1 /* 2 * Postcopy migration for RAM 3 * 4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Dave Gilbert <dgilbert@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14 /* 15 * Postcopy is a migration technique where the execution flips from the 16 * source to the destination before all the data has been copied. 17 */ 18 19 #include <glib.h> 20 #include <stdio.h> 21 #include <unistd.h> 22 23 #include "qemu-common.h" 24 #include "migration/migration.h" 25 #include "migration/postcopy-ram.h" 26 #include "sysemu/sysemu.h" 27 #include "sysemu/balloon.h" 28 #include "qemu/error-report.h" 29 #include "trace.h" 30 31 /* Arbitrary limit on size of each discard command, 32 * keeps them around ~200 bytes 33 */ 34 #define MAX_DISCARDS_PER_COMMAND 12 35 36 struct PostcopyDiscardState { 37 const char *ramblock_name; 38 uint64_t offset; /* Bitmap entry for the 1st bit of this RAMBlock */ 39 uint16_t cur_entry; 40 /* 41 * Start and length of a discard range (bytes) 42 */ 43 uint64_t start_list[MAX_DISCARDS_PER_COMMAND]; 44 uint64_t length_list[MAX_DISCARDS_PER_COMMAND]; 45 unsigned int nsentwords; 46 unsigned int nsentcmds; 47 }; 48 49 /* Postcopy needs to detect accesses to pages that haven't yet been copied 50 * across, and efficiently map new pages in, the techniques for doing this 51 * are target OS specific. 52 */ 53 #if defined(__linux__) 54 55 #include <poll.h> 56 #include <sys/eventfd.h> 57 #include <sys/mman.h> 58 #include <sys/ioctl.h> 59 #include <sys/syscall.h> 60 #include <sys/types.h> 61 #include <asm/types.h> /* for __u64 */ 62 #endif 63 64 #if defined(__linux__) && defined(__NR_userfaultfd) 65 #include <linux/userfaultfd.h> 66 67 static bool ufd_version_check(int ufd) 68 { 69 struct uffdio_api api_struct; 70 uint64_t ioctl_mask; 71 72 api_struct.api = UFFD_API; 73 api_struct.features = 0; 74 if (ioctl(ufd, UFFDIO_API, &api_struct)) { 75 error_report("postcopy_ram_supported_by_host: UFFDIO_API failed: %s", 76 strerror(errno)); 77 return false; 78 } 79 80 ioctl_mask = (__u64)1 << _UFFDIO_REGISTER | 81 (__u64)1 << _UFFDIO_UNREGISTER; 82 if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) { 83 error_report("Missing userfault features: %" PRIx64, 84 (uint64_t)(~api_struct.ioctls & ioctl_mask)); 85 return false; 86 } 87 88 return true; 89 } 90 91 /* 92 * Note: This has the side effect of munlock'ing all of RAM, that's 93 * normally fine since if the postcopy succeeds it gets turned back on at the 94 * end. 95 */ 96 bool postcopy_ram_supported_by_host(void) 97 { 98 long pagesize = getpagesize(); 99 int ufd = -1; 100 bool ret = false; /* Error unless we change it */ 101 void *testarea = NULL; 102 struct uffdio_register reg_struct; 103 struct uffdio_range range_struct; 104 uint64_t feature_mask; 105 106 if ((1ul << qemu_target_page_bits()) > pagesize) { 107 error_report("Target page size bigger than host page size"); 108 goto out; 109 } 110 111 ufd = syscall(__NR_userfaultfd, O_CLOEXEC); 112 if (ufd == -1) { 113 error_report("%s: userfaultfd not available: %s", __func__, 114 strerror(errno)); 115 goto out; 116 } 117 118 /* Version and features check */ 119 if (!ufd_version_check(ufd)) { 120 goto out; 121 } 122 123 /* 124 * userfault and mlock don't go together; we'll put it back later if 125 * it was enabled. 126 */ 127 if (munlockall()) { 128 error_report("%s: munlockall: %s", __func__, strerror(errno)); 129 return -1; 130 } 131 132 /* 133 * We need to check that the ops we need are supported on anon memory 134 * To do that we need to register a chunk and see the flags that 135 * are returned. 136 */ 137 testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE | 138 MAP_ANONYMOUS, -1, 0); 139 if (testarea == MAP_FAILED) { 140 error_report("%s: Failed to map test area: %s", __func__, 141 strerror(errno)); 142 goto out; 143 } 144 g_assert(((size_t)testarea & (pagesize-1)) == 0); 145 146 reg_struct.range.start = (uintptr_t)testarea; 147 reg_struct.range.len = pagesize; 148 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 149 150 if (ioctl(ufd, UFFDIO_REGISTER, ®_struct)) { 151 error_report("%s userfault register: %s", __func__, strerror(errno)); 152 goto out; 153 } 154 155 range_struct.start = (uintptr_t)testarea; 156 range_struct.len = pagesize; 157 if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) { 158 error_report("%s userfault unregister: %s", __func__, strerror(errno)); 159 goto out; 160 } 161 162 feature_mask = (__u64)1 << _UFFDIO_WAKE | 163 (__u64)1 << _UFFDIO_COPY | 164 (__u64)1 << _UFFDIO_ZEROPAGE; 165 if ((reg_struct.ioctls & feature_mask) != feature_mask) { 166 error_report("Missing userfault map features: %" PRIx64, 167 (uint64_t)(~reg_struct.ioctls & feature_mask)); 168 goto out; 169 } 170 171 /* Success! */ 172 ret = true; 173 out: 174 if (testarea) { 175 munmap(testarea, pagesize); 176 } 177 if (ufd != -1) { 178 close(ufd); 179 } 180 return ret; 181 } 182 183 /** 184 * postcopy_ram_discard_range: Discard a range of memory. 185 * We can assume that if we've been called postcopy_ram_hosttest returned true. 186 * 187 * @mis: Current incoming migration state. 188 * @start, @length: range of memory to discard. 189 * 190 * returns: 0 on success. 191 */ 192 int postcopy_ram_discard_range(MigrationIncomingState *mis, uint8_t *start, 193 size_t length) 194 { 195 trace_postcopy_ram_discard_range(start, length); 196 if (madvise(start, length, MADV_DONTNEED)) { 197 error_report("%s MADV_DONTNEED: %s", __func__, strerror(errno)); 198 return -1; 199 } 200 201 return 0; 202 } 203 204 /* 205 * Setup an area of RAM so that it *can* be used for postcopy later; this 206 * must be done right at the start prior to pre-copy. 207 * opaque should be the MIS. 208 */ 209 static int init_range(const char *block_name, void *host_addr, 210 ram_addr_t offset, ram_addr_t length, void *opaque) 211 { 212 MigrationIncomingState *mis = opaque; 213 214 trace_postcopy_init_range(block_name, host_addr, offset, length); 215 216 /* 217 * We need the whole of RAM to be truly empty for postcopy, so things 218 * like ROMs and any data tables built during init must be zero'd 219 * - we're going to get the copy from the source anyway. 220 * (Precopy will just overwrite this data, so doesn't need the discard) 221 */ 222 if (postcopy_ram_discard_range(mis, host_addr, length)) { 223 return -1; 224 } 225 226 return 0; 227 } 228 229 /* 230 * At the end of migration, undo the effects of init_range 231 * opaque should be the MIS. 232 */ 233 static int cleanup_range(const char *block_name, void *host_addr, 234 ram_addr_t offset, ram_addr_t length, void *opaque) 235 { 236 MigrationIncomingState *mis = opaque; 237 struct uffdio_range range_struct; 238 trace_postcopy_cleanup_range(block_name, host_addr, offset, length); 239 240 /* 241 * We turned off hugepage for the precopy stage with postcopy enabled 242 * we can turn it back on now. 243 */ 244 qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE); 245 246 /* 247 * We can also turn off userfault now since we should have all the 248 * pages. It can be useful to leave it on to debug postcopy 249 * if you're not sure it's always getting every page. 250 */ 251 range_struct.start = (uintptr_t)host_addr; 252 range_struct.len = length; 253 254 if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) { 255 error_report("%s: userfault unregister %s", __func__, strerror(errno)); 256 257 return -1; 258 } 259 260 return 0; 261 } 262 263 /* 264 * Initialise postcopy-ram, setting the RAM to a state where we can go into 265 * postcopy later; must be called prior to any precopy. 266 * called from arch_init's similarly named ram_postcopy_incoming_init 267 */ 268 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages) 269 { 270 if (qemu_ram_foreach_block(init_range, mis)) { 271 return -1; 272 } 273 274 return 0; 275 } 276 277 /* 278 * At the end of a migration where postcopy_ram_incoming_init was called. 279 */ 280 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 281 { 282 trace_postcopy_ram_incoming_cleanup_entry(); 283 284 if (mis->have_fault_thread) { 285 uint64_t tmp64; 286 287 if (qemu_ram_foreach_block(cleanup_range, mis)) { 288 return -1; 289 } 290 /* 291 * Tell the fault_thread to exit, it's an eventfd that should 292 * currently be at 0, we're going to increment it to 1 293 */ 294 tmp64 = 1; 295 if (write(mis->userfault_quit_fd, &tmp64, 8) == 8) { 296 trace_postcopy_ram_incoming_cleanup_join(); 297 qemu_thread_join(&mis->fault_thread); 298 } else { 299 /* Not much we can do here, but may as well report it */ 300 error_report("%s: incrementing userfault_quit_fd: %s", __func__, 301 strerror(errno)); 302 } 303 trace_postcopy_ram_incoming_cleanup_closeuf(); 304 close(mis->userfault_fd); 305 close(mis->userfault_quit_fd); 306 mis->have_fault_thread = false; 307 } 308 309 qemu_balloon_inhibit(false); 310 311 if (enable_mlock) { 312 if (os_mlock() < 0) { 313 error_report("mlock: %s", strerror(errno)); 314 /* 315 * It doesn't feel right to fail at this point, we have a valid 316 * VM state. 317 */ 318 } 319 } 320 321 postcopy_state_set(POSTCOPY_INCOMING_END); 322 migrate_send_rp_shut(mis, qemu_file_get_error(mis->from_src_file) != 0); 323 324 if (mis->postcopy_tmp_page) { 325 munmap(mis->postcopy_tmp_page, getpagesize()); 326 mis->postcopy_tmp_page = NULL; 327 } 328 trace_postcopy_ram_incoming_cleanup_exit(); 329 return 0; 330 } 331 332 /* 333 * Disable huge pages on an area 334 */ 335 static int nhp_range(const char *block_name, void *host_addr, 336 ram_addr_t offset, ram_addr_t length, void *opaque) 337 { 338 trace_postcopy_nhp_range(block_name, host_addr, offset, length); 339 340 /* 341 * Before we do discards we need to ensure those discards really 342 * do delete areas of the page, even if THP thinks a hugepage would 343 * be a good idea, so force hugepages off. 344 */ 345 qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE); 346 347 return 0; 348 } 349 350 /* 351 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard 352 * however leaving it until after precopy means that most of the precopy 353 * data is still THPd 354 */ 355 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 356 { 357 if (qemu_ram_foreach_block(nhp_range, mis)) { 358 return -1; 359 } 360 361 postcopy_state_set(POSTCOPY_INCOMING_DISCARD); 362 363 return 0; 364 } 365 366 /* 367 * Mark the given area of RAM as requiring notification to unwritten areas 368 * Used as a callback on qemu_ram_foreach_block. 369 * host_addr: Base of area to mark 370 * offset: Offset in the whole ram arena 371 * length: Length of the section 372 * opaque: MigrationIncomingState pointer 373 * Returns 0 on success 374 */ 375 static int ram_block_enable_notify(const char *block_name, void *host_addr, 376 ram_addr_t offset, ram_addr_t length, 377 void *opaque) 378 { 379 MigrationIncomingState *mis = opaque; 380 struct uffdio_register reg_struct; 381 382 reg_struct.range.start = (uintptr_t)host_addr; 383 reg_struct.range.len = length; 384 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 385 386 /* Now tell our userfault_fd that it's responsible for this area */ 387 if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, ®_struct)) { 388 error_report("%s userfault register: %s", __func__, strerror(errno)); 389 return -1; 390 } 391 392 return 0; 393 } 394 395 /* 396 * Handle faults detected by the USERFAULT markings 397 */ 398 static void *postcopy_ram_fault_thread(void *opaque) 399 { 400 MigrationIncomingState *mis = opaque; 401 struct uffd_msg msg; 402 int ret; 403 size_t hostpagesize = getpagesize(); 404 RAMBlock *rb = NULL; 405 RAMBlock *last_rb = NULL; /* last RAMBlock we sent part of */ 406 407 trace_postcopy_ram_fault_thread_entry(); 408 qemu_sem_post(&mis->fault_thread_sem); 409 410 while (true) { 411 ram_addr_t rb_offset; 412 ram_addr_t in_raspace; 413 struct pollfd pfd[2]; 414 415 /* 416 * We're mainly waiting for the kernel to give us a faulting HVA, 417 * however we can be told to quit via userfault_quit_fd which is 418 * an eventfd 419 */ 420 pfd[0].fd = mis->userfault_fd; 421 pfd[0].events = POLLIN; 422 pfd[0].revents = 0; 423 pfd[1].fd = mis->userfault_quit_fd; 424 pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */ 425 pfd[1].revents = 0; 426 427 if (poll(pfd, 2, -1 /* Wait forever */) == -1) { 428 error_report("%s: userfault poll: %s", __func__, strerror(errno)); 429 break; 430 } 431 432 if (pfd[1].revents) { 433 trace_postcopy_ram_fault_thread_quit(); 434 break; 435 } 436 437 ret = read(mis->userfault_fd, &msg, sizeof(msg)); 438 if (ret != sizeof(msg)) { 439 if (errno == EAGAIN) { 440 /* 441 * if a wake up happens on the other thread just after 442 * the poll, there is nothing to read. 443 */ 444 continue; 445 } 446 if (ret < 0) { 447 error_report("%s: Failed to read full userfault message: %s", 448 __func__, strerror(errno)); 449 break; 450 } else { 451 error_report("%s: Read %d bytes from userfaultfd expected %zd", 452 __func__, ret, sizeof(msg)); 453 break; /* Lost alignment, don't know what we'd read next */ 454 } 455 } 456 if (msg.event != UFFD_EVENT_PAGEFAULT) { 457 error_report("%s: Read unexpected event %ud from userfaultfd", 458 __func__, msg.event); 459 continue; /* It's not a page fault, shouldn't happen */ 460 } 461 462 rb = qemu_ram_block_from_host( 463 (void *)(uintptr_t)msg.arg.pagefault.address, 464 true, &in_raspace, &rb_offset); 465 if (!rb) { 466 error_report("postcopy_ram_fault_thread: Fault outside guest: %" 467 PRIx64, (uint64_t)msg.arg.pagefault.address); 468 break; 469 } 470 471 rb_offset &= ~(hostpagesize - 1); 472 trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address, 473 qemu_ram_get_idstr(rb), 474 rb_offset); 475 476 /* 477 * Send the request to the source - we want to request one 478 * of our host page sizes (which is >= TPS) 479 */ 480 if (rb != last_rb) { 481 last_rb = rb; 482 migrate_send_rp_req_pages(mis, qemu_ram_get_idstr(rb), 483 rb_offset, hostpagesize); 484 } else { 485 /* Save some space */ 486 migrate_send_rp_req_pages(mis, NULL, 487 rb_offset, hostpagesize); 488 } 489 } 490 trace_postcopy_ram_fault_thread_exit(); 491 return NULL; 492 } 493 494 int postcopy_ram_enable_notify(MigrationIncomingState *mis) 495 { 496 /* Open the fd for the kernel to give us userfaults */ 497 mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK); 498 if (mis->userfault_fd == -1) { 499 error_report("%s: Failed to open userfault fd: %s", __func__, 500 strerror(errno)); 501 return -1; 502 } 503 504 /* 505 * Although the host check already tested the API, we need to 506 * do the check again as an ABI handshake on the new fd. 507 */ 508 if (!ufd_version_check(mis->userfault_fd)) { 509 return -1; 510 } 511 512 /* Now an eventfd we use to tell the fault-thread to quit */ 513 mis->userfault_quit_fd = eventfd(0, EFD_CLOEXEC); 514 if (mis->userfault_quit_fd == -1) { 515 error_report("%s: Opening userfault_quit_fd: %s", __func__, 516 strerror(errno)); 517 close(mis->userfault_fd); 518 return -1; 519 } 520 521 qemu_sem_init(&mis->fault_thread_sem, 0); 522 qemu_thread_create(&mis->fault_thread, "postcopy/fault", 523 postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE); 524 qemu_sem_wait(&mis->fault_thread_sem); 525 qemu_sem_destroy(&mis->fault_thread_sem); 526 mis->have_fault_thread = true; 527 528 /* Mark so that we get notified of accesses to unwritten areas */ 529 if (qemu_ram_foreach_block(ram_block_enable_notify, mis)) { 530 return -1; 531 } 532 533 /* 534 * Ballooning can mark pages as absent while we're postcopying 535 * that would cause false userfaults. 536 */ 537 qemu_balloon_inhibit(true); 538 539 trace_postcopy_ram_enable_notify(); 540 541 return 0; 542 } 543 544 /* 545 * Place a host page (from) at (host) atomically 546 * returns 0 on success 547 */ 548 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from) 549 { 550 struct uffdio_copy copy_struct; 551 552 copy_struct.dst = (uint64_t)(uintptr_t)host; 553 copy_struct.src = (uint64_t)(uintptr_t)from; 554 copy_struct.len = getpagesize(); 555 copy_struct.mode = 0; 556 557 /* copy also acks to the kernel waking the stalled thread up 558 * TODO: We can inhibit that ack and only do it if it was requested 559 * which would be slightly cheaper, but we'd have to be careful 560 * of the order of updating our page state. 561 */ 562 if (ioctl(mis->userfault_fd, UFFDIO_COPY, ©_struct)) { 563 int e = errno; 564 error_report("%s: %s copy host: %p from: %p", 565 __func__, strerror(e), host, from); 566 567 return -e; 568 } 569 570 trace_postcopy_place_page(host); 571 return 0; 572 } 573 574 /* 575 * Place a zero page at (host) atomically 576 * returns 0 on success 577 */ 578 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host) 579 { 580 struct uffdio_zeropage zero_struct; 581 582 zero_struct.range.start = (uint64_t)(uintptr_t)host; 583 zero_struct.range.len = getpagesize(); 584 zero_struct.mode = 0; 585 586 if (ioctl(mis->userfault_fd, UFFDIO_ZEROPAGE, &zero_struct)) { 587 int e = errno; 588 error_report("%s: %s zero host: %p", 589 __func__, strerror(e), host); 590 591 return -e; 592 } 593 594 trace_postcopy_place_page_zero(host); 595 return 0; 596 } 597 598 /* 599 * Returns a target page of memory that can be mapped at a later point in time 600 * using postcopy_place_page 601 * The same address is used repeatedly, postcopy_place_page just takes the 602 * backing page away. 603 * Returns: Pointer to allocated page 604 * 605 */ 606 void *postcopy_get_tmp_page(MigrationIncomingState *mis) 607 { 608 if (!mis->postcopy_tmp_page) { 609 mis->postcopy_tmp_page = mmap(NULL, getpagesize(), 610 PROT_READ | PROT_WRITE, MAP_PRIVATE | 611 MAP_ANONYMOUS, -1, 0); 612 if (!mis->postcopy_tmp_page) { 613 error_report("%s: %s", __func__, strerror(errno)); 614 return NULL; 615 } 616 } 617 618 return mis->postcopy_tmp_page; 619 } 620 621 #else 622 /* No target OS support, stubs just fail */ 623 bool postcopy_ram_supported_by_host(void) 624 { 625 error_report("%s: No OS support", __func__); 626 return false; 627 } 628 629 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages) 630 { 631 error_report("postcopy_ram_incoming_init: No OS support"); 632 return -1; 633 } 634 635 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 636 { 637 assert(0); 638 return -1; 639 } 640 641 int postcopy_ram_discard_range(MigrationIncomingState *mis, uint8_t *start, 642 size_t length) 643 { 644 assert(0); 645 return -1; 646 } 647 648 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 649 { 650 assert(0); 651 return -1; 652 } 653 654 int postcopy_ram_enable_notify(MigrationIncomingState *mis) 655 { 656 assert(0); 657 return -1; 658 } 659 660 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from) 661 { 662 assert(0); 663 return -1; 664 } 665 666 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host) 667 { 668 assert(0); 669 return -1; 670 } 671 672 void *postcopy_get_tmp_page(MigrationIncomingState *mis) 673 { 674 assert(0); 675 return NULL; 676 } 677 678 #endif 679 680 /* ------------------------------------------------------------------------- */ 681 682 /** 683 * postcopy_discard_send_init: Called at the start of each RAMBlock before 684 * asking to discard individual ranges. 685 * 686 * @ms: The current migration state. 687 * @offset: the bitmap offset of the named RAMBlock in the migration 688 * bitmap. 689 * @name: RAMBlock that discards will operate on. 690 * 691 * returns: a new PDS. 692 */ 693 PostcopyDiscardState *postcopy_discard_send_init(MigrationState *ms, 694 unsigned long offset, 695 const char *name) 696 { 697 PostcopyDiscardState *res = g_malloc0(sizeof(PostcopyDiscardState)); 698 699 if (res) { 700 res->ramblock_name = name; 701 res->offset = offset; 702 } 703 704 return res; 705 } 706 707 /** 708 * postcopy_discard_send_range: Called by the bitmap code for each chunk to 709 * discard. May send a discard message, may just leave it queued to 710 * be sent later. 711 * 712 * @ms: Current migration state. 713 * @pds: Structure initialised by postcopy_discard_send_init(). 714 * @start,@length: a range of pages in the migration bitmap in the 715 * RAM block passed to postcopy_discard_send_init() (length=1 is one page) 716 */ 717 void postcopy_discard_send_range(MigrationState *ms, PostcopyDiscardState *pds, 718 unsigned long start, unsigned long length) 719 { 720 size_t tp_bits = qemu_target_page_bits(); 721 /* Convert to byte offsets within the RAM block */ 722 pds->start_list[pds->cur_entry] = (start - pds->offset) << tp_bits; 723 pds->length_list[pds->cur_entry] = length << tp_bits; 724 trace_postcopy_discard_send_range(pds->ramblock_name, start, length); 725 pds->cur_entry++; 726 pds->nsentwords++; 727 728 if (pds->cur_entry == MAX_DISCARDS_PER_COMMAND) { 729 /* Full set, ship it! */ 730 qemu_savevm_send_postcopy_ram_discard(ms->file, pds->ramblock_name, 731 pds->cur_entry, 732 pds->start_list, 733 pds->length_list); 734 pds->nsentcmds++; 735 pds->cur_entry = 0; 736 } 737 } 738 739 /** 740 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the 741 * bitmap code. Sends any outstanding discard messages, frees the PDS 742 * 743 * @ms: Current migration state. 744 * @pds: Structure initialised by postcopy_discard_send_init(). 745 */ 746 void postcopy_discard_send_finish(MigrationState *ms, PostcopyDiscardState *pds) 747 { 748 /* Anything unsent? */ 749 if (pds->cur_entry) { 750 qemu_savevm_send_postcopy_ram_discard(ms->file, pds->ramblock_name, 751 pds->cur_entry, 752 pds->start_list, 753 pds->length_list); 754 pds->nsentcmds++; 755 } 756 757 trace_postcopy_discard_send_finish(pds->ramblock_name, pds->nsentwords, 758 pds->nsentcmds); 759 760 g_free(pds); 761 } 762