xref: /openbmc/qemu/migration/postcopy-ram.c (revision dc8b6dd98458ffc6d93b110ab7406301e911c6db)
1 /*
2  * Postcopy migration for RAM
3  *
4  * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Dave Gilbert  <dgilbert@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13 
14 /*
15  * Postcopy is a migration technique where the execution flips from the
16  * source to the destination before all the data has been copied.
17  */
18 
19 #include "qemu/osdep.h"
20 
21 #include "qemu-common.h"
22 #include "exec/target_page.h"
23 #include "migration/migration.h"
24 #include "migration/qemu-file.h"
25 #include "savevm.h"
26 #include "postcopy-ram.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/balloon.h"
29 #include "qemu/error-report.h"
30 #include "trace.h"
31 
32 /* Arbitrary limit on size of each discard command,
33  * keeps them around ~200 bytes
34  */
35 #define MAX_DISCARDS_PER_COMMAND 12
36 
37 struct PostcopyDiscardState {
38     const char *ramblock_name;
39     uint16_t cur_entry;
40     /*
41      * Start and length of a discard range (bytes)
42      */
43     uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
44     uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
45     unsigned int nsentwords;
46     unsigned int nsentcmds;
47 };
48 
49 /* Postcopy needs to detect accesses to pages that haven't yet been copied
50  * across, and efficiently map new pages in, the techniques for doing this
51  * are target OS specific.
52  */
53 #if defined(__linux__)
54 
55 #include <poll.h>
56 #include <sys/ioctl.h>
57 #include <sys/syscall.h>
58 #include <asm/types.h> /* for __u64 */
59 #endif
60 
61 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
62 #include <sys/eventfd.h>
63 #include <linux/userfaultfd.h>
64 
65 static bool ufd_version_check(int ufd)
66 {
67     struct uffdio_api api_struct;
68     uint64_t ioctl_mask;
69 
70     api_struct.api = UFFD_API;
71     api_struct.features = 0;
72     if (ioctl(ufd, UFFDIO_API, &api_struct)) {
73         error_report("postcopy_ram_supported_by_host: UFFDIO_API failed: %s",
74                      strerror(errno));
75         return false;
76     }
77 
78     ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
79                  (__u64)1 << _UFFDIO_UNREGISTER;
80     if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
81         error_report("Missing userfault features: %" PRIx64,
82                      (uint64_t)(~api_struct.ioctls & ioctl_mask));
83         return false;
84     }
85 
86     if (getpagesize() != ram_pagesize_summary()) {
87         bool have_hp = false;
88         /* We've got a huge page */
89 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS
90         have_hp = api_struct.features & UFFD_FEATURE_MISSING_HUGETLBFS;
91 #endif
92         if (!have_hp) {
93             error_report("Userfault on this host does not support huge pages");
94             return false;
95         }
96     }
97     return true;
98 }
99 
100 /* Callback from postcopy_ram_supported_by_host block iterator.
101  */
102 static int test_ramblock_postcopiable(const char *block_name, void *host_addr,
103                              ram_addr_t offset, ram_addr_t length, void *opaque)
104 {
105     RAMBlock *rb = qemu_ram_block_by_name(block_name);
106     size_t pagesize = qemu_ram_pagesize(rb);
107 
108     if (qemu_ram_is_shared(rb)) {
109         error_report("Postcopy on shared RAM (%s) is not yet supported",
110                      block_name);
111         return 1;
112     }
113 
114     if (length % pagesize) {
115         error_report("Postcopy requires RAM blocks to be a page size multiple,"
116                      " block %s is 0x" RAM_ADDR_FMT " bytes with a "
117                      "page size of 0x%zx", block_name, length, pagesize);
118         return 1;
119     }
120     return 0;
121 }
122 
123 /*
124  * Note: This has the side effect of munlock'ing all of RAM, that's
125  * normally fine since if the postcopy succeeds it gets turned back on at the
126  * end.
127  */
128 bool postcopy_ram_supported_by_host(void)
129 {
130     long pagesize = getpagesize();
131     int ufd = -1;
132     bool ret = false; /* Error unless we change it */
133     void *testarea = NULL;
134     struct uffdio_register reg_struct;
135     struct uffdio_range range_struct;
136     uint64_t feature_mask;
137 
138     if (qemu_target_page_size() > pagesize) {
139         error_report("Target page size bigger than host page size");
140         goto out;
141     }
142 
143     ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
144     if (ufd == -1) {
145         error_report("%s: userfaultfd not available: %s", __func__,
146                      strerror(errno));
147         goto out;
148     }
149 
150     /* Version and features check */
151     if (!ufd_version_check(ufd)) {
152         goto out;
153     }
154 
155     /* We don't support postcopy with shared RAM yet */
156     if (qemu_ram_foreach_block(test_ramblock_postcopiable, NULL)) {
157         goto out;
158     }
159 
160     /*
161      * userfault and mlock don't go together; we'll put it back later if
162      * it was enabled.
163      */
164     if (munlockall()) {
165         error_report("%s: munlockall: %s", __func__,  strerror(errno));
166         return -1;
167     }
168 
169     /*
170      *  We need to check that the ops we need are supported on anon memory
171      *  To do that we need to register a chunk and see the flags that
172      *  are returned.
173      */
174     testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
175                                     MAP_ANONYMOUS, -1, 0);
176     if (testarea == MAP_FAILED) {
177         error_report("%s: Failed to map test area: %s", __func__,
178                      strerror(errno));
179         goto out;
180     }
181     g_assert(((size_t)testarea & (pagesize-1)) == 0);
182 
183     reg_struct.range.start = (uintptr_t)testarea;
184     reg_struct.range.len = pagesize;
185     reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
186 
187     if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
188         error_report("%s userfault register: %s", __func__, strerror(errno));
189         goto out;
190     }
191 
192     range_struct.start = (uintptr_t)testarea;
193     range_struct.len = pagesize;
194     if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
195         error_report("%s userfault unregister: %s", __func__, strerror(errno));
196         goto out;
197     }
198 
199     feature_mask = (__u64)1 << _UFFDIO_WAKE |
200                    (__u64)1 << _UFFDIO_COPY |
201                    (__u64)1 << _UFFDIO_ZEROPAGE;
202     if ((reg_struct.ioctls & feature_mask) != feature_mask) {
203         error_report("Missing userfault map features: %" PRIx64,
204                      (uint64_t)(~reg_struct.ioctls & feature_mask));
205         goto out;
206     }
207 
208     /* Success! */
209     ret = true;
210 out:
211     if (testarea) {
212         munmap(testarea, pagesize);
213     }
214     if (ufd != -1) {
215         close(ufd);
216     }
217     return ret;
218 }
219 
220 /*
221  * Setup an area of RAM so that it *can* be used for postcopy later; this
222  * must be done right at the start prior to pre-copy.
223  * opaque should be the MIS.
224  */
225 static int init_range(const char *block_name, void *host_addr,
226                       ram_addr_t offset, ram_addr_t length, void *opaque)
227 {
228     trace_postcopy_init_range(block_name, host_addr, offset, length);
229 
230     /*
231      * We need the whole of RAM to be truly empty for postcopy, so things
232      * like ROMs and any data tables built during init must be zero'd
233      * - we're going to get the copy from the source anyway.
234      * (Precopy will just overwrite this data, so doesn't need the discard)
235      */
236     if (ram_discard_range(block_name, 0, length)) {
237         return -1;
238     }
239 
240     return 0;
241 }
242 
243 /*
244  * At the end of migration, undo the effects of init_range
245  * opaque should be the MIS.
246  */
247 static int cleanup_range(const char *block_name, void *host_addr,
248                         ram_addr_t offset, ram_addr_t length, void *opaque)
249 {
250     MigrationIncomingState *mis = opaque;
251     struct uffdio_range range_struct;
252     trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
253 
254     /*
255      * We turned off hugepage for the precopy stage with postcopy enabled
256      * we can turn it back on now.
257      */
258     qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
259 
260     /*
261      * We can also turn off userfault now since we should have all the
262      * pages.   It can be useful to leave it on to debug postcopy
263      * if you're not sure it's always getting every page.
264      */
265     range_struct.start = (uintptr_t)host_addr;
266     range_struct.len = length;
267 
268     if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
269         error_report("%s: userfault unregister %s", __func__, strerror(errno));
270 
271         return -1;
272     }
273 
274     return 0;
275 }
276 
277 /*
278  * Initialise postcopy-ram, setting the RAM to a state where we can go into
279  * postcopy later; must be called prior to any precopy.
280  * called from arch_init's similarly named ram_postcopy_incoming_init
281  */
282 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages)
283 {
284     if (qemu_ram_foreach_block(init_range, NULL)) {
285         return -1;
286     }
287 
288     return 0;
289 }
290 
291 /*
292  * At the end of a migration where postcopy_ram_incoming_init was called.
293  */
294 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
295 {
296     trace_postcopy_ram_incoming_cleanup_entry();
297 
298     if (mis->have_fault_thread) {
299         uint64_t tmp64;
300 
301         if (qemu_ram_foreach_block(cleanup_range, mis)) {
302             return -1;
303         }
304         /*
305          * Tell the fault_thread to exit, it's an eventfd that should
306          * currently be at 0, we're going to increment it to 1
307          */
308         tmp64 = 1;
309         if (write(mis->userfault_quit_fd, &tmp64, 8) == 8) {
310             trace_postcopy_ram_incoming_cleanup_join();
311             qemu_thread_join(&mis->fault_thread);
312         } else {
313             /* Not much we can do here, but may as well report it */
314             error_report("%s: incrementing userfault_quit_fd: %s", __func__,
315                          strerror(errno));
316         }
317         trace_postcopy_ram_incoming_cleanup_closeuf();
318         close(mis->userfault_fd);
319         close(mis->userfault_quit_fd);
320         mis->have_fault_thread = false;
321     }
322 
323     qemu_balloon_inhibit(false);
324 
325     if (enable_mlock) {
326         if (os_mlock() < 0) {
327             error_report("mlock: %s", strerror(errno));
328             /*
329              * It doesn't feel right to fail at this point, we have a valid
330              * VM state.
331              */
332         }
333     }
334 
335     postcopy_state_set(POSTCOPY_INCOMING_END);
336     migrate_send_rp_shut(mis, qemu_file_get_error(mis->from_src_file) != 0);
337 
338     if (mis->postcopy_tmp_page) {
339         munmap(mis->postcopy_tmp_page, mis->largest_page_size);
340         mis->postcopy_tmp_page = NULL;
341     }
342     if (mis->postcopy_tmp_zero_page) {
343         munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
344         mis->postcopy_tmp_zero_page = NULL;
345     }
346     trace_postcopy_ram_incoming_cleanup_exit();
347     return 0;
348 }
349 
350 /*
351  * Disable huge pages on an area
352  */
353 static int nhp_range(const char *block_name, void *host_addr,
354                     ram_addr_t offset, ram_addr_t length, void *opaque)
355 {
356     trace_postcopy_nhp_range(block_name, host_addr, offset, length);
357 
358     /*
359      * Before we do discards we need to ensure those discards really
360      * do delete areas of the page, even if THP thinks a hugepage would
361      * be a good idea, so force hugepages off.
362      */
363     qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
364 
365     return 0;
366 }
367 
368 /*
369  * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
370  * however leaving it until after precopy means that most of the precopy
371  * data is still THPd
372  */
373 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
374 {
375     if (qemu_ram_foreach_block(nhp_range, mis)) {
376         return -1;
377     }
378 
379     postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
380 
381     return 0;
382 }
383 
384 /*
385  * Mark the given area of RAM as requiring notification to unwritten areas
386  * Used as a  callback on qemu_ram_foreach_block.
387  *   host_addr: Base of area to mark
388  *   offset: Offset in the whole ram arena
389  *   length: Length of the section
390  *   opaque: MigrationIncomingState pointer
391  * Returns 0 on success
392  */
393 static int ram_block_enable_notify(const char *block_name, void *host_addr,
394                                    ram_addr_t offset, ram_addr_t length,
395                                    void *opaque)
396 {
397     MigrationIncomingState *mis = opaque;
398     struct uffdio_register reg_struct;
399 
400     reg_struct.range.start = (uintptr_t)host_addr;
401     reg_struct.range.len = length;
402     reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
403 
404     /* Now tell our userfault_fd that it's responsible for this area */
405     if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
406         error_report("%s userfault register: %s", __func__, strerror(errno));
407         return -1;
408     }
409     if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) {
410         error_report("%s userfault: Region doesn't support COPY", __func__);
411         return -1;
412     }
413 
414     return 0;
415 }
416 
417 /*
418  * Handle faults detected by the USERFAULT markings
419  */
420 static void *postcopy_ram_fault_thread(void *opaque)
421 {
422     MigrationIncomingState *mis = opaque;
423     struct uffd_msg msg;
424     int ret;
425     RAMBlock *rb = NULL;
426     RAMBlock *last_rb = NULL; /* last RAMBlock we sent part of */
427 
428     trace_postcopy_ram_fault_thread_entry();
429     qemu_sem_post(&mis->fault_thread_sem);
430 
431     while (true) {
432         ram_addr_t rb_offset;
433         struct pollfd pfd[2];
434 
435         /*
436          * We're mainly waiting for the kernel to give us a faulting HVA,
437          * however we can be told to quit via userfault_quit_fd which is
438          * an eventfd
439          */
440         pfd[0].fd = mis->userfault_fd;
441         pfd[0].events = POLLIN;
442         pfd[0].revents = 0;
443         pfd[1].fd = mis->userfault_quit_fd;
444         pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
445         pfd[1].revents = 0;
446 
447         if (poll(pfd, 2, -1 /* Wait forever */) == -1) {
448             error_report("%s: userfault poll: %s", __func__, strerror(errno));
449             break;
450         }
451 
452         if (pfd[1].revents) {
453             trace_postcopy_ram_fault_thread_quit();
454             break;
455         }
456 
457         ret = read(mis->userfault_fd, &msg, sizeof(msg));
458         if (ret != sizeof(msg)) {
459             if (errno == EAGAIN) {
460                 /*
461                  * if a wake up happens on the other thread just after
462                  * the poll, there is nothing to read.
463                  */
464                 continue;
465             }
466             if (ret < 0) {
467                 error_report("%s: Failed to read full userfault message: %s",
468                              __func__, strerror(errno));
469                 break;
470             } else {
471                 error_report("%s: Read %d bytes from userfaultfd expected %zd",
472                              __func__, ret, sizeof(msg));
473                 break; /* Lost alignment, don't know what we'd read next */
474             }
475         }
476         if (msg.event != UFFD_EVENT_PAGEFAULT) {
477             error_report("%s: Read unexpected event %ud from userfaultfd",
478                          __func__, msg.event);
479             continue; /* It's not a page fault, shouldn't happen */
480         }
481 
482         rb = qemu_ram_block_from_host(
483                  (void *)(uintptr_t)msg.arg.pagefault.address,
484                  true, &rb_offset);
485         if (!rb) {
486             error_report("postcopy_ram_fault_thread: Fault outside guest: %"
487                          PRIx64, (uint64_t)msg.arg.pagefault.address);
488             break;
489         }
490 
491         rb_offset &= ~(qemu_ram_pagesize(rb) - 1);
492         trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
493                                                 qemu_ram_get_idstr(rb),
494                                                 rb_offset);
495 
496         /*
497          * Send the request to the source - we want to request one
498          * of our host page sizes (which is >= TPS)
499          */
500         if (rb != last_rb) {
501             last_rb = rb;
502             migrate_send_rp_req_pages(mis, qemu_ram_get_idstr(rb),
503                                      rb_offset, qemu_ram_pagesize(rb));
504         } else {
505             /* Save some space */
506             migrate_send_rp_req_pages(mis, NULL,
507                                      rb_offset, qemu_ram_pagesize(rb));
508         }
509     }
510     trace_postcopy_ram_fault_thread_exit();
511     return NULL;
512 }
513 
514 int postcopy_ram_enable_notify(MigrationIncomingState *mis)
515 {
516     /* Open the fd for the kernel to give us userfaults */
517     mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
518     if (mis->userfault_fd == -1) {
519         error_report("%s: Failed to open userfault fd: %s", __func__,
520                      strerror(errno));
521         return -1;
522     }
523 
524     /*
525      * Although the host check already tested the API, we need to
526      * do the check again as an ABI handshake on the new fd.
527      */
528     if (!ufd_version_check(mis->userfault_fd)) {
529         return -1;
530     }
531 
532     /* Now an eventfd we use to tell the fault-thread to quit */
533     mis->userfault_quit_fd = eventfd(0, EFD_CLOEXEC);
534     if (mis->userfault_quit_fd == -1) {
535         error_report("%s: Opening userfault_quit_fd: %s", __func__,
536                      strerror(errno));
537         close(mis->userfault_fd);
538         return -1;
539     }
540 
541     qemu_sem_init(&mis->fault_thread_sem, 0);
542     qemu_thread_create(&mis->fault_thread, "postcopy/fault",
543                        postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE);
544     qemu_sem_wait(&mis->fault_thread_sem);
545     qemu_sem_destroy(&mis->fault_thread_sem);
546     mis->have_fault_thread = true;
547 
548     /* Mark so that we get notified of accesses to unwritten areas */
549     if (qemu_ram_foreach_block(ram_block_enable_notify, mis)) {
550         return -1;
551     }
552 
553     /*
554      * Ballooning can mark pages as absent while we're postcopying
555      * that would cause false userfaults.
556      */
557     qemu_balloon_inhibit(true);
558 
559     trace_postcopy_ram_enable_notify();
560 
561     return 0;
562 }
563 
564 /*
565  * Place a host page (from) at (host) atomically
566  * returns 0 on success
567  */
568 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
569                         size_t pagesize)
570 {
571     struct uffdio_copy copy_struct;
572 
573     copy_struct.dst = (uint64_t)(uintptr_t)host;
574     copy_struct.src = (uint64_t)(uintptr_t)from;
575     copy_struct.len = pagesize;
576     copy_struct.mode = 0;
577 
578     /* copy also acks to the kernel waking the stalled thread up
579      * TODO: We can inhibit that ack and only do it if it was requested
580      * which would be slightly cheaper, but we'd have to be careful
581      * of the order of updating our page state.
582      */
583     if (ioctl(mis->userfault_fd, UFFDIO_COPY, &copy_struct)) {
584         int e = errno;
585         error_report("%s: %s copy host: %p from: %p (size: %zd)",
586                      __func__, strerror(e), host, from, pagesize);
587 
588         return -e;
589     }
590 
591     trace_postcopy_place_page(host);
592     return 0;
593 }
594 
595 /*
596  * Place a zero page at (host) atomically
597  * returns 0 on success
598  */
599 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
600                              size_t pagesize)
601 {
602     trace_postcopy_place_page_zero(host);
603 
604     if (pagesize == getpagesize()) {
605         struct uffdio_zeropage zero_struct;
606         zero_struct.range.start = (uint64_t)(uintptr_t)host;
607         zero_struct.range.len = getpagesize();
608         zero_struct.mode = 0;
609 
610         if (ioctl(mis->userfault_fd, UFFDIO_ZEROPAGE, &zero_struct)) {
611             int e = errno;
612             error_report("%s: %s zero host: %p",
613                          __func__, strerror(e), host);
614 
615             return -e;
616         }
617     } else {
618         /* The kernel can't use UFFDIO_ZEROPAGE for hugepages */
619         if (!mis->postcopy_tmp_zero_page) {
620             mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
621                                                PROT_READ | PROT_WRITE,
622                                                MAP_PRIVATE | MAP_ANONYMOUS,
623                                                -1, 0);
624             if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
625                 int e = errno;
626                 mis->postcopy_tmp_zero_page = NULL;
627                 error_report("%s: %s mapping large zero page",
628                              __func__, strerror(e));
629                 return -e;
630             }
631             memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
632         }
633         return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page,
634                                    pagesize);
635     }
636 
637     return 0;
638 }
639 
640 /*
641  * Returns a target page of memory that can be mapped at a later point in time
642  * using postcopy_place_page
643  * The same address is used repeatedly, postcopy_place_page just takes the
644  * backing page away.
645  * Returns: Pointer to allocated page
646  *
647  */
648 void *postcopy_get_tmp_page(MigrationIncomingState *mis)
649 {
650     if (!mis->postcopy_tmp_page) {
651         mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size,
652                              PROT_READ | PROT_WRITE, MAP_PRIVATE |
653                              MAP_ANONYMOUS, -1, 0);
654         if (mis->postcopy_tmp_page == MAP_FAILED) {
655             mis->postcopy_tmp_page = NULL;
656             error_report("%s: %s", __func__, strerror(errno));
657             return NULL;
658         }
659     }
660 
661     return mis->postcopy_tmp_page;
662 }
663 
664 #else
665 /* No target OS support, stubs just fail */
666 bool postcopy_ram_supported_by_host(void)
667 {
668     error_report("%s: No OS support", __func__);
669     return false;
670 }
671 
672 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages)
673 {
674     error_report("postcopy_ram_incoming_init: No OS support");
675     return -1;
676 }
677 
678 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
679 {
680     assert(0);
681     return -1;
682 }
683 
684 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
685 {
686     assert(0);
687     return -1;
688 }
689 
690 int postcopy_ram_enable_notify(MigrationIncomingState *mis)
691 {
692     assert(0);
693     return -1;
694 }
695 
696 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
697                         size_t pagesize)
698 {
699     assert(0);
700     return -1;
701 }
702 
703 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
704                         size_t pagesize)
705 {
706     assert(0);
707     return -1;
708 }
709 
710 void *postcopy_get_tmp_page(MigrationIncomingState *mis)
711 {
712     assert(0);
713     return NULL;
714 }
715 
716 #endif
717 
718 /* ------------------------------------------------------------------------- */
719 
720 /**
721  * postcopy_discard_send_init: Called at the start of each RAMBlock before
722  *   asking to discard individual ranges.
723  *
724  * @ms: The current migration state.
725  * @offset: the bitmap offset of the named RAMBlock in the migration
726  *   bitmap.
727  * @name: RAMBlock that discards will operate on.
728  *
729  * returns: a new PDS.
730  */
731 PostcopyDiscardState *postcopy_discard_send_init(MigrationState *ms,
732                                                  const char *name)
733 {
734     PostcopyDiscardState *res = g_malloc0(sizeof(PostcopyDiscardState));
735 
736     if (res) {
737         res->ramblock_name = name;
738     }
739 
740     return res;
741 }
742 
743 /**
744  * postcopy_discard_send_range: Called by the bitmap code for each chunk to
745  *   discard. May send a discard message, may just leave it queued to
746  *   be sent later.
747  *
748  * @ms: Current migration state.
749  * @pds: Structure initialised by postcopy_discard_send_init().
750  * @start,@length: a range of pages in the migration bitmap in the
751  *   RAM block passed to postcopy_discard_send_init() (length=1 is one page)
752  */
753 void postcopy_discard_send_range(MigrationState *ms, PostcopyDiscardState *pds,
754                                 unsigned long start, unsigned long length)
755 {
756     size_t tp_size = qemu_target_page_size();
757     /* Convert to byte offsets within the RAM block */
758     pds->start_list[pds->cur_entry] = start  * tp_size;
759     pds->length_list[pds->cur_entry] = length * tp_size;
760     trace_postcopy_discard_send_range(pds->ramblock_name, start, length);
761     pds->cur_entry++;
762     pds->nsentwords++;
763 
764     if (pds->cur_entry == MAX_DISCARDS_PER_COMMAND) {
765         /* Full set, ship it! */
766         qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
767                                               pds->ramblock_name,
768                                               pds->cur_entry,
769                                               pds->start_list,
770                                               pds->length_list);
771         pds->nsentcmds++;
772         pds->cur_entry = 0;
773     }
774 }
775 
776 /**
777  * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
778  * bitmap code. Sends any outstanding discard messages, frees the PDS
779  *
780  * @ms: Current migration state.
781  * @pds: Structure initialised by postcopy_discard_send_init().
782  */
783 void postcopy_discard_send_finish(MigrationState *ms, PostcopyDiscardState *pds)
784 {
785     /* Anything unsent? */
786     if (pds->cur_entry) {
787         qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
788                                               pds->ramblock_name,
789                                               pds->cur_entry,
790                                               pds->start_list,
791                                               pds->length_list);
792         pds->nsentcmds++;
793     }
794 
795     trace_postcopy_discard_send_finish(pds->ramblock_name, pds->nsentwords,
796                                        pds->nsentcmds);
797 
798     g_free(pds);
799 }
800 
801 /*
802  * Current state of incoming postcopy; note this is not part of
803  * MigrationIncomingState since it's state is used during cleanup
804  * at the end as MIS is being freed.
805  */
806 static PostcopyState incoming_postcopy_state;
807 
808 PostcopyState  postcopy_state_get(void)
809 {
810     return atomic_mb_read(&incoming_postcopy_state);
811 }
812 
813 /* Set the state and return the old state */
814 PostcopyState postcopy_state_set(PostcopyState new_state)
815 {
816     return atomic_xchg(&incoming_postcopy_state, new_state);
817 }
818