1 /* 2 * Postcopy migration for RAM 3 * 4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Dave Gilbert <dgilbert@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14 /* 15 * Postcopy is a migration technique where the execution flips from the 16 * source to the destination before all the data has been copied. 17 */ 18 19 #include "qemu/osdep.h" 20 21 #include "qemu-common.h" 22 #include "exec/target_page.h" 23 #include "migration.h" 24 #include "qemu-file.h" 25 #include "savevm.h" 26 #include "postcopy-ram.h" 27 #include "ram.h" 28 #include "sysemu/sysemu.h" 29 #include "sysemu/balloon.h" 30 #include "qemu/error-report.h" 31 #include "trace.h" 32 33 /* Arbitrary limit on size of each discard command, 34 * keeps them around ~200 bytes 35 */ 36 #define MAX_DISCARDS_PER_COMMAND 12 37 38 struct PostcopyDiscardState { 39 const char *ramblock_name; 40 uint16_t cur_entry; 41 /* 42 * Start and length of a discard range (bytes) 43 */ 44 uint64_t start_list[MAX_DISCARDS_PER_COMMAND]; 45 uint64_t length_list[MAX_DISCARDS_PER_COMMAND]; 46 unsigned int nsentwords; 47 unsigned int nsentcmds; 48 }; 49 50 /* Postcopy needs to detect accesses to pages that haven't yet been copied 51 * across, and efficiently map new pages in, the techniques for doing this 52 * are target OS specific. 53 */ 54 #if defined(__linux__) 55 56 #include <poll.h> 57 #include <sys/ioctl.h> 58 #include <sys/syscall.h> 59 #include <asm/types.h> /* for __u64 */ 60 #endif 61 62 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD) 63 #include <sys/eventfd.h> 64 #include <linux/userfaultfd.h> 65 66 static bool ufd_version_check(int ufd) 67 { 68 struct uffdio_api api_struct; 69 uint64_t ioctl_mask; 70 71 api_struct.api = UFFD_API; 72 api_struct.features = 0; 73 if (ioctl(ufd, UFFDIO_API, &api_struct)) { 74 error_report("postcopy_ram_supported_by_host: UFFDIO_API failed: %s", 75 strerror(errno)); 76 return false; 77 } 78 79 ioctl_mask = (__u64)1 << _UFFDIO_REGISTER | 80 (__u64)1 << _UFFDIO_UNREGISTER; 81 if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) { 82 error_report("Missing userfault features: %" PRIx64, 83 (uint64_t)(~api_struct.ioctls & ioctl_mask)); 84 return false; 85 } 86 87 if (getpagesize() != ram_pagesize_summary()) { 88 bool have_hp = false; 89 /* We've got a huge page */ 90 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS 91 have_hp = api_struct.features & UFFD_FEATURE_MISSING_HUGETLBFS; 92 #endif 93 if (!have_hp) { 94 error_report("Userfault on this host does not support huge pages"); 95 return false; 96 } 97 } 98 return true; 99 } 100 101 /* Callback from postcopy_ram_supported_by_host block iterator. 102 */ 103 static int test_ramblock_postcopiable(const char *block_name, void *host_addr, 104 ram_addr_t offset, ram_addr_t length, void *opaque) 105 { 106 RAMBlock *rb = qemu_ram_block_by_name(block_name); 107 size_t pagesize = qemu_ram_pagesize(rb); 108 109 if (qemu_ram_is_shared(rb)) { 110 error_report("Postcopy on shared RAM (%s) is not yet supported", 111 block_name); 112 return 1; 113 } 114 115 if (length % pagesize) { 116 error_report("Postcopy requires RAM blocks to be a page size multiple," 117 " block %s is 0x" RAM_ADDR_FMT " bytes with a " 118 "page size of 0x%zx", block_name, length, pagesize); 119 return 1; 120 } 121 return 0; 122 } 123 124 /* 125 * Note: This has the side effect of munlock'ing all of RAM, that's 126 * normally fine since if the postcopy succeeds it gets turned back on at the 127 * end. 128 */ 129 bool postcopy_ram_supported_by_host(void) 130 { 131 long pagesize = getpagesize(); 132 int ufd = -1; 133 bool ret = false; /* Error unless we change it */ 134 void *testarea = NULL; 135 struct uffdio_register reg_struct; 136 struct uffdio_range range_struct; 137 uint64_t feature_mask; 138 139 if (qemu_target_page_size() > pagesize) { 140 error_report("Target page size bigger than host page size"); 141 goto out; 142 } 143 144 ufd = syscall(__NR_userfaultfd, O_CLOEXEC); 145 if (ufd == -1) { 146 error_report("%s: userfaultfd not available: %s", __func__, 147 strerror(errno)); 148 goto out; 149 } 150 151 /* Version and features check */ 152 if (!ufd_version_check(ufd)) { 153 goto out; 154 } 155 156 /* We don't support postcopy with shared RAM yet */ 157 if (qemu_ram_foreach_block(test_ramblock_postcopiable, NULL)) { 158 goto out; 159 } 160 161 /* 162 * userfault and mlock don't go together; we'll put it back later if 163 * it was enabled. 164 */ 165 if (munlockall()) { 166 error_report("%s: munlockall: %s", __func__, strerror(errno)); 167 return -1; 168 } 169 170 /* 171 * We need to check that the ops we need are supported on anon memory 172 * To do that we need to register a chunk and see the flags that 173 * are returned. 174 */ 175 testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE | 176 MAP_ANONYMOUS, -1, 0); 177 if (testarea == MAP_FAILED) { 178 error_report("%s: Failed to map test area: %s", __func__, 179 strerror(errno)); 180 goto out; 181 } 182 g_assert(((size_t)testarea & (pagesize-1)) == 0); 183 184 reg_struct.range.start = (uintptr_t)testarea; 185 reg_struct.range.len = pagesize; 186 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 187 188 if (ioctl(ufd, UFFDIO_REGISTER, ®_struct)) { 189 error_report("%s userfault register: %s", __func__, strerror(errno)); 190 goto out; 191 } 192 193 range_struct.start = (uintptr_t)testarea; 194 range_struct.len = pagesize; 195 if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) { 196 error_report("%s userfault unregister: %s", __func__, strerror(errno)); 197 goto out; 198 } 199 200 feature_mask = (__u64)1 << _UFFDIO_WAKE | 201 (__u64)1 << _UFFDIO_COPY | 202 (__u64)1 << _UFFDIO_ZEROPAGE; 203 if ((reg_struct.ioctls & feature_mask) != feature_mask) { 204 error_report("Missing userfault map features: %" PRIx64, 205 (uint64_t)(~reg_struct.ioctls & feature_mask)); 206 goto out; 207 } 208 209 /* Success! */ 210 ret = true; 211 out: 212 if (testarea) { 213 munmap(testarea, pagesize); 214 } 215 if (ufd != -1) { 216 close(ufd); 217 } 218 return ret; 219 } 220 221 /* 222 * Setup an area of RAM so that it *can* be used for postcopy later; this 223 * must be done right at the start prior to pre-copy. 224 * opaque should be the MIS. 225 */ 226 static int init_range(const char *block_name, void *host_addr, 227 ram_addr_t offset, ram_addr_t length, void *opaque) 228 { 229 trace_postcopy_init_range(block_name, host_addr, offset, length); 230 231 /* 232 * We need the whole of RAM to be truly empty for postcopy, so things 233 * like ROMs and any data tables built during init must be zero'd 234 * - we're going to get the copy from the source anyway. 235 * (Precopy will just overwrite this data, so doesn't need the discard) 236 */ 237 if (ram_discard_range(block_name, 0, length)) { 238 return -1; 239 } 240 241 return 0; 242 } 243 244 /* 245 * At the end of migration, undo the effects of init_range 246 * opaque should be the MIS. 247 */ 248 static int cleanup_range(const char *block_name, void *host_addr, 249 ram_addr_t offset, ram_addr_t length, void *opaque) 250 { 251 MigrationIncomingState *mis = opaque; 252 struct uffdio_range range_struct; 253 trace_postcopy_cleanup_range(block_name, host_addr, offset, length); 254 255 /* 256 * We turned off hugepage for the precopy stage with postcopy enabled 257 * we can turn it back on now. 258 */ 259 qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE); 260 261 /* 262 * We can also turn off userfault now since we should have all the 263 * pages. It can be useful to leave it on to debug postcopy 264 * if you're not sure it's always getting every page. 265 */ 266 range_struct.start = (uintptr_t)host_addr; 267 range_struct.len = length; 268 269 if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) { 270 error_report("%s: userfault unregister %s", __func__, strerror(errno)); 271 272 return -1; 273 } 274 275 return 0; 276 } 277 278 /* 279 * Initialise postcopy-ram, setting the RAM to a state where we can go into 280 * postcopy later; must be called prior to any precopy. 281 * called from arch_init's similarly named ram_postcopy_incoming_init 282 */ 283 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages) 284 { 285 if (qemu_ram_foreach_block(init_range, NULL)) { 286 return -1; 287 } 288 289 return 0; 290 } 291 292 /* 293 * At the end of a migration where postcopy_ram_incoming_init was called. 294 */ 295 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 296 { 297 trace_postcopy_ram_incoming_cleanup_entry(); 298 299 if (mis->have_fault_thread) { 300 uint64_t tmp64; 301 302 if (qemu_ram_foreach_block(cleanup_range, mis)) { 303 return -1; 304 } 305 /* 306 * Tell the fault_thread to exit, it's an eventfd that should 307 * currently be at 0, we're going to increment it to 1 308 */ 309 tmp64 = 1; 310 if (write(mis->userfault_quit_fd, &tmp64, 8) == 8) { 311 trace_postcopy_ram_incoming_cleanup_join(); 312 qemu_thread_join(&mis->fault_thread); 313 } else { 314 /* Not much we can do here, but may as well report it */ 315 error_report("%s: incrementing userfault_quit_fd: %s", __func__, 316 strerror(errno)); 317 } 318 trace_postcopy_ram_incoming_cleanup_closeuf(); 319 close(mis->userfault_fd); 320 close(mis->userfault_quit_fd); 321 mis->have_fault_thread = false; 322 } 323 324 qemu_balloon_inhibit(false); 325 326 if (enable_mlock) { 327 if (os_mlock() < 0) { 328 error_report("mlock: %s", strerror(errno)); 329 /* 330 * It doesn't feel right to fail at this point, we have a valid 331 * VM state. 332 */ 333 } 334 } 335 336 postcopy_state_set(POSTCOPY_INCOMING_END); 337 338 if (mis->postcopy_tmp_page) { 339 munmap(mis->postcopy_tmp_page, mis->largest_page_size); 340 mis->postcopy_tmp_page = NULL; 341 } 342 if (mis->postcopy_tmp_zero_page) { 343 munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size); 344 mis->postcopy_tmp_zero_page = NULL; 345 } 346 trace_postcopy_ram_incoming_cleanup_exit(); 347 return 0; 348 } 349 350 /* 351 * Disable huge pages on an area 352 */ 353 static int nhp_range(const char *block_name, void *host_addr, 354 ram_addr_t offset, ram_addr_t length, void *opaque) 355 { 356 trace_postcopy_nhp_range(block_name, host_addr, offset, length); 357 358 /* 359 * Before we do discards we need to ensure those discards really 360 * do delete areas of the page, even if THP thinks a hugepage would 361 * be a good idea, so force hugepages off. 362 */ 363 qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE); 364 365 return 0; 366 } 367 368 /* 369 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard 370 * however leaving it until after precopy means that most of the precopy 371 * data is still THPd 372 */ 373 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 374 { 375 if (qemu_ram_foreach_block(nhp_range, mis)) { 376 return -1; 377 } 378 379 postcopy_state_set(POSTCOPY_INCOMING_DISCARD); 380 381 return 0; 382 } 383 384 /* 385 * Mark the given area of RAM as requiring notification to unwritten areas 386 * Used as a callback on qemu_ram_foreach_block. 387 * host_addr: Base of area to mark 388 * offset: Offset in the whole ram arena 389 * length: Length of the section 390 * opaque: MigrationIncomingState pointer 391 * Returns 0 on success 392 */ 393 static int ram_block_enable_notify(const char *block_name, void *host_addr, 394 ram_addr_t offset, ram_addr_t length, 395 void *opaque) 396 { 397 MigrationIncomingState *mis = opaque; 398 struct uffdio_register reg_struct; 399 400 reg_struct.range.start = (uintptr_t)host_addr; 401 reg_struct.range.len = length; 402 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 403 404 /* Now tell our userfault_fd that it's responsible for this area */ 405 if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, ®_struct)) { 406 error_report("%s userfault register: %s", __func__, strerror(errno)); 407 return -1; 408 } 409 if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) { 410 error_report("%s userfault: Region doesn't support COPY", __func__); 411 return -1; 412 } 413 414 return 0; 415 } 416 417 /* 418 * Handle faults detected by the USERFAULT markings 419 */ 420 static void *postcopy_ram_fault_thread(void *opaque) 421 { 422 MigrationIncomingState *mis = opaque; 423 struct uffd_msg msg; 424 int ret; 425 RAMBlock *rb = NULL; 426 RAMBlock *last_rb = NULL; /* last RAMBlock we sent part of */ 427 428 trace_postcopy_ram_fault_thread_entry(); 429 qemu_sem_post(&mis->fault_thread_sem); 430 431 while (true) { 432 ram_addr_t rb_offset; 433 struct pollfd pfd[2]; 434 435 /* 436 * We're mainly waiting for the kernel to give us a faulting HVA, 437 * however we can be told to quit via userfault_quit_fd which is 438 * an eventfd 439 */ 440 pfd[0].fd = mis->userfault_fd; 441 pfd[0].events = POLLIN; 442 pfd[0].revents = 0; 443 pfd[1].fd = mis->userfault_quit_fd; 444 pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */ 445 pfd[1].revents = 0; 446 447 if (poll(pfd, 2, -1 /* Wait forever */) == -1) { 448 error_report("%s: userfault poll: %s", __func__, strerror(errno)); 449 break; 450 } 451 452 if (pfd[1].revents) { 453 trace_postcopy_ram_fault_thread_quit(); 454 break; 455 } 456 457 ret = read(mis->userfault_fd, &msg, sizeof(msg)); 458 if (ret != sizeof(msg)) { 459 if (errno == EAGAIN) { 460 /* 461 * if a wake up happens on the other thread just after 462 * the poll, there is nothing to read. 463 */ 464 continue; 465 } 466 if (ret < 0) { 467 error_report("%s: Failed to read full userfault message: %s", 468 __func__, strerror(errno)); 469 break; 470 } else { 471 error_report("%s: Read %d bytes from userfaultfd expected %zd", 472 __func__, ret, sizeof(msg)); 473 break; /* Lost alignment, don't know what we'd read next */ 474 } 475 } 476 if (msg.event != UFFD_EVENT_PAGEFAULT) { 477 error_report("%s: Read unexpected event %ud from userfaultfd", 478 __func__, msg.event); 479 continue; /* It's not a page fault, shouldn't happen */ 480 } 481 482 rb = qemu_ram_block_from_host( 483 (void *)(uintptr_t)msg.arg.pagefault.address, 484 true, &rb_offset); 485 if (!rb) { 486 error_report("postcopy_ram_fault_thread: Fault outside guest: %" 487 PRIx64, (uint64_t)msg.arg.pagefault.address); 488 break; 489 } 490 491 rb_offset &= ~(qemu_ram_pagesize(rb) - 1); 492 trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address, 493 qemu_ram_get_idstr(rb), 494 rb_offset); 495 496 /* 497 * Send the request to the source - we want to request one 498 * of our host page sizes (which is >= TPS) 499 */ 500 if (rb != last_rb) { 501 last_rb = rb; 502 migrate_send_rp_req_pages(mis, qemu_ram_get_idstr(rb), 503 rb_offset, qemu_ram_pagesize(rb)); 504 } else { 505 /* Save some space */ 506 migrate_send_rp_req_pages(mis, NULL, 507 rb_offset, qemu_ram_pagesize(rb)); 508 } 509 } 510 trace_postcopy_ram_fault_thread_exit(); 511 return NULL; 512 } 513 514 int postcopy_ram_enable_notify(MigrationIncomingState *mis) 515 { 516 /* Open the fd for the kernel to give us userfaults */ 517 mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK); 518 if (mis->userfault_fd == -1) { 519 error_report("%s: Failed to open userfault fd: %s", __func__, 520 strerror(errno)); 521 return -1; 522 } 523 524 /* 525 * Although the host check already tested the API, we need to 526 * do the check again as an ABI handshake on the new fd. 527 */ 528 if (!ufd_version_check(mis->userfault_fd)) { 529 return -1; 530 } 531 532 /* Now an eventfd we use to tell the fault-thread to quit */ 533 mis->userfault_quit_fd = eventfd(0, EFD_CLOEXEC); 534 if (mis->userfault_quit_fd == -1) { 535 error_report("%s: Opening userfault_quit_fd: %s", __func__, 536 strerror(errno)); 537 close(mis->userfault_fd); 538 return -1; 539 } 540 541 qemu_sem_init(&mis->fault_thread_sem, 0); 542 qemu_thread_create(&mis->fault_thread, "postcopy/fault", 543 postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE); 544 qemu_sem_wait(&mis->fault_thread_sem); 545 qemu_sem_destroy(&mis->fault_thread_sem); 546 mis->have_fault_thread = true; 547 548 /* Mark so that we get notified of accesses to unwritten areas */ 549 if (qemu_ram_foreach_block(ram_block_enable_notify, mis)) { 550 return -1; 551 } 552 553 /* 554 * Ballooning can mark pages as absent while we're postcopying 555 * that would cause false userfaults. 556 */ 557 qemu_balloon_inhibit(true); 558 559 trace_postcopy_ram_enable_notify(); 560 561 return 0; 562 } 563 564 /* 565 * Place a host page (from) at (host) atomically 566 * returns 0 on success 567 */ 568 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from, 569 size_t pagesize) 570 { 571 struct uffdio_copy copy_struct; 572 573 copy_struct.dst = (uint64_t)(uintptr_t)host; 574 copy_struct.src = (uint64_t)(uintptr_t)from; 575 copy_struct.len = pagesize; 576 copy_struct.mode = 0; 577 578 /* copy also acks to the kernel waking the stalled thread up 579 * TODO: We can inhibit that ack and only do it if it was requested 580 * which would be slightly cheaper, but we'd have to be careful 581 * of the order of updating our page state. 582 */ 583 if (ioctl(mis->userfault_fd, UFFDIO_COPY, ©_struct)) { 584 int e = errno; 585 error_report("%s: %s copy host: %p from: %p (size: %zd)", 586 __func__, strerror(e), host, from, pagesize); 587 588 return -e; 589 } 590 591 trace_postcopy_place_page(host); 592 return 0; 593 } 594 595 /* 596 * Place a zero page at (host) atomically 597 * returns 0 on success 598 */ 599 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host, 600 size_t pagesize) 601 { 602 trace_postcopy_place_page_zero(host); 603 604 if (pagesize == getpagesize()) { 605 struct uffdio_zeropage zero_struct; 606 zero_struct.range.start = (uint64_t)(uintptr_t)host; 607 zero_struct.range.len = getpagesize(); 608 zero_struct.mode = 0; 609 610 if (ioctl(mis->userfault_fd, UFFDIO_ZEROPAGE, &zero_struct)) { 611 int e = errno; 612 error_report("%s: %s zero host: %p", 613 __func__, strerror(e), host); 614 615 return -e; 616 } 617 } else { 618 /* The kernel can't use UFFDIO_ZEROPAGE for hugepages */ 619 if (!mis->postcopy_tmp_zero_page) { 620 mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size, 621 PROT_READ | PROT_WRITE, 622 MAP_PRIVATE | MAP_ANONYMOUS, 623 -1, 0); 624 if (mis->postcopy_tmp_zero_page == MAP_FAILED) { 625 int e = errno; 626 mis->postcopy_tmp_zero_page = NULL; 627 error_report("%s: %s mapping large zero page", 628 __func__, strerror(e)); 629 return -e; 630 } 631 memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size); 632 } 633 return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page, 634 pagesize); 635 } 636 637 return 0; 638 } 639 640 /* 641 * Returns a target page of memory that can be mapped at a later point in time 642 * using postcopy_place_page 643 * The same address is used repeatedly, postcopy_place_page just takes the 644 * backing page away. 645 * Returns: Pointer to allocated page 646 * 647 */ 648 void *postcopy_get_tmp_page(MigrationIncomingState *mis) 649 { 650 if (!mis->postcopy_tmp_page) { 651 mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size, 652 PROT_READ | PROT_WRITE, MAP_PRIVATE | 653 MAP_ANONYMOUS, -1, 0); 654 if (mis->postcopy_tmp_page == MAP_FAILED) { 655 mis->postcopy_tmp_page = NULL; 656 error_report("%s: %s", __func__, strerror(errno)); 657 return NULL; 658 } 659 } 660 661 return mis->postcopy_tmp_page; 662 } 663 664 #else 665 /* No target OS support, stubs just fail */ 666 bool postcopy_ram_supported_by_host(void) 667 { 668 error_report("%s: No OS support", __func__); 669 return false; 670 } 671 672 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages) 673 { 674 error_report("postcopy_ram_incoming_init: No OS support"); 675 return -1; 676 } 677 678 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 679 { 680 assert(0); 681 return -1; 682 } 683 684 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 685 { 686 assert(0); 687 return -1; 688 } 689 690 int postcopy_ram_enable_notify(MigrationIncomingState *mis) 691 { 692 assert(0); 693 return -1; 694 } 695 696 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from, 697 size_t pagesize) 698 { 699 assert(0); 700 return -1; 701 } 702 703 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host, 704 size_t pagesize) 705 { 706 assert(0); 707 return -1; 708 } 709 710 void *postcopy_get_tmp_page(MigrationIncomingState *mis) 711 { 712 assert(0); 713 return NULL; 714 } 715 716 #endif 717 718 /* ------------------------------------------------------------------------- */ 719 720 /** 721 * postcopy_discard_send_init: Called at the start of each RAMBlock before 722 * asking to discard individual ranges. 723 * 724 * @ms: The current migration state. 725 * @offset: the bitmap offset of the named RAMBlock in the migration 726 * bitmap. 727 * @name: RAMBlock that discards will operate on. 728 * 729 * returns: a new PDS. 730 */ 731 PostcopyDiscardState *postcopy_discard_send_init(MigrationState *ms, 732 const char *name) 733 { 734 PostcopyDiscardState *res = g_malloc0(sizeof(PostcopyDiscardState)); 735 736 if (res) { 737 res->ramblock_name = name; 738 } 739 740 return res; 741 } 742 743 /** 744 * postcopy_discard_send_range: Called by the bitmap code for each chunk to 745 * discard. May send a discard message, may just leave it queued to 746 * be sent later. 747 * 748 * @ms: Current migration state. 749 * @pds: Structure initialised by postcopy_discard_send_init(). 750 * @start,@length: a range of pages in the migration bitmap in the 751 * RAM block passed to postcopy_discard_send_init() (length=1 is one page) 752 */ 753 void postcopy_discard_send_range(MigrationState *ms, PostcopyDiscardState *pds, 754 unsigned long start, unsigned long length) 755 { 756 size_t tp_size = qemu_target_page_size(); 757 /* Convert to byte offsets within the RAM block */ 758 pds->start_list[pds->cur_entry] = start * tp_size; 759 pds->length_list[pds->cur_entry] = length * tp_size; 760 trace_postcopy_discard_send_range(pds->ramblock_name, start, length); 761 pds->cur_entry++; 762 pds->nsentwords++; 763 764 if (pds->cur_entry == MAX_DISCARDS_PER_COMMAND) { 765 /* Full set, ship it! */ 766 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 767 pds->ramblock_name, 768 pds->cur_entry, 769 pds->start_list, 770 pds->length_list); 771 pds->nsentcmds++; 772 pds->cur_entry = 0; 773 } 774 } 775 776 /** 777 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the 778 * bitmap code. Sends any outstanding discard messages, frees the PDS 779 * 780 * @ms: Current migration state. 781 * @pds: Structure initialised by postcopy_discard_send_init(). 782 */ 783 void postcopy_discard_send_finish(MigrationState *ms, PostcopyDiscardState *pds) 784 { 785 /* Anything unsent? */ 786 if (pds->cur_entry) { 787 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 788 pds->ramblock_name, 789 pds->cur_entry, 790 pds->start_list, 791 pds->length_list); 792 pds->nsentcmds++; 793 } 794 795 trace_postcopy_discard_send_finish(pds->ramblock_name, pds->nsentwords, 796 pds->nsentcmds); 797 798 g_free(pds); 799 } 800 801 /* 802 * Current state of incoming postcopy; note this is not part of 803 * MigrationIncomingState since it's state is used during cleanup 804 * at the end as MIS is being freed. 805 */ 806 static PostcopyState incoming_postcopy_state; 807 808 PostcopyState postcopy_state_get(void) 809 { 810 return atomic_mb_read(&incoming_postcopy_state); 811 } 812 813 /* Set the state and return the old state */ 814 PostcopyState postcopy_state_set(PostcopyState new_state) 815 { 816 return atomic_xchg(&incoming_postcopy_state, new_state); 817 } 818