xref: /openbmc/qemu/migration/postcopy-ram.c (revision 9cdd2a73)
1 /*
2  * Postcopy migration for RAM
3  *
4  * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Dave Gilbert  <dgilbert@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13 
14 /*
15  * Postcopy is a migration technique where the execution flips from the
16  * source to the destination before all the data has been copied.
17  */
18 
19 #include "qemu/osdep.h"
20 #include "exec/target_page.h"
21 #include "migration.h"
22 #include "qemu-file.h"
23 #include "savevm.h"
24 #include "postcopy-ram.h"
25 #include "ram.h"
26 #include "sysemu/sysemu.h"
27 #include "sysemu/balloon.h"
28 #include "qemu/error-report.h"
29 #include "trace.h"
30 
31 /* Arbitrary limit on size of each discard command,
32  * keeps them around ~200 bytes
33  */
34 #define MAX_DISCARDS_PER_COMMAND 12
35 
36 struct PostcopyDiscardState {
37     const char *ramblock_name;
38     uint16_t cur_entry;
39     /*
40      * Start and length of a discard range (bytes)
41      */
42     uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
43     uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
44     unsigned int nsentwords;
45     unsigned int nsentcmds;
46 };
47 
48 /* Postcopy needs to detect accesses to pages that haven't yet been copied
49  * across, and efficiently map new pages in, the techniques for doing this
50  * are target OS specific.
51  */
52 #if defined(__linux__)
53 
54 #include <poll.h>
55 #include <sys/ioctl.h>
56 #include <sys/syscall.h>
57 #include <asm/types.h> /* for __u64 */
58 #endif
59 
60 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
61 #include <sys/eventfd.h>
62 #include <linux/userfaultfd.h>
63 
64 
65 /**
66  * receive_ufd_features: check userfault fd features, to request only supported
67  * features in the future.
68  *
69  * Returns: true on success
70  *
71  * __NR_userfaultfd - should be checked before
72  *  @features: out parameter will contain uffdio_api.features provided by kernel
73  *              in case of success
74  */
75 static bool receive_ufd_features(uint64_t *features)
76 {
77     struct uffdio_api api_struct = {0};
78     int ufd;
79     bool ret = true;
80 
81     /* if we are here __NR_userfaultfd should exists */
82     ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
83     if (ufd == -1) {
84         error_report("%s: syscall __NR_userfaultfd failed: %s", __func__,
85                      strerror(errno));
86         return false;
87     }
88 
89     /* ask features */
90     api_struct.api = UFFD_API;
91     api_struct.features = 0;
92     if (ioctl(ufd, UFFDIO_API, &api_struct)) {
93         error_report("%s: UFFDIO_API failed: %s", __func__,
94                      strerror(errno));
95         ret = false;
96         goto release_ufd;
97     }
98 
99     *features = api_struct.features;
100 
101 release_ufd:
102     close(ufd);
103     return ret;
104 }
105 
106 /**
107  * request_ufd_features: this function should be called only once on a newly
108  * opened ufd, subsequent calls will lead to error.
109  *
110  * Returns: true on succes
111  *
112  * @ufd: fd obtained from userfaultfd syscall
113  * @features: bit mask see UFFD_API_FEATURES
114  */
115 static bool request_ufd_features(int ufd, uint64_t features)
116 {
117     struct uffdio_api api_struct = {0};
118     uint64_t ioctl_mask;
119 
120     api_struct.api = UFFD_API;
121     api_struct.features = features;
122     if (ioctl(ufd, UFFDIO_API, &api_struct)) {
123         error_report("%s failed: UFFDIO_API failed: %s", __func__,
124                      strerror(errno));
125         return false;
126     }
127 
128     ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
129                  (__u64)1 << _UFFDIO_UNREGISTER;
130     if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
131         error_report("Missing userfault features: %" PRIx64,
132                      (uint64_t)(~api_struct.ioctls & ioctl_mask));
133         return false;
134     }
135 
136     return true;
137 }
138 
139 static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis)
140 {
141     uint64_t asked_features = 0;
142     static uint64_t supported_features;
143 
144     /*
145      * it's not possible to
146      * request UFFD_API twice per one fd
147      * userfault fd features is persistent
148      */
149     if (!supported_features) {
150         if (!receive_ufd_features(&supported_features)) {
151             error_report("%s failed", __func__);
152             return false;
153         }
154     }
155 
156     /*
157      * request features, even if asked_features is 0, due to
158      * kernel expects UFFD_API before UFFDIO_REGISTER, per
159      * userfault file descriptor
160      */
161     if (!request_ufd_features(ufd, asked_features)) {
162         error_report("%s failed: features %" PRIu64, __func__,
163                      asked_features);
164         return false;
165     }
166 
167     if (getpagesize() != ram_pagesize_summary()) {
168         bool have_hp = false;
169         /* We've got a huge page */
170 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS
171         have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS;
172 #endif
173         if (!have_hp) {
174             error_report("Userfault on this host does not support huge pages");
175             return false;
176         }
177     }
178     return true;
179 }
180 
181 /* Callback from postcopy_ram_supported_by_host block iterator.
182  */
183 static int test_ramblock_postcopiable(const char *block_name, void *host_addr,
184                              ram_addr_t offset, ram_addr_t length, void *opaque)
185 {
186     RAMBlock *rb = qemu_ram_block_by_name(block_name);
187     size_t pagesize = qemu_ram_pagesize(rb);
188 
189     if (qemu_ram_is_shared(rb)) {
190         error_report("Postcopy on shared RAM (%s) is not yet supported",
191                      block_name);
192         return 1;
193     }
194 
195     if (length % pagesize) {
196         error_report("Postcopy requires RAM blocks to be a page size multiple,"
197                      " block %s is 0x" RAM_ADDR_FMT " bytes with a "
198                      "page size of 0x%zx", block_name, length, pagesize);
199         return 1;
200     }
201     return 0;
202 }
203 
204 /*
205  * Note: This has the side effect of munlock'ing all of RAM, that's
206  * normally fine since if the postcopy succeeds it gets turned back on at the
207  * end.
208  */
209 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
210 {
211     long pagesize = getpagesize();
212     int ufd = -1;
213     bool ret = false; /* Error unless we change it */
214     void *testarea = NULL;
215     struct uffdio_register reg_struct;
216     struct uffdio_range range_struct;
217     uint64_t feature_mask;
218 
219     if (qemu_target_page_size() > pagesize) {
220         error_report("Target page size bigger than host page size");
221         goto out;
222     }
223 
224     ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
225     if (ufd == -1) {
226         error_report("%s: userfaultfd not available: %s", __func__,
227                      strerror(errno));
228         goto out;
229     }
230 
231     /* Version and features check */
232     if (!ufd_check_and_apply(ufd, mis)) {
233         goto out;
234     }
235 
236     /* We don't support postcopy with shared RAM yet */
237     if (qemu_ram_foreach_block(test_ramblock_postcopiable, NULL)) {
238         goto out;
239     }
240 
241     /*
242      * userfault and mlock don't go together; we'll put it back later if
243      * it was enabled.
244      */
245     if (munlockall()) {
246         error_report("%s: munlockall: %s", __func__,  strerror(errno));
247         return -1;
248     }
249 
250     /*
251      *  We need to check that the ops we need are supported on anon memory
252      *  To do that we need to register a chunk and see the flags that
253      *  are returned.
254      */
255     testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
256                                     MAP_ANONYMOUS, -1, 0);
257     if (testarea == MAP_FAILED) {
258         error_report("%s: Failed to map test area: %s", __func__,
259                      strerror(errno));
260         goto out;
261     }
262     g_assert(((size_t)testarea & (pagesize-1)) == 0);
263 
264     reg_struct.range.start = (uintptr_t)testarea;
265     reg_struct.range.len = pagesize;
266     reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
267 
268     if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
269         error_report("%s userfault register: %s", __func__, strerror(errno));
270         goto out;
271     }
272 
273     range_struct.start = (uintptr_t)testarea;
274     range_struct.len = pagesize;
275     if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
276         error_report("%s userfault unregister: %s", __func__, strerror(errno));
277         goto out;
278     }
279 
280     feature_mask = (__u64)1 << _UFFDIO_WAKE |
281                    (__u64)1 << _UFFDIO_COPY |
282                    (__u64)1 << _UFFDIO_ZEROPAGE;
283     if ((reg_struct.ioctls & feature_mask) != feature_mask) {
284         error_report("Missing userfault map features: %" PRIx64,
285                      (uint64_t)(~reg_struct.ioctls & feature_mask));
286         goto out;
287     }
288 
289     /* Success! */
290     ret = true;
291 out:
292     if (testarea) {
293         munmap(testarea, pagesize);
294     }
295     if (ufd != -1) {
296         close(ufd);
297     }
298     return ret;
299 }
300 
301 /*
302  * Setup an area of RAM so that it *can* be used for postcopy later; this
303  * must be done right at the start prior to pre-copy.
304  * opaque should be the MIS.
305  */
306 static int init_range(const char *block_name, void *host_addr,
307                       ram_addr_t offset, ram_addr_t length, void *opaque)
308 {
309     trace_postcopy_init_range(block_name, host_addr, offset, length);
310 
311     /*
312      * We need the whole of RAM to be truly empty for postcopy, so things
313      * like ROMs and any data tables built during init must be zero'd
314      * - we're going to get the copy from the source anyway.
315      * (Precopy will just overwrite this data, so doesn't need the discard)
316      */
317     if (ram_discard_range(block_name, 0, length)) {
318         return -1;
319     }
320 
321     return 0;
322 }
323 
324 /*
325  * At the end of migration, undo the effects of init_range
326  * opaque should be the MIS.
327  */
328 static int cleanup_range(const char *block_name, void *host_addr,
329                         ram_addr_t offset, ram_addr_t length, void *opaque)
330 {
331     MigrationIncomingState *mis = opaque;
332     struct uffdio_range range_struct;
333     trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
334 
335     /*
336      * We turned off hugepage for the precopy stage with postcopy enabled
337      * we can turn it back on now.
338      */
339     qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
340 
341     /*
342      * We can also turn off userfault now since we should have all the
343      * pages.   It can be useful to leave it on to debug postcopy
344      * if you're not sure it's always getting every page.
345      */
346     range_struct.start = (uintptr_t)host_addr;
347     range_struct.len = length;
348 
349     if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
350         error_report("%s: userfault unregister %s", __func__, strerror(errno));
351 
352         return -1;
353     }
354 
355     return 0;
356 }
357 
358 /*
359  * Initialise postcopy-ram, setting the RAM to a state where we can go into
360  * postcopy later; must be called prior to any precopy.
361  * called from arch_init's similarly named ram_postcopy_incoming_init
362  */
363 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages)
364 {
365     if (qemu_ram_foreach_block(init_range, NULL)) {
366         return -1;
367     }
368 
369     return 0;
370 }
371 
372 /*
373  * At the end of a migration where postcopy_ram_incoming_init was called.
374  */
375 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
376 {
377     trace_postcopy_ram_incoming_cleanup_entry();
378 
379     if (mis->have_fault_thread) {
380         if (qemu_ram_foreach_block(cleanup_range, mis)) {
381             return -1;
382         }
383         /* Let the fault thread quit */
384         atomic_set(&mis->fault_thread_quit, 1);
385         postcopy_fault_thread_notify(mis);
386         trace_postcopy_ram_incoming_cleanup_join();
387         qemu_thread_join(&mis->fault_thread);
388 
389         trace_postcopy_ram_incoming_cleanup_closeuf();
390         close(mis->userfault_fd);
391         close(mis->userfault_event_fd);
392         mis->have_fault_thread = false;
393     }
394 
395     qemu_balloon_inhibit(false);
396 
397     if (enable_mlock) {
398         if (os_mlock() < 0) {
399             error_report("mlock: %s", strerror(errno));
400             /*
401              * It doesn't feel right to fail at this point, we have a valid
402              * VM state.
403              */
404         }
405     }
406 
407     postcopy_state_set(POSTCOPY_INCOMING_END);
408 
409     if (mis->postcopy_tmp_page) {
410         munmap(mis->postcopy_tmp_page, mis->largest_page_size);
411         mis->postcopy_tmp_page = NULL;
412     }
413     if (mis->postcopy_tmp_zero_page) {
414         munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
415         mis->postcopy_tmp_zero_page = NULL;
416     }
417     trace_postcopy_ram_incoming_cleanup_exit();
418     return 0;
419 }
420 
421 /*
422  * Disable huge pages on an area
423  */
424 static int nhp_range(const char *block_name, void *host_addr,
425                     ram_addr_t offset, ram_addr_t length, void *opaque)
426 {
427     trace_postcopy_nhp_range(block_name, host_addr, offset, length);
428 
429     /*
430      * Before we do discards we need to ensure those discards really
431      * do delete areas of the page, even if THP thinks a hugepage would
432      * be a good idea, so force hugepages off.
433      */
434     qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
435 
436     return 0;
437 }
438 
439 /*
440  * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
441  * however leaving it until after precopy means that most of the precopy
442  * data is still THPd
443  */
444 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
445 {
446     if (qemu_ram_foreach_block(nhp_range, mis)) {
447         return -1;
448     }
449 
450     postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
451 
452     return 0;
453 }
454 
455 /*
456  * Mark the given area of RAM as requiring notification to unwritten areas
457  * Used as a  callback on qemu_ram_foreach_block.
458  *   host_addr: Base of area to mark
459  *   offset: Offset in the whole ram arena
460  *   length: Length of the section
461  *   opaque: MigrationIncomingState pointer
462  * Returns 0 on success
463  */
464 static int ram_block_enable_notify(const char *block_name, void *host_addr,
465                                    ram_addr_t offset, ram_addr_t length,
466                                    void *opaque)
467 {
468     MigrationIncomingState *mis = opaque;
469     struct uffdio_register reg_struct;
470 
471     reg_struct.range.start = (uintptr_t)host_addr;
472     reg_struct.range.len = length;
473     reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
474 
475     /* Now tell our userfault_fd that it's responsible for this area */
476     if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
477         error_report("%s userfault register: %s", __func__, strerror(errno));
478         return -1;
479     }
480     if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) {
481         error_report("%s userfault: Region doesn't support COPY", __func__);
482         return -1;
483     }
484 
485     return 0;
486 }
487 
488 /*
489  * Handle faults detected by the USERFAULT markings
490  */
491 static void *postcopy_ram_fault_thread(void *opaque)
492 {
493     MigrationIncomingState *mis = opaque;
494     struct uffd_msg msg;
495     int ret;
496     RAMBlock *rb = NULL;
497     RAMBlock *last_rb = NULL; /* last RAMBlock we sent part of */
498 
499     trace_postcopy_ram_fault_thread_entry();
500     qemu_sem_post(&mis->fault_thread_sem);
501 
502     while (true) {
503         ram_addr_t rb_offset;
504         struct pollfd pfd[2];
505 
506         /*
507          * We're mainly waiting for the kernel to give us a faulting HVA,
508          * however we can be told to quit via userfault_quit_fd which is
509          * an eventfd
510          */
511         pfd[0].fd = mis->userfault_fd;
512         pfd[0].events = POLLIN;
513         pfd[0].revents = 0;
514         pfd[1].fd = mis->userfault_event_fd;
515         pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
516         pfd[1].revents = 0;
517 
518         if (poll(pfd, 2, -1 /* Wait forever */) == -1) {
519             error_report("%s: userfault poll: %s", __func__, strerror(errno));
520             break;
521         }
522 
523         if (pfd[1].revents) {
524             uint64_t tmp64 = 0;
525 
526             /* Consume the signal */
527             if (read(mis->userfault_event_fd, &tmp64, 8) != 8) {
528                 /* Nothing obviously nicer than posting this error. */
529                 error_report("%s: read() failed", __func__);
530             }
531 
532             if (atomic_read(&mis->fault_thread_quit)) {
533                 trace_postcopy_ram_fault_thread_quit();
534                 break;
535             }
536         }
537 
538         ret = read(mis->userfault_fd, &msg, sizeof(msg));
539         if (ret != sizeof(msg)) {
540             if (errno == EAGAIN) {
541                 /*
542                  * if a wake up happens on the other thread just after
543                  * the poll, there is nothing to read.
544                  */
545                 continue;
546             }
547             if (ret < 0) {
548                 error_report("%s: Failed to read full userfault message: %s",
549                              __func__, strerror(errno));
550                 break;
551             } else {
552                 error_report("%s: Read %d bytes from userfaultfd expected %zd",
553                              __func__, ret, sizeof(msg));
554                 break; /* Lost alignment, don't know what we'd read next */
555             }
556         }
557         if (msg.event != UFFD_EVENT_PAGEFAULT) {
558             error_report("%s: Read unexpected event %ud from userfaultfd",
559                          __func__, msg.event);
560             continue; /* It's not a page fault, shouldn't happen */
561         }
562 
563         rb = qemu_ram_block_from_host(
564                  (void *)(uintptr_t)msg.arg.pagefault.address,
565                  true, &rb_offset);
566         if (!rb) {
567             error_report("postcopy_ram_fault_thread: Fault outside guest: %"
568                          PRIx64, (uint64_t)msg.arg.pagefault.address);
569             break;
570         }
571 
572         rb_offset &= ~(qemu_ram_pagesize(rb) - 1);
573         trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
574                                                 qemu_ram_get_idstr(rb),
575                                                 rb_offset);
576 
577         /*
578          * Send the request to the source - we want to request one
579          * of our host page sizes (which is >= TPS)
580          */
581         if (rb != last_rb) {
582             last_rb = rb;
583             migrate_send_rp_req_pages(mis, qemu_ram_get_idstr(rb),
584                                      rb_offset, qemu_ram_pagesize(rb));
585         } else {
586             /* Save some space */
587             migrate_send_rp_req_pages(mis, NULL,
588                                      rb_offset, qemu_ram_pagesize(rb));
589         }
590     }
591     trace_postcopy_ram_fault_thread_exit();
592     return NULL;
593 }
594 
595 int postcopy_ram_enable_notify(MigrationIncomingState *mis)
596 {
597     /* Open the fd for the kernel to give us userfaults */
598     mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
599     if (mis->userfault_fd == -1) {
600         error_report("%s: Failed to open userfault fd: %s", __func__,
601                      strerror(errno));
602         return -1;
603     }
604 
605     /*
606      * Although the host check already tested the API, we need to
607      * do the check again as an ABI handshake on the new fd.
608      */
609     if (!ufd_check_and_apply(mis->userfault_fd, mis)) {
610         return -1;
611     }
612 
613     /* Now an eventfd we use to tell the fault-thread to quit */
614     mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC);
615     if (mis->userfault_event_fd == -1) {
616         error_report("%s: Opening userfault_event_fd: %s", __func__,
617                      strerror(errno));
618         close(mis->userfault_fd);
619         return -1;
620     }
621 
622     qemu_sem_init(&mis->fault_thread_sem, 0);
623     qemu_thread_create(&mis->fault_thread, "postcopy/fault",
624                        postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE);
625     qemu_sem_wait(&mis->fault_thread_sem);
626     qemu_sem_destroy(&mis->fault_thread_sem);
627     mis->have_fault_thread = true;
628 
629     /* Mark so that we get notified of accesses to unwritten areas */
630     if (qemu_ram_foreach_block(ram_block_enable_notify, mis)) {
631         return -1;
632     }
633 
634     /*
635      * Ballooning can mark pages as absent while we're postcopying
636      * that would cause false userfaults.
637      */
638     qemu_balloon_inhibit(true);
639 
640     trace_postcopy_ram_enable_notify();
641 
642     return 0;
643 }
644 
645 static int qemu_ufd_copy_ioctl(int userfault_fd, void *host_addr,
646                                void *from_addr, uint64_t pagesize, RAMBlock *rb)
647 {
648     int ret;
649     if (from_addr) {
650         struct uffdio_copy copy_struct;
651         copy_struct.dst = (uint64_t)(uintptr_t)host_addr;
652         copy_struct.src = (uint64_t)(uintptr_t)from_addr;
653         copy_struct.len = pagesize;
654         copy_struct.mode = 0;
655         ret = ioctl(userfault_fd, UFFDIO_COPY, &copy_struct);
656     } else {
657         struct uffdio_zeropage zero_struct;
658         zero_struct.range.start = (uint64_t)(uintptr_t)host_addr;
659         zero_struct.range.len = pagesize;
660         zero_struct.mode = 0;
661         ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct);
662     }
663     if (!ret) {
664         ramblock_recv_bitmap_set_range(rb, host_addr,
665                                        pagesize / qemu_target_page_size());
666     }
667     return ret;
668 }
669 
670 /*
671  * Place a host page (from) at (host) atomically
672  * returns 0 on success
673  */
674 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
675                         RAMBlock *rb)
676 {
677     size_t pagesize = qemu_ram_pagesize(rb);
678 
679     /* copy also acks to the kernel waking the stalled thread up
680      * TODO: We can inhibit that ack and only do it if it was requested
681      * which would be slightly cheaper, but we'd have to be careful
682      * of the order of updating our page state.
683      */
684     if (qemu_ufd_copy_ioctl(mis->userfault_fd, host, from, pagesize, rb)) {
685         int e = errno;
686         error_report("%s: %s copy host: %p from: %p (size: %zd)",
687                      __func__, strerror(e), host, from, pagesize);
688 
689         return -e;
690     }
691 
692     trace_postcopy_place_page(host);
693     return 0;
694 }
695 
696 /*
697  * Place a zero page at (host) atomically
698  * returns 0 on success
699  */
700 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
701                              RAMBlock *rb)
702 {
703     trace_postcopy_place_page_zero(host);
704 
705     if (qemu_ram_pagesize(rb) == getpagesize()) {
706         if (qemu_ufd_copy_ioctl(mis->userfault_fd, host, NULL, getpagesize(),
707                                 rb)) {
708             int e = errno;
709             error_report("%s: %s zero host: %p",
710                          __func__, strerror(e), host);
711 
712             return -e;
713         }
714     } else {
715         /* The kernel can't use UFFDIO_ZEROPAGE for hugepages */
716         if (!mis->postcopy_tmp_zero_page) {
717             mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
718                                                PROT_READ | PROT_WRITE,
719                                                MAP_PRIVATE | MAP_ANONYMOUS,
720                                                -1, 0);
721             if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
722                 int e = errno;
723                 mis->postcopy_tmp_zero_page = NULL;
724                 error_report("%s: %s mapping large zero page",
725                              __func__, strerror(e));
726                 return -e;
727             }
728             memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
729         }
730         return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page,
731                                    rb);
732     }
733 
734     return 0;
735 }
736 
737 /*
738  * Returns a target page of memory that can be mapped at a later point in time
739  * using postcopy_place_page
740  * The same address is used repeatedly, postcopy_place_page just takes the
741  * backing page away.
742  * Returns: Pointer to allocated page
743  *
744  */
745 void *postcopy_get_tmp_page(MigrationIncomingState *mis)
746 {
747     if (!mis->postcopy_tmp_page) {
748         mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size,
749                              PROT_READ | PROT_WRITE, MAP_PRIVATE |
750                              MAP_ANONYMOUS, -1, 0);
751         if (mis->postcopy_tmp_page == MAP_FAILED) {
752             mis->postcopy_tmp_page = NULL;
753             error_report("%s: %s", __func__, strerror(errno));
754             return NULL;
755         }
756     }
757 
758     return mis->postcopy_tmp_page;
759 }
760 
761 #else
762 /* No target OS support, stubs just fail */
763 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
764 {
765     error_report("%s: No OS support", __func__);
766     return false;
767 }
768 
769 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages)
770 {
771     error_report("postcopy_ram_incoming_init: No OS support");
772     return -1;
773 }
774 
775 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
776 {
777     assert(0);
778     return -1;
779 }
780 
781 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
782 {
783     assert(0);
784     return -1;
785 }
786 
787 int postcopy_ram_enable_notify(MigrationIncomingState *mis)
788 {
789     assert(0);
790     return -1;
791 }
792 
793 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
794                         RAMBlock *rb)
795 {
796     assert(0);
797     return -1;
798 }
799 
800 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
801                         RAMBlock *rb)
802 {
803     assert(0);
804     return -1;
805 }
806 
807 void *postcopy_get_tmp_page(MigrationIncomingState *mis)
808 {
809     assert(0);
810     return NULL;
811 }
812 
813 #endif
814 
815 /* ------------------------------------------------------------------------- */
816 
817 void postcopy_fault_thread_notify(MigrationIncomingState *mis)
818 {
819     uint64_t tmp64 = 1;
820 
821     /*
822      * Wakeup the fault_thread.  It's an eventfd that should currently
823      * be at 0, we're going to increment it to 1
824      */
825     if (write(mis->userfault_event_fd, &tmp64, 8) != 8) {
826         /* Not much we can do here, but may as well report it */
827         error_report("%s: incrementing failed: %s", __func__,
828                      strerror(errno));
829     }
830 }
831 
832 /**
833  * postcopy_discard_send_init: Called at the start of each RAMBlock before
834  *   asking to discard individual ranges.
835  *
836  * @ms: The current migration state.
837  * @offset: the bitmap offset of the named RAMBlock in the migration
838  *   bitmap.
839  * @name: RAMBlock that discards will operate on.
840  *
841  * returns: a new PDS.
842  */
843 PostcopyDiscardState *postcopy_discard_send_init(MigrationState *ms,
844                                                  const char *name)
845 {
846     PostcopyDiscardState *res = g_malloc0(sizeof(PostcopyDiscardState));
847 
848     if (res) {
849         res->ramblock_name = name;
850     }
851 
852     return res;
853 }
854 
855 /**
856  * postcopy_discard_send_range: Called by the bitmap code for each chunk to
857  *   discard. May send a discard message, may just leave it queued to
858  *   be sent later.
859  *
860  * @ms: Current migration state.
861  * @pds: Structure initialised by postcopy_discard_send_init().
862  * @start,@length: a range of pages in the migration bitmap in the
863  *   RAM block passed to postcopy_discard_send_init() (length=1 is one page)
864  */
865 void postcopy_discard_send_range(MigrationState *ms, PostcopyDiscardState *pds,
866                                 unsigned long start, unsigned long length)
867 {
868     size_t tp_size = qemu_target_page_size();
869     /* Convert to byte offsets within the RAM block */
870     pds->start_list[pds->cur_entry] = start  * tp_size;
871     pds->length_list[pds->cur_entry] = length * tp_size;
872     trace_postcopy_discard_send_range(pds->ramblock_name, start, length);
873     pds->cur_entry++;
874     pds->nsentwords++;
875 
876     if (pds->cur_entry == MAX_DISCARDS_PER_COMMAND) {
877         /* Full set, ship it! */
878         qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
879                                               pds->ramblock_name,
880                                               pds->cur_entry,
881                                               pds->start_list,
882                                               pds->length_list);
883         pds->nsentcmds++;
884         pds->cur_entry = 0;
885     }
886 }
887 
888 /**
889  * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
890  * bitmap code. Sends any outstanding discard messages, frees the PDS
891  *
892  * @ms: Current migration state.
893  * @pds: Structure initialised by postcopy_discard_send_init().
894  */
895 void postcopy_discard_send_finish(MigrationState *ms, PostcopyDiscardState *pds)
896 {
897     /* Anything unsent? */
898     if (pds->cur_entry) {
899         qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
900                                               pds->ramblock_name,
901                                               pds->cur_entry,
902                                               pds->start_list,
903                                               pds->length_list);
904         pds->nsentcmds++;
905     }
906 
907     trace_postcopy_discard_send_finish(pds->ramblock_name, pds->nsentwords,
908                                        pds->nsentcmds);
909 
910     g_free(pds);
911 }
912 
913 /*
914  * Current state of incoming postcopy; note this is not part of
915  * MigrationIncomingState since it's state is used during cleanup
916  * at the end as MIS is being freed.
917  */
918 static PostcopyState incoming_postcopy_state;
919 
920 PostcopyState  postcopy_state_get(void)
921 {
922     return atomic_mb_read(&incoming_postcopy_state);
923 }
924 
925 /* Set the state and return the old state */
926 PostcopyState postcopy_state_set(PostcopyState new_state)
927 {
928     return atomic_xchg(&incoming_postcopy_state, new_state);
929 }
930