1 /* 2 * Postcopy migration for RAM 3 * 4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Dave Gilbert <dgilbert@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14 /* 15 * Postcopy is a migration technique where the execution flips from the 16 * source to the destination before all the data has been copied. 17 */ 18 19 #include "qemu/osdep.h" 20 #include "qemu/madvise.h" 21 #include "exec/target_page.h" 22 #include "migration.h" 23 #include "qemu-file.h" 24 #include "savevm.h" 25 #include "postcopy-ram.h" 26 #include "ram.h" 27 #include "qapi/error.h" 28 #include "qemu/notify.h" 29 #include "qemu/rcu.h" 30 #include "sysemu/sysemu.h" 31 #include "qemu/error-report.h" 32 #include "trace.h" 33 #include "hw/boards.h" 34 #include "exec/ramblock.h" 35 #include "socket.h" 36 #include "yank_functions.h" 37 #include "tls.h" 38 #include "qemu/userfaultfd.h" 39 #include "qemu/mmap-alloc.h" 40 #include "options.h" 41 42 /* Arbitrary limit on size of each discard command, 43 * keeps them around ~200 bytes 44 */ 45 #define MAX_DISCARDS_PER_COMMAND 12 46 47 struct PostcopyDiscardState { 48 const char *ramblock_name; 49 uint16_t cur_entry; 50 /* 51 * Start and length of a discard range (bytes) 52 */ 53 uint64_t start_list[MAX_DISCARDS_PER_COMMAND]; 54 uint64_t length_list[MAX_DISCARDS_PER_COMMAND]; 55 unsigned int nsentwords; 56 unsigned int nsentcmds; 57 }; 58 59 static NotifierWithReturnList postcopy_notifier_list; 60 61 void postcopy_infrastructure_init(void) 62 { 63 notifier_with_return_list_init(&postcopy_notifier_list); 64 } 65 66 void postcopy_add_notifier(NotifierWithReturn *nn) 67 { 68 notifier_with_return_list_add(&postcopy_notifier_list, nn); 69 } 70 71 void postcopy_remove_notifier(NotifierWithReturn *n) 72 { 73 notifier_with_return_remove(n); 74 } 75 76 int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp) 77 { 78 struct PostcopyNotifyData pnd; 79 pnd.reason = reason; 80 pnd.errp = errp; 81 82 return notifier_with_return_list_notify(&postcopy_notifier_list, 83 &pnd); 84 } 85 86 /* 87 * NOTE: this routine is not thread safe, we can't call it concurrently. But it 88 * should be good enough for migration's purposes. 89 */ 90 void postcopy_thread_create(MigrationIncomingState *mis, 91 QemuThread *thread, const char *name, 92 void *(*fn)(void *), int joinable) 93 { 94 qemu_sem_init(&mis->thread_sync_sem, 0); 95 qemu_thread_create(thread, name, fn, mis, joinable); 96 qemu_sem_wait(&mis->thread_sync_sem); 97 qemu_sem_destroy(&mis->thread_sync_sem); 98 } 99 100 /* Postcopy needs to detect accesses to pages that haven't yet been copied 101 * across, and efficiently map new pages in, the techniques for doing this 102 * are target OS specific. 103 */ 104 #if defined(__linux__) 105 106 #include <poll.h> 107 #include <sys/ioctl.h> 108 #include <sys/syscall.h> 109 #include <asm/types.h> /* for __u64 */ 110 #endif 111 112 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD) 113 #include <sys/eventfd.h> 114 #include <linux/userfaultfd.h> 115 116 typedef struct PostcopyBlocktimeContext { 117 /* time when page fault initiated per vCPU */ 118 uint32_t *page_fault_vcpu_time; 119 /* page address per vCPU */ 120 uintptr_t *vcpu_addr; 121 uint32_t total_blocktime; 122 /* blocktime per vCPU */ 123 uint32_t *vcpu_blocktime; 124 /* point in time when last page fault was initiated */ 125 uint32_t last_begin; 126 /* number of vCPU are suspended */ 127 int smp_cpus_down; 128 uint64_t start_time; 129 130 /* 131 * Handler for exit event, necessary for 132 * releasing whole blocktime_ctx 133 */ 134 Notifier exit_notifier; 135 } PostcopyBlocktimeContext; 136 137 static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx) 138 { 139 g_free(ctx->page_fault_vcpu_time); 140 g_free(ctx->vcpu_addr); 141 g_free(ctx->vcpu_blocktime); 142 g_free(ctx); 143 } 144 145 static void migration_exit_cb(Notifier *n, void *data) 146 { 147 PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext, 148 exit_notifier); 149 destroy_blocktime_context(ctx); 150 } 151 152 static struct PostcopyBlocktimeContext *blocktime_context_new(void) 153 { 154 MachineState *ms = MACHINE(qdev_get_machine()); 155 unsigned int smp_cpus = ms->smp.cpus; 156 PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1); 157 ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus); 158 ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus); 159 ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus); 160 161 ctx->exit_notifier.notify = migration_exit_cb; 162 ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 163 qemu_add_exit_notifier(&ctx->exit_notifier); 164 return ctx; 165 } 166 167 static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx) 168 { 169 MachineState *ms = MACHINE(qdev_get_machine()); 170 uint32List *list = NULL; 171 int i; 172 173 for (i = ms->smp.cpus - 1; i >= 0; i--) { 174 QAPI_LIST_PREPEND(list, ctx->vcpu_blocktime[i]); 175 } 176 177 return list; 178 } 179 180 /* 181 * This function just populates MigrationInfo from postcopy's 182 * blocktime context. It will not populate MigrationInfo, 183 * unless postcopy-blocktime capability was set. 184 * 185 * @info: pointer to MigrationInfo to populate 186 */ 187 void fill_destination_postcopy_migration_info(MigrationInfo *info) 188 { 189 MigrationIncomingState *mis = migration_incoming_get_current(); 190 PostcopyBlocktimeContext *bc = mis->blocktime_ctx; 191 192 if (!bc) { 193 return; 194 } 195 196 info->has_postcopy_blocktime = true; 197 info->postcopy_blocktime = bc->total_blocktime; 198 info->has_postcopy_vcpu_blocktime = true; 199 info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc); 200 } 201 202 static uint32_t get_postcopy_total_blocktime(void) 203 { 204 MigrationIncomingState *mis = migration_incoming_get_current(); 205 PostcopyBlocktimeContext *bc = mis->blocktime_ctx; 206 207 if (!bc) { 208 return 0; 209 } 210 211 return bc->total_blocktime; 212 } 213 214 /** 215 * receive_ufd_features: check userfault fd features, to request only supported 216 * features in the future. 217 * 218 * Returns: true on success 219 * 220 * __NR_userfaultfd - should be checked before 221 * @features: out parameter will contain uffdio_api.features provided by kernel 222 * in case of success 223 */ 224 static bool receive_ufd_features(uint64_t *features) 225 { 226 struct uffdio_api api_struct = {0}; 227 int ufd; 228 bool ret = true; 229 230 ufd = uffd_open(O_CLOEXEC); 231 if (ufd == -1) { 232 error_report("%s: uffd_open() failed: %s", __func__, strerror(errno)); 233 return false; 234 } 235 236 /* ask features */ 237 api_struct.api = UFFD_API; 238 api_struct.features = 0; 239 if (ioctl(ufd, UFFDIO_API, &api_struct)) { 240 error_report("%s: UFFDIO_API failed: %s", __func__, 241 strerror(errno)); 242 ret = false; 243 goto release_ufd; 244 } 245 246 *features = api_struct.features; 247 248 release_ufd: 249 close(ufd); 250 return ret; 251 } 252 253 /** 254 * request_ufd_features: this function should be called only once on a newly 255 * opened ufd, subsequent calls will lead to error. 256 * 257 * Returns: true on success 258 * 259 * @ufd: fd obtained from userfaultfd syscall 260 * @features: bit mask see UFFD_API_FEATURES 261 */ 262 static bool request_ufd_features(int ufd, uint64_t features) 263 { 264 struct uffdio_api api_struct = {0}; 265 uint64_t ioctl_mask; 266 267 api_struct.api = UFFD_API; 268 api_struct.features = features; 269 if (ioctl(ufd, UFFDIO_API, &api_struct)) { 270 error_report("%s failed: UFFDIO_API failed: %s", __func__, 271 strerror(errno)); 272 return false; 273 } 274 275 ioctl_mask = (__u64)1 << _UFFDIO_REGISTER | 276 (__u64)1 << _UFFDIO_UNREGISTER; 277 if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) { 278 error_report("Missing userfault features: %" PRIx64, 279 (uint64_t)(~api_struct.ioctls & ioctl_mask)); 280 return false; 281 } 282 283 return true; 284 } 285 286 static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis, 287 Error **errp) 288 { 289 uint64_t asked_features = 0; 290 static uint64_t supported_features; 291 292 ERRP_GUARD(); 293 /* 294 * it's not possible to 295 * request UFFD_API twice per one fd 296 * userfault fd features is persistent 297 */ 298 if (!supported_features) { 299 if (!receive_ufd_features(&supported_features)) { 300 error_setg(errp, "Userfault feature detection failed"); 301 return false; 302 } 303 } 304 305 #ifdef UFFD_FEATURE_THREAD_ID 306 if (UFFD_FEATURE_THREAD_ID & supported_features) { 307 asked_features |= UFFD_FEATURE_THREAD_ID; 308 if (migrate_postcopy_blocktime()) { 309 if (!mis->blocktime_ctx) { 310 mis->blocktime_ctx = blocktime_context_new(); 311 } 312 } 313 } 314 #endif 315 316 /* 317 * request features, even if asked_features is 0, due to 318 * kernel expects UFFD_API before UFFDIO_REGISTER, per 319 * userfault file descriptor 320 */ 321 if (!request_ufd_features(ufd, asked_features)) { 322 error_setg(errp, "Failed features %" PRIu64, asked_features); 323 return false; 324 } 325 326 if (qemu_real_host_page_size() != ram_pagesize_summary()) { 327 bool have_hp = false; 328 /* We've got a huge page */ 329 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS 330 have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS; 331 #endif 332 if (!have_hp) { 333 error_setg(errp, 334 "Userfault on this host does not support huge pages"); 335 return false; 336 } 337 } 338 return true; 339 } 340 341 /* Callback from postcopy_ram_supported_by_host block iterator. 342 */ 343 static int test_ramblock_postcopiable(RAMBlock *rb, Error **errp) 344 { 345 const char *block_name = qemu_ram_get_idstr(rb); 346 ram_addr_t length = qemu_ram_get_used_length(rb); 347 size_t pagesize = qemu_ram_pagesize(rb); 348 QemuFsType fs; 349 350 if (length % pagesize) { 351 error_setg(errp, 352 "Postcopy requires RAM blocks to be a page size multiple," 353 " block %s is 0x" RAM_ADDR_FMT " bytes with a " 354 "page size of 0x%zx", block_name, length, pagesize); 355 return 1; 356 } 357 358 if (rb->fd >= 0) { 359 fs = qemu_fd_getfs(rb->fd); 360 if (fs != QEMU_FS_TYPE_TMPFS && fs != QEMU_FS_TYPE_HUGETLBFS) { 361 error_setg(errp, 362 "Host backend files need to be TMPFS or HUGETLBFS only"); 363 return 1; 364 } 365 } 366 367 return 0; 368 } 369 370 /* 371 * Note: This has the side effect of munlock'ing all of RAM, that's 372 * normally fine since if the postcopy succeeds it gets turned back on at the 373 * end. 374 */ 375 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis, Error **errp) 376 { 377 long pagesize = qemu_real_host_page_size(); 378 int ufd = -1; 379 bool ret = false; /* Error unless we change it */ 380 void *testarea = NULL; 381 struct uffdio_register reg_struct; 382 struct uffdio_range range_struct; 383 uint64_t feature_mask; 384 RAMBlock *block; 385 386 ERRP_GUARD(); 387 if (qemu_target_page_size() > pagesize) { 388 error_setg(errp, "Target page size bigger than host page size"); 389 goto out; 390 } 391 392 ufd = uffd_open(O_CLOEXEC); 393 if (ufd == -1) { 394 error_setg(errp, "Userfaultfd not available: %s", strerror(errno)); 395 goto out; 396 } 397 398 /* Give devices a chance to object */ 399 if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, errp)) { 400 goto out; 401 } 402 403 /* Version and features check */ 404 if (!ufd_check_and_apply(ufd, mis, errp)) { 405 goto out; 406 } 407 408 /* 409 * We don't support postcopy with some type of ramblocks. 410 * 411 * NOTE: we explicitly ignored migrate_ram_is_ignored() instead we checked 412 * all possible ramblocks. This is because this function can be called 413 * when creating the migration object, during the phase RAM_MIGRATABLE 414 * is not even properly set for all the ramblocks. 415 * 416 * A side effect of this is we'll also check against RAM_SHARED 417 * ramblocks even if migrate_ignore_shared() is set (in which case 418 * we'll never migrate RAM_SHARED at all), but normally this shouldn't 419 * affect in reality, or we can revisit. 420 */ 421 RAMBLOCK_FOREACH(block) { 422 if (test_ramblock_postcopiable(block, errp)) { 423 goto out; 424 } 425 } 426 427 /* 428 * userfault and mlock don't go together; we'll put it back later if 429 * it was enabled. 430 */ 431 if (munlockall()) { 432 error_setg(errp, "munlockall() failed: %s", strerror(errno)); 433 goto out; 434 } 435 436 /* 437 * We need to check that the ops we need are supported on anon memory 438 * To do that we need to register a chunk and see the flags that 439 * are returned. 440 */ 441 testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE | 442 MAP_ANONYMOUS, -1, 0); 443 if (testarea == MAP_FAILED) { 444 error_setg(errp, "Failed to map test area: %s", strerror(errno)); 445 goto out; 446 } 447 g_assert(QEMU_PTR_IS_ALIGNED(testarea, pagesize)); 448 449 reg_struct.range.start = (uintptr_t)testarea; 450 reg_struct.range.len = pagesize; 451 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 452 453 if (ioctl(ufd, UFFDIO_REGISTER, ®_struct)) { 454 error_setg(errp, "UFFDIO_REGISTER failed: %s", strerror(errno)); 455 goto out; 456 } 457 458 range_struct.start = (uintptr_t)testarea; 459 range_struct.len = pagesize; 460 if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) { 461 error_setg(errp, "UFFDIO_UNREGISTER failed: %s", strerror(errno)); 462 goto out; 463 } 464 465 feature_mask = (__u64)1 << _UFFDIO_WAKE | 466 (__u64)1 << _UFFDIO_COPY | 467 (__u64)1 << _UFFDIO_ZEROPAGE; 468 if ((reg_struct.ioctls & feature_mask) != feature_mask) { 469 error_setg(errp, "Missing userfault map features: %" PRIx64, 470 (uint64_t)(~reg_struct.ioctls & feature_mask)); 471 goto out; 472 } 473 474 /* Success! */ 475 ret = true; 476 out: 477 if (testarea) { 478 munmap(testarea, pagesize); 479 } 480 if (ufd != -1) { 481 close(ufd); 482 } 483 return ret; 484 } 485 486 /* 487 * Setup an area of RAM so that it *can* be used for postcopy later; this 488 * must be done right at the start prior to pre-copy. 489 * opaque should be the MIS. 490 */ 491 static int init_range(RAMBlock *rb, void *opaque) 492 { 493 const char *block_name = qemu_ram_get_idstr(rb); 494 void *host_addr = qemu_ram_get_host_addr(rb); 495 ram_addr_t offset = qemu_ram_get_offset(rb); 496 ram_addr_t length = qemu_ram_get_used_length(rb); 497 trace_postcopy_init_range(block_name, host_addr, offset, length); 498 499 /* 500 * Save the used_length before running the guest. In case we have to 501 * resize RAM blocks when syncing RAM block sizes from the source during 502 * precopy, we'll update it manually via the ram block notifier. 503 */ 504 rb->postcopy_length = length; 505 506 /* 507 * We need the whole of RAM to be truly empty for postcopy, so things 508 * like ROMs and any data tables built during init must be zero'd 509 * - we're going to get the copy from the source anyway. 510 * (Precopy will just overwrite this data, so doesn't need the discard) 511 */ 512 if (ram_discard_range(block_name, 0, length)) { 513 return -1; 514 } 515 516 return 0; 517 } 518 519 /* 520 * At the end of migration, undo the effects of init_range 521 * opaque should be the MIS. 522 */ 523 static int cleanup_range(RAMBlock *rb, void *opaque) 524 { 525 const char *block_name = qemu_ram_get_idstr(rb); 526 void *host_addr = qemu_ram_get_host_addr(rb); 527 ram_addr_t offset = qemu_ram_get_offset(rb); 528 ram_addr_t length = rb->postcopy_length; 529 MigrationIncomingState *mis = opaque; 530 struct uffdio_range range_struct; 531 trace_postcopy_cleanup_range(block_name, host_addr, offset, length); 532 533 /* 534 * We turned off hugepage for the precopy stage with postcopy enabled 535 * we can turn it back on now. 536 */ 537 qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE); 538 539 /* 540 * We can also turn off userfault now since we should have all the 541 * pages. It can be useful to leave it on to debug postcopy 542 * if you're not sure it's always getting every page. 543 */ 544 range_struct.start = (uintptr_t)host_addr; 545 range_struct.len = length; 546 547 if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) { 548 error_report("%s: userfault unregister %s", __func__, strerror(errno)); 549 550 return -1; 551 } 552 553 return 0; 554 } 555 556 /* 557 * Initialise postcopy-ram, setting the RAM to a state where we can go into 558 * postcopy later; must be called prior to any precopy. 559 * called from arch_init's similarly named ram_postcopy_incoming_init 560 */ 561 int postcopy_ram_incoming_init(MigrationIncomingState *mis) 562 { 563 if (foreach_not_ignored_block(init_range, NULL)) { 564 return -1; 565 } 566 567 return 0; 568 } 569 570 static void postcopy_temp_pages_cleanup(MigrationIncomingState *mis) 571 { 572 int i; 573 574 if (mis->postcopy_tmp_pages) { 575 for (i = 0; i < mis->postcopy_channels; i++) { 576 if (mis->postcopy_tmp_pages[i].tmp_huge_page) { 577 munmap(mis->postcopy_tmp_pages[i].tmp_huge_page, 578 mis->largest_page_size); 579 mis->postcopy_tmp_pages[i].tmp_huge_page = NULL; 580 } 581 } 582 g_free(mis->postcopy_tmp_pages); 583 mis->postcopy_tmp_pages = NULL; 584 } 585 586 if (mis->postcopy_tmp_zero_page) { 587 munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size); 588 mis->postcopy_tmp_zero_page = NULL; 589 } 590 } 591 592 /* 593 * At the end of a migration where postcopy_ram_incoming_init was called. 594 */ 595 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 596 { 597 trace_postcopy_ram_incoming_cleanup_entry(); 598 599 if (mis->preempt_thread_status == PREEMPT_THREAD_CREATED) { 600 /* Notify the fast load thread to quit */ 601 mis->preempt_thread_status = PREEMPT_THREAD_QUIT; 602 if (mis->postcopy_qemufile_dst) { 603 qemu_file_shutdown(mis->postcopy_qemufile_dst); 604 } 605 qemu_thread_join(&mis->postcopy_prio_thread); 606 mis->preempt_thread_status = PREEMPT_THREAD_NONE; 607 } 608 609 if (mis->have_fault_thread) { 610 Error *local_err = NULL; 611 612 /* Let the fault thread quit */ 613 qatomic_set(&mis->fault_thread_quit, 1); 614 postcopy_fault_thread_notify(mis); 615 trace_postcopy_ram_incoming_cleanup_join(); 616 qemu_thread_join(&mis->fault_thread); 617 618 if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) { 619 error_report_err(local_err); 620 return -1; 621 } 622 623 if (foreach_not_ignored_block(cleanup_range, mis)) { 624 return -1; 625 } 626 627 trace_postcopy_ram_incoming_cleanup_closeuf(); 628 close(mis->userfault_fd); 629 close(mis->userfault_event_fd); 630 mis->have_fault_thread = false; 631 } 632 633 if (enable_mlock) { 634 if (os_mlock() < 0) { 635 error_report("mlock: %s", strerror(errno)); 636 /* 637 * It doesn't feel right to fail at this point, we have a valid 638 * VM state. 639 */ 640 } 641 } 642 643 postcopy_temp_pages_cleanup(mis); 644 645 trace_postcopy_ram_incoming_cleanup_blocktime( 646 get_postcopy_total_blocktime()); 647 648 trace_postcopy_ram_incoming_cleanup_exit(); 649 return 0; 650 } 651 652 /* 653 * Disable huge pages on an area 654 */ 655 static int nhp_range(RAMBlock *rb, void *opaque) 656 { 657 const char *block_name = qemu_ram_get_idstr(rb); 658 void *host_addr = qemu_ram_get_host_addr(rb); 659 ram_addr_t offset = qemu_ram_get_offset(rb); 660 ram_addr_t length = rb->postcopy_length; 661 trace_postcopy_nhp_range(block_name, host_addr, offset, length); 662 663 /* 664 * Before we do discards we need to ensure those discards really 665 * do delete areas of the page, even if THP thinks a hugepage would 666 * be a good idea, so force hugepages off. 667 */ 668 qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE); 669 670 return 0; 671 } 672 673 /* 674 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard 675 * however leaving it until after precopy means that most of the precopy 676 * data is still THPd 677 */ 678 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 679 { 680 if (foreach_not_ignored_block(nhp_range, mis)) { 681 return -1; 682 } 683 684 postcopy_state_set(POSTCOPY_INCOMING_DISCARD); 685 686 return 0; 687 } 688 689 /* 690 * Mark the given area of RAM as requiring notification to unwritten areas 691 * Used as a callback on foreach_not_ignored_block. 692 * host_addr: Base of area to mark 693 * offset: Offset in the whole ram arena 694 * length: Length of the section 695 * opaque: MigrationIncomingState pointer 696 * Returns 0 on success 697 */ 698 static int ram_block_enable_notify(RAMBlock *rb, void *opaque) 699 { 700 MigrationIncomingState *mis = opaque; 701 struct uffdio_register reg_struct; 702 703 reg_struct.range.start = (uintptr_t)qemu_ram_get_host_addr(rb); 704 reg_struct.range.len = rb->postcopy_length; 705 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 706 707 /* Now tell our userfault_fd that it's responsible for this area */ 708 if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, ®_struct)) { 709 error_report("%s userfault register: %s", __func__, strerror(errno)); 710 return -1; 711 } 712 if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) { 713 error_report("%s userfault: Region doesn't support COPY", __func__); 714 return -1; 715 } 716 if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) { 717 qemu_ram_set_uf_zeroable(rb); 718 } 719 720 return 0; 721 } 722 723 int postcopy_wake_shared(struct PostCopyFD *pcfd, 724 uint64_t client_addr, 725 RAMBlock *rb) 726 { 727 size_t pagesize = qemu_ram_pagesize(rb); 728 struct uffdio_range range; 729 int ret; 730 trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb)); 731 range.start = ROUND_DOWN(client_addr, pagesize); 732 range.len = pagesize; 733 ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range); 734 if (ret) { 735 error_report("%s: Failed to wake: %zx in %s (%s)", 736 __func__, (size_t)client_addr, qemu_ram_get_idstr(rb), 737 strerror(errno)); 738 } 739 return ret; 740 } 741 742 static int postcopy_request_page(MigrationIncomingState *mis, RAMBlock *rb, 743 ram_addr_t start, uint64_t haddr) 744 { 745 void *aligned = (void *)(uintptr_t)ROUND_DOWN(haddr, qemu_ram_pagesize(rb)); 746 747 /* 748 * Discarded pages (via RamDiscardManager) are never migrated. On unlikely 749 * access, place a zeropage, which will also set the relevant bits in the 750 * recv_bitmap accordingly, so we won't try placing a zeropage twice. 751 * 752 * Checking a single bit is sufficient to handle pagesize > TPS as either 753 * all relevant bits are set or not. 754 */ 755 assert(QEMU_IS_ALIGNED(start, qemu_ram_pagesize(rb))); 756 if (ramblock_page_is_discarded(rb, start)) { 757 bool received = ramblock_recv_bitmap_test_byte_offset(rb, start); 758 759 return received ? 0 : postcopy_place_page_zero(mis, aligned, rb); 760 } 761 762 return migrate_send_rp_req_pages(mis, rb, start, haddr); 763 } 764 765 /* 766 * Callback from shared fault handlers to ask for a page, 767 * the page must be specified by a RAMBlock and an offset in that rb 768 * Note: Only for use by shared fault handlers (in fault thread) 769 */ 770 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb, 771 uint64_t client_addr, uint64_t rb_offset) 772 { 773 uint64_t aligned_rbo = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb)); 774 MigrationIncomingState *mis = migration_incoming_get_current(); 775 776 trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb), 777 rb_offset); 778 if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) { 779 trace_postcopy_request_shared_page_present(pcfd->idstr, 780 qemu_ram_get_idstr(rb), rb_offset); 781 return postcopy_wake_shared(pcfd, client_addr, rb); 782 } 783 postcopy_request_page(mis, rb, aligned_rbo, client_addr); 784 return 0; 785 } 786 787 static int get_mem_fault_cpu_index(uint32_t pid) 788 { 789 CPUState *cpu_iter; 790 791 CPU_FOREACH(cpu_iter) { 792 if (cpu_iter->thread_id == pid) { 793 trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid); 794 return cpu_iter->cpu_index; 795 } 796 } 797 trace_get_mem_fault_cpu_index(-1, pid); 798 return -1; 799 } 800 801 static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc) 802 { 803 int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) - 804 dc->start_time; 805 return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX; 806 } 807 808 /* 809 * This function is being called when pagefault occurs. It 810 * tracks down vCPU blocking time. 811 * 812 * @addr: faulted host virtual address 813 * @ptid: faulted process thread id 814 * @rb: ramblock appropriate to addr 815 */ 816 static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid, 817 RAMBlock *rb) 818 { 819 int cpu, already_received; 820 MigrationIncomingState *mis = migration_incoming_get_current(); 821 PostcopyBlocktimeContext *dc = mis->blocktime_ctx; 822 uint32_t low_time_offset; 823 824 if (!dc || ptid == 0) { 825 return; 826 } 827 cpu = get_mem_fault_cpu_index(ptid); 828 if (cpu < 0) { 829 return; 830 } 831 832 low_time_offset = get_low_time_offset(dc); 833 if (dc->vcpu_addr[cpu] == 0) { 834 qatomic_inc(&dc->smp_cpus_down); 835 } 836 837 qatomic_xchg(&dc->last_begin, low_time_offset); 838 qatomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset); 839 qatomic_xchg(&dc->vcpu_addr[cpu], addr); 840 841 /* 842 * check it here, not at the beginning of the function, 843 * due to, check could occur early than bitmap_set in 844 * qemu_ufd_copy_ioctl 845 */ 846 already_received = ramblock_recv_bitmap_test(rb, (void *)addr); 847 if (already_received) { 848 qatomic_xchg(&dc->vcpu_addr[cpu], 0); 849 qatomic_xchg(&dc->page_fault_vcpu_time[cpu], 0); 850 qatomic_dec(&dc->smp_cpus_down); 851 } 852 trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu], 853 cpu, already_received); 854 } 855 856 /* 857 * This function just provide calculated blocktime per cpu and trace it. 858 * Total blocktime is calculated in mark_postcopy_blocktime_end. 859 * 860 * 861 * Assume we have 3 CPU 862 * 863 * S1 E1 S1 E1 864 * -----***********------------xxx***************------------------------> CPU1 865 * 866 * S2 E2 867 * ------------****************xxx---------------------------------------> CPU2 868 * 869 * S3 E3 870 * ------------------------****xxx********-------------------------------> CPU3 871 * 872 * We have sequence S1,S2,E1,S3,S1,E2,E3,E1 873 * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3 874 * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 - 875 * it's a part of total blocktime. 876 * S1 - here is last_begin 877 * Legend of the picture is following: 878 * * - means blocktime per vCPU 879 * x - means overlapped blocktime (total blocktime) 880 * 881 * @addr: host virtual address 882 */ 883 static void mark_postcopy_blocktime_end(uintptr_t addr) 884 { 885 MigrationIncomingState *mis = migration_incoming_get_current(); 886 PostcopyBlocktimeContext *dc = mis->blocktime_ctx; 887 MachineState *ms = MACHINE(qdev_get_machine()); 888 unsigned int smp_cpus = ms->smp.cpus; 889 int i, affected_cpu = 0; 890 bool vcpu_total_blocktime = false; 891 uint32_t read_vcpu_time, low_time_offset; 892 893 if (!dc) { 894 return; 895 } 896 897 low_time_offset = get_low_time_offset(dc); 898 /* lookup cpu, to clear it, 899 * that algorithm looks straightforward, but it's not 900 * optimal, more optimal algorithm is keeping tree or hash 901 * where key is address value is a list of */ 902 for (i = 0; i < smp_cpus; i++) { 903 uint32_t vcpu_blocktime = 0; 904 905 read_vcpu_time = qatomic_fetch_add(&dc->page_fault_vcpu_time[i], 0); 906 if (qatomic_fetch_add(&dc->vcpu_addr[i], 0) != addr || 907 read_vcpu_time == 0) { 908 continue; 909 } 910 qatomic_xchg(&dc->vcpu_addr[i], 0); 911 vcpu_blocktime = low_time_offset - read_vcpu_time; 912 affected_cpu += 1; 913 /* we need to know is that mark_postcopy_end was due to 914 * faulted page, another possible case it's prefetched 915 * page and in that case we shouldn't be here */ 916 if (!vcpu_total_blocktime && 917 qatomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) { 918 vcpu_total_blocktime = true; 919 } 920 /* continue cycle, due to one page could affect several vCPUs */ 921 dc->vcpu_blocktime[i] += vcpu_blocktime; 922 } 923 924 qatomic_sub(&dc->smp_cpus_down, affected_cpu); 925 if (vcpu_total_blocktime) { 926 dc->total_blocktime += low_time_offset - qatomic_fetch_add( 927 &dc->last_begin, 0); 928 } 929 trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime, 930 affected_cpu); 931 } 932 933 static void postcopy_pause_fault_thread(MigrationIncomingState *mis) 934 { 935 trace_postcopy_pause_fault_thread(); 936 qemu_sem_wait(&mis->postcopy_pause_sem_fault); 937 trace_postcopy_pause_fault_thread_continued(); 938 } 939 940 /* 941 * Handle faults detected by the USERFAULT markings 942 */ 943 static void *postcopy_ram_fault_thread(void *opaque) 944 { 945 MigrationIncomingState *mis = opaque; 946 struct uffd_msg msg; 947 int ret; 948 size_t index; 949 RAMBlock *rb = NULL; 950 951 trace_postcopy_ram_fault_thread_entry(); 952 rcu_register_thread(); 953 mis->last_rb = NULL; /* last RAMBlock we sent part of */ 954 qemu_sem_post(&mis->thread_sync_sem); 955 956 struct pollfd *pfd; 957 size_t pfd_len = 2 + mis->postcopy_remote_fds->len; 958 959 pfd = g_new0(struct pollfd, pfd_len); 960 961 pfd[0].fd = mis->userfault_fd; 962 pfd[0].events = POLLIN; 963 pfd[1].fd = mis->userfault_event_fd; 964 pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */ 965 trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd); 966 for (index = 0; index < mis->postcopy_remote_fds->len; index++) { 967 struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds, 968 struct PostCopyFD, index); 969 pfd[2 + index].fd = pcfd->fd; 970 pfd[2 + index].events = POLLIN; 971 trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr, 972 pcfd->fd); 973 } 974 975 while (true) { 976 ram_addr_t rb_offset; 977 int poll_result; 978 979 /* 980 * We're mainly waiting for the kernel to give us a faulting HVA, 981 * however we can be told to quit via userfault_quit_fd which is 982 * an eventfd 983 */ 984 985 poll_result = poll(pfd, pfd_len, -1 /* Wait forever */); 986 if (poll_result == -1) { 987 error_report("%s: userfault poll: %s", __func__, strerror(errno)); 988 break; 989 } 990 991 if (!mis->to_src_file) { 992 /* 993 * Possibly someone tells us that the return path is 994 * broken already using the event. We should hold until 995 * the channel is rebuilt. 996 */ 997 postcopy_pause_fault_thread(mis); 998 } 999 1000 if (pfd[1].revents) { 1001 uint64_t tmp64 = 0; 1002 1003 /* Consume the signal */ 1004 if (read(mis->userfault_event_fd, &tmp64, 8) != 8) { 1005 /* Nothing obviously nicer than posting this error. */ 1006 error_report("%s: read() failed", __func__); 1007 } 1008 1009 if (qatomic_read(&mis->fault_thread_quit)) { 1010 trace_postcopy_ram_fault_thread_quit(); 1011 break; 1012 } 1013 } 1014 1015 if (pfd[0].revents) { 1016 poll_result--; 1017 ret = read(mis->userfault_fd, &msg, sizeof(msg)); 1018 if (ret != sizeof(msg)) { 1019 if (errno == EAGAIN) { 1020 /* 1021 * if a wake up happens on the other thread just after 1022 * the poll, there is nothing to read. 1023 */ 1024 continue; 1025 } 1026 if (ret < 0) { 1027 error_report("%s: Failed to read full userfault " 1028 "message: %s", 1029 __func__, strerror(errno)); 1030 break; 1031 } else { 1032 error_report("%s: Read %d bytes from userfaultfd " 1033 "expected %zd", 1034 __func__, ret, sizeof(msg)); 1035 break; /* Lost alignment, don't know what we'd read next */ 1036 } 1037 } 1038 if (msg.event != UFFD_EVENT_PAGEFAULT) { 1039 error_report("%s: Read unexpected event %ud from userfaultfd", 1040 __func__, msg.event); 1041 continue; /* It's not a page fault, shouldn't happen */ 1042 } 1043 1044 rb = qemu_ram_block_from_host( 1045 (void *)(uintptr_t)msg.arg.pagefault.address, 1046 true, &rb_offset); 1047 if (!rb) { 1048 error_report("postcopy_ram_fault_thread: Fault outside guest: %" 1049 PRIx64, (uint64_t)msg.arg.pagefault.address); 1050 break; 1051 } 1052 1053 rb_offset = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb)); 1054 trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address, 1055 qemu_ram_get_idstr(rb), 1056 rb_offset, 1057 msg.arg.pagefault.feat.ptid); 1058 mark_postcopy_blocktime_begin( 1059 (uintptr_t)(msg.arg.pagefault.address), 1060 msg.arg.pagefault.feat.ptid, rb); 1061 1062 retry: 1063 /* 1064 * Send the request to the source - we want to request one 1065 * of our host page sizes (which is >= TPS) 1066 */ 1067 ret = postcopy_request_page(mis, rb, rb_offset, 1068 msg.arg.pagefault.address); 1069 if (ret) { 1070 /* May be network failure, try to wait for recovery */ 1071 postcopy_pause_fault_thread(mis); 1072 goto retry; 1073 } 1074 } 1075 1076 /* Now handle any requests from external processes on shared memory */ 1077 /* TODO: May need to handle devices deregistering during postcopy */ 1078 for (index = 2; index < pfd_len && poll_result; index++) { 1079 if (pfd[index].revents) { 1080 struct PostCopyFD *pcfd = 1081 &g_array_index(mis->postcopy_remote_fds, 1082 struct PostCopyFD, index - 2); 1083 1084 poll_result--; 1085 if (pfd[index].revents & POLLERR) { 1086 error_report("%s: POLLERR on poll %zd fd=%d", 1087 __func__, index, pcfd->fd); 1088 pfd[index].events = 0; 1089 continue; 1090 } 1091 1092 ret = read(pcfd->fd, &msg, sizeof(msg)); 1093 if (ret != sizeof(msg)) { 1094 if (errno == EAGAIN) { 1095 /* 1096 * if a wake up happens on the other thread just after 1097 * the poll, there is nothing to read. 1098 */ 1099 continue; 1100 } 1101 if (ret < 0) { 1102 error_report("%s: Failed to read full userfault " 1103 "message: %s (shared) revents=%d", 1104 __func__, strerror(errno), 1105 pfd[index].revents); 1106 /*TODO: Could just disable this sharer */ 1107 break; 1108 } else { 1109 error_report("%s: Read %d bytes from userfaultfd " 1110 "expected %zd (shared)", 1111 __func__, ret, sizeof(msg)); 1112 /*TODO: Could just disable this sharer */ 1113 break; /*Lost alignment,don't know what we'd read next*/ 1114 } 1115 } 1116 if (msg.event != UFFD_EVENT_PAGEFAULT) { 1117 error_report("%s: Read unexpected event %ud " 1118 "from userfaultfd (shared)", 1119 __func__, msg.event); 1120 continue; /* It's not a page fault, shouldn't happen */ 1121 } 1122 /* Call the device handler registered with us */ 1123 ret = pcfd->handler(pcfd, &msg); 1124 if (ret) { 1125 error_report("%s: Failed to resolve shared fault on %zd/%s", 1126 __func__, index, pcfd->idstr); 1127 /* TODO: Fail? Disable this sharer? */ 1128 } 1129 } 1130 } 1131 } 1132 rcu_unregister_thread(); 1133 trace_postcopy_ram_fault_thread_exit(); 1134 g_free(pfd); 1135 return NULL; 1136 } 1137 1138 static int postcopy_temp_pages_setup(MigrationIncomingState *mis) 1139 { 1140 PostcopyTmpPage *tmp_page; 1141 int err, i, channels; 1142 void *temp_page; 1143 1144 if (migrate_postcopy_preempt()) { 1145 /* If preemption enabled, need extra channel for urgent requests */ 1146 mis->postcopy_channels = RAM_CHANNEL_MAX; 1147 } else { 1148 /* Both precopy/postcopy on the same channel */ 1149 mis->postcopy_channels = 1; 1150 } 1151 1152 channels = mis->postcopy_channels; 1153 mis->postcopy_tmp_pages = g_malloc0_n(sizeof(PostcopyTmpPage), channels); 1154 1155 for (i = 0; i < channels; i++) { 1156 tmp_page = &mis->postcopy_tmp_pages[i]; 1157 temp_page = mmap(NULL, mis->largest_page_size, PROT_READ | PROT_WRITE, 1158 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1159 if (temp_page == MAP_FAILED) { 1160 err = errno; 1161 error_report("%s: Failed to map postcopy_tmp_pages[%d]: %s", 1162 __func__, i, strerror(err)); 1163 /* Clean up will be done later */ 1164 return -err; 1165 } 1166 tmp_page->tmp_huge_page = temp_page; 1167 /* Initialize default states for each tmp page */ 1168 postcopy_temp_page_reset(tmp_page); 1169 } 1170 1171 /* 1172 * Map large zero page when kernel can't use UFFDIO_ZEROPAGE for hugepages 1173 */ 1174 mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size, 1175 PROT_READ | PROT_WRITE, 1176 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1177 if (mis->postcopy_tmp_zero_page == MAP_FAILED) { 1178 err = errno; 1179 mis->postcopy_tmp_zero_page = NULL; 1180 error_report("%s: Failed to map large zero page %s", 1181 __func__, strerror(err)); 1182 return -err; 1183 } 1184 1185 memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size); 1186 1187 return 0; 1188 } 1189 1190 int postcopy_ram_incoming_setup(MigrationIncomingState *mis) 1191 { 1192 Error *local_err = NULL; 1193 1194 /* Open the fd for the kernel to give us userfaults */ 1195 mis->userfault_fd = uffd_open(O_CLOEXEC | O_NONBLOCK); 1196 if (mis->userfault_fd == -1) { 1197 error_report("%s: Failed to open userfault fd: %s", __func__, 1198 strerror(errno)); 1199 return -1; 1200 } 1201 1202 /* 1203 * Although the host check already tested the API, we need to 1204 * do the check again as an ABI handshake on the new fd. 1205 */ 1206 if (!ufd_check_and_apply(mis->userfault_fd, mis, &local_err)) { 1207 error_report_err(local_err); 1208 return -1; 1209 } 1210 1211 /* Now an eventfd we use to tell the fault-thread to quit */ 1212 mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC); 1213 if (mis->userfault_event_fd == -1) { 1214 error_report("%s: Opening userfault_event_fd: %s", __func__, 1215 strerror(errno)); 1216 close(mis->userfault_fd); 1217 return -1; 1218 } 1219 1220 postcopy_thread_create(mis, &mis->fault_thread, "fault-default", 1221 postcopy_ram_fault_thread, QEMU_THREAD_JOINABLE); 1222 mis->have_fault_thread = true; 1223 1224 /* Mark so that we get notified of accesses to unwritten areas */ 1225 if (foreach_not_ignored_block(ram_block_enable_notify, mis)) { 1226 error_report("ram_block_enable_notify failed"); 1227 return -1; 1228 } 1229 1230 if (postcopy_temp_pages_setup(mis)) { 1231 /* Error dumped in the sub-function */ 1232 return -1; 1233 } 1234 1235 if (migrate_postcopy_preempt()) { 1236 /* 1237 * This thread needs to be created after the temp pages because 1238 * it'll fetch RAM_CHANNEL_POSTCOPY PostcopyTmpPage immediately. 1239 */ 1240 postcopy_thread_create(mis, &mis->postcopy_prio_thread, "fault-fast", 1241 postcopy_preempt_thread, QEMU_THREAD_JOINABLE); 1242 mis->preempt_thread_status = PREEMPT_THREAD_CREATED; 1243 } 1244 1245 trace_postcopy_ram_enable_notify(); 1246 1247 return 0; 1248 } 1249 1250 static int qemu_ufd_copy_ioctl(MigrationIncomingState *mis, void *host_addr, 1251 void *from_addr, uint64_t pagesize, RAMBlock *rb) 1252 { 1253 int userfault_fd = mis->userfault_fd; 1254 int ret; 1255 1256 if (from_addr) { 1257 struct uffdio_copy copy_struct; 1258 copy_struct.dst = (uint64_t)(uintptr_t)host_addr; 1259 copy_struct.src = (uint64_t)(uintptr_t)from_addr; 1260 copy_struct.len = pagesize; 1261 copy_struct.mode = 0; 1262 ret = ioctl(userfault_fd, UFFDIO_COPY, ©_struct); 1263 } else { 1264 struct uffdio_zeropage zero_struct; 1265 zero_struct.range.start = (uint64_t)(uintptr_t)host_addr; 1266 zero_struct.range.len = pagesize; 1267 zero_struct.mode = 0; 1268 ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct); 1269 } 1270 if (!ret) { 1271 qemu_mutex_lock(&mis->page_request_mutex); 1272 ramblock_recv_bitmap_set_range(rb, host_addr, 1273 pagesize / qemu_target_page_size()); 1274 /* 1275 * If this page resolves a page fault for a previous recorded faulted 1276 * address, take a special note to maintain the requested page list. 1277 */ 1278 if (g_tree_lookup(mis->page_requested, host_addr)) { 1279 g_tree_remove(mis->page_requested, host_addr); 1280 mis->page_requested_count--; 1281 trace_postcopy_page_req_del(host_addr, mis->page_requested_count); 1282 } 1283 qemu_mutex_unlock(&mis->page_request_mutex); 1284 mark_postcopy_blocktime_end((uintptr_t)host_addr); 1285 } 1286 return ret; 1287 } 1288 1289 int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset) 1290 { 1291 int i; 1292 MigrationIncomingState *mis = migration_incoming_get_current(); 1293 GArray *pcrfds = mis->postcopy_remote_fds; 1294 1295 for (i = 0; i < pcrfds->len; i++) { 1296 struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i); 1297 int ret = cur->waker(cur, rb, offset); 1298 if (ret) { 1299 return ret; 1300 } 1301 } 1302 return 0; 1303 } 1304 1305 /* 1306 * Place a host page (from) at (host) atomically 1307 * returns 0 on success 1308 */ 1309 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from, 1310 RAMBlock *rb) 1311 { 1312 size_t pagesize = qemu_ram_pagesize(rb); 1313 1314 /* copy also acks to the kernel waking the stalled thread up 1315 * TODO: We can inhibit that ack and only do it if it was requested 1316 * which would be slightly cheaper, but we'd have to be careful 1317 * of the order of updating our page state. 1318 */ 1319 if (qemu_ufd_copy_ioctl(mis, host, from, pagesize, rb)) { 1320 int e = errno; 1321 error_report("%s: %s copy host: %p from: %p (size: %zd)", 1322 __func__, strerror(e), host, from, pagesize); 1323 1324 return -e; 1325 } 1326 1327 trace_postcopy_place_page(host); 1328 return postcopy_notify_shared_wake(rb, 1329 qemu_ram_block_host_offset(rb, host)); 1330 } 1331 1332 /* 1333 * Place a zero page at (host) atomically 1334 * returns 0 on success 1335 */ 1336 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host, 1337 RAMBlock *rb) 1338 { 1339 size_t pagesize = qemu_ram_pagesize(rb); 1340 trace_postcopy_place_page_zero(host); 1341 1342 /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE 1343 * but it's not available for everything (e.g. hugetlbpages) 1344 */ 1345 if (qemu_ram_is_uf_zeroable(rb)) { 1346 if (qemu_ufd_copy_ioctl(mis, host, NULL, pagesize, rb)) { 1347 int e = errno; 1348 error_report("%s: %s zero host: %p", 1349 __func__, strerror(e), host); 1350 1351 return -e; 1352 } 1353 return postcopy_notify_shared_wake(rb, 1354 qemu_ram_block_host_offset(rb, 1355 host)); 1356 } else { 1357 return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page, rb); 1358 } 1359 } 1360 1361 #else 1362 /* No target OS support, stubs just fail */ 1363 void fill_destination_postcopy_migration_info(MigrationInfo *info) 1364 { 1365 } 1366 1367 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis, Error **errp) 1368 { 1369 error_report("%s: No OS support", __func__); 1370 return false; 1371 } 1372 1373 int postcopy_ram_incoming_init(MigrationIncomingState *mis) 1374 { 1375 error_report("postcopy_ram_incoming_init: No OS support"); 1376 return -1; 1377 } 1378 1379 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 1380 { 1381 assert(0); 1382 return -1; 1383 } 1384 1385 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 1386 { 1387 assert(0); 1388 return -1; 1389 } 1390 1391 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb, 1392 uint64_t client_addr, uint64_t rb_offset) 1393 { 1394 assert(0); 1395 return -1; 1396 } 1397 1398 int postcopy_ram_incoming_setup(MigrationIncomingState *mis) 1399 { 1400 assert(0); 1401 return -1; 1402 } 1403 1404 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from, 1405 RAMBlock *rb) 1406 { 1407 assert(0); 1408 return -1; 1409 } 1410 1411 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host, 1412 RAMBlock *rb) 1413 { 1414 assert(0); 1415 return -1; 1416 } 1417 1418 int postcopy_wake_shared(struct PostCopyFD *pcfd, 1419 uint64_t client_addr, 1420 RAMBlock *rb) 1421 { 1422 assert(0); 1423 return -1; 1424 } 1425 #endif 1426 1427 /* ------------------------------------------------------------------------- */ 1428 void postcopy_temp_page_reset(PostcopyTmpPage *tmp_page) 1429 { 1430 tmp_page->target_pages = 0; 1431 tmp_page->host_addr = NULL; 1432 /* 1433 * This is set to true when reset, and cleared as long as we received any 1434 * of the non-zero small page within this huge page. 1435 */ 1436 tmp_page->all_zero = true; 1437 } 1438 1439 void postcopy_fault_thread_notify(MigrationIncomingState *mis) 1440 { 1441 uint64_t tmp64 = 1; 1442 1443 /* 1444 * Wakeup the fault_thread. It's an eventfd that should currently 1445 * be at 0, we're going to increment it to 1 1446 */ 1447 if (write(mis->userfault_event_fd, &tmp64, 8) != 8) { 1448 /* Not much we can do here, but may as well report it */ 1449 error_report("%s: incrementing failed: %s", __func__, 1450 strerror(errno)); 1451 } 1452 } 1453 1454 /** 1455 * postcopy_discard_send_init: Called at the start of each RAMBlock before 1456 * asking to discard individual ranges. 1457 * 1458 * @ms: The current migration state. 1459 * @offset: the bitmap offset of the named RAMBlock in the migration bitmap. 1460 * @name: RAMBlock that discards will operate on. 1461 */ 1462 static PostcopyDiscardState pds = {0}; 1463 void postcopy_discard_send_init(MigrationState *ms, const char *name) 1464 { 1465 pds.ramblock_name = name; 1466 pds.cur_entry = 0; 1467 pds.nsentwords = 0; 1468 pds.nsentcmds = 0; 1469 } 1470 1471 /** 1472 * postcopy_discard_send_range: Called by the bitmap code for each chunk to 1473 * discard. May send a discard message, may just leave it queued to 1474 * be sent later. 1475 * 1476 * @ms: Current migration state. 1477 * @start,@length: a range of pages in the migration bitmap in the 1478 * RAM block passed to postcopy_discard_send_init() (length=1 is one page) 1479 */ 1480 void postcopy_discard_send_range(MigrationState *ms, unsigned long start, 1481 unsigned long length) 1482 { 1483 size_t tp_size = qemu_target_page_size(); 1484 /* Convert to byte offsets within the RAM block */ 1485 pds.start_list[pds.cur_entry] = start * tp_size; 1486 pds.length_list[pds.cur_entry] = length * tp_size; 1487 trace_postcopy_discard_send_range(pds.ramblock_name, start, length); 1488 pds.cur_entry++; 1489 pds.nsentwords++; 1490 1491 if (pds.cur_entry == MAX_DISCARDS_PER_COMMAND) { 1492 /* Full set, ship it! */ 1493 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 1494 pds.ramblock_name, 1495 pds.cur_entry, 1496 pds.start_list, 1497 pds.length_list); 1498 pds.nsentcmds++; 1499 pds.cur_entry = 0; 1500 } 1501 } 1502 1503 /** 1504 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the 1505 * bitmap code. Sends any outstanding discard messages, frees the PDS 1506 * 1507 * @ms: Current migration state. 1508 */ 1509 void postcopy_discard_send_finish(MigrationState *ms) 1510 { 1511 /* Anything unsent? */ 1512 if (pds.cur_entry) { 1513 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 1514 pds.ramblock_name, 1515 pds.cur_entry, 1516 pds.start_list, 1517 pds.length_list); 1518 pds.nsentcmds++; 1519 } 1520 1521 trace_postcopy_discard_send_finish(pds.ramblock_name, pds.nsentwords, 1522 pds.nsentcmds); 1523 } 1524 1525 /* 1526 * Current state of incoming postcopy; note this is not part of 1527 * MigrationIncomingState since it's state is used during cleanup 1528 * at the end as MIS is being freed. 1529 */ 1530 static PostcopyState incoming_postcopy_state; 1531 1532 PostcopyState postcopy_state_get(void) 1533 { 1534 return qatomic_load_acquire(&incoming_postcopy_state); 1535 } 1536 1537 /* Set the state and return the old state */ 1538 PostcopyState postcopy_state_set(PostcopyState new_state) 1539 { 1540 return qatomic_xchg(&incoming_postcopy_state, new_state); 1541 } 1542 1543 /* Register a handler for external shared memory postcopy 1544 * called on the destination. 1545 */ 1546 void postcopy_register_shared_ufd(struct PostCopyFD *pcfd) 1547 { 1548 MigrationIncomingState *mis = migration_incoming_get_current(); 1549 1550 mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds, 1551 *pcfd); 1552 } 1553 1554 /* Unregister a handler for external shared memory postcopy 1555 */ 1556 void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd) 1557 { 1558 guint i; 1559 MigrationIncomingState *mis = migration_incoming_get_current(); 1560 GArray *pcrfds = mis->postcopy_remote_fds; 1561 1562 if (!pcrfds) { 1563 /* migration has already finished and freed the array */ 1564 return; 1565 } 1566 for (i = 0; i < pcrfds->len; i++) { 1567 struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i); 1568 if (cur->fd == pcfd->fd) { 1569 mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i); 1570 return; 1571 } 1572 } 1573 } 1574 1575 void postcopy_preempt_new_channel(MigrationIncomingState *mis, QEMUFile *file) 1576 { 1577 /* 1578 * The new loading channel has its own threads, so it needs to be 1579 * blocked too. It's by default true, just be explicit. 1580 */ 1581 qemu_file_set_blocking(file, true); 1582 mis->postcopy_qemufile_dst = file; 1583 qemu_sem_post(&mis->postcopy_qemufile_dst_done); 1584 trace_postcopy_preempt_new_channel(); 1585 } 1586 1587 /* 1588 * Setup the postcopy preempt channel with the IOC. If ERROR is specified, 1589 * setup the error instead. This helper will free the ERROR if specified. 1590 */ 1591 static void 1592 postcopy_preempt_send_channel_done(MigrationState *s, 1593 QIOChannel *ioc, Error *local_err) 1594 { 1595 if (local_err) { 1596 migrate_set_error(s, local_err); 1597 error_free(local_err); 1598 } else { 1599 migration_ioc_register_yank(ioc); 1600 s->postcopy_qemufile_src = qemu_file_new_output(ioc); 1601 trace_postcopy_preempt_new_channel(); 1602 } 1603 1604 /* 1605 * Kick the waiter in all cases. The waiter should check upon 1606 * postcopy_qemufile_src to know whether it failed or not. 1607 */ 1608 qemu_sem_post(&s->postcopy_qemufile_src_sem); 1609 } 1610 1611 static void 1612 postcopy_preempt_tls_handshake(QIOTask *task, gpointer opaque) 1613 { 1614 g_autoptr(QIOChannel) ioc = QIO_CHANNEL(qio_task_get_source(task)); 1615 MigrationState *s = opaque; 1616 Error *local_err = NULL; 1617 1618 qio_task_propagate_error(task, &local_err); 1619 postcopy_preempt_send_channel_done(s, ioc, local_err); 1620 } 1621 1622 static void 1623 postcopy_preempt_send_channel_new(QIOTask *task, gpointer opaque) 1624 { 1625 g_autoptr(QIOChannel) ioc = QIO_CHANNEL(qio_task_get_source(task)); 1626 MigrationState *s = opaque; 1627 QIOChannelTLS *tioc; 1628 Error *local_err = NULL; 1629 1630 if (qio_task_propagate_error(task, &local_err)) { 1631 goto out; 1632 } 1633 1634 if (migrate_channel_requires_tls_upgrade(ioc)) { 1635 tioc = migration_tls_client_create(ioc, s->hostname, &local_err); 1636 if (!tioc) { 1637 goto out; 1638 } 1639 trace_postcopy_preempt_tls_handshake(); 1640 qio_channel_set_name(QIO_CHANNEL(tioc), "migration-tls-preempt"); 1641 qio_channel_tls_handshake(tioc, postcopy_preempt_tls_handshake, 1642 s, NULL, NULL); 1643 /* Setup the channel until TLS handshake finished */ 1644 return; 1645 } 1646 1647 out: 1648 /* This handles both good and error cases */ 1649 postcopy_preempt_send_channel_done(s, ioc, local_err); 1650 } 1651 1652 /* 1653 * This function will kick off an async task to establish the preempt 1654 * channel, and wait until the connection setup completed. Returns 0 if 1655 * channel established, -1 for error. 1656 */ 1657 int postcopy_preempt_establish_channel(MigrationState *s) 1658 { 1659 /* If preempt not enabled, no need to wait */ 1660 if (!migrate_postcopy_preempt()) { 1661 return 0; 1662 } 1663 1664 /* 1665 * Kick off async task to establish preempt channel. Only do so with 1666 * 8.0+ machines, because 7.1/7.2 require the channel to be created in 1667 * setup phase of migration (even if racy in an unreliable network). 1668 */ 1669 if (!s->preempt_pre_7_2) { 1670 postcopy_preempt_setup(s); 1671 } 1672 1673 /* 1674 * We need the postcopy preempt channel to be established before 1675 * starting doing anything. 1676 */ 1677 qemu_sem_wait(&s->postcopy_qemufile_src_sem); 1678 1679 return s->postcopy_qemufile_src ? 0 : -1; 1680 } 1681 1682 void postcopy_preempt_setup(MigrationState *s) 1683 { 1684 /* Kick an async task to connect */ 1685 socket_send_channel_create(postcopy_preempt_send_channel_new, s); 1686 } 1687 1688 static void postcopy_pause_ram_fast_load(MigrationIncomingState *mis) 1689 { 1690 trace_postcopy_pause_fast_load(); 1691 qemu_mutex_unlock(&mis->postcopy_prio_thread_mutex); 1692 qemu_sem_wait(&mis->postcopy_pause_sem_fast_load); 1693 qemu_mutex_lock(&mis->postcopy_prio_thread_mutex); 1694 trace_postcopy_pause_fast_load_continued(); 1695 } 1696 1697 static bool preempt_thread_should_run(MigrationIncomingState *mis) 1698 { 1699 return mis->preempt_thread_status != PREEMPT_THREAD_QUIT; 1700 } 1701 1702 void *postcopy_preempt_thread(void *opaque) 1703 { 1704 MigrationIncomingState *mis = opaque; 1705 int ret; 1706 1707 trace_postcopy_preempt_thread_entry(); 1708 1709 rcu_register_thread(); 1710 1711 qemu_sem_post(&mis->thread_sync_sem); 1712 1713 /* 1714 * The preempt channel is established in asynchronous way. Wait 1715 * for its completion. 1716 */ 1717 qemu_sem_wait(&mis->postcopy_qemufile_dst_done); 1718 1719 /* Sending RAM_SAVE_FLAG_EOS to terminate this thread */ 1720 qemu_mutex_lock(&mis->postcopy_prio_thread_mutex); 1721 while (preempt_thread_should_run(mis)) { 1722 ret = ram_load_postcopy(mis->postcopy_qemufile_dst, 1723 RAM_CHANNEL_POSTCOPY); 1724 /* If error happened, go into recovery routine */ 1725 if (ret && preempt_thread_should_run(mis)) { 1726 postcopy_pause_ram_fast_load(mis); 1727 } else { 1728 /* We're done */ 1729 break; 1730 } 1731 } 1732 qemu_mutex_unlock(&mis->postcopy_prio_thread_mutex); 1733 1734 rcu_unregister_thread(); 1735 1736 trace_postcopy_preempt_thread_exit(); 1737 1738 return NULL; 1739 } 1740