1 /* 2 * Postcopy migration for RAM 3 * 4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Dave Gilbert <dgilbert@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14 /* 15 * Postcopy is a migration technique where the execution flips from the 16 * source to the destination before all the data has been copied. 17 */ 18 19 #include "qemu/osdep.h" 20 #include "qemu/madvise.h" 21 #include "exec/target_page.h" 22 #include "migration.h" 23 #include "qemu-file.h" 24 #include "savevm.h" 25 #include "postcopy-ram.h" 26 #include "ram.h" 27 #include "qapi/error.h" 28 #include "qemu/notify.h" 29 #include "qemu/rcu.h" 30 #include "sysemu/sysemu.h" 31 #include "qemu/error-report.h" 32 #include "trace.h" 33 #include "hw/boards.h" 34 #include "exec/ramblock.h" 35 #include "socket.h" 36 #include "yank_functions.h" 37 #include "tls.h" 38 #include "qemu/userfaultfd.h" 39 #include "qemu/mmap-alloc.h" 40 #include "options.h" 41 42 /* Arbitrary limit on size of each discard command, 43 * keeps them around ~200 bytes 44 */ 45 #define MAX_DISCARDS_PER_COMMAND 12 46 47 struct PostcopyDiscardState { 48 const char *ramblock_name; 49 uint16_t cur_entry; 50 /* 51 * Start and length of a discard range (bytes) 52 */ 53 uint64_t start_list[MAX_DISCARDS_PER_COMMAND]; 54 uint64_t length_list[MAX_DISCARDS_PER_COMMAND]; 55 unsigned int nsentwords; 56 unsigned int nsentcmds; 57 }; 58 59 static NotifierWithReturnList postcopy_notifier_list; 60 61 void postcopy_infrastructure_init(void) 62 { 63 notifier_with_return_list_init(&postcopy_notifier_list); 64 } 65 66 void postcopy_add_notifier(NotifierWithReturn *nn) 67 { 68 notifier_with_return_list_add(&postcopy_notifier_list, nn); 69 } 70 71 void postcopy_remove_notifier(NotifierWithReturn *n) 72 { 73 notifier_with_return_remove(n); 74 } 75 76 int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp) 77 { 78 struct PostcopyNotifyData pnd; 79 pnd.reason = reason; 80 pnd.errp = errp; 81 82 return notifier_with_return_list_notify(&postcopy_notifier_list, 83 &pnd); 84 } 85 86 /* 87 * NOTE: this routine is not thread safe, we can't call it concurrently. But it 88 * should be good enough for migration's purposes. 89 */ 90 void postcopy_thread_create(MigrationIncomingState *mis, 91 QemuThread *thread, const char *name, 92 void *(*fn)(void *), int joinable) 93 { 94 qemu_sem_init(&mis->thread_sync_sem, 0); 95 qemu_thread_create(thread, name, fn, mis, joinable); 96 qemu_sem_wait(&mis->thread_sync_sem); 97 qemu_sem_destroy(&mis->thread_sync_sem); 98 } 99 100 /* Postcopy needs to detect accesses to pages that haven't yet been copied 101 * across, and efficiently map new pages in, the techniques for doing this 102 * are target OS specific. 103 */ 104 #if defined(__linux__) 105 106 #include <poll.h> 107 #include <sys/ioctl.h> 108 #include <sys/syscall.h> 109 #include <asm/types.h> /* for __u64 */ 110 #endif 111 112 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD) 113 #include <sys/eventfd.h> 114 #include <linux/userfaultfd.h> 115 116 typedef struct PostcopyBlocktimeContext { 117 /* time when page fault initiated per vCPU */ 118 uint32_t *page_fault_vcpu_time; 119 /* page address per vCPU */ 120 uintptr_t *vcpu_addr; 121 uint32_t total_blocktime; 122 /* blocktime per vCPU */ 123 uint32_t *vcpu_blocktime; 124 /* point in time when last page fault was initiated */ 125 uint32_t last_begin; 126 /* number of vCPU are suspended */ 127 int smp_cpus_down; 128 uint64_t start_time; 129 130 /* 131 * Handler for exit event, necessary for 132 * releasing whole blocktime_ctx 133 */ 134 Notifier exit_notifier; 135 } PostcopyBlocktimeContext; 136 137 static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx) 138 { 139 g_free(ctx->page_fault_vcpu_time); 140 g_free(ctx->vcpu_addr); 141 g_free(ctx->vcpu_blocktime); 142 g_free(ctx); 143 } 144 145 static void migration_exit_cb(Notifier *n, void *data) 146 { 147 PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext, 148 exit_notifier); 149 destroy_blocktime_context(ctx); 150 } 151 152 static struct PostcopyBlocktimeContext *blocktime_context_new(void) 153 { 154 MachineState *ms = MACHINE(qdev_get_machine()); 155 unsigned int smp_cpus = ms->smp.cpus; 156 PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1); 157 ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus); 158 ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus); 159 ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus); 160 161 ctx->exit_notifier.notify = migration_exit_cb; 162 ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 163 qemu_add_exit_notifier(&ctx->exit_notifier); 164 return ctx; 165 } 166 167 static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx) 168 { 169 MachineState *ms = MACHINE(qdev_get_machine()); 170 uint32List *list = NULL; 171 int i; 172 173 for (i = ms->smp.cpus - 1; i >= 0; i--) { 174 QAPI_LIST_PREPEND(list, ctx->vcpu_blocktime[i]); 175 } 176 177 return list; 178 } 179 180 /* 181 * This function just populates MigrationInfo from postcopy's 182 * blocktime context. It will not populate MigrationInfo, 183 * unless postcopy-blocktime capability was set. 184 * 185 * @info: pointer to MigrationInfo to populate 186 */ 187 void fill_destination_postcopy_migration_info(MigrationInfo *info) 188 { 189 MigrationIncomingState *mis = migration_incoming_get_current(); 190 PostcopyBlocktimeContext *bc = mis->blocktime_ctx; 191 192 if (!bc) { 193 return; 194 } 195 196 info->has_postcopy_blocktime = true; 197 info->postcopy_blocktime = bc->total_blocktime; 198 info->has_postcopy_vcpu_blocktime = true; 199 info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc); 200 } 201 202 static uint32_t get_postcopy_total_blocktime(void) 203 { 204 MigrationIncomingState *mis = migration_incoming_get_current(); 205 PostcopyBlocktimeContext *bc = mis->blocktime_ctx; 206 207 if (!bc) { 208 return 0; 209 } 210 211 return bc->total_blocktime; 212 } 213 214 /** 215 * receive_ufd_features: check userfault fd features, to request only supported 216 * features in the future. 217 * 218 * Returns: true on success 219 * 220 * __NR_userfaultfd - should be checked before 221 * @features: out parameter will contain uffdio_api.features provided by kernel 222 * in case of success 223 */ 224 static bool receive_ufd_features(uint64_t *features) 225 { 226 struct uffdio_api api_struct = {0}; 227 int ufd; 228 bool ret = true; 229 230 ufd = uffd_open(O_CLOEXEC); 231 if (ufd == -1) { 232 error_report("%s: uffd_open() failed: %s", __func__, strerror(errno)); 233 return false; 234 } 235 236 /* ask features */ 237 api_struct.api = UFFD_API; 238 api_struct.features = 0; 239 if (ioctl(ufd, UFFDIO_API, &api_struct)) { 240 error_report("%s: UFFDIO_API failed: %s", __func__, 241 strerror(errno)); 242 ret = false; 243 goto release_ufd; 244 } 245 246 *features = api_struct.features; 247 248 release_ufd: 249 close(ufd); 250 return ret; 251 } 252 253 /** 254 * request_ufd_features: this function should be called only once on a newly 255 * opened ufd, subsequent calls will lead to error. 256 * 257 * Returns: true on success 258 * 259 * @ufd: fd obtained from userfaultfd syscall 260 * @features: bit mask see UFFD_API_FEATURES 261 */ 262 static bool request_ufd_features(int ufd, uint64_t features) 263 { 264 struct uffdio_api api_struct = {0}; 265 uint64_t ioctl_mask; 266 267 api_struct.api = UFFD_API; 268 api_struct.features = features; 269 if (ioctl(ufd, UFFDIO_API, &api_struct)) { 270 error_report("%s failed: UFFDIO_API failed: %s", __func__, 271 strerror(errno)); 272 return false; 273 } 274 275 ioctl_mask = (__u64)1 << _UFFDIO_REGISTER | 276 (__u64)1 << _UFFDIO_UNREGISTER; 277 if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) { 278 error_report("Missing userfault features: %" PRIx64, 279 (uint64_t)(~api_struct.ioctls & ioctl_mask)); 280 return false; 281 } 282 283 return true; 284 } 285 286 static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis, 287 Error **errp) 288 { 289 uint64_t asked_features = 0; 290 static uint64_t supported_features; 291 292 ERRP_GUARD(); 293 /* 294 * it's not possible to 295 * request UFFD_API twice per one fd 296 * userfault fd features is persistent 297 */ 298 if (!supported_features) { 299 if (!receive_ufd_features(&supported_features)) { 300 error_setg(errp, "Userfault feature detection failed"); 301 return false; 302 } 303 } 304 305 #ifdef UFFD_FEATURE_THREAD_ID 306 if (UFFD_FEATURE_THREAD_ID & supported_features) { 307 asked_features |= UFFD_FEATURE_THREAD_ID; 308 if (migrate_postcopy_blocktime()) { 309 if (!mis->blocktime_ctx) { 310 mis->blocktime_ctx = blocktime_context_new(); 311 } 312 } 313 } 314 #endif 315 316 /* 317 * request features, even if asked_features is 0, due to 318 * kernel expects UFFD_API before UFFDIO_REGISTER, per 319 * userfault file descriptor 320 */ 321 if (!request_ufd_features(ufd, asked_features)) { 322 error_setg(errp, "Failed features %" PRIu64, asked_features); 323 return false; 324 } 325 326 if (qemu_real_host_page_size() != ram_pagesize_summary()) { 327 bool have_hp = false; 328 /* We've got a huge page */ 329 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS 330 have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS; 331 #endif 332 if (!have_hp) { 333 error_setg(errp, 334 "Userfault on this host does not support huge pages"); 335 return false; 336 } 337 } 338 return true; 339 } 340 341 /* Callback from postcopy_ram_supported_by_host block iterator. 342 */ 343 static int test_ramblock_postcopiable(RAMBlock *rb, Error **errp) 344 { 345 const char *block_name = qemu_ram_get_idstr(rb); 346 ram_addr_t length = qemu_ram_get_used_length(rb); 347 size_t pagesize = qemu_ram_pagesize(rb); 348 QemuFsType fs; 349 350 if (length % pagesize) { 351 error_setg(errp, 352 "Postcopy requires RAM blocks to be a page size multiple," 353 " block %s is 0x" RAM_ADDR_FMT " bytes with a " 354 "page size of 0x%zx", block_name, length, pagesize); 355 return 1; 356 } 357 358 if (rb->fd >= 0) { 359 fs = qemu_fd_getfs(rb->fd); 360 if (fs != QEMU_FS_TYPE_TMPFS && fs != QEMU_FS_TYPE_HUGETLBFS) { 361 error_setg(errp, 362 "Host backend files need to be TMPFS or HUGETLBFS only"); 363 return 1; 364 } 365 } 366 367 return 0; 368 } 369 370 /* 371 * Note: This has the side effect of munlock'ing all of RAM, that's 372 * normally fine since if the postcopy succeeds it gets turned back on at the 373 * end. 374 */ 375 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis, Error **errp) 376 { 377 long pagesize = qemu_real_host_page_size(); 378 int ufd = -1; 379 bool ret = false; /* Error unless we change it */ 380 void *testarea = NULL; 381 struct uffdio_register reg_struct; 382 struct uffdio_range range_struct; 383 uint64_t feature_mask; 384 RAMBlock *block; 385 386 ERRP_GUARD(); 387 if (qemu_target_page_size() > pagesize) { 388 error_setg(errp, "Target page size bigger than host page size"); 389 goto out; 390 } 391 392 ufd = uffd_open(O_CLOEXEC); 393 if (ufd == -1) { 394 error_setg(errp, "Userfaultfd not available: %s", strerror(errno)); 395 goto out; 396 } 397 398 /* Give devices a chance to object */ 399 if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, errp)) { 400 goto out; 401 } 402 403 /* Version and features check */ 404 if (!ufd_check_and_apply(ufd, mis, errp)) { 405 goto out; 406 } 407 408 /* 409 * We don't support postcopy with some type of ramblocks. 410 * 411 * NOTE: we explicitly ignored migrate_ram_is_ignored() instead we checked 412 * all possible ramblocks. This is because this function can be called 413 * when creating the migration object, during the phase RAM_MIGRATABLE 414 * is not even properly set for all the ramblocks. 415 * 416 * A side effect of this is we'll also check against RAM_SHARED 417 * ramblocks even if migrate_ignore_shared() is set (in which case 418 * we'll never migrate RAM_SHARED at all), but normally this shouldn't 419 * affect in reality, or we can revisit. 420 */ 421 RAMBLOCK_FOREACH(block) { 422 if (test_ramblock_postcopiable(block, errp)) { 423 goto out; 424 } 425 } 426 427 /* 428 * userfault and mlock don't go together; we'll put it back later if 429 * it was enabled. 430 */ 431 if (munlockall()) { 432 error_setg(errp, "munlockall() failed: %s", strerror(errno)); 433 goto out; 434 } 435 436 /* 437 * We need to check that the ops we need are supported on anon memory 438 * To do that we need to register a chunk and see the flags that 439 * are returned. 440 */ 441 testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE | 442 MAP_ANONYMOUS, -1, 0); 443 if (testarea == MAP_FAILED) { 444 error_setg(errp, "Failed to map test area: %s", strerror(errno)); 445 goto out; 446 } 447 g_assert(QEMU_PTR_IS_ALIGNED(testarea, pagesize)); 448 449 reg_struct.range.start = (uintptr_t)testarea; 450 reg_struct.range.len = pagesize; 451 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 452 453 if (ioctl(ufd, UFFDIO_REGISTER, ®_struct)) { 454 error_setg(errp, "UFFDIO_REGISTER failed: %s", strerror(errno)); 455 goto out; 456 } 457 458 range_struct.start = (uintptr_t)testarea; 459 range_struct.len = pagesize; 460 if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) { 461 error_setg(errp, "UFFDIO_UNREGISTER failed: %s", strerror(errno)); 462 goto out; 463 } 464 465 feature_mask = (__u64)1 << _UFFDIO_WAKE | 466 (__u64)1 << _UFFDIO_COPY | 467 (__u64)1 << _UFFDIO_ZEROPAGE; 468 if ((reg_struct.ioctls & feature_mask) != feature_mask) { 469 error_setg(errp, "Missing userfault map features: %" PRIx64, 470 (uint64_t)(~reg_struct.ioctls & feature_mask)); 471 goto out; 472 } 473 474 /* Success! */ 475 ret = true; 476 out: 477 if (testarea) { 478 munmap(testarea, pagesize); 479 } 480 if (ufd != -1) { 481 close(ufd); 482 } 483 return ret; 484 } 485 486 /* 487 * Setup an area of RAM so that it *can* be used for postcopy later; this 488 * must be done right at the start prior to pre-copy. 489 * opaque should be the MIS. 490 */ 491 static int init_range(RAMBlock *rb, void *opaque) 492 { 493 const char *block_name = qemu_ram_get_idstr(rb); 494 void *host_addr = qemu_ram_get_host_addr(rb); 495 ram_addr_t offset = qemu_ram_get_offset(rb); 496 ram_addr_t length = qemu_ram_get_used_length(rb); 497 trace_postcopy_init_range(block_name, host_addr, offset, length); 498 499 /* 500 * Save the used_length before running the guest. In case we have to 501 * resize RAM blocks when syncing RAM block sizes from the source during 502 * precopy, we'll update it manually via the ram block notifier. 503 */ 504 rb->postcopy_length = length; 505 506 /* 507 * We need the whole of RAM to be truly empty for postcopy, so things 508 * like ROMs and any data tables built during init must be zero'd 509 * - we're going to get the copy from the source anyway. 510 * (Precopy will just overwrite this data, so doesn't need the discard) 511 */ 512 if (ram_discard_range(block_name, 0, length)) { 513 return -1; 514 } 515 516 return 0; 517 } 518 519 /* 520 * At the end of migration, undo the effects of init_range 521 * opaque should be the MIS. 522 */ 523 static int cleanup_range(RAMBlock *rb, void *opaque) 524 { 525 const char *block_name = qemu_ram_get_idstr(rb); 526 void *host_addr = qemu_ram_get_host_addr(rb); 527 ram_addr_t offset = qemu_ram_get_offset(rb); 528 ram_addr_t length = rb->postcopy_length; 529 MigrationIncomingState *mis = opaque; 530 struct uffdio_range range_struct; 531 trace_postcopy_cleanup_range(block_name, host_addr, offset, length); 532 533 /* 534 * We turned off hugepage for the precopy stage with postcopy enabled 535 * we can turn it back on now. 536 */ 537 qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE); 538 539 /* 540 * We can also turn off userfault now since we should have all the 541 * pages. It can be useful to leave it on to debug postcopy 542 * if you're not sure it's always getting every page. 543 */ 544 range_struct.start = (uintptr_t)host_addr; 545 range_struct.len = length; 546 547 if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) { 548 error_report("%s: userfault unregister %s", __func__, strerror(errno)); 549 550 return -1; 551 } 552 553 return 0; 554 } 555 556 /* 557 * Initialise postcopy-ram, setting the RAM to a state where we can go into 558 * postcopy later; must be called prior to any precopy. 559 * called from arch_init's similarly named ram_postcopy_incoming_init 560 */ 561 int postcopy_ram_incoming_init(MigrationIncomingState *mis) 562 { 563 if (foreach_not_ignored_block(init_range, NULL)) { 564 return -1; 565 } 566 567 return 0; 568 } 569 570 static void postcopy_temp_pages_cleanup(MigrationIncomingState *mis) 571 { 572 int i; 573 574 if (mis->postcopy_tmp_pages) { 575 for (i = 0; i < mis->postcopy_channels; i++) { 576 if (mis->postcopy_tmp_pages[i].tmp_huge_page) { 577 munmap(mis->postcopy_tmp_pages[i].tmp_huge_page, 578 mis->largest_page_size); 579 mis->postcopy_tmp_pages[i].tmp_huge_page = NULL; 580 } 581 } 582 g_free(mis->postcopy_tmp_pages); 583 mis->postcopy_tmp_pages = NULL; 584 } 585 586 if (mis->postcopy_tmp_zero_page) { 587 munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size); 588 mis->postcopy_tmp_zero_page = NULL; 589 } 590 } 591 592 /* 593 * At the end of a migration where postcopy_ram_incoming_init was called. 594 */ 595 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 596 { 597 trace_postcopy_ram_incoming_cleanup_entry(); 598 599 if (mis->preempt_thread_status == PREEMPT_THREAD_CREATED) { 600 /* Notify the fast load thread to quit */ 601 mis->preempt_thread_status = PREEMPT_THREAD_QUIT; 602 /* 603 * Update preempt_thread_status before reading count. Note: mutex 604 * lock only provide ACQUIRE semantic, and it doesn't stops this 605 * write to be reordered after reading the count. 606 */ 607 smp_mb(); 608 /* 609 * It's possible that the preempt thread is still handling the last 610 * pages to arrive which were requested by guest page faults. 611 * Making sure nothing is left behind by waiting on the condvar if 612 * that unlikely case happened. 613 */ 614 WITH_QEMU_LOCK_GUARD(&mis->page_request_mutex) { 615 if (qatomic_read(&mis->page_requested_count)) { 616 /* 617 * It is guaranteed to receive a signal later, because the 618 * count>0 now, so it's destined to be decreased to zero 619 * very soon by the preempt thread. 620 */ 621 qemu_cond_wait(&mis->page_request_cond, 622 &mis->page_request_mutex); 623 } 624 } 625 /* Notify the fast load thread to quit */ 626 if (mis->postcopy_qemufile_dst) { 627 qemu_file_shutdown(mis->postcopy_qemufile_dst); 628 } 629 qemu_thread_join(&mis->postcopy_prio_thread); 630 mis->preempt_thread_status = PREEMPT_THREAD_NONE; 631 } 632 633 if (mis->have_fault_thread) { 634 Error *local_err = NULL; 635 636 /* Let the fault thread quit */ 637 qatomic_set(&mis->fault_thread_quit, 1); 638 postcopy_fault_thread_notify(mis); 639 trace_postcopy_ram_incoming_cleanup_join(); 640 qemu_thread_join(&mis->fault_thread); 641 642 if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) { 643 error_report_err(local_err); 644 return -1; 645 } 646 647 if (foreach_not_ignored_block(cleanup_range, mis)) { 648 return -1; 649 } 650 651 trace_postcopy_ram_incoming_cleanup_closeuf(); 652 close(mis->userfault_fd); 653 close(mis->userfault_event_fd); 654 mis->have_fault_thread = false; 655 } 656 657 if (enable_mlock) { 658 if (os_mlock() < 0) { 659 error_report("mlock: %s", strerror(errno)); 660 /* 661 * It doesn't feel right to fail at this point, we have a valid 662 * VM state. 663 */ 664 } 665 } 666 667 postcopy_temp_pages_cleanup(mis); 668 669 trace_postcopy_ram_incoming_cleanup_blocktime( 670 get_postcopy_total_blocktime()); 671 672 trace_postcopy_ram_incoming_cleanup_exit(); 673 return 0; 674 } 675 676 /* 677 * Disable huge pages on an area 678 */ 679 static int nhp_range(RAMBlock *rb, void *opaque) 680 { 681 const char *block_name = qemu_ram_get_idstr(rb); 682 void *host_addr = qemu_ram_get_host_addr(rb); 683 ram_addr_t offset = qemu_ram_get_offset(rb); 684 ram_addr_t length = rb->postcopy_length; 685 trace_postcopy_nhp_range(block_name, host_addr, offset, length); 686 687 /* 688 * Before we do discards we need to ensure those discards really 689 * do delete areas of the page, even if THP thinks a hugepage would 690 * be a good idea, so force hugepages off. 691 */ 692 qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE); 693 694 return 0; 695 } 696 697 /* 698 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard 699 * however leaving it until after precopy means that most of the precopy 700 * data is still THPd 701 */ 702 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 703 { 704 if (foreach_not_ignored_block(nhp_range, mis)) { 705 return -1; 706 } 707 708 postcopy_state_set(POSTCOPY_INCOMING_DISCARD); 709 710 return 0; 711 } 712 713 /* 714 * Mark the given area of RAM as requiring notification to unwritten areas 715 * Used as a callback on foreach_not_ignored_block. 716 * host_addr: Base of area to mark 717 * offset: Offset in the whole ram arena 718 * length: Length of the section 719 * opaque: MigrationIncomingState pointer 720 * Returns 0 on success 721 */ 722 static int ram_block_enable_notify(RAMBlock *rb, void *opaque) 723 { 724 MigrationIncomingState *mis = opaque; 725 struct uffdio_register reg_struct; 726 727 reg_struct.range.start = (uintptr_t)qemu_ram_get_host_addr(rb); 728 reg_struct.range.len = rb->postcopy_length; 729 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 730 731 /* Now tell our userfault_fd that it's responsible for this area */ 732 if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, ®_struct)) { 733 error_report("%s userfault register: %s", __func__, strerror(errno)); 734 return -1; 735 } 736 if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) { 737 error_report("%s userfault: Region doesn't support COPY", __func__); 738 return -1; 739 } 740 if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) { 741 qemu_ram_set_uf_zeroable(rb); 742 } 743 744 return 0; 745 } 746 747 int postcopy_wake_shared(struct PostCopyFD *pcfd, 748 uint64_t client_addr, 749 RAMBlock *rb) 750 { 751 size_t pagesize = qemu_ram_pagesize(rb); 752 struct uffdio_range range; 753 int ret; 754 trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb)); 755 range.start = ROUND_DOWN(client_addr, pagesize); 756 range.len = pagesize; 757 ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range); 758 if (ret) { 759 error_report("%s: Failed to wake: %zx in %s (%s)", 760 __func__, (size_t)client_addr, qemu_ram_get_idstr(rb), 761 strerror(errno)); 762 } 763 return ret; 764 } 765 766 static int postcopy_request_page(MigrationIncomingState *mis, RAMBlock *rb, 767 ram_addr_t start, uint64_t haddr) 768 { 769 void *aligned = (void *)(uintptr_t)ROUND_DOWN(haddr, qemu_ram_pagesize(rb)); 770 771 /* 772 * Discarded pages (via RamDiscardManager) are never migrated. On unlikely 773 * access, place a zeropage, which will also set the relevant bits in the 774 * recv_bitmap accordingly, so we won't try placing a zeropage twice. 775 * 776 * Checking a single bit is sufficient to handle pagesize > TPS as either 777 * all relevant bits are set or not. 778 */ 779 assert(QEMU_IS_ALIGNED(start, qemu_ram_pagesize(rb))); 780 if (ramblock_page_is_discarded(rb, start)) { 781 bool received = ramblock_recv_bitmap_test_byte_offset(rb, start); 782 783 return received ? 0 : postcopy_place_page_zero(mis, aligned, rb); 784 } 785 786 return migrate_send_rp_req_pages(mis, rb, start, haddr); 787 } 788 789 /* 790 * Callback from shared fault handlers to ask for a page, 791 * the page must be specified by a RAMBlock and an offset in that rb 792 * Note: Only for use by shared fault handlers (in fault thread) 793 */ 794 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb, 795 uint64_t client_addr, uint64_t rb_offset) 796 { 797 uint64_t aligned_rbo = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb)); 798 MigrationIncomingState *mis = migration_incoming_get_current(); 799 800 trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb), 801 rb_offset); 802 if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) { 803 trace_postcopy_request_shared_page_present(pcfd->idstr, 804 qemu_ram_get_idstr(rb), rb_offset); 805 return postcopy_wake_shared(pcfd, client_addr, rb); 806 } 807 postcopy_request_page(mis, rb, aligned_rbo, client_addr); 808 return 0; 809 } 810 811 static int get_mem_fault_cpu_index(uint32_t pid) 812 { 813 CPUState *cpu_iter; 814 815 CPU_FOREACH(cpu_iter) { 816 if (cpu_iter->thread_id == pid) { 817 trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid); 818 return cpu_iter->cpu_index; 819 } 820 } 821 trace_get_mem_fault_cpu_index(-1, pid); 822 return -1; 823 } 824 825 static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc) 826 { 827 int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) - 828 dc->start_time; 829 return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX; 830 } 831 832 /* 833 * This function is being called when pagefault occurs. It 834 * tracks down vCPU blocking time. 835 * 836 * @addr: faulted host virtual address 837 * @ptid: faulted process thread id 838 * @rb: ramblock appropriate to addr 839 */ 840 static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid, 841 RAMBlock *rb) 842 { 843 int cpu, already_received; 844 MigrationIncomingState *mis = migration_incoming_get_current(); 845 PostcopyBlocktimeContext *dc = mis->blocktime_ctx; 846 uint32_t low_time_offset; 847 848 if (!dc || ptid == 0) { 849 return; 850 } 851 cpu = get_mem_fault_cpu_index(ptid); 852 if (cpu < 0) { 853 return; 854 } 855 856 low_time_offset = get_low_time_offset(dc); 857 if (dc->vcpu_addr[cpu] == 0) { 858 qatomic_inc(&dc->smp_cpus_down); 859 } 860 861 qatomic_xchg(&dc->last_begin, low_time_offset); 862 qatomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset); 863 qatomic_xchg(&dc->vcpu_addr[cpu], addr); 864 865 /* 866 * check it here, not at the beginning of the function, 867 * due to, check could occur early than bitmap_set in 868 * qemu_ufd_copy_ioctl 869 */ 870 already_received = ramblock_recv_bitmap_test(rb, (void *)addr); 871 if (already_received) { 872 qatomic_xchg(&dc->vcpu_addr[cpu], 0); 873 qatomic_xchg(&dc->page_fault_vcpu_time[cpu], 0); 874 qatomic_dec(&dc->smp_cpus_down); 875 } 876 trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu], 877 cpu, already_received); 878 } 879 880 /* 881 * This function just provide calculated blocktime per cpu and trace it. 882 * Total blocktime is calculated in mark_postcopy_blocktime_end. 883 * 884 * 885 * Assume we have 3 CPU 886 * 887 * S1 E1 S1 E1 888 * -----***********------------xxx***************------------------------> CPU1 889 * 890 * S2 E2 891 * ------------****************xxx---------------------------------------> CPU2 892 * 893 * S3 E3 894 * ------------------------****xxx********-------------------------------> CPU3 895 * 896 * We have sequence S1,S2,E1,S3,S1,E2,E3,E1 897 * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3 898 * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 - 899 * it's a part of total blocktime. 900 * S1 - here is last_begin 901 * Legend of the picture is following: 902 * * - means blocktime per vCPU 903 * x - means overlapped blocktime (total blocktime) 904 * 905 * @addr: host virtual address 906 */ 907 static void mark_postcopy_blocktime_end(uintptr_t addr) 908 { 909 MigrationIncomingState *mis = migration_incoming_get_current(); 910 PostcopyBlocktimeContext *dc = mis->blocktime_ctx; 911 MachineState *ms = MACHINE(qdev_get_machine()); 912 unsigned int smp_cpus = ms->smp.cpus; 913 int i, affected_cpu = 0; 914 bool vcpu_total_blocktime = false; 915 uint32_t read_vcpu_time, low_time_offset; 916 917 if (!dc) { 918 return; 919 } 920 921 low_time_offset = get_low_time_offset(dc); 922 /* lookup cpu, to clear it, 923 * that algorithm looks straightforward, but it's not 924 * optimal, more optimal algorithm is keeping tree or hash 925 * where key is address value is a list of */ 926 for (i = 0; i < smp_cpus; i++) { 927 uint32_t vcpu_blocktime = 0; 928 929 read_vcpu_time = qatomic_fetch_add(&dc->page_fault_vcpu_time[i], 0); 930 if (qatomic_fetch_add(&dc->vcpu_addr[i], 0) != addr || 931 read_vcpu_time == 0) { 932 continue; 933 } 934 qatomic_xchg(&dc->vcpu_addr[i], 0); 935 vcpu_blocktime = low_time_offset - read_vcpu_time; 936 affected_cpu += 1; 937 /* we need to know is that mark_postcopy_end was due to 938 * faulted page, another possible case it's prefetched 939 * page and in that case we shouldn't be here */ 940 if (!vcpu_total_blocktime && 941 qatomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) { 942 vcpu_total_blocktime = true; 943 } 944 /* continue cycle, due to one page could affect several vCPUs */ 945 dc->vcpu_blocktime[i] += vcpu_blocktime; 946 } 947 948 qatomic_sub(&dc->smp_cpus_down, affected_cpu); 949 if (vcpu_total_blocktime) { 950 dc->total_blocktime += low_time_offset - qatomic_fetch_add( 951 &dc->last_begin, 0); 952 } 953 trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime, 954 affected_cpu); 955 } 956 957 static void postcopy_pause_fault_thread(MigrationIncomingState *mis) 958 { 959 trace_postcopy_pause_fault_thread(); 960 qemu_sem_wait(&mis->postcopy_pause_sem_fault); 961 trace_postcopy_pause_fault_thread_continued(); 962 } 963 964 /* 965 * Handle faults detected by the USERFAULT markings 966 */ 967 static void *postcopy_ram_fault_thread(void *opaque) 968 { 969 MigrationIncomingState *mis = opaque; 970 struct uffd_msg msg; 971 int ret; 972 size_t index; 973 RAMBlock *rb = NULL; 974 975 trace_postcopy_ram_fault_thread_entry(); 976 rcu_register_thread(); 977 mis->last_rb = NULL; /* last RAMBlock we sent part of */ 978 qemu_sem_post(&mis->thread_sync_sem); 979 980 struct pollfd *pfd; 981 size_t pfd_len = 2 + mis->postcopy_remote_fds->len; 982 983 pfd = g_new0(struct pollfd, pfd_len); 984 985 pfd[0].fd = mis->userfault_fd; 986 pfd[0].events = POLLIN; 987 pfd[1].fd = mis->userfault_event_fd; 988 pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */ 989 trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd); 990 for (index = 0; index < mis->postcopy_remote_fds->len; index++) { 991 struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds, 992 struct PostCopyFD, index); 993 pfd[2 + index].fd = pcfd->fd; 994 pfd[2 + index].events = POLLIN; 995 trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr, 996 pcfd->fd); 997 } 998 999 while (true) { 1000 ram_addr_t rb_offset; 1001 int poll_result; 1002 1003 /* 1004 * We're mainly waiting for the kernel to give us a faulting HVA, 1005 * however we can be told to quit via userfault_quit_fd which is 1006 * an eventfd 1007 */ 1008 1009 poll_result = poll(pfd, pfd_len, -1 /* Wait forever */); 1010 if (poll_result == -1) { 1011 error_report("%s: userfault poll: %s", __func__, strerror(errno)); 1012 break; 1013 } 1014 1015 if (!mis->to_src_file) { 1016 /* 1017 * Possibly someone tells us that the return path is 1018 * broken already using the event. We should hold until 1019 * the channel is rebuilt. 1020 */ 1021 postcopy_pause_fault_thread(mis); 1022 } 1023 1024 if (pfd[1].revents) { 1025 uint64_t tmp64 = 0; 1026 1027 /* Consume the signal */ 1028 if (read(mis->userfault_event_fd, &tmp64, 8) != 8) { 1029 /* Nothing obviously nicer than posting this error. */ 1030 error_report("%s: read() failed", __func__); 1031 } 1032 1033 if (qatomic_read(&mis->fault_thread_quit)) { 1034 trace_postcopy_ram_fault_thread_quit(); 1035 break; 1036 } 1037 } 1038 1039 if (pfd[0].revents) { 1040 poll_result--; 1041 ret = read(mis->userfault_fd, &msg, sizeof(msg)); 1042 if (ret != sizeof(msg)) { 1043 if (errno == EAGAIN) { 1044 /* 1045 * if a wake up happens on the other thread just after 1046 * the poll, there is nothing to read. 1047 */ 1048 continue; 1049 } 1050 if (ret < 0) { 1051 error_report("%s: Failed to read full userfault " 1052 "message: %s", 1053 __func__, strerror(errno)); 1054 break; 1055 } else { 1056 error_report("%s: Read %d bytes from userfaultfd " 1057 "expected %zd", 1058 __func__, ret, sizeof(msg)); 1059 break; /* Lost alignment, don't know what we'd read next */ 1060 } 1061 } 1062 if (msg.event != UFFD_EVENT_PAGEFAULT) { 1063 error_report("%s: Read unexpected event %ud from userfaultfd", 1064 __func__, msg.event); 1065 continue; /* It's not a page fault, shouldn't happen */ 1066 } 1067 1068 rb = qemu_ram_block_from_host( 1069 (void *)(uintptr_t)msg.arg.pagefault.address, 1070 true, &rb_offset); 1071 if (!rb) { 1072 error_report("postcopy_ram_fault_thread: Fault outside guest: %" 1073 PRIx64, (uint64_t)msg.arg.pagefault.address); 1074 break; 1075 } 1076 1077 rb_offset = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb)); 1078 trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address, 1079 qemu_ram_get_idstr(rb), 1080 rb_offset, 1081 msg.arg.pagefault.feat.ptid); 1082 mark_postcopy_blocktime_begin( 1083 (uintptr_t)(msg.arg.pagefault.address), 1084 msg.arg.pagefault.feat.ptid, rb); 1085 1086 retry: 1087 /* 1088 * Send the request to the source - we want to request one 1089 * of our host page sizes (which is >= TPS) 1090 */ 1091 ret = postcopy_request_page(mis, rb, rb_offset, 1092 msg.arg.pagefault.address); 1093 if (ret) { 1094 /* May be network failure, try to wait for recovery */ 1095 postcopy_pause_fault_thread(mis); 1096 goto retry; 1097 } 1098 } 1099 1100 /* Now handle any requests from external processes on shared memory */ 1101 /* TODO: May need to handle devices deregistering during postcopy */ 1102 for (index = 2; index < pfd_len && poll_result; index++) { 1103 if (pfd[index].revents) { 1104 struct PostCopyFD *pcfd = 1105 &g_array_index(mis->postcopy_remote_fds, 1106 struct PostCopyFD, index - 2); 1107 1108 poll_result--; 1109 if (pfd[index].revents & POLLERR) { 1110 error_report("%s: POLLERR on poll %zd fd=%d", 1111 __func__, index, pcfd->fd); 1112 pfd[index].events = 0; 1113 continue; 1114 } 1115 1116 ret = read(pcfd->fd, &msg, sizeof(msg)); 1117 if (ret != sizeof(msg)) { 1118 if (errno == EAGAIN) { 1119 /* 1120 * if a wake up happens on the other thread just after 1121 * the poll, there is nothing to read. 1122 */ 1123 continue; 1124 } 1125 if (ret < 0) { 1126 error_report("%s: Failed to read full userfault " 1127 "message: %s (shared) revents=%d", 1128 __func__, strerror(errno), 1129 pfd[index].revents); 1130 /*TODO: Could just disable this sharer */ 1131 break; 1132 } else { 1133 error_report("%s: Read %d bytes from userfaultfd " 1134 "expected %zd (shared)", 1135 __func__, ret, sizeof(msg)); 1136 /*TODO: Could just disable this sharer */ 1137 break; /*Lost alignment,don't know what we'd read next*/ 1138 } 1139 } 1140 if (msg.event != UFFD_EVENT_PAGEFAULT) { 1141 error_report("%s: Read unexpected event %ud " 1142 "from userfaultfd (shared)", 1143 __func__, msg.event); 1144 continue; /* It's not a page fault, shouldn't happen */ 1145 } 1146 /* Call the device handler registered with us */ 1147 ret = pcfd->handler(pcfd, &msg); 1148 if (ret) { 1149 error_report("%s: Failed to resolve shared fault on %zd/%s", 1150 __func__, index, pcfd->idstr); 1151 /* TODO: Fail? Disable this sharer? */ 1152 } 1153 } 1154 } 1155 } 1156 rcu_unregister_thread(); 1157 trace_postcopy_ram_fault_thread_exit(); 1158 g_free(pfd); 1159 return NULL; 1160 } 1161 1162 static int postcopy_temp_pages_setup(MigrationIncomingState *mis) 1163 { 1164 PostcopyTmpPage *tmp_page; 1165 int err, i, channels; 1166 void *temp_page; 1167 1168 if (migrate_postcopy_preempt()) { 1169 /* If preemption enabled, need extra channel for urgent requests */ 1170 mis->postcopy_channels = RAM_CHANNEL_MAX; 1171 } else { 1172 /* Both precopy/postcopy on the same channel */ 1173 mis->postcopy_channels = 1; 1174 } 1175 1176 channels = mis->postcopy_channels; 1177 mis->postcopy_tmp_pages = g_malloc0_n(sizeof(PostcopyTmpPage), channels); 1178 1179 for (i = 0; i < channels; i++) { 1180 tmp_page = &mis->postcopy_tmp_pages[i]; 1181 temp_page = mmap(NULL, mis->largest_page_size, PROT_READ | PROT_WRITE, 1182 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1183 if (temp_page == MAP_FAILED) { 1184 err = errno; 1185 error_report("%s: Failed to map postcopy_tmp_pages[%d]: %s", 1186 __func__, i, strerror(err)); 1187 /* Clean up will be done later */ 1188 return -err; 1189 } 1190 tmp_page->tmp_huge_page = temp_page; 1191 /* Initialize default states for each tmp page */ 1192 postcopy_temp_page_reset(tmp_page); 1193 } 1194 1195 /* 1196 * Map large zero page when kernel can't use UFFDIO_ZEROPAGE for hugepages 1197 */ 1198 mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size, 1199 PROT_READ | PROT_WRITE, 1200 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1201 if (mis->postcopy_tmp_zero_page == MAP_FAILED) { 1202 err = errno; 1203 mis->postcopy_tmp_zero_page = NULL; 1204 error_report("%s: Failed to map large zero page %s", 1205 __func__, strerror(err)); 1206 return -err; 1207 } 1208 1209 memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size); 1210 1211 return 0; 1212 } 1213 1214 int postcopy_ram_incoming_setup(MigrationIncomingState *mis) 1215 { 1216 Error *local_err = NULL; 1217 1218 /* Open the fd for the kernel to give us userfaults */ 1219 mis->userfault_fd = uffd_open(O_CLOEXEC | O_NONBLOCK); 1220 if (mis->userfault_fd == -1) { 1221 error_report("%s: Failed to open userfault fd: %s", __func__, 1222 strerror(errno)); 1223 return -1; 1224 } 1225 1226 /* 1227 * Although the host check already tested the API, we need to 1228 * do the check again as an ABI handshake on the new fd. 1229 */ 1230 if (!ufd_check_and_apply(mis->userfault_fd, mis, &local_err)) { 1231 error_report_err(local_err); 1232 return -1; 1233 } 1234 1235 /* Now an eventfd we use to tell the fault-thread to quit */ 1236 mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC); 1237 if (mis->userfault_event_fd == -1) { 1238 error_report("%s: Opening userfault_event_fd: %s", __func__, 1239 strerror(errno)); 1240 close(mis->userfault_fd); 1241 return -1; 1242 } 1243 1244 postcopy_thread_create(mis, &mis->fault_thread, "fault-default", 1245 postcopy_ram_fault_thread, QEMU_THREAD_JOINABLE); 1246 mis->have_fault_thread = true; 1247 1248 /* Mark so that we get notified of accesses to unwritten areas */ 1249 if (foreach_not_ignored_block(ram_block_enable_notify, mis)) { 1250 error_report("ram_block_enable_notify failed"); 1251 return -1; 1252 } 1253 1254 if (postcopy_temp_pages_setup(mis)) { 1255 /* Error dumped in the sub-function */ 1256 return -1; 1257 } 1258 1259 if (migrate_postcopy_preempt()) { 1260 /* 1261 * This thread needs to be created after the temp pages because 1262 * it'll fetch RAM_CHANNEL_POSTCOPY PostcopyTmpPage immediately. 1263 */ 1264 postcopy_thread_create(mis, &mis->postcopy_prio_thread, "fault-fast", 1265 postcopy_preempt_thread, QEMU_THREAD_JOINABLE); 1266 mis->preempt_thread_status = PREEMPT_THREAD_CREATED; 1267 } 1268 1269 trace_postcopy_ram_enable_notify(); 1270 1271 return 0; 1272 } 1273 1274 static int qemu_ufd_copy_ioctl(MigrationIncomingState *mis, void *host_addr, 1275 void *from_addr, uint64_t pagesize, RAMBlock *rb) 1276 { 1277 int userfault_fd = mis->userfault_fd; 1278 int ret; 1279 1280 if (from_addr) { 1281 struct uffdio_copy copy_struct; 1282 copy_struct.dst = (uint64_t)(uintptr_t)host_addr; 1283 copy_struct.src = (uint64_t)(uintptr_t)from_addr; 1284 copy_struct.len = pagesize; 1285 copy_struct.mode = 0; 1286 ret = ioctl(userfault_fd, UFFDIO_COPY, ©_struct); 1287 } else { 1288 struct uffdio_zeropage zero_struct; 1289 zero_struct.range.start = (uint64_t)(uintptr_t)host_addr; 1290 zero_struct.range.len = pagesize; 1291 zero_struct.mode = 0; 1292 ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct); 1293 } 1294 if (!ret) { 1295 qemu_mutex_lock(&mis->page_request_mutex); 1296 ramblock_recv_bitmap_set_range(rb, host_addr, 1297 pagesize / qemu_target_page_size()); 1298 /* 1299 * If this page resolves a page fault for a previous recorded faulted 1300 * address, take a special note to maintain the requested page list. 1301 */ 1302 if (g_tree_lookup(mis->page_requested, host_addr)) { 1303 g_tree_remove(mis->page_requested, host_addr); 1304 int left_pages = qatomic_dec_fetch(&mis->page_requested_count); 1305 1306 trace_postcopy_page_req_del(host_addr, mis->page_requested_count); 1307 /* Order the update of count and read of preempt status */ 1308 smp_mb(); 1309 if (mis->preempt_thread_status == PREEMPT_THREAD_QUIT && 1310 left_pages == 0) { 1311 /* 1312 * This probably means the main thread is waiting for us. 1313 * Notify that we've finished receiving the last requested 1314 * page. 1315 */ 1316 qemu_cond_signal(&mis->page_request_cond); 1317 } 1318 } 1319 qemu_mutex_unlock(&mis->page_request_mutex); 1320 mark_postcopy_blocktime_end((uintptr_t)host_addr); 1321 } 1322 return ret; 1323 } 1324 1325 int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset) 1326 { 1327 int i; 1328 MigrationIncomingState *mis = migration_incoming_get_current(); 1329 GArray *pcrfds = mis->postcopy_remote_fds; 1330 1331 for (i = 0; i < pcrfds->len; i++) { 1332 struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i); 1333 int ret = cur->waker(cur, rb, offset); 1334 if (ret) { 1335 return ret; 1336 } 1337 } 1338 return 0; 1339 } 1340 1341 /* 1342 * Place a host page (from) at (host) atomically 1343 * returns 0 on success 1344 */ 1345 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from, 1346 RAMBlock *rb) 1347 { 1348 size_t pagesize = qemu_ram_pagesize(rb); 1349 1350 /* copy also acks to the kernel waking the stalled thread up 1351 * TODO: We can inhibit that ack and only do it if it was requested 1352 * which would be slightly cheaper, but we'd have to be careful 1353 * of the order of updating our page state. 1354 */ 1355 if (qemu_ufd_copy_ioctl(mis, host, from, pagesize, rb)) { 1356 int e = errno; 1357 error_report("%s: %s copy host: %p from: %p (size: %zd)", 1358 __func__, strerror(e), host, from, pagesize); 1359 1360 return -e; 1361 } 1362 1363 trace_postcopy_place_page(host); 1364 return postcopy_notify_shared_wake(rb, 1365 qemu_ram_block_host_offset(rb, host)); 1366 } 1367 1368 /* 1369 * Place a zero page at (host) atomically 1370 * returns 0 on success 1371 */ 1372 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host, 1373 RAMBlock *rb) 1374 { 1375 size_t pagesize = qemu_ram_pagesize(rb); 1376 trace_postcopy_place_page_zero(host); 1377 1378 /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE 1379 * but it's not available for everything (e.g. hugetlbpages) 1380 */ 1381 if (qemu_ram_is_uf_zeroable(rb)) { 1382 if (qemu_ufd_copy_ioctl(mis, host, NULL, pagesize, rb)) { 1383 int e = errno; 1384 error_report("%s: %s zero host: %p", 1385 __func__, strerror(e), host); 1386 1387 return -e; 1388 } 1389 return postcopy_notify_shared_wake(rb, 1390 qemu_ram_block_host_offset(rb, 1391 host)); 1392 } else { 1393 return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page, rb); 1394 } 1395 } 1396 1397 #else 1398 /* No target OS support, stubs just fail */ 1399 void fill_destination_postcopy_migration_info(MigrationInfo *info) 1400 { 1401 } 1402 1403 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis, Error **errp) 1404 { 1405 error_report("%s: No OS support", __func__); 1406 return false; 1407 } 1408 1409 int postcopy_ram_incoming_init(MigrationIncomingState *mis) 1410 { 1411 error_report("postcopy_ram_incoming_init: No OS support"); 1412 return -1; 1413 } 1414 1415 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 1416 { 1417 assert(0); 1418 return -1; 1419 } 1420 1421 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 1422 { 1423 assert(0); 1424 return -1; 1425 } 1426 1427 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb, 1428 uint64_t client_addr, uint64_t rb_offset) 1429 { 1430 assert(0); 1431 return -1; 1432 } 1433 1434 int postcopy_ram_incoming_setup(MigrationIncomingState *mis) 1435 { 1436 assert(0); 1437 return -1; 1438 } 1439 1440 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from, 1441 RAMBlock *rb) 1442 { 1443 assert(0); 1444 return -1; 1445 } 1446 1447 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host, 1448 RAMBlock *rb) 1449 { 1450 assert(0); 1451 return -1; 1452 } 1453 1454 int postcopy_wake_shared(struct PostCopyFD *pcfd, 1455 uint64_t client_addr, 1456 RAMBlock *rb) 1457 { 1458 assert(0); 1459 return -1; 1460 } 1461 #endif 1462 1463 /* ------------------------------------------------------------------------- */ 1464 void postcopy_temp_page_reset(PostcopyTmpPage *tmp_page) 1465 { 1466 tmp_page->target_pages = 0; 1467 tmp_page->host_addr = NULL; 1468 /* 1469 * This is set to true when reset, and cleared as long as we received any 1470 * of the non-zero small page within this huge page. 1471 */ 1472 tmp_page->all_zero = true; 1473 } 1474 1475 void postcopy_fault_thread_notify(MigrationIncomingState *mis) 1476 { 1477 uint64_t tmp64 = 1; 1478 1479 /* 1480 * Wakeup the fault_thread. It's an eventfd that should currently 1481 * be at 0, we're going to increment it to 1 1482 */ 1483 if (write(mis->userfault_event_fd, &tmp64, 8) != 8) { 1484 /* Not much we can do here, but may as well report it */ 1485 error_report("%s: incrementing failed: %s", __func__, 1486 strerror(errno)); 1487 } 1488 } 1489 1490 /** 1491 * postcopy_discard_send_init: Called at the start of each RAMBlock before 1492 * asking to discard individual ranges. 1493 * 1494 * @ms: The current migration state. 1495 * @offset: the bitmap offset of the named RAMBlock in the migration bitmap. 1496 * @name: RAMBlock that discards will operate on. 1497 */ 1498 static PostcopyDiscardState pds = {0}; 1499 void postcopy_discard_send_init(MigrationState *ms, const char *name) 1500 { 1501 pds.ramblock_name = name; 1502 pds.cur_entry = 0; 1503 pds.nsentwords = 0; 1504 pds.nsentcmds = 0; 1505 } 1506 1507 /** 1508 * postcopy_discard_send_range: Called by the bitmap code for each chunk to 1509 * discard. May send a discard message, may just leave it queued to 1510 * be sent later. 1511 * 1512 * @ms: Current migration state. 1513 * @start,@length: a range of pages in the migration bitmap in the 1514 * RAM block passed to postcopy_discard_send_init() (length=1 is one page) 1515 */ 1516 void postcopy_discard_send_range(MigrationState *ms, unsigned long start, 1517 unsigned long length) 1518 { 1519 size_t tp_size = qemu_target_page_size(); 1520 /* Convert to byte offsets within the RAM block */ 1521 pds.start_list[pds.cur_entry] = start * tp_size; 1522 pds.length_list[pds.cur_entry] = length * tp_size; 1523 trace_postcopy_discard_send_range(pds.ramblock_name, start, length); 1524 pds.cur_entry++; 1525 pds.nsentwords++; 1526 1527 if (pds.cur_entry == MAX_DISCARDS_PER_COMMAND) { 1528 /* Full set, ship it! */ 1529 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 1530 pds.ramblock_name, 1531 pds.cur_entry, 1532 pds.start_list, 1533 pds.length_list); 1534 pds.nsentcmds++; 1535 pds.cur_entry = 0; 1536 } 1537 } 1538 1539 /** 1540 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the 1541 * bitmap code. Sends any outstanding discard messages, frees the PDS 1542 * 1543 * @ms: Current migration state. 1544 */ 1545 void postcopy_discard_send_finish(MigrationState *ms) 1546 { 1547 /* Anything unsent? */ 1548 if (pds.cur_entry) { 1549 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 1550 pds.ramblock_name, 1551 pds.cur_entry, 1552 pds.start_list, 1553 pds.length_list); 1554 pds.nsentcmds++; 1555 } 1556 1557 trace_postcopy_discard_send_finish(pds.ramblock_name, pds.nsentwords, 1558 pds.nsentcmds); 1559 } 1560 1561 /* 1562 * Current state of incoming postcopy; note this is not part of 1563 * MigrationIncomingState since it's state is used during cleanup 1564 * at the end as MIS is being freed. 1565 */ 1566 static PostcopyState incoming_postcopy_state; 1567 1568 PostcopyState postcopy_state_get(void) 1569 { 1570 return qatomic_load_acquire(&incoming_postcopy_state); 1571 } 1572 1573 /* Set the state and return the old state */ 1574 PostcopyState postcopy_state_set(PostcopyState new_state) 1575 { 1576 return qatomic_xchg(&incoming_postcopy_state, new_state); 1577 } 1578 1579 /* Register a handler for external shared memory postcopy 1580 * called on the destination. 1581 */ 1582 void postcopy_register_shared_ufd(struct PostCopyFD *pcfd) 1583 { 1584 MigrationIncomingState *mis = migration_incoming_get_current(); 1585 1586 mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds, 1587 *pcfd); 1588 } 1589 1590 /* Unregister a handler for external shared memory postcopy 1591 */ 1592 void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd) 1593 { 1594 guint i; 1595 MigrationIncomingState *mis = migration_incoming_get_current(); 1596 GArray *pcrfds = mis->postcopy_remote_fds; 1597 1598 if (!pcrfds) { 1599 /* migration has already finished and freed the array */ 1600 return; 1601 } 1602 for (i = 0; i < pcrfds->len; i++) { 1603 struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i); 1604 if (cur->fd == pcfd->fd) { 1605 mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i); 1606 return; 1607 } 1608 } 1609 } 1610 1611 void postcopy_preempt_new_channel(MigrationIncomingState *mis, QEMUFile *file) 1612 { 1613 /* 1614 * The new loading channel has its own threads, so it needs to be 1615 * blocked too. It's by default true, just be explicit. 1616 */ 1617 qemu_file_set_blocking(file, true); 1618 mis->postcopy_qemufile_dst = file; 1619 qemu_sem_post(&mis->postcopy_qemufile_dst_done); 1620 trace_postcopy_preempt_new_channel(); 1621 } 1622 1623 /* 1624 * Setup the postcopy preempt channel with the IOC. If ERROR is specified, 1625 * setup the error instead. This helper will free the ERROR if specified. 1626 */ 1627 static void 1628 postcopy_preempt_send_channel_done(MigrationState *s, 1629 QIOChannel *ioc, Error *local_err) 1630 { 1631 if (local_err) { 1632 migrate_set_error(s, local_err); 1633 error_free(local_err); 1634 } else { 1635 migration_ioc_register_yank(ioc); 1636 s->postcopy_qemufile_src = qemu_file_new_output(ioc); 1637 trace_postcopy_preempt_new_channel(); 1638 } 1639 1640 /* 1641 * Kick the waiter in all cases. The waiter should check upon 1642 * postcopy_qemufile_src to know whether it failed or not. 1643 */ 1644 qemu_sem_post(&s->postcopy_qemufile_src_sem); 1645 } 1646 1647 static void 1648 postcopy_preempt_tls_handshake(QIOTask *task, gpointer opaque) 1649 { 1650 g_autoptr(QIOChannel) ioc = QIO_CHANNEL(qio_task_get_source(task)); 1651 MigrationState *s = opaque; 1652 Error *local_err = NULL; 1653 1654 qio_task_propagate_error(task, &local_err); 1655 postcopy_preempt_send_channel_done(s, ioc, local_err); 1656 } 1657 1658 static void 1659 postcopy_preempt_send_channel_new(QIOTask *task, gpointer opaque) 1660 { 1661 g_autoptr(QIOChannel) ioc = QIO_CHANNEL(qio_task_get_source(task)); 1662 MigrationState *s = opaque; 1663 QIOChannelTLS *tioc; 1664 Error *local_err = NULL; 1665 1666 if (qio_task_propagate_error(task, &local_err)) { 1667 goto out; 1668 } 1669 1670 if (migrate_channel_requires_tls_upgrade(ioc)) { 1671 tioc = migration_tls_client_create(ioc, s->hostname, &local_err); 1672 if (!tioc) { 1673 goto out; 1674 } 1675 trace_postcopy_preempt_tls_handshake(); 1676 qio_channel_set_name(QIO_CHANNEL(tioc), "migration-tls-preempt"); 1677 qio_channel_tls_handshake(tioc, postcopy_preempt_tls_handshake, 1678 s, NULL, NULL); 1679 /* Setup the channel until TLS handshake finished */ 1680 return; 1681 } 1682 1683 out: 1684 /* This handles both good and error cases */ 1685 postcopy_preempt_send_channel_done(s, ioc, local_err); 1686 } 1687 1688 /* 1689 * This function will kick off an async task to establish the preempt 1690 * channel, and wait until the connection setup completed. Returns 0 if 1691 * channel established, -1 for error. 1692 */ 1693 int postcopy_preempt_establish_channel(MigrationState *s) 1694 { 1695 /* If preempt not enabled, no need to wait */ 1696 if (!migrate_postcopy_preempt()) { 1697 return 0; 1698 } 1699 1700 /* 1701 * Kick off async task to establish preempt channel. Only do so with 1702 * 8.0+ machines, because 7.1/7.2 require the channel to be created in 1703 * setup phase of migration (even if racy in an unreliable network). 1704 */ 1705 if (!s->preempt_pre_7_2) { 1706 postcopy_preempt_setup(s); 1707 } 1708 1709 /* 1710 * We need the postcopy preempt channel to be established before 1711 * starting doing anything. 1712 */ 1713 qemu_sem_wait(&s->postcopy_qemufile_src_sem); 1714 1715 return s->postcopy_qemufile_src ? 0 : -1; 1716 } 1717 1718 void postcopy_preempt_setup(MigrationState *s) 1719 { 1720 /* Kick an async task to connect */ 1721 socket_send_channel_create(postcopy_preempt_send_channel_new, s); 1722 } 1723 1724 static void postcopy_pause_ram_fast_load(MigrationIncomingState *mis) 1725 { 1726 trace_postcopy_pause_fast_load(); 1727 qemu_mutex_unlock(&mis->postcopy_prio_thread_mutex); 1728 qemu_sem_wait(&mis->postcopy_pause_sem_fast_load); 1729 qemu_mutex_lock(&mis->postcopy_prio_thread_mutex); 1730 trace_postcopy_pause_fast_load_continued(); 1731 } 1732 1733 static bool preempt_thread_should_run(MigrationIncomingState *mis) 1734 { 1735 return mis->preempt_thread_status != PREEMPT_THREAD_QUIT; 1736 } 1737 1738 void *postcopy_preempt_thread(void *opaque) 1739 { 1740 MigrationIncomingState *mis = opaque; 1741 int ret; 1742 1743 trace_postcopy_preempt_thread_entry(); 1744 1745 rcu_register_thread(); 1746 1747 qemu_sem_post(&mis->thread_sync_sem); 1748 1749 /* 1750 * The preempt channel is established in asynchronous way. Wait 1751 * for its completion. 1752 */ 1753 qemu_sem_wait(&mis->postcopy_qemufile_dst_done); 1754 1755 /* Sending RAM_SAVE_FLAG_EOS to terminate this thread */ 1756 qemu_mutex_lock(&mis->postcopy_prio_thread_mutex); 1757 while (preempt_thread_should_run(mis)) { 1758 ret = ram_load_postcopy(mis->postcopy_qemufile_dst, 1759 RAM_CHANNEL_POSTCOPY); 1760 /* If error happened, go into recovery routine */ 1761 if (ret && preempt_thread_should_run(mis)) { 1762 postcopy_pause_ram_fast_load(mis); 1763 } else { 1764 /* We're done */ 1765 break; 1766 } 1767 } 1768 qemu_mutex_unlock(&mis->postcopy_prio_thread_mutex); 1769 1770 rcu_unregister_thread(); 1771 1772 trace_postcopy_preempt_thread_exit(); 1773 1774 return NULL; 1775 } 1776