xref: /openbmc/qemu/migration/postcopy-ram.c (revision f6e33708)
1 /*
2  * Postcopy migration for RAM
3  *
4  * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Dave Gilbert  <dgilbert@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13 
14 /*
15  * Postcopy is a migration technique where the execution flips from the
16  * source to the destination before all the data has been copied.
17  */
18 
19 #include "qemu/osdep.h"
20 #include "qemu/madvise.h"
21 #include "exec/target_page.h"
22 #include "migration.h"
23 #include "qemu-file.h"
24 #include "savevm.h"
25 #include "postcopy-ram.h"
26 #include "ram.h"
27 #include "qapi/error.h"
28 #include "qemu/notify.h"
29 #include "qemu/rcu.h"
30 #include "sysemu/sysemu.h"
31 #include "qemu/error-report.h"
32 #include "trace.h"
33 #include "hw/boards.h"
34 #include "exec/ramblock.h"
35 #include "socket.h"
36 #include "yank_functions.h"
37 #include "tls.h"
38 #include "qemu/userfaultfd.h"
39 #include "qemu/mmap-alloc.h"
40 #include "options.h"
41 
42 /* Arbitrary limit on size of each discard command,
43  * keeps them around ~200 bytes
44  */
45 #define MAX_DISCARDS_PER_COMMAND 12
46 
47 struct PostcopyDiscardState {
48     const char *ramblock_name;
49     uint16_t cur_entry;
50     /*
51      * Start and length of a discard range (bytes)
52      */
53     uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
54     uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
55     unsigned int nsentwords;
56     unsigned int nsentcmds;
57 };
58 
59 static NotifierWithReturnList postcopy_notifier_list;
60 
61 void postcopy_infrastructure_init(void)
62 {
63     notifier_with_return_list_init(&postcopy_notifier_list);
64 }
65 
66 void postcopy_add_notifier(NotifierWithReturn *nn)
67 {
68     notifier_with_return_list_add(&postcopy_notifier_list, nn);
69 }
70 
71 void postcopy_remove_notifier(NotifierWithReturn *n)
72 {
73     notifier_with_return_remove(n);
74 }
75 
76 int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp)
77 {
78     struct PostcopyNotifyData pnd;
79     pnd.reason = reason;
80     pnd.errp = errp;
81 
82     return notifier_with_return_list_notify(&postcopy_notifier_list,
83                                             &pnd);
84 }
85 
86 /*
87  * NOTE: this routine is not thread safe, we can't call it concurrently. But it
88  * should be good enough for migration's purposes.
89  */
90 void postcopy_thread_create(MigrationIncomingState *mis,
91                             QemuThread *thread, const char *name,
92                             void *(*fn)(void *), int joinable)
93 {
94     qemu_sem_init(&mis->thread_sync_sem, 0);
95     qemu_thread_create(thread, name, fn, mis, joinable);
96     qemu_sem_wait(&mis->thread_sync_sem);
97     qemu_sem_destroy(&mis->thread_sync_sem);
98 }
99 
100 /* Postcopy needs to detect accesses to pages that haven't yet been copied
101  * across, and efficiently map new pages in, the techniques for doing this
102  * are target OS specific.
103  */
104 #if defined(__linux__)
105 #include <poll.h>
106 #include <sys/ioctl.h>
107 #include <sys/syscall.h>
108 #endif
109 
110 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
111 #include <sys/eventfd.h>
112 #include <linux/userfaultfd.h>
113 
114 typedef struct PostcopyBlocktimeContext {
115     /* time when page fault initiated per vCPU */
116     uint32_t *page_fault_vcpu_time;
117     /* page address per vCPU */
118     uintptr_t *vcpu_addr;
119     uint32_t total_blocktime;
120     /* blocktime per vCPU */
121     uint32_t *vcpu_blocktime;
122     /* point in time when last page fault was initiated */
123     uint32_t last_begin;
124     /* number of vCPU are suspended */
125     int smp_cpus_down;
126     uint64_t start_time;
127 
128     /*
129      * Handler for exit event, necessary for
130      * releasing whole blocktime_ctx
131      */
132     Notifier exit_notifier;
133 } PostcopyBlocktimeContext;
134 
135 static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx)
136 {
137     g_free(ctx->page_fault_vcpu_time);
138     g_free(ctx->vcpu_addr);
139     g_free(ctx->vcpu_blocktime);
140     g_free(ctx);
141 }
142 
143 static void migration_exit_cb(Notifier *n, void *data)
144 {
145     PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext,
146                                                  exit_notifier);
147     destroy_blocktime_context(ctx);
148 }
149 
150 static struct PostcopyBlocktimeContext *blocktime_context_new(void)
151 {
152     MachineState *ms = MACHINE(qdev_get_machine());
153     unsigned int smp_cpus = ms->smp.cpus;
154     PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1);
155     ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus);
156     ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus);
157     ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus);
158 
159     ctx->exit_notifier.notify = migration_exit_cb;
160     ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
161     qemu_add_exit_notifier(&ctx->exit_notifier);
162     return ctx;
163 }
164 
165 static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx)
166 {
167     MachineState *ms = MACHINE(qdev_get_machine());
168     uint32List *list = NULL;
169     int i;
170 
171     for (i = ms->smp.cpus - 1; i >= 0; i--) {
172         QAPI_LIST_PREPEND(list, ctx->vcpu_blocktime[i]);
173     }
174 
175     return list;
176 }
177 
178 /*
179  * This function just populates MigrationInfo from postcopy's
180  * blocktime context. It will not populate MigrationInfo,
181  * unless postcopy-blocktime capability was set.
182  *
183  * @info: pointer to MigrationInfo to populate
184  */
185 void fill_destination_postcopy_migration_info(MigrationInfo *info)
186 {
187     MigrationIncomingState *mis = migration_incoming_get_current();
188     PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
189 
190     if (!bc) {
191         return;
192     }
193 
194     info->has_postcopy_blocktime = true;
195     info->postcopy_blocktime = bc->total_blocktime;
196     info->has_postcopy_vcpu_blocktime = true;
197     info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc);
198 }
199 
200 static uint32_t get_postcopy_total_blocktime(void)
201 {
202     MigrationIncomingState *mis = migration_incoming_get_current();
203     PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
204 
205     if (!bc) {
206         return 0;
207     }
208 
209     return bc->total_blocktime;
210 }
211 
212 /**
213  * receive_ufd_features: check userfault fd features, to request only supported
214  * features in the future.
215  *
216  * Returns: true on success
217  *
218  * __NR_userfaultfd - should be checked before
219  *  @features: out parameter will contain uffdio_api.features provided by kernel
220  *              in case of success
221  */
222 static bool receive_ufd_features(uint64_t *features)
223 {
224     struct uffdio_api api_struct = {0};
225     int ufd;
226     bool ret = true;
227 
228     ufd = uffd_open(O_CLOEXEC);
229     if (ufd == -1) {
230         error_report("%s: uffd_open() failed: %s", __func__, strerror(errno));
231         return false;
232     }
233 
234     /* ask features */
235     api_struct.api = UFFD_API;
236     api_struct.features = 0;
237     if (ioctl(ufd, UFFDIO_API, &api_struct)) {
238         error_report("%s: UFFDIO_API failed: %s", __func__,
239                      strerror(errno));
240         ret = false;
241         goto release_ufd;
242     }
243 
244     *features = api_struct.features;
245 
246 release_ufd:
247     close(ufd);
248     return ret;
249 }
250 
251 /**
252  * request_ufd_features: this function should be called only once on a newly
253  * opened ufd, subsequent calls will lead to error.
254  *
255  * Returns: true on success
256  *
257  * @ufd: fd obtained from userfaultfd syscall
258  * @features: bit mask see UFFD_API_FEATURES
259  */
260 static bool request_ufd_features(int ufd, uint64_t features)
261 {
262     struct uffdio_api api_struct = {0};
263     uint64_t ioctl_mask;
264 
265     api_struct.api = UFFD_API;
266     api_struct.features = features;
267     if (ioctl(ufd, UFFDIO_API, &api_struct)) {
268         error_report("%s failed: UFFDIO_API failed: %s", __func__,
269                      strerror(errno));
270         return false;
271     }
272 
273     ioctl_mask = 1ULL << _UFFDIO_REGISTER |
274                  1ULL << _UFFDIO_UNREGISTER;
275     if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
276         error_report("Missing userfault features: %" PRIx64,
277                      (uint64_t)(~api_struct.ioctls & ioctl_mask));
278         return false;
279     }
280 
281     return true;
282 }
283 
284 static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis,
285                                 Error **errp)
286 {
287     uint64_t asked_features = 0;
288     static uint64_t supported_features;
289 
290     ERRP_GUARD();
291     /*
292      * it's not possible to
293      * request UFFD_API twice per one fd
294      * userfault fd features is persistent
295      */
296     if (!supported_features) {
297         if (!receive_ufd_features(&supported_features)) {
298             error_setg(errp, "Userfault feature detection failed");
299             return false;
300         }
301     }
302 
303 #ifdef UFFD_FEATURE_THREAD_ID
304     if (UFFD_FEATURE_THREAD_ID & supported_features) {
305         asked_features |= UFFD_FEATURE_THREAD_ID;
306         if (migrate_postcopy_blocktime()) {
307             if (!mis->blocktime_ctx) {
308                 mis->blocktime_ctx = blocktime_context_new();
309             }
310         }
311     }
312 #endif
313 
314     /*
315      * request features, even if asked_features is 0, due to
316      * kernel expects UFFD_API before UFFDIO_REGISTER, per
317      * userfault file descriptor
318      */
319     if (!request_ufd_features(ufd, asked_features)) {
320         error_setg(errp, "Failed features %" PRIu64, asked_features);
321         return false;
322     }
323 
324     if (qemu_real_host_page_size() != ram_pagesize_summary()) {
325         bool have_hp = false;
326         /* We've got a huge page */
327 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS
328         have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS;
329 #endif
330         if (!have_hp) {
331             error_setg(errp,
332                        "Userfault on this host does not support huge pages");
333             return false;
334         }
335     }
336     return true;
337 }
338 
339 /* Callback from postcopy_ram_supported_by_host block iterator.
340  */
341 static int test_ramblock_postcopiable(RAMBlock *rb, Error **errp)
342 {
343     const char *block_name = qemu_ram_get_idstr(rb);
344     ram_addr_t length = qemu_ram_get_used_length(rb);
345     size_t pagesize = qemu_ram_pagesize(rb);
346     QemuFsType fs;
347 
348     if (length % pagesize) {
349         error_setg(errp,
350                    "Postcopy requires RAM blocks to be a page size multiple,"
351                    " block %s is 0x" RAM_ADDR_FMT " bytes with a "
352                    "page size of 0x%zx", block_name, length, pagesize);
353         return 1;
354     }
355 
356     if (rb->fd >= 0) {
357         fs = qemu_fd_getfs(rb->fd);
358         if (fs != QEMU_FS_TYPE_TMPFS && fs != QEMU_FS_TYPE_HUGETLBFS) {
359             error_setg(errp,
360                        "Host backend files need to be TMPFS or HUGETLBFS only");
361             return 1;
362         }
363     }
364 
365     return 0;
366 }
367 
368 /*
369  * Note: This has the side effect of munlock'ing all of RAM, that's
370  * normally fine since if the postcopy succeeds it gets turned back on at the
371  * end.
372  */
373 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis, Error **errp)
374 {
375     long pagesize = qemu_real_host_page_size();
376     int ufd = -1;
377     bool ret = false; /* Error unless we change it */
378     void *testarea = NULL;
379     struct uffdio_register reg_struct;
380     struct uffdio_range range_struct;
381     uint64_t feature_mask;
382     RAMBlock *block;
383 
384     ERRP_GUARD();
385     if (qemu_target_page_size() > pagesize) {
386         error_setg(errp, "Target page size bigger than host page size");
387         goto out;
388     }
389 
390     ufd = uffd_open(O_CLOEXEC);
391     if (ufd == -1) {
392         error_setg(errp, "Userfaultfd not available: %s", strerror(errno));
393         goto out;
394     }
395 
396     /* Give devices a chance to object */
397     if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, errp)) {
398         goto out;
399     }
400 
401     /* Version and features check */
402     if (!ufd_check_and_apply(ufd, mis, errp)) {
403         goto out;
404     }
405 
406     /*
407      * We don't support postcopy with some type of ramblocks.
408      *
409      * NOTE: we explicitly ignored migrate_ram_is_ignored() instead we checked
410      * all possible ramblocks.  This is because this function can be called
411      * when creating the migration object, during the phase RAM_MIGRATABLE
412      * is not even properly set for all the ramblocks.
413      *
414      * A side effect of this is we'll also check against RAM_SHARED
415      * ramblocks even if migrate_ignore_shared() is set (in which case
416      * we'll never migrate RAM_SHARED at all), but normally this shouldn't
417      * affect in reality, or we can revisit.
418      */
419     RAMBLOCK_FOREACH(block) {
420         if (test_ramblock_postcopiable(block, errp)) {
421             goto out;
422         }
423     }
424 
425     /*
426      * userfault and mlock don't go together; we'll put it back later if
427      * it was enabled.
428      */
429     if (munlockall()) {
430         error_setg(errp, "munlockall() failed: %s", strerror(errno));
431         goto out;
432     }
433 
434     /*
435      *  We need to check that the ops we need are supported on anon memory
436      *  To do that we need to register a chunk and see the flags that
437      *  are returned.
438      */
439     testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
440                                     MAP_ANONYMOUS, -1, 0);
441     if (testarea == MAP_FAILED) {
442         error_setg(errp, "Failed to map test area: %s", strerror(errno));
443         goto out;
444     }
445     g_assert(QEMU_PTR_IS_ALIGNED(testarea, pagesize));
446 
447     reg_struct.range.start = (uintptr_t)testarea;
448     reg_struct.range.len = pagesize;
449     reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
450 
451     if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
452         error_setg(errp, "UFFDIO_REGISTER failed: %s", strerror(errno));
453         goto out;
454     }
455 
456     range_struct.start = (uintptr_t)testarea;
457     range_struct.len = pagesize;
458     if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
459         error_setg(errp, "UFFDIO_UNREGISTER failed: %s", strerror(errno));
460         goto out;
461     }
462 
463     feature_mask = 1ULL << _UFFDIO_WAKE |
464                    1ULL << _UFFDIO_COPY |
465                    1ULL << _UFFDIO_ZEROPAGE;
466     if ((reg_struct.ioctls & feature_mask) != feature_mask) {
467         error_setg(errp, "Missing userfault map features: %" PRIx64,
468                    (uint64_t)(~reg_struct.ioctls & feature_mask));
469         goto out;
470     }
471 
472     /* Success! */
473     ret = true;
474 out:
475     if (testarea) {
476         munmap(testarea, pagesize);
477     }
478     if (ufd != -1) {
479         close(ufd);
480     }
481     return ret;
482 }
483 
484 /*
485  * Setup an area of RAM so that it *can* be used for postcopy later; this
486  * must be done right at the start prior to pre-copy.
487  * opaque should be the MIS.
488  */
489 static int init_range(RAMBlock *rb, void *opaque)
490 {
491     const char *block_name = qemu_ram_get_idstr(rb);
492     void *host_addr = qemu_ram_get_host_addr(rb);
493     ram_addr_t offset = qemu_ram_get_offset(rb);
494     ram_addr_t length = qemu_ram_get_used_length(rb);
495     trace_postcopy_init_range(block_name, host_addr, offset, length);
496 
497     /*
498      * Save the used_length before running the guest. In case we have to
499      * resize RAM blocks when syncing RAM block sizes from the source during
500      * precopy, we'll update it manually via the ram block notifier.
501      */
502     rb->postcopy_length = length;
503 
504     /*
505      * We need the whole of RAM to be truly empty for postcopy, so things
506      * like ROMs and any data tables built during init must be zero'd
507      * - we're going to get the copy from the source anyway.
508      * (Precopy will just overwrite this data, so doesn't need the discard)
509      */
510     if (ram_discard_range(block_name, 0, length)) {
511         return -1;
512     }
513 
514     return 0;
515 }
516 
517 /*
518  * At the end of migration, undo the effects of init_range
519  * opaque should be the MIS.
520  */
521 static int cleanup_range(RAMBlock *rb, void *opaque)
522 {
523     const char *block_name = qemu_ram_get_idstr(rb);
524     void *host_addr = qemu_ram_get_host_addr(rb);
525     ram_addr_t offset = qemu_ram_get_offset(rb);
526     ram_addr_t length = rb->postcopy_length;
527     MigrationIncomingState *mis = opaque;
528     struct uffdio_range range_struct;
529     trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
530 
531     /*
532      * We turned off hugepage for the precopy stage with postcopy enabled
533      * we can turn it back on now.
534      */
535     qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
536 
537     /*
538      * We can also turn off userfault now since we should have all the
539      * pages.   It can be useful to leave it on to debug postcopy
540      * if you're not sure it's always getting every page.
541      */
542     range_struct.start = (uintptr_t)host_addr;
543     range_struct.len = length;
544 
545     if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
546         error_report("%s: userfault unregister %s", __func__, strerror(errno));
547 
548         return -1;
549     }
550 
551     return 0;
552 }
553 
554 /*
555  * Initialise postcopy-ram, setting the RAM to a state where we can go into
556  * postcopy later; must be called prior to any precopy.
557  * called from arch_init's similarly named ram_postcopy_incoming_init
558  */
559 int postcopy_ram_incoming_init(MigrationIncomingState *mis)
560 {
561     if (foreach_not_ignored_block(init_range, NULL)) {
562         return -1;
563     }
564 
565     return 0;
566 }
567 
568 static void postcopy_temp_pages_cleanup(MigrationIncomingState *mis)
569 {
570     int i;
571 
572     if (mis->postcopy_tmp_pages) {
573         for (i = 0; i < mis->postcopy_channels; i++) {
574             if (mis->postcopy_tmp_pages[i].tmp_huge_page) {
575                 munmap(mis->postcopy_tmp_pages[i].tmp_huge_page,
576                        mis->largest_page_size);
577                 mis->postcopy_tmp_pages[i].tmp_huge_page = NULL;
578             }
579         }
580         g_free(mis->postcopy_tmp_pages);
581         mis->postcopy_tmp_pages = NULL;
582     }
583 
584     if (mis->postcopy_tmp_zero_page) {
585         munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
586         mis->postcopy_tmp_zero_page = NULL;
587     }
588 }
589 
590 /*
591  * At the end of a migration where postcopy_ram_incoming_init was called.
592  */
593 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
594 {
595     trace_postcopy_ram_incoming_cleanup_entry();
596 
597     if (mis->preempt_thread_status == PREEMPT_THREAD_CREATED) {
598         /* Notify the fast load thread to quit */
599         mis->preempt_thread_status = PREEMPT_THREAD_QUIT;
600         /*
601          * Update preempt_thread_status before reading count.  Note: mutex
602          * lock only provide ACQUIRE semantic, and it doesn't stops this
603          * write to be reordered after reading the count.
604          */
605         smp_mb();
606         /*
607          * It's possible that the preempt thread is still handling the last
608          * pages to arrive which were requested by guest page faults.
609          * Making sure nothing is left behind by waiting on the condvar if
610          * that unlikely case happened.
611          */
612         WITH_QEMU_LOCK_GUARD(&mis->page_request_mutex) {
613             if (qatomic_read(&mis->page_requested_count)) {
614                 /*
615                  * It is guaranteed to receive a signal later, because the
616                  * count>0 now, so it's destined to be decreased to zero
617                  * very soon by the preempt thread.
618                  */
619                 qemu_cond_wait(&mis->page_request_cond,
620                                &mis->page_request_mutex);
621             }
622         }
623         /* Notify the fast load thread to quit */
624         if (mis->postcopy_qemufile_dst) {
625             qemu_file_shutdown(mis->postcopy_qemufile_dst);
626         }
627         qemu_thread_join(&mis->postcopy_prio_thread);
628         mis->preempt_thread_status = PREEMPT_THREAD_NONE;
629     }
630 
631     if (mis->have_fault_thread) {
632         Error *local_err = NULL;
633 
634         /* Let the fault thread quit */
635         qatomic_set(&mis->fault_thread_quit, 1);
636         postcopy_fault_thread_notify(mis);
637         trace_postcopy_ram_incoming_cleanup_join();
638         qemu_thread_join(&mis->fault_thread);
639 
640         if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) {
641             error_report_err(local_err);
642             return -1;
643         }
644 
645         if (foreach_not_ignored_block(cleanup_range, mis)) {
646             return -1;
647         }
648 
649         trace_postcopy_ram_incoming_cleanup_closeuf();
650         close(mis->userfault_fd);
651         close(mis->userfault_event_fd);
652         mis->have_fault_thread = false;
653     }
654 
655     if (enable_mlock) {
656         if (os_mlock() < 0) {
657             error_report("mlock: %s", strerror(errno));
658             /*
659              * It doesn't feel right to fail at this point, we have a valid
660              * VM state.
661              */
662         }
663     }
664 
665     postcopy_temp_pages_cleanup(mis);
666 
667     trace_postcopy_ram_incoming_cleanup_blocktime(
668             get_postcopy_total_blocktime());
669 
670     trace_postcopy_ram_incoming_cleanup_exit();
671     return 0;
672 }
673 
674 /*
675  * Disable huge pages on an area
676  */
677 static int nhp_range(RAMBlock *rb, void *opaque)
678 {
679     const char *block_name = qemu_ram_get_idstr(rb);
680     void *host_addr = qemu_ram_get_host_addr(rb);
681     ram_addr_t offset = qemu_ram_get_offset(rb);
682     ram_addr_t length = rb->postcopy_length;
683     trace_postcopy_nhp_range(block_name, host_addr, offset, length);
684 
685     /*
686      * Before we do discards we need to ensure those discards really
687      * do delete areas of the page, even if THP thinks a hugepage would
688      * be a good idea, so force hugepages off.
689      */
690     qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
691 
692     return 0;
693 }
694 
695 /*
696  * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
697  * however leaving it until after precopy means that most of the precopy
698  * data is still THPd
699  */
700 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
701 {
702     if (foreach_not_ignored_block(nhp_range, mis)) {
703         return -1;
704     }
705 
706     postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
707 
708     return 0;
709 }
710 
711 /*
712  * Mark the given area of RAM as requiring notification to unwritten areas
713  * Used as a  callback on foreach_not_ignored_block.
714  *   host_addr: Base of area to mark
715  *   offset: Offset in the whole ram arena
716  *   length: Length of the section
717  *   opaque: MigrationIncomingState pointer
718  * Returns 0 on success
719  */
720 static int ram_block_enable_notify(RAMBlock *rb, void *opaque)
721 {
722     MigrationIncomingState *mis = opaque;
723     struct uffdio_register reg_struct;
724 
725     reg_struct.range.start = (uintptr_t)qemu_ram_get_host_addr(rb);
726     reg_struct.range.len = rb->postcopy_length;
727     reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
728 
729     /* Now tell our userfault_fd that it's responsible for this area */
730     if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
731         error_report("%s userfault register: %s", __func__, strerror(errno));
732         return -1;
733     }
734     if (!(reg_struct.ioctls & (1ULL << _UFFDIO_COPY))) {
735         error_report("%s userfault: Region doesn't support COPY", __func__);
736         return -1;
737     }
738     if (reg_struct.ioctls & (1ULL << _UFFDIO_ZEROPAGE)) {
739         qemu_ram_set_uf_zeroable(rb);
740     }
741 
742     return 0;
743 }
744 
745 int postcopy_wake_shared(struct PostCopyFD *pcfd,
746                          uint64_t client_addr,
747                          RAMBlock *rb)
748 {
749     size_t pagesize = qemu_ram_pagesize(rb);
750     struct uffdio_range range;
751     int ret;
752     trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb));
753     range.start = ROUND_DOWN(client_addr, pagesize);
754     range.len = pagesize;
755     ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range);
756     if (ret) {
757         error_report("%s: Failed to wake: %zx in %s (%s)",
758                      __func__, (size_t)client_addr, qemu_ram_get_idstr(rb),
759                      strerror(errno));
760     }
761     return ret;
762 }
763 
764 static int postcopy_request_page(MigrationIncomingState *mis, RAMBlock *rb,
765                                  ram_addr_t start, uint64_t haddr)
766 {
767     void *aligned = (void *)(uintptr_t)ROUND_DOWN(haddr, qemu_ram_pagesize(rb));
768 
769     /*
770      * Discarded pages (via RamDiscardManager) are never migrated. On unlikely
771      * access, place a zeropage, which will also set the relevant bits in the
772      * recv_bitmap accordingly, so we won't try placing a zeropage twice.
773      *
774      * Checking a single bit is sufficient to handle pagesize > TPS as either
775      * all relevant bits are set or not.
776      */
777     assert(QEMU_IS_ALIGNED(start, qemu_ram_pagesize(rb)));
778     if (ramblock_page_is_discarded(rb, start)) {
779         bool received = ramblock_recv_bitmap_test_byte_offset(rb, start);
780 
781         return received ? 0 : postcopy_place_page_zero(mis, aligned, rb);
782     }
783 
784     return migrate_send_rp_req_pages(mis, rb, start, haddr);
785 }
786 
787 /*
788  * Callback from shared fault handlers to ask for a page,
789  * the page must be specified by a RAMBlock and an offset in that rb
790  * Note: Only for use by shared fault handlers (in fault thread)
791  */
792 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
793                                  uint64_t client_addr, uint64_t rb_offset)
794 {
795     uint64_t aligned_rbo = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb));
796     MigrationIncomingState *mis = migration_incoming_get_current();
797 
798     trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb),
799                                        rb_offset);
800     if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) {
801         trace_postcopy_request_shared_page_present(pcfd->idstr,
802                                         qemu_ram_get_idstr(rb), rb_offset);
803         return postcopy_wake_shared(pcfd, client_addr, rb);
804     }
805     postcopy_request_page(mis, rb, aligned_rbo, client_addr);
806     return 0;
807 }
808 
809 static int get_mem_fault_cpu_index(uint32_t pid)
810 {
811     CPUState *cpu_iter;
812 
813     CPU_FOREACH(cpu_iter) {
814         if (cpu_iter->thread_id == pid) {
815             trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid);
816             return cpu_iter->cpu_index;
817         }
818     }
819     trace_get_mem_fault_cpu_index(-1, pid);
820     return -1;
821 }
822 
823 static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc)
824 {
825     int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) -
826                                     dc->start_time;
827     return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX;
828 }
829 
830 /*
831  * This function is being called when pagefault occurs. It
832  * tracks down vCPU blocking time.
833  *
834  * @addr: faulted host virtual address
835  * @ptid: faulted process thread id
836  * @rb: ramblock appropriate to addr
837  */
838 static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid,
839                                           RAMBlock *rb)
840 {
841     int cpu, already_received;
842     MigrationIncomingState *mis = migration_incoming_get_current();
843     PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
844     uint32_t low_time_offset;
845 
846     if (!dc || ptid == 0) {
847         return;
848     }
849     cpu = get_mem_fault_cpu_index(ptid);
850     if (cpu < 0) {
851         return;
852     }
853 
854     low_time_offset = get_low_time_offset(dc);
855     if (dc->vcpu_addr[cpu] == 0) {
856         qatomic_inc(&dc->smp_cpus_down);
857     }
858 
859     qatomic_xchg(&dc->last_begin, low_time_offset);
860     qatomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset);
861     qatomic_xchg(&dc->vcpu_addr[cpu], addr);
862 
863     /*
864      * check it here, not at the beginning of the function,
865      * due to, check could occur early than bitmap_set in
866      * qemu_ufd_copy_ioctl
867      */
868     already_received = ramblock_recv_bitmap_test(rb, (void *)addr);
869     if (already_received) {
870         qatomic_xchg(&dc->vcpu_addr[cpu], 0);
871         qatomic_xchg(&dc->page_fault_vcpu_time[cpu], 0);
872         qatomic_dec(&dc->smp_cpus_down);
873     }
874     trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu],
875                                         cpu, already_received);
876 }
877 
878 /*
879  *  This function just provide calculated blocktime per cpu and trace it.
880  *  Total blocktime is calculated in mark_postcopy_blocktime_end.
881  *
882  *
883  * Assume we have 3 CPU
884  *
885  *      S1        E1           S1               E1
886  * -----***********------------xxx***************------------------------> CPU1
887  *
888  *             S2                E2
889  * ------------****************xxx---------------------------------------> CPU2
890  *
891  *                         S3            E3
892  * ------------------------****xxx********-------------------------------> CPU3
893  *
894  * We have sequence S1,S2,E1,S3,S1,E2,E3,E1
895  * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3
896  * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 -
897  *            it's a part of total blocktime.
898  * S1 - here is last_begin
899  * Legend of the picture is following:
900  *              * - means blocktime per vCPU
901  *              x - means overlapped blocktime (total blocktime)
902  *
903  * @addr: host virtual address
904  */
905 static void mark_postcopy_blocktime_end(uintptr_t addr)
906 {
907     MigrationIncomingState *mis = migration_incoming_get_current();
908     PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
909     MachineState *ms = MACHINE(qdev_get_machine());
910     unsigned int smp_cpus = ms->smp.cpus;
911     int i, affected_cpu = 0;
912     bool vcpu_total_blocktime = false;
913     uint32_t read_vcpu_time, low_time_offset;
914 
915     if (!dc) {
916         return;
917     }
918 
919     low_time_offset = get_low_time_offset(dc);
920     /* lookup cpu, to clear it,
921      * that algorithm looks straightforward, but it's not
922      * optimal, more optimal algorithm is keeping tree or hash
923      * where key is address value is a list of  */
924     for (i = 0; i < smp_cpus; i++) {
925         uint32_t vcpu_blocktime = 0;
926 
927         read_vcpu_time = qatomic_fetch_add(&dc->page_fault_vcpu_time[i], 0);
928         if (qatomic_fetch_add(&dc->vcpu_addr[i], 0) != addr ||
929             read_vcpu_time == 0) {
930             continue;
931         }
932         qatomic_xchg(&dc->vcpu_addr[i], 0);
933         vcpu_blocktime = low_time_offset - read_vcpu_time;
934         affected_cpu += 1;
935         /* we need to know is that mark_postcopy_end was due to
936          * faulted page, another possible case it's prefetched
937          * page and in that case we shouldn't be here */
938         if (!vcpu_total_blocktime &&
939             qatomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) {
940             vcpu_total_blocktime = true;
941         }
942         /* continue cycle, due to one page could affect several vCPUs */
943         dc->vcpu_blocktime[i] += vcpu_blocktime;
944     }
945 
946     qatomic_sub(&dc->smp_cpus_down, affected_cpu);
947     if (vcpu_total_blocktime) {
948         dc->total_blocktime += low_time_offset - qatomic_fetch_add(
949                 &dc->last_begin, 0);
950     }
951     trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime,
952                                       affected_cpu);
953 }
954 
955 static void postcopy_pause_fault_thread(MigrationIncomingState *mis)
956 {
957     trace_postcopy_pause_fault_thread();
958     qemu_sem_wait(&mis->postcopy_pause_sem_fault);
959     trace_postcopy_pause_fault_thread_continued();
960 }
961 
962 /*
963  * Handle faults detected by the USERFAULT markings
964  */
965 static void *postcopy_ram_fault_thread(void *opaque)
966 {
967     MigrationIncomingState *mis = opaque;
968     struct uffd_msg msg;
969     int ret;
970     size_t index;
971     RAMBlock *rb = NULL;
972 
973     trace_postcopy_ram_fault_thread_entry();
974     rcu_register_thread();
975     mis->last_rb = NULL; /* last RAMBlock we sent part of */
976     qemu_sem_post(&mis->thread_sync_sem);
977 
978     struct pollfd *pfd;
979     size_t pfd_len = 2 + mis->postcopy_remote_fds->len;
980 
981     pfd = g_new0(struct pollfd, pfd_len);
982 
983     pfd[0].fd = mis->userfault_fd;
984     pfd[0].events = POLLIN;
985     pfd[1].fd = mis->userfault_event_fd;
986     pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
987     trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd);
988     for (index = 0; index < mis->postcopy_remote_fds->len; index++) {
989         struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds,
990                                                  struct PostCopyFD, index);
991         pfd[2 + index].fd = pcfd->fd;
992         pfd[2 + index].events = POLLIN;
993         trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr,
994                                                   pcfd->fd);
995     }
996 
997     while (true) {
998         ram_addr_t rb_offset;
999         int poll_result;
1000 
1001         /*
1002          * We're mainly waiting for the kernel to give us a faulting HVA,
1003          * however we can be told to quit via userfault_quit_fd which is
1004          * an eventfd
1005          */
1006 
1007         poll_result = poll(pfd, pfd_len, -1 /* Wait forever */);
1008         if (poll_result == -1) {
1009             error_report("%s: userfault poll: %s", __func__, strerror(errno));
1010             break;
1011         }
1012 
1013         if (!mis->to_src_file) {
1014             /*
1015              * Possibly someone tells us that the return path is
1016              * broken already using the event. We should hold until
1017              * the channel is rebuilt.
1018              */
1019             postcopy_pause_fault_thread(mis);
1020         }
1021 
1022         if (pfd[1].revents) {
1023             uint64_t tmp64 = 0;
1024 
1025             /* Consume the signal */
1026             if (read(mis->userfault_event_fd, &tmp64, 8) != 8) {
1027                 /* Nothing obviously nicer than posting this error. */
1028                 error_report("%s: read() failed", __func__);
1029             }
1030 
1031             if (qatomic_read(&mis->fault_thread_quit)) {
1032                 trace_postcopy_ram_fault_thread_quit();
1033                 break;
1034             }
1035         }
1036 
1037         if (pfd[0].revents) {
1038             poll_result--;
1039             ret = read(mis->userfault_fd, &msg, sizeof(msg));
1040             if (ret != sizeof(msg)) {
1041                 if (errno == EAGAIN) {
1042                     /*
1043                      * if a wake up happens on the other thread just after
1044                      * the poll, there is nothing to read.
1045                      */
1046                     continue;
1047                 }
1048                 if (ret < 0) {
1049                     error_report("%s: Failed to read full userfault "
1050                                  "message: %s",
1051                                  __func__, strerror(errno));
1052                     break;
1053                 } else {
1054                     error_report("%s: Read %d bytes from userfaultfd "
1055                                  "expected %zd",
1056                                  __func__, ret, sizeof(msg));
1057                     break; /* Lost alignment, don't know what we'd read next */
1058                 }
1059             }
1060             if (msg.event != UFFD_EVENT_PAGEFAULT) {
1061                 error_report("%s: Read unexpected event %ud from userfaultfd",
1062                              __func__, msg.event);
1063                 continue; /* It's not a page fault, shouldn't happen */
1064             }
1065 
1066             rb = qemu_ram_block_from_host(
1067                      (void *)(uintptr_t)msg.arg.pagefault.address,
1068                      true, &rb_offset);
1069             if (!rb) {
1070                 error_report("postcopy_ram_fault_thread: Fault outside guest: %"
1071                              PRIx64, (uint64_t)msg.arg.pagefault.address);
1072                 break;
1073             }
1074 
1075             rb_offset = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb));
1076             trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
1077                                                 qemu_ram_get_idstr(rb),
1078                                                 rb_offset,
1079                                                 msg.arg.pagefault.feat.ptid);
1080             mark_postcopy_blocktime_begin(
1081                     (uintptr_t)(msg.arg.pagefault.address),
1082                                 msg.arg.pagefault.feat.ptid, rb);
1083 
1084 retry:
1085             /*
1086              * Send the request to the source - we want to request one
1087              * of our host page sizes (which is >= TPS)
1088              */
1089             ret = postcopy_request_page(mis, rb, rb_offset,
1090                                         msg.arg.pagefault.address);
1091             if (ret) {
1092                 /* May be network failure, try to wait for recovery */
1093                 postcopy_pause_fault_thread(mis);
1094                 goto retry;
1095             }
1096         }
1097 
1098         /* Now handle any requests from external processes on shared memory */
1099         /* TODO: May need to handle devices deregistering during postcopy */
1100         for (index = 2; index < pfd_len && poll_result; index++) {
1101             if (pfd[index].revents) {
1102                 struct PostCopyFD *pcfd =
1103                     &g_array_index(mis->postcopy_remote_fds,
1104                                    struct PostCopyFD, index - 2);
1105 
1106                 poll_result--;
1107                 if (pfd[index].revents & POLLERR) {
1108                     error_report("%s: POLLERR on poll %zd fd=%d",
1109                                  __func__, index, pcfd->fd);
1110                     pfd[index].events = 0;
1111                     continue;
1112                 }
1113 
1114                 ret = read(pcfd->fd, &msg, sizeof(msg));
1115                 if (ret != sizeof(msg)) {
1116                     if (errno == EAGAIN) {
1117                         /*
1118                          * if a wake up happens on the other thread just after
1119                          * the poll, there is nothing to read.
1120                          */
1121                         continue;
1122                     }
1123                     if (ret < 0) {
1124                         error_report("%s: Failed to read full userfault "
1125                                      "message: %s (shared) revents=%d",
1126                                      __func__, strerror(errno),
1127                                      pfd[index].revents);
1128                         /*TODO: Could just disable this sharer */
1129                         break;
1130                     } else {
1131                         error_report("%s: Read %d bytes from userfaultfd "
1132                                      "expected %zd (shared)",
1133                                      __func__, ret, sizeof(msg));
1134                         /*TODO: Could just disable this sharer */
1135                         break; /*Lost alignment,don't know what we'd read next*/
1136                     }
1137                 }
1138                 if (msg.event != UFFD_EVENT_PAGEFAULT) {
1139                     error_report("%s: Read unexpected event %ud "
1140                                  "from userfaultfd (shared)",
1141                                  __func__, msg.event);
1142                     continue; /* It's not a page fault, shouldn't happen */
1143                 }
1144                 /* Call the device handler registered with us */
1145                 ret = pcfd->handler(pcfd, &msg);
1146                 if (ret) {
1147                     error_report("%s: Failed to resolve shared fault on %zd/%s",
1148                                  __func__, index, pcfd->idstr);
1149                     /* TODO: Fail? Disable this sharer? */
1150                 }
1151             }
1152         }
1153     }
1154     rcu_unregister_thread();
1155     trace_postcopy_ram_fault_thread_exit();
1156     g_free(pfd);
1157     return NULL;
1158 }
1159 
1160 static int postcopy_temp_pages_setup(MigrationIncomingState *mis)
1161 {
1162     PostcopyTmpPage *tmp_page;
1163     int err, i, channels;
1164     void *temp_page;
1165 
1166     if (migrate_postcopy_preempt()) {
1167         /* If preemption enabled, need extra channel for urgent requests */
1168         mis->postcopy_channels = RAM_CHANNEL_MAX;
1169     } else {
1170         /* Both precopy/postcopy on the same channel */
1171         mis->postcopy_channels = 1;
1172     }
1173 
1174     channels = mis->postcopy_channels;
1175     mis->postcopy_tmp_pages = g_malloc0_n(sizeof(PostcopyTmpPage), channels);
1176 
1177     for (i = 0; i < channels; i++) {
1178         tmp_page = &mis->postcopy_tmp_pages[i];
1179         temp_page = mmap(NULL, mis->largest_page_size, PROT_READ | PROT_WRITE,
1180                          MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1181         if (temp_page == MAP_FAILED) {
1182             err = errno;
1183             error_report("%s: Failed to map postcopy_tmp_pages[%d]: %s",
1184                          __func__, i, strerror(err));
1185             /* Clean up will be done later */
1186             return -err;
1187         }
1188         tmp_page->tmp_huge_page = temp_page;
1189         /* Initialize default states for each tmp page */
1190         postcopy_temp_page_reset(tmp_page);
1191     }
1192 
1193     /*
1194      * Map large zero page when kernel can't use UFFDIO_ZEROPAGE for hugepages
1195      */
1196     mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
1197                                        PROT_READ | PROT_WRITE,
1198                                        MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1199     if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
1200         err = errno;
1201         mis->postcopy_tmp_zero_page = NULL;
1202         error_report("%s: Failed to map large zero page %s",
1203                      __func__, strerror(err));
1204         return -err;
1205     }
1206 
1207     memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
1208 
1209     return 0;
1210 }
1211 
1212 int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
1213 {
1214     Error *local_err = NULL;
1215 
1216     /* Open the fd for the kernel to give us userfaults */
1217     mis->userfault_fd = uffd_open(O_CLOEXEC | O_NONBLOCK);
1218     if (mis->userfault_fd == -1) {
1219         error_report("%s: Failed to open userfault fd: %s", __func__,
1220                      strerror(errno));
1221         return -1;
1222     }
1223 
1224     /*
1225      * Although the host check already tested the API, we need to
1226      * do the check again as an ABI handshake on the new fd.
1227      */
1228     if (!ufd_check_and_apply(mis->userfault_fd, mis, &local_err)) {
1229         error_report_err(local_err);
1230         return -1;
1231     }
1232 
1233     /* Now an eventfd we use to tell the fault-thread to quit */
1234     mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC);
1235     if (mis->userfault_event_fd == -1) {
1236         error_report("%s: Opening userfault_event_fd: %s", __func__,
1237                      strerror(errno));
1238         close(mis->userfault_fd);
1239         return -1;
1240     }
1241 
1242     postcopy_thread_create(mis, &mis->fault_thread, "fault-default",
1243                            postcopy_ram_fault_thread, QEMU_THREAD_JOINABLE);
1244     mis->have_fault_thread = true;
1245 
1246     /* Mark so that we get notified of accesses to unwritten areas */
1247     if (foreach_not_ignored_block(ram_block_enable_notify, mis)) {
1248         error_report("ram_block_enable_notify failed");
1249         return -1;
1250     }
1251 
1252     if (postcopy_temp_pages_setup(mis)) {
1253         /* Error dumped in the sub-function */
1254         return -1;
1255     }
1256 
1257     if (migrate_postcopy_preempt()) {
1258         /*
1259          * This thread needs to be created after the temp pages because
1260          * it'll fetch RAM_CHANNEL_POSTCOPY PostcopyTmpPage immediately.
1261          */
1262         postcopy_thread_create(mis, &mis->postcopy_prio_thread, "fault-fast",
1263                                postcopy_preempt_thread, QEMU_THREAD_JOINABLE);
1264         mis->preempt_thread_status = PREEMPT_THREAD_CREATED;
1265     }
1266 
1267     trace_postcopy_ram_enable_notify();
1268 
1269     return 0;
1270 }
1271 
1272 static int qemu_ufd_copy_ioctl(MigrationIncomingState *mis, void *host_addr,
1273                                void *from_addr, uint64_t pagesize, RAMBlock *rb)
1274 {
1275     int userfault_fd = mis->userfault_fd;
1276     int ret;
1277 
1278     if (from_addr) {
1279         struct uffdio_copy copy_struct;
1280         copy_struct.dst = (uint64_t)(uintptr_t)host_addr;
1281         copy_struct.src = (uint64_t)(uintptr_t)from_addr;
1282         copy_struct.len = pagesize;
1283         copy_struct.mode = 0;
1284         ret = ioctl(userfault_fd, UFFDIO_COPY, &copy_struct);
1285     } else {
1286         struct uffdio_zeropage zero_struct;
1287         zero_struct.range.start = (uint64_t)(uintptr_t)host_addr;
1288         zero_struct.range.len = pagesize;
1289         zero_struct.mode = 0;
1290         ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct);
1291     }
1292     if (!ret) {
1293         qemu_mutex_lock(&mis->page_request_mutex);
1294         ramblock_recv_bitmap_set_range(rb, host_addr,
1295                                        pagesize / qemu_target_page_size());
1296         /*
1297          * If this page resolves a page fault for a previous recorded faulted
1298          * address, take a special note to maintain the requested page list.
1299          */
1300         if (g_tree_lookup(mis->page_requested, host_addr)) {
1301             g_tree_remove(mis->page_requested, host_addr);
1302             int left_pages = qatomic_dec_fetch(&mis->page_requested_count);
1303 
1304             trace_postcopy_page_req_del(host_addr, mis->page_requested_count);
1305             /* Order the update of count and read of preempt status */
1306             smp_mb();
1307             if (mis->preempt_thread_status == PREEMPT_THREAD_QUIT &&
1308                 left_pages == 0) {
1309                 /*
1310                  * This probably means the main thread is waiting for us.
1311                  * Notify that we've finished receiving the last requested
1312                  * page.
1313                  */
1314                 qemu_cond_signal(&mis->page_request_cond);
1315             }
1316         }
1317         qemu_mutex_unlock(&mis->page_request_mutex);
1318         mark_postcopy_blocktime_end((uintptr_t)host_addr);
1319     }
1320     return ret;
1321 }
1322 
1323 int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset)
1324 {
1325     int i;
1326     MigrationIncomingState *mis = migration_incoming_get_current();
1327     GArray *pcrfds = mis->postcopy_remote_fds;
1328 
1329     for (i = 0; i < pcrfds->len; i++) {
1330         struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1331         int ret = cur->waker(cur, rb, offset);
1332         if (ret) {
1333             return ret;
1334         }
1335     }
1336     return 0;
1337 }
1338 
1339 /*
1340  * Place a host page (from) at (host) atomically
1341  * returns 0 on success
1342  */
1343 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1344                         RAMBlock *rb)
1345 {
1346     size_t pagesize = qemu_ram_pagesize(rb);
1347 
1348     /* copy also acks to the kernel waking the stalled thread up
1349      * TODO: We can inhibit that ack and only do it if it was requested
1350      * which would be slightly cheaper, but we'd have to be careful
1351      * of the order of updating our page state.
1352      */
1353     if (qemu_ufd_copy_ioctl(mis, host, from, pagesize, rb)) {
1354         int e = errno;
1355         error_report("%s: %s copy host: %p from: %p (size: %zd)",
1356                      __func__, strerror(e), host, from, pagesize);
1357 
1358         return -e;
1359     }
1360 
1361     trace_postcopy_place_page(host);
1362     return postcopy_notify_shared_wake(rb,
1363                                        qemu_ram_block_host_offset(rb, host));
1364 }
1365 
1366 /*
1367  * Place a zero page at (host) atomically
1368  * returns 0 on success
1369  */
1370 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1371                              RAMBlock *rb)
1372 {
1373     size_t pagesize = qemu_ram_pagesize(rb);
1374     trace_postcopy_place_page_zero(host);
1375 
1376     /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE
1377      * but it's not available for everything (e.g. hugetlbpages)
1378      */
1379     if (qemu_ram_is_uf_zeroable(rb)) {
1380         if (qemu_ufd_copy_ioctl(mis, host, NULL, pagesize, rb)) {
1381             int e = errno;
1382             error_report("%s: %s zero host: %p",
1383                          __func__, strerror(e), host);
1384 
1385             return -e;
1386         }
1387         return postcopy_notify_shared_wake(rb,
1388                                            qemu_ram_block_host_offset(rb,
1389                                                                       host));
1390     } else {
1391         return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page, rb);
1392     }
1393 }
1394 
1395 #else
1396 /* No target OS support, stubs just fail */
1397 void fill_destination_postcopy_migration_info(MigrationInfo *info)
1398 {
1399 }
1400 
1401 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis, Error **errp)
1402 {
1403     error_report("%s: No OS support", __func__);
1404     return false;
1405 }
1406 
1407 int postcopy_ram_incoming_init(MigrationIncomingState *mis)
1408 {
1409     error_report("postcopy_ram_incoming_init: No OS support");
1410     return -1;
1411 }
1412 
1413 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
1414 {
1415     assert(0);
1416     return -1;
1417 }
1418 
1419 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
1420 {
1421     assert(0);
1422     return -1;
1423 }
1424 
1425 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
1426                                  uint64_t client_addr, uint64_t rb_offset)
1427 {
1428     assert(0);
1429     return -1;
1430 }
1431 
1432 int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
1433 {
1434     assert(0);
1435     return -1;
1436 }
1437 
1438 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1439                         RAMBlock *rb)
1440 {
1441     assert(0);
1442     return -1;
1443 }
1444 
1445 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1446                         RAMBlock *rb)
1447 {
1448     assert(0);
1449     return -1;
1450 }
1451 
1452 int postcopy_wake_shared(struct PostCopyFD *pcfd,
1453                          uint64_t client_addr,
1454                          RAMBlock *rb)
1455 {
1456     assert(0);
1457     return -1;
1458 }
1459 #endif
1460 
1461 /* ------------------------------------------------------------------------- */
1462 void postcopy_temp_page_reset(PostcopyTmpPage *tmp_page)
1463 {
1464     tmp_page->target_pages = 0;
1465     tmp_page->host_addr = NULL;
1466     /*
1467      * This is set to true when reset, and cleared as long as we received any
1468      * of the non-zero small page within this huge page.
1469      */
1470     tmp_page->all_zero = true;
1471 }
1472 
1473 void postcopy_fault_thread_notify(MigrationIncomingState *mis)
1474 {
1475     uint64_t tmp64 = 1;
1476 
1477     /*
1478      * Wakeup the fault_thread.  It's an eventfd that should currently
1479      * be at 0, we're going to increment it to 1
1480      */
1481     if (write(mis->userfault_event_fd, &tmp64, 8) != 8) {
1482         /* Not much we can do here, but may as well report it */
1483         error_report("%s: incrementing failed: %s", __func__,
1484                      strerror(errno));
1485     }
1486 }
1487 
1488 /**
1489  * postcopy_discard_send_init: Called at the start of each RAMBlock before
1490  *   asking to discard individual ranges.
1491  *
1492  * @ms: The current migration state.
1493  * @offset: the bitmap offset of the named RAMBlock in the migration bitmap.
1494  * @name: RAMBlock that discards will operate on.
1495  */
1496 static PostcopyDiscardState pds = {0};
1497 void postcopy_discard_send_init(MigrationState *ms, const char *name)
1498 {
1499     pds.ramblock_name = name;
1500     pds.cur_entry = 0;
1501     pds.nsentwords = 0;
1502     pds.nsentcmds = 0;
1503 }
1504 
1505 /**
1506  * postcopy_discard_send_range: Called by the bitmap code for each chunk to
1507  *   discard. May send a discard message, may just leave it queued to
1508  *   be sent later.
1509  *
1510  * @ms: Current migration state.
1511  * @start,@length: a range of pages in the migration bitmap in the
1512  *   RAM block passed to postcopy_discard_send_init() (length=1 is one page)
1513  */
1514 void postcopy_discard_send_range(MigrationState *ms, unsigned long start,
1515                                  unsigned long length)
1516 {
1517     size_t tp_size = qemu_target_page_size();
1518     /* Convert to byte offsets within the RAM block */
1519     pds.start_list[pds.cur_entry] = start  * tp_size;
1520     pds.length_list[pds.cur_entry] = length * tp_size;
1521     trace_postcopy_discard_send_range(pds.ramblock_name, start, length);
1522     pds.cur_entry++;
1523     pds.nsentwords++;
1524 
1525     if (pds.cur_entry == MAX_DISCARDS_PER_COMMAND) {
1526         /* Full set, ship it! */
1527         qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1528                                               pds.ramblock_name,
1529                                               pds.cur_entry,
1530                                               pds.start_list,
1531                                               pds.length_list);
1532         pds.nsentcmds++;
1533         pds.cur_entry = 0;
1534     }
1535 }
1536 
1537 /**
1538  * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
1539  * bitmap code. Sends any outstanding discard messages, frees the PDS
1540  *
1541  * @ms: Current migration state.
1542  */
1543 void postcopy_discard_send_finish(MigrationState *ms)
1544 {
1545     /* Anything unsent? */
1546     if (pds.cur_entry) {
1547         qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1548                                               pds.ramblock_name,
1549                                               pds.cur_entry,
1550                                               pds.start_list,
1551                                               pds.length_list);
1552         pds.nsentcmds++;
1553     }
1554 
1555     trace_postcopy_discard_send_finish(pds.ramblock_name, pds.nsentwords,
1556                                        pds.nsentcmds);
1557 }
1558 
1559 /*
1560  * Current state of incoming postcopy; note this is not part of
1561  * MigrationIncomingState since it's state is used during cleanup
1562  * at the end as MIS is being freed.
1563  */
1564 static PostcopyState incoming_postcopy_state;
1565 
1566 PostcopyState  postcopy_state_get(void)
1567 {
1568     return qatomic_load_acquire(&incoming_postcopy_state);
1569 }
1570 
1571 /* Set the state and return the old state */
1572 PostcopyState postcopy_state_set(PostcopyState new_state)
1573 {
1574     return qatomic_xchg(&incoming_postcopy_state, new_state);
1575 }
1576 
1577 /* Register a handler for external shared memory postcopy
1578  * called on the destination.
1579  */
1580 void postcopy_register_shared_ufd(struct PostCopyFD *pcfd)
1581 {
1582     MigrationIncomingState *mis = migration_incoming_get_current();
1583 
1584     mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds,
1585                                                   *pcfd);
1586 }
1587 
1588 /* Unregister a handler for external shared memory postcopy
1589  */
1590 void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd)
1591 {
1592     guint i;
1593     MigrationIncomingState *mis = migration_incoming_get_current();
1594     GArray *pcrfds = mis->postcopy_remote_fds;
1595 
1596     if (!pcrfds) {
1597         /* migration has already finished and freed the array */
1598         return;
1599     }
1600     for (i = 0; i < pcrfds->len; i++) {
1601         struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1602         if (cur->fd == pcfd->fd) {
1603             mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i);
1604             return;
1605         }
1606     }
1607 }
1608 
1609 void postcopy_preempt_new_channel(MigrationIncomingState *mis, QEMUFile *file)
1610 {
1611     /*
1612      * The new loading channel has its own threads, so it needs to be
1613      * blocked too.  It's by default true, just be explicit.
1614      */
1615     qemu_file_set_blocking(file, true);
1616     mis->postcopy_qemufile_dst = file;
1617     qemu_sem_post(&mis->postcopy_qemufile_dst_done);
1618     trace_postcopy_preempt_new_channel();
1619 }
1620 
1621 /*
1622  * Setup the postcopy preempt channel with the IOC.  If ERROR is specified,
1623  * setup the error instead.  This helper will free the ERROR if specified.
1624  */
1625 static void
1626 postcopy_preempt_send_channel_done(MigrationState *s,
1627                                    QIOChannel *ioc, Error *local_err)
1628 {
1629     if (local_err) {
1630         migrate_set_error(s, local_err);
1631         error_free(local_err);
1632     } else {
1633         migration_ioc_register_yank(ioc);
1634         s->postcopy_qemufile_src = qemu_file_new_output(ioc);
1635         trace_postcopy_preempt_new_channel();
1636     }
1637 
1638     /*
1639      * Kick the waiter in all cases.  The waiter should check upon
1640      * postcopy_qemufile_src to know whether it failed or not.
1641      */
1642     qemu_sem_post(&s->postcopy_qemufile_src_sem);
1643 }
1644 
1645 static void
1646 postcopy_preempt_tls_handshake(QIOTask *task, gpointer opaque)
1647 {
1648     g_autoptr(QIOChannel) ioc = QIO_CHANNEL(qio_task_get_source(task));
1649     MigrationState *s = opaque;
1650     Error *local_err = NULL;
1651 
1652     qio_task_propagate_error(task, &local_err);
1653     postcopy_preempt_send_channel_done(s, ioc, local_err);
1654 }
1655 
1656 static void
1657 postcopy_preempt_send_channel_new(QIOTask *task, gpointer opaque)
1658 {
1659     g_autoptr(QIOChannel) ioc = QIO_CHANNEL(qio_task_get_source(task));
1660     MigrationState *s = opaque;
1661     QIOChannelTLS *tioc;
1662     Error *local_err = NULL;
1663 
1664     if (qio_task_propagate_error(task, &local_err)) {
1665         goto out;
1666     }
1667 
1668     if (migrate_channel_requires_tls_upgrade(ioc)) {
1669         tioc = migration_tls_client_create(ioc, s->hostname, &local_err);
1670         if (!tioc) {
1671             goto out;
1672         }
1673         trace_postcopy_preempt_tls_handshake();
1674         qio_channel_set_name(QIO_CHANNEL(tioc), "migration-tls-preempt");
1675         qio_channel_tls_handshake(tioc, postcopy_preempt_tls_handshake,
1676                                   s, NULL, NULL);
1677         /* Setup the channel until TLS handshake finished */
1678         return;
1679     }
1680 
1681 out:
1682     /* This handles both good and error cases */
1683     postcopy_preempt_send_channel_done(s, ioc, local_err);
1684 }
1685 
1686 /*
1687  * This function will kick off an async task to establish the preempt
1688  * channel, and wait until the connection setup completed.  Returns 0 if
1689  * channel established, -1 for error.
1690  */
1691 int postcopy_preempt_establish_channel(MigrationState *s)
1692 {
1693     /* If preempt not enabled, no need to wait */
1694     if (!migrate_postcopy_preempt()) {
1695         return 0;
1696     }
1697 
1698     /*
1699      * Kick off async task to establish preempt channel.  Only do so with
1700      * 8.0+ machines, because 7.1/7.2 require the channel to be created in
1701      * setup phase of migration (even if racy in an unreliable network).
1702      */
1703     if (!s->preempt_pre_7_2) {
1704         postcopy_preempt_setup(s);
1705     }
1706 
1707     /*
1708      * We need the postcopy preempt channel to be established before
1709      * starting doing anything.
1710      */
1711     qemu_sem_wait(&s->postcopy_qemufile_src_sem);
1712 
1713     return s->postcopy_qemufile_src ? 0 : -1;
1714 }
1715 
1716 void postcopy_preempt_setup(MigrationState *s)
1717 {
1718     /* Kick an async task to connect */
1719     socket_send_channel_create(postcopy_preempt_send_channel_new, s);
1720 }
1721 
1722 static void postcopy_pause_ram_fast_load(MigrationIncomingState *mis)
1723 {
1724     trace_postcopy_pause_fast_load();
1725     qemu_mutex_unlock(&mis->postcopy_prio_thread_mutex);
1726     qemu_sem_wait(&mis->postcopy_pause_sem_fast_load);
1727     qemu_mutex_lock(&mis->postcopy_prio_thread_mutex);
1728     trace_postcopy_pause_fast_load_continued();
1729 }
1730 
1731 static bool preempt_thread_should_run(MigrationIncomingState *mis)
1732 {
1733     return mis->preempt_thread_status != PREEMPT_THREAD_QUIT;
1734 }
1735 
1736 void *postcopy_preempt_thread(void *opaque)
1737 {
1738     MigrationIncomingState *mis = opaque;
1739     int ret;
1740 
1741     trace_postcopy_preempt_thread_entry();
1742 
1743     rcu_register_thread();
1744 
1745     qemu_sem_post(&mis->thread_sync_sem);
1746 
1747     /*
1748      * The preempt channel is established in asynchronous way.  Wait
1749      * for its completion.
1750      */
1751     qemu_sem_wait(&mis->postcopy_qemufile_dst_done);
1752 
1753     /* Sending RAM_SAVE_FLAG_EOS to terminate this thread */
1754     qemu_mutex_lock(&mis->postcopy_prio_thread_mutex);
1755     while (preempt_thread_should_run(mis)) {
1756         ret = ram_load_postcopy(mis->postcopy_qemufile_dst,
1757                                 RAM_CHANNEL_POSTCOPY);
1758         /* If error happened, go into recovery routine */
1759         if (ret && preempt_thread_should_run(mis)) {
1760             postcopy_pause_ram_fast_load(mis);
1761         } else {
1762             /* We're done */
1763             break;
1764         }
1765     }
1766     qemu_mutex_unlock(&mis->postcopy_prio_thread_mutex);
1767 
1768     rcu_unregister_thread();
1769 
1770     trace_postcopy_preempt_thread_exit();
1771 
1772     return NULL;
1773 }
1774