1 /* 2 * Postcopy migration for RAM 3 * 4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Dave Gilbert <dgilbert@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14 /* 15 * Postcopy is a migration technique where the execution flips from the 16 * source to the destination before all the data has been copied. 17 */ 18 19 #include "qemu/osdep.h" 20 #include "qemu/rcu.h" 21 #include "exec/target_page.h" 22 #include "migration.h" 23 #include "qemu-file.h" 24 #include "savevm.h" 25 #include "postcopy-ram.h" 26 #include "ram.h" 27 #include "qapi/error.h" 28 #include "qemu/notify.h" 29 #include "qemu/rcu.h" 30 #include "sysemu/sysemu.h" 31 #include "qemu/error-report.h" 32 #include "trace.h" 33 #include "hw/boards.h" 34 #include "exec/ramblock.h" 35 36 /* Arbitrary limit on size of each discard command, 37 * keeps them around ~200 bytes 38 */ 39 #define MAX_DISCARDS_PER_COMMAND 12 40 41 struct PostcopyDiscardState { 42 const char *ramblock_name; 43 uint16_t cur_entry; 44 /* 45 * Start and length of a discard range (bytes) 46 */ 47 uint64_t start_list[MAX_DISCARDS_PER_COMMAND]; 48 uint64_t length_list[MAX_DISCARDS_PER_COMMAND]; 49 unsigned int nsentwords; 50 unsigned int nsentcmds; 51 }; 52 53 static NotifierWithReturnList postcopy_notifier_list; 54 55 void postcopy_infrastructure_init(void) 56 { 57 notifier_with_return_list_init(&postcopy_notifier_list); 58 } 59 60 void postcopy_add_notifier(NotifierWithReturn *nn) 61 { 62 notifier_with_return_list_add(&postcopy_notifier_list, nn); 63 } 64 65 void postcopy_remove_notifier(NotifierWithReturn *n) 66 { 67 notifier_with_return_remove(n); 68 } 69 70 int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp) 71 { 72 struct PostcopyNotifyData pnd; 73 pnd.reason = reason; 74 pnd.errp = errp; 75 76 return notifier_with_return_list_notify(&postcopy_notifier_list, 77 &pnd); 78 } 79 80 /* Postcopy needs to detect accesses to pages that haven't yet been copied 81 * across, and efficiently map new pages in, the techniques for doing this 82 * are target OS specific. 83 */ 84 #if defined(__linux__) 85 86 #include <poll.h> 87 #include <sys/ioctl.h> 88 #include <sys/syscall.h> 89 #include <asm/types.h> /* for __u64 */ 90 #endif 91 92 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD) 93 #include <sys/eventfd.h> 94 #include <linux/userfaultfd.h> 95 96 typedef struct PostcopyBlocktimeContext { 97 /* time when page fault initiated per vCPU */ 98 uint32_t *page_fault_vcpu_time; 99 /* page address per vCPU */ 100 uintptr_t *vcpu_addr; 101 uint32_t total_blocktime; 102 /* blocktime per vCPU */ 103 uint32_t *vcpu_blocktime; 104 /* point in time when last page fault was initiated */ 105 uint32_t last_begin; 106 /* number of vCPU are suspended */ 107 int smp_cpus_down; 108 uint64_t start_time; 109 110 /* 111 * Handler for exit event, necessary for 112 * releasing whole blocktime_ctx 113 */ 114 Notifier exit_notifier; 115 } PostcopyBlocktimeContext; 116 117 static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx) 118 { 119 g_free(ctx->page_fault_vcpu_time); 120 g_free(ctx->vcpu_addr); 121 g_free(ctx->vcpu_blocktime); 122 g_free(ctx); 123 } 124 125 static void migration_exit_cb(Notifier *n, void *data) 126 { 127 PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext, 128 exit_notifier); 129 destroy_blocktime_context(ctx); 130 } 131 132 static struct PostcopyBlocktimeContext *blocktime_context_new(void) 133 { 134 MachineState *ms = MACHINE(qdev_get_machine()); 135 unsigned int smp_cpus = ms->smp.cpus; 136 PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1); 137 ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus); 138 ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus); 139 ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus); 140 141 ctx->exit_notifier.notify = migration_exit_cb; 142 ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 143 qemu_add_exit_notifier(&ctx->exit_notifier); 144 return ctx; 145 } 146 147 static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx) 148 { 149 MachineState *ms = MACHINE(qdev_get_machine()); 150 uint32List *list = NULL; 151 int i; 152 153 for (i = ms->smp.cpus - 1; i >= 0; i--) { 154 QAPI_LIST_PREPEND(list, ctx->vcpu_blocktime[i]); 155 } 156 157 return list; 158 } 159 160 /* 161 * This function just populates MigrationInfo from postcopy's 162 * blocktime context. It will not populate MigrationInfo, 163 * unless postcopy-blocktime capability was set. 164 * 165 * @info: pointer to MigrationInfo to populate 166 */ 167 void fill_destination_postcopy_migration_info(MigrationInfo *info) 168 { 169 MigrationIncomingState *mis = migration_incoming_get_current(); 170 PostcopyBlocktimeContext *bc = mis->blocktime_ctx; 171 172 if (!bc) { 173 return; 174 } 175 176 info->has_postcopy_blocktime = true; 177 info->postcopy_blocktime = bc->total_blocktime; 178 info->has_postcopy_vcpu_blocktime = true; 179 info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc); 180 } 181 182 static uint32_t get_postcopy_total_blocktime(void) 183 { 184 MigrationIncomingState *mis = migration_incoming_get_current(); 185 PostcopyBlocktimeContext *bc = mis->blocktime_ctx; 186 187 if (!bc) { 188 return 0; 189 } 190 191 return bc->total_blocktime; 192 } 193 194 /** 195 * receive_ufd_features: check userfault fd features, to request only supported 196 * features in the future. 197 * 198 * Returns: true on success 199 * 200 * __NR_userfaultfd - should be checked before 201 * @features: out parameter will contain uffdio_api.features provided by kernel 202 * in case of success 203 */ 204 static bool receive_ufd_features(uint64_t *features) 205 { 206 struct uffdio_api api_struct = {0}; 207 int ufd; 208 bool ret = true; 209 210 /* if we are here __NR_userfaultfd should exists */ 211 ufd = syscall(__NR_userfaultfd, O_CLOEXEC); 212 if (ufd == -1) { 213 error_report("%s: syscall __NR_userfaultfd failed: %s", __func__, 214 strerror(errno)); 215 return false; 216 } 217 218 /* ask features */ 219 api_struct.api = UFFD_API; 220 api_struct.features = 0; 221 if (ioctl(ufd, UFFDIO_API, &api_struct)) { 222 error_report("%s: UFFDIO_API failed: %s", __func__, 223 strerror(errno)); 224 ret = false; 225 goto release_ufd; 226 } 227 228 *features = api_struct.features; 229 230 release_ufd: 231 close(ufd); 232 return ret; 233 } 234 235 /** 236 * request_ufd_features: this function should be called only once on a newly 237 * opened ufd, subsequent calls will lead to error. 238 * 239 * Returns: true on success 240 * 241 * @ufd: fd obtained from userfaultfd syscall 242 * @features: bit mask see UFFD_API_FEATURES 243 */ 244 static bool request_ufd_features(int ufd, uint64_t features) 245 { 246 struct uffdio_api api_struct = {0}; 247 uint64_t ioctl_mask; 248 249 api_struct.api = UFFD_API; 250 api_struct.features = features; 251 if (ioctl(ufd, UFFDIO_API, &api_struct)) { 252 error_report("%s failed: UFFDIO_API failed: %s", __func__, 253 strerror(errno)); 254 return false; 255 } 256 257 ioctl_mask = (__u64)1 << _UFFDIO_REGISTER | 258 (__u64)1 << _UFFDIO_UNREGISTER; 259 if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) { 260 error_report("Missing userfault features: %" PRIx64, 261 (uint64_t)(~api_struct.ioctls & ioctl_mask)); 262 return false; 263 } 264 265 return true; 266 } 267 268 static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis) 269 { 270 uint64_t asked_features = 0; 271 static uint64_t supported_features; 272 273 /* 274 * it's not possible to 275 * request UFFD_API twice per one fd 276 * userfault fd features is persistent 277 */ 278 if (!supported_features) { 279 if (!receive_ufd_features(&supported_features)) { 280 error_report("%s failed", __func__); 281 return false; 282 } 283 } 284 285 #ifdef UFFD_FEATURE_THREAD_ID 286 if (migrate_postcopy_blocktime() && mis && 287 UFFD_FEATURE_THREAD_ID & supported_features) { 288 /* kernel supports that feature */ 289 /* don't create blocktime_context if it exists */ 290 if (!mis->blocktime_ctx) { 291 mis->blocktime_ctx = blocktime_context_new(); 292 } 293 294 asked_features |= UFFD_FEATURE_THREAD_ID; 295 } 296 #endif 297 298 /* 299 * request features, even if asked_features is 0, due to 300 * kernel expects UFFD_API before UFFDIO_REGISTER, per 301 * userfault file descriptor 302 */ 303 if (!request_ufd_features(ufd, asked_features)) { 304 error_report("%s failed: features %" PRIu64, __func__, 305 asked_features); 306 return false; 307 } 308 309 if (qemu_real_host_page_size != ram_pagesize_summary()) { 310 bool have_hp = false; 311 /* We've got a huge page */ 312 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS 313 have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS; 314 #endif 315 if (!have_hp) { 316 error_report("Userfault on this host does not support huge pages"); 317 return false; 318 } 319 } 320 return true; 321 } 322 323 /* Callback from postcopy_ram_supported_by_host block iterator. 324 */ 325 static int test_ramblock_postcopiable(RAMBlock *rb, void *opaque) 326 { 327 const char *block_name = qemu_ram_get_idstr(rb); 328 ram_addr_t length = qemu_ram_get_used_length(rb); 329 size_t pagesize = qemu_ram_pagesize(rb); 330 331 if (length % pagesize) { 332 error_report("Postcopy requires RAM blocks to be a page size multiple," 333 " block %s is 0x" RAM_ADDR_FMT " bytes with a " 334 "page size of 0x%zx", block_name, length, pagesize); 335 return 1; 336 } 337 return 0; 338 } 339 340 /* 341 * Note: This has the side effect of munlock'ing all of RAM, that's 342 * normally fine since if the postcopy succeeds it gets turned back on at the 343 * end. 344 */ 345 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis) 346 { 347 long pagesize = qemu_real_host_page_size; 348 int ufd = -1; 349 bool ret = false; /* Error unless we change it */ 350 void *testarea = NULL; 351 struct uffdio_register reg_struct; 352 struct uffdio_range range_struct; 353 uint64_t feature_mask; 354 Error *local_err = NULL; 355 356 if (qemu_target_page_size() > pagesize) { 357 error_report("Target page size bigger than host page size"); 358 goto out; 359 } 360 361 ufd = syscall(__NR_userfaultfd, O_CLOEXEC); 362 if (ufd == -1) { 363 error_report("%s: userfaultfd not available: %s", __func__, 364 strerror(errno)); 365 goto out; 366 } 367 368 /* Give devices a chance to object */ 369 if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, &local_err)) { 370 error_report_err(local_err); 371 goto out; 372 } 373 374 /* Version and features check */ 375 if (!ufd_check_and_apply(ufd, mis)) { 376 goto out; 377 } 378 379 /* We don't support postcopy with shared RAM yet */ 380 if (foreach_not_ignored_block(test_ramblock_postcopiable, NULL)) { 381 goto out; 382 } 383 384 /* 385 * userfault and mlock don't go together; we'll put it back later if 386 * it was enabled. 387 */ 388 if (munlockall()) { 389 error_report("%s: munlockall: %s", __func__, strerror(errno)); 390 goto out; 391 } 392 393 /* 394 * We need to check that the ops we need are supported on anon memory 395 * To do that we need to register a chunk and see the flags that 396 * are returned. 397 */ 398 testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE | 399 MAP_ANONYMOUS, -1, 0); 400 if (testarea == MAP_FAILED) { 401 error_report("%s: Failed to map test area: %s", __func__, 402 strerror(errno)); 403 goto out; 404 } 405 g_assert(QEMU_PTR_IS_ALIGNED(testarea, pagesize)); 406 407 reg_struct.range.start = (uintptr_t)testarea; 408 reg_struct.range.len = pagesize; 409 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 410 411 if (ioctl(ufd, UFFDIO_REGISTER, ®_struct)) { 412 error_report("%s userfault register: %s", __func__, strerror(errno)); 413 goto out; 414 } 415 416 range_struct.start = (uintptr_t)testarea; 417 range_struct.len = pagesize; 418 if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) { 419 error_report("%s userfault unregister: %s", __func__, strerror(errno)); 420 goto out; 421 } 422 423 feature_mask = (__u64)1 << _UFFDIO_WAKE | 424 (__u64)1 << _UFFDIO_COPY | 425 (__u64)1 << _UFFDIO_ZEROPAGE; 426 if ((reg_struct.ioctls & feature_mask) != feature_mask) { 427 error_report("Missing userfault map features: %" PRIx64, 428 (uint64_t)(~reg_struct.ioctls & feature_mask)); 429 goto out; 430 } 431 432 /* Success! */ 433 ret = true; 434 out: 435 if (testarea) { 436 munmap(testarea, pagesize); 437 } 438 if (ufd != -1) { 439 close(ufd); 440 } 441 return ret; 442 } 443 444 /* 445 * Setup an area of RAM so that it *can* be used for postcopy later; this 446 * must be done right at the start prior to pre-copy. 447 * opaque should be the MIS. 448 */ 449 static int init_range(RAMBlock *rb, void *opaque) 450 { 451 const char *block_name = qemu_ram_get_idstr(rb); 452 void *host_addr = qemu_ram_get_host_addr(rb); 453 ram_addr_t offset = qemu_ram_get_offset(rb); 454 ram_addr_t length = qemu_ram_get_used_length(rb); 455 trace_postcopy_init_range(block_name, host_addr, offset, length); 456 457 /* 458 * Save the used_length before running the guest. In case we have to 459 * resize RAM blocks when syncing RAM block sizes from the source during 460 * precopy, we'll update it manually via the ram block notifier. 461 */ 462 rb->postcopy_length = length; 463 464 /* 465 * We need the whole of RAM to be truly empty for postcopy, so things 466 * like ROMs and any data tables built during init must be zero'd 467 * - we're going to get the copy from the source anyway. 468 * (Precopy will just overwrite this data, so doesn't need the discard) 469 */ 470 if (ram_discard_range(block_name, 0, length)) { 471 return -1; 472 } 473 474 return 0; 475 } 476 477 /* 478 * At the end of migration, undo the effects of init_range 479 * opaque should be the MIS. 480 */ 481 static int cleanup_range(RAMBlock *rb, void *opaque) 482 { 483 const char *block_name = qemu_ram_get_idstr(rb); 484 void *host_addr = qemu_ram_get_host_addr(rb); 485 ram_addr_t offset = qemu_ram_get_offset(rb); 486 ram_addr_t length = rb->postcopy_length; 487 MigrationIncomingState *mis = opaque; 488 struct uffdio_range range_struct; 489 trace_postcopy_cleanup_range(block_name, host_addr, offset, length); 490 491 /* 492 * We turned off hugepage for the precopy stage with postcopy enabled 493 * we can turn it back on now. 494 */ 495 qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE); 496 497 /* 498 * We can also turn off userfault now since we should have all the 499 * pages. It can be useful to leave it on to debug postcopy 500 * if you're not sure it's always getting every page. 501 */ 502 range_struct.start = (uintptr_t)host_addr; 503 range_struct.len = length; 504 505 if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) { 506 error_report("%s: userfault unregister %s", __func__, strerror(errno)); 507 508 return -1; 509 } 510 511 return 0; 512 } 513 514 /* 515 * Initialise postcopy-ram, setting the RAM to a state where we can go into 516 * postcopy later; must be called prior to any precopy. 517 * called from arch_init's similarly named ram_postcopy_incoming_init 518 */ 519 int postcopy_ram_incoming_init(MigrationIncomingState *mis) 520 { 521 if (foreach_not_ignored_block(init_range, NULL)) { 522 return -1; 523 } 524 525 return 0; 526 } 527 528 /* 529 * At the end of a migration where postcopy_ram_incoming_init was called. 530 */ 531 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 532 { 533 trace_postcopy_ram_incoming_cleanup_entry(); 534 535 if (mis->have_fault_thread) { 536 Error *local_err = NULL; 537 538 /* Let the fault thread quit */ 539 qatomic_set(&mis->fault_thread_quit, 1); 540 postcopy_fault_thread_notify(mis); 541 trace_postcopy_ram_incoming_cleanup_join(); 542 qemu_thread_join(&mis->fault_thread); 543 544 if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) { 545 error_report_err(local_err); 546 return -1; 547 } 548 549 if (foreach_not_ignored_block(cleanup_range, mis)) { 550 return -1; 551 } 552 553 trace_postcopy_ram_incoming_cleanup_closeuf(); 554 close(mis->userfault_fd); 555 close(mis->userfault_event_fd); 556 mis->have_fault_thread = false; 557 } 558 559 if (enable_mlock) { 560 if (os_mlock() < 0) { 561 error_report("mlock: %s", strerror(errno)); 562 /* 563 * It doesn't feel right to fail at this point, we have a valid 564 * VM state. 565 */ 566 } 567 } 568 569 if (mis->postcopy_tmp_page) { 570 munmap(mis->postcopy_tmp_page, mis->largest_page_size); 571 mis->postcopy_tmp_page = NULL; 572 } 573 if (mis->postcopy_tmp_zero_page) { 574 munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size); 575 mis->postcopy_tmp_zero_page = NULL; 576 } 577 trace_postcopy_ram_incoming_cleanup_blocktime( 578 get_postcopy_total_blocktime()); 579 580 trace_postcopy_ram_incoming_cleanup_exit(); 581 return 0; 582 } 583 584 /* 585 * Disable huge pages on an area 586 */ 587 static int nhp_range(RAMBlock *rb, void *opaque) 588 { 589 const char *block_name = qemu_ram_get_idstr(rb); 590 void *host_addr = qemu_ram_get_host_addr(rb); 591 ram_addr_t offset = qemu_ram_get_offset(rb); 592 ram_addr_t length = rb->postcopy_length; 593 trace_postcopy_nhp_range(block_name, host_addr, offset, length); 594 595 /* 596 * Before we do discards we need to ensure those discards really 597 * do delete areas of the page, even if THP thinks a hugepage would 598 * be a good idea, so force hugepages off. 599 */ 600 qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE); 601 602 return 0; 603 } 604 605 /* 606 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard 607 * however leaving it until after precopy means that most of the precopy 608 * data is still THPd 609 */ 610 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 611 { 612 if (foreach_not_ignored_block(nhp_range, mis)) { 613 return -1; 614 } 615 616 postcopy_state_set(POSTCOPY_INCOMING_DISCARD); 617 618 return 0; 619 } 620 621 /* 622 * Mark the given area of RAM as requiring notification to unwritten areas 623 * Used as a callback on foreach_not_ignored_block. 624 * host_addr: Base of area to mark 625 * offset: Offset in the whole ram arena 626 * length: Length of the section 627 * opaque: MigrationIncomingState pointer 628 * Returns 0 on success 629 */ 630 static int ram_block_enable_notify(RAMBlock *rb, void *opaque) 631 { 632 MigrationIncomingState *mis = opaque; 633 struct uffdio_register reg_struct; 634 635 reg_struct.range.start = (uintptr_t)qemu_ram_get_host_addr(rb); 636 reg_struct.range.len = rb->postcopy_length; 637 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 638 639 /* Now tell our userfault_fd that it's responsible for this area */ 640 if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, ®_struct)) { 641 error_report("%s userfault register: %s", __func__, strerror(errno)); 642 return -1; 643 } 644 if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) { 645 error_report("%s userfault: Region doesn't support COPY", __func__); 646 return -1; 647 } 648 if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) { 649 qemu_ram_set_uf_zeroable(rb); 650 } 651 652 return 0; 653 } 654 655 int postcopy_wake_shared(struct PostCopyFD *pcfd, 656 uint64_t client_addr, 657 RAMBlock *rb) 658 { 659 size_t pagesize = qemu_ram_pagesize(rb); 660 struct uffdio_range range; 661 int ret; 662 trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb)); 663 range.start = ROUND_DOWN(client_addr, pagesize); 664 range.len = pagesize; 665 ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range); 666 if (ret) { 667 error_report("%s: Failed to wake: %zx in %s (%s)", 668 __func__, (size_t)client_addr, qemu_ram_get_idstr(rb), 669 strerror(errno)); 670 } 671 return ret; 672 } 673 674 static int postcopy_request_page(MigrationIncomingState *mis, RAMBlock *rb, 675 ram_addr_t start, uint64_t haddr) 676 { 677 void *aligned = (void *)(uintptr_t)ROUND_DOWN(haddr, qemu_ram_pagesize(rb)); 678 679 /* 680 * Discarded pages (via RamDiscardManager) are never migrated. On unlikely 681 * access, place a zeropage, which will also set the relevant bits in the 682 * recv_bitmap accordingly, so we won't try placing a zeropage twice. 683 * 684 * Checking a single bit is sufficient to handle pagesize > TPS as either 685 * all relevant bits are set or not. 686 */ 687 assert(QEMU_IS_ALIGNED(start, qemu_ram_pagesize(rb))); 688 if (ramblock_page_is_discarded(rb, start)) { 689 bool received = ramblock_recv_bitmap_test_byte_offset(rb, start); 690 691 return received ? 0 : postcopy_place_page_zero(mis, aligned, rb); 692 } 693 694 return migrate_send_rp_req_pages(mis, rb, start, haddr); 695 } 696 697 /* 698 * Callback from shared fault handlers to ask for a page, 699 * the page must be specified by a RAMBlock and an offset in that rb 700 * Note: Only for use by shared fault handlers (in fault thread) 701 */ 702 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb, 703 uint64_t client_addr, uint64_t rb_offset) 704 { 705 uint64_t aligned_rbo = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb)); 706 MigrationIncomingState *mis = migration_incoming_get_current(); 707 708 trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb), 709 rb_offset); 710 if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) { 711 trace_postcopy_request_shared_page_present(pcfd->idstr, 712 qemu_ram_get_idstr(rb), rb_offset); 713 return postcopy_wake_shared(pcfd, client_addr, rb); 714 } 715 postcopy_request_page(mis, rb, aligned_rbo, client_addr); 716 return 0; 717 } 718 719 static int get_mem_fault_cpu_index(uint32_t pid) 720 { 721 CPUState *cpu_iter; 722 723 CPU_FOREACH(cpu_iter) { 724 if (cpu_iter->thread_id == pid) { 725 trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid); 726 return cpu_iter->cpu_index; 727 } 728 } 729 trace_get_mem_fault_cpu_index(-1, pid); 730 return -1; 731 } 732 733 static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc) 734 { 735 int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) - 736 dc->start_time; 737 return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX; 738 } 739 740 /* 741 * This function is being called when pagefault occurs. It 742 * tracks down vCPU blocking time. 743 * 744 * @addr: faulted host virtual address 745 * @ptid: faulted process thread id 746 * @rb: ramblock appropriate to addr 747 */ 748 static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid, 749 RAMBlock *rb) 750 { 751 int cpu, already_received; 752 MigrationIncomingState *mis = migration_incoming_get_current(); 753 PostcopyBlocktimeContext *dc = mis->blocktime_ctx; 754 uint32_t low_time_offset; 755 756 if (!dc || ptid == 0) { 757 return; 758 } 759 cpu = get_mem_fault_cpu_index(ptid); 760 if (cpu < 0) { 761 return; 762 } 763 764 low_time_offset = get_low_time_offset(dc); 765 if (dc->vcpu_addr[cpu] == 0) { 766 qatomic_inc(&dc->smp_cpus_down); 767 } 768 769 qatomic_xchg(&dc->last_begin, low_time_offset); 770 qatomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset); 771 qatomic_xchg(&dc->vcpu_addr[cpu], addr); 772 773 /* 774 * check it here, not at the beginning of the function, 775 * due to, check could occur early than bitmap_set in 776 * qemu_ufd_copy_ioctl 777 */ 778 already_received = ramblock_recv_bitmap_test(rb, (void *)addr); 779 if (already_received) { 780 qatomic_xchg(&dc->vcpu_addr[cpu], 0); 781 qatomic_xchg(&dc->page_fault_vcpu_time[cpu], 0); 782 qatomic_dec(&dc->smp_cpus_down); 783 } 784 trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu], 785 cpu, already_received); 786 } 787 788 /* 789 * This function just provide calculated blocktime per cpu and trace it. 790 * Total blocktime is calculated in mark_postcopy_blocktime_end. 791 * 792 * 793 * Assume we have 3 CPU 794 * 795 * S1 E1 S1 E1 796 * -----***********------------xxx***************------------------------> CPU1 797 * 798 * S2 E2 799 * ------------****************xxx---------------------------------------> CPU2 800 * 801 * S3 E3 802 * ------------------------****xxx********-------------------------------> CPU3 803 * 804 * We have sequence S1,S2,E1,S3,S1,E2,E3,E1 805 * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3 806 * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 - 807 * it's a part of total blocktime. 808 * S1 - here is last_begin 809 * Legend of the picture is following: 810 * * - means blocktime per vCPU 811 * x - means overlapped blocktime (total blocktime) 812 * 813 * @addr: host virtual address 814 */ 815 static void mark_postcopy_blocktime_end(uintptr_t addr) 816 { 817 MigrationIncomingState *mis = migration_incoming_get_current(); 818 PostcopyBlocktimeContext *dc = mis->blocktime_ctx; 819 MachineState *ms = MACHINE(qdev_get_machine()); 820 unsigned int smp_cpus = ms->smp.cpus; 821 int i, affected_cpu = 0; 822 bool vcpu_total_blocktime = false; 823 uint32_t read_vcpu_time, low_time_offset; 824 825 if (!dc) { 826 return; 827 } 828 829 low_time_offset = get_low_time_offset(dc); 830 /* lookup cpu, to clear it, 831 * that algorithm looks straightforward, but it's not 832 * optimal, more optimal algorithm is keeping tree or hash 833 * where key is address value is a list of */ 834 for (i = 0; i < smp_cpus; i++) { 835 uint32_t vcpu_blocktime = 0; 836 837 read_vcpu_time = qatomic_fetch_add(&dc->page_fault_vcpu_time[i], 0); 838 if (qatomic_fetch_add(&dc->vcpu_addr[i], 0) != addr || 839 read_vcpu_time == 0) { 840 continue; 841 } 842 qatomic_xchg(&dc->vcpu_addr[i], 0); 843 vcpu_blocktime = low_time_offset - read_vcpu_time; 844 affected_cpu += 1; 845 /* we need to know is that mark_postcopy_end was due to 846 * faulted page, another possible case it's prefetched 847 * page and in that case we shouldn't be here */ 848 if (!vcpu_total_blocktime && 849 qatomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) { 850 vcpu_total_blocktime = true; 851 } 852 /* continue cycle, due to one page could affect several vCPUs */ 853 dc->vcpu_blocktime[i] += vcpu_blocktime; 854 } 855 856 qatomic_sub(&dc->smp_cpus_down, affected_cpu); 857 if (vcpu_total_blocktime) { 858 dc->total_blocktime += low_time_offset - qatomic_fetch_add( 859 &dc->last_begin, 0); 860 } 861 trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime, 862 affected_cpu); 863 } 864 865 static bool postcopy_pause_fault_thread(MigrationIncomingState *mis) 866 { 867 trace_postcopy_pause_fault_thread(); 868 869 qemu_sem_wait(&mis->postcopy_pause_sem_fault); 870 871 trace_postcopy_pause_fault_thread_continued(); 872 873 return true; 874 } 875 876 /* 877 * Handle faults detected by the USERFAULT markings 878 */ 879 static void *postcopy_ram_fault_thread(void *opaque) 880 { 881 MigrationIncomingState *mis = opaque; 882 struct uffd_msg msg; 883 int ret; 884 size_t index; 885 RAMBlock *rb = NULL; 886 887 trace_postcopy_ram_fault_thread_entry(); 888 rcu_register_thread(); 889 mis->last_rb = NULL; /* last RAMBlock we sent part of */ 890 qemu_sem_post(&mis->fault_thread_sem); 891 892 struct pollfd *pfd; 893 size_t pfd_len = 2 + mis->postcopy_remote_fds->len; 894 895 pfd = g_new0(struct pollfd, pfd_len); 896 897 pfd[0].fd = mis->userfault_fd; 898 pfd[0].events = POLLIN; 899 pfd[1].fd = mis->userfault_event_fd; 900 pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */ 901 trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd); 902 for (index = 0; index < mis->postcopy_remote_fds->len; index++) { 903 struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds, 904 struct PostCopyFD, index); 905 pfd[2 + index].fd = pcfd->fd; 906 pfd[2 + index].events = POLLIN; 907 trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr, 908 pcfd->fd); 909 } 910 911 while (true) { 912 ram_addr_t rb_offset; 913 int poll_result; 914 915 /* 916 * We're mainly waiting for the kernel to give us a faulting HVA, 917 * however we can be told to quit via userfault_quit_fd which is 918 * an eventfd 919 */ 920 921 poll_result = poll(pfd, pfd_len, -1 /* Wait forever */); 922 if (poll_result == -1) { 923 error_report("%s: userfault poll: %s", __func__, strerror(errno)); 924 break; 925 } 926 927 if (!mis->to_src_file) { 928 /* 929 * Possibly someone tells us that the return path is 930 * broken already using the event. We should hold until 931 * the channel is rebuilt. 932 */ 933 if (postcopy_pause_fault_thread(mis)) { 934 /* Continue to read the userfaultfd */ 935 } else { 936 error_report("%s: paused but don't allow to continue", 937 __func__); 938 break; 939 } 940 } 941 942 if (pfd[1].revents) { 943 uint64_t tmp64 = 0; 944 945 /* Consume the signal */ 946 if (read(mis->userfault_event_fd, &tmp64, 8) != 8) { 947 /* Nothing obviously nicer than posting this error. */ 948 error_report("%s: read() failed", __func__); 949 } 950 951 if (qatomic_read(&mis->fault_thread_quit)) { 952 trace_postcopy_ram_fault_thread_quit(); 953 break; 954 } 955 } 956 957 if (pfd[0].revents) { 958 poll_result--; 959 ret = read(mis->userfault_fd, &msg, sizeof(msg)); 960 if (ret != sizeof(msg)) { 961 if (errno == EAGAIN) { 962 /* 963 * if a wake up happens on the other thread just after 964 * the poll, there is nothing to read. 965 */ 966 continue; 967 } 968 if (ret < 0) { 969 error_report("%s: Failed to read full userfault " 970 "message: %s", 971 __func__, strerror(errno)); 972 break; 973 } else { 974 error_report("%s: Read %d bytes from userfaultfd " 975 "expected %zd", 976 __func__, ret, sizeof(msg)); 977 break; /* Lost alignment, don't know what we'd read next */ 978 } 979 } 980 if (msg.event != UFFD_EVENT_PAGEFAULT) { 981 error_report("%s: Read unexpected event %ud from userfaultfd", 982 __func__, msg.event); 983 continue; /* It's not a page fault, shouldn't happen */ 984 } 985 986 rb = qemu_ram_block_from_host( 987 (void *)(uintptr_t)msg.arg.pagefault.address, 988 true, &rb_offset); 989 if (!rb) { 990 error_report("postcopy_ram_fault_thread: Fault outside guest: %" 991 PRIx64, (uint64_t)msg.arg.pagefault.address); 992 break; 993 } 994 995 rb_offset = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb)); 996 trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address, 997 qemu_ram_get_idstr(rb), 998 rb_offset, 999 msg.arg.pagefault.feat.ptid); 1000 mark_postcopy_blocktime_begin( 1001 (uintptr_t)(msg.arg.pagefault.address), 1002 msg.arg.pagefault.feat.ptid, rb); 1003 1004 retry: 1005 /* 1006 * Send the request to the source - we want to request one 1007 * of our host page sizes (which is >= TPS) 1008 */ 1009 ret = postcopy_request_page(mis, rb, rb_offset, 1010 msg.arg.pagefault.address); 1011 if (ret) { 1012 /* May be network failure, try to wait for recovery */ 1013 if (ret == -EIO && postcopy_pause_fault_thread(mis)) { 1014 /* We got reconnected somehow, try to continue */ 1015 goto retry; 1016 } else { 1017 /* This is a unavoidable fault */ 1018 error_report("%s: postcopy_request_page() get %d", 1019 __func__, ret); 1020 break; 1021 } 1022 } 1023 } 1024 1025 /* Now handle any requests from external processes on shared memory */ 1026 /* TODO: May need to handle devices deregistering during postcopy */ 1027 for (index = 2; index < pfd_len && poll_result; index++) { 1028 if (pfd[index].revents) { 1029 struct PostCopyFD *pcfd = 1030 &g_array_index(mis->postcopy_remote_fds, 1031 struct PostCopyFD, index - 2); 1032 1033 poll_result--; 1034 if (pfd[index].revents & POLLERR) { 1035 error_report("%s: POLLERR on poll %zd fd=%d", 1036 __func__, index, pcfd->fd); 1037 pfd[index].events = 0; 1038 continue; 1039 } 1040 1041 ret = read(pcfd->fd, &msg, sizeof(msg)); 1042 if (ret != sizeof(msg)) { 1043 if (errno == EAGAIN) { 1044 /* 1045 * if a wake up happens on the other thread just after 1046 * the poll, there is nothing to read. 1047 */ 1048 continue; 1049 } 1050 if (ret < 0) { 1051 error_report("%s: Failed to read full userfault " 1052 "message: %s (shared) revents=%d", 1053 __func__, strerror(errno), 1054 pfd[index].revents); 1055 /*TODO: Could just disable this sharer */ 1056 break; 1057 } else { 1058 error_report("%s: Read %d bytes from userfaultfd " 1059 "expected %zd (shared)", 1060 __func__, ret, sizeof(msg)); 1061 /*TODO: Could just disable this sharer */ 1062 break; /*Lost alignment,don't know what we'd read next*/ 1063 } 1064 } 1065 if (msg.event != UFFD_EVENT_PAGEFAULT) { 1066 error_report("%s: Read unexpected event %ud " 1067 "from userfaultfd (shared)", 1068 __func__, msg.event); 1069 continue; /* It's not a page fault, shouldn't happen */ 1070 } 1071 /* Call the device handler registered with us */ 1072 ret = pcfd->handler(pcfd, &msg); 1073 if (ret) { 1074 error_report("%s: Failed to resolve shared fault on %zd/%s", 1075 __func__, index, pcfd->idstr); 1076 /* TODO: Fail? Disable this sharer? */ 1077 } 1078 } 1079 } 1080 } 1081 rcu_unregister_thread(); 1082 trace_postcopy_ram_fault_thread_exit(); 1083 g_free(pfd); 1084 return NULL; 1085 } 1086 1087 int postcopy_ram_incoming_setup(MigrationIncomingState *mis) 1088 { 1089 /* Open the fd for the kernel to give us userfaults */ 1090 mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK); 1091 if (mis->userfault_fd == -1) { 1092 error_report("%s: Failed to open userfault fd: %s", __func__, 1093 strerror(errno)); 1094 return -1; 1095 } 1096 1097 /* 1098 * Although the host check already tested the API, we need to 1099 * do the check again as an ABI handshake on the new fd. 1100 */ 1101 if (!ufd_check_and_apply(mis->userfault_fd, mis)) { 1102 return -1; 1103 } 1104 1105 /* Now an eventfd we use to tell the fault-thread to quit */ 1106 mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC); 1107 if (mis->userfault_event_fd == -1) { 1108 error_report("%s: Opening userfault_event_fd: %s", __func__, 1109 strerror(errno)); 1110 close(mis->userfault_fd); 1111 return -1; 1112 } 1113 1114 qemu_sem_init(&mis->fault_thread_sem, 0); 1115 qemu_thread_create(&mis->fault_thread, "postcopy/fault", 1116 postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE); 1117 qemu_sem_wait(&mis->fault_thread_sem); 1118 qemu_sem_destroy(&mis->fault_thread_sem); 1119 mis->have_fault_thread = true; 1120 1121 /* Mark so that we get notified of accesses to unwritten areas */ 1122 if (foreach_not_ignored_block(ram_block_enable_notify, mis)) { 1123 error_report("ram_block_enable_notify failed"); 1124 return -1; 1125 } 1126 1127 mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size, 1128 PROT_READ | PROT_WRITE, MAP_PRIVATE | 1129 MAP_ANONYMOUS, -1, 0); 1130 if (mis->postcopy_tmp_page == MAP_FAILED) { 1131 mis->postcopy_tmp_page = NULL; 1132 error_report("%s: Failed to map postcopy_tmp_page %s", 1133 __func__, strerror(errno)); 1134 return -1; 1135 } 1136 1137 /* 1138 * Map large zero page when kernel can't use UFFDIO_ZEROPAGE for hugepages 1139 */ 1140 mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size, 1141 PROT_READ | PROT_WRITE, 1142 MAP_PRIVATE | MAP_ANONYMOUS, 1143 -1, 0); 1144 if (mis->postcopy_tmp_zero_page == MAP_FAILED) { 1145 int e = errno; 1146 mis->postcopy_tmp_zero_page = NULL; 1147 error_report("%s: Failed to map large zero page %s", 1148 __func__, strerror(e)); 1149 return -e; 1150 } 1151 memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size); 1152 1153 trace_postcopy_ram_enable_notify(); 1154 1155 return 0; 1156 } 1157 1158 static int qemu_ufd_copy_ioctl(MigrationIncomingState *mis, void *host_addr, 1159 void *from_addr, uint64_t pagesize, RAMBlock *rb) 1160 { 1161 int userfault_fd = mis->userfault_fd; 1162 int ret; 1163 1164 if (from_addr) { 1165 struct uffdio_copy copy_struct; 1166 copy_struct.dst = (uint64_t)(uintptr_t)host_addr; 1167 copy_struct.src = (uint64_t)(uintptr_t)from_addr; 1168 copy_struct.len = pagesize; 1169 copy_struct.mode = 0; 1170 ret = ioctl(userfault_fd, UFFDIO_COPY, ©_struct); 1171 } else { 1172 struct uffdio_zeropage zero_struct; 1173 zero_struct.range.start = (uint64_t)(uintptr_t)host_addr; 1174 zero_struct.range.len = pagesize; 1175 zero_struct.mode = 0; 1176 ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct); 1177 } 1178 if (!ret) { 1179 qemu_mutex_lock(&mis->page_request_mutex); 1180 ramblock_recv_bitmap_set_range(rb, host_addr, 1181 pagesize / qemu_target_page_size()); 1182 /* 1183 * If this page resolves a page fault for a previous recorded faulted 1184 * address, take a special note to maintain the requested page list. 1185 */ 1186 if (g_tree_lookup(mis->page_requested, host_addr)) { 1187 g_tree_remove(mis->page_requested, host_addr); 1188 mis->page_requested_count--; 1189 trace_postcopy_page_req_del(host_addr, mis->page_requested_count); 1190 } 1191 qemu_mutex_unlock(&mis->page_request_mutex); 1192 mark_postcopy_blocktime_end((uintptr_t)host_addr); 1193 } 1194 return ret; 1195 } 1196 1197 int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset) 1198 { 1199 int i; 1200 MigrationIncomingState *mis = migration_incoming_get_current(); 1201 GArray *pcrfds = mis->postcopy_remote_fds; 1202 1203 for (i = 0; i < pcrfds->len; i++) { 1204 struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i); 1205 int ret = cur->waker(cur, rb, offset); 1206 if (ret) { 1207 return ret; 1208 } 1209 } 1210 return 0; 1211 } 1212 1213 /* 1214 * Place a host page (from) at (host) atomically 1215 * returns 0 on success 1216 */ 1217 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from, 1218 RAMBlock *rb) 1219 { 1220 size_t pagesize = qemu_ram_pagesize(rb); 1221 1222 /* copy also acks to the kernel waking the stalled thread up 1223 * TODO: We can inhibit that ack and only do it if it was requested 1224 * which would be slightly cheaper, but we'd have to be careful 1225 * of the order of updating our page state. 1226 */ 1227 if (qemu_ufd_copy_ioctl(mis, host, from, pagesize, rb)) { 1228 int e = errno; 1229 error_report("%s: %s copy host: %p from: %p (size: %zd)", 1230 __func__, strerror(e), host, from, pagesize); 1231 1232 return -e; 1233 } 1234 1235 trace_postcopy_place_page(host); 1236 return postcopy_notify_shared_wake(rb, 1237 qemu_ram_block_host_offset(rb, host)); 1238 } 1239 1240 /* 1241 * Place a zero page at (host) atomically 1242 * returns 0 on success 1243 */ 1244 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host, 1245 RAMBlock *rb) 1246 { 1247 size_t pagesize = qemu_ram_pagesize(rb); 1248 trace_postcopy_place_page_zero(host); 1249 1250 /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE 1251 * but it's not available for everything (e.g. hugetlbpages) 1252 */ 1253 if (qemu_ram_is_uf_zeroable(rb)) { 1254 if (qemu_ufd_copy_ioctl(mis, host, NULL, pagesize, rb)) { 1255 int e = errno; 1256 error_report("%s: %s zero host: %p", 1257 __func__, strerror(e), host); 1258 1259 return -e; 1260 } 1261 return postcopy_notify_shared_wake(rb, 1262 qemu_ram_block_host_offset(rb, 1263 host)); 1264 } else { 1265 return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page, rb); 1266 } 1267 } 1268 1269 #else 1270 /* No target OS support, stubs just fail */ 1271 void fill_destination_postcopy_migration_info(MigrationInfo *info) 1272 { 1273 } 1274 1275 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis) 1276 { 1277 error_report("%s: No OS support", __func__); 1278 return false; 1279 } 1280 1281 int postcopy_ram_incoming_init(MigrationIncomingState *mis) 1282 { 1283 error_report("postcopy_ram_incoming_init: No OS support"); 1284 return -1; 1285 } 1286 1287 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 1288 { 1289 assert(0); 1290 return -1; 1291 } 1292 1293 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 1294 { 1295 assert(0); 1296 return -1; 1297 } 1298 1299 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb, 1300 uint64_t client_addr, uint64_t rb_offset) 1301 { 1302 assert(0); 1303 return -1; 1304 } 1305 1306 int postcopy_ram_incoming_setup(MigrationIncomingState *mis) 1307 { 1308 assert(0); 1309 return -1; 1310 } 1311 1312 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from, 1313 RAMBlock *rb) 1314 { 1315 assert(0); 1316 return -1; 1317 } 1318 1319 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host, 1320 RAMBlock *rb) 1321 { 1322 assert(0); 1323 return -1; 1324 } 1325 1326 int postcopy_wake_shared(struct PostCopyFD *pcfd, 1327 uint64_t client_addr, 1328 RAMBlock *rb) 1329 { 1330 assert(0); 1331 return -1; 1332 } 1333 #endif 1334 1335 /* ------------------------------------------------------------------------- */ 1336 1337 void postcopy_fault_thread_notify(MigrationIncomingState *mis) 1338 { 1339 uint64_t tmp64 = 1; 1340 1341 /* 1342 * Wakeup the fault_thread. It's an eventfd that should currently 1343 * be at 0, we're going to increment it to 1 1344 */ 1345 if (write(mis->userfault_event_fd, &tmp64, 8) != 8) { 1346 /* Not much we can do here, but may as well report it */ 1347 error_report("%s: incrementing failed: %s", __func__, 1348 strerror(errno)); 1349 } 1350 } 1351 1352 /** 1353 * postcopy_discard_send_init: Called at the start of each RAMBlock before 1354 * asking to discard individual ranges. 1355 * 1356 * @ms: The current migration state. 1357 * @offset: the bitmap offset of the named RAMBlock in the migration bitmap. 1358 * @name: RAMBlock that discards will operate on. 1359 */ 1360 static PostcopyDiscardState pds = {0}; 1361 void postcopy_discard_send_init(MigrationState *ms, const char *name) 1362 { 1363 pds.ramblock_name = name; 1364 pds.cur_entry = 0; 1365 pds.nsentwords = 0; 1366 pds.nsentcmds = 0; 1367 } 1368 1369 /** 1370 * postcopy_discard_send_range: Called by the bitmap code for each chunk to 1371 * discard. May send a discard message, may just leave it queued to 1372 * be sent later. 1373 * 1374 * @ms: Current migration state. 1375 * @start,@length: a range of pages in the migration bitmap in the 1376 * RAM block passed to postcopy_discard_send_init() (length=1 is one page) 1377 */ 1378 void postcopy_discard_send_range(MigrationState *ms, unsigned long start, 1379 unsigned long length) 1380 { 1381 size_t tp_size = qemu_target_page_size(); 1382 /* Convert to byte offsets within the RAM block */ 1383 pds.start_list[pds.cur_entry] = start * tp_size; 1384 pds.length_list[pds.cur_entry] = length * tp_size; 1385 trace_postcopy_discard_send_range(pds.ramblock_name, start, length); 1386 pds.cur_entry++; 1387 pds.nsentwords++; 1388 1389 if (pds.cur_entry == MAX_DISCARDS_PER_COMMAND) { 1390 /* Full set, ship it! */ 1391 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 1392 pds.ramblock_name, 1393 pds.cur_entry, 1394 pds.start_list, 1395 pds.length_list); 1396 pds.nsentcmds++; 1397 pds.cur_entry = 0; 1398 } 1399 } 1400 1401 /** 1402 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the 1403 * bitmap code. Sends any outstanding discard messages, frees the PDS 1404 * 1405 * @ms: Current migration state. 1406 */ 1407 void postcopy_discard_send_finish(MigrationState *ms) 1408 { 1409 /* Anything unsent? */ 1410 if (pds.cur_entry) { 1411 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 1412 pds.ramblock_name, 1413 pds.cur_entry, 1414 pds.start_list, 1415 pds.length_list); 1416 pds.nsentcmds++; 1417 } 1418 1419 trace_postcopy_discard_send_finish(pds.ramblock_name, pds.nsentwords, 1420 pds.nsentcmds); 1421 } 1422 1423 /* 1424 * Current state of incoming postcopy; note this is not part of 1425 * MigrationIncomingState since it's state is used during cleanup 1426 * at the end as MIS is being freed. 1427 */ 1428 static PostcopyState incoming_postcopy_state; 1429 1430 PostcopyState postcopy_state_get(void) 1431 { 1432 return qatomic_mb_read(&incoming_postcopy_state); 1433 } 1434 1435 /* Set the state and return the old state */ 1436 PostcopyState postcopy_state_set(PostcopyState new_state) 1437 { 1438 return qatomic_xchg(&incoming_postcopy_state, new_state); 1439 } 1440 1441 /* Register a handler for external shared memory postcopy 1442 * called on the destination. 1443 */ 1444 void postcopy_register_shared_ufd(struct PostCopyFD *pcfd) 1445 { 1446 MigrationIncomingState *mis = migration_incoming_get_current(); 1447 1448 mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds, 1449 *pcfd); 1450 } 1451 1452 /* Unregister a handler for external shared memory postcopy 1453 */ 1454 void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd) 1455 { 1456 guint i; 1457 MigrationIncomingState *mis = migration_incoming_get_current(); 1458 GArray *pcrfds = mis->postcopy_remote_fds; 1459 1460 for (i = 0; i < pcrfds->len; i++) { 1461 struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i); 1462 if (cur->fd == pcfd->fd) { 1463 mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i); 1464 return; 1465 } 1466 } 1467 } 1468