1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "qemu/osdep.h" 25 #include <zlib.h> 26 #include "qemu-common.h" 27 #include "qemu/error-report.h" 28 #include "qemu/iov.h" 29 #include "migration.h" 30 #include "qemu-file.h" 31 #include "trace.h" 32 33 #define IO_BUF_SIZE 32768 34 #define MAX_IOV_SIZE MIN(IOV_MAX, 64) 35 36 struct QEMUFile { 37 const QEMUFileOps *ops; 38 const QEMUFileHooks *hooks; 39 void *opaque; 40 41 int64_t bytes_xfer; 42 int64_t xfer_limit; 43 44 int64_t pos; /* start of buffer when writing, end of buffer 45 when reading */ 46 int buf_index; 47 int buf_size; /* 0 when writing */ 48 uint8_t buf[IO_BUF_SIZE]; 49 50 DECLARE_BITMAP(may_free, MAX_IOV_SIZE); 51 struct iovec iov[MAX_IOV_SIZE]; 52 unsigned int iovcnt; 53 54 int last_error; 55 }; 56 57 /* 58 * Stop a file from being read/written - not all backing files can do this 59 * typically only sockets can. 60 */ 61 int qemu_file_shutdown(QEMUFile *f) 62 { 63 if (!f->ops->shut_down) { 64 return -ENOSYS; 65 } 66 return f->ops->shut_down(f->opaque, true, true); 67 } 68 69 /* 70 * Result: QEMUFile* for a 'return path' for comms in the opposite direction 71 * NULL if not available 72 */ 73 QEMUFile *qemu_file_get_return_path(QEMUFile *f) 74 { 75 if (!f->ops->get_return_path) { 76 return NULL; 77 } 78 return f->ops->get_return_path(f->opaque); 79 } 80 81 bool qemu_file_mode_is_not_valid(const char *mode) 82 { 83 if (mode == NULL || 84 (mode[0] != 'r' && mode[0] != 'w') || 85 mode[1] != 'b' || mode[2] != 0) { 86 fprintf(stderr, "qemu_fopen: Argument validity check failed\n"); 87 return true; 88 } 89 90 return false; 91 } 92 93 QEMUFile *qemu_fopen_ops(void *opaque, const QEMUFileOps *ops) 94 { 95 QEMUFile *f; 96 97 f = g_new0(QEMUFile, 1); 98 99 f->opaque = opaque; 100 f->ops = ops; 101 return f; 102 } 103 104 105 void qemu_file_set_hooks(QEMUFile *f, const QEMUFileHooks *hooks) 106 { 107 f->hooks = hooks; 108 } 109 110 /* 111 * Get last error for stream f 112 * 113 * Return negative error value if there has been an error on previous 114 * operations, return 0 if no error happened. 115 * 116 */ 117 int qemu_file_get_error(QEMUFile *f) 118 { 119 return f->last_error; 120 } 121 122 void qemu_file_set_error(QEMUFile *f, int ret) 123 { 124 if (f->last_error == 0) { 125 f->last_error = ret; 126 } 127 } 128 129 bool qemu_file_is_writable(QEMUFile *f) 130 { 131 return f->ops->writev_buffer; 132 } 133 134 static void qemu_iovec_release_ram(QEMUFile *f) 135 { 136 struct iovec iov; 137 unsigned long idx; 138 139 /* Find and release all the contiguous memory ranges marked as may_free. */ 140 idx = find_next_bit(f->may_free, f->iovcnt, 0); 141 if (idx >= f->iovcnt) { 142 return; 143 } 144 iov = f->iov[idx]; 145 146 /* The madvise() in the loop is called for iov within a continuous range and 147 * then reinitialize the iov. And in the end, madvise() is called for the 148 * last iov. 149 */ 150 while ((idx = find_next_bit(f->may_free, f->iovcnt, idx + 1)) < f->iovcnt) { 151 /* check for adjacent buffer and coalesce them */ 152 if (iov.iov_base + iov.iov_len == f->iov[idx].iov_base) { 153 iov.iov_len += f->iov[idx].iov_len; 154 continue; 155 } 156 if (qemu_madvise(iov.iov_base, iov.iov_len, QEMU_MADV_DONTNEED) < 0) { 157 error_report("migrate: madvise DONTNEED failed %p %zd: %s", 158 iov.iov_base, iov.iov_len, strerror(errno)); 159 } 160 iov = f->iov[idx]; 161 } 162 if (qemu_madvise(iov.iov_base, iov.iov_len, QEMU_MADV_DONTNEED) < 0) { 163 error_report("migrate: madvise DONTNEED failed %p %zd: %s", 164 iov.iov_base, iov.iov_len, strerror(errno)); 165 } 166 memset(f->may_free, 0, sizeof(f->may_free)); 167 } 168 169 /** 170 * Flushes QEMUFile buffer 171 * 172 * If there is writev_buffer QEMUFileOps it uses it otherwise uses 173 * put_buffer ops. This will flush all pending data. If data was 174 * only partially flushed, it will set an error state. 175 */ 176 void qemu_fflush(QEMUFile *f) 177 { 178 ssize_t ret = 0; 179 ssize_t expect = 0; 180 181 if (!qemu_file_is_writable(f)) { 182 return; 183 } 184 185 if (f->iovcnt > 0) { 186 expect = iov_size(f->iov, f->iovcnt); 187 ret = f->ops->writev_buffer(f->opaque, f->iov, f->iovcnt, f->pos); 188 189 qemu_iovec_release_ram(f); 190 } 191 192 if (ret >= 0) { 193 f->pos += ret; 194 } 195 /* We expect the QEMUFile write impl to send the full 196 * data set we requested, so sanity check that. 197 */ 198 if (ret != expect) { 199 qemu_file_set_error(f, ret < 0 ? ret : -EIO); 200 } 201 f->buf_index = 0; 202 f->iovcnt = 0; 203 } 204 205 void ram_control_before_iterate(QEMUFile *f, uint64_t flags) 206 { 207 int ret = 0; 208 209 if (f->hooks && f->hooks->before_ram_iterate) { 210 ret = f->hooks->before_ram_iterate(f, f->opaque, flags, NULL); 211 if (ret < 0) { 212 qemu_file_set_error(f, ret); 213 } 214 } 215 } 216 217 void ram_control_after_iterate(QEMUFile *f, uint64_t flags) 218 { 219 int ret = 0; 220 221 if (f->hooks && f->hooks->after_ram_iterate) { 222 ret = f->hooks->after_ram_iterate(f, f->opaque, flags, NULL); 223 if (ret < 0) { 224 qemu_file_set_error(f, ret); 225 } 226 } 227 } 228 229 void ram_control_load_hook(QEMUFile *f, uint64_t flags, void *data) 230 { 231 int ret = -EINVAL; 232 233 if (f->hooks && f->hooks->hook_ram_load) { 234 ret = f->hooks->hook_ram_load(f, f->opaque, flags, data); 235 if (ret < 0) { 236 qemu_file_set_error(f, ret); 237 } 238 } else { 239 /* 240 * Hook is a hook specifically requested by the source sending a flag 241 * that expects there to be a hook on the destination. 242 */ 243 if (flags == RAM_CONTROL_HOOK) { 244 qemu_file_set_error(f, ret); 245 } 246 } 247 } 248 249 size_t ram_control_save_page(QEMUFile *f, ram_addr_t block_offset, 250 ram_addr_t offset, size_t size, 251 uint64_t *bytes_sent) 252 { 253 if (f->hooks && f->hooks->save_page) { 254 int ret = f->hooks->save_page(f, f->opaque, block_offset, 255 offset, size, bytes_sent); 256 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) { 257 f->bytes_xfer += size; 258 } 259 260 if (ret != RAM_SAVE_CONTROL_DELAYED && 261 ret != RAM_SAVE_CONTROL_NOT_SUPP) { 262 if (bytes_sent && *bytes_sent > 0) { 263 qemu_update_position(f, *bytes_sent); 264 } else if (ret < 0) { 265 qemu_file_set_error(f, ret); 266 } 267 } 268 269 return ret; 270 } 271 272 return RAM_SAVE_CONTROL_NOT_SUPP; 273 } 274 275 /* 276 * Attempt to fill the buffer from the underlying file 277 * Returns the number of bytes read, or negative value for an error. 278 * 279 * Note that it can return a partially full buffer even in a not error/not EOF 280 * case if the underlying file descriptor gives a short read, and that can 281 * happen even on a blocking fd. 282 */ 283 static ssize_t qemu_fill_buffer(QEMUFile *f) 284 { 285 int len; 286 int pending; 287 288 assert(!qemu_file_is_writable(f)); 289 290 pending = f->buf_size - f->buf_index; 291 if (pending > 0) { 292 memmove(f->buf, f->buf + f->buf_index, pending); 293 } 294 f->buf_index = 0; 295 f->buf_size = pending; 296 297 len = f->ops->get_buffer(f->opaque, f->buf + pending, f->pos, 298 IO_BUF_SIZE - pending); 299 if (len > 0) { 300 f->buf_size += len; 301 f->pos += len; 302 } else if (len == 0) { 303 qemu_file_set_error(f, -EIO); 304 } else if (len != -EAGAIN) { 305 qemu_file_set_error(f, len); 306 } 307 308 return len; 309 } 310 311 void qemu_update_position(QEMUFile *f, size_t size) 312 { 313 f->pos += size; 314 } 315 316 /** Closes the file 317 * 318 * Returns negative error value if any error happened on previous operations or 319 * while closing the file. Returns 0 or positive number on success. 320 * 321 * The meaning of return value on success depends on the specific backend 322 * being used. 323 */ 324 int qemu_fclose(QEMUFile *f) 325 { 326 int ret; 327 qemu_fflush(f); 328 ret = qemu_file_get_error(f); 329 330 if (f->ops->close) { 331 int ret2 = f->ops->close(f->opaque); 332 if (ret >= 0) { 333 ret = ret2; 334 } 335 } 336 /* If any error was spotted before closing, we should report it 337 * instead of the close() return value. 338 */ 339 if (f->last_error) { 340 ret = f->last_error; 341 } 342 g_free(f); 343 trace_qemu_file_fclose(); 344 return ret; 345 } 346 347 static void add_to_iovec(QEMUFile *f, const uint8_t *buf, size_t size, 348 bool may_free) 349 { 350 /* check for adjacent buffer and coalesce them */ 351 if (f->iovcnt > 0 && buf == f->iov[f->iovcnt - 1].iov_base + 352 f->iov[f->iovcnt - 1].iov_len && 353 may_free == test_bit(f->iovcnt - 1, f->may_free)) 354 { 355 f->iov[f->iovcnt - 1].iov_len += size; 356 } else { 357 if (may_free) { 358 set_bit(f->iovcnt, f->may_free); 359 } 360 f->iov[f->iovcnt].iov_base = (uint8_t *)buf; 361 f->iov[f->iovcnt++].iov_len = size; 362 } 363 364 if (f->iovcnt >= MAX_IOV_SIZE) { 365 qemu_fflush(f); 366 } 367 } 368 369 void qemu_put_buffer_async(QEMUFile *f, const uint8_t *buf, size_t size, 370 bool may_free) 371 { 372 if (f->last_error) { 373 return; 374 } 375 376 f->bytes_xfer += size; 377 add_to_iovec(f, buf, size, may_free); 378 } 379 380 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, size_t size) 381 { 382 size_t l; 383 384 if (f->last_error) { 385 return; 386 } 387 388 while (size > 0) { 389 l = IO_BUF_SIZE - f->buf_index; 390 if (l > size) { 391 l = size; 392 } 393 memcpy(f->buf + f->buf_index, buf, l); 394 f->bytes_xfer += l; 395 add_to_iovec(f, f->buf + f->buf_index, l, false); 396 f->buf_index += l; 397 if (f->buf_index == IO_BUF_SIZE) { 398 qemu_fflush(f); 399 } 400 if (qemu_file_get_error(f)) { 401 break; 402 } 403 buf += l; 404 size -= l; 405 } 406 } 407 408 void qemu_put_byte(QEMUFile *f, int v) 409 { 410 if (f->last_error) { 411 return; 412 } 413 414 f->buf[f->buf_index] = v; 415 f->bytes_xfer++; 416 add_to_iovec(f, f->buf + f->buf_index, 1, false); 417 f->buf_index++; 418 if (f->buf_index == IO_BUF_SIZE) { 419 qemu_fflush(f); 420 } 421 } 422 423 void qemu_file_skip(QEMUFile *f, int size) 424 { 425 if (f->buf_index + size <= f->buf_size) { 426 f->buf_index += size; 427 } 428 } 429 430 /* 431 * Read 'size' bytes from file (at 'offset') without moving the 432 * pointer and set 'buf' to point to that data. 433 * 434 * It will return size bytes unless there was an error, in which case it will 435 * return as many as it managed to read (assuming blocking fd's which 436 * all current QEMUFile are) 437 */ 438 size_t qemu_peek_buffer(QEMUFile *f, uint8_t **buf, size_t size, size_t offset) 439 { 440 ssize_t pending; 441 size_t index; 442 443 assert(!qemu_file_is_writable(f)); 444 assert(offset < IO_BUF_SIZE); 445 assert(size <= IO_BUF_SIZE - offset); 446 447 /* The 1st byte to read from */ 448 index = f->buf_index + offset; 449 /* The number of available bytes starting at index */ 450 pending = f->buf_size - index; 451 452 /* 453 * qemu_fill_buffer might return just a few bytes, even when there isn't 454 * an error, so loop collecting them until we get enough. 455 */ 456 while (pending < size) { 457 int received = qemu_fill_buffer(f); 458 459 if (received <= 0) { 460 break; 461 } 462 463 index = f->buf_index + offset; 464 pending = f->buf_size - index; 465 } 466 467 if (pending <= 0) { 468 return 0; 469 } 470 if (size > pending) { 471 size = pending; 472 } 473 474 *buf = f->buf + index; 475 return size; 476 } 477 478 /* 479 * Read 'size' bytes of data from the file into buf. 480 * 'size' can be larger than the internal buffer. 481 * 482 * It will return size bytes unless there was an error, in which case it will 483 * return as many as it managed to read (assuming blocking fd's which 484 * all current QEMUFile are) 485 */ 486 size_t qemu_get_buffer(QEMUFile *f, uint8_t *buf, size_t size) 487 { 488 size_t pending = size; 489 size_t done = 0; 490 491 while (pending > 0) { 492 size_t res; 493 uint8_t *src; 494 495 res = qemu_peek_buffer(f, &src, MIN(pending, IO_BUF_SIZE), 0); 496 if (res == 0) { 497 return done; 498 } 499 memcpy(buf, src, res); 500 qemu_file_skip(f, res); 501 buf += res; 502 pending -= res; 503 done += res; 504 } 505 return done; 506 } 507 508 /* 509 * Read 'size' bytes of data from the file. 510 * 'size' can be larger than the internal buffer. 511 * 512 * The data: 513 * may be held on an internal buffer (in which case *buf is updated 514 * to point to it) that is valid until the next qemu_file operation. 515 * OR 516 * will be copied to the *buf that was passed in. 517 * 518 * The code tries to avoid the copy if possible. 519 * 520 * It will return size bytes unless there was an error, in which case it will 521 * return as many as it managed to read (assuming blocking fd's which 522 * all current QEMUFile are) 523 * 524 * Note: Since **buf may get changed, the caller should take care to 525 * keep a pointer to the original buffer if it needs to deallocate it. 526 */ 527 size_t qemu_get_buffer_in_place(QEMUFile *f, uint8_t **buf, size_t size) 528 { 529 if (size < IO_BUF_SIZE) { 530 size_t res; 531 uint8_t *src; 532 533 res = qemu_peek_buffer(f, &src, size, 0); 534 535 if (res == size) { 536 qemu_file_skip(f, res); 537 *buf = src; 538 return res; 539 } 540 } 541 542 return qemu_get_buffer(f, *buf, size); 543 } 544 545 /* 546 * Peeks a single byte from the buffer; this isn't guaranteed to work if 547 * offset leaves a gap after the previous read/peeked data. 548 */ 549 int qemu_peek_byte(QEMUFile *f, int offset) 550 { 551 int index = f->buf_index + offset; 552 553 assert(!qemu_file_is_writable(f)); 554 assert(offset < IO_BUF_SIZE); 555 556 if (index >= f->buf_size) { 557 qemu_fill_buffer(f); 558 index = f->buf_index + offset; 559 if (index >= f->buf_size) { 560 return 0; 561 } 562 } 563 return f->buf[index]; 564 } 565 566 int qemu_get_byte(QEMUFile *f) 567 { 568 int result; 569 570 result = qemu_peek_byte(f, 0); 571 qemu_file_skip(f, 1); 572 return result; 573 } 574 575 int64_t qemu_ftell_fast(QEMUFile *f) 576 { 577 int64_t ret = f->pos; 578 int i; 579 580 for (i = 0; i < f->iovcnt; i++) { 581 ret += f->iov[i].iov_len; 582 } 583 584 return ret; 585 } 586 587 int64_t qemu_ftell(QEMUFile *f) 588 { 589 qemu_fflush(f); 590 return f->pos; 591 } 592 593 int qemu_file_rate_limit(QEMUFile *f) 594 { 595 if (qemu_file_get_error(f)) { 596 return 1; 597 } 598 if (f->xfer_limit > 0 && f->bytes_xfer > f->xfer_limit) { 599 return 1; 600 } 601 return 0; 602 } 603 604 int64_t qemu_file_get_rate_limit(QEMUFile *f) 605 { 606 return f->xfer_limit; 607 } 608 609 void qemu_file_set_rate_limit(QEMUFile *f, int64_t limit) 610 { 611 f->xfer_limit = limit; 612 } 613 614 void qemu_file_reset_rate_limit(QEMUFile *f) 615 { 616 f->bytes_xfer = 0; 617 } 618 619 void qemu_put_be16(QEMUFile *f, unsigned int v) 620 { 621 qemu_put_byte(f, v >> 8); 622 qemu_put_byte(f, v); 623 } 624 625 void qemu_put_be32(QEMUFile *f, unsigned int v) 626 { 627 qemu_put_byte(f, v >> 24); 628 qemu_put_byte(f, v >> 16); 629 qemu_put_byte(f, v >> 8); 630 qemu_put_byte(f, v); 631 } 632 633 void qemu_put_be64(QEMUFile *f, uint64_t v) 634 { 635 qemu_put_be32(f, v >> 32); 636 qemu_put_be32(f, v); 637 } 638 639 unsigned int qemu_get_be16(QEMUFile *f) 640 { 641 unsigned int v; 642 v = qemu_get_byte(f) << 8; 643 v |= qemu_get_byte(f); 644 return v; 645 } 646 647 unsigned int qemu_get_be32(QEMUFile *f) 648 { 649 unsigned int v; 650 v = (unsigned int)qemu_get_byte(f) << 24; 651 v |= qemu_get_byte(f) << 16; 652 v |= qemu_get_byte(f) << 8; 653 v |= qemu_get_byte(f); 654 return v; 655 } 656 657 uint64_t qemu_get_be64(QEMUFile *f) 658 { 659 uint64_t v; 660 v = (uint64_t)qemu_get_be32(f) << 32; 661 v |= qemu_get_be32(f); 662 return v; 663 } 664 665 /* return the size after compression, or negative value on error */ 666 static int qemu_compress_data(z_stream *stream, uint8_t *dest, size_t dest_len, 667 const uint8_t *source, size_t source_len) 668 { 669 int err; 670 671 err = deflateReset(stream); 672 if (err != Z_OK) { 673 return -1; 674 } 675 676 stream->avail_in = source_len; 677 stream->next_in = (uint8_t *)source; 678 stream->avail_out = dest_len; 679 stream->next_out = dest; 680 681 err = deflate(stream, Z_FINISH); 682 if (err != Z_STREAM_END) { 683 return -1; 684 } 685 686 return stream->next_out - dest; 687 } 688 689 /* Compress size bytes of data start at p and store the compressed 690 * data to the buffer of f. 691 * 692 * When f is not writable, return -1 if f has no space to save the 693 * compressed data. 694 * When f is wirtable and it has no space to save the compressed data, 695 * do fflush first, if f still has no space to save the compressed 696 * data, return -1. 697 */ 698 ssize_t qemu_put_compression_data(QEMUFile *f, z_stream *stream, 699 const uint8_t *p, size_t size) 700 { 701 ssize_t blen = IO_BUF_SIZE - f->buf_index - sizeof(int32_t); 702 703 if (blen < compressBound(size)) { 704 if (!qemu_file_is_writable(f)) { 705 return -1; 706 } 707 qemu_fflush(f); 708 blen = IO_BUF_SIZE - sizeof(int32_t); 709 if (blen < compressBound(size)) { 710 return -1; 711 } 712 } 713 714 blen = qemu_compress_data(stream, f->buf + f->buf_index + sizeof(int32_t), 715 blen, p, size); 716 if (blen < 0) { 717 return -1; 718 } 719 720 qemu_put_be32(f, blen); 721 if (f->ops->writev_buffer) { 722 add_to_iovec(f, f->buf + f->buf_index, blen, false); 723 } 724 f->buf_index += blen; 725 if (f->buf_index == IO_BUF_SIZE) { 726 qemu_fflush(f); 727 } 728 return blen + sizeof(int32_t); 729 } 730 731 /* Put the data in the buffer of f_src to the buffer of f_des, and 732 * then reset the buf_index of f_src to 0. 733 */ 734 735 int qemu_put_qemu_file(QEMUFile *f_des, QEMUFile *f_src) 736 { 737 int len = 0; 738 739 if (f_src->buf_index > 0) { 740 len = f_src->buf_index; 741 qemu_put_buffer(f_des, f_src->buf, f_src->buf_index); 742 f_src->buf_index = 0; 743 f_src->iovcnt = 0; 744 } 745 return len; 746 } 747 748 /* 749 * Get a string whose length is determined by a single preceding byte 750 * A preallocated 256 byte buffer must be passed in. 751 * Returns: len on success and a 0 terminated string in the buffer 752 * else 0 753 * (Note a 0 length string will return 0 either way) 754 */ 755 size_t qemu_get_counted_string(QEMUFile *f, char buf[256]) 756 { 757 size_t len = qemu_get_byte(f); 758 size_t res = qemu_get_buffer(f, (uint8_t *)buf, len); 759 760 buf[res] = 0; 761 762 return res == len ? res : 0; 763 } 764 765 /* 766 * Put a string with one preceding byte containing its length. The length of 767 * the string should be less than 256. 768 */ 769 void qemu_put_counted_string(QEMUFile *f, const char *str) 770 { 771 size_t len = strlen(str); 772 773 assert(len < 256); 774 qemu_put_byte(f, len); 775 qemu_put_buffer(f, (const uint8_t *)str, len); 776 } 777 778 /* 779 * Set the blocking state of the QEMUFile. 780 * Note: On some transports the OS only keeps a single blocking state for 781 * both directions, and thus changing the blocking on the main 782 * QEMUFile can also affect the return path. 783 */ 784 void qemu_file_set_blocking(QEMUFile *f, bool block) 785 { 786 if (f->ops->set_blocking) { 787 f->ops->set_blocking(f->opaque, block); 788 } 789 } 790