xref: /openbmc/qemu/migration/postcopy-ram.c (revision afb81fe8)
1 /*
2  * Postcopy migration for RAM
3  *
4  * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Dave Gilbert  <dgilbert@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13 
14 /*
15  * Postcopy is a migration technique where the execution flips from the
16  * source to the destination before all the data has been copied.
17  */
18 
19 #include "qemu/osdep.h"
20 #include "qemu/madvise.h"
21 #include "exec/target_page.h"
22 #include "migration.h"
23 #include "qemu-file.h"
24 #include "savevm.h"
25 #include "postcopy-ram.h"
26 #include "ram.h"
27 #include "qapi/error.h"
28 #include "qemu/notify.h"
29 #include "qemu/rcu.h"
30 #include "sysemu/sysemu.h"
31 #include "qemu/error-report.h"
32 #include "trace.h"
33 #include "hw/boards.h"
34 #include "exec/ramblock.h"
35 #include "socket.h"
36 #include "yank_functions.h"
37 #include "tls.h"
38 #include "qemu/userfaultfd.h"
39 #include "qemu/mmap-alloc.h"
40 #include "options.h"
41 
42 /* Arbitrary limit on size of each discard command,
43  * keeps them around ~200 bytes
44  */
45 #define MAX_DISCARDS_PER_COMMAND 12
46 
47 struct PostcopyDiscardState {
48     const char *ramblock_name;
49     uint16_t cur_entry;
50     /*
51      * Start and length of a discard range (bytes)
52      */
53     uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
54     uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
55     unsigned int nsentwords;
56     unsigned int nsentcmds;
57 };
58 
59 static NotifierWithReturnList postcopy_notifier_list;
60 
61 void postcopy_infrastructure_init(void)
62 {
63     notifier_with_return_list_init(&postcopy_notifier_list);
64 }
65 
66 void postcopy_add_notifier(NotifierWithReturn *nn)
67 {
68     notifier_with_return_list_add(&postcopy_notifier_list, nn);
69 }
70 
71 void postcopy_remove_notifier(NotifierWithReturn *n)
72 {
73     notifier_with_return_remove(n);
74 }
75 
76 int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp)
77 {
78     struct PostcopyNotifyData pnd;
79     pnd.reason = reason;
80     pnd.errp = errp;
81 
82     return notifier_with_return_list_notify(&postcopy_notifier_list,
83                                             &pnd);
84 }
85 
86 /*
87  * NOTE: this routine is not thread safe, we can't call it concurrently. But it
88  * should be good enough for migration's purposes.
89  */
90 void postcopy_thread_create(MigrationIncomingState *mis,
91                             QemuThread *thread, const char *name,
92                             void *(*fn)(void *), int joinable)
93 {
94     qemu_sem_init(&mis->thread_sync_sem, 0);
95     qemu_thread_create(thread, name, fn, mis, joinable);
96     qemu_sem_wait(&mis->thread_sync_sem);
97     qemu_sem_destroy(&mis->thread_sync_sem);
98 }
99 
100 /* Postcopy needs to detect accesses to pages that haven't yet been copied
101  * across, and efficiently map new pages in, the techniques for doing this
102  * are target OS specific.
103  */
104 #if defined(__linux__)
105 
106 #include <poll.h>
107 #include <sys/ioctl.h>
108 #include <sys/syscall.h>
109 #include <asm/types.h> /* for __u64 */
110 #endif
111 
112 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
113 #include <sys/eventfd.h>
114 #include <linux/userfaultfd.h>
115 
116 typedef struct PostcopyBlocktimeContext {
117     /* time when page fault initiated per vCPU */
118     uint32_t *page_fault_vcpu_time;
119     /* page address per vCPU */
120     uintptr_t *vcpu_addr;
121     uint32_t total_blocktime;
122     /* blocktime per vCPU */
123     uint32_t *vcpu_blocktime;
124     /* point in time when last page fault was initiated */
125     uint32_t last_begin;
126     /* number of vCPU are suspended */
127     int smp_cpus_down;
128     uint64_t start_time;
129 
130     /*
131      * Handler for exit event, necessary for
132      * releasing whole blocktime_ctx
133      */
134     Notifier exit_notifier;
135 } PostcopyBlocktimeContext;
136 
137 static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx)
138 {
139     g_free(ctx->page_fault_vcpu_time);
140     g_free(ctx->vcpu_addr);
141     g_free(ctx->vcpu_blocktime);
142     g_free(ctx);
143 }
144 
145 static void migration_exit_cb(Notifier *n, void *data)
146 {
147     PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext,
148                                                  exit_notifier);
149     destroy_blocktime_context(ctx);
150 }
151 
152 static struct PostcopyBlocktimeContext *blocktime_context_new(void)
153 {
154     MachineState *ms = MACHINE(qdev_get_machine());
155     unsigned int smp_cpus = ms->smp.cpus;
156     PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1);
157     ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus);
158     ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus);
159     ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus);
160 
161     ctx->exit_notifier.notify = migration_exit_cb;
162     ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
163     qemu_add_exit_notifier(&ctx->exit_notifier);
164     return ctx;
165 }
166 
167 static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx)
168 {
169     MachineState *ms = MACHINE(qdev_get_machine());
170     uint32List *list = NULL;
171     int i;
172 
173     for (i = ms->smp.cpus - 1; i >= 0; i--) {
174         QAPI_LIST_PREPEND(list, ctx->vcpu_blocktime[i]);
175     }
176 
177     return list;
178 }
179 
180 /*
181  * This function just populates MigrationInfo from postcopy's
182  * blocktime context. It will not populate MigrationInfo,
183  * unless postcopy-blocktime capability was set.
184  *
185  * @info: pointer to MigrationInfo to populate
186  */
187 void fill_destination_postcopy_migration_info(MigrationInfo *info)
188 {
189     MigrationIncomingState *mis = migration_incoming_get_current();
190     PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
191 
192     if (!bc) {
193         return;
194     }
195 
196     info->has_postcopy_blocktime = true;
197     info->postcopy_blocktime = bc->total_blocktime;
198     info->has_postcopy_vcpu_blocktime = true;
199     info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc);
200 }
201 
202 static uint32_t get_postcopy_total_blocktime(void)
203 {
204     MigrationIncomingState *mis = migration_incoming_get_current();
205     PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
206 
207     if (!bc) {
208         return 0;
209     }
210 
211     return bc->total_blocktime;
212 }
213 
214 /**
215  * receive_ufd_features: check userfault fd features, to request only supported
216  * features in the future.
217  *
218  * Returns: true on success
219  *
220  * __NR_userfaultfd - should be checked before
221  *  @features: out parameter will contain uffdio_api.features provided by kernel
222  *              in case of success
223  */
224 static bool receive_ufd_features(uint64_t *features)
225 {
226     struct uffdio_api api_struct = {0};
227     int ufd;
228     bool ret = true;
229 
230     ufd = uffd_open(O_CLOEXEC);
231     if (ufd == -1) {
232         error_report("%s: uffd_open() failed: %s", __func__, strerror(errno));
233         return false;
234     }
235 
236     /* ask features */
237     api_struct.api = UFFD_API;
238     api_struct.features = 0;
239     if (ioctl(ufd, UFFDIO_API, &api_struct)) {
240         error_report("%s: UFFDIO_API failed: %s", __func__,
241                      strerror(errno));
242         ret = false;
243         goto release_ufd;
244     }
245 
246     *features = api_struct.features;
247 
248 release_ufd:
249     close(ufd);
250     return ret;
251 }
252 
253 /**
254  * request_ufd_features: this function should be called only once on a newly
255  * opened ufd, subsequent calls will lead to error.
256  *
257  * Returns: true on success
258  *
259  * @ufd: fd obtained from userfaultfd syscall
260  * @features: bit mask see UFFD_API_FEATURES
261  */
262 static bool request_ufd_features(int ufd, uint64_t features)
263 {
264     struct uffdio_api api_struct = {0};
265     uint64_t ioctl_mask;
266 
267     api_struct.api = UFFD_API;
268     api_struct.features = features;
269     if (ioctl(ufd, UFFDIO_API, &api_struct)) {
270         error_report("%s failed: UFFDIO_API failed: %s", __func__,
271                      strerror(errno));
272         return false;
273     }
274 
275     ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
276                  (__u64)1 << _UFFDIO_UNREGISTER;
277     if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
278         error_report("Missing userfault features: %" PRIx64,
279                      (uint64_t)(~api_struct.ioctls & ioctl_mask));
280         return false;
281     }
282 
283     return true;
284 }
285 
286 static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis,
287                                 Error **errp)
288 {
289     uint64_t asked_features = 0;
290     static uint64_t supported_features;
291 
292     ERRP_GUARD();
293     /*
294      * it's not possible to
295      * request UFFD_API twice per one fd
296      * userfault fd features is persistent
297      */
298     if (!supported_features) {
299         if (!receive_ufd_features(&supported_features)) {
300             error_setg(errp, "Userfault feature detection failed");
301             return false;
302         }
303     }
304 
305 #ifdef UFFD_FEATURE_THREAD_ID
306     if (UFFD_FEATURE_THREAD_ID & supported_features) {
307         asked_features |= UFFD_FEATURE_THREAD_ID;
308         if (migrate_postcopy_blocktime()) {
309             if (!mis->blocktime_ctx) {
310                 mis->blocktime_ctx = blocktime_context_new();
311             }
312         }
313     }
314 #endif
315 
316     /*
317      * request features, even if asked_features is 0, due to
318      * kernel expects UFFD_API before UFFDIO_REGISTER, per
319      * userfault file descriptor
320      */
321     if (!request_ufd_features(ufd, asked_features)) {
322         error_setg(errp, "Failed features %" PRIu64, asked_features);
323         return false;
324     }
325 
326     if (qemu_real_host_page_size() != ram_pagesize_summary()) {
327         bool have_hp = false;
328         /* We've got a huge page */
329 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS
330         have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS;
331 #endif
332         if (!have_hp) {
333             error_setg(errp,
334                        "Userfault on this host does not support huge pages");
335             return false;
336         }
337     }
338     return true;
339 }
340 
341 /* Callback from postcopy_ram_supported_by_host block iterator.
342  */
343 static int test_ramblock_postcopiable(RAMBlock *rb, Error **errp)
344 {
345     const char *block_name = qemu_ram_get_idstr(rb);
346     ram_addr_t length = qemu_ram_get_used_length(rb);
347     size_t pagesize = qemu_ram_pagesize(rb);
348     QemuFsType fs;
349 
350     if (length % pagesize) {
351         error_setg(errp,
352                    "Postcopy requires RAM blocks to be a page size multiple,"
353                    " block %s is 0x" RAM_ADDR_FMT " bytes with a "
354                    "page size of 0x%zx", block_name, length, pagesize);
355         return 1;
356     }
357 
358     if (rb->fd >= 0) {
359         fs = qemu_fd_getfs(rb->fd);
360         if (fs != QEMU_FS_TYPE_TMPFS && fs != QEMU_FS_TYPE_HUGETLBFS) {
361             error_setg(errp,
362                        "Host backend files need to be TMPFS or HUGETLBFS only");
363             return 1;
364         }
365     }
366 
367     return 0;
368 }
369 
370 /*
371  * Note: This has the side effect of munlock'ing all of RAM, that's
372  * normally fine since if the postcopy succeeds it gets turned back on at the
373  * end.
374  */
375 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis, Error **errp)
376 {
377     long pagesize = qemu_real_host_page_size();
378     int ufd = -1;
379     bool ret = false; /* Error unless we change it */
380     void *testarea = NULL;
381     struct uffdio_register reg_struct;
382     struct uffdio_range range_struct;
383     uint64_t feature_mask;
384     RAMBlock *block;
385 
386     ERRP_GUARD();
387     if (qemu_target_page_size() > pagesize) {
388         error_setg(errp, "Target page size bigger than host page size");
389         goto out;
390     }
391 
392     ufd = uffd_open(O_CLOEXEC);
393     if (ufd == -1) {
394         error_setg(errp, "Userfaultfd not available: %s", strerror(errno));
395         goto out;
396     }
397 
398     /* Give devices a chance to object */
399     if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, errp)) {
400         goto out;
401     }
402 
403     /* Version and features check */
404     if (!ufd_check_and_apply(ufd, mis, errp)) {
405         goto out;
406     }
407 
408     /*
409      * We don't support postcopy with some type of ramblocks.
410      *
411      * NOTE: we explicitly ignored migrate_ram_is_ignored() instead we checked
412      * all possible ramblocks.  This is because this function can be called
413      * when creating the migration object, during the phase RAM_MIGRATABLE
414      * is not even properly set for all the ramblocks.
415      *
416      * A side effect of this is we'll also check against RAM_SHARED
417      * ramblocks even if migrate_ignore_shared() is set (in which case
418      * we'll never migrate RAM_SHARED at all), but normally this shouldn't
419      * affect in reality, or we can revisit.
420      */
421     RAMBLOCK_FOREACH(block) {
422         if (test_ramblock_postcopiable(block, errp)) {
423             goto out;
424         }
425     }
426 
427     /*
428      * userfault and mlock don't go together; we'll put it back later if
429      * it was enabled.
430      */
431     if (munlockall()) {
432         error_setg(errp, "munlockall() failed: %s", strerror(errno));
433         goto out;
434     }
435 
436     /*
437      *  We need to check that the ops we need are supported on anon memory
438      *  To do that we need to register a chunk and see the flags that
439      *  are returned.
440      */
441     testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
442                                     MAP_ANONYMOUS, -1, 0);
443     if (testarea == MAP_FAILED) {
444         error_setg(errp, "Failed to map test area: %s", strerror(errno));
445         goto out;
446     }
447     g_assert(QEMU_PTR_IS_ALIGNED(testarea, pagesize));
448 
449     reg_struct.range.start = (uintptr_t)testarea;
450     reg_struct.range.len = pagesize;
451     reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
452 
453     if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
454         error_setg(errp, "UFFDIO_REGISTER failed: %s", strerror(errno));
455         goto out;
456     }
457 
458     range_struct.start = (uintptr_t)testarea;
459     range_struct.len = pagesize;
460     if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
461         error_setg(errp, "UFFDIO_UNREGISTER failed: %s", strerror(errno));
462         goto out;
463     }
464 
465     feature_mask = (__u64)1 << _UFFDIO_WAKE |
466                    (__u64)1 << _UFFDIO_COPY |
467                    (__u64)1 << _UFFDIO_ZEROPAGE;
468     if ((reg_struct.ioctls & feature_mask) != feature_mask) {
469         error_setg(errp, "Missing userfault map features: %" PRIx64,
470                    (uint64_t)(~reg_struct.ioctls & feature_mask));
471         goto out;
472     }
473 
474     /* Success! */
475     ret = true;
476 out:
477     if (testarea) {
478         munmap(testarea, pagesize);
479     }
480     if (ufd != -1) {
481         close(ufd);
482     }
483     return ret;
484 }
485 
486 /*
487  * Setup an area of RAM so that it *can* be used for postcopy later; this
488  * must be done right at the start prior to pre-copy.
489  * opaque should be the MIS.
490  */
491 static int init_range(RAMBlock *rb, void *opaque)
492 {
493     const char *block_name = qemu_ram_get_idstr(rb);
494     void *host_addr = qemu_ram_get_host_addr(rb);
495     ram_addr_t offset = qemu_ram_get_offset(rb);
496     ram_addr_t length = qemu_ram_get_used_length(rb);
497     trace_postcopy_init_range(block_name, host_addr, offset, length);
498 
499     /*
500      * Save the used_length before running the guest. In case we have to
501      * resize RAM blocks when syncing RAM block sizes from the source during
502      * precopy, we'll update it manually via the ram block notifier.
503      */
504     rb->postcopy_length = length;
505 
506     /*
507      * We need the whole of RAM to be truly empty for postcopy, so things
508      * like ROMs and any data tables built during init must be zero'd
509      * - we're going to get the copy from the source anyway.
510      * (Precopy will just overwrite this data, so doesn't need the discard)
511      */
512     if (ram_discard_range(block_name, 0, length)) {
513         return -1;
514     }
515 
516     return 0;
517 }
518 
519 /*
520  * At the end of migration, undo the effects of init_range
521  * opaque should be the MIS.
522  */
523 static int cleanup_range(RAMBlock *rb, void *opaque)
524 {
525     const char *block_name = qemu_ram_get_idstr(rb);
526     void *host_addr = qemu_ram_get_host_addr(rb);
527     ram_addr_t offset = qemu_ram_get_offset(rb);
528     ram_addr_t length = rb->postcopy_length;
529     MigrationIncomingState *mis = opaque;
530     struct uffdio_range range_struct;
531     trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
532 
533     /*
534      * We turned off hugepage for the precopy stage with postcopy enabled
535      * we can turn it back on now.
536      */
537     qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
538 
539     /*
540      * We can also turn off userfault now since we should have all the
541      * pages.   It can be useful to leave it on to debug postcopy
542      * if you're not sure it's always getting every page.
543      */
544     range_struct.start = (uintptr_t)host_addr;
545     range_struct.len = length;
546 
547     if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
548         error_report("%s: userfault unregister %s", __func__, strerror(errno));
549 
550         return -1;
551     }
552 
553     return 0;
554 }
555 
556 /*
557  * Initialise postcopy-ram, setting the RAM to a state where we can go into
558  * postcopy later; must be called prior to any precopy.
559  * called from arch_init's similarly named ram_postcopy_incoming_init
560  */
561 int postcopy_ram_incoming_init(MigrationIncomingState *mis)
562 {
563     if (foreach_not_ignored_block(init_range, NULL)) {
564         return -1;
565     }
566 
567     return 0;
568 }
569 
570 static void postcopy_temp_pages_cleanup(MigrationIncomingState *mis)
571 {
572     int i;
573 
574     if (mis->postcopy_tmp_pages) {
575         for (i = 0; i < mis->postcopy_channels; i++) {
576             if (mis->postcopy_tmp_pages[i].tmp_huge_page) {
577                 munmap(mis->postcopy_tmp_pages[i].tmp_huge_page,
578                        mis->largest_page_size);
579                 mis->postcopy_tmp_pages[i].tmp_huge_page = NULL;
580             }
581         }
582         g_free(mis->postcopy_tmp_pages);
583         mis->postcopy_tmp_pages = NULL;
584     }
585 
586     if (mis->postcopy_tmp_zero_page) {
587         munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
588         mis->postcopy_tmp_zero_page = NULL;
589     }
590 }
591 
592 /*
593  * At the end of a migration where postcopy_ram_incoming_init was called.
594  */
595 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
596 {
597     trace_postcopy_ram_incoming_cleanup_entry();
598 
599     if (mis->preempt_thread_status == PREEMPT_THREAD_CREATED) {
600         /* Notify the fast load thread to quit */
601         mis->preempt_thread_status = PREEMPT_THREAD_QUIT;
602         /*
603          * Update preempt_thread_status before reading count.  Note: mutex
604          * lock only provide ACQUIRE semantic, and it doesn't stops this
605          * write to be reordered after reading the count.
606          */
607         smp_mb();
608         /*
609          * It's possible that the preempt thread is still handling the last
610          * pages to arrive which were requested by guest page faults.
611          * Making sure nothing is left behind by waiting on the condvar if
612          * that unlikely case happened.
613          */
614         WITH_QEMU_LOCK_GUARD(&mis->page_request_mutex) {
615             if (qatomic_read(&mis->page_requested_count)) {
616                 /*
617                  * It is guaranteed to receive a signal later, because the
618                  * count>0 now, so it's destined to be decreased to zero
619                  * very soon by the preempt thread.
620                  */
621                 qemu_cond_wait(&mis->page_request_cond,
622                                &mis->page_request_mutex);
623             }
624         }
625         /* Notify the fast load thread to quit */
626         if (mis->postcopy_qemufile_dst) {
627             qemu_file_shutdown(mis->postcopy_qemufile_dst);
628         }
629         qemu_thread_join(&mis->postcopy_prio_thread);
630         mis->preempt_thread_status = PREEMPT_THREAD_NONE;
631     }
632 
633     if (mis->have_fault_thread) {
634         Error *local_err = NULL;
635 
636         /* Let the fault thread quit */
637         qatomic_set(&mis->fault_thread_quit, 1);
638         postcopy_fault_thread_notify(mis);
639         trace_postcopy_ram_incoming_cleanup_join();
640         qemu_thread_join(&mis->fault_thread);
641 
642         if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) {
643             error_report_err(local_err);
644             return -1;
645         }
646 
647         if (foreach_not_ignored_block(cleanup_range, mis)) {
648             return -1;
649         }
650 
651         trace_postcopy_ram_incoming_cleanup_closeuf();
652         close(mis->userfault_fd);
653         close(mis->userfault_event_fd);
654         mis->have_fault_thread = false;
655     }
656 
657     if (enable_mlock) {
658         if (os_mlock() < 0) {
659             error_report("mlock: %s", strerror(errno));
660             /*
661              * It doesn't feel right to fail at this point, we have a valid
662              * VM state.
663              */
664         }
665     }
666 
667     postcopy_temp_pages_cleanup(mis);
668 
669     trace_postcopy_ram_incoming_cleanup_blocktime(
670             get_postcopy_total_blocktime());
671 
672     trace_postcopy_ram_incoming_cleanup_exit();
673     return 0;
674 }
675 
676 /*
677  * Disable huge pages on an area
678  */
679 static int nhp_range(RAMBlock *rb, void *opaque)
680 {
681     const char *block_name = qemu_ram_get_idstr(rb);
682     void *host_addr = qemu_ram_get_host_addr(rb);
683     ram_addr_t offset = qemu_ram_get_offset(rb);
684     ram_addr_t length = rb->postcopy_length;
685     trace_postcopy_nhp_range(block_name, host_addr, offset, length);
686 
687     /*
688      * Before we do discards we need to ensure those discards really
689      * do delete areas of the page, even if THP thinks a hugepage would
690      * be a good idea, so force hugepages off.
691      */
692     qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
693 
694     return 0;
695 }
696 
697 /*
698  * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
699  * however leaving it until after precopy means that most of the precopy
700  * data is still THPd
701  */
702 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
703 {
704     if (foreach_not_ignored_block(nhp_range, mis)) {
705         return -1;
706     }
707 
708     postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
709 
710     return 0;
711 }
712 
713 /*
714  * Mark the given area of RAM as requiring notification to unwritten areas
715  * Used as a  callback on foreach_not_ignored_block.
716  *   host_addr: Base of area to mark
717  *   offset: Offset in the whole ram arena
718  *   length: Length of the section
719  *   opaque: MigrationIncomingState pointer
720  * Returns 0 on success
721  */
722 static int ram_block_enable_notify(RAMBlock *rb, void *opaque)
723 {
724     MigrationIncomingState *mis = opaque;
725     struct uffdio_register reg_struct;
726 
727     reg_struct.range.start = (uintptr_t)qemu_ram_get_host_addr(rb);
728     reg_struct.range.len = rb->postcopy_length;
729     reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
730 
731     /* Now tell our userfault_fd that it's responsible for this area */
732     if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
733         error_report("%s userfault register: %s", __func__, strerror(errno));
734         return -1;
735     }
736     if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) {
737         error_report("%s userfault: Region doesn't support COPY", __func__);
738         return -1;
739     }
740     if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) {
741         qemu_ram_set_uf_zeroable(rb);
742     }
743 
744     return 0;
745 }
746 
747 int postcopy_wake_shared(struct PostCopyFD *pcfd,
748                          uint64_t client_addr,
749                          RAMBlock *rb)
750 {
751     size_t pagesize = qemu_ram_pagesize(rb);
752     struct uffdio_range range;
753     int ret;
754     trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb));
755     range.start = ROUND_DOWN(client_addr, pagesize);
756     range.len = pagesize;
757     ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range);
758     if (ret) {
759         error_report("%s: Failed to wake: %zx in %s (%s)",
760                      __func__, (size_t)client_addr, qemu_ram_get_idstr(rb),
761                      strerror(errno));
762     }
763     return ret;
764 }
765 
766 static int postcopy_request_page(MigrationIncomingState *mis, RAMBlock *rb,
767                                  ram_addr_t start, uint64_t haddr)
768 {
769     void *aligned = (void *)(uintptr_t)ROUND_DOWN(haddr, qemu_ram_pagesize(rb));
770 
771     /*
772      * Discarded pages (via RamDiscardManager) are never migrated. On unlikely
773      * access, place a zeropage, which will also set the relevant bits in the
774      * recv_bitmap accordingly, so we won't try placing a zeropage twice.
775      *
776      * Checking a single bit is sufficient to handle pagesize > TPS as either
777      * all relevant bits are set or not.
778      */
779     assert(QEMU_IS_ALIGNED(start, qemu_ram_pagesize(rb)));
780     if (ramblock_page_is_discarded(rb, start)) {
781         bool received = ramblock_recv_bitmap_test_byte_offset(rb, start);
782 
783         return received ? 0 : postcopy_place_page_zero(mis, aligned, rb);
784     }
785 
786     return migrate_send_rp_req_pages(mis, rb, start, haddr);
787 }
788 
789 /*
790  * Callback from shared fault handlers to ask for a page,
791  * the page must be specified by a RAMBlock and an offset in that rb
792  * Note: Only for use by shared fault handlers (in fault thread)
793  */
794 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
795                                  uint64_t client_addr, uint64_t rb_offset)
796 {
797     uint64_t aligned_rbo = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb));
798     MigrationIncomingState *mis = migration_incoming_get_current();
799 
800     trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb),
801                                        rb_offset);
802     if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) {
803         trace_postcopy_request_shared_page_present(pcfd->idstr,
804                                         qemu_ram_get_idstr(rb), rb_offset);
805         return postcopy_wake_shared(pcfd, client_addr, rb);
806     }
807     postcopy_request_page(mis, rb, aligned_rbo, client_addr);
808     return 0;
809 }
810 
811 static int get_mem_fault_cpu_index(uint32_t pid)
812 {
813     CPUState *cpu_iter;
814 
815     CPU_FOREACH(cpu_iter) {
816         if (cpu_iter->thread_id == pid) {
817             trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid);
818             return cpu_iter->cpu_index;
819         }
820     }
821     trace_get_mem_fault_cpu_index(-1, pid);
822     return -1;
823 }
824 
825 static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc)
826 {
827     int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) -
828                                     dc->start_time;
829     return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX;
830 }
831 
832 /*
833  * This function is being called when pagefault occurs. It
834  * tracks down vCPU blocking time.
835  *
836  * @addr: faulted host virtual address
837  * @ptid: faulted process thread id
838  * @rb: ramblock appropriate to addr
839  */
840 static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid,
841                                           RAMBlock *rb)
842 {
843     int cpu, already_received;
844     MigrationIncomingState *mis = migration_incoming_get_current();
845     PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
846     uint32_t low_time_offset;
847 
848     if (!dc || ptid == 0) {
849         return;
850     }
851     cpu = get_mem_fault_cpu_index(ptid);
852     if (cpu < 0) {
853         return;
854     }
855 
856     low_time_offset = get_low_time_offset(dc);
857     if (dc->vcpu_addr[cpu] == 0) {
858         qatomic_inc(&dc->smp_cpus_down);
859     }
860 
861     qatomic_xchg(&dc->last_begin, low_time_offset);
862     qatomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset);
863     qatomic_xchg(&dc->vcpu_addr[cpu], addr);
864 
865     /*
866      * check it here, not at the beginning of the function,
867      * due to, check could occur early than bitmap_set in
868      * qemu_ufd_copy_ioctl
869      */
870     already_received = ramblock_recv_bitmap_test(rb, (void *)addr);
871     if (already_received) {
872         qatomic_xchg(&dc->vcpu_addr[cpu], 0);
873         qatomic_xchg(&dc->page_fault_vcpu_time[cpu], 0);
874         qatomic_dec(&dc->smp_cpus_down);
875     }
876     trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu],
877                                         cpu, already_received);
878 }
879 
880 /*
881  *  This function just provide calculated blocktime per cpu and trace it.
882  *  Total blocktime is calculated in mark_postcopy_blocktime_end.
883  *
884  *
885  * Assume we have 3 CPU
886  *
887  *      S1        E1           S1               E1
888  * -----***********------------xxx***************------------------------> CPU1
889  *
890  *             S2                E2
891  * ------------****************xxx---------------------------------------> CPU2
892  *
893  *                         S3            E3
894  * ------------------------****xxx********-------------------------------> CPU3
895  *
896  * We have sequence S1,S2,E1,S3,S1,E2,E3,E1
897  * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3
898  * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 -
899  *            it's a part of total blocktime.
900  * S1 - here is last_begin
901  * Legend of the picture is following:
902  *              * - means blocktime per vCPU
903  *              x - means overlapped blocktime (total blocktime)
904  *
905  * @addr: host virtual address
906  */
907 static void mark_postcopy_blocktime_end(uintptr_t addr)
908 {
909     MigrationIncomingState *mis = migration_incoming_get_current();
910     PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
911     MachineState *ms = MACHINE(qdev_get_machine());
912     unsigned int smp_cpus = ms->smp.cpus;
913     int i, affected_cpu = 0;
914     bool vcpu_total_blocktime = false;
915     uint32_t read_vcpu_time, low_time_offset;
916 
917     if (!dc) {
918         return;
919     }
920 
921     low_time_offset = get_low_time_offset(dc);
922     /* lookup cpu, to clear it,
923      * that algorithm looks straightforward, but it's not
924      * optimal, more optimal algorithm is keeping tree or hash
925      * where key is address value is a list of  */
926     for (i = 0; i < smp_cpus; i++) {
927         uint32_t vcpu_blocktime = 0;
928 
929         read_vcpu_time = qatomic_fetch_add(&dc->page_fault_vcpu_time[i], 0);
930         if (qatomic_fetch_add(&dc->vcpu_addr[i], 0) != addr ||
931             read_vcpu_time == 0) {
932             continue;
933         }
934         qatomic_xchg(&dc->vcpu_addr[i], 0);
935         vcpu_blocktime = low_time_offset - read_vcpu_time;
936         affected_cpu += 1;
937         /* we need to know is that mark_postcopy_end was due to
938          * faulted page, another possible case it's prefetched
939          * page and in that case we shouldn't be here */
940         if (!vcpu_total_blocktime &&
941             qatomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) {
942             vcpu_total_blocktime = true;
943         }
944         /* continue cycle, due to one page could affect several vCPUs */
945         dc->vcpu_blocktime[i] += vcpu_blocktime;
946     }
947 
948     qatomic_sub(&dc->smp_cpus_down, affected_cpu);
949     if (vcpu_total_blocktime) {
950         dc->total_blocktime += low_time_offset - qatomic_fetch_add(
951                 &dc->last_begin, 0);
952     }
953     trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime,
954                                       affected_cpu);
955 }
956 
957 static void postcopy_pause_fault_thread(MigrationIncomingState *mis)
958 {
959     trace_postcopy_pause_fault_thread();
960     qemu_sem_wait(&mis->postcopy_pause_sem_fault);
961     trace_postcopy_pause_fault_thread_continued();
962 }
963 
964 /*
965  * Handle faults detected by the USERFAULT markings
966  */
967 static void *postcopy_ram_fault_thread(void *opaque)
968 {
969     MigrationIncomingState *mis = opaque;
970     struct uffd_msg msg;
971     int ret;
972     size_t index;
973     RAMBlock *rb = NULL;
974 
975     trace_postcopy_ram_fault_thread_entry();
976     rcu_register_thread();
977     mis->last_rb = NULL; /* last RAMBlock we sent part of */
978     qemu_sem_post(&mis->thread_sync_sem);
979 
980     struct pollfd *pfd;
981     size_t pfd_len = 2 + mis->postcopy_remote_fds->len;
982 
983     pfd = g_new0(struct pollfd, pfd_len);
984 
985     pfd[0].fd = mis->userfault_fd;
986     pfd[0].events = POLLIN;
987     pfd[1].fd = mis->userfault_event_fd;
988     pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
989     trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd);
990     for (index = 0; index < mis->postcopy_remote_fds->len; index++) {
991         struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds,
992                                                  struct PostCopyFD, index);
993         pfd[2 + index].fd = pcfd->fd;
994         pfd[2 + index].events = POLLIN;
995         trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr,
996                                                   pcfd->fd);
997     }
998 
999     while (true) {
1000         ram_addr_t rb_offset;
1001         int poll_result;
1002 
1003         /*
1004          * We're mainly waiting for the kernel to give us a faulting HVA,
1005          * however we can be told to quit via userfault_quit_fd which is
1006          * an eventfd
1007          */
1008 
1009         poll_result = poll(pfd, pfd_len, -1 /* Wait forever */);
1010         if (poll_result == -1) {
1011             error_report("%s: userfault poll: %s", __func__, strerror(errno));
1012             break;
1013         }
1014 
1015         if (!mis->to_src_file) {
1016             /*
1017              * Possibly someone tells us that the return path is
1018              * broken already using the event. We should hold until
1019              * the channel is rebuilt.
1020              */
1021             postcopy_pause_fault_thread(mis);
1022         }
1023 
1024         if (pfd[1].revents) {
1025             uint64_t tmp64 = 0;
1026 
1027             /* Consume the signal */
1028             if (read(mis->userfault_event_fd, &tmp64, 8) != 8) {
1029                 /* Nothing obviously nicer than posting this error. */
1030                 error_report("%s: read() failed", __func__);
1031             }
1032 
1033             if (qatomic_read(&mis->fault_thread_quit)) {
1034                 trace_postcopy_ram_fault_thread_quit();
1035                 break;
1036             }
1037         }
1038 
1039         if (pfd[0].revents) {
1040             poll_result--;
1041             ret = read(mis->userfault_fd, &msg, sizeof(msg));
1042             if (ret != sizeof(msg)) {
1043                 if (errno == EAGAIN) {
1044                     /*
1045                      * if a wake up happens on the other thread just after
1046                      * the poll, there is nothing to read.
1047                      */
1048                     continue;
1049                 }
1050                 if (ret < 0) {
1051                     error_report("%s: Failed to read full userfault "
1052                                  "message: %s",
1053                                  __func__, strerror(errno));
1054                     break;
1055                 } else {
1056                     error_report("%s: Read %d bytes from userfaultfd "
1057                                  "expected %zd",
1058                                  __func__, ret, sizeof(msg));
1059                     break; /* Lost alignment, don't know what we'd read next */
1060                 }
1061             }
1062             if (msg.event != UFFD_EVENT_PAGEFAULT) {
1063                 error_report("%s: Read unexpected event %ud from userfaultfd",
1064                              __func__, msg.event);
1065                 continue; /* It's not a page fault, shouldn't happen */
1066             }
1067 
1068             rb = qemu_ram_block_from_host(
1069                      (void *)(uintptr_t)msg.arg.pagefault.address,
1070                      true, &rb_offset);
1071             if (!rb) {
1072                 error_report("postcopy_ram_fault_thread: Fault outside guest: %"
1073                              PRIx64, (uint64_t)msg.arg.pagefault.address);
1074                 break;
1075             }
1076 
1077             rb_offset = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb));
1078             trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
1079                                                 qemu_ram_get_idstr(rb),
1080                                                 rb_offset,
1081                                                 msg.arg.pagefault.feat.ptid);
1082             mark_postcopy_blocktime_begin(
1083                     (uintptr_t)(msg.arg.pagefault.address),
1084                                 msg.arg.pagefault.feat.ptid, rb);
1085 
1086 retry:
1087             /*
1088              * Send the request to the source - we want to request one
1089              * of our host page sizes (which is >= TPS)
1090              */
1091             ret = postcopy_request_page(mis, rb, rb_offset,
1092                                         msg.arg.pagefault.address);
1093             if (ret) {
1094                 /* May be network failure, try to wait for recovery */
1095                 postcopy_pause_fault_thread(mis);
1096                 goto retry;
1097             }
1098         }
1099 
1100         /* Now handle any requests from external processes on shared memory */
1101         /* TODO: May need to handle devices deregistering during postcopy */
1102         for (index = 2; index < pfd_len && poll_result; index++) {
1103             if (pfd[index].revents) {
1104                 struct PostCopyFD *pcfd =
1105                     &g_array_index(mis->postcopy_remote_fds,
1106                                    struct PostCopyFD, index - 2);
1107 
1108                 poll_result--;
1109                 if (pfd[index].revents & POLLERR) {
1110                     error_report("%s: POLLERR on poll %zd fd=%d",
1111                                  __func__, index, pcfd->fd);
1112                     pfd[index].events = 0;
1113                     continue;
1114                 }
1115 
1116                 ret = read(pcfd->fd, &msg, sizeof(msg));
1117                 if (ret != sizeof(msg)) {
1118                     if (errno == EAGAIN) {
1119                         /*
1120                          * if a wake up happens on the other thread just after
1121                          * the poll, there is nothing to read.
1122                          */
1123                         continue;
1124                     }
1125                     if (ret < 0) {
1126                         error_report("%s: Failed to read full userfault "
1127                                      "message: %s (shared) revents=%d",
1128                                      __func__, strerror(errno),
1129                                      pfd[index].revents);
1130                         /*TODO: Could just disable this sharer */
1131                         break;
1132                     } else {
1133                         error_report("%s: Read %d bytes from userfaultfd "
1134                                      "expected %zd (shared)",
1135                                      __func__, ret, sizeof(msg));
1136                         /*TODO: Could just disable this sharer */
1137                         break; /*Lost alignment,don't know what we'd read next*/
1138                     }
1139                 }
1140                 if (msg.event != UFFD_EVENT_PAGEFAULT) {
1141                     error_report("%s: Read unexpected event %ud "
1142                                  "from userfaultfd (shared)",
1143                                  __func__, msg.event);
1144                     continue; /* It's not a page fault, shouldn't happen */
1145                 }
1146                 /* Call the device handler registered with us */
1147                 ret = pcfd->handler(pcfd, &msg);
1148                 if (ret) {
1149                     error_report("%s: Failed to resolve shared fault on %zd/%s",
1150                                  __func__, index, pcfd->idstr);
1151                     /* TODO: Fail? Disable this sharer? */
1152                 }
1153             }
1154         }
1155     }
1156     rcu_unregister_thread();
1157     trace_postcopy_ram_fault_thread_exit();
1158     g_free(pfd);
1159     return NULL;
1160 }
1161 
1162 static int postcopy_temp_pages_setup(MigrationIncomingState *mis)
1163 {
1164     PostcopyTmpPage *tmp_page;
1165     int err, i, channels;
1166     void *temp_page;
1167 
1168     if (migrate_postcopy_preempt()) {
1169         /* If preemption enabled, need extra channel for urgent requests */
1170         mis->postcopy_channels = RAM_CHANNEL_MAX;
1171     } else {
1172         /* Both precopy/postcopy on the same channel */
1173         mis->postcopy_channels = 1;
1174     }
1175 
1176     channels = mis->postcopy_channels;
1177     mis->postcopy_tmp_pages = g_malloc0_n(sizeof(PostcopyTmpPage), channels);
1178 
1179     for (i = 0; i < channels; i++) {
1180         tmp_page = &mis->postcopy_tmp_pages[i];
1181         temp_page = mmap(NULL, mis->largest_page_size, PROT_READ | PROT_WRITE,
1182                          MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1183         if (temp_page == MAP_FAILED) {
1184             err = errno;
1185             error_report("%s: Failed to map postcopy_tmp_pages[%d]: %s",
1186                          __func__, i, strerror(err));
1187             /* Clean up will be done later */
1188             return -err;
1189         }
1190         tmp_page->tmp_huge_page = temp_page;
1191         /* Initialize default states for each tmp page */
1192         postcopy_temp_page_reset(tmp_page);
1193     }
1194 
1195     /*
1196      * Map large zero page when kernel can't use UFFDIO_ZEROPAGE for hugepages
1197      */
1198     mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
1199                                        PROT_READ | PROT_WRITE,
1200                                        MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1201     if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
1202         err = errno;
1203         mis->postcopy_tmp_zero_page = NULL;
1204         error_report("%s: Failed to map large zero page %s",
1205                      __func__, strerror(err));
1206         return -err;
1207     }
1208 
1209     memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
1210 
1211     return 0;
1212 }
1213 
1214 int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
1215 {
1216     Error *local_err = NULL;
1217 
1218     /* Open the fd for the kernel to give us userfaults */
1219     mis->userfault_fd = uffd_open(O_CLOEXEC | O_NONBLOCK);
1220     if (mis->userfault_fd == -1) {
1221         error_report("%s: Failed to open userfault fd: %s", __func__,
1222                      strerror(errno));
1223         return -1;
1224     }
1225 
1226     /*
1227      * Although the host check already tested the API, we need to
1228      * do the check again as an ABI handshake on the new fd.
1229      */
1230     if (!ufd_check_and_apply(mis->userfault_fd, mis, &local_err)) {
1231         error_report_err(local_err);
1232         return -1;
1233     }
1234 
1235     /* Now an eventfd we use to tell the fault-thread to quit */
1236     mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC);
1237     if (mis->userfault_event_fd == -1) {
1238         error_report("%s: Opening userfault_event_fd: %s", __func__,
1239                      strerror(errno));
1240         close(mis->userfault_fd);
1241         return -1;
1242     }
1243 
1244     postcopy_thread_create(mis, &mis->fault_thread, "fault-default",
1245                            postcopy_ram_fault_thread, QEMU_THREAD_JOINABLE);
1246     mis->have_fault_thread = true;
1247 
1248     /* Mark so that we get notified of accesses to unwritten areas */
1249     if (foreach_not_ignored_block(ram_block_enable_notify, mis)) {
1250         error_report("ram_block_enable_notify failed");
1251         return -1;
1252     }
1253 
1254     if (postcopy_temp_pages_setup(mis)) {
1255         /* Error dumped in the sub-function */
1256         return -1;
1257     }
1258 
1259     if (migrate_postcopy_preempt()) {
1260         /*
1261          * This thread needs to be created after the temp pages because
1262          * it'll fetch RAM_CHANNEL_POSTCOPY PostcopyTmpPage immediately.
1263          */
1264         postcopy_thread_create(mis, &mis->postcopy_prio_thread, "fault-fast",
1265                                postcopy_preempt_thread, QEMU_THREAD_JOINABLE);
1266         mis->preempt_thread_status = PREEMPT_THREAD_CREATED;
1267     }
1268 
1269     trace_postcopy_ram_enable_notify();
1270 
1271     return 0;
1272 }
1273 
1274 static int qemu_ufd_copy_ioctl(MigrationIncomingState *mis, void *host_addr,
1275                                void *from_addr, uint64_t pagesize, RAMBlock *rb)
1276 {
1277     int userfault_fd = mis->userfault_fd;
1278     int ret;
1279 
1280     if (from_addr) {
1281         struct uffdio_copy copy_struct;
1282         copy_struct.dst = (uint64_t)(uintptr_t)host_addr;
1283         copy_struct.src = (uint64_t)(uintptr_t)from_addr;
1284         copy_struct.len = pagesize;
1285         copy_struct.mode = 0;
1286         ret = ioctl(userfault_fd, UFFDIO_COPY, &copy_struct);
1287     } else {
1288         struct uffdio_zeropage zero_struct;
1289         zero_struct.range.start = (uint64_t)(uintptr_t)host_addr;
1290         zero_struct.range.len = pagesize;
1291         zero_struct.mode = 0;
1292         ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct);
1293     }
1294     if (!ret) {
1295         qemu_mutex_lock(&mis->page_request_mutex);
1296         ramblock_recv_bitmap_set_range(rb, host_addr,
1297                                        pagesize / qemu_target_page_size());
1298         /*
1299          * If this page resolves a page fault for a previous recorded faulted
1300          * address, take a special note to maintain the requested page list.
1301          */
1302         if (g_tree_lookup(mis->page_requested, host_addr)) {
1303             g_tree_remove(mis->page_requested, host_addr);
1304             int left_pages = qatomic_dec_fetch(&mis->page_requested_count);
1305 
1306             trace_postcopy_page_req_del(host_addr, mis->page_requested_count);
1307             /* Order the update of count and read of preempt status */
1308             smp_mb();
1309             if (mis->preempt_thread_status == PREEMPT_THREAD_QUIT &&
1310                 left_pages == 0) {
1311                 /*
1312                  * This probably means the main thread is waiting for us.
1313                  * Notify that we've finished receiving the last requested
1314                  * page.
1315                  */
1316                 qemu_cond_signal(&mis->page_request_cond);
1317             }
1318         }
1319         qemu_mutex_unlock(&mis->page_request_mutex);
1320         mark_postcopy_blocktime_end((uintptr_t)host_addr);
1321     }
1322     return ret;
1323 }
1324 
1325 int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset)
1326 {
1327     int i;
1328     MigrationIncomingState *mis = migration_incoming_get_current();
1329     GArray *pcrfds = mis->postcopy_remote_fds;
1330 
1331     for (i = 0; i < pcrfds->len; i++) {
1332         struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1333         int ret = cur->waker(cur, rb, offset);
1334         if (ret) {
1335             return ret;
1336         }
1337     }
1338     return 0;
1339 }
1340 
1341 /*
1342  * Place a host page (from) at (host) atomically
1343  * returns 0 on success
1344  */
1345 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1346                         RAMBlock *rb)
1347 {
1348     size_t pagesize = qemu_ram_pagesize(rb);
1349 
1350     /* copy also acks to the kernel waking the stalled thread up
1351      * TODO: We can inhibit that ack and only do it if it was requested
1352      * which would be slightly cheaper, but we'd have to be careful
1353      * of the order of updating our page state.
1354      */
1355     if (qemu_ufd_copy_ioctl(mis, host, from, pagesize, rb)) {
1356         int e = errno;
1357         error_report("%s: %s copy host: %p from: %p (size: %zd)",
1358                      __func__, strerror(e), host, from, pagesize);
1359 
1360         return -e;
1361     }
1362 
1363     trace_postcopy_place_page(host);
1364     return postcopy_notify_shared_wake(rb,
1365                                        qemu_ram_block_host_offset(rb, host));
1366 }
1367 
1368 /*
1369  * Place a zero page at (host) atomically
1370  * returns 0 on success
1371  */
1372 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1373                              RAMBlock *rb)
1374 {
1375     size_t pagesize = qemu_ram_pagesize(rb);
1376     trace_postcopy_place_page_zero(host);
1377 
1378     /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE
1379      * but it's not available for everything (e.g. hugetlbpages)
1380      */
1381     if (qemu_ram_is_uf_zeroable(rb)) {
1382         if (qemu_ufd_copy_ioctl(mis, host, NULL, pagesize, rb)) {
1383             int e = errno;
1384             error_report("%s: %s zero host: %p",
1385                          __func__, strerror(e), host);
1386 
1387             return -e;
1388         }
1389         return postcopy_notify_shared_wake(rb,
1390                                            qemu_ram_block_host_offset(rb,
1391                                                                       host));
1392     } else {
1393         return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page, rb);
1394     }
1395 }
1396 
1397 #else
1398 /* No target OS support, stubs just fail */
1399 void fill_destination_postcopy_migration_info(MigrationInfo *info)
1400 {
1401 }
1402 
1403 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis, Error **errp)
1404 {
1405     error_report("%s: No OS support", __func__);
1406     return false;
1407 }
1408 
1409 int postcopy_ram_incoming_init(MigrationIncomingState *mis)
1410 {
1411     error_report("postcopy_ram_incoming_init: No OS support");
1412     return -1;
1413 }
1414 
1415 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
1416 {
1417     assert(0);
1418     return -1;
1419 }
1420 
1421 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
1422 {
1423     assert(0);
1424     return -1;
1425 }
1426 
1427 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
1428                                  uint64_t client_addr, uint64_t rb_offset)
1429 {
1430     assert(0);
1431     return -1;
1432 }
1433 
1434 int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
1435 {
1436     assert(0);
1437     return -1;
1438 }
1439 
1440 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1441                         RAMBlock *rb)
1442 {
1443     assert(0);
1444     return -1;
1445 }
1446 
1447 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1448                         RAMBlock *rb)
1449 {
1450     assert(0);
1451     return -1;
1452 }
1453 
1454 int postcopy_wake_shared(struct PostCopyFD *pcfd,
1455                          uint64_t client_addr,
1456                          RAMBlock *rb)
1457 {
1458     assert(0);
1459     return -1;
1460 }
1461 #endif
1462 
1463 /* ------------------------------------------------------------------------- */
1464 void postcopy_temp_page_reset(PostcopyTmpPage *tmp_page)
1465 {
1466     tmp_page->target_pages = 0;
1467     tmp_page->host_addr = NULL;
1468     /*
1469      * This is set to true when reset, and cleared as long as we received any
1470      * of the non-zero small page within this huge page.
1471      */
1472     tmp_page->all_zero = true;
1473 }
1474 
1475 void postcopy_fault_thread_notify(MigrationIncomingState *mis)
1476 {
1477     uint64_t tmp64 = 1;
1478 
1479     /*
1480      * Wakeup the fault_thread.  It's an eventfd that should currently
1481      * be at 0, we're going to increment it to 1
1482      */
1483     if (write(mis->userfault_event_fd, &tmp64, 8) != 8) {
1484         /* Not much we can do here, but may as well report it */
1485         error_report("%s: incrementing failed: %s", __func__,
1486                      strerror(errno));
1487     }
1488 }
1489 
1490 /**
1491  * postcopy_discard_send_init: Called at the start of each RAMBlock before
1492  *   asking to discard individual ranges.
1493  *
1494  * @ms: The current migration state.
1495  * @offset: the bitmap offset of the named RAMBlock in the migration bitmap.
1496  * @name: RAMBlock that discards will operate on.
1497  */
1498 static PostcopyDiscardState pds = {0};
1499 void postcopy_discard_send_init(MigrationState *ms, const char *name)
1500 {
1501     pds.ramblock_name = name;
1502     pds.cur_entry = 0;
1503     pds.nsentwords = 0;
1504     pds.nsentcmds = 0;
1505 }
1506 
1507 /**
1508  * postcopy_discard_send_range: Called by the bitmap code for each chunk to
1509  *   discard. May send a discard message, may just leave it queued to
1510  *   be sent later.
1511  *
1512  * @ms: Current migration state.
1513  * @start,@length: a range of pages in the migration bitmap in the
1514  *   RAM block passed to postcopy_discard_send_init() (length=1 is one page)
1515  */
1516 void postcopy_discard_send_range(MigrationState *ms, unsigned long start,
1517                                  unsigned long length)
1518 {
1519     size_t tp_size = qemu_target_page_size();
1520     /* Convert to byte offsets within the RAM block */
1521     pds.start_list[pds.cur_entry] = start  * tp_size;
1522     pds.length_list[pds.cur_entry] = length * tp_size;
1523     trace_postcopy_discard_send_range(pds.ramblock_name, start, length);
1524     pds.cur_entry++;
1525     pds.nsentwords++;
1526 
1527     if (pds.cur_entry == MAX_DISCARDS_PER_COMMAND) {
1528         /* Full set, ship it! */
1529         qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1530                                               pds.ramblock_name,
1531                                               pds.cur_entry,
1532                                               pds.start_list,
1533                                               pds.length_list);
1534         pds.nsentcmds++;
1535         pds.cur_entry = 0;
1536     }
1537 }
1538 
1539 /**
1540  * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
1541  * bitmap code. Sends any outstanding discard messages, frees the PDS
1542  *
1543  * @ms: Current migration state.
1544  */
1545 void postcopy_discard_send_finish(MigrationState *ms)
1546 {
1547     /* Anything unsent? */
1548     if (pds.cur_entry) {
1549         qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1550                                               pds.ramblock_name,
1551                                               pds.cur_entry,
1552                                               pds.start_list,
1553                                               pds.length_list);
1554         pds.nsentcmds++;
1555     }
1556 
1557     trace_postcopy_discard_send_finish(pds.ramblock_name, pds.nsentwords,
1558                                        pds.nsentcmds);
1559 }
1560 
1561 /*
1562  * Current state of incoming postcopy; note this is not part of
1563  * MigrationIncomingState since it's state is used during cleanup
1564  * at the end as MIS is being freed.
1565  */
1566 static PostcopyState incoming_postcopy_state;
1567 
1568 PostcopyState  postcopy_state_get(void)
1569 {
1570     return qatomic_load_acquire(&incoming_postcopy_state);
1571 }
1572 
1573 /* Set the state and return the old state */
1574 PostcopyState postcopy_state_set(PostcopyState new_state)
1575 {
1576     return qatomic_xchg(&incoming_postcopy_state, new_state);
1577 }
1578 
1579 /* Register a handler for external shared memory postcopy
1580  * called on the destination.
1581  */
1582 void postcopy_register_shared_ufd(struct PostCopyFD *pcfd)
1583 {
1584     MigrationIncomingState *mis = migration_incoming_get_current();
1585 
1586     mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds,
1587                                                   *pcfd);
1588 }
1589 
1590 /* Unregister a handler for external shared memory postcopy
1591  */
1592 void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd)
1593 {
1594     guint i;
1595     MigrationIncomingState *mis = migration_incoming_get_current();
1596     GArray *pcrfds = mis->postcopy_remote_fds;
1597 
1598     if (!pcrfds) {
1599         /* migration has already finished and freed the array */
1600         return;
1601     }
1602     for (i = 0; i < pcrfds->len; i++) {
1603         struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1604         if (cur->fd == pcfd->fd) {
1605             mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i);
1606             return;
1607         }
1608     }
1609 }
1610 
1611 void postcopy_preempt_new_channel(MigrationIncomingState *mis, QEMUFile *file)
1612 {
1613     /*
1614      * The new loading channel has its own threads, so it needs to be
1615      * blocked too.  It's by default true, just be explicit.
1616      */
1617     qemu_file_set_blocking(file, true);
1618     mis->postcopy_qemufile_dst = file;
1619     qemu_sem_post(&mis->postcopy_qemufile_dst_done);
1620     trace_postcopy_preempt_new_channel();
1621 }
1622 
1623 /*
1624  * Setup the postcopy preempt channel with the IOC.  If ERROR is specified,
1625  * setup the error instead.  This helper will free the ERROR if specified.
1626  */
1627 static void
1628 postcopy_preempt_send_channel_done(MigrationState *s,
1629                                    QIOChannel *ioc, Error *local_err)
1630 {
1631     if (local_err) {
1632         migrate_set_error(s, local_err);
1633         error_free(local_err);
1634     } else {
1635         migration_ioc_register_yank(ioc);
1636         s->postcopy_qemufile_src = qemu_file_new_output(ioc);
1637         trace_postcopy_preempt_new_channel();
1638     }
1639 
1640     /*
1641      * Kick the waiter in all cases.  The waiter should check upon
1642      * postcopy_qemufile_src to know whether it failed or not.
1643      */
1644     qemu_sem_post(&s->postcopy_qemufile_src_sem);
1645 }
1646 
1647 static void
1648 postcopy_preempt_tls_handshake(QIOTask *task, gpointer opaque)
1649 {
1650     g_autoptr(QIOChannel) ioc = QIO_CHANNEL(qio_task_get_source(task));
1651     MigrationState *s = opaque;
1652     Error *local_err = NULL;
1653 
1654     qio_task_propagate_error(task, &local_err);
1655     postcopy_preempt_send_channel_done(s, ioc, local_err);
1656 }
1657 
1658 static void
1659 postcopy_preempt_send_channel_new(QIOTask *task, gpointer opaque)
1660 {
1661     g_autoptr(QIOChannel) ioc = QIO_CHANNEL(qio_task_get_source(task));
1662     MigrationState *s = opaque;
1663     QIOChannelTLS *tioc;
1664     Error *local_err = NULL;
1665 
1666     if (qio_task_propagate_error(task, &local_err)) {
1667         goto out;
1668     }
1669 
1670     if (migrate_channel_requires_tls_upgrade(ioc)) {
1671         tioc = migration_tls_client_create(ioc, s->hostname, &local_err);
1672         if (!tioc) {
1673             goto out;
1674         }
1675         trace_postcopy_preempt_tls_handshake();
1676         qio_channel_set_name(QIO_CHANNEL(tioc), "migration-tls-preempt");
1677         qio_channel_tls_handshake(tioc, postcopy_preempt_tls_handshake,
1678                                   s, NULL, NULL);
1679         /* Setup the channel until TLS handshake finished */
1680         return;
1681     }
1682 
1683 out:
1684     /* This handles both good and error cases */
1685     postcopy_preempt_send_channel_done(s, ioc, local_err);
1686 }
1687 
1688 /*
1689  * This function will kick off an async task to establish the preempt
1690  * channel, and wait until the connection setup completed.  Returns 0 if
1691  * channel established, -1 for error.
1692  */
1693 int postcopy_preempt_establish_channel(MigrationState *s)
1694 {
1695     /* If preempt not enabled, no need to wait */
1696     if (!migrate_postcopy_preempt()) {
1697         return 0;
1698     }
1699 
1700     /*
1701      * Kick off async task to establish preempt channel.  Only do so with
1702      * 8.0+ machines, because 7.1/7.2 require the channel to be created in
1703      * setup phase of migration (even if racy in an unreliable network).
1704      */
1705     if (!s->preempt_pre_7_2) {
1706         postcopy_preempt_setup(s);
1707     }
1708 
1709     /*
1710      * We need the postcopy preempt channel to be established before
1711      * starting doing anything.
1712      */
1713     qemu_sem_wait(&s->postcopy_qemufile_src_sem);
1714 
1715     return s->postcopy_qemufile_src ? 0 : -1;
1716 }
1717 
1718 void postcopy_preempt_setup(MigrationState *s)
1719 {
1720     /* Kick an async task to connect */
1721     socket_send_channel_create(postcopy_preempt_send_channel_new, s);
1722 }
1723 
1724 static void postcopy_pause_ram_fast_load(MigrationIncomingState *mis)
1725 {
1726     trace_postcopy_pause_fast_load();
1727     qemu_mutex_unlock(&mis->postcopy_prio_thread_mutex);
1728     qemu_sem_wait(&mis->postcopy_pause_sem_fast_load);
1729     qemu_mutex_lock(&mis->postcopy_prio_thread_mutex);
1730     trace_postcopy_pause_fast_load_continued();
1731 }
1732 
1733 static bool preempt_thread_should_run(MigrationIncomingState *mis)
1734 {
1735     return mis->preempt_thread_status != PREEMPT_THREAD_QUIT;
1736 }
1737 
1738 void *postcopy_preempt_thread(void *opaque)
1739 {
1740     MigrationIncomingState *mis = opaque;
1741     int ret;
1742 
1743     trace_postcopy_preempt_thread_entry();
1744 
1745     rcu_register_thread();
1746 
1747     qemu_sem_post(&mis->thread_sync_sem);
1748 
1749     /*
1750      * The preempt channel is established in asynchronous way.  Wait
1751      * for its completion.
1752      */
1753     qemu_sem_wait(&mis->postcopy_qemufile_dst_done);
1754 
1755     /* Sending RAM_SAVE_FLAG_EOS to terminate this thread */
1756     qemu_mutex_lock(&mis->postcopy_prio_thread_mutex);
1757     while (preempt_thread_should_run(mis)) {
1758         ret = ram_load_postcopy(mis->postcopy_qemufile_dst,
1759                                 RAM_CHANNEL_POSTCOPY);
1760         /* If error happened, go into recovery routine */
1761         if (ret && preempt_thread_should_run(mis)) {
1762             postcopy_pause_ram_fast_load(mis);
1763         } else {
1764             /* We're done */
1765             break;
1766         }
1767     }
1768     qemu_mutex_unlock(&mis->postcopy_prio_thread_mutex);
1769 
1770     rcu_unregister_thread();
1771 
1772     trace_postcopy_preempt_thread_exit();
1773 
1774     return NULL;
1775 }
1776