1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "qemu/osdep.h" 25 #include <zlib.h> 26 #include "qemu-common.h" 27 #include "qemu/error-report.h" 28 #include "qemu/iov.h" 29 #include "migration.h" 30 #include "qemu-file.h" 31 #include "trace.h" 32 33 #define IO_BUF_SIZE 32768 34 #define MAX_IOV_SIZE MIN(IOV_MAX, 64) 35 36 struct QEMUFile { 37 const QEMUFileOps *ops; 38 const QEMUFileHooks *hooks; 39 void *opaque; 40 41 int64_t bytes_xfer; 42 int64_t xfer_limit; 43 44 int64_t pos; /* start of buffer when writing, end of buffer 45 when reading */ 46 int buf_index; 47 int buf_size; /* 0 when writing */ 48 uint8_t buf[IO_BUF_SIZE]; 49 50 DECLARE_BITMAP(may_free, MAX_IOV_SIZE); 51 struct iovec iov[MAX_IOV_SIZE]; 52 unsigned int iovcnt; 53 54 int last_error; 55 }; 56 57 /* 58 * Stop a file from being read/written - not all backing files can do this 59 * typically only sockets can. 60 */ 61 int qemu_file_shutdown(QEMUFile *f) 62 { 63 if (!f->ops->shut_down) { 64 return -ENOSYS; 65 } 66 return f->ops->shut_down(f->opaque, true, true); 67 } 68 69 /* 70 * Result: QEMUFile* for a 'return path' for comms in the opposite direction 71 * NULL if not available 72 */ 73 QEMUFile *qemu_file_get_return_path(QEMUFile *f) 74 { 75 if (!f->ops->get_return_path) { 76 return NULL; 77 } 78 return f->ops->get_return_path(f->opaque); 79 } 80 81 bool qemu_file_mode_is_not_valid(const char *mode) 82 { 83 if (mode == NULL || 84 (mode[0] != 'r' && mode[0] != 'w') || 85 mode[1] != 'b' || mode[2] != 0) { 86 fprintf(stderr, "qemu_fopen: Argument validity check failed\n"); 87 return true; 88 } 89 90 return false; 91 } 92 93 QEMUFile *qemu_fopen_ops(void *opaque, const QEMUFileOps *ops) 94 { 95 QEMUFile *f; 96 97 f = g_new0(QEMUFile, 1); 98 99 f->opaque = opaque; 100 f->ops = ops; 101 return f; 102 } 103 104 105 void qemu_file_set_hooks(QEMUFile *f, const QEMUFileHooks *hooks) 106 { 107 f->hooks = hooks; 108 } 109 110 /* 111 * Get last error for stream f 112 * 113 * Return negative error value if there has been an error on previous 114 * operations, return 0 if no error happened. 115 * 116 */ 117 int qemu_file_get_error(QEMUFile *f) 118 { 119 return f->last_error; 120 } 121 122 void qemu_file_set_error(QEMUFile *f, int ret) 123 { 124 if (f->last_error == 0) { 125 f->last_error = ret; 126 } 127 } 128 129 bool qemu_file_is_writable(QEMUFile *f) 130 { 131 return f->ops->writev_buffer; 132 } 133 134 static void qemu_iovec_release_ram(QEMUFile *f) 135 { 136 struct iovec iov; 137 unsigned long idx; 138 139 /* Find and release all the contiguous memory ranges marked as may_free. */ 140 idx = find_next_bit(f->may_free, f->iovcnt, 0); 141 if (idx >= f->iovcnt) { 142 return; 143 } 144 iov = f->iov[idx]; 145 146 /* The madvise() in the loop is called for iov within a continuous range and 147 * then reinitialize the iov. And in the end, madvise() is called for the 148 * last iov. 149 */ 150 while ((idx = find_next_bit(f->may_free, f->iovcnt, idx + 1)) < f->iovcnt) { 151 /* check for adjacent buffer and coalesce them */ 152 if (iov.iov_base + iov.iov_len == f->iov[idx].iov_base) { 153 iov.iov_len += f->iov[idx].iov_len; 154 continue; 155 } 156 if (qemu_madvise(iov.iov_base, iov.iov_len, QEMU_MADV_DONTNEED) < 0) { 157 error_report("migrate: madvise DONTNEED failed %p %zd: %s", 158 iov.iov_base, iov.iov_len, strerror(errno)); 159 } 160 iov = f->iov[idx]; 161 } 162 if (qemu_madvise(iov.iov_base, iov.iov_len, QEMU_MADV_DONTNEED) < 0) { 163 error_report("migrate: madvise DONTNEED failed %p %zd: %s", 164 iov.iov_base, iov.iov_len, strerror(errno)); 165 } 166 memset(f->may_free, 0, sizeof(f->may_free)); 167 } 168 169 /** 170 * Flushes QEMUFile buffer 171 * 172 * If there is writev_buffer QEMUFileOps it uses it otherwise uses 173 * put_buffer ops. This will flush all pending data. If data was 174 * only partially flushed, it will set an error state. 175 */ 176 void qemu_fflush(QEMUFile *f) 177 { 178 ssize_t ret = 0; 179 ssize_t expect = 0; 180 181 if (!qemu_file_is_writable(f)) { 182 return; 183 } 184 185 if (f->iovcnt > 0) { 186 expect = iov_size(f->iov, f->iovcnt); 187 ret = f->ops->writev_buffer(f->opaque, f->iov, f->iovcnt, f->pos); 188 189 qemu_iovec_release_ram(f); 190 } 191 192 if (ret >= 0) { 193 f->pos += ret; 194 } 195 /* We expect the QEMUFile write impl to send the full 196 * data set we requested, so sanity check that. 197 */ 198 if (ret != expect) { 199 qemu_file_set_error(f, ret < 0 ? ret : -EIO); 200 } 201 f->buf_index = 0; 202 f->iovcnt = 0; 203 } 204 205 void ram_control_before_iterate(QEMUFile *f, uint64_t flags) 206 { 207 int ret = 0; 208 209 if (f->hooks && f->hooks->before_ram_iterate) { 210 ret = f->hooks->before_ram_iterate(f, f->opaque, flags, NULL); 211 if (ret < 0) { 212 qemu_file_set_error(f, ret); 213 } 214 } 215 } 216 217 void ram_control_after_iterate(QEMUFile *f, uint64_t flags) 218 { 219 int ret = 0; 220 221 if (f->hooks && f->hooks->after_ram_iterate) { 222 ret = f->hooks->after_ram_iterate(f, f->opaque, flags, NULL); 223 if (ret < 0) { 224 qemu_file_set_error(f, ret); 225 } 226 } 227 } 228 229 void ram_control_load_hook(QEMUFile *f, uint64_t flags, void *data) 230 { 231 int ret = -EINVAL; 232 233 if (f->hooks && f->hooks->hook_ram_load) { 234 ret = f->hooks->hook_ram_load(f, f->opaque, flags, data); 235 if (ret < 0) { 236 qemu_file_set_error(f, ret); 237 } 238 } else { 239 /* 240 * Hook is a hook specifically requested by the source sending a flag 241 * that expects there to be a hook on the destination. 242 */ 243 if (flags == RAM_CONTROL_HOOK) { 244 qemu_file_set_error(f, ret); 245 } 246 } 247 } 248 249 size_t ram_control_save_page(QEMUFile *f, ram_addr_t block_offset, 250 ram_addr_t offset, size_t size, 251 uint64_t *bytes_sent) 252 { 253 if (f->hooks && f->hooks->save_page) { 254 int ret = f->hooks->save_page(f, f->opaque, block_offset, 255 offset, size, bytes_sent); 256 257 if (ret != RAM_SAVE_CONTROL_DELAYED) { 258 if (bytes_sent && *bytes_sent > 0) { 259 qemu_update_position(f, *bytes_sent); 260 } else if (ret < 0) { 261 qemu_file_set_error(f, ret); 262 } 263 } 264 265 return ret; 266 } 267 268 return RAM_SAVE_CONTROL_NOT_SUPP; 269 } 270 271 /* 272 * Attempt to fill the buffer from the underlying file 273 * Returns the number of bytes read, or negative value for an error. 274 * 275 * Note that it can return a partially full buffer even in a not error/not EOF 276 * case if the underlying file descriptor gives a short read, and that can 277 * happen even on a blocking fd. 278 */ 279 static ssize_t qemu_fill_buffer(QEMUFile *f) 280 { 281 int len; 282 int pending; 283 284 assert(!qemu_file_is_writable(f)); 285 286 pending = f->buf_size - f->buf_index; 287 if (pending > 0) { 288 memmove(f->buf, f->buf + f->buf_index, pending); 289 } 290 f->buf_index = 0; 291 f->buf_size = pending; 292 293 len = f->ops->get_buffer(f->opaque, f->buf + pending, f->pos, 294 IO_BUF_SIZE - pending); 295 if (len > 0) { 296 f->buf_size += len; 297 f->pos += len; 298 } else if (len == 0) { 299 qemu_file_set_error(f, -EIO); 300 } else if (len != -EAGAIN) { 301 qemu_file_set_error(f, len); 302 } 303 304 return len; 305 } 306 307 void qemu_update_position(QEMUFile *f, size_t size) 308 { 309 f->pos += size; 310 } 311 312 /** Closes the file 313 * 314 * Returns negative error value if any error happened on previous operations or 315 * while closing the file. Returns 0 or positive number on success. 316 * 317 * The meaning of return value on success depends on the specific backend 318 * being used. 319 */ 320 int qemu_fclose(QEMUFile *f) 321 { 322 int ret; 323 qemu_fflush(f); 324 ret = qemu_file_get_error(f); 325 326 if (f->ops->close) { 327 int ret2 = f->ops->close(f->opaque); 328 if (ret >= 0) { 329 ret = ret2; 330 } 331 } 332 /* If any error was spotted before closing, we should report it 333 * instead of the close() return value. 334 */ 335 if (f->last_error) { 336 ret = f->last_error; 337 } 338 g_free(f); 339 trace_qemu_file_fclose(); 340 return ret; 341 } 342 343 static void add_to_iovec(QEMUFile *f, const uint8_t *buf, size_t size, 344 bool may_free) 345 { 346 /* check for adjacent buffer and coalesce them */ 347 if (f->iovcnt > 0 && buf == f->iov[f->iovcnt - 1].iov_base + 348 f->iov[f->iovcnt - 1].iov_len && 349 may_free == test_bit(f->iovcnt - 1, f->may_free)) 350 { 351 f->iov[f->iovcnt - 1].iov_len += size; 352 } else { 353 if (may_free) { 354 set_bit(f->iovcnt, f->may_free); 355 } 356 f->iov[f->iovcnt].iov_base = (uint8_t *)buf; 357 f->iov[f->iovcnt++].iov_len = size; 358 } 359 360 if (f->iovcnt >= MAX_IOV_SIZE) { 361 qemu_fflush(f); 362 } 363 } 364 365 void qemu_put_buffer_async(QEMUFile *f, const uint8_t *buf, size_t size, 366 bool may_free) 367 { 368 if (f->last_error) { 369 return; 370 } 371 372 f->bytes_xfer += size; 373 add_to_iovec(f, buf, size, may_free); 374 } 375 376 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, size_t size) 377 { 378 size_t l; 379 380 if (f->last_error) { 381 return; 382 } 383 384 while (size > 0) { 385 l = IO_BUF_SIZE - f->buf_index; 386 if (l > size) { 387 l = size; 388 } 389 memcpy(f->buf + f->buf_index, buf, l); 390 f->bytes_xfer += l; 391 add_to_iovec(f, f->buf + f->buf_index, l, false); 392 f->buf_index += l; 393 if (f->buf_index == IO_BUF_SIZE) { 394 qemu_fflush(f); 395 } 396 if (qemu_file_get_error(f)) { 397 break; 398 } 399 buf += l; 400 size -= l; 401 } 402 } 403 404 void qemu_put_byte(QEMUFile *f, int v) 405 { 406 if (f->last_error) { 407 return; 408 } 409 410 f->buf[f->buf_index] = v; 411 f->bytes_xfer++; 412 add_to_iovec(f, f->buf + f->buf_index, 1, false); 413 f->buf_index++; 414 if (f->buf_index == IO_BUF_SIZE) { 415 qemu_fflush(f); 416 } 417 } 418 419 void qemu_file_skip(QEMUFile *f, int size) 420 { 421 if (f->buf_index + size <= f->buf_size) { 422 f->buf_index += size; 423 } 424 } 425 426 /* 427 * Read 'size' bytes from file (at 'offset') without moving the 428 * pointer and set 'buf' to point to that data. 429 * 430 * It will return size bytes unless there was an error, in which case it will 431 * return as many as it managed to read (assuming blocking fd's which 432 * all current QEMUFile are) 433 */ 434 size_t qemu_peek_buffer(QEMUFile *f, uint8_t **buf, size_t size, size_t offset) 435 { 436 ssize_t pending; 437 size_t index; 438 439 assert(!qemu_file_is_writable(f)); 440 assert(offset < IO_BUF_SIZE); 441 assert(size <= IO_BUF_SIZE - offset); 442 443 /* The 1st byte to read from */ 444 index = f->buf_index + offset; 445 /* The number of available bytes starting at index */ 446 pending = f->buf_size - index; 447 448 /* 449 * qemu_fill_buffer might return just a few bytes, even when there isn't 450 * an error, so loop collecting them until we get enough. 451 */ 452 while (pending < size) { 453 int received = qemu_fill_buffer(f); 454 455 if (received <= 0) { 456 break; 457 } 458 459 index = f->buf_index + offset; 460 pending = f->buf_size - index; 461 } 462 463 if (pending <= 0) { 464 return 0; 465 } 466 if (size > pending) { 467 size = pending; 468 } 469 470 *buf = f->buf + index; 471 return size; 472 } 473 474 /* 475 * Read 'size' bytes of data from the file into buf. 476 * 'size' can be larger than the internal buffer. 477 * 478 * It will return size bytes unless there was an error, in which case it will 479 * return as many as it managed to read (assuming blocking fd's which 480 * all current QEMUFile are) 481 */ 482 size_t qemu_get_buffer(QEMUFile *f, uint8_t *buf, size_t size) 483 { 484 size_t pending = size; 485 size_t done = 0; 486 487 while (pending > 0) { 488 size_t res; 489 uint8_t *src; 490 491 res = qemu_peek_buffer(f, &src, MIN(pending, IO_BUF_SIZE), 0); 492 if (res == 0) { 493 return done; 494 } 495 memcpy(buf, src, res); 496 qemu_file_skip(f, res); 497 buf += res; 498 pending -= res; 499 done += res; 500 } 501 return done; 502 } 503 504 /* 505 * Read 'size' bytes of data from the file. 506 * 'size' can be larger than the internal buffer. 507 * 508 * The data: 509 * may be held on an internal buffer (in which case *buf is updated 510 * to point to it) that is valid until the next qemu_file operation. 511 * OR 512 * will be copied to the *buf that was passed in. 513 * 514 * The code tries to avoid the copy if possible. 515 * 516 * It will return size bytes unless there was an error, in which case it will 517 * return as many as it managed to read (assuming blocking fd's which 518 * all current QEMUFile are) 519 * 520 * Note: Since **buf may get changed, the caller should take care to 521 * keep a pointer to the original buffer if it needs to deallocate it. 522 */ 523 size_t qemu_get_buffer_in_place(QEMUFile *f, uint8_t **buf, size_t size) 524 { 525 if (size < IO_BUF_SIZE) { 526 size_t res; 527 uint8_t *src; 528 529 res = qemu_peek_buffer(f, &src, size, 0); 530 531 if (res == size) { 532 qemu_file_skip(f, res); 533 *buf = src; 534 return res; 535 } 536 } 537 538 return qemu_get_buffer(f, *buf, size); 539 } 540 541 /* 542 * Peeks a single byte from the buffer; this isn't guaranteed to work if 543 * offset leaves a gap after the previous read/peeked data. 544 */ 545 int qemu_peek_byte(QEMUFile *f, int offset) 546 { 547 int index = f->buf_index + offset; 548 549 assert(!qemu_file_is_writable(f)); 550 assert(offset < IO_BUF_SIZE); 551 552 if (index >= f->buf_size) { 553 qemu_fill_buffer(f); 554 index = f->buf_index + offset; 555 if (index >= f->buf_size) { 556 return 0; 557 } 558 } 559 return f->buf[index]; 560 } 561 562 int qemu_get_byte(QEMUFile *f) 563 { 564 int result; 565 566 result = qemu_peek_byte(f, 0); 567 qemu_file_skip(f, 1); 568 return result; 569 } 570 571 int64_t qemu_ftell_fast(QEMUFile *f) 572 { 573 int64_t ret = f->pos; 574 int i; 575 576 for (i = 0; i < f->iovcnt; i++) { 577 ret += f->iov[i].iov_len; 578 } 579 580 return ret; 581 } 582 583 int64_t qemu_ftell(QEMUFile *f) 584 { 585 qemu_fflush(f); 586 return f->pos; 587 } 588 589 int qemu_file_rate_limit(QEMUFile *f) 590 { 591 if (qemu_file_get_error(f)) { 592 return 1; 593 } 594 if (f->xfer_limit > 0 && f->bytes_xfer > f->xfer_limit) { 595 return 1; 596 } 597 return 0; 598 } 599 600 int64_t qemu_file_get_rate_limit(QEMUFile *f) 601 { 602 return f->xfer_limit; 603 } 604 605 void qemu_file_set_rate_limit(QEMUFile *f, int64_t limit) 606 { 607 f->xfer_limit = limit; 608 } 609 610 void qemu_file_reset_rate_limit(QEMUFile *f) 611 { 612 f->bytes_xfer = 0; 613 } 614 615 void qemu_put_be16(QEMUFile *f, unsigned int v) 616 { 617 qemu_put_byte(f, v >> 8); 618 qemu_put_byte(f, v); 619 } 620 621 void qemu_put_be32(QEMUFile *f, unsigned int v) 622 { 623 qemu_put_byte(f, v >> 24); 624 qemu_put_byte(f, v >> 16); 625 qemu_put_byte(f, v >> 8); 626 qemu_put_byte(f, v); 627 } 628 629 void qemu_put_be64(QEMUFile *f, uint64_t v) 630 { 631 qemu_put_be32(f, v >> 32); 632 qemu_put_be32(f, v); 633 } 634 635 unsigned int qemu_get_be16(QEMUFile *f) 636 { 637 unsigned int v; 638 v = qemu_get_byte(f) << 8; 639 v |= qemu_get_byte(f); 640 return v; 641 } 642 643 unsigned int qemu_get_be32(QEMUFile *f) 644 { 645 unsigned int v; 646 v = (unsigned int)qemu_get_byte(f) << 24; 647 v |= qemu_get_byte(f) << 16; 648 v |= qemu_get_byte(f) << 8; 649 v |= qemu_get_byte(f); 650 return v; 651 } 652 653 uint64_t qemu_get_be64(QEMUFile *f) 654 { 655 uint64_t v; 656 v = (uint64_t)qemu_get_be32(f) << 32; 657 v |= qemu_get_be32(f); 658 return v; 659 } 660 661 /* Compress size bytes of data start at p with specific compression 662 * level and store the compressed data to the buffer of f. 663 * 664 * When f is not writable, return -1 if f has no space to save the 665 * compressed data. 666 * When f is wirtable and it has no space to save the compressed data, 667 * do fflush first, if f still has no space to save the compressed 668 * data, return -1. 669 */ 670 671 ssize_t qemu_put_compression_data(QEMUFile *f, const uint8_t *p, size_t size, 672 int level) 673 { 674 ssize_t blen = IO_BUF_SIZE - f->buf_index - sizeof(int32_t); 675 676 if (blen < compressBound(size)) { 677 if (!qemu_file_is_writable(f)) { 678 return -1; 679 } 680 qemu_fflush(f); 681 blen = IO_BUF_SIZE - sizeof(int32_t); 682 if (blen < compressBound(size)) { 683 return -1; 684 } 685 } 686 if (compress2(f->buf + f->buf_index + sizeof(int32_t), (uLongf *)&blen, 687 (Bytef *)p, size, level) != Z_OK) { 688 error_report("Compress Failed!"); 689 return 0; 690 } 691 qemu_put_be32(f, blen); 692 if (f->ops->writev_buffer) { 693 add_to_iovec(f, f->buf + f->buf_index, blen, false); 694 } 695 f->buf_index += blen; 696 if (f->buf_index == IO_BUF_SIZE) { 697 qemu_fflush(f); 698 } 699 return blen + sizeof(int32_t); 700 } 701 702 /* Put the data in the buffer of f_src to the buffer of f_des, and 703 * then reset the buf_index of f_src to 0. 704 */ 705 706 int qemu_put_qemu_file(QEMUFile *f_des, QEMUFile *f_src) 707 { 708 int len = 0; 709 710 if (f_src->buf_index > 0) { 711 len = f_src->buf_index; 712 qemu_put_buffer(f_des, f_src->buf, f_src->buf_index); 713 f_src->buf_index = 0; 714 f_src->iovcnt = 0; 715 } 716 return len; 717 } 718 719 /* 720 * Get a string whose length is determined by a single preceding byte 721 * A preallocated 256 byte buffer must be passed in. 722 * Returns: len on success and a 0 terminated string in the buffer 723 * else 0 724 * (Note a 0 length string will return 0 either way) 725 */ 726 size_t qemu_get_counted_string(QEMUFile *f, char buf[256]) 727 { 728 size_t len = qemu_get_byte(f); 729 size_t res = qemu_get_buffer(f, (uint8_t *)buf, len); 730 731 buf[res] = 0; 732 733 return res == len ? res : 0; 734 } 735 736 /* 737 * Put a string with one preceding byte containing its length. The length of 738 * the string should be less than 256. 739 */ 740 void qemu_put_counted_string(QEMUFile *f, const char *str) 741 { 742 size_t len = strlen(str); 743 744 assert(len < 256); 745 qemu_put_byte(f, len); 746 qemu_put_buffer(f, (const uint8_t *)str, len); 747 } 748 749 /* 750 * Set the blocking state of the QEMUFile. 751 * Note: On some transports the OS only keeps a single blocking state for 752 * both directions, and thus changing the blocking on the main 753 * QEMUFile can also affect the return path. 754 */ 755 void qemu_file_set_blocking(QEMUFile *f, bool block) 756 { 757 if (f->ops->set_blocking) { 758 f->ops->set_blocking(f->opaque, block); 759 } 760 } 761