xref: /openbmc/qemu/migration/qemu-file.c (revision ba3e7926)
1 /*
2  * QEMU System Emulator
3  *
4  * Copyright (c) 2003-2008 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "qemu/osdep.h"
25 #include <zlib.h>
26 #include "qemu/error-report.h"
27 #include "qemu/iov.h"
28 #include "migration.h"
29 #include "qemu-file.h"
30 #include "trace.h"
31 #include "qapi/error.h"
32 
33 #define IO_BUF_SIZE 32768
34 #define MAX_IOV_SIZE MIN(IOV_MAX, 64)
35 
36 struct QEMUFile {
37     const QEMUFileOps *ops;
38     const QEMUFileHooks *hooks;
39     void *opaque;
40 
41     int64_t bytes_xfer;
42     int64_t xfer_limit;
43 
44     int64_t pos; /* start of buffer when writing, end of buffer
45                     when reading */
46     int buf_index;
47     int buf_size; /* 0 when writing */
48     uint8_t buf[IO_BUF_SIZE];
49 
50     DECLARE_BITMAP(may_free, MAX_IOV_SIZE);
51     struct iovec iov[MAX_IOV_SIZE];
52     unsigned int iovcnt;
53 
54     int last_error;
55     Error *last_error_obj;
56 };
57 
58 /*
59  * Stop a file from being read/written - not all backing files can do this
60  * typically only sockets can.
61  */
62 int qemu_file_shutdown(QEMUFile *f)
63 {
64     if (!f->ops->shut_down) {
65         return -ENOSYS;
66     }
67     return f->ops->shut_down(f->opaque, true, true, NULL);
68 }
69 
70 /*
71  * Result: QEMUFile* for a 'return path' for comms in the opposite direction
72  *         NULL if not available
73  */
74 QEMUFile *qemu_file_get_return_path(QEMUFile *f)
75 {
76     if (!f->ops->get_return_path) {
77         return NULL;
78     }
79     return f->ops->get_return_path(f->opaque);
80 }
81 
82 bool qemu_file_mode_is_not_valid(const char *mode)
83 {
84     if (mode == NULL ||
85         (mode[0] != 'r' && mode[0] != 'w') ||
86         mode[1] != 'b' || mode[2] != 0) {
87         fprintf(stderr, "qemu_fopen: Argument validity check failed\n");
88         return true;
89     }
90 
91     return false;
92 }
93 
94 QEMUFile *qemu_fopen_ops(void *opaque, const QEMUFileOps *ops)
95 {
96     QEMUFile *f;
97 
98     f = g_new0(QEMUFile, 1);
99 
100     f->opaque = opaque;
101     f->ops = ops;
102     return f;
103 }
104 
105 
106 void qemu_file_set_hooks(QEMUFile *f, const QEMUFileHooks *hooks)
107 {
108     f->hooks = hooks;
109 }
110 
111 /*
112  * Get last error for stream f with optional Error*
113  *
114  * Return negative error value if there has been an error on previous
115  * operations, return 0 if no error happened.
116  * Optional, it returns Error* in errp, but it may be NULL even if return value
117  * is not 0.
118  *
119  */
120 int qemu_file_get_error_obj(QEMUFile *f, Error **errp)
121 {
122     if (errp) {
123         *errp = f->last_error_obj ? error_copy(f->last_error_obj) : NULL;
124     }
125     return f->last_error;
126 }
127 
128 /*
129  * Set the last error for stream f with optional Error*
130  */
131 void qemu_file_set_error_obj(QEMUFile *f, int ret, Error *err)
132 {
133     if (f->last_error == 0 && ret) {
134         f->last_error = ret;
135         error_propagate(&f->last_error_obj, err);
136     } else if (err) {
137         error_report_err(err);
138     }
139 }
140 
141 /*
142  * Get last error for stream f
143  *
144  * Return negative error value if there has been an error on previous
145  * operations, return 0 if no error happened.
146  *
147  */
148 int qemu_file_get_error(QEMUFile *f)
149 {
150     return qemu_file_get_error_obj(f, NULL);
151 }
152 
153 /*
154  * Set the last error for stream f
155  */
156 void qemu_file_set_error(QEMUFile *f, int ret)
157 {
158     qemu_file_set_error_obj(f, ret, NULL);
159 }
160 
161 bool qemu_file_is_writable(QEMUFile *f)
162 {
163     return f->ops->writev_buffer;
164 }
165 
166 static void qemu_iovec_release_ram(QEMUFile *f)
167 {
168     struct iovec iov;
169     unsigned long idx;
170 
171     /* Find and release all the contiguous memory ranges marked as may_free. */
172     idx = find_next_bit(f->may_free, f->iovcnt, 0);
173     if (idx >= f->iovcnt) {
174         return;
175     }
176     iov = f->iov[idx];
177 
178     /* The madvise() in the loop is called for iov within a continuous range and
179      * then reinitialize the iov. And in the end, madvise() is called for the
180      * last iov.
181      */
182     while ((idx = find_next_bit(f->may_free, f->iovcnt, idx + 1)) < f->iovcnt) {
183         /* check for adjacent buffer and coalesce them */
184         if (iov.iov_base + iov.iov_len == f->iov[idx].iov_base) {
185             iov.iov_len += f->iov[idx].iov_len;
186             continue;
187         }
188         if (qemu_madvise(iov.iov_base, iov.iov_len, QEMU_MADV_DONTNEED) < 0) {
189             error_report("migrate: madvise DONTNEED failed %p %zd: %s",
190                          iov.iov_base, iov.iov_len, strerror(errno));
191         }
192         iov = f->iov[idx];
193     }
194     if (qemu_madvise(iov.iov_base, iov.iov_len, QEMU_MADV_DONTNEED) < 0) {
195             error_report("migrate: madvise DONTNEED failed %p %zd: %s",
196                          iov.iov_base, iov.iov_len, strerror(errno));
197     }
198     memset(f->may_free, 0, sizeof(f->may_free));
199 }
200 
201 /**
202  * Flushes QEMUFile buffer
203  *
204  * If there is writev_buffer QEMUFileOps it uses it otherwise uses
205  * put_buffer ops. This will flush all pending data. If data was
206  * only partially flushed, it will set an error state.
207  */
208 void qemu_fflush(QEMUFile *f)
209 {
210     ssize_t ret = 0;
211     ssize_t expect = 0;
212     Error *local_error = NULL;
213 
214     if (!qemu_file_is_writable(f)) {
215         return;
216     }
217 
218     if (f->iovcnt > 0) {
219         expect = iov_size(f->iov, f->iovcnt);
220         ret = f->ops->writev_buffer(f->opaque, f->iov, f->iovcnt, f->pos,
221                                     &local_error);
222 
223         qemu_iovec_release_ram(f);
224     }
225 
226     if (ret >= 0) {
227         f->pos += ret;
228     }
229     /* We expect the QEMUFile write impl to send the full
230      * data set we requested, so sanity check that.
231      */
232     if (ret != expect) {
233         qemu_file_set_error_obj(f, ret < 0 ? ret : -EIO, local_error);
234     }
235     f->buf_index = 0;
236     f->iovcnt = 0;
237 }
238 
239 void ram_control_before_iterate(QEMUFile *f, uint64_t flags)
240 {
241     int ret = 0;
242 
243     if (f->hooks && f->hooks->before_ram_iterate) {
244         ret = f->hooks->before_ram_iterate(f, f->opaque, flags, NULL);
245         if (ret < 0) {
246             qemu_file_set_error(f, ret);
247         }
248     }
249 }
250 
251 void ram_control_after_iterate(QEMUFile *f, uint64_t flags)
252 {
253     int ret = 0;
254 
255     if (f->hooks && f->hooks->after_ram_iterate) {
256         ret = f->hooks->after_ram_iterate(f, f->opaque, flags, NULL);
257         if (ret < 0) {
258             qemu_file_set_error(f, ret);
259         }
260     }
261 }
262 
263 void ram_control_load_hook(QEMUFile *f, uint64_t flags, void *data)
264 {
265     int ret = -EINVAL;
266 
267     if (f->hooks && f->hooks->hook_ram_load) {
268         ret = f->hooks->hook_ram_load(f, f->opaque, flags, data);
269         if (ret < 0) {
270             qemu_file_set_error(f, ret);
271         }
272     } else {
273         /*
274          * Hook is a hook specifically requested by the source sending a flag
275          * that expects there to be a hook on the destination.
276          */
277         if (flags == RAM_CONTROL_HOOK) {
278             qemu_file_set_error(f, ret);
279         }
280     }
281 }
282 
283 size_t ram_control_save_page(QEMUFile *f, ram_addr_t block_offset,
284                              ram_addr_t offset, size_t size,
285                              uint64_t *bytes_sent)
286 {
287     if (f->hooks && f->hooks->save_page) {
288         int ret = f->hooks->save_page(f, f->opaque, block_offset,
289                                       offset, size, bytes_sent);
290         if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
291             f->bytes_xfer += size;
292         }
293 
294         if (ret != RAM_SAVE_CONTROL_DELAYED &&
295             ret != RAM_SAVE_CONTROL_NOT_SUPP) {
296             if (bytes_sent && *bytes_sent > 0) {
297                 qemu_update_position(f, *bytes_sent);
298             } else if (ret < 0) {
299                 qemu_file_set_error(f, ret);
300             }
301         }
302 
303         return ret;
304     }
305 
306     return RAM_SAVE_CONTROL_NOT_SUPP;
307 }
308 
309 /*
310  * Attempt to fill the buffer from the underlying file
311  * Returns the number of bytes read, or negative value for an error.
312  *
313  * Note that it can return a partially full buffer even in a not error/not EOF
314  * case if the underlying file descriptor gives a short read, and that can
315  * happen even on a blocking fd.
316  */
317 static ssize_t qemu_fill_buffer(QEMUFile *f)
318 {
319     int len;
320     int pending;
321     Error *local_error = NULL;
322 
323     assert(!qemu_file_is_writable(f));
324 
325     pending = f->buf_size - f->buf_index;
326     if (pending > 0) {
327         memmove(f->buf, f->buf + f->buf_index, pending);
328     }
329     f->buf_index = 0;
330     f->buf_size = pending;
331 
332     len = f->ops->get_buffer(f->opaque, f->buf + pending, f->pos,
333                              IO_BUF_SIZE - pending, &local_error);
334     if (len > 0) {
335         f->buf_size += len;
336         f->pos += len;
337     } else if (len == 0) {
338         qemu_file_set_error_obj(f, -EIO, local_error);
339     } else if (len != -EAGAIN) {
340         qemu_file_set_error_obj(f, len, local_error);
341     } else {
342         error_free(local_error);
343     }
344 
345     return len;
346 }
347 
348 void qemu_update_position(QEMUFile *f, size_t size)
349 {
350     f->pos += size;
351 }
352 
353 /** Closes the file
354  *
355  * Returns negative error value if any error happened on previous operations or
356  * while closing the file. Returns 0 or positive number on success.
357  *
358  * The meaning of return value on success depends on the specific backend
359  * being used.
360  */
361 int qemu_fclose(QEMUFile *f)
362 {
363     int ret;
364     qemu_fflush(f);
365     ret = qemu_file_get_error(f);
366 
367     if (f->ops->close) {
368         int ret2 = f->ops->close(f->opaque, NULL);
369         if (ret >= 0) {
370             ret = ret2;
371         }
372     }
373     /* If any error was spotted before closing, we should report it
374      * instead of the close() return value.
375      */
376     if (f->last_error) {
377         ret = f->last_error;
378     }
379     error_free(f->last_error_obj);
380     g_free(f);
381     trace_qemu_file_fclose();
382     return ret;
383 }
384 
385 static void add_to_iovec(QEMUFile *f, const uint8_t *buf, size_t size,
386                          bool may_free)
387 {
388     /* check for adjacent buffer and coalesce them */
389     if (f->iovcnt > 0 && buf == f->iov[f->iovcnt - 1].iov_base +
390         f->iov[f->iovcnt - 1].iov_len &&
391         may_free == test_bit(f->iovcnt - 1, f->may_free))
392     {
393         f->iov[f->iovcnt - 1].iov_len += size;
394     } else {
395         if (may_free) {
396             set_bit(f->iovcnt, f->may_free);
397         }
398         f->iov[f->iovcnt].iov_base = (uint8_t *)buf;
399         f->iov[f->iovcnt++].iov_len = size;
400     }
401 
402     if (f->iovcnt >= MAX_IOV_SIZE) {
403         qemu_fflush(f);
404     }
405 }
406 
407 void qemu_put_buffer_async(QEMUFile *f, const uint8_t *buf, size_t size,
408                            bool may_free)
409 {
410     if (f->last_error) {
411         return;
412     }
413 
414     f->bytes_xfer += size;
415     add_to_iovec(f, buf, size, may_free);
416 }
417 
418 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, size_t size)
419 {
420     size_t l;
421 
422     if (f->last_error) {
423         return;
424     }
425 
426     while (size > 0) {
427         l = IO_BUF_SIZE - f->buf_index;
428         if (l > size) {
429             l = size;
430         }
431         memcpy(f->buf + f->buf_index, buf, l);
432         f->bytes_xfer += l;
433         add_to_iovec(f, f->buf + f->buf_index, l, false);
434         f->buf_index += l;
435         if (f->buf_index == IO_BUF_SIZE) {
436             qemu_fflush(f);
437         }
438         if (qemu_file_get_error(f)) {
439             break;
440         }
441         buf += l;
442         size -= l;
443     }
444 }
445 
446 void qemu_put_byte(QEMUFile *f, int v)
447 {
448     if (f->last_error) {
449         return;
450     }
451 
452     f->buf[f->buf_index] = v;
453     f->bytes_xfer++;
454     add_to_iovec(f, f->buf + f->buf_index, 1, false);
455     f->buf_index++;
456     if (f->buf_index == IO_BUF_SIZE) {
457         qemu_fflush(f);
458     }
459 }
460 
461 void qemu_file_skip(QEMUFile *f, int size)
462 {
463     if (f->buf_index + size <= f->buf_size) {
464         f->buf_index += size;
465     }
466 }
467 
468 /*
469  * Read 'size' bytes from file (at 'offset') without moving the
470  * pointer and set 'buf' to point to that data.
471  *
472  * It will return size bytes unless there was an error, in which case it will
473  * return as many as it managed to read (assuming blocking fd's which
474  * all current QEMUFile are)
475  */
476 size_t qemu_peek_buffer(QEMUFile *f, uint8_t **buf, size_t size, size_t offset)
477 {
478     ssize_t pending;
479     size_t index;
480 
481     assert(!qemu_file_is_writable(f));
482     assert(offset < IO_BUF_SIZE);
483     assert(size <= IO_BUF_SIZE - offset);
484 
485     /* The 1st byte to read from */
486     index = f->buf_index + offset;
487     /* The number of available bytes starting at index */
488     pending = f->buf_size - index;
489 
490     /*
491      * qemu_fill_buffer might return just a few bytes, even when there isn't
492      * an error, so loop collecting them until we get enough.
493      */
494     while (pending < size) {
495         int received = qemu_fill_buffer(f);
496 
497         if (received <= 0) {
498             break;
499         }
500 
501         index = f->buf_index + offset;
502         pending = f->buf_size - index;
503     }
504 
505     if (pending <= 0) {
506         return 0;
507     }
508     if (size > pending) {
509         size = pending;
510     }
511 
512     *buf = f->buf + index;
513     return size;
514 }
515 
516 /*
517  * Read 'size' bytes of data from the file into buf.
518  * 'size' can be larger than the internal buffer.
519  *
520  * It will return size bytes unless there was an error, in which case it will
521  * return as many as it managed to read (assuming blocking fd's which
522  * all current QEMUFile are)
523  */
524 size_t qemu_get_buffer(QEMUFile *f, uint8_t *buf, size_t size)
525 {
526     size_t pending = size;
527     size_t done = 0;
528 
529     while (pending > 0) {
530         size_t res;
531         uint8_t *src;
532 
533         res = qemu_peek_buffer(f, &src, MIN(pending, IO_BUF_SIZE), 0);
534         if (res == 0) {
535             return done;
536         }
537         memcpy(buf, src, res);
538         qemu_file_skip(f, res);
539         buf += res;
540         pending -= res;
541         done += res;
542     }
543     return done;
544 }
545 
546 /*
547  * Read 'size' bytes of data from the file.
548  * 'size' can be larger than the internal buffer.
549  *
550  * The data:
551  *   may be held on an internal buffer (in which case *buf is updated
552  *     to point to it) that is valid until the next qemu_file operation.
553  * OR
554  *   will be copied to the *buf that was passed in.
555  *
556  * The code tries to avoid the copy if possible.
557  *
558  * It will return size bytes unless there was an error, in which case it will
559  * return as many as it managed to read (assuming blocking fd's which
560  * all current QEMUFile are)
561  *
562  * Note: Since **buf may get changed, the caller should take care to
563  *       keep a pointer to the original buffer if it needs to deallocate it.
564  */
565 size_t qemu_get_buffer_in_place(QEMUFile *f, uint8_t **buf, size_t size)
566 {
567     if (size < IO_BUF_SIZE) {
568         size_t res;
569         uint8_t *src;
570 
571         res = qemu_peek_buffer(f, &src, size, 0);
572 
573         if (res == size) {
574             qemu_file_skip(f, res);
575             *buf = src;
576             return res;
577         }
578     }
579 
580     return qemu_get_buffer(f, *buf, size);
581 }
582 
583 /*
584  * Peeks a single byte from the buffer; this isn't guaranteed to work if
585  * offset leaves a gap after the previous read/peeked data.
586  */
587 int qemu_peek_byte(QEMUFile *f, int offset)
588 {
589     int index = f->buf_index + offset;
590 
591     assert(!qemu_file_is_writable(f));
592     assert(offset < IO_BUF_SIZE);
593 
594     if (index >= f->buf_size) {
595         qemu_fill_buffer(f);
596         index = f->buf_index + offset;
597         if (index >= f->buf_size) {
598             return 0;
599         }
600     }
601     return f->buf[index];
602 }
603 
604 int qemu_get_byte(QEMUFile *f)
605 {
606     int result;
607 
608     result = qemu_peek_byte(f, 0);
609     qemu_file_skip(f, 1);
610     return result;
611 }
612 
613 int64_t qemu_ftell_fast(QEMUFile *f)
614 {
615     int64_t ret = f->pos;
616     int i;
617 
618     for (i = 0; i < f->iovcnt; i++) {
619         ret += f->iov[i].iov_len;
620     }
621 
622     return ret;
623 }
624 
625 int64_t qemu_ftell(QEMUFile *f)
626 {
627     qemu_fflush(f);
628     return f->pos;
629 }
630 
631 int qemu_file_rate_limit(QEMUFile *f)
632 {
633     if (qemu_file_get_error(f)) {
634         return 1;
635     }
636     if (f->xfer_limit > 0 && f->bytes_xfer > f->xfer_limit) {
637         return 1;
638     }
639     return 0;
640 }
641 
642 int64_t qemu_file_get_rate_limit(QEMUFile *f)
643 {
644     return f->xfer_limit;
645 }
646 
647 void qemu_file_set_rate_limit(QEMUFile *f, int64_t limit)
648 {
649     f->xfer_limit = limit;
650 }
651 
652 void qemu_file_reset_rate_limit(QEMUFile *f)
653 {
654     f->bytes_xfer = 0;
655 }
656 
657 void qemu_file_update_transfer(QEMUFile *f, int64_t len)
658 {
659     f->bytes_xfer += len;
660 }
661 
662 void qemu_put_be16(QEMUFile *f, unsigned int v)
663 {
664     qemu_put_byte(f, v >> 8);
665     qemu_put_byte(f, v);
666 }
667 
668 void qemu_put_be32(QEMUFile *f, unsigned int v)
669 {
670     qemu_put_byte(f, v >> 24);
671     qemu_put_byte(f, v >> 16);
672     qemu_put_byte(f, v >> 8);
673     qemu_put_byte(f, v);
674 }
675 
676 void qemu_put_be64(QEMUFile *f, uint64_t v)
677 {
678     qemu_put_be32(f, v >> 32);
679     qemu_put_be32(f, v);
680 }
681 
682 unsigned int qemu_get_be16(QEMUFile *f)
683 {
684     unsigned int v;
685     v = qemu_get_byte(f) << 8;
686     v |= qemu_get_byte(f);
687     return v;
688 }
689 
690 unsigned int qemu_get_be32(QEMUFile *f)
691 {
692     unsigned int v;
693     v = (unsigned int)qemu_get_byte(f) << 24;
694     v |= qemu_get_byte(f) << 16;
695     v |= qemu_get_byte(f) << 8;
696     v |= qemu_get_byte(f);
697     return v;
698 }
699 
700 uint64_t qemu_get_be64(QEMUFile *f)
701 {
702     uint64_t v;
703     v = (uint64_t)qemu_get_be32(f) << 32;
704     v |= qemu_get_be32(f);
705     return v;
706 }
707 
708 /* return the size after compression, or negative value on error */
709 static int qemu_compress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
710                               const uint8_t *source, size_t source_len)
711 {
712     int err;
713 
714     err = deflateReset(stream);
715     if (err != Z_OK) {
716         return -1;
717     }
718 
719     stream->avail_in = source_len;
720     stream->next_in = (uint8_t *)source;
721     stream->avail_out = dest_len;
722     stream->next_out = dest;
723 
724     err = deflate(stream, Z_FINISH);
725     if (err != Z_STREAM_END) {
726         return -1;
727     }
728 
729     return stream->next_out - dest;
730 }
731 
732 /* Compress size bytes of data start at p and store the compressed
733  * data to the buffer of f.
734  *
735  * When f is not writable, return -1 if f has no space to save the
736  * compressed data.
737  * When f is wirtable and it has no space to save the compressed data,
738  * do fflush first, if f still has no space to save the compressed
739  * data, return -1.
740  */
741 ssize_t qemu_put_compression_data(QEMUFile *f, z_stream *stream,
742                                   const uint8_t *p, size_t size)
743 {
744     ssize_t blen = IO_BUF_SIZE - f->buf_index - sizeof(int32_t);
745 
746     if (blen < compressBound(size)) {
747         if (!qemu_file_is_writable(f)) {
748             return -1;
749         }
750         qemu_fflush(f);
751         blen = IO_BUF_SIZE - sizeof(int32_t);
752         if (blen < compressBound(size)) {
753             return -1;
754         }
755     }
756 
757     blen = qemu_compress_data(stream, f->buf + f->buf_index + sizeof(int32_t),
758                               blen, p, size);
759     if (blen < 0) {
760         return -1;
761     }
762 
763     qemu_put_be32(f, blen);
764     if (f->ops->writev_buffer) {
765         add_to_iovec(f, f->buf + f->buf_index, blen, false);
766     }
767     f->buf_index += blen;
768     if (f->buf_index == IO_BUF_SIZE) {
769         qemu_fflush(f);
770     }
771     return blen + sizeof(int32_t);
772 }
773 
774 /* Put the data in the buffer of f_src to the buffer of f_des, and
775  * then reset the buf_index of f_src to 0.
776  */
777 
778 int qemu_put_qemu_file(QEMUFile *f_des, QEMUFile *f_src)
779 {
780     int len = 0;
781 
782     if (f_src->buf_index > 0) {
783         len = f_src->buf_index;
784         qemu_put_buffer(f_des, f_src->buf, f_src->buf_index);
785         f_src->buf_index = 0;
786         f_src->iovcnt = 0;
787     }
788     return len;
789 }
790 
791 /*
792  * Get a string whose length is determined by a single preceding byte
793  * A preallocated 256 byte buffer must be passed in.
794  * Returns: len on success and a 0 terminated string in the buffer
795  *          else 0
796  *          (Note a 0 length string will return 0 either way)
797  */
798 size_t qemu_get_counted_string(QEMUFile *f, char buf[256])
799 {
800     size_t len = qemu_get_byte(f);
801     size_t res = qemu_get_buffer(f, (uint8_t *)buf, len);
802 
803     buf[res] = 0;
804 
805     return res == len ? res : 0;
806 }
807 
808 /*
809  * Put a string with one preceding byte containing its length. The length of
810  * the string should be less than 256.
811  */
812 void qemu_put_counted_string(QEMUFile *f, const char *str)
813 {
814     size_t len = strlen(str);
815 
816     assert(len < 256);
817     qemu_put_byte(f, len);
818     qemu_put_buffer(f, (const uint8_t *)str, len);
819 }
820 
821 /*
822  * Set the blocking state of the QEMUFile.
823  * Note: On some transports the OS only keeps a single blocking state for
824  *       both directions, and thus changing the blocking on the main
825  *       QEMUFile can also affect the return path.
826  */
827 void qemu_file_set_blocking(QEMUFile *f, bool block)
828 {
829     if (f->ops->set_blocking) {
830         f->ops->set_blocking(f->opaque, block, NULL);
831     }
832 }
833