1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "qemu/osdep.h" 25 #include <zlib.h> 26 #include "qemu/madvise.h" 27 #include "qemu/error-report.h" 28 #include "qemu/iov.h" 29 #include "migration.h" 30 #include "migration-stats.h" 31 #include "qemu-file.h" 32 #include "trace.h" 33 #include "options.h" 34 #include "qapi/error.h" 35 36 #define IO_BUF_SIZE 32768 37 #define MAX_IOV_SIZE MIN_CONST(IOV_MAX, 64) 38 39 struct QEMUFile { 40 const QEMUFileHooks *hooks; 41 QIOChannel *ioc; 42 bool is_writable; 43 44 /* The sum of bytes transferred on the wire */ 45 uint64_t total_transferred; 46 47 int buf_index; 48 int buf_size; /* 0 when writing */ 49 uint8_t buf[IO_BUF_SIZE]; 50 51 DECLARE_BITMAP(may_free, MAX_IOV_SIZE); 52 struct iovec iov[MAX_IOV_SIZE]; 53 unsigned int iovcnt; 54 55 int last_error; 56 Error *last_error_obj; 57 }; 58 59 /* 60 * Stop a file from being read/written - not all backing files can do this 61 * typically only sockets can. 62 * 63 * TODO: convert to propagate Error objects instead of squashing 64 * to a fixed errno value 65 */ 66 int qemu_file_shutdown(QEMUFile *f) 67 { 68 int ret = 0; 69 70 /* 71 * We must set qemufile error before the real shutdown(), otherwise 72 * there can be a race window where we thought IO all went though 73 * (because last_error==NULL) but actually IO has already stopped. 74 * 75 * If without correct ordering, the race can happen like this: 76 * 77 * page receiver other thread 78 * ------------- ------------ 79 * qemu_get_buffer() 80 * do shutdown() 81 * returns 0 (buffer all zero) 82 * (we didn't check this retcode) 83 * try to detect IO error 84 * last_error==NULL, IO okay 85 * install ALL-ZERO page 86 * set last_error 87 * --> guest crash! 88 */ 89 if (!f->last_error) { 90 qemu_file_set_error(f, -EIO); 91 } 92 93 if (!qio_channel_has_feature(f->ioc, 94 QIO_CHANNEL_FEATURE_SHUTDOWN)) { 95 return -ENOSYS; 96 } 97 98 if (qio_channel_shutdown(f->ioc, QIO_CHANNEL_SHUTDOWN_BOTH, NULL) < 0) { 99 ret = -EIO; 100 } 101 102 return ret; 103 } 104 105 bool qemu_file_mode_is_not_valid(const char *mode) 106 { 107 if (mode == NULL || 108 (mode[0] != 'r' && mode[0] != 'w') || 109 mode[1] != 'b' || mode[2] != 0) { 110 fprintf(stderr, "qemu_fopen: Argument validity check failed\n"); 111 return true; 112 } 113 114 return false; 115 } 116 117 static QEMUFile *qemu_file_new_impl(QIOChannel *ioc, bool is_writable) 118 { 119 QEMUFile *f; 120 121 f = g_new0(QEMUFile, 1); 122 123 object_ref(ioc); 124 f->ioc = ioc; 125 f->is_writable = is_writable; 126 127 return f; 128 } 129 130 /* 131 * Result: QEMUFile* for a 'return path' for comms in the opposite direction 132 * NULL if not available 133 */ 134 QEMUFile *qemu_file_get_return_path(QEMUFile *f) 135 { 136 return qemu_file_new_impl(f->ioc, !f->is_writable); 137 } 138 139 QEMUFile *qemu_file_new_output(QIOChannel *ioc) 140 { 141 return qemu_file_new_impl(ioc, true); 142 } 143 144 QEMUFile *qemu_file_new_input(QIOChannel *ioc) 145 { 146 return qemu_file_new_impl(ioc, false); 147 } 148 149 void qemu_file_set_hooks(QEMUFile *f, const QEMUFileHooks *hooks) 150 { 151 f->hooks = hooks; 152 } 153 154 /* 155 * Get last error for stream f with optional Error* 156 * 157 * Return negative error value if there has been an error on previous 158 * operations, return 0 if no error happened. 159 * Optional, it returns Error* in errp, but it may be NULL even if return value 160 * is not 0. 161 * 162 */ 163 int qemu_file_get_error_obj(QEMUFile *f, Error **errp) 164 { 165 if (errp) { 166 *errp = f->last_error_obj ? error_copy(f->last_error_obj) : NULL; 167 } 168 return f->last_error; 169 } 170 171 /* 172 * Get last error for either stream f1 or f2 with optional Error*. 173 * The error returned (non-zero) can be either from f1 or f2. 174 * 175 * If any of the qemufile* is NULL, then skip the check on that file. 176 * 177 * When there is no error on both qemufile, zero is returned. 178 */ 179 int qemu_file_get_error_obj_any(QEMUFile *f1, QEMUFile *f2, Error **errp) 180 { 181 int ret = 0; 182 183 if (f1) { 184 ret = qemu_file_get_error_obj(f1, errp); 185 /* If there's already error detected, return */ 186 if (ret) { 187 return ret; 188 } 189 } 190 191 if (f2) { 192 ret = qemu_file_get_error_obj(f2, errp); 193 } 194 195 return ret; 196 } 197 198 /* 199 * Set the last error for stream f with optional Error* 200 */ 201 void qemu_file_set_error_obj(QEMUFile *f, int ret, Error *err) 202 { 203 if (f->last_error == 0 && ret) { 204 f->last_error = ret; 205 error_propagate(&f->last_error_obj, err); 206 } else if (err) { 207 error_report_err(err); 208 } 209 } 210 211 /* 212 * Get last error for stream f 213 * 214 * Return negative error value if there has been an error on previous 215 * operations, return 0 if no error happened. 216 * 217 */ 218 int qemu_file_get_error(QEMUFile *f) 219 { 220 return qemu_file_get_error_obj(f, NULL); 221 } 222 223 /* 224 * Set the last error for stream f 225 */ 226 void qemu_file_set_error(QEMUFile *f, int ret) 227 { 228 qemu_file_set_error_obj(f, ret, NULL); 229 } 230 231 bool qemu_file_is_writable(QEMUFile *f) 232 { 233 return f->is_writable; 234 } 235 236 static void qemu_iovec_release_ram(QEMUFile *f) 237 { 238 struct iovec iov; 239 unsigned long idx; 240 241 /* Find and release all the contiguous memory ranges marked as may_free. */ 242 idx = find_next_bit(f->may_free, f->iovcnt, 0); 243 if (idx >= f->iovcnt) { 244 return; 245 } 246 iov = f->iov[idx]; 247 248 /* The madvise() in the loop is called for iov within a continuous range and 249 * then reinitialize the iov. And in the end, madvise() is called for the 250 * last iov. 251 */ 252 while ((idx = find_next_bit(f->may_free, f->iovcnt, idx + 1)) < f->iovcnt) { 253 /* check for adjacent buffer and coalesce them */ 254 if (iov.iov_base + iov.iov_len == f->iov[idx].iov_base) { 255 iov.iov_len += f->iov[idx].iov_len; 256 continue; 257 } 258 if (qemu_madvise(iov.iov_base, iov.iov_len, QEMU_MADV_DONTNEED) < 0) { 259 error_report("migrate: madvise DONTNEED failed %p %zd: %s", 260 iov.iov_base, iov.iov_len, strerror(errno)); 261 } 262 iov = f->iov[idx]; 263 } 264 if (qemu_madvise(iov.iov_base, iov.iov_len, QEMU_MADV_DONTNEED) < 0) { 265 error_report("migrate: madvise DONTNEED failed %p %zd: %s", 266 iov.iov_base, iov.iov_len, strerror(errno)); 267 } 268 memset(f->may_free, 0, sizeof(f->may_free)); 269 } 270 271 272 /** 273 * Flushes QEMUFile buffer 274 * 275 * This will flush all pending data. If data was only partially flushed, it 276 * will set an error state. 277 */ 278 void qemu_fflush(QEMUFile *f) 279 { 280 if (!qemu_file_is_writable(f)) { 281 return; 282 } 283 284 if (qemu_file_get_error(f)) { 285 return; 286 } 287 if (f->iovcnt > 0) { 288 Error *local_error = NULL; 289 if (qio_channel_writev_all(f->ioc, 290 f->iov, f->iovcnt, 291 &local_error) < 0) { 292 qemu_file_set_error_obj(f, -EIO, local_error); 293 } else { 294 uint64_t size = iov_size(f->iov, f->iovcnt); 295 f->total_transferred += size; 296 } 297 298 qemu_iovec_release_ram(f); 299 } 300 301 f->buf_index = 0; 302 f->iovcnt = 0; 303 } 304 305 void ram_control_before_iterate(QEMUFile *f, uint64_t flags) 306 { 307 int ret = 0; 308 309 if (f->hooks && f->hooks->before_ram_iterate) { 310 ret = f->hooks->before_ram_iterate(f, flags, NULL); 311 if (ret < 0) { 312 qemu_file_set_error(f, ret); 313 } 314 } 315 } 316 317 void ram_control_after_iterate(QEMUFile *f, uint64_t flags) 318 { 319 int ret = 0; 320 321 if (f->hooks && f->hooks->after_ram_iterate) { 322 ret = f->hooks->after_ram_iterate(f, flags, NULL); 323 if (ret < 0) { 324 qemu_file_set_error(f, ret); 325 } 326 } 327 } 328 329 void ram_control_load_hook(QEMUFile *f, uint64_t flags, void *data) 330 { 331 if (f->hooks && f->hooks->hook_ram_load) { 332 int ret = f->hooks->hook_ram_load(f, flags, data); 333 if (ret < 0) { 334 qemu_file_set_error(f, ret); 335 } 336 } 337 } 338 339 size_t ram_control_save_page(QEMUFile *f, ram_addr_t block_offset, 340 ram_addr_t offset, size_t size, 341 uint64_t *bytes_sent) 342 { 343 if (f->hooks && f->hooks->save_page) { 344 int ret = f->hooks->save_page(f, block_offset, 345 offset, size, bytes_sent); 346 347 if (ret != RAM_SAVE_CONTROL_DELAYED && 348 ret != RAM_SAVE_CONTROL_NOT_SUPP) { 349 if (bytes_sent && *bytes_sent > 0) { 350 qemu_file_credit_transfer(f, *bytes_sent); 351 } else if (ret < 0) { 352 qemu_file_set_error(f, ret); 353 } 354 } 355 356 return ret; 357 } 358 359 return RAM_SAVE_CONTROL_NOT_SUPP; 360 } 361 362 /* 363 * Attempt to fill the buffer from the underlying file 364 * Returns the number of bytes read, or negative value for an error. 365 * 366 * Note that it can return a partially full buffer even in a not error/not EOF 367 * case if the underlying file descriptor gives a short read, and that can 368 * happen even on a blocking fd. 369 */ 370 static ssize_t coroutine_mixed_fn qemu_fill_buffer(QEMUFile *f) 371 { 372 int len; 373 int pending; 374 Error *local_error = NULL; 375 376 assert(!qemu_file_is_writable(f)); 377 378 pending = f->buf_size - f->buf_index; 379 if (pending > 0) { 380 memmove(f->buf, f->buf + f->buf_index, pending); 381 } 382 f->buf_index = 0; 383 f->buf_size = pending; 384 385 if (qemu_file_get_error(f)) { 386 return 0; 387 } 388 389 do { 390 len = qio_channel_read(f->ioc, 391 (char *)f->buf + pending, 392 IO_BUF_SIZE - pending, 393 &local_error); 394 if (len == QIO_CHANNEL_ERR_BLOCK) { 395 if (qemu_in_coroutine()) { 396 qio_channel_yield(f->ioc, G_IO_IN); 397 } else { 398 qio_channel_wait(f->ioc, G_IO_IN); 399 } 400 } else if (len < 0) { 401 len = -EIO; 402 } 403 } while (len == QIO_CHANNEL_ERR_BLOCK); 404 405 if (len > 0) { 406 f->buf_size += len; 407 f->total_transferred += len; 408 } else if (len == 0) { 409 qemu_file_set_error_obj(f, -EIO, local_error); 410 } else { 411 qemu_file_set_error_obj(f, len, local_error); 412 } 413 414 return len; 415 } 416 417 void qemu_file_credit_transfer(QEMUFile *f, size_t size) 418 { 419 f->total_transferred += size; 420 } 421 422 /** Closes the file 423 * 424 * Returns negative error value if any error happened on previous operations or 425 * while closing the file. Returns 0 or positive number on success. 426 * 427 * The meaning of return value on success depends on the specific backend 428 * being used. 429 */ 430 int qemu_fclose(QEMUFile *f) 431 { 432 int ret, ret2; 433 qemu_fflush(f); 434 ret = qemu_file_get_error(f); 435 436 ret2 = qio_channel_close(f->ioc, NULL); 437 if (ret >= 0) { 438 ret = ret2; 439 } 440 g_clear_pointer(&f->ioc, object_unref); 441 442 /* If any error was spotted before closing, we should report it 443 * instead of the close() return value. 444 */ 445 if (f->last_error) { 446 ret = f->last_error; 447 } 448 error_free(f->last_error_obj); 449 g_free(f); 450 trace_qemu_file_fclose(); 451 return ret; 452 } 453 454 /* 455 * Add buf to iovec. Do flush if iovec is full. 456 * 457 * Return values: 458 * 1 iovec is full and flushed 459 * 0 iovec is not flushed 460 * 461 */ 462 static int add_to_iovec(QEMUFile *f, const uint8_t *buf, size_t size, 463 bool may_free) 464 { 465 /* check for adjacent buffer and coalesce them */ 466 if (f->iovcnt > 0 && buf == f->iov[f->iovcnt - 1].iov_base + 467 f->iov[f->iovcnt - 1].iov_len && 468 may_free == test_bit(f->iovcnt - 1, f->may_free)) 469 { 470 f->iov[f->iovcnt - 1].iov_len += size; 471 } else { 472 if (f->iovcnt >= MAX_IOV_SIZE) { 473 /* Should only happen if a previous fflush failed */ 474 assert(qemu_file_get_error(f) || !qemu_file_is_writable(f)); 475 return 1; 476 } 477 if (may_free) { 478 set_bit(f->iovcnt, f->may_free); 479 } 480 f->iov[f->iovcnt].iov_base = (uint8_t *)buf; 481 f->iov[f->iovcnt++].iov_len = size; 482 } 483 484 if (f->iovcnt >= MAX_IOV_SIZE) { 485 qemu_fflush(f); 486 return 1; 487 } 488 489 return 0; 490 } 491 492 static void add_buf_to_iovec(QEMUFile *f, size_t len) 493 { 494 if (!add_to_iovec(f, f->buf + f->buf_index, len, false)) { 495 f->buf_index += len; 496 if (f->buf_index == IO_BUF_SIZE) { 497 qemu_fflush(f); 498 } 499 } 500 } 501 502 void qemu_put_buffer_async(QEMUFile *f, const uint8_t *buf, size_t size, 503 bool may_free) 504 { 505 if (f->last_error) { 506 return; 507 } 508 509 add_to_iovec(f, buf, size, may_free); 510 } 511 512 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, size_t size) 513 { 514 size_t l; 515 516 if (f->last_error) { 517 return; 518 } 519 520 while (size > 0) { 521 l = IO_BUF_SIZE - f->buf_index; 522 if (l > size) { 523 l = size; 524 } 525 memcpy(f->buf + f->buf_index, buf, l); 526 add_buf_to_iovec(f, l); 527 if (qemu_file_get_error(f)) { 528 break; 529 } 530 buf += l; 531 size -= l; 532 } 533 } 534 535 void qemu_put_byte(QEMUFile *f, int v) 536 { 537 if (f->last_error) { 538 return; 539 } 540 541 f->buf[f->buf_index] = v; 542 add_buf_to_iovec(f, 1); 543 } 544 545 void qemu_file_skip(QEMUFile *f, int size) 546 { 547 if (f->buf_index + size <= f->buf_size) { 548 f->buf_index += size; 549 } 550 } 551 552 /* 553 * Read 'size' bytes from file (at 'offset') without moving the 554 * pointer and set 'buf' to point to that data. 555 * 556 * It will return size bytes unless there was an error, in which case it will 557 * return as many as it managed to read (assuming blocking fd's which 558 * all current QEMUFile are) 559 */ 560 size_t coroutine_mixed_fn qemu_peek_buffer(QEMUFile *f, uint8_t **buf, size_t size, size_t offset) 561 { 562 ssize_t pending; 563 size_t index; 564 565 assert(!qemu_file_is_writable(f)); 566 assert(offset < IO_BUF_SIZE); 567 assert(size <= IO_BUF_SIZE - offset); 568 569 /* The 1st byte to read from */ 570 index = f->buf_index + offset; 571 /* The number of available bytes starting at index */ 572 pending = f->buf_size - index; 573 574 /* 575 * qemu_fill_buffer might return just a few bytes, even when there isn't 576 * an error, so loop collecting them until we get enough. 577 */ 578 while (pending < size) { 579 int received = qemu_fill_buffer(f); 580 581 if (received <= 0) { 582 break; 583 } 584 585 index = f->buf_index + offset; 586 pending = f->buf_size - index; 587 } 588 589 if (pending <= 0) { 590 return 0; 591 } 592 if (size > pending) { 593 size = pending; 594 } 595 596 *buf = f->buf + index; 597 return size; 598 } 599 600 /* 601 * Read 'size' bytes of data from the file into buf. 602 * 'size' can be larger than the internal buffer. 603 * 604 * It will return size bytes unless there was an error, in which case it will 605 * return as many as it managed to read (assuming blocking fd's which 606 * all current QEMUFile are) 607 */ 608 size_t coroutine_mixed_fn qemu_get_buffer(QEMUFile *f, uint8_t *buf, size_t size) 609 { 610 size_t pending = size; 611 size_t done = 0; 612 613 while (pending > 0) { 614 size_t res; 615 uint8_t *src; 616 617 res = qemu_peek_buffer(f, &src, MIN(pending, IO_BUF_SIZE), 0); 618 if (res == 0) { 619 return done; 620 } 621 memcpy(buf, src, res); 622 qemu_file_skip(f, res); 623 buf += res; 624 pending -= res; 625 done += res; 626 } 627 return done; 628 } 629 630 /* 631 * Read 'size' bytes of data from the file. 632 * 'size' can be larger than the internal buffer. 633 * 634 * The data: 635 * may be held on an internal buffer (in which case *buf is updated 636 * to point to it) that is valid until the next qemu_file operation. 637 * OR 638 * will be copied to the *buf that was passed in. 639 * 640 * The code tries to avoid the copy if possible. 641 * 642 * It will return size bytes unless there was an error, in which case it will 643 * return as many as it managed to read (assuming blocking fd's which 644 * all current QEMUFile are) 645 * 646 * Note: Since **buf may get changed, the caller should take care to 647 * keep a pointer to the original buffer if it needs to deallocate it. 648 */ 649 size_t coroutine_mixed_fn qemu_get_buffer_in_place(QEMUFile *f, uint8_t **buf, size_t size) 650 { 651 if (size < IO_BUF_SIZE) { 652 size_t res; 653 uint8_t *src = NULL; 654 655 res = qemu_peek_buffer(f, &src, size, 0); 656 657 if (res == size) { 658 qemu_file_skip(f, res); 659 *buf = src; 660 return res; 661 } 662 } 663 664 return qemu_get_buffer(f, *buf, size); 665 } 666 667 /* 668 * Peeks a single byte from the buffer; this isn't guaranteed to work if 669 * offset leaves a gap after the previous read/peeked data. 670 */ 671 int coroutine_mixed_fn qemu_peek_byte(QEMUFile *f, int offset) 672 { 673 int index = f->buf_index + offset; 674 675 assert(!qemu_file_is_writable(f)); 676 assert(offset < IO_BUF_SIZE); 677 678 if (index >= f->buf_size) { 679 qemu_fill_buffer(f); 680 index = f->buf_index + offset; 681 if (index >= f->buf_size) { 682 return 0; 683 } 684 } 685 return f->buf[index]; 686 } 687 688 int coroutine_mixed_fn qemu_get_byte(QEMUFile *f) 689 { 690 int result; 691 692 result = qemu_peek_byte(f, 0); 693 qemu_file_skip(f, 1); 694 return result; 695 } 696 697 uint64_t qemu_file_transferred_fast(QEMUFile *f) 698 { 699 uint64_t ret = f->total_transferred; 700 int i; 701 702 for (i = 0; i < f->iovcnt; i++) { 703 ret += f->iov[i].iov_len; 704 } 705 706 return ret; 707 } 708 709 uint64_t qemu_file_transferred(QEMUFile *f) 710 { 711 qemu_fflush(f); 712 return f->total_transferred; 713 } 714 715 void qemu_put_be16(QEMUFile *f, unsigned int v) 716 { 717 qemu_put_byte(f, v >> 8); 718 qemu_put_byte(f, v); 719 } 720 721 void qemu_put_be32(QEMUFile *f, unsigned int v) 722 { 723 qemu_put_byte(f, v >> 24); 724 qemu_put_byte(f, v >> 16); 725 qemu_put_byte(f, v >> 8); 726 qemu_put_byte(f, v); 727 } 728 729 void qemu_put_be64(QEMUFile *f, uint64_t v) 730 { 731 qemu_put_be32(f, v >> 32); 732 qemu_put_be32(f, v); 733 } 734 735 unsigned int qemu_get_be16(QEMUFile *f) 736 { 737 unsigned int v; 738 v = qemu_get_byte(f) << 8; 739 v |= qemu_get_byte(f); 740 return v; 741 } 742 743 unsigned int qemu_get_be32(QEMUFile *f) 744 { 745 unsigned int v; 746 v = (unsigned int)qemu_get_byte(f) << 24; 747 v |= qemu_get_byte(f) << 16; 748 v |= qemu_get_byte(f) << 8; 749 v |= qemu_get_byte(f); 750 return v; 751 } 752 753 uint64_t qemu_get_be64(QEMUFile *f) 754 { 755 uint64_t v; 756 v = (uint64_t)qemu_get_be32(f) << 32; 757 v |= qemu_get_be32(f); 758 return v; 759 } 760 761 /* return the size after compression, or negative value on error */ 762 static int qemu_compress_data(z_stream *stream, uint8_t *dest, size_t dest_len, 763 const uint8_t *source, size_t source_len) 764 { 765 int err; 766 767 err = deflateReset(stream); 768 if (err != Z_OK) { 769 return -1; 770 } 771 772 stream->avail_in = source_len; 773 stream->next_in = (uint8_t *)source; 774 stream->avail_out = dest_len; 775 stream->next_out = dest; 776 777 err = deflate(stream, Z_FINISH); 778 if (err != Z_STREAM_END) { 779 return -1; 780 } 781 782 return stream->next_out - dest; 783 } 784 785 /* Compress size bytes of data start at p and store the compressed 786 * data to the buffer of f. 787 * 788 * Since the file is dummy file with empty_ops, return -1 if f has no space to 789 * save the compressed data. 790 */ 791 ssize_t qemu_put_compression_data(QEMUFile *f, z_stream *stream, 792 const uint8_t *p, size_t size) 793 { 794 ssize_t blen = IO_BUF_SIZE - f->buf_index - sizeof(int32_t); 795 796 if (blen < compressBound(size)) { 797 return -1; 798 } 799 800 blen = qemu_compress_data(stream, f->buf + f->buf_index + sizeof(int32_t), 801 blen, p, size); 802 if (blen < 0) { 803 return -1; 804 } 805 806 qemu_put_be32(f, blen); 807 add_buf_to_iovec(f, blen); 808 return blen + sizeof(int32_t); 809 } 810 811 /* Put the data in the buffer of f_src to the buffer of f_des, and 812 * then reset the buf_index of f_src to 0. 813 */ 814 815 int qemu_put_qemu_file(QEMUFile *f_des, QEMUFile *f_src) 816 { 817 int len = 0; 818 819 if (f_src->buf_index > 0) { 820 len = f_src->buf_index; 821 qemu_put_buffer(f_des, f_src->buf, f_src->buf_index); 822 f_src->buf_index = 0; 823 f_src->iovcnt = 0; 824 } 825 return len; 826 } 827 828 /* 829 * Check if the writable buffer is empty 830 */ 831 832 bool qemu_file_buffer_empty(QEMUFile *file) 833 { 834 assert(qemu_file_is_writable(file)); 835 836 return !file->iovcnt; 837 } 838 839 /* 840 * Get a string whose length is determined by a single preceding byte 841 * A preallocated 256 byte buffer must be passed in. 842 * Returns: len on success and a 0 terminated string in the buffer 843 * else 0 844 * (Note a 0 length string will return 0 either way) 845 */ 846 size_t coroutine_fn qemu_get_counted_string(QEMUFile *f, char buf[256]) 847 { 848 size_t len = qemu_get_byte(f); 849 size_t res = qemu_get_buffer(f, (uint8_t *)buf, len); 850 851 buf[res] = 0; 852 853 return res == len ? res : 0; 854 } 855 856 /* 857 * Put a string with one preceding byte containing its length. The length of 858 * the string should be less than 256. 859 */ 860 void qemu_put_counted_string(QEMUFile *f, const char *str) 861 { 862 size_t len = strlen(str); 863 864 assert(len < 256); 865 qemu_put_byte(f, len); 866 qemu_put_buffer(f, (const uint8_t *)str, len); 867 } 868 869 /* 870 * Set the blocking state of the QEMUFile. 871 * Note: On some transports the OS only keeps a single blocking state for 872 * both directions, and thus changing the blocking on the main 873 * QEMUFile can also affect the return path. 874 */ 875 void qemu_file_set_blocking(QEMUFile *f, bool block) 876 { 877 qio_channel_set_blocking(f->ioc, block, NULL); 878 } 879 880 /* 881 * qemu_file_get_ioc: 882 * 883 * Get the ioc object for the file, without incrementing 884 * the reference count. 885 * 886 * Returns: the ioc object 887 */ 888 QIOChannel *qemu_file_get_ioc(QEMUFile *file) 889 { 890 return file->ioc; 891 } 892 893 /* 894 * Read size bytes from QEMUFile f and write them to fd. 895 */ 896 int qemu_file_get_to_fd(QEMUFile *f, int fd, size_t size) 897 { 898 while (size) { 899 size_t pending = f->buf_size - f->buf_index; 900 ssize_t rc; 901 902 if (!pending) { 903 rc = qemu_fill_buffer(f); 904 if (rc < 0) { 905 return rc; 906 } 907 if (rc == 0) { 908 return -EIO; 909 } 910 continue; 911 } 912 913 rc = write(fd, f->buf + f->buf_index, MIN(pending, size)); 914 if (rc < 0) { 915 return -errno; 916 } 917 if (rc == 0) { 918 return -EIO; 919 } 920 f->buf_index += rc; 921 size -= rc; 922 } 923 924 return 0; 925 } 926