1 /* 2 * Postcopy migration for RAM 3 * 4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Dave Gilbert <dgilbert@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14 /* 15 * Postcopy is a migration technique where the execution flips from the 16 * source to the destination before all the data has been copied. 17 */ 18 19 #include "qemu/osdep.h" 20 #include "exec/target_page.h" 21 #include "migration.h" 22 #include "qemu-file.h" 23 #include "savevm.h" 24 #include "postcopy-ram.h" 25 #include "ram.h" 26 #include "qapi/error.h" 27 #include "qemu/notify.h" 28 #include "qemu/rcu.h" 29 #include "sysemu/sysemu.h" 30 #include "qemu/error-report.h" 31 #include "trace.h" 32 #include "hw/boards.h" 33 34 /* Arbitrary limit on size of each discard command, 35 * keeps them around ~200 bytes 36 */ 37 #define MAX_DISCARDS_PER_COMMAND 12 38 39 struct PostcopyDiscardState { 40 const char *ramblock_name; 41 uint16_t cur_entry; 42 /* 43 * Start and length of a discard range (bytes) 44 */ 45 uint64_t start_list[MAX_DISCARDS_PER_COMMAND]; 46 uint64_t length_list[MAX_DISCARDS_PER_COMMAND]; 47 unsigned int nsentwords; 48 unsigned int nsentcmds; 49 }; 50 51 static NotifierWithReturnList postcopy_notifier_list; 52 53 void postcopy_infrastructure_init(void) 54 { 55 notifier_with_return_list_init(&postcopy_notifier_list); 56 } 57 58 void postcopy_add_notifier(NotifierWithReturn *nn) 59 { 60 notifier_with_return_list_add(&postcopy_notifier_list, nn); 61 } 62 63 void postcopy_remove_notifier(NotifierWithReturn *n) 64 { 65 notifier_with_return_remove(n); 66 } 67 68 int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp) 69 { 70 struct PostcopyNotifyData pnd; 71 pnd.reason = reason; 72 pnd.errp = errp; 73 74 return notifier_with_return_list_notify(&postcopy_notifier_list, 75 &pnd); 76 } 77 78 /* Postcopy needs to detect accesses to pages that haven't yet been copied 79 * across, and efficiently map new pages in, the techniques for doing this 80 * are target OS specific. 81 */ 82 #if defined(__linux__) 83 84 #include <poll.h> 85 #include <sys/ioctl.h> 86 #include <sys/syscall.h> 87 #include <asm/types.h> /* for __u64 */ 88 #endif 89 90 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD) 91 #include <sys/eventfd.h> 92 #include <linux/userfaultfd.h> 93 94 typedef struct PostcopyBlocktimeContext { 95 /* time when page fault initiated per vCPU */ 96 uint32_t *page_fault_vcpu_time; 97 /* page address per vCPU */ 98 uintptr_t *vcpu_addr; 99 uint32_t total_blocktime; 100 /* blocktime per vCPU */ 101 uint32_t *vcpu_blocktime; 102 /* point in time when last page fault was initiated */ 103 uint32_t last_begin; 104 /* number of vCPU are suspended */ 105 int smp_cpus_down; 106 uint64_t start_time; 107 108 /* 109 * Handler for exit event, necessary for 110 * releasing whole blocktime_ctx 111 */ 112 Notifier exit_notifier; 113 } PostcopyBlocktimeContext; 114 115 static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx) 116 { 117 g_free(ctx->page_fault_vcpu_time); 118 g_free(ctx->vcpu_addr); 119 g_free(ctx->vcpu_blocktime); 120 g_free(ctx); 121 } 122 123 static void migration_exit_cb(Notifier *n, void *data) 124 { 125 PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext, 126 exit_notifier); 127 destroy_blocktime_context(ctx); 128 } 129 130 static struct PostcopyBlocktimeContext *blocktime_context_new(void) 131 { 132 MachineState *ms = MACHINE(qdev_get_machine()); 133 unsigned int smp_cpus = ms->smp.cpus; 134 PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1); 135 ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus); 136 ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus); 137 ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus); 138 139 ctx->exit_notifier.notify = migration_exit_cb; 140 ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 141 qemu_add_exit_notifier(&ctx->exit_notifier); 142 return ctx; 143 } 144 145 static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx) 146 { 147 MachineState *ms = MACHINE(qdev_get_machine()); 148 uint32List *list = NULL; 149 int i; 150 151 for (i = ms->smp.cpus - 1; i >= 0; i--) { 152 QAPI_LIST_PREPEND(list, ctx->vcpu_blocktime[i]); 153 } 154 155 return list; 156 } 157 158 /* 159 * This function just populates MigrationInfo from postcopy's 160 * blocktime context. It will not populate MigrationInfo, 161 * unless postcopy-blocktime capability was set. 162 * 163 * @info: pointer to MigrationInfo to populate 164 */ 165 void fill_destination_postcopy_migration_info(MigrationInfo *info) 166 { 167 MigrationIncomingState *mis = migration_incoming_get_current(); 168 PostcopyBlocktimeContext *bc = mis->blocktime_ctx; 169 170 if (!bc) { 171 return; 172 } 173 174 info->has_postcopy_blocktime = true; 175 info->postcopy_blocktime = bc->total_blocktime; 176 info->has_postcopy_vcpu_blocktime = true; 177 info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc); 178 } 179 180 static uint32_t get_postcopy_total_blocktime(void) 181 { 182 MigrationIncomingState *mis = migration_incoming_get_current(); 183 PostcopyBlocktimeContext *bc = mis->blocktime_ctx; 184 185 if (!bc) { 186 return 0; 187 } 188 189 return bc->total_blocktime; 190 } 191 192 /** 193 * receive_ufd_features: check userfault fd features, to request only supported 194 * features in the future. 195 * 196 * Returns: true on success 197 * 198 * __NR_userfaultfd - should be checked before 199 * @features: out parameter will contain uffdio_api.features provided by kernel 200 * in case of success 201 */ 202 static bool receive_ufd_features(uint64_t *features) 203 { 204 struct uffdio_api api_struct = {0}; 205 int ufd; 206 bool ret = true; 207 208 /* if we are here __NR_userfaultfd should exists */ 209 ufd = syscall(__NR_userfaultfd, O_CLOEXEC); 210 if (ufd == -1) { 211 error_report("%s: syscall __NR_userfaultfd failed: %s", __func__, 212 strerror(errno)); 213 return false; 214 } 215 216 /* ask features */ 217 api_struct.api = UFFD_API; 218 api_struct.features = 0; 219 if (ioctl(ufd, UFFDIO_API, &api_struct)) { 220 error_report("%s: UFFDIO_API failed: %s", __func__, 221 strerror(errno)); 222 ret = false; 223 goto release_ufd; 224 } 225 226 *features = api_struct.features; 227 228 release_ufd: 229 close(ufd); 230 return ret; 231 } 232 233 /** 234 * request_ufd_features: this function should be called only once on a newly 235 * opened ufd, subsequent calls will lead to error. 236 * 237 * Returns: true on success 238 * 239 * @ufd: fd obtained from userfaultfd syscall 240 * @features: bit mask see UFFD_API_FEATURES 241 */ 242 static bool request_ufd_features(int ufd, uint64_t features) 243 { 244 struct uffdio_api api_struct = {0}; 245 uint64_t ioctl_mask; 246 247 api_struct.api = UFFD_API; 248 api_struct.features = features; 249 if (ioctl(ufd, UFFDIO_API, &api_struct)) { 250 error_report("%s failed: UFFDIO_API failed: %s", __func__, 251 strerror(errno)); 252 return false; 253 } 254 255 ioctl_mask = (__u64)1 << _UFFDIO_REGISTER | 256 (__u64)1 << _UFFDIO_UNREGISTER; 257 if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) { 258 error_report("Missing userfault features: %" PRIx64, 259 (uint64_t)(~api_struct.ioctls & ioctl_mask)); 260 return false; 261 } 262 263 return true; 264 } 265 266 static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis) 267 { 268 uint64_t asked_features = 0; 269 static uint64_t supported_features; 270 271 /* 272 * it's not possible to 273 * request UFFD_API twice per one fd 274 * userfault fd features is persistent 275 */ 276 if (!supported_features) { 277 if (!receive_ufd_features(&supported_features)) { 278 error_report("%s failed", __func__); 279 return false; 280 } 281 } 282 283 #ifdef UFFD_FEATURE_THREAD_ID 284 if (migrate_postcopy_blocktime() && mis && 285 UFFD_FEATURE_THREAD_ID & supported_features) { 286 /* kernel supports that feature */ 287 /* don't create blocktime_context if it exists */ 288 if (!mis->blocktime_ctx) { 289 mis->blocktime_ctx = blocktime_context_new(); 290 } 291 292 asked_features |= UFFD_FEATURE_THREAD_ID; 293 } 294 #endif 295 296 /* 297 * request features, even if asked_features is 0, due to 298 * kernel expects UFFD_API before UFFDIO_REGISTER, per 299 * userfault file descriptor 300 */ 301 if (!request_ufd_features(ufd, asked_features)) { 302 error_report("%s failed: features %" PRIu64, __func__, 303 asked_features); 304 return false; 305 } 306 307 if (qemu_real_host_page_size != ram_pagesize_summary()) { 308 bool have_hp = false; 309 /* We've got a huge page */ 310 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS 311 have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS; 312 #endif 313 if (!have_hp) { 314 error_report("Userfault on this host does not support huge pages"); 315 return false; 316 } 317 } 318 return true; 319 } 320 321 /* Callback from postcopy_ram_supported_by_host block iterator. 322 */ 323 static int test_ramblock_postcopiable(RAMBlock *rb, void *opaque) 324 { 325 const char *block_name = qemu_ram_get_idstr(rb); 326 ram_addr_t length = qemu_ram_get_used_length(rb); 327 size_t pagesize = qemu_ram_pagesize(rb); 328 329 if (length % pagesize) { 330 error_report("Postcopy requires RAM blocks to be a page size multiple," 331 " block %s is 0x" RAM_ADDR_FMT " bytes with a " 332 "page size of 0x%zx", block_name, length, pagesize); 333 return 1; 334 } 335 return 0; 336 } 337 338 /* 339 * Note: This has the side effect of munlock'ing all of RAM, that's 340 * normally fine since if the postcopy succeeds it gets turned back on at the 341 * end. 342 */ 343 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis) 344 { 345 long pagesize = qemu_real_host_page_size; 346 int ufd = -1; 347 bool ret = false; /* Error unless we change it */ 348 void *testarea = NULL; 349 struct uffdio_register reg_struct; 350 struct uffdio_range range_struct; 351 uint64_t feature_mask; 352 Error *local_err = NULL; 353 354 if (qemu_target_page_size() > pagesize) { 355 error_report("Target page size bigger than host page size"); 356 goto out; 357 } 358 359 ufd = syscall(__NR_userfaultfd, O_CLOEXEC); 360 if (ufd == -1) { 361 error_report("%s: userfaultfd not available: %s", __func__, 362 strerror(errno)); 363 goto out; 364 } 365 366 /* Give devices a chance to object */ 367 if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, &local_err)) { 368 error_report_err(local_err); 369 goto out; 370 } 371 372 /* Version and features check */ 373 if (!ufd_check_and_apply(ufd, mis)) { 374 goto out; 375 } 376 377 /* We don't support postcopy with shared RAM yet */ 378 if (foreach_not_ignored_block(test_ramblock_postcopiable, NULL)) { 379 goto out; 380 } 381 382 /* 383 * userfault and mlock don't go together; we'll put it back later if 384 * it was enabled. 385 */ 386 if (munlockall()) { 387 error_report("%s: munlockall: %s", __func__, strerror(errno)); 388 goto out; 389 } 390 391 /* 392 * We need to check that the ops we need are supported on anon memory 393 * To do that we need to register a chunk and see the flags that 394 * are returned. 395 */ 396 testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE | 397 MAP_ANONYMOUS, -1, 0); 398 if (testarea == MAP_FAILED) { 399 error_report("%s: Failed to map test area: %s", __func__, 400 strerror(errno)); 401 goto out; 402 } 403 g_assert(((size_t)testarea & (pagesize - 1)) == 0); 404 405 reg_struct.range.start = (uintptr_t)testarea; 406 reg_struct.range.len = pagesize; 407 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 408 409 if (ioctl(ufd, UFFDIO_REGISTER, ®_struct)) { 410 error_report("%s userfault register: %s", __func__, strerror(errno)); 411 goto out; 412 } 413 414 range_struct.start = (uintptr_t)testarea; 415 range_struct.len = pagesize; 416 if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) { 417 error_report("%s userfault unregister: %s", __func__, strerror(errno)); 418 goto out; 419 } 420 421 feature_mask = (__u64)1 << _UFFDIO_WAKE | 422 (__u64)1 << _UFFDIO_COPY | 423 (__u64)1 << _UFFDIO_ZEROPAGE; 424 if ((reg_struct.ioctls & feature_mask) != feature_mask) { 425 error_report("Missing userfault map features: %" PRIx64, 426 (uint64_t)(~reg_struct.ioctls & feature_mask)); 427 goto out; 428 } 429 430 /* Success! */ 431 ret = true; 432 out: 433 if (testarea) { 434 munmap(testarea, pagesize); 435 } 436 if (ufd != -1) { 437 close(ufd); 438 } 439 return ret; 440 } 441 442 /* 443 * Setup an area of RAM so that it *can* be used for postcopy later; this 444 * must be done right at the start prior to pre-copy. 445 * opaque should be the MIS. 446 */ 447 static int init_range(RAMBlock *rb, void *opaque) 448 { 449 const char *block_name = qemu_ram_get_idstr(rb); 450 void *host_addr = qemu_ram_get_host_addr(rb); 451 ram_addr_t offset = qemu_ram_get_offset(rb); 452 ram_addr_t length = qemu_ram_get_used_length(rb); 453 trace_postcopy_init_range(block_name, host_addr, offset, length); 454 455 /* 456 * We need the whole of RAM to be truly empty for postcopy, so things 457 * like ROMs and any data tables built during init must be zero'd 458 * - we're going to get the copy from the source anyway. 459 * (Precopy will just overwrite this data, so doesn't need the discard) 460 */ 461 if (ram_discard_range(block_name, 0, length)) { 462 return -1; 463 } 464 465 return 0; 466 } 467 468 /* 469 * At the end of migration, undo the effects of init_range 470 * opaque should be the MIS. 471 */ 472 static int cleanup_range(RAMBlock *rb, void *opaque) 473 { 474 const char *block_name = qemu_ram_get_idstr(rb); 475 void *host_addr = qemu_ram_get_host_addr(rb); 476 ram_addr_t offset = qemu_ram_get_offset(rb); 477 ram_addr_t length = qemu_ram_get_used_length(rb); 478 MigrationIncomingState *mis = opaque; 479 struct uffdio_range range_struct; 480 trace_postcopy_cleanup_range(block_name, host_addr, offset, length); 481 482 /* 483 * We turned off hugepage for the precopy stage with postcopy enabled 484 * we can turn it back on now. 485 */ 486 qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE); 487 488 /* 489 * We can also turn off userfault now since we should have all the 490 * pages. It can be useful to leave it on to debug postcopy 491 * if you're not sure it's always getting every page. 492 */ 493 range_struct.start = (uintptr_t)host_addr; 494 range_struct.len = length; 495 496 if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) { 497 error_report("%s: userfault unregister %s", __func__, strerror(errno)); 498 499 return -1; 500 } 501 502 return 0; 503 } 504 505 /* 506 * Initialise postcopy-ram, setting the RAM to a state where we can go into 507 * postcopy later; must be called prior to any precopy. 508 * called from arch_init's similarly named ram_postcopy_incoming_init 509 */ 510 int postcopy_ram_incoming_init(MigrationIncomingState *mis) 511 { 512 if (foreach_not_ignored_block(init_range, NULL)) { 513 return -1; 514 } 515 516 return 0; 517 } 518 519 /* 520 * At the end of a migration where postcopy_ram_incoming_init was called. 521 */ 522 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 523 { 524 trace_postcopy_ram_incoming_cleanup_entry(); 525 526 if (mis->have_fault_thread) { 527 Error *local_err = NULL; 528 529 /* Let the fault thread quit */ 530 qatomic_set(&mis->fault_thread_quit, 1); 531 postcopy_fault_thread_notify(mis); 532 trace_postcopy_ram_incoming_cleanup_join(); 533 qemu_thread_join(&mis->fault_thread); 534 535 if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) { 536 error_report_err(local_err); 537 return -1; 538 } 539 540 if (foreach_not_ignored_block(cleanup_range, mis)) { 541 return -1; 542 } 543 544 trace_postcopy_ram_incoming_cleanup_closeuf(); 545 close(mis->userfault_fd); 546 close(mis->userfault_event_fd); 547 mis->have_fault_thread = false; 548 } 549 550 if (enable_mlock) { 551 if (os_mlock() < 0) { 552 error_report("mlock: %s", strerror(errno)); 553 /* 554 * It doesn't feel right to fail at this point, we have a valid 555 * VM state. 556 */ 557 } 558 } 559 560 if (mis->postcopy_tmp_page) { 561 munmap(mis->postcopy_tmp_page, mis->largest_page_size); 562 mis->postcopy_tmp_page = NULL; 563 } 564 if (mis->postcopy_tmp_zero_page) { 565 munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size); 566 mis->postcopy_tmp_zero_page = NULL; 567 } 568 trace_postcopy_ram_incoming_cleanup_blocktime( 569 get_postcopy_total_blocktime()); 570 571 trace_postcopy_ram_incoming_cleanup_exit(); 572 return 0; 573 } 574 575 /* 576 * Disable huge pages on an area 577 */ 578 static int nhp_range(RAMBlock *rb, void *opaque) 579 { 580 const char *block_name = qemu_ram_get_idstr(rb); 581 void *host_addr = qemu_ram_get_host_addr(rb); 582 ram_addr_t offset = qemu_ram_get_offset(rb); 583 ram_addr_t length = qemu_ram_get_used_length(rb); 584 trace_postcopy_nhp_range(block_name, host_addr, offset, length); 585 586 /* 587 * Before we do discards we need to ensure those discards really 588 * do delete areas of the page, even if THP thinks a hugepage would 589 * be a good idea, so force hugepages off. 590 */ 591 qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE); 592 593 return 0; 594 } 595 596 /* 597 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard 598 * however leaving it until after precopy means that most of the precopy 599 * data is still THPd 600 */ 601 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 602 { 603 if (foreach_not_ignored_block(nhp_range, mis)) { 604 return -1; 605 } 606 607 postcopy_state_set(POSTCOPY_INCOMING_DISCARD); 608 609 return 0; 610 } 611 612 /* 613 * Mark the given area of RAM as requiring notification to unwritten areas 614 * Used as a callback on foreach_not_ignored_block. 615 * host_addr: Base of area to mark 616 * offset: Offset in the whole ram arena 617 * length: Length of the section 618 * opaque: MigrationIncomingState pointer 619 * Returns 0 on success 620 */ 621 static int ram_block_enable_notify(RAMBlock *rb, void *opaque) 622 { 623 MigrationIncomingState *mis = opaque; 624 struct uffdio_register reg_struct; 625 626 reg_struct.range.start = (uintptr_t)qemu_ram_get_host_addr(rb); 627 reg_struct.range.len = qemu_ram_get_used_length(rb); 628 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 629 630 /* Now tell our userfault_fd that it's responsible for this area */ 631 if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, ®_struct)) { 632 error_report("%s userfault register: %s", __func__, strerror(errno)); 633 return -1; 634 } 635 if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) { 636 error_report("%s userfault: Region doesn't support COPY", __func__); 637 return -1; 638 } 639 if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) { 640 qemu_ram_set_uf_zeroable(rb); 641 } 642 643 return 0; 644 } 645 646 int postcopy_wake_shared(struct PostCopyFD *pcfd, 647 uint64_t client_addr, 648 RAMBlock *rb) 649 { 650 size_t pagesize = qemu_ram_pagesize(rb); 651 struct uffdio_range range; 652 int ret; 653 trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb)); 654 range.start = client_addr & ~(pagesize - 1); 655 range.len = pagesize; 656 ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range); 657 if (ret) { 658 error_report("%s: Failed to wake: %zx in %s (%s)", 659 __func__, (size_t)client_addr, qemu_ram_get_idstr(rb), 660 strerror(errno)); 661 } 662 return ret; 663 } 664 665 /* 666 * Callback from shared fault handlers to ask for a page, 667 * the page must be specified by a RAMBlock and an offset in that rb 668 * Note: Only for use by shared fault handlers (in fault thread) 669 */ 670 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb, 671 uint64_t client_addr, uint64_t rb_offset) 672 { 673 size_t pagesize = qemu_ram_pagesize(rb); 674 uint64_t aligned_rbo = rb_offset & ~(pagesize - 1); 675 MigrationIncomingState *mis = migration_incoming_get_current(); 676 677 trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb), 678 rb_offset); 679 if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) { 680 trace_postcopy_request_shared_page_present(pcfd->idstr, 681 qemu_ram_get_idstr(rb), rb_offset); 682 return postcopy_wake_shared(pcfd, client_addr, rb); 683 } 684 migrate_send_rp_req_pages(mis, rb, aligned_rbo, client_addr); 685 return 0; 686 } 687 688 static int get_mem_fault_cpu_index(uint32_t pid) 689 { 690 CPUState *cpu_iter; 691 692 CPU_FOREACH(cpu_iter) { 693 if (cpu_iter->thread_id == pid) { 694 trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid); 695 return cpu_iter->cpu_index; 696 } 697 } 698 trace_get_mem_fault_cpu_index(-1, pid); 699 return -1; 700 } 701 702 static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc) 703 { 704 int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) - 705 dc->start_time; 706 return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX; 707 } 708 709 /* 710 * This function is being called when pagefault occurs. It 711 * tracks down vCPU blocking time. 712 * 713 * @addr: faulted host virtual address 714 * @ptid: faulted process thread id 715 * @rb: ramblock appropriate to addr 716 */ 717 static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid, 718 RAMBlock *rb) 719 { 720 int cpu, already_received; 721 MigrationIncomingState *mis = migration_incoming_get_current(); 722 PostcopyBlocktimeContext *dc = mis->blocktime_ctx; 723 uint32_t low_time_offset; 724 725 if (!dc || ptid == 0) { 726 return; 727 } 728 cpu = get_mem_fault_cpu_index(ptid); 729 if (cpu < 0) { 730 return; 731 } 732 733 low_time_offset = get_low_time_offset(dc); 734 if (dc->vcpu_addr[cpu] == 0) { 735 qatomic_inc(&dc->smp_cpus_down); 736 } 737 738 qatomic_xchg(&dc->last_begin, low_time_offset); 739 qatomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset); 740 qatomic_xchg(&dc->vcpu_addr[cpu], addr); 741 742 /* 743 * check it here, not at the beginning of the function, 744 * due to, check could occur early than bitmap_set in 745 * qemu_ufd_copy_ioctl 746 */ 747 already_received = ramblock_recv_bitmap_test(rb, (void *)addr); 748 if (already_received) { 749 qatomic_xchg(&dc->vcpu_addr[cpu], 0); 750 qatomic_xchg(&dc->page_fault_vcpu_time[cpu], 0); 751 qatomic_dec(&dc->smp_cpus_down); 752 } 753 trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu], 754 cpu, already_received); 755 } 756 757 /* 758 * This function just provide calculated blocktime per cpu and trace it. 759 * Total blocktime is calculated in mark_postcopy_blocktime_end. 760 * 761 * 762 * Assume we have 3 CPU 763 * 764 * S1 E1 S1 E1 765 * -----***********------------xxx***************------------------------> CPU1 766 * 767 * S2 E2 768 * ------------****************xxx---------------------------------------> CPU2 769 * 770 * S3 E3 771 * ------------------------****xxx********-------------------------------> CPU3 772 * 773 * We have sequence S1,S2,E1,S3,S1,E2,E3,E1 774 * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3 775 * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 - 776 * it's a part of total blocktime. 777 * S1 - here is last_begin 778 * Legend of the picture is following: 779 * * - means blocktime per vCPU 780 * x - means overlapped blocktime (total blocktime) 781 * 782 * @addr: host virtual address 783 */ 784 static void mark_postcopy_blocktime_end(uintptr_t addr) 785 { 786 MigrationIncomingState *mis = migration_incoming_get_current(); 787 PostcopyBlocktimeContext *dc = mis->blocktime_ctx; 788 MachineState *ms = MACHINE(qdev_get_machine()); 789 unsigned int smp_cpus = ms->smp.cpus; 790 int i, affected_cpu = 0; 791 bool vcpu_total_blocktime = false; 792 uint32_t read_vcpu_time, low_time_offset; 793 794 if (!dc) { 795 return; 796 } 797 798 low_time_offset = get_low_time_offset(dc); 799 /* lookup cpu, to clear it, 800 * that algorithm looks straightforward, but it's not 801 * optimal, more optimal algorithm is keeping tree or hash 802 * where key is address value is a list of */ 803 for (i = 0; i < smp_cpus; i++) { 804 uint32_t vcpu_blocktime = 0; 805 806 read_vcpu_time = qatomic_fetch_add(&dc->page_fault_vcpu_time[i], 0); 807 if (qatomic_fetch_add(&dc->vcpu_addr[i], 0) != addr || 808 read_vcpu_time == 0) { 809 continue; 810 } 811 qatomic_xchg(&dc->vcpu_addr[i], 0); 812 vcpu_blocktime = low_time_offset - read_vcpu_time; 813 affected_cpu += 1; 814 /* we need to know is that mark_postcopy_end was due to 815 * faulted page, another possible case it's prefetched 816 * page and in that case we shouldn't be here */ 817 if (!vcpu_total_blocktime && 818 qatomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) { 819 vcpu_total_blocktime = true; 820 } 821 /* continue cycle, due to one page could affect several vCPUs */ 822 dc->vcpu_blocktime[i] += vcpu_blocktime; 823 } 824 825 qatomic_sub(&dc->smp_cpus_down, affected_cpu); 826 if (vcpu_total_blocktime) { 827 dc->total_blocktime += low_time_offset - qatomic_fetch_add( 828 &dc->last_begin, 0); 829 } 830 trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime, 831 affected_cpu); 832 } 833 834 static bool postcopy_pause_fault_thread(MigrationIncomingState *mis) 835 { 836 trace_postcopy_pause_fault_thread(); 837 838 qemu_sem_wait(&mis->postcopy_pause_sem_fault); 839 840 trace_postcopy_pause_fault_thread_continued(); 841 842 return true; 843 } 844 845 /* 846 * Handle faults detected by the USERFAULT markings 847 */ 848 static void *postcopy_ram_fault_thread(void *opaque) 849 { 850 MigrationIncomingState *mis = opaque; 851 struct uffd_msg msg; 852 int ret; 853 size_t index; 854 RAMBlock *rb = NULL; 855 856 trace_postcopy_ram_fault_thread_entry(); 857 rcu_register_thread(); 858 mis->last_rb = NULL; /* last RAMBlock we sent part of */ 859 qemu_sem_post(&mis->fault_thread_sem); 860 861 struct pollfd *pfd; 862 size_t pfd_len = 2 + mis->postcopy_remote_fds->len; 863 864 pfd = g_new0(struct pollfd, pfd_len); 865 866 pfd[0].fd = mis->userfault_fd; 867 pfd[0].events = POLLIN; 868 pfd[1].fd = mis->userfault_event_fd; 869 pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */ 870 trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd); 871 for (index = 0; index < mis->postcopy_remote_fds->len; index++) { 872 struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds, 873 struct PostCopyFD, index); 874 pfd[2 + index].fd = pcfd->fd; 875 pfd[2 + index].events = POLLIN; 876 trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr, 877 pcfd->fd); 878 } 879 880 while (true) { 881 ram_addr_t rb_offset; 882 int poll_result; 883 884 /* 885 * We're mainly waiting for the kernel to give us a faulting HVA, 886 * however we can be told to quit via userfault_quit_fd which is 887 * an eventfd 888 */ 889 890 poll_result = poll(pfd, pfd_len, -1 /* Wait forever */); 891 if (poll_result == -1) { 892 error_report("%s: userfault poll: %s", __func__, strerror(errno)); 893 break; 894 } 895 896 if (!mis->to_src_file) { 897 /* 898 * Possibly someone tells us that the return path is 899 * broken already using the event. We should hold until 900 * the channel is rebuilt. 901 */ 902 if (postcopy_pause_fault_thread(mis)) { 903 /* Continue to read the userfaultfd */ 904 } else { 905 error_report("%s: paused but don't allow to continue", 906 __func__); 907 break; 908 } 909 } 910 911 if (pfd[1].revents) { 912 uint64_t tmp64 = 0; 913 914 /* Consume the signal */ 915 if (read(mis->userfault_event_fd, &tmp64, 8) != 8) { 916 /* Nothing obviously nicer than posting this error. */ 917 error_report("%s: read() failed", __func__); 918 } 919 920 if (qatomic_read(&mis->fault_thread_quit)) { 921 trace_postcopy_ram_fault_thread_quit(); 922 break; 923 } 924 } 925 926 if (pfd[0].revents) { 927 poll_result--; 928 ret = read(mis->userfault_fd, &msg, sizeof(msg)); 929 if (ret != sizeof(msg)) { 930 if (errno == EAGAIN) { 931 /* 932 * if a wake up happens on the other thread just after 933 * the poll, there is nothing to read. 934 */ 935 continue; 936 } 937 if (ret < 0) { 938 error_report("%s: Failed to read full userfault " 939 "message: %s", 940 __func__, strerror(errno)); 941 break; 942 } else { 943 error_report("%s: Read %d bytes from userfaultfd " 944 "expected %zd", 945 __func__, ret, sizeof(msg)); 946 break; /* Lost alignment, don't know what we'd read next */ 947 } 948 } 949 if (msg.event != UFFD_EVENT_PAGEFAULT) { 950 error_report("%s: Read unexpected event %ud from userfaultfd", 951 __func__, msg.event); 952 continue; /* It's not a page fault, shouldn't happen */ 953 } 954 955 rb = qemu_ram_block_from_host( 956 (void *)(uintptr_t)msg.arg.pagefault.address, 957 true, &rb_offset); 958 if (!rb) { 959 error_report("postcopy_ram_fault_thread: Fault outside guest: %" 960 PRIx64, (uint64_t)msg.arg.pagefault.address); 961 break; 962 } 963 964 rb_offset &= ~(qemu_ram_pagesize(rb) - 1); 965 trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address, 966 qemu_ram_get_idstr(rb), 967 rb_offset, 968 msg.arg.pagefault.feat.ptid); 969 mark_postcopy_blocktime_begin( 970 (uintptr_t)(msg.arg.pagefault.address), 971 msg.arg.pagefault.feat.ptid, rb); 972 973 retry: 974 /* 975 * Send the request to the source - we want to request one 976 * of our host page sizes (which is >= TPS) 977 */ 978 ret = migrate_send_rp_req_pages(mis, rb, rb_offset, 979 msg.arg.pagefault.address); 980 if (ret) { 981 /* May be network failure, try to wait for recovery */ 982 if (ret == -EIO && postcopy_pause_fault_thread(mis)) { 983 /* We got reconnected somehow, try to continue */ 984 goto retry; 985 } else { 986 /* This is a unavoidable fault */ 987 error_report("%s: migrate_send_rp_req_pages() get %d", 988 __func__, ret); 989 break; 990 } 991 } 992 } 993 994 /* Now handle any requests from external processes on shared memory */ 995 /* TODO: May need to handle devices deregistering during postcopy */ 996 for (index = 2; index < pfd_len && poll_result; index++) { 997 if (pfd[index].revents) { 998 struct PostCopyFD *pcfd = 999 &g_array_index(mis->postcopy_remote_fds, 1000 struct PostCopyFD, index - 2); 1001 1002 poll_result--; 1003 if (pfd[index].revents & POLLERR) { 1004 error_report("%s: POLLERR on poll %zd fd=%d", 1005 __func__, index, pcfd->fd); 1006 pfd[index].events = 0; 1007 continue; 1008 } 1009 1010 ret = read(pcfd->fd, &msg, sizeof(msg)); 1011 if (ret != sizeof(msg)) { 1012 if (errno == EAGAIN) { 1013 /* 1014 * if a wake up happens on the other thread just after 1015 * the poll, there is nothing to read. 1016 */ 1017 continue; 1018 } 1019 if (ret < 0) { 1020 error_report("%s: Failed to read full userfault " 1021 "message: %s (shared) revents=%d", 1022 __func__, strerror(errno), 1023 pfd[index].revents); 1024 /*TODO: Could just disable this sharer */ 1025 break; 1026 } else { 1027 error_report("%s: Read %d bytes from userfaultfd " 1028 "expected %zd (shared)", 1029 __func__, ret, sizeof(msg)); 1030 /*TODO: Could just disable this sharer */ 1031 break; /*Lost alignment,don't know what we'd read next*/ 1032 } 1033 } 1034 if (msg.event != UFFD_EVENT_PAGEFAULT) { 1035 error_report("%s: Read unexpected event %ud " 1036 "from userfaultfd (shared)", 1037 __func__, msg.event); 1038 continue; /* It's not a page fault, shouldn't happen */ 1039 } 1040 /* Call the device handler registered with us */ 1041 ret = pcfd->handler(pcfd, &msg); 1042 if (ret) { 1043 error_report("%s: Failed to resolve shared fault on %zd/%s", 1044 __func__, index, pcfd->idstr); 1045 /* TODO: Fail? Disable this sharer? */ 1046 } 1047 } 1048 } 1049 } 1050 rcu_unregister_thread(); 1051 trace_postcopy_ram_fault_thread_exit(); 1052 g_free(pfd); 1053 return NULL; 1054 } 1055 1056 int postcopy_ram_incoming_setup(MigrationIncomingState *mis) 1057 { 1058 /* Open the fd for the kernel to give us userfaults */ 1059 mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK); 1060 if (mis->userfault_fd == -1) { 1061 error_report("%s: Failed to open userfault fd: %s", __func__, 1062 strerror(errno)); 1063 return -1; 1064 } 1065 1066 /* 1067 * Although the host check already tested the API, we need to 1068 * do the check again as an ABI handshake on the new fd. 1069 */ 1070 if (!ufd_check_and_apply(mis->userfault_fd, mis)) { 1071 return -1; 1072 } 1073 1074 /* Now an eventfd we use to tell the fault-thread to quit */ 1075 mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC); 1076 if (mis->userfault_event_fd == -1) { 1077 error_report("%s: Opening userfault_event_fd: %s", __func__, 1078 strerror(errno)); 1079 close(mis->userfault_fd); 1080 return -1; 1081 } 1082 1083 qemu_sem_init(&mis->fault_thread_sem, 0); 1084 qemu_thread_create(&mis->fault_thread, "postcopy/fault", 1085 postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE); 1086 qemu_sem_wait(&mis->fault_thread_sem); 1087 qemu_sem_destroy(&mis->fault_thread_sem); 1088 mis->have_fault_thread = true; 1089 1090 /* Mark so that we get notified of accesses to unwritten areas */ 1091 if (foreach_not_ignored_block(ram_block_enable_notify, mis)) { 1092 error_report("ram_block_enable_notify failed"); 1093 return -1; 1094 } 1095 1096 mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size, 1097 PROT_READ | PROT_WRITE, MAP_PRIVATE | 1098 MAP_ANONYMOUS, -1, 0); 1099 if (mis->postcopy_tmp_page == MAP_FAILED) { 1100 mis->postcopy_tmp_page = NULL; 1101 error_report("%s: Failed to map postcopy_tmp_page %s", 1102 __func__, strerror(errno)); 1103 return -1; 1104 } 1105 1106 /* 1107 * Map large zero page when kernel can't use UFFDIO_ZEROPAGE for hugepages 1108 */ 1109 mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size, 1110 PROT_READ | PROT_WRITE, 1111 MAP_PRIVATE | MAP_ANONYMOUS, 1112 -1, 0); 1113 if (mis->postcopy_tmp_zero_page == MAP_FAILED) { 1114 int e = errno; 1115 mis->postcopy_tmp_zero_page = NULL; 1116 error_report("%s: Failed to map large zero page %s", 1117 __func__, strerror(e)); 1118 return -e; 1119 } 1120 memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size); 1121 1122 trace_postcopy_ram_enable_notify(); 1123 1124 return 0; 1125 } 1126 1127 static int qemu_ufd_copy_ioctl(MigrationIncomingState *mis, void *host_addr, 1128 void *from_addr, uint64_t pagesize, RAMBlock *rb) 1129 { 1130 int userfault_fd = mis->userfault_fd; 1131 int ret; 1132 1133 if (from_addr) { 1134 struct uffdio_copy copy_struct; 1135 copy_struct.dst = (uint64_t)(uintptr_t)host_addr; 1136 copy_struct.src = (uint64_t)(uintptr_t)from_addr; 1137 copy_struct.len = pagesize; 1138 copy_struct.mode = 0; 1139 ret = ioctl(userfault_fd, UFFDIO_COPY, ©_struct); 1140 } else { 1141 struct uffdio_zeropage zero_struct; 1142 zero_struct.range.start = (uint64_t)(uintptr_t)host_addr; 1143 zero_struct.range.len = pagesize; 1144 zero_struct.mode = 0; 1145 ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct); 1146 } 1147 if (!ret) { 1148 qemu_mutex_lock(&mis->page_request_mutex); 1149 ramblock_recv_bitmap_set_range(rb, host_addr, 1150 pagesize / qemu_target_page_size()); 1151 /* 1152 * If this page resolves a page fault for a previous recorded faulted 1153 * address, take a special note to maintain the requested page list. 1154 */ 1155 if (g_tree_lookup(mis->page_requested, host_addr)) { 1156 g_tree_remove(mis->page_requested, host_addr); 1157 mis->page_requested_count--; 1158 trace_postcopy_page_req_del(host_addr, mis->page_requested_count); 1159 } 1160 qemu_mutex_unlock(&mis->page_request_mutex); 1161 mark_postcopy_blocktime_end((uintptr_t)host_addr); 1162 } 1163 return ret; 1164 } 1165 1166 int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset) 1167 { 1168 int i; 1169 MigrationIncomingState *mis = migration_incoming_get_current(); 1170 GArray *pcrfds = mis->postcopy_remote_fds; 1171 1172 for (i = 0; i < pcrfds->len; i++) { 1173 struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i); 1174 int ret = cur->waker(cur, rb, offset); 1175 if (ret) { 1176 return ret; 1177 } 1178 } 1179 return 0; 1180 } 1181 1182 /* 1183 * Place a host page (from) at (host) atomically 1184 * returns 0 on success 1185 */ 1186 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from, 1187 RAMBlock *rb) 1188 { 1189 size_t pagesize = qemu_ram_pagesize(rb); 1190 1191 /* copy also acks to the kernel waking the stalled thread up 1192 * TODO: We can inhibit that ack and only do it if it was requested 1193 * which would be slightly cheaper, but we'd have to be careful 1194 * of the order of updating our page state. 1195 */ 1196 if (qemu_ufd_copy_ioctl(mis, host, from, pagesize, rb)) { 1197 int e = errno; 1198 error_report("%s: %s copy host: %p from: %p (size: %zd)", 1199 __func__, strerror(e), host, from, pagesize); 1200 1201 return -e; 1202 } 1203 1204 trace_postcopy_place_page(host); 1205 return postcopy_notify_shared_wake(rb, 1206 qemu_ram_block_host_offset(rb, host)); 1207 } 1208 1209 /* 1210 * Place a zero page at (host) atomically 1211 * returns 0 on success 1212 */ 1213 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host, 1214 RAMBlock *rb) 1215 { 1216 size_t pagesize = qemu_ram_pagesize(rb); 1217 trace_postcopy_place_page_zero(host); 1218 1219 /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE 1220 * but it's not available for everything (e.g. hugetlbpages) 1221 */ 1222 if (qemu_ram_is_uf_zeroable(rb)) { 1223 if (qemu_ufd_copy_ioctl(mis, host, NULL, pagesize, rb)) { 1224 int e = errno; 1225 error_report("%s: %s zero host: %p", 1226 __func__, strerror(e), host); 1227 1228 return -e; 1229 } 1230 return postcopy_notify_shared_wake(rb, 1231 qemu_ram_block_host_offset(rb, 1232 host)); 1233 } else { 1234 return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page, rb); 1235 } 1236 } 1237 1238 #else 1239 /* No target OS support, stubs just fail */ 1240 void fill_destination_postcopy_migration_info(MigrationInfo *info) 1241 { 1242 } 1243 1244 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis) 1245 { 1246 error_report("%s: No OS support", __func__); 1247 return false; 1248 } 1249 1250 int postcopy_ram_incoming_init(MigrationIncomingState *mis) 1251 { 1252 error_report("postcopy_ram_incoming_init: No OS support"); 1253 return -1; 1254 } 1255 1256 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 1257 { 1258 assert(0); 1259 return -1; 1260 } 1261 1262 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 1263 { 1264 assert(0); 1265 return -1; 1266 } 1267 1268 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb, 1269 uint64_t client_addr, uint64_t rb_offset) 1270 { 1271 assert(0); 1272 return -1; 1273 } 1274 1275 int postcopy_ram_incoming_setup(MigrationIncomingState *mis) 1276 { 1277 assert(0); 1278 return -1; 1279 } 1280 1281 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from, 1282 RAMBlock *rb) 1283 { 1284 assert(0); 1285 return -1; 1286 } 1287 1288 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host, 1289 RAMBlock *rb) 1290 { 1291 assert(0); 1292 return -1; 1293 } 1294 1295 int postcopy_wake_shared(struct PostCopyFD *pcfd, 1296 uint64_t client_addr, 1297 RAMBlock *rb) 1298 { 1299 assert(0); 1300 return -1; 1301 } 1302 #endif 1303 1304 /* ------------------------------------------------------------------------- */ 1305 1306 void postcopy_fault_thread_notify(MigrationIncomingState *mis) 1307 { 1308 uint64_t tmp64 = 1; 1309 1310 /* 1311 * Wakeup the fault_thread. It's an eventfd that should currently 1312 * be at 0, we're going to increment it to 1 1313 */ 1314 if (write(mis->userfault_event_fd, &tmp64, 8) != 8) { 1315 /* Not much we can do here, but may as well report it */ 1316 error_report("%s: incrementing failed: %s", __func__, 1317 strerror(errno)); 1318 } 1319 } 1320 1321 /** 1322 * postcopy_discard_send_init: Called at the start of each RAMBlock before 1323 * asking to discard individual ranges. 1324 * 1325 * @ms: The current migration state. 1326 * @offset: the bitmap offset of the named RAMBlock in the migration bitmap. 1327 * @name: RAMBlock that discards will operate on. 1328 */ 1329 static PostcopyDiscardState pds = {0}; 1330 void postcopy_discard_send_init(MigrationState *ms, const char *name) 1331 { 1332 pds.ramblock_name = name; 1333 pds.cur_entry = 0; 1334 pds.nsentwords = 0; 1335 pds.nsentcmds = 0; 1336 } 1337 1338 /** 1339 * postcopy_discard_send_range: Called by the bitmap code for each chunk to 1340 * discard. May send a discard message, may just leave it queued to 1341 * be sent later. 1342 * 1343 * @ms: Current migration state. 1344 * @start,@length: a range of pages in the migration bitmap in the 1345 * RAM block passed to postcopy_discard_send_init() (length=1 is one page) 1346 */ 1347 void postcopy_discard_send_range(MigrationState *ms, unsigned long start, 1348 unsigned long length) 1349 { 1350 size_t tp_size = qemu_target_page_size(); 1351 /* Convert to byte offsets within the RAM block */ 1352 pds.start_list[pds.cur_entry] = start * tp_size; 1353 pds.length_list[pds.cur_entry] = length * tp_size; 1354 trace_postcopy_discard_send_range(pds.ramblock_name, start, length); 1355 pds.cur_entry++; 1356 pds.nsentwords++; 1357 1358 if (pds.cur_entry == MAX_DISCARDS_PER_COMMAND) { 1359 /* Full set, ship it! */ 1360 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 1361 pds.ramblock_name, 1362 pds.cur_entry, 1363 pds.start_list, 1364 pds.length_list); 1365 pds.nsentcmds++; 1366 pds.cur_entry = 0; 1367 } 1368 } 1369 1370 /** 1371 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the 1372 * bitmap code. Sends any outstanding discard messages, frees the PDS 1373 * 1374 * @ms: Current migration state. 1375 */ 1376 void postcopy_discard_send_finish(MigrationState *ms) 1377 { 1378 /* Anything unsent? */ 1379 if (pds.cur_entry) { 1380 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 1381 pds.ramblock_name, 1382 pds.cur_entry, 1383 pds.start_list, 1384 pds.length_list); 1385 pds.nsentcmds++; 1386 } 1387 1388 trace_postcopy_discard_send_finish(pds.ramblock_name, pds.nsentwords, 1389 pds.nsentcmds); 1390 } 1391 1392 /* 1393 * Current state of incoming postcopy; note this is not part of 1394 * MigrationIncomingState since it's state is used during cleanup 1395 * at the end as MIS is being freed. 1396 */ 1397 static PostcopyState incoming_postcopy_state; 1398 1399 PostcopyState postcopy_state_get(void) 1400 { 1401 return qatomic_mb_read(&incoming_postcopy_state); 1402 } 1403 1404 /* Set the state and return the old state */ 1405 PostcopyState postcopy_state_set(PostcopyState new_state) 1406 { 1407 return qatomic_xchg(&incoming_postcopy_state, new_state); 1408 } 1409 1410 /* Register a handler for external shared memory postcopy 1411 * called on the destination. 1412 */ 1413 void postcopy_register_shared_ufd(struct PostCopyFD *pcfd) 1414 { 1415 MigrationIncomingState *mis = migration_incoming_get_current(); 1416 1417 mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds, 1418 *pcfd); 1419 } 1420 1421 /* Unregister a handler for external shared memory postcopy 1422 */ 1423 void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd) 1424 { 1425 guint i; 1426 MigrationIncomingState *mis = migration_incoming_get_current(); 1427 GArray *pcrfds = mis->postcopy_remote_fds; 1428 1429 for (i = 0; i < pcrfds->len; i++) { 1430 struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i); 1431 if (cur->fd == pcfd->fd) { 1432 mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i); 1433 return; 1434 } 1435 } 1436 } 1437