[i].iov_len; 657 } 658 659 return ret; 660 } 661 662 int64_t qemu_ftell(QEMUFile *f) 663 { 664 qemu_fflush(f); 665 return f->pos; 666 } 667 668 int qemu_file_rate_limit(QEMUFile *f) 669 { 670 if (f->shutdown) { 671 return 1; 672 } 673 if (qemu_file_get_error(f)) { 674 return 1; 675 } 676 if (f->xfer_limit > 0 && f->bytes_xfer > f->xfer_limit) { 677 return 1; 678 } 679 return 0; 680 } 681 682 int64_t qemu_file_get_rate_limit(QEMUFile *f) 683 { 684 return f->xfer_limit; 685 } 686 687 void qemu_file_set_rate_limit(QEMUFile *f, int64_t limit) 688 { 689 f->xfer_limit = limit; 690 } 691 692 void qemu_file_reset_rate_limit(QEMUFile *f) 693 { 694 f->bytes_xfer = 0; 695 } 696 697 void qemu_file_update_transfer(QEMUFile *f, int64_t len) 698 { 699 f->bytes_xfer += len; 700 } 701 702 void qemu_put_be16(QEMUFile *f, unsigned int v) 703 { 704 qemu_put_byte(f, v >> 8); 705 qemu_put_byte(f, v); 706 } 707 708 void qemu_put_be32(QEMUFile *f, unsigned int v) 709 { 710 qemu_put_byte(f, v >> 24); 711 qemu_put_byte(f, v >> 16); 712 qemu_put_byte(f, v >> 8); 713 qemu_put_byte(f, v); 714 } 715 716 void qemu_put_be64(QEMUFile *f, uint64_t v) 717 { 718 qemu_put_be32(f, v >> 32); 719 qemu_put_be32(f, v); 720 } 721 722 unsigned int qemu_get_be16(QEMUFile *f) 723 { 724 unsigned int v; 725 v = qemu_get_byte(f) << 8; 726 v |= qemu_get_byte(f); 727 return v; 728 } 729 730 unsigned int qemu_get_be32(QEMUFile *f) 731 { 732 unsigned int v; 733 v = (unsigned int)qemu_get_byte(f) << 24; 734 v |= qemu_get_byte(f) << 16; 735 v |= qemu_get_byte(f) << 8; 736 v |= qemu_get_byte(f); 737 return v; 738 } 739 740 uint64_t qemu_get_be64(QEMUFile *f) 741 { 742 uint64_t v; 743 v = (uint64_t)qemu_get_be32(f) << 32; 744 v |= qemu_get_be32(f); 745 return v; 746 } 747 748 /* return the size after compression, or negative value on error */ 749 static int qemu_compress_data(z_stream *stream, uint8_t *dest, size_t dest_len, 750 const uint8_t *source, size_t source_len) 751 { 752 int err; 753 754 err = deflateReset(stream); 755 if (err != Z_OK) { 756 return -1; 757 } 758 759 stream->avail_in = source_len; 760 stream->next_in = (uint8_t *)source; 761 stream->avail_out = dest_len; 762 stream->next_out = dest; 763 764 err = deflate(stream, Z_FINISH); 765 if (err != Z_STREAM_END) { 766 return -1; 767 } 768 769 return stream->next_out - dest; 770 } 771 772 /* Compress size bytes of data start at p and store the compressed 773 * data to the buffer of f. 774 * 775 * Since the file is dummy file with empty_ops, return -1 if f has no space to 776 * save the compressed data. 777 */ 778 ssize_t qemu_put_compression_data(QEMUFile *f, z_stream *stream, 779 const uint8_t *p, size_t size) 780 { 781 ssize_t blen = IO_BUF_SIZE - f->buf_index - sizeof(int32_t); 782 783 if (blen < compressBound(size)) { 784 return -1; 785 } 786 787 blen = qemu_compress_data(stream, f->buf + f->buf_index + sizeof(int32_t), 788 blen, p, size); 789 if (blen < 0) { 790 return -1; 791 } 792 793 qemu_put_be32(f, blen); 794 add_buf_to_iovec(f, blen); 795 return blen + sizeof(int32_t); 796 } 797 798 /* Put the data in the buffer of f_src to the buffer of f_des, and 799 * then reset the buf_index of f_src to 0. 800 */ 801 802 int qemu_put_qemu_file(QEMUFile *f_des, QEMUFile *f_src) 803 { 804 int len = 0; 805 806 if (f_src->buf_index > 0) { 807 len = f_src->buf_index; 808 qemu_put_buffer(f_des, f_src->buf, f_src->buf_index); 809 f_src->buf_index = 0; 810 f_src->iovcnt = 0; 811 } 812 return len; 813 } 814 815 /* 816 * Get a string whose length is determined by a single preceding byte 817 * A preallocated 256 byte buffer must be passed in. 818 * Returns: len on success and a 0 terminated string in the buffer 819 * else 0 820 * (Note a 0 length string will return 0 either way) 821 */ 822 size_t qemu_get_counted_string(QEMUFile *f, char buf[256]) 823 { 824 size_t len = qemu_get_byte(f); 825 size_t res = qemu_get_buffer(f, (uint8_t *)buf, len); 826 827 buf[res] = 0; 828 829 return res == len ? res : 0; 830 } 831 832 /* 833 * Put a string with one preceding byte containing its length. The length of 834 * the string should be less than 256. 835 */ 836 void qemu_put_counted_string(QEMUFile *f, const char *str) 837 { 838 size_t len = strlen(str); 839 840 assert(len < 256); 841 qemu_put_byte(f, len); 842 qemu_put_buffer(f, (const uint8_t *)str, len); 843 } 844 845 /* 846 * Set the blocking state of the QEMUFile. 847 * Note: On some transports the OS only keeps a single blocking state for 848 * both directions, and thus changing the blocking on the main 849 * QEMUFile can also affect the return path. 850 */ 851 void qemu_file_set_blocking(QEMUFile *f, bool block) 852 { 853 if (f->ops->set_blocking) { 854 f->ops->set_blocking(f->opaque, block, NULL); 855 } 856 } 857 858 /* 859 * Return the ioc object if it's a migration channel. Note: it can return NULL 860 * for callers passing in a non-migration qemufile. E.g. see qemu_fopen_bdrv() 861 * and its usage in e.g. load_snapshot(). So we need to check against NULL 862 * before using it. If without the check, migration_incoming_state_destroy() 863 * could fail for load_snapshot(). 864 */ 865 QIOChannel *qemu_file_get_ioc(QEMUFile *file) 866 { 867 return file->has_ioc ? QIO_CHANNEL(file->opaque) : NULL; 868 } 869