1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "qemu/osdep.h" 25 #include <zlib.h> 26 #include "qemu/error-report.h" 27 #include "qemu/iov.h" 28 #include "migration.h" 29 #include "qemu-file.h" 30 #include "trace.h" 31 #include "qapi/error.h" 32 33 #define IO_BUF_SIZE 32768 34 #define MAX_IOV_SIZE MIN(IOV_MAX, 64) 35 36 struct QEMUFile { 37 const QEMUFileOps *ops; 38 const QEMUFileHooks *hooks; 39 void *opaque; 40 41 int64_t bytes_xfer; 42 int64_t xfer_limit; 43 44 int64_t pos; /* start of buffer when writing, end of buffer 45 when reading */ 46 int buf_index; 47 int buf_size; /* 0 when writing */ 48 uint8_t buf[IO_BUF_SIZE]; 49 50 DECLARE_BITMAP(may_free, MAX_IOV_SIZE); 51 struct iovec iov[MAX_IOV_SIZE]; 52 unsigned int iovcnt; 53 54 int last_error; 55 Error *last_error_obj; 56 }; 57 58 /* 59 * Stop a file from being read/written - not all backing files can do this 60 * typically only sockets can. 61 */ 62 int qemu_file_shutdown(QEMUFile *f) 63 { 64 if (!f->ops->shut_down) { 65 return -ENOSYS; 66 } 67 return f->ops->shut_down(f->opaque, true, true, NULL); 68 } 69 70 /* 71 * Result: QEMUFile* for a 'return path' for comms in the opposite direction 72 * NULL if not available 73 */ 74 QEMUFile *qemu_file_get_return_path(QEMUFile *f) 75 { 76 if (!f->ops->get_return_path) { 77 return NULL; 78 } 79 return f->ops->get_return_path(f->opaque); 80 } 81 82 bool qemu_file_mode_is_not_valid(const char *mode) 83 { 84 if (mode == NULL || 85 (mode[0] != 'r' && mode[0] != 'w') || 86 mode[1] != 'b' || mode[2] != 0) { 87 fprintf(stderr, "qemu_fopen: Argument validity check failed\n"); 88 return true; 89 } 90 91 return false; 92 } 93 94 QEMUFile *qemu_fopen_ops(void *opaque, const QEMUFileOps *ops) 95 { 96 QEMUFile *f; 97 98 f = g_new0(QEMUFile, 1); 99 100 f->opaque = opaque; 101 f->ops = ops; 102 return f; 103 } 104 105 106 void qemu_file_set_hooks(QEMUFile *f, const QEMUFileHooks *hooks) 107 { 108 f->hooks = hooks; 109 } 110 111 /* 112 * Get last error for stream f with optional Error* 113 * 114 * Return negative error value if there has been an error on previous 115 * operations, return 0 if no error happened. 116 * Optional, it returns Error* in errp, but it may be NULL even if return value 117 * is not 0. 118 * 119 */ 120 int qemu_file_get_error_obj(QEMUFile *f, Error **errp) 121 { 122 if (errp) { 123 *errp = f->last_error_obj ? error_copy(f->last_error_obj) : NULL; 124 } 125 return f->last_error; 126 } 127 128 /* 129 * Set the last error for stream f with optional Error* 130 */ 131 void qemu_file_set_error_obj(QEMUFile *f, int ret, Error *err) 132 { 133 if (f->last_error == 0 && ret) { 134 f->last_error = ret; 135 error_propagate(&f->last_error_obj, err); 136 } else if (err) { 137 error_report_err(err); 138 } 139 } 140 141 /* 142 * Get last error for stream f 143 * 144 * Return negative error value if there has been an error on previous 145 * operations, return 0 if no error happened. 146 * 147 */ 148 int qemu_file_get_error(QEMUFile *f) 149 { 150 return qemu_file_get_error_obj(f, NULL); 151 } 152 153 /* 154 * Set the last error for stream f 155 */ 156 void qemu_file_set_error(QEMUFile *f, int ret) 157 { 158 qemu_file_set_error_obj(f, ret, NULL); 159 } 160 161 bool qemu_file_is_writable(QEMUFile *f) 162 { 163 return f->ops->writev_buffer; 164 } 165 166 static void qemu_iovec_release_ram(QEMUFile *f) 167 { 168 struct iovec iov; 169 unsigned long idx; 170 171 /* Find and release all the contiguous memory ranges marked as may_free. */ 172 idx = find_next_bit(f->may_free, f->iovcnt, 0); 173 if (idx >= f->iovcnt) { 174 return; 175 } 176 iov = f->iov[idx]; 177 178 /* The madvise() in the loop is called for iov within a continuous range and 179 * then reinitialize the iov. And in the end, madvise() is called for the 180 * last iov. 181 */ 182 while ((idx = find_next_bit(f->may_free, f->iovcnt, idx + 1)) < f->iovcnt) { 183 /* check for adjacent buffer and coalesce them */ 184 if (iov.iov_base + iov.iov_len == f->iov[idx].iov_base) { 185 iov.iov_len += f->iov[idx].iov_len; 186 continue; 187 } 188 if (qemu_madvise(iov.iov_base, iov.iov_len, QEMU_MADV_DONTNEED) < 0) { 189 error_report("migrate: madvise DONTNEED failed %p %zd: %s", 190 iov.iov_base, iov.iov_len, strerror(errno)); 191 } 192 iov = f->iov[idx]; 193 } 194 if (qemu_madvise(iov.iov_base, iov.iov_len, QEMU_MADV_DONTNEED) < 0) { 195 error_report("migrate: madvise DONTNEED failed %p %zd: %s", 196 iov.iov_base, iov.iov_len, strerror(errno)); 197 } 198 memset(f->may_free, 0, sizeof(f->may_free)); 199 } 200 201 /** 202 * Flushes QEMUFile buffer 203 * 204 * If there is writev_buffer QEMUFileOps it uses it otherwise uses 205 * put_buffer ops. This will flush all pending data. If data was 206 * only partially flushed, it will set an error state. 207 */ 208 void qemu_fflush(QEMUFile *f) 209 { 210 ssize_t ret = 0; 211 ssize_t expect = 0; 212 Error *local_error = NULL; 213 214 if (!qemu_file_is_writable(f)) { 215 return; 216 } 217 218 if (f->iovcnt > 0) { 219 expect = iov_size(f->iov, f->iovcnt); 220 ret = f->ops->writev_buffer(f->opaque, f->iov, f->iovcnt, f->pos, 221 &local_error); 222 223 qemu_iovec_release_ram(f); 224 } 225 226 if (ret >= 0) { 227 f->pos += ret; 228 } 229 /* We expect the QEMUFile write impl to send the full 230 * data set we requested, so sanity check that. 231 */ 232 if (ret != expect) { 233 qemu_file_set_error_obj(f, ret < 0 ? ret : -EIO, local_error); 234 } 235 f->buf_index = 0; 236 f->iovcnt = 0; 237 } 238 239 void ram_control_before_iterate(QEMUFile *f, uint64_t flags) 240 { 241 int ret = 0; 242 243 if (f->hooks && f->hooks->before_ram_iterate) { 244 ret = f->hooks->before_ram_iterate(f, f->opaque, flags, NULL); 245 if (ret < 0) { 246 qemu_file_set_error(f, ret); 247 } 248 } 249 } 250 251 void ram_control_after_iterate(QEMUFile *f, uint64_t flags) 252 { 253 int ret = 0; 254 255 if (f->hooks && f->hooks->after_ram_iterate) { 256 ret = f->hooks->after_ram_iterate(f, f->opaque, flags, NULL); 257 if (ret < 0) { 258 qemu_file_set_error(f, ret); 259 } 260 } 261 } 262 263 void ram_control_load_hook(QEMUFile *f, uint64_t flags, void *data) 264 { 265 int ret = -EINVAL; 266 267 if (f->hooks && f->hooks->hook_ram_load) { 268 ret = f->hooks->hook_ram_load(f, f->opaque, flags, data); 269 if (ret < 0) { 270 qemu_file_set_error(f, ret); 271 } 272 } else { 273 /* 274 * Hook is a hook specifically requested by the source sending a flag 275 * that expects there to be a hook on the destination. 276 */ 277 if (flags == RAM_CONTROL_HOOK) { 278 qemu_file_set_error(f, ret); 279 } 280 } 281 } 282 283 size_t ram_control_save_page(QEMUFile *f, ram_addr_t block_offset, 284 ram_addr_t offset, size_t size, 285 uint64_t *bytes_sent) 286 { 287 if (f->hooks && f->hooks->save_page) { 288 int ret = f->hooks->save_page(f, f->opaque, block_offset, 289 offset, size, bytes_sent); 290 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) { 291 f->bytes_xfer += size; 292 } 293 294 if (ret != RAM_SAVE_CONTROL_DELAYED && 295 ret != RAM_SAVE_CONTROL_NOT_SUPP) { 296 if (bytes_sent && *bytes_sent > 0) { 297 qemu_update_position(f, *bytes_sent); 298 } else if (ret < 0) { 299 qemu_file_set_error(f, ret); 300 } 301 } 302 303 return ret; 304 } 305 306 return RAM_SAVE_CONTROL_NOT_SUPP; 307 } 308 309 /* 310 * Attempt to fill the buffer from the underlying file 311 * Returns the number of bytes read, or negative value for an error. 312 * 313 * Note that it can return a partially full buffer even in a not error/not EOF 314 * case if the underlying file descriptor gives a short read, and that can 315 * happen even on a blocking fd. 316 */ 317 static ssize_t qemu_fill_buffer(QEMUFile *f) 318 { 319 int len; 320 int pending; 321 Error *local_error = NULL; 322 323 assert(!qemu_file_is_writable(f)); 324 325 pending = f->buf_size - f->buf_index; 326 if (pending > 0) { 327 memmove(f->buf, f->buf + f->buf_index, pending); 328 } 329 f->buf_index = 0; 330 f->buf_size = pending; 331 332 len = f->ops->get_buffer(f->opaque, f->buf + pending, f->pos, 333 IO_BUF_SIZE - pending, &local_error); 334 if (len > 0) { 335 f->buf_size += len; 336 f->pos += len; 337 } else if (len == 0) { 338 qemu_file_set_error_obj(f, -EIO, local_error); 339 } else if (len != -EAGAIN) { 340 qemu_file_set_error_obj(f, len, local_error); 341 } else { 342 error_free(local_error); 343 } 344 345 return len; 346 } 347 348 void qemu_update_position(QEMUFile *f, size_t size) 349 { 350 f->pos += size; 351 } 352 353 /** Closes the file 354 * 355 * Returns negative error value if any error happened on previous operations or 356 * while closing the file. Returns 0 or positive number on success. 357 * 358 * The meaning of return value on success depends on the specific backend 359 * being used. 360 */ 361 int qemu_fclose(QEMUFile *f) 362 { 363 int ret; 364 qemu_fflush(f); 365 ret = qemu_file_get_error(f); 366 367 if (f->ops->close) { 368 int ret2 = f->ops->close(f->opaque, NULL); 369 if (ret >= 0) { 370 ret = ret2; 371 } 372 } 373 /* If any error was spotted before closing, we should report it 374 * instead of the close() return value. 375 */ 376 if (f->last_error) { 377 ret = f->last_error; 378 } 379 error_free(f->last_error_obj); 380 g_free(f); 381 trace_qemu_file_fclose(); 382 return ret; 383 } 384 385 static void add_to_iovec(QEMUFile *f, const uint8_t *buf, size_t size, 386 bool may_free) 387 { 388 /* check for adjacent buffer and coalesce them */ 389 if (f->iovcnt > 0 && buf == f->iov[f->iovcnt - 1].iov_base + 390 f->iov[f->iovcnt - 1].iov_len && 391 may_free == test_bit(f->iovcnt - 1, f->may_free)) 392 { 393 f->iov[f->iovcnt - 1].iov_len += size; 394 } else { 395 if (may_free) { 396 set_bit(f->iovcnt, f->may_free); 397 } 398 f->iov[f->iovcnt].iov_base = (uint8_t *)buf; 399 f->iov[f->iovcnt++].iov_len = size; 400 } 401 402 if (f->iovcnt >= MAX_IOV_SIZE) { 403 qemu_fflush(f); 404 } 405 } 406 407 void qemu_put_buffer_async(QEMUFile *f, const uint8_t *buf, size_t size, 408 bool may_free) 409 { 410 if (f->last_error) { 411 return; 412 } 413 414 f->bytes_xfer += size; 415 add_to_iovec(f, buf, size, may_free); 416 } 417 418 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, size_t size) 419 { 420 size_t l; 421 422 if (f->last_error) { 423 return; 424 } 425 426 while (size > 0) { 427 l = IO_BUF_SIZE - f->buf_index; 428 if (l > size) { 429 l = size; 430 } 431 memcpy(f->buf + f->buf_index, buf, l); 432 f->bytes_xfer += l; 433 add_to_iovec(f, f->buf + f->buf_index, l, false); 434 f->buf_index += l; 435 if (f->buf_index == IO_BUF_SIZE) { 436 qemu_fflush(f); 437 } 438 if (qemu_file_get_error(f)) { 439 break; 440 } 441 buf += l; 442 size -= l; 443 } 444 } 445 446 void qemu_put_byte(QEMUFile *f, int v) 447 { 448 if (f->last_error) { 449 return; 450 } 451 452 f->buf[f->buf_index] = v; 453 f->bytes_xfer++; 454 add_to_iovec(f, f->buf + f->buf_index, 1, false); 455 f->buf_index++; 456 if (f->buf_index == IO_BUF_SIZE) { 457 qemu_fflush(f); 458 } 459 } 460 461 void qemu_file_skip(QEMUFile *f, int size) 462 { 463 if (f->buf_index + size <= f->buf_size) { 464 f->buf_index += size; 465 } 466 } 467 468 /* 469 * Read 'size' bytes from file (at 'offset') without moving the 470 * pointer and set 'buf' to point to that data. 471 * 472 * It will return size bytes unless there was an error, in which case it will 473 * return as many as it managed to read (assuming blocking fd's which 474 * all current QEMUFile are) 475 */ 476 size_t qemu_peek_buffer(QEMUFile *f, uint8_t **buf, size_t size, size_t offset) 477 { 478 ssize_t pending; 479 size_t index; 480 481 assert(!qemu_file_is_writable(f)); 482 assert(offset < IO_BUF_SIZE); 483 assert(size <= IO_BUF_SIZE - offset); 484 485 /* The 1st byte to read from */ 486 index = f->buf_index + offset; 487 /* The number of available bytes starting at index */ 488 pending = f->buf_size - index; 489 490 /* 491 * qemu_fill_buffer might return just a few bytes, even when there isn't 492 * an error, so loop collecting them until we get enough. 493 */ 494 while (pending < size) { 495 int received = qemu_fill_buffer(f); 496 497 if (received <= 0) { 498 break; 499 } 500 501 index = f->buf_index + offset; 502 pending = f->buf_size - index; 503 } 504 505 if (pending <= 0) { 506 return 0; 507 } 508 if (size > pending) { 509 size = pending; 510 } 511 512 *buf = f->buf + index; 513 return size; 514 } 515 516 /* 517 * Read 'size' bytes of data from the file into buf. 518 * 'size' can be larger than the internal buffer. 519 * 520 * It will return size bytes unless there was an error, in which case it will 521 * return as many as it managed to read (assuming blocking fd's which 522 * all current QEMUFile are) 523 */ 524 size_t qemu_get_buffer(QEMUFile *f, uint8_t *buf, size_t size) 525 { 526 size_t pending = size; 527 size_t done = 0; 528 529 while (pending > 0) { 530 size_t res; 531 uint8_t *src; 532 533 res = qemu_peek_buffer(f, &src, MIN(pending, IO_BUF_SIZE), 0); 534 if (res == 0) { 535 return done; 536 } 537 memcpy(buf, src, res); 538 qemu_file_skip(f, res); 539 buf += res; 540 pending -= res; 541 done += res; 542 } 543 return done; 544 } 545 546 /* 547 * Read 'size' bytes of data from the file. 548 * 'size' can be larger than the internal buffer. 549 * 550 * The data: 551 * may be held on an internal buffer (in which case *buf is updated 552 * to point to it) that is valid until the next qemu_file operation. 553 * OR 554 * will be copied to the *buf that was passed in. 555 * 556 * The code tries to avoid the copy if possible. 557 * 558 * It will return size bytes unless there was an error, in which case it will 559 * return as many as it managed to read (assuming blocking fd's which 560 * all current QEMUFile are) 561 * 562 * Note: Since **buf may get changed, the caller should take care to 563 * keep a pointer to the original buffer if it needs to deallocate it. 564 */ 565 size_t qemu_get_buffer_in_place(QEMUFile *f, uint8_t **buf, size_t size) 566 { 567 if (size < IO_BUF_SIZE) { 568 size_t res; 569 uint8_t *src; 570 571 res = qemu_peek_buffer(f, &src, size, 0); 572 573 if (res == size) { 574 qemu_file_skip(f, res); 575 *buf = src; 576 return res; 577 } 578 } 579 580 return qemu_get_buffer(f, *buf, size); 581 } 582 583 /* 584 * Peeks a single byte from the buffer; this isn't guaranteed to work if 585 * offset leaves a gap after the previous read/peeked data. 586 */ 587 int qemu_peek_byte(QEMUFile *f, int offset) 588 { 589 int index = f->buf_index + offset; 590 591 assert(!qemu_file_is_writable(f)); 592 assert(offset < IO_BUF_SIZE); 593 594 if (index >= f->buf_size) { 595 qemu_fill_buffer(f); 596 index = f->buf_index + offset; 597 if (index >= f->buf_size) { 598 return 0; 599 } 600 } 601 return f->buf[index]; 602 } 603 604 int qemu_get_byte(QEMUFile *f) 605 { 606 int result; 607 608 result = qemu_peek_byte(f, 0); 609 qemu_file_skip(f, 1); 610 return result; 611 } 612 613 int64_t qemu_ftell_fast(QEMUFile *f) 614 { 615 int64_t ret = f->pos; 616 int i; 617 618 for (i = 0; i < f->iovcnt; i++) { 619 ret += f->iov[i].iov_len; 620 } 621 622 return ret; 623 } 624 625 int64_t qemu_ftell(QEMUFile *f) 626 { 627 qemu_fflush(f); 628 return f->pos; 629 } 630 631 int qemu_file_rate_limit(QEMUFile *f) 632 { 633 if (qemu_file_get_error(f)) { 634 return 1; 635 } 636 if (f->xfer_limit > 0 && f->bytes_xfer > f->xfer_limit) { 637 return 1; 638 } 639 return 0; 640 } 641 642 int64_t qemu_file_get_rate_limit(QEMUFile *f) 643 { 644 return f->xfer_limit; 645 } 646 647 void qemu_file_set_rate_limit(QEMUFile *f, int64_t limit) 648 { 649 f->xfer_limit = limit; 650 } 651 652 void qemu_file_reset_rate_limit(QEMUFile *f) 653 { 654 f->bytes_xfer = 0; 655 } 656 657 void qemu_file_update_transfer(QEMUFile *f, int64_t len) 658 { 659 f->bytes_xfer += len; 660 } 661 662 void qemu_put_be16(QEMUFile *f, unsigned int v) 663 { 664 qemu_put_byte(f, v >> 8); 665 qemu_put_byte(f, v); 666 } 667 668 void qemu_put_be32(QEMUFile *f, unsigned int v) 669 { 670 qemu_put_byte(f, v >> 24); 671 qemu_put_byte(f, v >> 16); 672 qemu_put_byte(f, v >> 8); 673 qemu_put_byte(f, v); 674 } 675 676 void qemu_put_be64(QEMUFile *f, uint64_t v) 677 { 678 qemu_put_be32(f, v >> 32); 679 qemu_put_be32(f, v); 680 } 681 682 unsigned int qemu_get_be16(QEMUFile *f) 683 { 684 unsigned int v; 685 v = qemu_get_byte(f) << 8; 686 v |= qemu_get_byte(f); 687 return v; 688 } 689 690 unsigned int qemu_get_be32(QEMUFile *f) 691 { 692 unsigned int v; 693 v = (unsigned int)qemu_get_byte(f) << 24; 694 v |= qemu_get_byte(f) << 16; 695 v |= qemu_get_byte(f) << 8; 696 v |= qemu_get_byte(f); 697 return v; 698 } 699 700 uint64_t qemu_get_be64(QEMUFile *f) 701 { 702 uint64_t v; 703 v = (uint64_t)qemu_get_be32(f) << 32; 704 v |= qemu_get_be32(f); 705 return v; 706 } 707 708 /* return the size after compression, or negative value on error */ 709 static int qemu_compress_data(z_stream *stream, uint8_t *dest, size_t dest_len, 710 const uint8_t *source, size_t source_len) 711 { 712 int err; 713 714 err = deflateReset(stream); 715 if (err != Z_OK) { 716 return -1; 717 } 718 719 stream->avail_in = source_len; 720 stream->next_in = (uint8_t *)source; 721 stream->avail_out = dest_len; 722 stream->next_out = dest; 723 724 err = deflate(stream, Z_FINISH); 725 if (err != Z_STREAM_END) { 726 return -1; 727 } 728 729 return stream->next_out - dest; 730 } 731 732 /* Compress size bytes of data start at p and store the compressed 733 * data to the buffer of f. 734 * 735 * When f is not writable, return -1 if f has no space to save the 736 * compressed data. 737 * When f is wirtable and it has no space to save the compressed data, 738 * do fflush first, if f still has no space to save the compressed 739 * data, return -1. 740 */ 741 ssize_t qemu_put_compression_data(QEMUFile *f, z_stream *stream, 742 const uint8_t *p, size_t size) 743 { 744 ssize_t blen = IO_BUF_SIZE - f->buf_index - sizeof(int32_t); 745 746 if (blen < compressBound(size)) { 747 if (!qemu_file_is_writable(f)) { 748 return -1; 749 } 750 qemu_fflush(f); 751 blen = IO_BUF_SIZE - sizeof(int32_t); 752 if (blen < compressBound(size)) { 753 return -1; 754 } 755 } 756 757 blen = qemu_compress_data(stream, f->buf + f->buf_index + sizeof(int32_t), 758 blen, p, size); 759 if (blen < 0) { 760 return -1; 761 } 762 763 qemu_put_be32(f, blen); 764 if (f->ops->writev_buffer) { 765 add_to_iovec(f, f->buf + f->buf_index, blen, false); 766 } 767 f->buf_index += blen; 768 if (f->buf_index == IO_BUF_SIZE) { 769 qemu_fflush(f); 770 } 771 return blen + sizeof(int32_t); 772 } 773 774 /* Put the data in the buffer of f_src to the buffer of f_des, and 775 * then reset the buf_index of f_src to 0. 776 */ 777 778 int qemu_put_qemu_file(QEMUFile *f_des, QEMUFile *f_src) 779 { 780 int len = 0; 781 782 if (f_src->buf_index > 0) { 783 len = f_src->buf_index; 784 qemu_put_buffer(f_des, f_src->buf, f_src->buf_index); 785 f_src->buf_index = 0; 786 f_src->iovcnt = 0; 787 } 788 return len; 789 } 790 791 /* 792 * Get a string whose length is determined by a single preceding byte 793 * A preallocated 256 byte buffer must be passed in. 794 * Returns: len on success and a 0 terminated string in the buffer 795 * else 0 796 * (Note a 0 length string will return 0 either way) 797 */ 798 size_t qemu_get_counted_string(QEMUFile *f, char buf[256]) 799 { 800 size_t len = qemu_get_byte(f); 801 size_t res = qemu_get_buffer(f, (uint8_t *)buf, len); 802 803 buf[res] = 0; 804 805 return res == len ? res : 0; 806 } 807 808 /* 809 * Put a string with one preceding byte containing its length. The length of 810 * the string should be less than 256. 811 */ 812 void qemu_put_counted_string(QEMUFile *f, const char *str) 813 { 814 size_t len = strlen(str); 815 816 assert(len < 256); 817 qemu_put_byte(f, len); 818 qemu_put_buffer(f, (const uint8_t *)str, len); 819 } 820 821 /* 822 * Set the blocking state of the QEMUFile. 823 * Note: On some transports the OS only keeps a single blocking state for 824 * both directions, and thus changing the blocking on the main 825 * QEMUFile can also affect the return path. 826 */ 827 void qemu_file_set_blocking(QEMUFile *f, bool block) 828 { 829 if (f->ops->set_blocking) { 830 f->ops->set_blocking(f->opaque, block, NULL); 831 } 832 } 833