1 /* 2 * Postcopy migration for RAM 3 * 4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Dave Gilbert <dgilbert@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14 /* 15 * Postcopy is a migration technique where the execution flips from the 16 * source to the destination before all the data has been copied. 17 */ 18 19 #include "qemu/osdep.h" 20 #include "exec/target_page.h" 21 #include "migration.h" 22 #include "qemu-file.h" 23 #include "savevm.h" 24 #include "postcopy-ram.h" 25 #include "ram.h" 26 #include "qapi/error.h" 27 #include "qemu/notify.h" 28 #include "sysemu/sysemu.h" 29 #include "sysemu/balloon.h" 30 #include "qemu/error-report.h" 31 #include "trace.h" 32 33 /* Arbitrary limit on size of each discard command, 34 * keeps them around ~200 bytes 35 */ 36 #define MAX_DISCARDS_PER_COMMAND 12 37 38 struct PostcopyDiscardState { 39 const char *ramblock_name; 40 uint16_t cur_entry; 41 /* 42 * Start and length of a discard range (bytes) 43 */ 44 uint64_t start_list[MAX_DISCARDS_PER_COMMAND]; 45 uint64_t length_list[MAX_DISCARDS_PER_COMMAND]; 46 unsigned int nsentwords; 47 unsigned int nsentcmds; 48 }; 49 50 static NotifierWithReturnList postcopy_notifier_list; 51 52 void postcopy_infrastructure_init(void) 53 { 54 notifier_with_return_list_init(&postcopy_notifier_list); 55 } 56 57 void postcopy_add_notifier(NotifierWithReturn *nn) 58 { 59 notifier_with_return_list_add(&postcopy_notifier_list, nn); 60 } 61 62 void postcopy_remove_notifier(NotifierWithReturn *n) 63 { 64 notifier_with_return_remove(n); 65 } 66 67 int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp) 68 { 69 struct PostcopyNotifyData pnd; 70 pnd.reason = reason; 71 pnd.errp = errp; 72 73 return notifier_with_return_list_notify(&postcopy_notifier_list, 74 &pnd); 75 } 76 77 /* Postcopy needs to detect accesses to pages that haven't yet been copied 78 * across, and efficiently map new pages in, the techniques for doing this 79 * are target OS specific. 80 */ 81 #if defined(__linux__) 82 83 #include <poll.h> 84 #include <sys/ioctl.h> 85 #include <sys/syscall.h> 86 #include <asm/types.h> /* for __u64 */ 87 #endif 88 89 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD) 90 #include <sys/eventfd.h> 91 #include <linux/userfaultfd.h> 92 93 94 /** 95 * receive_ufd_features: check userfault fd features, to request only supported 96 * features in the future. 97 * 98 * Returns: true on success 99 * 100 * __NR_userfaultfd - should be checked before 101 * @features: out parameter will contain uffdio_api.features provided by kernel 102 * in case of success 103 */ 104 static bool receive_ufd_features(uint64_t *features) 105 { 106 struct uffdio_api api_struct = {0}; 107 int ufd; 108 bool ret = true; 109 110 /* if we are here __NR_userfaultfd should exists */ 111 ufd = syscall(__NR_userfaultfd, O_CLOEXEC); 112 if (ufd == -1) { 113 error_report("%s: syscall __NR_userfaultfd failed: %s", __func__, 114 strerror(errno)); 115 return false; 116 } 117 118 /* ask features */ 119 api_struct.api = UFFD_API; 120 api_struct.features = 0; 121 if (ioctl(ufd, UFFDIO_API, &api_struct)) { 122 error_report("%s: UFFDIO_API failed: %s", __func__, 123 strerror(errno)); 124 ret = false; 125 goto release_ufd; 126 } 127 128 *features = api_struct.features; 129 130 release_ufd: 131 close(ufd); 132 return ret; 133 } 134 135 /** 136 * request_ufd_features: this function should be called only once on a newly 137 * opened ufd, subsequent calls will lead to error. 138 * 139 * Returns: true on succes 140 * 141 * @ufd: fd obtained from userfaultfd syscall 142 * @features: bit mask see UFFD_API_FEATURES 143 */ 144 static bool request_ufd_features(int ufd, uint64_t features) 145 { 146 struct uffdio_api api_struct = {0}; 147 uint64_t ioctl_mask; 148 149 api_struct.api = UFFD_API; 150 api_struct.features = features; 151 if (ioctl(ufd, UFFDIO_API, &api_struct)) { 152 error_report("%s failed: UFFDIO_API failed: %s", __func__, 153 strerror(errno)); 154 return false; 155 } 156 157 ioctl_mask = (__u64)1 << _UFFDIO_REGISTER | 158 (__u64)1 << _UFFDIO_UNREGISTER; 159 if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) { 160 error_report("Missing userfault features: %" PRIx64, 161 (uint64_t)(~api_struct.ioctls & ioctl_mask)); 162 return false; 163 } 164 165 return true; 166 } 167 168 static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis) 169 { 170 uint64_t asked_features = 0; 171 static uint64_t supported_features; 172 173 /* 174 * it's not possible to 175 * request UFFD_API twice per one fd 176 * userfault fd features is persistent 177 */ 178 if (!supported_features) { 179 if (!receive_ufd_features(&supported_features)) { 180 error_report("%s failed", __func__); 181 return false; 182 } 183 } 184 185 /* 186 * request features, even if asked_features is 0, due to 187 * kernel expects UFFD_API before UFFDIO_REGISTER, per 188 * userfault file descriptor 189 */ 190 if (!request_ufd_features(ufd, asked_features)) { 191 error_report("%s failed: features %" PRIu64, __func__, 192 asked_features); 193 return false; 194 } 195 196 if (getpagesize() != ram_pagesize_summary()) { 197 bool have_hp = false; 198 /* We've got a huge page */ 199 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS 200 have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS; 201 #endif 202 if (!have_hp) { 203 error_report("Userfault on this host does not support huge pages"); 204 return false; 205 } 206 } 207 return true; 208 } 209 210 /* Callback from postcopy_ram_supported_by_host block iterator. 211 */ 212 static int test_ramblock_postcopiable(const char *block_name, void *host_addr, 213 ram_addr_t offset, ram_addr_t length, void *opaque) 214 { 215 RAMBlock *rb = qemu_ram_block_by_name(block_name); 216 size_t pagesize = qemu_ram_pagesize(rb); 217 218 if (length % pagesize) { 219 error_report("Postcopy requires RAM blocks to be a page size multiple," 220 " block %s is 0x" RAM_ADDR_FMT " bytes with a " 221 "page size of 0x%zx", block_name, length, pagesize); 222 return 1; 223 } 224 return 0; 225 } 226 227 /* 228 * Note: This has the side effect of munlock'ing all of RAM, that's 229 * normally fine since if the postcopy succeeds it gets turned back on at the 230 * end. 231 */ 232 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis) 233 { 234 long pagesize = getpagesize(); 235 int ufd = -1; 236 bool ret = false; /* Error unless we change it */ 237 void *testarea = NULL; 238 struct uffdio_register reg_struct; 239 struct uffdio_range range_struct; 240 uint64_t feature_mask; 241 Error *local_err = NULL; 242 243 if (qemu_target_page_size() > pagesize) { 244 error_report("Target page size bigger than host page size"); 245 goto out; 246 } 247 248 ufd = syscall(__NR_userfaultfd, O_CLOEXEC); 249 if (ufd == -1) { 250 error_report("%s: userfaultfd not available: %s", __func__, 251 strerror(errno)); 252 goto out; 253 } 254 255 /* Give devices a chance to object */ 256 if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, &local_err)) { 257 error_report_err(local_err); 258 goto out; 259 } 260 261 /* Version and features check */ 262 if (!ufd_check_and_apply(ufd, mis)) { 263 goto out; 264 } 265 266 /* We don't support postcopy with shared RAM yet */ 267 if (qemu_ram_foreach_block(test_ramblock_postcopiable, NULL)) { 268 goto out; 269 } 270 271 /* 272 * userfault and mlock don't go together; we'll put it back later if 273 * it was enabled. 274 */ 275 if (munlockall()) { 276 error_report("%s: munlockall: %s", __func__, strerror(errno)); 277 return -1; 278 } 279 280 /* 281 * We need to check that the ops we need are supported on anon memory 282 * To do that we need to register a chunk and see the flags that 283 * are returned. 284 */ 285 testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE | 286 MAP_ANONYMOUS, -1, 0); 287 if (testarea == MAP_FAILED) { 288 error_report("%s: Failed to map test area: %s", __func__, 289 strerror(errno)); 290 goto out; 291 } 292 g_assert(((size_t)testarea & (pagesize-1)) == 0); 293 294 reg_struct.range.start = (uintptr_t)testarea; 295 reg_struct.range.len = pagesize; 296 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 297 298 if (ioctl(ufd, UFFDIO_REGISTER, ®_struct)) { 299 error_report("%s userfault register: %s", __func__, strerror(errno)); 300 goto out; 301 } 302 303 range_struct.start = (uintptr_t)testarea; 304 range_struct.len = pagesize; 305 if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) { 306 error_report("%s userfault unregister: %s", __func__, strerror(errno)); 307 goto out; 308 } 309 310 feature_mask = (__u64)1 << _UFFDIO_WAKE | 311 (__u64)1 << _UFFDIO_COPY | 312 (__u64)1 << _UFFDIO_ZEROPAGE; 313 if ((reg_struct.ioctls & feature_mask) != feature_mask) { 314 error_report("Missing userfault map features: %" PRIx64, 315 (uint64_t)(~reg_struct.ioctls & feature_mask)); 316 goto out; 317 } 318 319 /* Success! */ 320 ret = true; 321 out: 322 if (testarea) { 323 munmap(testarea, pagesize); 324 } 325 if (ufd != -1) { 326 close(ufd); 327 } 328 return ret; 329 } 330 331 /* 332 * Setup an area of RAM so that it *can* be used for postcopy later; this 333 * must be done right at the start prior to pre-copy. 334 * opaque should be the MIS. 335 */ 336 static int init_range(const char *block_name, void *host_addr, 337 ram_addr_t offset, ram_addr_t length, void *opaque) 338 { 339 trace_postcopy_init_range(block_name, host_addr, offset, length); 340 341 /* 342 * We need the whole of RAM to be truly empty for postcopy, so things 343 * like ROMs and any data tables built during init must be zero'd 344 * - we're going to get the copy from the source anyway. 345 * (Precopy will just overwrite this data, so doesn't need the discard) 346 */ 347 if (ram_discard_range(block_name, 0, length)) { 348 return -1; 349 } 350 351 return 0; 352 } 353 354 /* 355 * At the end of migration, undo the effects of init_range 356 * opaque should be the MIS. 357 */ 358 static int cleanup_range(const char *block_name, void *host_addr, 359 ram_addr_t offset, ram_addr_t length, void *opaque) 360 { 361 MigrationIncomingState *mis = opaque; 362 struct uffdio_range range_struct; 363 trace_postcopy_cleanup_range(block_name, host_addr, offset, length); 364 365 /* 366 * We turned off hugepage for the precopy stage with postcopy enabled 367 * we can turn it back on now. 368 */ 369 qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE); 370 371 /* 372 * We can also turn off userfault now since we should have all the 373 * pages. It can be useful to leave it on to debug postcopy 374 * if you're not sure it's always getting every page. 375 */ 376 range_struct.start = (uintptr_t)host_addr; 377 range_struct.len = length; 378 379 if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) { 380 error_report("%s: userfault unregister %s", __func__, strerror(errno)); 381 382 return -1; 383 } 384 385 return 0; 386 } 387 388 /* 389 * Initialise postcopy-ram, setting the RAM to a state where we can go into 390 * postcopy later; must be called prior to any precopy. 391 * called from arch_init's similarly named ram_postcopy_incoming_init 392 */ 393 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages) 394 { 395 if (qemu_ram_foreach_block(init_range, NULL)) { 396 return -1; 397 } 398 399 return 0; 400 } 401 402 /* 403 * At the end of a migration where postcopy_ram_incoming_init was called. 404 */ 405 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 406 { 407 trace_postcopy_ram_incoming_cleanup_entry(); 408 409 if (mis->have_fault_thread) { 410 Error *local_err = NULL; 411 412 if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) { 413 error_report_err(local_err); 414 return -1; 415 } 416 417 if (qemu_ram_foreach_block(cleanup_range, mis)) { 418 return -1; 419 } 420 /* Let the fault thread quit */ 421 atomic_set(&mis->fault_thread_quit, 1); 422 postcopy_fault_thread_notify(mis); 423 trace_postcopy_ram_incoming_cleanup_join(); 424 qemu_thread_join(&mis->fault_thread); 425 426 trace_postcopy_ram_incoming_cleanup_closeuf(); 427 close(mis->userfault_fd); 428 close(mis->userfault_event_fd); 429 mis->have_fault_thread = false; 430 } 431 432 qemu_balloon_inhibit(false); 433 434 if (enable_mlock) { 435 if (os_mlock() < 0) { 436 error_report("mlock: %s", strerror(errno)); 437 /* 438 * It doesn't feel right to fail at this point, we have a valid 439 * VM state. 440 */ 441 } 442 } 443 444 postcopy_state_set(POSTCOPY_INCOMING_END); 445 446 if (mis->postcopy_tmp_page) { 447 munmap(mis->postcopy_tmp_page, mis->largest_page_size); 448 mis->postcopy_tmp_page = NULL; 449 } 450 if (mis->postcopy_tmp_zero_page) { 451 munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size); 452 mis->postcopy_tmp_zero_page = NULL; 453 } 454 trace_postcopy_ram_incoming_cleanup_exit(); 455 return 0; 456 } 457 458 /* 459 * Disable huge pages on an area 460 */ 461 static int nhp_range(const char *block_name, void *host_addr, 462 ram_addr_t offset, ram_addr_t length, void *opaque) 463 { 464 trace_postcopy_nhp_range(block_name, host_addr, offset, length); 465 466 /* 467 * Before we do discards we need to ensure those discards really 468 * do delete areas of the page, even if THP thinks a hugepage would 469 * be a good idea, so force hugepages off. 470 */ 471 qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE); 472 473 return 0; 474 } 475 476 /* 477 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard 478 * however leaving it until after precopy means that most of the precopy 479 * data is still THPd 480 */ 481 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 482 { 483 if (qemu_ram_foreach_block(nhp_range, mis)) { 484 return -1; 485 } 486 487 postcopy_state_set(POSTCOPY_INCOMING_DISCARD); 488 489 return 0; 490 } 491 492 /* 493 * Mark the given area of RAM as requiring notification to unwritten areas 494 * Used as a callback on qemu_ram_foreach_block. 495 * host_addr: Base of area to mark 496 * offset: Offset in the whole ram arena 497 * length: Length of the section 498 * opaque: MigrationIncomingState pointer 499 * Returns 0 on success 500 */ 501 static int ram_block_enable_notify(const char *block_name, void *host_addr, 502 ram_addr_t offset, ram_addr_t length, 503 void *opaque) 504 { 505 MigrationIncomingState *mis = opaque; 506 struct uffdio_register reg_struct; 507 508 reg_struct.range.start = (uintptr_t)host_addr; 509 reg_struct.range.len = length; 510 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 511 512 /* Now tell our userfault_fd that it's responsible for this area */ 513 if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, ®_struct)) { 514 error_report("%s userfault register: %s", __func__, strerror(errno)); 515 return -1; 516 } 517 if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) { 518 error_report("%s userfault: Region doesn't support COPY", __func__); 519 return -1; 520 } 521 if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) { 522 RAMBlock *rb = qemu_ram_block_by_name(block_name); 523 qemu_ram_set_uf_zeroable(rb); 524 } 525 526 return 0; 527 } 528 529 int postcopy_wake_shared(struct PostCopyFD *pcfd, 530 uint64_t client_addr, 531 RAMBlock *rb) 532 { 533 size_t pagesize = qemu_ram_pagesize(rb); 534 struct uffdio_range range; 535 int ret; 536 trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb)); 537 range.start = client_addr & ~(pagesize - 1); 538 range.len = pagesize; 539 ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range); 540 if (ret) { 541 error_report("%s: Failed to wake: %zx in %s (%s)", 542 __func__, (size_t)client_addr, qemu_ram_get_idstr(rb), 543 strerror(errno)); 544 } 545 return ret; 546 } 547 548 /* 549 * Callback from shared fault handlers to ask for a page, 550 * the page must be specified by a RAMBlock and an offset in that rb 551 * Note: Only for use by shared fault handlers (in fault thread) 552 */ 553 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb, 554 uint64_t client_addr, uint64_t rb_offset) 555 { 556 size_t pagesize = qemu_ram_pagesize(rb); 557 uint64_t aligned_rbo = rb_offset & ~(pagesize - 1); 558 MigrationIncomingState *mis = migration_incoming_get_current(); 559 560 trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb), 561 rb_offset); 562 if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) { 563 trace_postcopy_request_shared_page_present(pcfd->idstr, 564 qemu_ram_get_idstr(rb), rb_offset); 565 return postcopy_wake_shared(pcfd, client_addr, rb); 566 } 567 if (rb != mis->last_rb) { 568 mis->last_rb = rb; 569 migrate_send_rp_req_pages(mis, qemu_ram_get_idstr(rb), 570 aligned_rbo, pagesize); 571 } else { 572 /* Save some space */ 573 migrate_send_rp_req_pages(mis, NULL, aligned_rbo, pagesize); 574 } 575 return 0; 576 } 577 578 /* 579 * Handle faults detected by the USERFAULT markings 580 */ 581 static void *postcopy_ram_fault_thread(void *opaque) 582 { 583 MigrationIncomingState *mis = opaque; 584 struct uffd_msg msg; 585 int ret; 586 size_t index; 587 RAMBlock *rb = NULL; 588 589 trace_postcopy_ram_fault_thread_entry(); 590 mis->last_rb = NULL; /* last RAMBlock we sent part of */ 591 qemu_sem_post(&mis->fault_thread_sem); 592 593 struct pollfd *pfd; 594 size_t pfd_len = 2 + mis->postcopy_remote_fds->len; 595 596 pfd = g_new0(struct pollfd, pfd_len); 597 598 pfd[0].fd = mis->userfault_fd; 599 pfd[0].events = POLLIN; 600 pfd[1].fd = mis->userfault_event_fd; 601 pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */ 602 trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd); 603 for (index = 0; index < mis->postcopy_remote_fds->len; index++) { 604 struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds, 605 struct PostCopyFD, index); 606 pfd[2 + index].fd = pcfd->fd; 607 pfd[2 + index].events = POLLIN; 608 trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr, 609 pcfd->fd); 610 } 611 612 while (true) { 613 ram_addr_t rb_offset; 614 int poll_result; 615 616 /* 617 * We're mainly waiting for the kernel to give us a faulting HVA, 618 * however we can be told to quit via userfault_quit_fd which is 619 * an eventfd 620 */ 621 622 poll_result = poll(pfd, pfd_len, -1 /* Wait forever */); 623 if (poll_result == -1) { 624 error_report("%s: userfault poll: %s", __func__, strerror(errno)); 625 break; 626 } 627 628 if (pfd[1].revents) { 629 uint64_t tmp64 = 0; 630 631 /* Consume the signal */ 632 if (read(mis->userfault_event_fd, &tmp64, 8) != 8) { 633 /* Nothing obviously nicer than posting this error. */ 634 error_report("%s: read() failed", __func__); 635 } 636 637 if (atomic_read(&mis->fault_thread_quit)) { 638 trace_postcopy_ram_fault_thread_quit(); 639 break; 640 } 641 } 642 643 if (pfd[0].revents) { 644 poll_result--; 645 ret = read(mis->userfault_fd, &msg, sizeof(msg)); 646 if (ret != sizeof(msg)) { 647 if (errno == EAGAIN) { 648 /* 649 * if a wake up happens on the other thread just after 650 * the poll, there is nothing to read. 651 */ 652 continue; 653 } 654 if (ret < 0) { 655 error_report("%s: Failed to read full userfault " 656 "message: %s", 657 __func__, strerror(errno)); 658 break; 659 } else { 660 error_report("%s: Read %d bytes from userfaultfd " 661 "expected %zd", 662 __func__, ret, sizeof(msg)); 663 break; /* Lost alignment, don't know what we'd read next */ 664 } 665 } 666 if (msg.event != UFFD_EVENT_PAGEFAULT) { 667 error_report("%s: Read unexpected event %ud from userfaultfd", 668 __func__, msg.event); 669 continue; /* It's not a page fault, shouldn't happen */ 670 } 671 672 rb = qemu_ram_block_from_host( 673 (void *)(uintptr_t)msg.arg.pagefault.address, 674 true, &rb_offset); 675 if (!rb) { 676 error_report("postcopy_ram_fault_thread: Fault outside guest: %" 677 PRIx64, (uint64_t)msg.arg.pagefault.address); 678 break; 679 } 680 681 rb_offset &= ~(qemu_ram_pagesize(rb) - 1); 682 trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address, 683 qemu_ram_get_idstr(rb), 684 rb_offset); 685 /* 686 * Send the request to the source - we want to request one 687 * of our host page sizes (which is >= TPS) 688 */ 689 if (rb != mis->last_rb) { 690 mis->last_rb = rb; 691 migrate_send_rp_req_pages(mis, qemu_ram_get_idstr(rb), 692 rb_offset, qemu_ram_pagesize(rb)); 693 } else { 694 /* Save some space */ 695 migrate_send_rp_req_pages(mis, NULL, 696 rb_offset, qemu_ram_pagesize(rb)); 697 } 698 } 699 700 /* Now handle any requests from external processes on shared memory */ 701 /* TODO: May need to handle devices deregistering during postcopy */ 702 for (index = 2; index < pfd_len && poll_result; index++) { 703 if (pfd[index].revents) { 704 struct PostCopyFD *pcfd = 705 &g_array_index(mis->postcopy_remote_fds, 706 struct PostCopyFD, index - 2); 707 708 poll_result--; 709 if (pfd[index].revents & POLLERR) { 710 error_report("%s: POLLERR on poll %zd fd=%d", 711 __func__, index, pcfd->fd); 712 pfd[index].events = 0; 713 continue; 714 } 715 716 ret = read(pcfd->fd, &msg, sizeof(msg)); 717 if (ret != sizeof(msg)) { 718 if (errno == EAGAIN) { 719 /* 720 * if a wake up happens on the other thread just after 721 * the poll, there is nothing to read. 722 */ 723 continue; 724 } 725 if (ret < 0) { 726 error_report("%s: Failed to read full userfault " 727 "message: %s (shared) revents=%d", 728 __func__, strerror(errno), 729 pfd[index].revents); 730 /*TODO: Could just disable this sharer */ 731 break; 732 } else { 733 error_report("%s: Read %d bytes from userfaultfd " 734 "expected %zd (shared)", 735 __func__, ret, sizeof(msg)); 736 /*TODO: Could just disable this sharer */ 737 break; /*Lost alignment,don't know what we'd read next*/ 738 } 739 } 740 if (msg.event != UFFD_EVENT_PAGEFAULT) { 741 error_report("%s: Read unexpected event %ud " 742 "from userfaultfd (shared)", 743 __func__, msg.event); 744 continue; /* It's not a page fault, shouldn't happen */ 745 } 746 /* Call the device handler registered with us */ 747 ret = pcfd->handler(pcfd, &msg); 748 if (ret) { 749 error_report("%s: Failed to resolve shared fault on %zd/%s", 750 __func__, index, pcfd->idstr); 751 /* TODO: Fail? Disable this sharer? */ 752 } 753 } 754 } 755 } 756 trace_postcopy_ram_fault_thread_exit(); 757 return NULL; 758 } 759 760 int postcopy_ram_enable_notify(MigrationIncomingState *mis) 761 { 762 /* Open the fd for the kernel to give us userfaults */ 763 mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK); 764 if (mis->userfault_fd == -1) { 765 error_report("%s: Failed to open userfault fd: %s", __func__, 766 strerror(errno)); 767 return -1; 768 } 769 770 /* 771 * Although the host check already tested the API, we need to 772 * do the check again as an ABI handshake on the new fd. 773 */ 774 if (!ufd_check_and_apply(mis->userfault_fd, mis)) { 775 return -1; 776 } 777 778 /* Now an eventfd we use to tell the fault-thread to quit */ 779 mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC); 780 if (mis->userfault_event_fd == -1) { 781 error_report("%s: Opening userfault_event_fd: %s", __func__, 782 strerror(errno)); 783 close(mis->userfault_fd); 784 return -1; 785 } 786 787 qemu_sem_init(&mis->fault_thread_sem, 0); 788 qemu_thread_create(&mis->fault_thread, "postcopy/fault", 789 postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE); 790 qemu_sem_wait(&mis->fault_thread_sem); 791 qemu_sem_destroy(&mis->fault_thread_sem); 792 mis->have_fault_thread = true; 793 794 /* Mark so that we get notified of accesses to unwritten areas */ 795 if (qemu_ram_foreach_block(ram_block_enable_notify, mis)) { 796 return -1; 797 } 798 799 /* 800 * Ballooning can mark pages as absent while we're postcopying 801 * that would cause false userfaults. 802 */ 803 qemu_balloon_inhibit(true); 804 805 trace_postcopy_ram_enable_notify(); 806 807 return 0; 808 } 809 810 static int qemu_ufd_copy_ioctl(int userfault_fd, void *host_addr, 811 void *from_addr, uint64_t pagesize, RAMBlock *rb) 812 { 813 int ret; 814 if (from_addr) { 815 struct uffdio_copy copy_struct; 816 copy_struct.dst = (uint64_t)(uintptr_t)host_addr; 817 copy_struct.src = (uint64_t)(uintptr_t)from_addr; 818 copy_struct.len = pagesize; 819 copy_struct.mode = 0; 820 ret = ioctl(userfault_fd, UFFDIO_COPY, ©_struct); 821 } else { 822 struct uffdio_zeropage zero_struct; 823 zero_struct.range.start = (uint64_t)(uintptr_t)host_addr; 824 zero_struct.range.len = pagesize; 825 zero_struct.mode = 0; 826 ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct); 827 } 828 if (!ret) { 829 ramblock_recv_bitmap_set_range(rb, host_addr, 830 pagesize / qemu_target_page_size()); 831 } 832 return ret; 833 } 834 835 int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset) 836 { 837 int i; 838 MigrationIncomingState *mis = migration_incoming_get_current(); 839 GArray *pcrfds = mis->postcopy_remote_fds; 840 841 for (i = 0; i < pcrfds->len; i++) { 842 struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i); 843 int ret = cur->waker(cur, rb, offset); 844 if (ret) { 845 return ret; 846 } 847 } 848 return 0; 849 } 850 851 /* 852 * Place a host page (from) at (host) atomically 853 * returns 0 on success 854 */ 855 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from, 856 RAMBlock *rb) 857 { 858 size_t pagesize = qemu_ram_pagesize(rb); 859 860 /* copy also acks to the kernel waking the stalled thread up 861 * TODO: We can inhibit that ack and only do it if it was requested 862 * which would be slightly cheaper, but we'd have to be careful 863 * of the order of updating our page state. 864 */ 865 if (qemu_ufd_copy_ioctl(mis->userfault_fd, host, from, pagesize, rb)) { 866 int e = errno; 867 error_report("%s: %s copy host: %p from: %p (size: %zd)", 868 __func__, strerror(e), host, from, pagesize); 869 870 return -e; 871 } 872 873 trace_postcopy_place_page(host); 874 return postcopy_notify_shared_wake(rb, 875 qemu_ram_block_host_offset(rb, host)); 876 } 877 878 /* 879 * Place a zero page at (host) atomically 880 * returns 0 on success 881 */ 882 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host, 883 RAMBlock *rb) 884 { 885 size_t pagesize = qemu_ram_pagesize(rb); 886 trace_postcopy_place_page_zero(host); 887 888 /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE 889 * but it's not available for everything (e.g. hugetlbpages) 890 */ 891 if (qemu_ram_is_uf_zeroable(rb)) { 892 if (qemu_ufd_copy_ioctl(mis->userfault_fd, host, NULL, pagesize, rb)) { 893 int e = errno; 894 error_report("%s: %s zero host: %p", 895 __func__, strerror(e), host); 896 897 return -e; 898 } 899 return postcopy_notify_shared_wake(rb, 900 qemu_ram_block_host_offset(rb, 901 host)); 902 } else { 903 /* The kernel can't use UFFDIO_ZEROPAGE for hugepages */ 904 if (!mis->postcopy_tmp_zero_page) { 905 mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size, 906 PROT_READ | PROT_WRITE, 907 MAP_PRIVATE | MAP_ANONYMOUS, 908 -1, 0); 909 if (mis->postcopy_tmp_zero_page == MAP_FAILED) { 910 int e = errno; 911 mis->postcopy_tmp_zero_page = NULL; 912 error_report("%s: %s mapping large zero page", 913 __func__, strerror(e)); 914 return -e; 915 } 916 memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size); 917 } 918 return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page, 919 rb); 920 } 921 } 922 923 /* 924 * Returns a target page of memory that can be mapped at a later point in time 925 * using postcopy_place_page 926 * The same address is used repeatedly, postcopy_place_page just takes the 927 * backing page away. 928 * Returns: Pointer to allocated page 929 * 930 */ 931 void *postcopy_get_tmp_page(MigrationIncomingState *mis) 932 { 933 if (!mis->postcopy_tmp_page) { 934 mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size, 935 PROT_READ | PROT_WRITE, MAP_PRIVATE | 936 MAP_ANONYMOUS, -1, 0); 937 if (mis->postcopy_tmp_page == MAP_FAILED) { 938 mis->postcopy_tmp_page = NULL; 939 error_report("%s: %s", __func__, strerror(errno)); 940 return NULL; 941 } 942 } 943 944 return mis->postcopy_tmp_page; 945 } 946 947 #else 948 /* No target OS support, stubs just fail */ 949 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis) 950 { 951 error_report("%s: No OS support", __func__); 952 return false; 953 } 954 955 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages) 956 { 957 error_report("postcopy_ram_incoming_init: No OS support"); 958 return -1; 959 } 960 961 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 962 { 963 assert(0); 964 return -1; 965 } 966 967 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 968 { 969 assert(0); 970 return -1; 971 } 972 973 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb, 974 uint64_t client_addr, uint64_t rb_offset) 975 { 976 assert(0); 977 return -1; 978 } 979 980 int postcopy_ram_enable_notify(MigrationIncomingState *mis) 981 { 982 assert(0); 983 return -1; 984 } 985 986 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from, 987 RAMBlock *rb) 988 { 989 assert(0); 990 return -1; 991 } 992 993 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host, 994 RAMBlock *rb) 995 { 996 assert(0); 997 return -1; 998 } 999 1000 void *postcopy_get_tmp_page(MigrationIncomingState *mis) 1001 { 1002 assert(0); 1003 return NULL; 1004 } 1005 1006 int postcopy_wake_shared(struct PostCopyFD *pcfd, 1007 uint64_t client_addr, 1008 RAMBlock *rb) 1009 { 1010 assert(0); 1011 return -1; 1012 } 1013 #endif 1014 1015 /* ------------------------------------------------------------------------- */ 1016 1017 void postcopy_fault_thread_notify(MigrationIncomingState *mis) 1018 { 1019 uint64_t tmp64 = 1; 1020 1021 /* 1022 * Wakeup the fault_thread. It's an eventfd that should currently 1023 * be at 0, we're going to increment it to 1 1024 */ 1025 if (write(mis->userfault_event_fd, &tmp64, 8) != 8) { 1026 /* Not much we can do here, but may as well report it */ 1027 error_report("%s: incrementing failed: %s", __func__, 1028 strerror(errno)); 1029 } 1030 } 1031 1032 /** 1033 * postcopy_discard_send_init: Called at the start of each RAMBlock before 1034 * asking to discard individual ranges. 1035 * 1036 * @ms: The current migration state. 1037 * @offset: the bitmap offset of the named RAMBlock in the migration 1038 * bitmap. 1039 * @name: RAMBlock that discards will operate on. 1040 * 1041 * returns: a new PDS. 1042 */ 1043 PostcopyDiscardState *postcopy_discard_send_init(MigrationState *ms, 1044 const char *name) 1045 { 1046 PostcopyDiscardState *res = g_malloc0(sizeof(PostcopyDiscardState)); 1047 1048 if (res) { 1049 res->ramblock_name = name; 1050 } 1051 1052 return res; 1053 } 1054 1055 /** 1056 * postcopy_discard_send_range: Called by the bitmap code for each chunk to 1057 * discard. May send a discard message, may just leave it queued to 1058 * be sent later. 1059 * 1060 * @ms: Current migration state. 1061 * @pds: Structure initialised by postcopy_discard_send_init(). 1062 * @start,@length: a range of pages in the migration bitmap in the 1063 * RAM block passed to postcopy_discard_send_init() (length=1 is one page) 1064 */ 1065 void postcopy_discard_send_range(MigrationState *ms, PostcopyDiscardState *pds, 1066 unsigned long start, unsigned long length) 1067 { 1068 size_t tp_size = qemu_target_page_size(); 1069 /* Convert to byte offsets within the RAM block */ 1070 pds->start_list[pds->cur_entry] = start * tp_size; 1071 pds->length_list[pds->cur_entry] = length * tp_size; 1072 trace_postcopy_discard_send_range(pds->ramblock_name, start, length); 1073 pds->cur_entry++; 1074 pds->nsentwords++; 1075 1076 if (pds->cur_entry == MAX_DISCARDS_PER_COMMAND) { 1077 /* Full set, ship it! */ 1078 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 1079 pds->ramblock_name, 1080 pds->cur_entry, 1081 pds->start_list, 1082 pds->length_list); 1083 pds->nsentcmds++; 1084 pds->cur_entry = 0; 1085 } 1086 } 1087 1088 /** 1089 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the 1090 * bitmap code. Sends any outstanding discard messages, frees the PDS 1091 * 1092 * @ms: Current migration state. 1093 * @pds: Structure initialised by postcopy_discard_send_init(). 1094 */ 1095 void postcopy_discard_send_finish(MigrationState *ms, PostcopyDiscardState *pds) 1096 { 1097 /* Anything unsent? */ 1098 if (pds->cur_entry) { 1099 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 1100 pds->ramblock_name, 1101 pds->cur_entry, 1102 pds->start_list, 1103 pds->length_list); 1104 pds->nsentcmds++; 1105 } 1106 1107 trace_postcopy_discard_send_finish(pds->ramblock_name, pds->nsentwords, 1108 pds->nsentcmds); 1109 1110 g_free(pds); 1111 } 1112 1113 /* 1114 * Current state of incoming postcopy; note this is not part of 1115 * MigrationIncomingState since it's state is used during cleanup 1116 * at the end as MIS is being freed. 1117 */ 1118 static PostcopyState incoming_postcopy_state; 1119 1120 PostcopyState postcopy_state_get(void) 1121 { 1122 return atomic_mb_read(&incoming_postcopy_state); 1123 } 1124 1125 /* Set the state and return the old state */ 1126 PostcopyState postcopy_state_set(PostcopyState new_state) 1127 { 1128 return atomic_xchg(&incoming_postcopy_state, new_state); 1129 } 1130 1131 /* Register a handler for external shared memory postcopy 1132 * called on the destination. 1133 */ 1134 void postcopy_register_shared_ufd(struct PostCopyFD *pcfd) 1135 { 1136 MigrationIncomingState *mis = migration_incoming_get_current(); 1137 1138 mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds, 1139 *pcfd); 1140 } 1141 1142 /* Unregister a handler for external shared memory postcopy 1143 */ 1144 void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd) 1145 { 1146 guint i; 1147 MigrationIncomingState *mis = migration_incoming_get_current(); 1148 GArray *pcrfds = mis->postcopy_remote_fds; 1149 1150 for (i = 0; i < pcrfds->len; i++) { 1151 struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i); 1152 if (cur->fd == pcfd->fd) { 1153 mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i); 1154 return; 1155 } 1156 } 1157 } 1158