xref: /openbmc/qemu/migration/postcopy-ram.c (revision 9bca0edb282de0007a4f068d9d20f3e3c3aadef7)
1 /*
2  * Postcopy migration for RAM
3  *
4  * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Dave Gilbert  <dgilbert@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13 
14 /*
15  * Postcopy is a migration technique where the execution flips from the
16  * source to the destination before all the data has been copied.
17  */
18 
19 #include "qemu/osdep.h"
20 #include "exec/target_page.h"
21 #include "migration.h"
22 #include "qemu-file.h"
23 #include "savevm.h"
24 #include "postcopy-ram.h"
25 #include "ram.h"
26 #include "qapi/error.h"
27 #include "qemu/notify.h"
28 #include "sysemu/sysemu.h"
29 #include "sysemu/balloon.h"
30 #include "qemu/error-report.h"
31 #include "trace.h"
32 
33 /* Arbitrary limit on size of each discard command,
34  * keeps them around ~200 bytes
35  */
36 #define MAX_DISCARDS_PER_COMMAND 12
37 
38 struct PostcopyDiscardState {
39     const char *ramblock_name;
40     uint16_t cur_entry;
41     /*
42      * Start and length of a discard range (bytes)
43      */
44     uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
45     uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
46     unsigned int nsentwords;
47     unsigned int nsentcmds;
48 };
49 
50 static NotifierWithReturnList postcopy_notifier_list;
51 
52 void postcopy_infrastructure_init(void)
53 {
54     notifier_with_return_list_init(&postcopy_notifier_list);
55 }
56 
57 void postcopy_add_notifier(NotifierWithReturn *nn)
58 {
59     notifier_with_return_list_add(&postcopy_notifier_list, nn);
60 }
61 
62 void postcopy_remove_notifier(NotifierWithReturn *n)
63 {
64     notifier_with_return_remove(n);
65 }
66 
67 int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp)
68 {
69     struct PostcopyNotifyData pnd;
70     pnd.reason = reason;
71     pnd.errp = errp;
72 
73     return notifier_with_return_list_notify(&postcopy_notifier_list,
74                                             &pnd);
75 }
76 
77 /* Postcopy needs to detect accesses to pages that haven't yet been copied
78  * across, and efficiently map new pages in, the techniques for doing this
79  * are target OS specific.
80  */
81 #if defined(__linux__)
82 
83 #include <poll.h>
84 #include <sys/ioctl.h>
85 #include <sys/syscall.h>
86 #include <asm/types.h> /* for __u64 */
87 #endif
88 
89 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
90 #include <sys/eventfd.h>
91 #include <linux/userfaultfd.h>
92 
93 typedef struct PostcopyBlocktimeContext {
94     /* time when page fault initiated per vCPU */
95     uint32_t *page_fault_vcpu_time;
96     /* page address per vCPU */
97     uintptr_t *vcpu_addr;
98     uint32_t total_blocktime;
99     /* blocktime per vCPU */
100     uint32_t *vcpu_blocktime;
101     /* point in time when last page fault was initiated */
102     uint32_t last_begin;
103     /* number of vCPU are suspended */
104     int smp_cpus_down;
105     uint64_t start_time;
106 
107     /*
108      * Handler for exit event, necessary for
109      * releasing whole blocktime_ctx
110      */
111     Notifier exit_notifier;
112 } PostcopyBlocktimeContext;
113 
114 static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx)
115 {
116     g_free(ctx->page_fault_vcpu_time);
117     g_free(ctx->vcpu_addr);
118     g_free(ctx->vcpu_blocktime);
119     g_free(ctx);
120 }
121 
122 static void migration_exit_cb(Notifier *n, void *data)
123 {
124     PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext,
125                                                  exit_notifier);
126     destroy_blocktime_context(ctx);
127 }
128 
129 static struct PostcopyBlocktimeContext *blocktime_context_new(void)
130 {
131     PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1);
132     ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus);
133     ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus);
134     ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus);
135 
136     ctx->exit_notifier.notify = migration_exit_cb;
137     ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
138     qemu_add_exit_notifier(&ctx->exit_notifier);
139     return ctx;
140 }
141 
142 static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx)
143 {
144     uint32List *list = NULL, *entry = NULL;
145     int i;
146 
147     for (i = smp_cpus - 1; i >= 0; i--) {
148         entry = g_new0(uint32List, 1);
149         entry->value = ctx->vcpu_blocktime[i];
150         entry->next = list;
151         list = entry;
152     }
153 
154     return list;
155 }
156 
157 /*
158  * This function just populates MigrationInfo from postcopy's
159  * blocktime context. It will not populate MigrationInfo,
160  * unless postcopy-blocktime capability was set.
161  *
162  * @info: pointer to MigrationInfo to populate
163  */
164 void fill_destination_postcopy_migration_info(MigrationInfo *info)
165 {
166     MigrationIncomingState *mis = migration_incoming_get_current();
167     PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
168 
169     if (!bc) {
170         return;
171     }
172 
173     info->has_postcopy_blocktime = true;
174     info->postcopy_blocktime = bc->total_blocktime;
175     info->has_postcopy_vcpu_blocktime = true;
176     info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc);
177 }
178 
179 static uint32_t get_postcopy_total_blocktime(void)
180 {
181     MigrationIncomingState *mis = migration_incoming_get_current();
182     PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
183 
184     if (!bc) {
185         return 0;
186     }
187 
188     return bc->total_blocktime;
189 }
190 
191 /**
192  * receive_ufd_features: check userfault fd features, to request only supported
193  * features in the future.
194  *
195  * Returns: true on success
196  *
197  * __NR_userfaultfd - should be checked before
198  *  @features: out parameter will contain uffdio_api.features provided by kernel
199  *              in case of success
200  */
201 static bool receive_ufd_features(uint64_t *features)
202 {
203     struct uffdio_api api_struct = {0};
204     int ufd;
205     bool ret = true;
206 
207     /* if we are here __NR_userfaultfd should exists */
208     ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
209     if (ufd == -1) {
210         error_report("%s: syscall __NR_userfaultfd failed: %s", __func__,
211                      strerror(errno));
212         return false;
213     }
214 
215     /* ask features */
216     api_struct.api = UFFD_API;
217     api_struct.features = 0;
218     if (ioctl(ufd, UFFDIO_API, &api_struct)) {
219         error_report("%s: UFFDIO_API failed: %s", __func__,
220                      strerror(errno));
221         ret = false;
222         goto release_ufd;
223     }
224 
225     *features = api_struct.features;
226 
227 release_ufd:
228     close(ufd);
229     return ret;
230 }
231 
232 /**
233  * request_ufd_features: this function should be called only once on a newly
234  * opened ufd, subsequent calls will lead to error.
235  *
236  * Returns: true on succes
237  *
238  * @ufd: fd obtained from userfaultfd syscall
239  * @features: bit mask see UFFD_API_FEATURES
240  */
241 static bool request_ufd_features(int ufd, uint64_t features)
242 {
243     struct uffdio_api api_struct = {0};
244     uint64_t ioctl_mask;
245 
246     api_struct.api = UFFD_API;
247     api_struct.features = features;
248     if (ioctl(ufd, UFFDIO_API, &api_struct)) {
249         error_report("%s failed: UFFDIO_API failed: %s", __func__,
250                      strerror(errno));
251         return false;
252     }
253 
254     ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
255                  (__u64)1 << _UFFDIO_UNREGISTER;
256     if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
257         error_report("Missing userfault features: %" PRIx64,
258                      (uint64_t)(~api_struct.ioctls & ioctl_mask));
259         return false;
260     }
261 
262     return true;
263 }
264 
265 static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis)
266 {
267     uint64_t asked_features = 0;
268     static uint64_t supported_features;
269 
270     /*
271      * it's not possible to
272      * request UFFD_API twice per one fd
273      * userfault fd features is persistent
274      */
275     if (!supported_features) {
276         if (!receive_ufd_features(&supported_features)) {
277             error_report("%s failed", __func__);
278             return false;
279         }
280     }
281 
282 #ifdef UFFD_FEATURE_THREAD_ID
283     if (migrate_postcopy_blocktime() && mis &&
284         UFFD_FEATURE_THREAD_ID & supported_features) {
285         /* kernel supports that feature */
286         /* don't create blocktime_context if it exists */
287         if (!mis->blocktime_ctx) {
288             mis->blocktime_ctx = blocktime_context_new();
289         }
290 
291         asked_features |= UFFD_FEATURE_THREAD_ID;
292     }
293 #endif
294 
295     /*
296      * request features, even if asked_features is 0, due to
297      * kernel expects UFFD_API before UFFDIO_REGISTER, per
298      * userfault file descriptor
299      */
300     if (!request_ufd_features(ufd, asked_features)) {
301         error_report("%s failed: features %" PRIu64, __func__,
302                      asked_features);
303         return false;
304     }
305 
306     if (getpagesize() != ram_pagesize_summary()) {
307         bool have_hp = false;
308         /* We've got a huge page */
309 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS
310         have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS;
311 #endif
312         if (!have_hp) {
313             error_report("Userfault on this host does not support huge pages");
314             return false;
315         }
316     }
317     return true;
318 }
319 
320 /* Callback from postcopy_ram_supported_by_host block iterator.
321  */
322 static int test_ramblock_postcopiable(const char *block_name, void *host_addr,
323                              ram_addr_t offset, ram_addr_t length, void *opaque)
324 {
325     RAMBlock *rb = qemu_ram_block_by_name(block_name);
326     size_t pagesize = qemu_ram_pagesize(rb);
327 
328     if (length % pagesize) {
329         error_report("Postcopy requires RAM blocks to be a page size multiple,"
330                      " block %s is 0x" RAM_ADDR_FMT " bytes with a "
331                      "page size of 0x%zx", block_name, length, pagesize);
332         return 1;
333     }
334     return 0;
335 }
336 
337 /*
338  * Note: This has the side effect of munlock'ing all of RAM, that's
339  * normally fine since if the postcopy succeeds it gets turned back on at the
340  * end.
341  */
342 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
343 {
344     long pagesize = getpagesize();
345     int ufd = -1;
346     bool ret = false; /* Error unless we change it */
347     void *testarea = NULL;
348     struct uffdio_register reg_struct;
349     struct uffdio_range range_struct;
350     uint64_t feature_mask;
351     Error *local_err = NULL;
352 
353     if (qemu_target_page_size() > pagesize) {
354         error_report("Target page size bigger than host page size");
355         goto out;
356     }
357 
358     ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
359     if (ufd == -1) {
360         error_report("%s: userfaultfd not available: %s", __func__,
361                      strerror(errno));
362         goto out;
363     }
364 
365     /* Give devices a chance to object */
366     if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, &local_err)) {
367         error_report_err(local_err);
368         goto out;
369     }
370 
371     /* Version and features check */
372     if (!ufd_check_and_apply(ufd, mis)) {
373         goto out;
374     }
375 
376     /* We don't support postcopy with shared RAM yet */
377     if (qemu_ram_foreach_block(test_ramblock_postcopiable, NULL)) {
378         goto out;
379     }
380 
381     /*
382      * userfault and mlock don't go together; we'll put it back later if
383      * it was enabled.
384      */
385     if (munlockall()) {
386         error_report("%s: munlockall: %s", __func__,  strerror(errno));
387         return -1;
388     }
389 
390     /*
391      *  We need to check that the ops we need are supported on anon memory
392      *  To do that we need to register a chunk and see the flags that
393      *  are returned.
394      */
395     testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
396                                     MAP_ANONYMOUS, -1, 0);
397     if (testarea == MAP_FAILED) {
398         error_report("%s: Failed to map test area: %s", __func__,
399                      strerror(errno));
400         goto out;
401     }
402     g_assert(((size_t)testarea & (pagesize-1)) == 0);
403 
404     reg_struct.range.start = (uintptr_t)testarea;
405     reg_struct.range.len = pagesize;
406     reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
407 
408     if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
409         error_report("%s userfault register: %s", __func__, strerror(errno));
410         goto out;
411     }
412 
413     range_struct.start = (uintptr_t)testarea;
414     range_struct.len = pagesize;
415     if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
416         error_report("%s userfault unregister: %s", __func__, strerror(errno));
417         goto out;
418     }
419 
420     feature_mask = (__u64)1 << _UFFDIO_WAKE |
421                    (__u64)1 << _UFFDIO_COPY |
422                    (__u64)1 << _UFFDIO_ZEROPAGE;
423     if ((reg_struct.ioctls & feature_mask) != feature_mask) {
424         error_report("Missing userfault map features: %" PRIx64,
425                      (uint64_t)(~reg_struct.ioctls & feature_mask));
426         goto out;
427     }
428 
429     /* Success! */
430     ret = true;
431 out:
432     if (testarea) {
433         munmap(testarea, pagesize);
434     }
435     if (ufd != -1) {
436         close(ufd);
437     }
438     return ret;
439 }
440 
441 /*
442  * Setup an area of RAM so that it *can* be used for postcopy later; this
443  * must be done right at the start prior to pre-copy.
444  * opaque should be the MIS.
445  */
446 static int init_range(const char *block_name, void *host_addr,
447                       ram_addr_t offset, ram_addr_t length, void *opaque)
448 {
449     trace_postcopy_init_range(block_name, host_addr, offset, length);
450 
451     /*
452      * We need the whole of RAM to be truly empty for postcopy, so things
453      * like ROMs and any data tables built during init must be zero'd
454      * - we're going to get the copy from the source anyway.
455      * (Precopy will just overwrite this data, so doesn't need the discard)
456      */
457     if (ram_discard_range(block_name, 0, length)) {
458         return -1;
459     }
460 
461     return 0;
462 }
463 
464 /*
465  * At the end of migration, undo the effects of init_range
466  * opaque should be the MIS.
467  */
468 static int cleanup_range(const char *block_name, void *host_addr,
469                         ram_addr_t offset, ram_addr_t length, void *opaque)
470 {
471     MigrationIncomingState *mis = opaque;
472     struct uffdio_range range_struct;
473     trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
474 
475     /*
476      * We turned off hugepage for the precopy stage with postcopy enabled
477      * we can turn it back on now.
478      */
479     qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
480 
481     /*
482      * We can also turn off userfault now since we should have all the
483      * pages.   It can be useful to leave it on to debug postcopy
484      * if you're not sure it's always getting every page.
485      */
486     range_struct.start = (uintptr_t)host_addr;
487     range_struct.len = length;
488 
489     if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
490         error_report("%s: userfault unregister %s", __func__, strerror(errno));
491 
492         return -1;
493     }
494 
495     return 0;
496 }
497 
498 /*
499  * Initialise postcopy-ram, setting the RAM to a state where we can go into
500  * postcopy later; must be called prior to any precopy.
501  * called from arch_init's similarly named ram_postcopy_incoming_init
502  */
503 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages)
504 {
505     if (qemu_ram_foreach_block(init_range, NULL)) {
506         return -1;
507     }
508 
509     return 0;
510 }
511 
512 /*
513  * At the end of a migration where postcopy_ram_incoming_init was called.
514  */
515 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
516 {
517     trace_postcopy_ram_incoming_cleanup_entry();
518 
519     if (mis->have_fault_thread) {
520         Error *local_err = NULL;
521 
522         if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) {
523             error_report_err(local_err);
524             return -1;
525         }
526 
527         if (qemu_ram_foreach_block(cleanup_range, mis)) {
528             return -1;
529         }
530         /* Let the fault thread quit */
531         atomic_set(&mis->fault_thread_quit, 1);
532         postcopy_fault_thread_notify(mis);
533         trace_postcopy_ram_incoming_cleanup_join();
534         qemu_thread_join(&mis->fault_thread);
535 
536         trace_postcopy_ram_incoming_cleanup_closeuf();
537         close(mis->userfault_fd);
538         close(mis->userfault_event_fd);
539         mis->have_fault_thread = false;
540     }
541 
542     qemu_balloon_inhibit(false);
543 
544     if (enable_mlock) {
545         if (os_mlock() < 0) {
546             error_report("mlock: %s", strerror(errno));
547             /*
548              * It doesn't feel right to fail at this point, we have a valid
549              * VM state.
550              */
551         }
552     }
553 
554     postcopy_state_set(POSTCOPY_INCOMING_END);
555 
556     if (mis->postcopy_tmp_page) {
557         munmap(mis->postcopy_tmp_page, mis->largest_page_size);
558         mis->postcopy_tmp_page = NULL;
559     }
560     if (mis->postcopy_tmp_zero_page) {
561         munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
562         mis->postcopy_tmp_zero_page = NULL;
563     }
564     trace_postcopy_ram_incoming_cleanup_blocktime(
565             get_postcopy_total_blocktime());
566 
567     trace_postcopy_ram_incoming_cleanup_exit();
568     return 0;
569 }
570 
571 /*
572  * Disable huge pages on an area
573  */
574 static int nhp_range(const char *block_name, void *host_addr,
575                     ram_addr_t offset, ram_addr_t length, void *opaque)
576 {
577     trace_postcopy_nhp_range(block_name, host_addr, offset, length);
578 
579     /*
580      * Before we do discards we need to ensure those discards really
581      * do delete areas of the page, even if THP thinks a hugepage would
582      * be a good idea, so force hugepages off.
583      */
584     qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
585 
586     return 0;
587 }
588 
589 /*
590  * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
591  * however leaving it until after precopy means that most of the precopy
592  * data is still THPd
593  */
594 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
595 {
596     if (qemu_ram_foreach_block(nhp_range, mis)) {
597         return -1;
598     }
599 
600     postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
601 
602     return 0;
603 }
604 
605 /*
606  * Mark the given area of RAM as requiring notification to unwritten areas
607  * Used as a  callback on qemu_ram_foreach_block.
608  *   host_addr: Base of area to mark
609  *   offset: Offset in the whole ram arena
610  *   length: Length of the section
611  *   opaque: MigrationIncomingState pointer
612  * Returns 0 on success
613  */
614 static int ram_block_enable_notify(const char *block_name, void *host_addr,
615                                    ram_addr_t offset, ram_addr_t length,
616                                    void *opaque)
617 {
618     MigrationIncomingState *mis = opaque;
619     struct uffdio_register reg_struct;
620 
621     reg_struct.range.start = (uintptr_t)host_addr;
622     reg_struct.range.len = length;
623     reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
624 
625     /* Now tell our userfault_fd that it's responsible for this area */
626     if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
627         error_report("%s userfault register: %s", __func__, strerror(errno));
628         return -1;
629     }
630     if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) {
631         error_report("%s userfault: Region doesn't support COPY", __func__);
632         return -1;
633     }
634     if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) {
635         RAMBlock *rb = qemu_ram_block_by_name(block_name);
636         qemu_ram_set_uf_zeroable(rb);
637     }
638 
639     return 0;
640 }
641 
642 int postcopy_wake_shared(struct PostCopyFD *pcfd,
643                          uint64_t client_addr,
644                          RAMBlock *rb)
645 {
646     size_t pagesize = qemu_ram_pagesize(rb);
647     struct uffdio_range range;
648     int ret;
649     trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb));
650     range.start = client_addr & ~(pagesize - 1);
651     range.len = pagesize;
652     ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range);
653     if (ret) {
654         error_report("%s: Failed to wake: %zx in %s (%s)",
655                      __func__, (size_t)client_addr, qemu_ram_get_idstr(rb),
656                      strerror(errno));
657     }
658     return ret;
659 }
660 
661 /*
662  * Callback from shared fault handlers to ask for a page,
663  * the page must be specified by a RAMBlock and an offset in that rb
664  * Note: Only for use by shared fault handlers (in fault thread)
665  */
666 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
667                                  uint64_t client_addr, uint64_t rb_offset)
668 {
669     size_t pagesize = qemu_ram_pagesize(rb);
670     uint64_t aligned_rbo = rb_offset & ~(pagesize - 1);
671     MigrationIncomingState *mis = migration_incoming_get_current();
672 
673     trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb),
674                                        rb_offset);
675     if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) {
676         trace_postcopy_request_shared_page_present(pcfd->idstr,
677                                         qemu_ram_get_idstr(rb), rb_offset);
678         return postcopy_wake_shared(pcfd, client_addr, rb);
679     }
680     if (rb != mis->last_rb) {
681         mis->last_rb = rb;
682         migrate_send_rp_req_pages(mis, qemu_ram_get_idstr(rb),
683                                   aligned_rbo, pagesize);
684     } else {
685         /* Save some space */
686         migrate_send_rp_req_pages(mis, NULL, aligned_rbo, pagesize);
687     }
688     return 0;
689 }
690 
691 static int get_mem_fault_cpu_index(uint32_t pid)
692 {
693     CPUState *cpu_iter;
694 
695     CPU_FOREACH(cpu_iter) {
696         if (cpu_iter->thread_id == pid) {
697             trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid);
698             return cpu_iter->cpu_index;
699         }
700     }
701     trace_get_mem_fault_cpu_index(-1, pid);
702     return -1;
703 }
704 
705 static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc)
706 {
707     int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) -
708                                     dc->start_time;
709     return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX;
710 }
711 
712 /*
713  * This function is being called when pagefault occurs. It
714  * tracks down vCPU blocking time.
715  *
716  * @addr: faulted host virtual address
717  * @ptid: faulted process thread id
718  * @rb: ramblock appropriate to addr
719  */
720 static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid,
721                                           RAMBlock *rb)
722 {
723     int cpu, already_received;
724     MigrationIncomingState *mis = migration_incoming_get_current();
725     PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
726     uint32_t low_time_offset;
727 
728     if (!dc || ptid == 0) {
729         return;
730     }
731     cpu = get_mem_fault_cpu_index(ptid);
732     if (cpu < 0) {
733         return;
734     }
735 
736     low_time_offset = get_low_time_offset(dc);
737     if (dc->vcpu_addr[cpu] == 0) {
738         atomic_inc(&dc->smp_cpus_down);
739     }
740 
741     atomic_xchg(&dc->last_begin, low_time_offset);
742     atomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset);
743     atomic_xchg(&dc->vcpu_addr[cpu], addr);
744 
745     /* check it here, not at the begining of the function,
746      * due to, check could accur early than bitmap_set in
747      * qemu_ufd_copy_ioctl */
748     already_received = ramblock_recv_bitmap_test(rb, (void *)addr);
749     if (already_received) {
750         atomic_xchg(&dc->vcpu_addr[cpu], 0);
751         atomic_xchg(&dc->page_fault_vcpu_time[cpu], 0);
752         atomic_dec(&dc->smp_cpus_down);
753     }
754     trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu],
755                                         cpu, already_received);
756 }
757 
758 /*
759  *  This function just provide calculated blocktime per cpu and trace it.
760  *  Total blocktime is calculated in mark_postcopy_blocktime_end.
761  *
762  *
763  * Assume we have 3 CPU
764  *
765  *      S1        E1           S1               E1
766  * -----***********------------xxx***************------------------------> CPU1
767  *
768  *             S2                E2
769  * ------------****************xxx---------------------------------------> CPU2
770  *
771  *                         S3            E3
772  * ------------------------****xxx********-------------------------------> CPU3
773  *
774  * We have sequence S1,S2,E1,S3,S1,E2,E3,E1
775  * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3
776  * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 -
777  *            it's a part of total blocktime.
778  * S1 - here is last_begin
779  * Legend of the picture is following:
780  *              * - means blocktime per vCPU
781  *              x - means overlapped blocktime (total blocktime)
782  *
783  * @addr: host virtual address
784  */
785 static void mark_postcopy_blocktime_end(uintptr_t addr)
786 {
787     MigrationIncomingState *mis = migration_incoming_get_current();
788     PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
789     int i, affected_cpu = 0;
790     bool vcpu_total_blocktime = false;
791     uint32_t read_vcpu_time, low_time_offset;
792 
793     if (!dc) {
794         return;
795     }
796 
797     low_time_offset = get_low_time_offset(dc);
798     /* lookup cpu, to clear it,
799      * that algorithm looks straighforward, but it's not
800      * optimal, more optimal algorithm is keeping tree or hash
801      * where key is address value is a list of  */
802     for (i = 0; i < smp_cpus; i++) {
803         uint32_t vcpu_blocktime = 0;
804 
805         read_vcpu_time = atomic_fetch_add(&dc->page_fault_vcpu_time[i], 0);
806         if (atomic_fetch_add(&dc->vcpu_addr[i], 0) != addr ||
807             read_vcpu_time == 0) {
808             continue;
809         }
810         atomic_xchg(&dc->vcpu_addr[i], 0);
811         vcpu_blocktime = low_time_offset - read_vcpu_time;
812         affected_cpu += 1;
813         /* we need to know is that mark_postcopy_end was due to
814          * faulted page, another possible case it's prefetched
815          * page and in that case we shouldn't be here */
816         if (!vcpu_total_blocktime &&
817             atomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) {
818             vcpu_total_blocktime = true;
819         }
820         /* continue cycle, due to one page could affect several vCPUs */
821         dc->vcpu_blocktime[i] += vcpu_blocktime;
822     }
823 
824     atomic_sub(&dc->smp_cpus_down, affected_cpu);
825     if (vcpu_total_blocktime) {
826         dc->total_blocktime += low_time_offset - atomic_fetch_add(
827                 &dc->last_begin, 0);
828     }
829     trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime,
830                                       affected_cpu);
831 }
832 
833 /*
834  * Handle faults detected by the USERFAULT markings
835  */
836 static void *postcopy_ram_fault_thread(void *opaque)
837 {
838     MigrationIncomingState *mis = opaque;
839     struct uffd_msg msg;
840     int ret;
841     size_t index;
842     RAMBlock *rb = NULL;
843 
844     trace_postcopy_ram_fault_thread_entry();
845     mis->last_rb = NULL; /* last RAMBlock we sent part of */
846     qemu_sem_post(&mis->fault_thread_sem);
847 
848     struct pollfd *pfd;
849     size_t pfd_len = 2 + mis->postcopy_remote_fds->len;
850 
851     pfd = g_new0(struct pollfd, pfd_len);
852 
853     pfd[0].fd = mis->userfault_fd;
854     pfd[0].events = POLLIN;
855     pfd[1].fd = mis->userfault_event_fd;
856     pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
857     trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd);
858     for (index = 0; index < mis->postcopy_remote_fds->len; index++) {
859         struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds,
860                                                  struct PostCopyFD, index);
861         pfd[2 + index].fd = pcfd->fd;
862         pfd[2 + index].events = POLLIN;
863         trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr,
864                                                   pcfd->fd);
865     }
866 
867     while (true) {
868         ram_addr_t rb_offset;
869         int poll_result;
870 
871         /*
872          * We're mainly waiting for the kernel to give us a faulting HVA,
873          * however we can be told to quit via userfault_quit_fd which is
874          * an eventfd
875          */
876 
877         poll_result = poll(pfd, pfd_len, -1 /* Wait forever */);
878         if (poll_result == -1) {
879             error_report("%s: userfault poll: %s", __func__, strerror(errno));
880             break;
881         }
882 
883         if (pfd[1].revents) {
884             uint64_t tmp64 = 0;
885 
886             /* Consume the signal */
887             if (read(mis->userfault_event_fd, &tmp64, 8) != 8) {
888                 /* Nothing obviously nicer than posting this error. */
889                 error_report("%s: read() failed", __func__);
890             }
891 
892             if (atomic_read(&mis->fault_thread_quit)) {
893                 trace_postcopy_ram_fault_thread_quit();
894                 break;
895             }
896         }
897 
898         if (pfd[0].revents) {
899             poll_result--;
900             ret = read(mis->userfault_fd, &msg, sizeof(msg));
901             if (ret != sizeof(msg)) {
902                 if (errno == EAGAIN) {
903                     /*
904                      * if a wake up happens on the other thread just after
905                      * the poll, there is nothing to read.
906                      */
907                     continue;
908                 }
909                 if (ret < 0) {
910                     error_report("%s: Failed to read full userfault "
911                                  "message: %s",
912                                  __func__, strerror(errno));
913                     break;
914                 } else {
915                     error_report("%s: Read %d bytes from userfaultfd "
916                                  "expected %zd",
917                                  __func__, ret, sizeof(msg));
918                     break; /* Lost alignment, don't know what we'd read next */
919                 }
920             }
921             if (msg.event != UFFD_EVENT_PAGEFAULT) {
922                 error_report("%s: Read unexpected event %ud from userfaultfd",
923                              __func__, msg.event);
924                 continue; /* It's not a page fault, shouldn't happen */
925             }
926 
927             rb = qemu_ram_block_from_host(
928                      (void *)(uintptr_t)msg.arg.pagefault.address,
929                      true, &rb_offset);
930             if (!rb) {
931                 error_report("postcopy_ram_fault_thread: Fault outside guest: %"
932                              PRIx64, (uint64_t)msg.arg.pagefault.address);
933                 break;
934             }
935 
936             rb_offset &= ~(qemu_ram_pagesize(rb) - 1);
937             trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
938                                                 qemu_ram_get_idstr(rb),
939                                                 rb_offset,
940                                                 msg.arg.pagefault.feat.ptid);
941             mark_postcopy_blocktime_begin(
942                     (uintptr_t)(msg.arg.pagefault.address),
943                                 msg.arg.pagefault.feat.ptid, rb);
944 
945             /*
946              * Send the request to the source - we want to request one
947              * of our host page sizes (which is >= TPS)
948              */
949             if (rb != mis->last_rb) {
950                 mis->last_rb = rb;
951                 migrate_send_rp_req_pages(mis, qemu_ram_get_idstr(rb),
952                                          rb_offset, qemu_ram_pagesize(rb));
953             } else {
954                 /* Save some space */
955                 migrate_send_rp_req_pages(mis, NULL,
956                                          rb_offset, qemu_ram_pagesize(rb));
957             }
958         }
959 
960         /* Now handle any requests from external processes on shared memory */
961         /* TODO: May need to handle devices deregistering during postcopy */
962         for (index = 2; index < pfd_len && poll_result; index++) {
963             if (pfd[index].revents) {
964                 struct PostCopyFD *pcfd =
965                     &g_array_index(mis->postcopy_remote_fds,
966                                    struct PostCopyFD, index - 2);
967 
968                 poll_result--;
969                 if (pfd[index].revents & POLLERR) {
970                     error_report("%s: POLLERR on poll %zd fd=%d",
971                                  __func__, index, pcfd->fd);
972                     pfd[index].events = 0;
973                     continue;
974                 }
975 
976                 ret = read(pcfd->fd, &msg, sizeof(msg));
977                 if (ret != sizeof(msg)) {
978                     if (errno == EAGAIN) {
979                         /*
980                          * if a wake up happens on the other thread just after
981                          * the poll, there is nothing to read.
982                          */
983                         continue;
984                     }
985                     if (ret < 0) {
986                         error_report("%s: Failed to read full userfault "
987                                      "message: %s (shared) revents=%d",
988                                      __func__, strerror(errno),
989                                      pfd[index].revents);
990                         /*TODO: Could just disable this sharer */
991                         break;
992                     } else {
993                         error_report("%s: Read %d bytes from userfaultfd "
994                                      "expected %zd (shared)",
995                                      __func__, ret, sizeof(msg));
996                         /*TODO: Could just disable this sharer */
997                         break; /*Lost alignment,don't know what we'd read next*/
998                     }
999                 }
1000                 if (msg.event != UFFD_EVENT_PAGEFAULT) {
1001                     error_report("%s: Read unexpected event %ud "
1002                                  "from userfaultfd (shared)",
1003                                  __func__, msg.event);
1004                     continue; /* It's not a page fault, shouldn't happen */
1005                 }
1006                 /* Call the device handler registered with us */
1007                 ret = pcfd->handler(pcfd, &msg);
1008                 if (ret) {
1009                     error_report("%s: Failed to resolve shared fault on %zd/%s",
1010                                  __func__, index, pcfd->idstr);
1011                     /* TODO: Fail? Disable this sharer? */
1012                 }
1013             }
1014         }
1015     }
1016     trace_postcopy_ram_fault_thread_exit();
1017     g_free(pfd);
1018     return NULL;
1019 }
1020 
1021 int postcopy_ram_enable_notify(MigrationIncomingState *mis)
1022 {
1023     /* Open the fd for the kernel to give us userfaults */
1024     mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
1025     if (mis->userfault_fd == -1) {
1026         error_report("%s: Failed to open userfault fd: %s", __func__,
1027                      strerror(errno));
1028         return -1;
1029     }
1030 
1031     /*
1032      * Although the host check already tested the API, we need to
1033      * do the check again as an ABI handshake on the new fd.
1034      */
1035     if (!ufd_check_and_apply(mis->userfault_fd, mis)) {
1036         return -1;
1037     }
1038 
1039     /* Now an eventfd we use to tell the fault-thread to quit */
1040     mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC);
1041     if (mis->userfault_event_fd == -1) {
1042         error_report("%s: Opening userfault_event_fd: %s", __func__,
1043                      strerror(errno));
1044         close(mis->userfault_fd);
1045         return -1;
1046     }
1047 
1048     qemu_sem_init(&mis->fault_thread_sem, 0);
1049     qemu_thread_create(&mis->fault_thread, "postcopy/fault",
1050                        postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE);
1051     qemu_sem_wait(&mis->fault_thread_sem);
1052     qemu_sem_destroy(&mis->fault_thread_sem);
1053     mis->have_fault_thread = true;
1054 
1055     /* Mark so that we get notified of accesses to unwritten areas */
1056     if (qemu_ram_foreach_block(ram_block_enable_notify, mis)) {
1057         return -1;
1058     }
1059 
1060     /*
1061      * Ballooning can mark pages as absent while we're postcopying
1062      * that would cause false userfaults.
1063      */
1064     qemu_balloon_inhibit(true);
1065 
1066     trace_postcopy_ram_enable_notify();
1067 
1068     return 0;
1069 }
1070 
1071 static int qemu_ufd_copy_ioctl(int userfault_fd, void *host_addr,
1072                                void *from_addr, uint64_t pagesize, RAMBlock *rb)
1073 {
1074     int ret;
1075     if (from_addr) {
1076         struct uffdio_copy copy_struct;
1077         copy_struct.dst = (uint64_t)(uintptr_t)host_addr;
1078         copy_struct.src = (uint64_t)(uintptr_t)from_addr;
1079         copy_struct.len = pagesize;
1080         copy_struct.mode = 0;
1081         ret = ioctl(userfault_fd, UFFDIO_COPY, &copy_struct);
1082     } else {
1083         struct uffdio_zeropage zero_struct;
1084         zero_struct.range.start = (uint64_t)(uintptr_t)host_addr;
1085         zero_struct.range.len = pagesize;
1086         zero_struct.mode = 0;
1087         ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct);
1088     }
1089     if (!ret) {
1090         ramblock_recv_bitmap_set_range(rb, host_addr,
1091                                        pagesize / qemu_target_page_size());
1092         mark_postcopy_blocktime_end((uintptr_t)host_addr);
1093 
1094     }
1095     return ret;
1096 }
1097 
1098 int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset)
1099 {
1100     int i;
1101     MigrationIncomingState *mis = migration_incoming_get_current();
1102     GArray *pcrfds = mis->postcopy_remote_fds;
1103 
1104     for (i = 0; i < pcrfds->len; i++) {
1105         struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1106         int ret = cur->waker(cur, rb, offset);
1107         if (ret) {
1108             return ret;
1109         }
1110     }
1111     return 0;
1112 }
1113 
1114 /*
1115  * Place a host page (from) at (host) atomically
1116  * returns 0 on success
1117  */
1118 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1119                         RAMBlock *rb)
1120 {
1121     size_t pagesize = qemu_ram_pagesize(rb);
1122 
1123     /* copy also acks to the kernel waking the stalled thread up
1124      * TODO: We can inhibit that ack and only do it if it was requested
1125      * which would be slightly cheaper, but we'd have to be careful
1126      * of the order of updating our page state.
1127      */
1128     if (qemu_ufd_copy_ioctl(mis->userfault_fd, host, from, pagesize, rb)) {
1129         int e = errno;
1130         error_report("%s: %s copy host: %p from: %p (size: %zd)",
1131                      __func__, strerror(e), host, from, pagesize);
1132 
1133         return -e;
1134     }
1135 
1136     trace_postcopy_place_page(host);
1137     return postcopy_notify_shared_wake(rb,
1138                                        qemu_ram_block_host_offset(rb, host));
1139 }
1140 
1141 /*
1142  * Place a zero page at (host) atomically
1143  * returns 0 on success
1144  */
1145 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1146                              RAMBlock *rb)
1147 {
1148     size_t pagesize = qemu_ram_pagesize(rb);
1149     trace_postcopy_place_page_zero(host);
1150 
1151     /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE
1152      * but it's not available for everything (e.g. hugetlbpages)
1153      */
1154     if (qemu_ram_is_uf_zeroable(rb)) {
1155         if (qemu_ufd_copy_ioctl(mis->userfault_fd, host, NULL, pagesize, rb)) {
1156             int e = errno;
1157             error_report("%s: %s zero host: %p",
1158                          __func__, strerror(e), host);
1159 
1160             return -e;
1161         }
1162         return postcopy_notify_shared_wake(rb,
1163                                            qemu_ram_block_host_offset(rb,
1164                                                                       host));
1165     } else {
1166         /* The kernel can't use UFFDIO_ZEROPAGE for hugepages */
1167         if (!mis->postcopy_tmp_zero_page) {
1168             mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
1169                                                PROT_READ | PROT_WRITE,
1170                                                MAP_PRIVATE | MAP_ANONYMOUS,
1171                                                -1, 0);
1172             if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
1173                 int e = errno;
1174                 mis->postcopy_tmp_zero_page = NULL;
1175                 error_report("%s: %s mapping large zero page",
1176                              __func__, strerror(e));
1177                 return -e;
1178             }
1179             memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
1180         }
1181         return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page,
1182                                    rb);
1183     }
1184 }
1185 
1186 /*
1187  * Returns a target page of memory that can be mapped at a later point in time
1188  * using postcopy_place_page
1189  * The same address is used repeatedly, postcopy_place_page just takes the
1190  * backing page away.
1191  * Returns: Pointer to allocated page
1192  *
1193  */
1194 void *postcopy_get_tmp_page(MigrationIncomingState *mis)
1195 {
1196     if (!mis->postcopy_tmp_page) {
1197         mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size,
1198                              PROT_READ | PROT_WRITE, MAP_PRIVATE |
1199                              MAP_ANONYMOUS, -1, 0);
1200         if (mis->postcopy_tmp_page == MAP_FAILED) {
1201             mis->postcopy_tmp_page = NULL;
1202             error_report("%s: %s", __func__, strerror(errno));
1203             return NULL;
1204         }
1205     }
1206 
1207     return mis->postcopy_tmp_page;
1208 }
1209 
1210 #else
1211 /* No target OS support, stubs just fail */
1212 void fill_destination_postcopy_migration_info(MigrationInfo *info)
1213 {
1214 }
1215 
1216 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
1217 {
1218     error_report("%s: No OS support", __func__);
1219     return false;
1220 }
1221 
1222 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages)
1223 {
1224     error_report("postcopy_ram_incoming_init: No OS support");
1225     return -1;
1226 }
1227 
1228 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
1229 {
1230     assert(0);
1231     return -1;
1232 }
1233 
1234 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
1235 {
1236     assert(0);
1237     return -1;
1238 }
1239 
1240 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
1241                                  uint64_t client_addr, uint64_t rb_offset)
1242 {
1243     assert(0);
1244     return -1;
1245 }
1246 
1247 int postcopy_ram_enable_notify(MigrationIncomingState *mis)
1248 {
1249     assert(0);
1250     return -1;
1251 }
1252 
1253 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1254                         RAMBlock *rb)
1255 {
1256     assert(0);
1257     return -1;
1258 }
1259 
1260 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1261                         RAMBlock *rb)
1262 {
1263     assert(0);
1264     return -1;
1265 }
1266 
1267 void *postcopy_get_tmp_page(MigrationIncomingState *mis)
1268 {
1269     assert(0);
1270     return NULL;
1271 }
1272 
1273 int postcopy_wake_shared(struct PostCopyFD *pcfd,
1274                          uint64_t client_addr,
1275                          RAMBlock *rb)
1276 {
1277     assert(0);
1278     return -1;
1279 }
1280 #endif
1281 
1282 /* ------------------------------------------------------------------------- */
1283 
1284 void postcopy_fault_thread_notify(MigrationIncomingState *mis)
1285 {
1286     uint64_t tmp64 = 1;
1287 
1288     /*
1289      * Wakeup the fault_thread.  It's an eventfd that should currently
1290      * be at 0, we're going to increment it to 1
1291      */
1292     if (write(mis->userfault_event_fd, &tmp64, 8) != 8) {
1293         /* Not much we can do here, but may as well report it */
1294         error_report("%s: incrementing failed: %s", __func__,
1295                      strerror(errno));
1296     }
1297 }
1298 
1299 /**
1300  * postcopy_discard_send_init: Called at the start of each RAMBlock before
1301  *   asking to discard individual ranges.
1302  *
1303  * @ms: The current migration state.
1304  * @offset: the bitmap offset of the named RAMBlock in the migration
1305  *   bitmap.
1306  * @name: RAMBlock that discards will operate on.
1307  *
1308  * returns: a new PDS.
1309  */
1310 PostcopyDiscardState *postcopy_discard_send_init(MigrationState *ms,
1311                                                  const char *name)
1312 {
1313     PostcopyDiscardState *res = g_malloc0(sizeof(PostcopyDiscardState));
1314 
1315     if (res) {
1316         res->ramblock_name = name;
1317     }
1318 
1319     return res;
1320 }
1321 
1322 /**
1323  * postcopy_discard_send_range: Called by the bitmap code for each chunk to
1324  *   discard. May send a discard message, may just leave it queued to
1325  *   be sent later.
1326  *
1327  * @ms: Current migration state.
1328  * @pds: Structure initialised by postcopy_discard_send_init().
1329  * @start,@length: a range of pages in the migration bitmap in the
1330  *   RAM block passed to postcopy_discard_send_init() (length=1 is one page)
1331  */
1332 void postcopy_discard_send_range(MigrationState *ms, PostcopyDiscardState *pds,
1333                                 unsigned long start, unsigned long length)
1334 {
1335     size_t tp_size = qemu_target_page_size();
1336     /* Convert to byte offsets within the RAM block */
1337     pds->start_list[pds->cur_entry] = start  * tp_size;
1338     pds->length_list[pds->cur_entry] = length * tp_size;
1339     trace_postcopy_discard_send_range(pds->ramblock_name, start, length);
1340     pds->cur_entry++;
1341     pds->nsentwords++;
1342 
1343     if (pds->cur_entry == MAX_DISCARDS_PER_COMMAND) {
1344         /* Full set, ship it! */
1345         qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1346                                               pds->ramblock_name,
1347                                               pds->cur_entry,
1348                                               pds->start_list,
1349                                               pds->length_list);
1350         pds->nsentcmds++;
1351         pds->cur_entry = 0;
1352     }
1353 }
1354 
1355 /**
1356  * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
1357  * bitmap code. Sends any outstanding discard messages, frees the PDS
1358  *
1359  * @ms: Current migration state.
1360  * @pds: Structure initialised by postcopy_discard_send_init().
1361  */
1362 void postcopy_discard_send_finish(MigrationState *ms, PostcopyDiscardState *pds)
1363 {
1364     /* Anything unsent? */
1365     if (pds->cur_entry) {
1366         qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1367                                               pds->ramblock_name,
1368                                               pds->cur_entry,
1369                                               pds->start_list,
1370                                               pds->length_list);
1371         pds->nsentcmds++;
1372     }
1373 
1374     trace_postcopy_discard_send_finish(pds->ramblock_name, pds->nsentwords,
1375                                        pds->nsentcmds);
1376 
1377     g_free(pds);
1378 }
1379 
1380 /*
1381  * Current state of incoming postcopy; note this is not part of
1382  * MigrationIncomingState since it's state is used during cleanup
1383  * at the end as MIS is being freed.
1384  */
1385 static PostcopyState incoming_postcopy_state;
1386 
1387 PostcopyState  postcopy_state_get(void)
1388 {
1389     return atomic_mb_read(&incoming_postcopy_state);
1390 }
1391 
1392 /* Set the state and return the old state */
1393 PostcopyState postcopy_state_set(PostcopyState new_state)
1394 {
1395     return atomic_xchg(&incoming_postcopy_state, new_state);
1396 }
1397 
1398 /* Register a handler for external shared memory postcopy
1399  * called on the destination.
1400  */
1401 void postcopy_register_shared_ufd(struct PostCopyFD *pcfd)
1402 {
1403     MigrationIncomingState *mis = migration_incoming_get_current();
1404 
1405     mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds,
1406                                                   *pcfd);
1407 }
1408 
1409 /* Unregister a handler for external shared memory postcopy
1410  */
1411 void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd)
1412 {
1413     guint i;
1414     MigrationIncomingState *mis = migration_incoming_get_current();
1415     GArray *pcrfds = mis->postcopy_remote_fds;
1416 
1417     for (i = 0; i < pcrfds->len; i++) {
1418         struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1419         if (cur->fd == pcfd->fd) {
1420             mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i);
1421             return;
1422         }
1423     }
1424 }
1425