1 /* 2 * Postcopy migration for RAM 3 * 4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Dave Gilbert <dgilbert@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14 /* 15 * Postcopy is a migration technique where the execution flips from the 16 * source to the destination before all the data has been copied. 17 */ 18 19 #include "qemu/osdep.h" 20 #include "exec/target_page.h" 21 #include "migration.h" 22 #include "qemu-file.h" 23 #include "savevm.h" 24 #include "postcopy-ram.h" 25 #include "ram.h" 26 #include "qapi/error.h" 27 #include "qemu/notify.h" 28 #include "sysemu/sysemu.h" 29 #include "sysemu/balloon.h" 30 #include "qemu/error-report.h" 31 #include "trace.h" 32 33 /* Arbitrary limit on size of each discard command, 34 * keeps them around ~200 bytes 35 */ 36 #define MAX_DISCARDS_PER_COMMAND 12 37 38 struct PostcopyDiscardState { 39 const char *ramblock_name; 40 uint16_t cur_entry; 41 /* 42 * Start and length of a discard range (bytes) 43 */ 44 uint64_t start_list[MAX_DISCARDS_PER_COMMAND]; 45 uint64_t length_list[MAX_DISCARDS_PER_COMMAND]; 46 unsigned int nsentwords; 47 unsigned int nsentcmds; 48 }; 49 50 static NotifierWithReturnList postcopy_notifier_list; 51 52 void postcopy_infrastructure_init(void) 53 { 54 notifier_with_return_list_init(&postcopy_notifier_list); 55 } 56 57 void postcopy_add_notifier(NotifierWithReturn *nn) 58 { 59 notifier_with_return_list_add(&postcopy_notifier_list, nn); 60 } 61 62 void postcopy_remove_notifier(NotifierWithReturn *n) 63 { 64 notifier_with_return_remove(n); 65 } 66 67 int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp) 68 { 69 struct PostcopyNotifyData pnd; 70 pnd.reason = reason; 71 pnd.errp = errp; 72 73 return notifier_with_return_list_notify(&postcopy_notifier_list, 74 &pnd); 75 } 76 77 /* Postcopy needs to detect accesses to pages that haven't yet been copied 78 * across, and efficiently map new pages in, the techniques for doing this 79 * are target OS specific. 80 */ 81 #if defined(__linux__) 82 83 #include <poll.h> 84 #include <sys/ioctl.h> 85 #include <sys/syscall.h> 86 #include <asm/types.h> /* for __u64 */ 87 #endif 88 89 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD) 90 #include <sys/eventfd.h> 91 #include <linux/userfaultfd.h> 92 93 typedef struct PostcopyBlocktimeContext { 94 /* time when page fault initiated per vCPU */ 95 uint32_t *page_fault_vcpu_time; 96 /* page address per vCPU */ 97 uintptr_t *vcpu_addr; 98 uint32_t total_blocktime; 99 /* blocktime per vCPU */ 100 uint32_t *vcpu_blocktime; 101 /* point in time when last page fault was initiated */ 102 uint32_t last_begin; 103 /* number of vCPU are suspended */ 104 int smp_cpus_down; 105 uint64_t start_time; 106 107 /* 108 * Handler for exit event, necessary for 109 * releasing whole blocktime_ctx 110 */ 111 Notifier exit_notifier; 112 } PostcopyBlocktimeContext; 113 114 static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx) 115 { 116 g_free(ctx->page_fault_vcpu_time); 117 g_free(ctx->vcpu_addr); 118 g_free(ctx->vcpu_blocktime); 119 g_free(ctx); 120 } 121 122 static void migration_exit_cb(Notifier *n, void *data) 123 { 124 PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext, 125 exit_notifier); 126 destroy_blocktime_context(ctx); 127 } 128 129 static struct PostcopyBlocktimeContext *blocktime_context_new(void) 130 { 131 PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1); 132 ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus); 133 ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus); 134 ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus); 135 136 ctx->exit_notifier.notify = migration_exit_cb; 137 ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 138 qemu_add_exit_notifier(&ctx->exit_notifier); 139 return ctx; 140 } 141 142 static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx) 143 { 144 uint32List *list = NULL, *entry = NULL; 145 int i; 146 147 for (i = smp_cpus - 1; i >= 0; i--) { 148 entry = g_new0(uint32List, 1); 149 entry->value = ctx->vcpu_blocktime[i]; 150 entry->next = list; 151 list = entry; 152 } 153 154 return list; 155 } 156 157 /* 158 * This function just populates MigrationInfo from postcopy's 159 * blocktime context. It will not populate MigrationInfo, 160 * unless postcopy-blocktime capability was set. 161 * 162 * @info: pointer to MigrationInfo to populate 163 */ 164 void fill_destination_postcopy_migration_info(MigrationInfo *info) 165 { 166 MigrationIncomingState *mis = migration_incoming_get_current(); 167 PostcopyBlocktimeContext *bc = mis->blocktime_ctx; 168 169 if (!bc) { 170 return; 171 } 172 173 info->has_postcopy_blocktime = true; 174 info->postcopy_blocktime = bc->total_blocktime; 175 info->has_postcopy_vcpu_blocktime = true; 176 info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc); 177 } 178 179 static uint32_t get_postcopy_total_blocktime(void) 180 { 181 MigrationIncomingState *mis = migration_incoming_get_current(); 182 PostcopyBlocktimeContext *bc = mis->blocktime_ctx; 183 184 if (!bc) { 185 return 0; 186 } 187 188 return bc->total_blocktime; 189 } 190 191 /** 192 * receive_ufd_features: check userfault fd features, to request only supported 193 * features in the future. 194 * 195 * Returns: true on success 196 * 197 * __NR_userfaultfd - should be checked before 198 * @features: out parameter will contain uffdio_api.features provided by kernel 199 * in case of success 200 */ 201 static bool receive_ufd_features(uint64_t *features) 202 { 203 struct uffdio_api api_struct = {0}; 204 int ufd; 205 bool ret = true; 206 207 /* if we are here __NR_userfaultfd should exists */ 208 ufd = syscall(__NR_userfaultfd, O_CLOEXEC); 209 if (ufd == -1) { 210 error_report("%s: syscall __NR_userfaultfd failed: %s", __func__, 211 strerror(errno)); 212 return false; 213 } 214 215 /* ask features */ 216 api_struct.api = UFFD_API; 217 api_struct.features = 0; 218 if (ioctl(ufd, UFFDIO_API, &api_struct)) { 219 error_report("%s: UFFDIO_API failed: %s", __func__, 220 strerror(errno)); 221 ret = false; 222 goto release_ufd; 223 } 224 225 *features = api_struct.features; 226 227 release_ufd: 228 close(ufd); 229 return ret; 230 } 231 232 /** 233 * request_ufd_features: this function should be called only once on a newly 234 * opened ufd, subsequent calls will lead to error. 235 * 236 * Returns: true on succes 237 * 238 * @ufd: fd obtained from userfaultfd syscall 239 * @features: bit mask see UFFD_API_FEATURES 240 */ 241 static bool request_ufd_features(int ufd, uint64_t features) 242 { 243 struct uffdio_api api_struct = {0}; 244 uint64_t ioctl_mask; 245 246 api_struct.api = UFFD_API; 247 api_struct.features = features; 248 if (ioctl(ufd, UFFDIO_API, &api_struct)) { 249 error_report("%s failed: UFFDIO_API failed: %s", __func__, 250 strerror(errno)); 251 return false; 252 } 253 254 ioctl_mask = (__u64)1 << _UFFDIO_REGISTER | 255 (__u64)1 << _UFFDIO_UNREGISTER; 256 if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) { 257 error_report("Missing userfault features: %" PRIx64, 258 (uint64_t)(~api_struct.ioctls & ioctl_mask)); 259 return false; 260 } 261 262 return true; 263 } 264 265 static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis) 266 { 267 uint64_t asked_features = 0; 268 static uint64_t supported_features; 269 270 /* 271 * it's not possible to 272 * request UFFD_API twice per one fd 273 * userfault fd features is persistent 274 */ 275 if (!supported_features) { 276 if (!receive_ufd_features(&supported_features)) { 277 error_report("%s failed", __func__); 278 return false; 279 } 280 } 281 282 #ifdef UFFD_FEATURE_THREAD_ID 283 if (migrate_postcopy_blocktime() && mis && 284 UFFD_FEATURE_THREAD_ID & supported_features) { 285 /* kernel supports that feature */ 286 /* don't create blocktime_context if it exists */ 287 if (!mis->blocktime_ctx) { 288 mis->blocktime_ctx = blocktime_context_new(); 289 } 290 291 asked_features |= UFFD_FEATURE_THREAD_ID; 292 } 293 #endif 294 295 /* 296 * request features, even if asked_features is 0, due to 297 * kernel expects UFFD_API before UFFDIO_REGISTER, per 298 * userfault file descriptor 299 */ 300 if (!request_ufd_features(ufd, asked_features)) { 301 error_report("%s failed: features %" PRIu64, __func__, 302 asked_features); 303 return false; 304 } 305 306 if (getpagesize() != ram_pagesize_summary()) { 307 bool have_hp = false; 308 /* We've got a huge page */ 309 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS 310 have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS; 311 #endif 312 if (!have_hp) { 313 error_report("Userfault on this host does not support huge pages"); 314 return false; 315 } 316 } 317 return true; 318 } 319 320 /* Callback from postcopy_ram_supported_by_host block iterator. 321 */ 322 static int test_ramblock_postcopiable(const char *block_name, void *host_addr, 323 ram_addr_t offset, ram_addr_t length, void *opaque) 324 { 325 RAMBlock *rb = qemu_ram_block_by_name(block_name); 326 size_t pagesize = qemu_ram_pagesize(rb); 327 328 if (length % pagesize) { 329 error_report("Postcopy requires RAM blocks to be a page size multiple," 330 " block %s is 0x" RAM_ADDR_FMT " bytes with a " 331 "page size of 0x%zx", block_name, length, pagesize); 332 return 1; 333 } 334 return 0; 335 } 336 337 /* 338 * Note: This has the side effect of munlock'ing all of RAM, that's 339 * normally fine since if the postcopy succeeds it gets turned back on at the 340 * end. 341 */ 342 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis) 343 { 344 long pagesize = getpagesize(); 345 int ufd = -1; 346 bool ret = false; /* Error unless we change it */ 347 void *testarea = NULL; 348 struct uffdio_register reg_struct; 349 struct uffdio_range range_struct; 350 uint64_t feature_mask; 351 Error *local_err = NULL; 352 353 if (qemu_target_page_size() > pagesize) { 354 error_report("Target page size bigger than host page size"); 355 goto out; 356 } 357 358 ufd = syscall(__NR_userfaultfd, O_CLOEXEC); 359 if (ufd == -1) { 360 error_report("%s: userfaultfd not available: %s", __func__, 361 strerror(errno)); 362 goto out; 363 } 364 365 /* Give devices a chance to object */ 366 if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, &local_err)) { 367 error_report_err(local_err); 368 goto out; 369 } 370 371 /* Version and features check */ 372 if (!ufd_check_and_apply(ufd, mis)) { 373 goto out; 374 } 375 376 /* We don't support postcopy with shared RAM yet */ 377 if (qemu_ram_foreach_block(test_ramblock_postcopiable, NULL)) { 378 goto out; 379 } 380 381 /* 382 * userfault and mlock don't go together; we'll put it back later if 383 * it was enabled. 384 */ 385 if (munlockall()) { 386 error_report("%s: munlockall: %s", __func__, strerror(errno)); 387 return -1; 388 } 389 390 /* 391 * We need to check that the ops we need are supported on anon memory 392 * To do that we need to register a chunk and see the flags that 393 * are returned. 394 */ 395 testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE | 396 MAP_ANONYMOUS, -1, 0); 397 if (testarea == MAP_FAILED) { 398 error_report("%s: Failed to map test area: %s", __func__, 399 strerror(errno)); 400 goto out; 401 } 402 g_assert(((size_t)testarea & (pagesize-1)) == 0); 403 404 reg_struct.range.start = (uintptr_t)testarea; 405 reg_struct.range.len = pagesize; 406 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 407 408 if (ioctl(ufd, UFFDIO_REGISTER, ®_struct)) { 409 error_report("%s userfault register: %s", __func__, strerror(errno)); 410 goto out; 411 } 412 413 range_struct.start = (uintptr_t)testarea; 414 range_struct.len = pagesize; 415 if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) { 416 error_report("%s userfault unregister: %s", __func__, strerror(errno)); 417 goto out; 418 } 419 420 feature_mask = (__u64)1 << _UFFDIO_WAKE | 421 (__u64)1 << _UFFDIO_COPY | 422 (__u64)1 << _UFFDIO_ZEROPAGE; 423 if ((reg_struct.ioctls & feature_mask) != feature_mask) { 424 error_report("Missing userfault map features: %" PRIx64, 425 (uint64_t)(~reg_struct.ioctls & feature_mask)); 426 goto out; 427 } 428 429 /* Success! */ 430 ret = true; 431 out: 432 if (testarea) { 433 munmap(testarea, pagesize); 434 } 435 if (ufd != -1) { 436 close(ufd); 437 } 438 return ret; 439 } 440 441 /* 442 * Setup an area of RAM so that it *can* be used for postcopy later; this 443 * must be done right at the start prior to pre-copy. 444 * opaque should be the MIS. 445 */ 446 static int init_range(const char *block_name, void *host_addr, 447 ram_addr_t offset, ram_addr_t length, void *opaque) 448 { 449 trace_postcopy_init_range(block_name, host_addr, offset, length); 450 451 /* 452 * We need the whole of RAM to be truly empty for postcopy, so things 453 * like ROMs and any data tables built during init must be zero'd 454 * - we're going to get the copy from the source anyway. 455 * (Precopy will just overwrite this data, so doesn't need the discard) 456 */ 457 if (ram_discard_range(block_name, 0, length)) { 458 return -1; 459 } 460 461 return 0; 462 } 463 464 /* 465 * At the end of migration, undo the effects of init_range 466 * opaque should be the MIS. 467 */ 468 static int cleanup_range(const char *block_name, void *host_addr, 469 ram_addr_t offset, ram_addr_t length, void *opaque) 470 { 471 MigrationIncomingState *mis = opaque; 472 struct uffdio_range range_struct; 473 trace_postcopy_cleanup_range(block_name, host_addr, offset, length); 474 475 /* 476 * We turned off hugepage for the precopy stage with postcopy enabled 477 * we can turn it back on now. 478 */ 479 qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE); 480 481 /* 482 * We can also turn off userfault now since we should have all the 483 * pages. It can be useful to leave it on to debug postcopy 484 * if you're not sure it's always getting every page. 485 */ 486 range_struct.start = (uintptr_t)host_addr; 487 range_struct.len = length; 488 489 if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) { 490 error_report("%s: userfault unregister %s", __func__, strerror(errno)); 491 492 return -1; 493 } 494 495 return 0; 496 } 497 498 /* 499 * Initialise postcopy-ram, setting the RAM to a state where we can go into 500 * postcopy later; must be called prior to any precopy. 501 * called from arch_init's similarly named ram_postcopy_incoming_init 502 */ 503 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages) 504 { 505 if (qemu_ram_foreach_block(init_range, NULL)) { 506 return -1; 507 } 508 509 return 0; 510 } 511 512 /* 513 * At the end of a migration where postcopy_ram_incoming_init was called. 514 */ 515 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 516 { 517 trace_postcopy_ram_incoming_cleanup_entry(); 518 519 if (mis->have_fault_thread) { 520 Error *local_err = NULL; 521 522 if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) { 523 error_report_err(local_err); 524 return -1; 525 } 526 527 if (qemu_ram_foreach_block(cleanup_range, mis)) { 528 return -1; 529 } 530 /* Let the fault thread quit */ 531 atomic_set(&mis->fault_thread_quit, 1); 532 postcopy_fault_thread_notify(mis); 533 trace_postcopy_ram_incoming_cleanup_join(); 534 qemu_thread_join(&mis->fault_thread); 535 536 trace_postcopy_ram_incoming_cleanup_closeuf(); 537 close(mis->userfault_fd); 538 close(mis->userfault_event_fd); 539 mis->have_fault_thread = false; 540 } 541 542 qemu_balloon_inhibit(false); 543 544 if (enable_mlock) { 545 if (os_mlock() < 0) { 546 error_report("mlock: %s", strerror(errno)); 547 /* 548 * It doesn't feel right to fail at this point, we have a valid 549 * VM state. 550 */ 551 } 552 } 553 554 postcopy_state_set(POSTCOPY_INCOMING_END); 555 556 if (mis->postcopy_tmp_page) { 557 munmap(mis->postcopy_tmp_page, mis->largest_page_size); 558 mis->postcopy_tmp_page = NULL; 559 } 560 if (mis->postcopy_tmp_zero_page) { 561 munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size); 562 mis->postcopy_tmp_zero_page = NULL; 563 } 564 trace_postcopy_ram_incoming_cleanup_blocktime( 565 get_postcopy_total_blocktime()); 566 567 trace_postcopy_ram_incoming_cleanup_exit(); 568 return 0; 569 } 570 571 /* 572 * Disable huge pages on an area 573 */ 574 static int nhp_range(const char *block_name, void *host_addr, 575 ram_addr_t offset, ram_addr_t length, void *opaque) 576 { 577 trace_postcopy_nhp_range(block_name, host_addr, offset, length); 578 579 /* 580 * Before we do discards we need to ensure those discards really 581 * do delete areas of the page, even if THP thinks a hugepage would 582 * be a good idea, so force hugepages off. 583 */ 584 qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE); 585 586 return 0; 587 } 588 589 /* 590 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard 591 * however leaving it until after precopy means that most of the precopy 592 * data is still THPd 593 */ 594 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 595 { 596 if (qemu_ram_foreach_block(nhp_range, mis)) { 597 return -1; 598 } 599 600 postcopy_state_set(POSTCOPY_INCOMING_DISCARD); 601 602 return 0; 603 } 604 605 /* 606 * Mark the given area of RAM as requiring notification to unwritten areas 607 * Used as a callback on qemu_ram_foreach_block. 608 * host_addr: Base of area to mark 609 * offset: Offset in the whole ram arena 610 * length: Length of the section 611 * opaque: MigrationIncomingState pointer 612 * Returns 0 on success 613 */ 614 static int ram_block_enable_notify(const char *block_name, void *host_addr, 615 ram_addr_t offset, ram_addr_t length, 616 void *opaque) 617 { 618 MigrationIncomingState *mis = opaque; 619 struct uffdio_register reg_struct; 620 621 reg_struct.range.start = (uintptr_t)host_addr; 622 reg_struct.range.len = length; 623 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 624 625 /* Now tell our userfault_fd that it's responsible for this area */ 626 if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, ®_struct)) { 627 error_report("%s userfault register: %s", __func__, strerror(errno)); 628 return -1; 629 } 630 if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) { 631 error_report("%s userfault: Region doesn't support COPY", __func__); 632 return -1; 633 } 634 if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) { 635 RAMBlock *rb = qemu_ram_block_by_name(block_name); 636 qemu_ram_set_uf_zeroable(rb); 637 } 638 639 return 0; 640 } 641 642 int postcopy_wake_shared(struct PostCopyFD *pcfd, 643 uint64_t client_addr, 644 RAMBlock *rb) 645 { 646 size_t pagesize = qemu_ram_pagesize(rb); 647 struct uffdio_range range; 648 int ret; 649 trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb)); 650 range.start = client_addr & ~(pagesize - 1); 651 range.len = pagesize; 652 ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range); 653 if (ret) { 654 error_report("%s: Failed to wake: %zx in %s (%s)", 655 __func__, (size_t)client_addr, qemu_ram_get_idstr(rb), 656 strerror(errno)); 657 } 658 return ret; 659 } 660 661 /* 662 * Callback from shared fault handlers to ask for a page, 663 * the page must be specified by a RAMBlock and an offset in that rb 664 * Note: Only for use by shared fault handlers (in fault thread) 665 */ 666 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb, 667 uint64_t client_addr, uint64_t rb_offset) 668 { 669 size_t pagesize = qemu_ram_pagesize(rb); 670 uint64_t aligned_rbo = rb_offset & ~(pagesize - 1); 671 MigrationIncomingState *mis = migration_incoming_get_current(); 672 673 trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb), 674 rb_offset); 675 if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) { 676 trace_postcopy_request_shared_page_present(pcfd->idstr, 677 qemu_ram_get_idstr(rb), rb_offset); 678 return postcopy_wake_shared(pcfd, client_addr, rb); 679 } 680 if (rb != mis->last_rb) { 681 mis->last_rb = rb; 682 migrate_send_rp_req_pages(mis, qemu_ram_get_idstr(rb), 683 aligned_rbo, pagesize); 684 } else { 685 /* Save some space */ 686 migrate_send_rp_req_pages(mis, NULL, aligned_rbo, pagesize); 687 } 688 return 0; 689 } 690 691 static int get_mem_fault_cpu_index(uint32_t pid) 692 { 693 CPUState *cpu_iter; 694 695 CPU_FOREACH(cpu_iter) { 696 if (cpu_iter->thread_id == pid) { 697 trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid); 698 return cpu_iter->cpu_index; 699 } 700 } 701 trace_get_mem_fault_cpu_index(-1, pid); 702 return -1; 703 } 704 705 static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc) 706 { 707 int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) - 708 dc->start_time; 709 return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX; 710 } 711 712 /* 713 * This function is being called when pagefault occurs. It 714 * tracks down vCPU blocking time. 715 * 716 * @addr: faulted host virtual address 717 * @ptid: faulted process thread id 718 * @rb: ramblock appropriate to addr 719 */ 720 static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid, 721 RAMBlock *rb) 722 { 723 int cpu, already_received; 724 MigrationIncomingState *mis = migration_incoming_get_current(); 725 PostcopyBlocktimeContext *dc = mis->blocktime_ctx; 726 uint32_t low_time_offset; 727 728 if (!dc || ptid == 0) { 729 return; 730 } 731 cpu = get_mem_fault_cpu_index(ptid); 732 if (cpu < 0) { 733 return; 734 } 735 736 low_time_offset = get_low_time_offset(dc); 737 if (dc->vcpu_addr[cpu] == 0) { 738 atomic_inc(&dc->smp_cpus_down); 739 } 740 741 atomic_xchg(&dc->last_begin, low_time_offset); 742 atomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset); 743 atomic_xchg(&dc->vcpu_addr[cpu], addr); 744 745 /* check it here, not at the begining of the function, 746 * due to, check could accur early than bitmap_set in 747 * qemu_ufd_copy_ioctl */ 748 already_received = ramblock_recv_bitmap_test(rb, (void *)addr); 749 if (already_received) { 750 atomic_xchg(&dc->vcpu_addr[cpu], 0); 751 atomic_xchg(&dc->page_fault_vcpu_time[cpu], 0); 752 atomic_dec(&dc->smp_cpus_down); 753 } 754 trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu], 755 cpu, already_received); 756 } 757 758 /* 759 * This function just provide calculated blocktime per cpu and trace it. 760 * Total blocktime is calculated in mark_postcopy_blocktime_end. 761 * 762 * 763 * Assume we have 3 CPU 764 * 765 * S1 E1 S1 E1 766 * -----***********------------xxx***************------------------------> CPU1 767 * 768 * S2 E2 769 * ------------****************xxx---------------------------------------> CPU2 770 * 771 * S3 E3 772 * ------------------------****xxx********-------------------------------> CPU3 773 * 774 * We have sequence S1,S2,E1,S3,S1,E2,E3,E1 775 * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3 776 * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 - 777 * it's a part of total blocktime. 778 * S1 - here is last_begin 779 * Legend of the picture is following: 780 * * - means blocktime per vCPU 781 * x - means overlapped blocktime (total blocktime) 782 * 783 * @addr: host virtual address 784 */ 785 static void mark_postcopy_blocktime_end(uintptr_t addr) 786 { 787 MigrationIncomingState *mis = migration_incoming_get_current(); 788 PostcopyBlocktimeContext *dc = mis->blocktime_ctx; 789 int i, affected_cpu = 0; 790 bool vcpu_total_blocktime = false; 791 uint32_t read_vcpu_time, low_time_offset; 792 793 if (!dc) { 794 return; 795 } 796 797 low_time_offset = get_low_time_offset(dc); 798 /* lookup cpu, to clear it, 799 * that algorithm looks straighforward, but it's not 800 * optimal, more optimal algorithm is keeping tree or hash 801 * where key is address value is a list of */ 802 for (i = 0; i < smp_cpus; i++) { 803 uint32_t vcpu_blocktime = 0; 804 805 read_vcpu_time = atomic_fetch_add(&dc->page_fault_vcpu_time[i], 0); 806 if (atomic_fetch_add(&dc->vcpu_addr[i], 0) != addr || 807 read_vcpu_time == 0) { 808 continue; 809 } 810 atomic_xchg(&dc->vcpu_addr[i], 0); 811 vcpu_blocktime = low_time_offset - read_vcpu_time; 812 affected_cpu += 1; 813 /* we need to know is that mark_postcopy_end was due to 814 * faulted page, another possible case it's prefetched 815 * page and in that case we shouldn't be here */ 816 if (!vcpu_total_blocktime && 817 atomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) { 818 vcpu_total_blocktime = true; 819 } 820 /* continue cycle, due to one page could affect several vCPUs */ 821 dc->vcpu_blocktime[i] += vcpu_blocktime; 822 } 823 824 atomic_sub(&dc->smp_cpus_down, affected_cpu); 825 if (vcpu_total_blocktime) { 826 dc->total_blocktime += low_time_offset - atomic_fetch_add( 827 &dc->last_begin, 0); 828 } 829 trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime, 830 affected_cpu); 831 } 832 833 /* 834 * Handle faults detected by the USERFAULT markings 835 */ 836 static void *postcopy_ram_fault_thread(void *opaque) 837 { 838 MigrationIncomingState *mis = opaque; 839 struct uffd_msg msg; 840 int ret; 841 size_t index; 842 RAMBlock *rb = NULL; 843 844 trace_postcopy_ram_fault_thread_entry(); 845 mis->last_rb = NULL; /* last RAMBlock we sent part of */ 846 qemu_sem_post(&mis->fault_thread_sem); 847 848 struct pollfd *pfd; 849 size_t pfd_len = 2 + mis->postcopy_remote_fds->len; 850 851 pfd = g_new0(struct pollfd, pfd_len); 852 853 pfd[0].fd = mis->userfault_fd; 854 pfd[0].events = POLLIN; 855 pfd[1].fd = mis->userfault_event_fd; 856 pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */ 857 trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd); 858 for (index = 0; index < mis->postcopy_remote_fds->len; index++) { 859 struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds, 860 struct PostCopyFD, index); 861 pfd[2 + index].fd = pcfd->fd; 862 pfd[2 + index].events = POLLIN; 863 trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr, 864 pcfd->fd); 865 } 866 867 while (true) { 868 ram_addr_t rb_offset; 869 int poll_result; 870 871 /* 872 * We're mainly waiting for the kernel to give us a faulting HVA, 873 * however we can be told to quit via userfault_quit_fd which is 874 * an eventfd 875 */ 876 877 poll_result = poll(pfd, pfd_len, -1 /* Wait forever */); 878 if (poll_result == -1) { 879 error_report("%s: userfault poll: %s", __func__, strerror(errno)); 880 break; 881 } 882 883 if (pfd[1].revents) { 884 uint64_t tmp64 = 0; 885 886 /* Consume the signal */ 887 if (read(mis->userfault_event_fd, &tmp64, 8) != 8) { 888 /* Nothing obviously nicer than posting this error. */ 889 error_report("%s: read() failed", __func__); 890 } 891 892 if (atomic_read(&mis->fault_thread_quit)) { 893 trace_postcopy_ram_fault_thread_quit(); 894 break; 895 } 896 } 897 898 if (pfd[0].revents) { 899 poll_result--; 900 ret = read(mis->userfault_fd, &msg, sizeof(msg)); 901 if (ret != sizeof(msg)) { 902 if (errno == EAGAIN) { 903 /* 904 * if a wake up happens on the other thread just after 905 * the poll, there is nothing to read. 906 */ 907 continue; 908 } 909 if (ret < 0) { 910 error_report("%s: Failed to read full userfault " 911 "message: %s", 912 __func__, strerror(errno)); 913 break; 914 } else { 915 error_report("%s: Read %d bytes from userfaultfd " 916 "expected %zd", 917 __func__, ret, sizeof(msg)); 918 break; /* Lost alignment, don't know what we'd read next */ 919 } 920 } 921 if (msg.event != UFFD_EVENT_PAGEFAULT) { 922 error_report("%s: Read unexpected event %ud from userfaultfd", 923 __func__, msg.event); 924 continue; /* It's not a page fault, shouldn't happen */ 925 } 926 927 rb = qemu_ram_block_from_host( 928 (void *)(uintptr_t)msg.arg.pagefault.address, 929 true, &rb_offset); 930 if (!rb) { 931 error_report("postcopy_ram_fault_thread: Fault outside guest: %" 932 PRIx64, (uint64_t)msg.arg.pagefault.address); 933 break; 934 } 935 936 rb_offset &= ~(qemu_ram_pagesize(rb) - 1); 937 trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address, 938 qemu_ram_get_idstr(rb), 939 rb_offset, 940 msg.arg.pagefault.feat.ptid); 941 mark_postcopy_blocktime_begin( 942 (uintptr_t)(msg.arg.pagefault.address), 943 msg.arg.pagefault.feat.ptid, rb); 944 945 /* 946 * Send the request to the source - we want to request one 947 * of our host page sizes (which is >= TPS) 948 */ 949 if (rb != mis->last_rb) { 950 mis->last_rb = rb; 951 migrate_send_rp_req_pages(mis, qemu_ram_get_idstr(rb), 952 rb_offset, qemu_ram_pagesize(rb)); 953 } else { 954 /* Save some space */ 955 migrate_send_rp_req_pages(mis, NULL, 956 rb_offset, qemu_ram_pagesize(rb)); 957 } 958 } 959 960 /* Now handle any requests from external processes on shared memory */ 961 /* TODO: May need to handle devices deregistering during postcopy */ 962 for (index = 2; index < pfd_len && poll_result; index++) { 963 if (pfd[index].revents) { 964 struct PostCopyFD *pcfd = 965 &g_array_index(mis->postcopy_remote_fds, 966 struct PostCopyFD, index - 2); 967 968 poll_result--; 969 if (pfd[index].revents & POLLERR) { 970 error_report("%s: POLLERR on poll %zd fd=%d", 971 __func__, index, pcfd->fd); 972 pfd[index].events = 0; 973 continue; 974 } 975 976 ret = read(pcfd->fd, &msg, sizeof(msg)); 977 if (ret != sizeof(msg)) { 978 if (errno == EAGAIN) { 979 /* 980 * if a wake up happens on the other thread just after 981 * the poll, there is nothing to read. 982 */ 983 continue; 984 } 985 if (ret < 0) { 986 error_report("%s: Failed to read full userfault " 987 "message: %s (shared) revents=%d", 988 __func__, strerror(errno), 989 pfd[index].revents); 990 /*TODO: Could just disable this sharer */ 991 break; 992 } else { 993 error_report("%s: Read %d bytes from userfaultfd " 994 "expected %zd (shared)", 995 __func__, ret, sizeof(msg)); 996 /*TODO: Could just disable this sharer */ 997 break; /*Lost alignment,don't know what we'd read next*/ 998 } 999 } 1000 if (msg.event != UFFD_EVENT_PAGEFAULT) { 1001 error_report("%s: Read unexpected event %ud " 1002 "from userfaultfd (shared)", 1003 __func__, msg.event); 1004 continue; /* It's not a page fault, shouldn't happen */ 1005 } 1006 /* Call the device handler registered with us */ 1007 ret = pcfd->handler(pcfd, &msg); 1008 if (ret) { 1009 error_report("%s: Failed to resolve shared fault on %zd/%s", 1010 __func__, index, pcfd->idstr); 1011 /* TODO: Fail? Disable this sharer? */ 1012 } 1013 } 1014 } 1015 } 1016 trace_postcopy_ram_fault_thread_exit(); 1017 g_free(pfd); 1018 return NULL; 1019 } 1020 1021 int postcopy_ram_enable_notify(MigrationIncomingState *mis) 1022 { 1023 /* Open the fd for the kernel to give us userfaults */ 1024 mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK); 1025 if (mis->userfault_fd == -1) { 1026 error_report("%s: Failed to open userfault fd: %s", __func__, 1027 strerror(errno)); 1028 return -1; 1029 } 1030 1031 /* 1032 * Although the host check already tested the API, we need to 1033 * do the check again as an ABI handshake on the new fd. 1034 */ 1035 if (!ufd_check_and_apply(mis->userfault_fd, mis)) { 1036 return -1; 1037 } 1038 1039 /* Now an eventfd we use to tell the fault-thread to quit */ 1040 mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC); 1041 if (mis->userfault_event_fd == -1) { 1042 error_report("%s: Opening userfault_event_fd: %s", __func__, 1043 strerror(errno)); 1044 close(mis->userfault_fd); 1045 return -1; 1046 } 1047 1048 qemu_sem_init(&mis->fault_thread_sem, 0); 1049 qemu_thread_create(&mis->fault_thread, "postcopy/fault", 1050 postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE); 1051 qemu_sem_wait(&mis->fault_thread_sem); 1052 qemu_sem_destroy(&mis->fault_thread_sem); 1053 mis->have_fault_thread = true; 1054 1055 /* Mark so that we get notified of accesses to unwritten areas */ 1056 if (qemu_ram_foreach_block(ram_block_enable_notify, mis)) { 1057 return -1; 1058 } 1059 1060 /* 1061 * Ballooning can mark pages as absent while we're postcopying 1062 * that would cause false userfaults. 1063 */ 1064 qemu_balloon_inhibit(true); 1065 1066 trace_postcopy_ram_enable_notify(); 1067 1068 return 0; 1069 } 1070 1071 static int qemu_ufd_copy_ioctl(int userfault_fd, void *host_addr, 1072 void *from_addr, uint64_t pagesize, RAMBlock *rb) 1073 { 1074 int ret; 1075 if (from_addr) { 1076 struct uffdio_copy copy_struct; 1077 copy_struct.dst = (uint64_t)(uintptr_t)host_addr; 1078 copy_struct.src = (uint64_t)(uintptr_t)from_addr; 1079 copy_struct.len = pagesize; 1080 copy_struct.mode = 0; 1081 ret = ioctl(userfault_fd, UFFDIO_COPY, ©_struct); 1082 } else { 1083 struct uffdio_zeropage zero_struct; 1084 zero_struct.range.start = (uint64_t)(uintptr_t)host_addr; 1085 zero_struct.range.len = pagesize; 1086 zero_struct.mode = 0; 1087 ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct); 1088 } 1089 if (!ret) { 1090 ramblock_recv_bitmap_set_range(rb, host_addr, 1091 pagesize / qemu_target_page_size()); 1092 mark_postcopy_blocktime_end((uintptr_t)host_addr); 1093 1094 } 1095 return ret; 1096 } 1097 1098 int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset) 1099 { 1100 int i; 1101 MigrationIncomingState *mis = migration_incoming_get_current(); 1102 GArray *pcrfds = mis->postcopy_remote_fds; 1103 1104 for (i = 0; i < pcrfds->len; i++) { 1105 struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i); 1106 int ret = cur->waker(cur, rb, offset); 1107 if (ret) { 1108 return ret; 1109 } 1110 } 1111 return 0; 1112 } 1113 1114 /* 1115 * Place a host page (from) at (host) atomically 1116 * returns 0 on success 1117 */ 1118 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from, 1119 RAMBlock *rb) 1120 { 1121 size_t pagesize = qemu_ram_pagesize(rb); 1122 1123 /* copy also acks to the kernel waking the stalled thread up 1124 * TODO: We can inhibit that ack and only do it if it was requested 1125 * which would be slightly cheaper, but we'd have to be careful 1126 * of the order of updating our page state. 1127 */ 1128 if (qemu_ufd_copy_ioctl(mis->userfault_fd, host, from, pagesize, rb)) { 1129 int e = errno; 1130 error_report("%s: %s copy host: %p from: %p (size: %zd)", 1131 __func__, strerror(e), host, from, pagesize); 1132 1133 return -e; 1134 } 1135 1136 trace_postcopy_place_page(host); 1137 return postcopy_notify_shared_wake(rb, 1138 qemu_ram_block_host_offset(rb, host)); 1139 } 1140 1141 /* 1142 * Place a zero page at (host) atomically 1143 * returns 0 on success 1144 */ 1145 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host, 1146 RAMBlock *rb) 1147 { 1148 size_t pagesize = qemu_ram_pagesize(rb); 1149 trace_postcopy_place_page_zero(host); 1150 1151 /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE 1152 * but it's not available for everything (e.g. hugetlbpages) 1153 */ 1154 if (qemu_ram_is_uf_zeroable(rb)) { 1155 if (qemu_ufd_copy_ioctl(mis->userfault_fd, host, NULL, pagesize, rb)) { 1156 int e = errno; 1157 error_report("%s: %s zero host: %p", 1158 __func__, strerror(e), host); 1159 1160 return -e; 1161 } 1162 return postcopy_notify_shared_wake(rb, 1163 qemu_ram_block_host_offset(rb, 1164 host)); 1165 } else { 1166 /* The kernel can't use UFFDIO_ZEROPAGE for hugepages */ 1167 if (!mis->postcopy_tmp_zero_page) { 1168 mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size, 1169 PROT_READ | PROT_WRITE, 1170 MAP_PRIVATE | MAP_ANONYMOUS, 1171 -1, 0); 1172 if (mis->postcopy_tmp_zero_page == MAP_FAILED) { 1173 int e = errno; 1174 mis->postcopy_tmp_zero_page = NULL; 1175 error_report("%s: %s mapping large zero page", 1176 __func__, strerror(e)); 1177 return -e; 1178 } 1179 memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size); 1180 } 1181 return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page, 1182 rb); 1183 } 1184 } 1185 1186 /* 1187 * Returns a target page of memory that can be mapped at a later point in time 1188 * using postcopy_place_page 1189 * The same address is used repeatedly, postcopy_place_page just takes the 1190 * backing page away. 1191 * Returns: Pointer to allocated page 1192 * 1193 */ 1194 void *postcopy_get_tmp_page(MigrationIncomingState *mis) 1195 { 1196 if (!mis->postcopy_tmp_page) { 1197 mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size, 1198 PROT_READ | PROT_WRITE, MAP_PRIVATE | 1199 MAP_ANONYMOUS, -1, 0); 1200 if (mis->postcopy_tmp_page == MAP_FAILED) { 1201 mis->postcopy_tmp_page = NULL; 1202 error_report("%s: %s", __func__, strerror(errno)); 1203 return NULL; 1204 } 1205 } 1206 1207 return mis->postcopy_tmp_page; 1208 } 1209 1210 #else 1211 /* No target OS support, stubs just fail */ 1212 void fill_destination_postcopy_migration_info(MigrationInfo *info) 1213 { 1214 } 1215 1216 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis) 1217 { 1218 error_report("%s: No OS support", __func__); 1219 return false; 1220 } 1221 1222 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages) 1223 { 1224 error_report("postcopy_ram_incoming_init: No OS support"); 1225 return -1; 1226 } 1227 1228 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 1229 { 1230 assert(0); 1231 return -1; 1232 } 1233 1234 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 1235 { 1236 assert(0); 1237 return -1; 1238 } 1239 1240 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb, 1241 uint64_t client_addr, uint64_t rb_offset) 1242 { 1243 assert(0); 1244 return -1; 1245 } 1246 1247 int postcopy_ram_enable_notify(MigrationIncomingState *mis) 1248 { 1249 assert(0); 1250 return -1; 1251 } 1252 1253 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from, 1254 RAMBlock *rb) 1255 { 1256 assert(0); 1257 return -1; 1258 } 1259 1260 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host, 1261 RAMBlock *rb) 1262 { 1263 assert(0); 1264 return -1; 1265 } 1266 1267 void *postcopy_get_tmp_page(MigrationIncomingState *mis) 1268 { 1269 assert(0); 1270 return NULL; 1271 } 1272 1273 int postcopy_wake_shared(struct PostCopyFD *pcfd, 1274 uint64_t client_addr, 1275 RAMBlock *rb) 1276 { 1277 assert(0); 1278 return -1; 1279 } 1280 #endif 1281 1282 /* ------------------------------------------------------------------------- */ 1283 1284 void postcopy_fault_thread_notify(MigrationIncomingState *mis) 1285 { 1286 uint64_t tmp64 = 1; 1287 1288 /* 1289 * Wakeup the fault_thread. It's an eventfd that should currently 1290 * be at 0, we're going to increment it to 1 1291 */ 1292 if (write(mis->userfault_event_fd, &tmp64, 8) != 8) { 1293 /* Not much we can do here, but may as well report it */ 1294 error_report("%s: incrementing failed: %s", __func__, 1295 strerror(errno)); 1296 } 1297 } 1298 1299 /** 1300 * postcopy_discard_send_init: Called at the start of each RAMBlock before 1301 * asking to discard individual ranges. 1302 * 1303 * @ms: The current migration state. 1304 * @offset: the bitmap offset of the named RAMBlock in the migration 1305 * bitmap. 1306 * @name: RAMBlock that discards will operate on. 1307 * 1308 * returns: a new PDS. 1309 */ 1310 PostcopyDiscardState *postcopy_discard_send_init(MigrationState *ms, 1311 const char *name) 1312 { 1313 PostcopyDiscardState *res = g_malloc0(sizeof(PostcopyDiscardState)); 1314 1315 if (res) { 1316 res->ramblock_name = name; 1317 } 1318 1319 return res; 1320 } 1321 1322 /** 1323 * postcopy_discard_send_range: Called by the bitmap code for each chunk to 1324 * discard. May send a discard message, may just leave it queued to 1325 * be sent later. 1326 * 1327 * @ms: Current migration state. 1328 * @pds: Structure initialised by postcopy_discard_send_init(). 1329 * @start,@length: a range of pages in the migration bitmap in the 1330 * RAM block passed to postcopy_discard_send_init() (length=1 is one page) 1331 */ 1332 void postcopy_discard_send_range(MigrationState *ms, PostcopyDiscardState *pds, 1333 unsigned long start, unsigned long length) 1334 { 1335 size_t tp_size = qemu_target_page_size(); 1336 /* Convert to byte offsets within the RAM block */ 1337 pds->start_list[pds->cur_entry] = start * tp_size; 1338 pds->length_list[pds->cur_entry] = length * tp_size; 1339 trace_postcopy_discard_send_range(pds->ramblock_name, start, length); 1340 pds->cur_entry++; 1341 pds->nsentwords++; 1342 1343 if (pds->cur_entry == MAX_DISCARDS_PER_COMMAND) { 1344 /* Full set, ship it! */ 1345 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 1346 pds->ramblock_name, 1347 pds->cur_entry, 1348 pds->start_list, 1349 pds->length_list); 1350 pds->nsentcmds++; 1351 pds->cur_entry = 0; 1352 } 1353 } 1354 1355 /** 1356 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the 1357 * bitmap code. Sends any outstanding discard messages, frees the PDS 1358 * 1359 * @ms: Current migration state. 1360 * @pds: Structure initialised by postcopy_discard_send_init(). 1361 */ 1362 void postcopy_discard_send_finish(MigrationState *ms, PostcopyDiscardState *pds) 1363 { 1364 /* Anything unsent? */ 1365 if (pds->cur_entry) { 1366 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 1367 pds->ramblock_name, 1368 pds->cur_entry, 1369 pds->start_list, 1370 pds->length_list); 1371 pds->nsentcmds++; 1372 } 1373 1374 trace_postcopy_discard_send_finish(pds->ramblock_name, pds->nsentwords, 1375 pds->nsentcmds); 1376 1377 g_free(pds); 1378 } 1379 1380 /* 1381 * Current state of incoming postcopy; note this is not part of 1382 * MigrationIncomingState since it's state is used during cleanup 1383 * at the end as MIS is being freed. 1384 */ 1385 static PostcopyState incoming_postcopy_state; 1386 1387 PostcopyState postcopy_state_get(void) 1388 { 1389 return atomic_mb_read(&incoming_postcopy_state); 1390 } 1391 1392 /* Set the state and return the old state */ 1393 PostcopyState postcopy_state_set(PostcopyState new_state) 1394 { 1395 return atomic_xchg(&incoming_postcopy_state, new_state); 1396 } 1397 1398 /* Register a handler for external shared memory postcopy 1399 * called on the destination. 1400 */ 1401 void postcopy_register_shared_ufd(struct PostCopyFD *pcfd) 1402 { 1403 MigrationIncomingState *mis = migration_incoming_get_current(); 1404 1405 mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds, 1406 *pcfd); 1407 } 1408 1409 /* Unregister a handler for external shared memory postcopy 1410 */ 1411 void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd) 1412 { 1413 guint i; 1414 MigrationIncomingState *mis = migration_incoming_get_current(); 1415 GArray *pcrfds = mis->postcopy_remote_fds; 1416 1417 for (i = 0; i < pcrfds->len; i++) { 1418 struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i); 1419 if (cur->fd == pcfd->fd) { 1420 mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i); 1421 return; 1422 } 1423 } 1424 } 1425