1 /* 2 * Postcopy migration for RAM 3 * 4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Dave Gilbert <dgilbert@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14 /* 15 * Postcopy is a migration technique where the execution flips from the 16 * source to the destination before all the data has been copied. 17 */ 18 19 #include "qemu/osdep.h" 20 #include "qemu/rcu.h" 21 #include "qemu/madvise.h" 22 #include "exec/target_page.h" 23 #include "migration.h" 24 #include "qemu-file.h" 25 #include "savevm.h" 26 #include "postcopy-ram.h" 27 #include "ram.h" 28 #include "qapi/error.h" 29 #include "qemu/notify.h" 30 #include "qemu/rcu.h" 31 #include "sysemu/sysemu.h" 32 #include "qemu/error-report.h" 33 #include "trace.h" 34 #include "hw/boards.h" 35 #include "exec/ramblock.h" 36 37 /* Arbitrary limit on size of each discard command, 38 * keeps them around ~200 bytes 39 */ 40 #define MAX_DISCARDS_PER_COMMAND 12 41 42 struct PostcopyDiscardState { 43 const char *ramblock_name; 44 uint16_t cur_entry; 45 /* 46 * Start and length of a discard range (bytes) 47 */ 48 uint64_t start_list[MAX_DISCARDS_PER_COMMAND]; 49 uint64_t length_list[MAX_DISCARDS_PER_COMMAND]; 50 unsigned int nsentwords; 51 unsigned int nsentcmds; 52 }; 53 54 static NotifierWithReturnList postcopy_notifier_list; 55 56 void postcopy_infrastructure_init(void) 57 { 58 notifier_with_return_list_init(&postcopy_notifier_list); 59 } 60 61 void postcopy_add_notifier(NotifierWithReturn *nn) 62 { 63 notifier_with_return_list_add(&postcopy_notifier_list, nn); 64 } 65 66 void postcopy_remove_notifier(NotifierWithReturn *n) 67 { 68 notifier_with_return_remove(n); 69 } 70 71 int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp) 72 { 73 struct PostcopyNotifyData pnd; 74 pnd.reason = reason; 75 pnd.errp = errp; 76 77 return notifier_with_return_list_notify(&postcopy_notifier_list, 78 &pnd); 79 } 80 81 /* Postcopy needs to detect accesses to pages that haven't yet been copied 82 * across, and efficiently map new pages in, the techniques for doing this 83 * are target OS specific. 84 */ 85 #if defined(__linux__) 86 87 #include <poll.h> 88 #include <sys/ioctl.h> 89 #include <sys/syscall.h> 90 #include <asm/types.h> /* for __u64 */ 91 #endif 92 93 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD) 94 #include <sys/eventfd.h> 95 #include <linux/userfaultfd.h> 96 97 typedef struct PostcopyBlocktimeContext { 98 /* time when page fault initiated per vCPU */ 99 uint32_t *page_fault_vcpu_time; 100 /* page address per vCPU */ 101 uintptr_t *vcpu_addr; 102 uint32_t total_blocktime; 103 /* blocktime per vCPU */ 104 uint32_t *vcpu_blocktime; 105 /* point in time when last page fault was initiated */ 106 uint32_t last_begin; 107 /* number of vCPU are suspended */ 108 int smp_cpus_down; 109 uint64_t start_time; 110 111 /* 112 * Handler for exit event, necessary for 113 * releasing whole blocktime_ctx 114 */ 115 Notifier exit_notifier; 116 } PostcopyBlocktimeContext; 117 118 static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx) 119 { 120 g_free(ctx->page_fault_vcpu_time); 121 g_free(ctx->vcpu_addr); 122 g_free(ctx->vcpu_blocktime); 123 g_free(ctx); 124 } 125 126 static void migration_exit_cb(Notifier *n, void *data) 127 { 128 PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext, 129 exit_notifier); 130 destroy_blocktime_context(ctx); 131 } 132 133 static struct PostcopyBlocktimeContext *blocktime_context_new(void) 134 { 135 MachineState *ms = MACHINE(qdev_get_machine()); 136 unsigned int smp_cpus = ms->smp.cpus; 137 PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1); 138 ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus); 139 ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus); 140 ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus); 141 142 ctx->exit_notifier.notify = migration_exit_cb; 143 ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 144 qemu_add_exit_notifier(&ctx->exit_notifier); 145 return ctx; 146 } 147 148 static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx) 149 { 150 MachineState *ms = MACHINE(qdev_get_machine()); 151 uint32List *list = NULL; 152 int i; 153 154 for (i = ms->smp.cpus - 1; i >= 0; i--) { 155 QAPI_LIST_PREPEND(list, ctx->vcpu_blocktime[i]); 156 } 157 158 return list; 159 } 160 161 /* 162 * This function just populates MigrationInfo from postcopy's 163 * blocktime context. It will not populate MigrationInfo, 164 * unless postcopy-blocktime capability was set. 165 * 166 * @info: pointer to MigrationInfo to populate 167 */ 168 void fill_destination_postcopy_migration_info(MigrationInfo *info) 169 { 170 MigrationIncomingState *mis = migration_incoming_get_current(); 171 PostcopyBlocktimeContext *bc = mis->blocktime_ctx; 172 173 if (!bc) { 174 return; 175 } 176 177 info->has_postcopy_blocktime = true; 178 info->postcopy_blocktime = bc->total_blocktime; 179 info->has_postcopy_vcpu_blocktime = true; 180 info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc); 181 } 182 183 static uint32_t get_postcopy_total_blocktime(void) 184 { 185 MigrationIncomingState *mis = migration_incoming_get_current(); 186 PostcopyBlocktimeContext *bc = mis->blocktime_ctx; 187 188 if (!bc) { 189 return 0; 190 } 191 192 return bc->total_blocktime; 193 } 194 195 /** 196 * receive_ufd_features: check userfault fd features, to request only supported 197 * features in the future. 198 * 199 * Returns: true on success 200 * 201 * __NR_userfaultfd - should be checked before 202 * @features: out parameter will contain uffdio_api.features provided by kernel 203 * in case of success 204 */ 205 static bool receive_ufd_features(uint64_t *features) 206 { 207 struct uffdio_api api_struct = {0}; 208 int ufd; 209 bool ret = true; 210 211 /* if we are here __NR_userfaultfd should exists */ 212 ufd = syscall(__NR_userfaultfd, O_CLOEXEC); 213 if (ufd == -1) { 214 error_report("%s: syscall __NR_userfaultfd failed: %s", __func__, 215 strerror(errno)); 216 return false; 217 } 218 219 /* ask features */ 220 api_struct.api = UFFD_API; 221 api_struct.features = 0; 222 if (ioctl(ufd, UFFDIO_API, &api_struct)) { 223 error_report("%s: UFFDIO_API failed: %s", __func__, 224 strerror(errno)); 225 ret = false; 226 goto release_ufd; 227 } 228 229 *features = api_struct.features; 230 231 release_ufd: 232 close(ufd); 233 return ret; 234 } 235 236 /** 237 * request_ufd_features: this function should be called only once on a newly 238 * opened ufd, subsequent calls will lead to error. 239 * 240 * Returns: true on success 241 * 242 * @ufd: fd obtained from userfaultfd syscall 243 * @features: bit mask see UFFD_API_FEATURES 244 */ 245 static bool request_ufd_features(int ufd, uint64_t features) 246 { 247 struct uffdio_api api_struct = {0}; 248 uint64_t ioctl_mask; 249 250 api_struct.api = UFFD_API; 251 api_struct.features = features; 252 if (ioctl(ufd, UFFDIO_API, &api_struct)) { 253 error_report("%s failed: UFFDIO_API failed: %s", __func__, 254 strerror(errno)); 255 return false; 256 } 257 258 ioctl_mask = (__u64)1 << _UFFDIO_REGISTER | 259 (__u64)1 << _UFFDIO_UNREGISTER; 260 if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) { 261 error_report("Missing userfault features: %" PRIx64, 262 (uint64_t)(~api_struct.ioctls & ioctl_mask)); 263 return false; 264 } 265 266 return true; 267 } 268 269 static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis) 270 { 271 uint64_t asked_features = 0; 272 static uint64_t supported_features; 273 274 /* 275 * it's not possible to 276 * request UFFD_API twice per one fd 277 * userfault fd features is persistent 278 */ 279 if (!supported_features) { 280 if (!receive_ufd_features(&supported_features)) { 281 error_report("%s failed", __func__); 282 return false; 283 } 284 } 285 286 #ifdef UFFD_FEATURE_THREAD_ID 287 if (UFFD_FEATURE_THREAD_ID & supported_features) { 288 asked_features |= UFFD_FEATURE_THREAD_ID; 289 if (migrate_postcopy_blocktime()) { 290 if (!mis->blocktime_ctx) { 291 mis->blocktime_ctx = blocktime_context_new(); 292 } 293 } 294 } 295 #endif 296 297 /* 298 * request features, even if asked_features is 0, due to 299 * kernel expects UFFD_API before UFFDIO_REGISTER, per 300 * userfault file descriptor 301 */ 302 if (!request_ufd_features(ufd, asked_features)) { 303 error_report("%s failed: features %" PRIu64, __func__, 304 asked_features); 305 return false; 306 } 307 308 if (qemu_real_host_page_size != ram_pagesize_summary()) { 309 bool have_hp = false; 310 /* We've got a huge page */ 311 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS 312 have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS; 313 #endif 314 if (!have_hp) { 315 error_report("Userfault on this host does not support huge pages"); 316 return false; 317 } 318 } 319 return true; 320 } 321 322 /* Callback from postcopy_ram_supported_by_host block iterator. 323 */ 324 static int test_ramblock_postcopiable(RAMBlock *rb, void *opaque) 325 { 326 const char *block_name = qemu_ram_get_idstr(rb); 327 ram_addr_t length = qemu_ram_get_used_length(rb); 328 size_t pagesize = qemu_ram_pagesize(rb); 329 330 if (length % pagesize) { 331 error_report("Postcopy requires RAM blocks to be a page size multiple," 332 " block %s is 0x" RAM_ADDR_FMT " bytes with a " 333 "page size of 0x%zx", block_name, length, pagesize); 334 return 1; 335 } 336 return 0; 337 } 338 339 /* 340 * Note: This has the side effect of munlock'ing all of RAM, that's 341 * normally fine since if the postcopy succeeds it gets turned back on at the 342 * end. 343 */ 344 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis) 345 { 346 long pagesize = qemu_real_host_page_size; 347 int ufd = -1; 348 bool ret = false; /* Error unless we change it */ 349 void *testarea = NULL; 350 struct uffdio_register reg_struct; 351 struct uffdio_range range_struct; 352 uint64_t feature_mask; 353 Error *local_err = NULL; 354 355 if (qemu_target_page_size() > pagesize) { 356 error_report("Target page size bigger than host page size"); 357 goto out; 358 } 359 360 ufd = syscall(__NR_userfaultfd, O_CLOEXEC); 361 if (ufd == -1) { 362 error_report("%s: userfaultfd not available: %s", __func__, 363 strerror(errno)); 364 goto out; 365 } 366 367 /* Give devices a chance to object */ 368 if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, &local_err)) { 369 error_report_err(local_err); 370 goto out; 371 } 372 373 /* Version and features check */ 374 if (!ufd_check_and_apply(ufd, mis)) { 375 goto out; 376 } 377 378 /* We don't support postcopy with shared RAM yet */ 379 if (foreach_not_ignored_block(test_ramblock_postcopiable, NULL)) { 380 goto out; 381 } 382 383 /* 384 * userfault and mlock don't go together; we'll put it back later if 385 * it was enabled. 386 */ 387 if (munlockall()) { 388 error_report("%s: munlockall: %s", __func__, strerror(errno)); 389 goto out; 390 } 391 392 /* 393 * We need to check that the ops we need are supported on anon memory 394 * To do that we need to register a chunk and see the flags that 395 * are returned. 396 */ 397 testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE | 398 MAP_ANONYMOUS, -1, 0); 399 if (testarea == MAP_FAILED) { 400 error_report("%s: Failed to map test area: %s", __func__, 401 strerror(errno)); 402 goto out; 403 } 404 g_assert(QEMU_PTR_IS_ALIGNED(testarea, pagesize)); 405 406 reg_struct.range.start = (uintptr_t)testarea; 407 reg_struct.range.len = pagesize; 408 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 409 410 if (ioctl(ufd, UFFDIO_REGISTER, ®_struct)) { 411 error_report("%s userfault register: %s", __func__, strerror(errno)); 412 goto out; 413 } 414 415 range_struct.start = (uintptr_t)testarea; 416 range_struct.len = pagesize; 417 if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) { 418 error_report("%s userfault unregister: %s", __func__, strerror(errno)); 419 goto out; 420 } 421 422 feature_mask = (__u64)1 << _UFFDIO_WAKE | 423 (__u64)1 << _UFFDIO_COPY | 424 (__u64)1 << _UFFDIO_ZEROPAGE; 425 if ((reg_struct.ioctls & feature_mask) != feature_mask) { 426 error_report("Missing userfault map features: %" PRIx64, 427 (uint64_t)(~reg_struct.ioctls & feature_mask)); 428 goto out; 429 } 430 431 /* Success! */ 432 ret = true; 433 out: 434 if (testarea) { 435 munmap(testarea, pagesize); 436 } 437 if (ufd != -1) { 438 close(ufd); 439 } 440 return ret; 441 } 442 443 /* 444 * Setup an area of RAM so that it *can* be used for postcopy later; this 445 * must be done right at the start prior to pre-copy. 446 * opaque should be the MIS. 447 */ 448 static int init_range(RAMBlock *rb, void *opaque) 449 { 450 const char *block_name = qemu_ram_get_idstr(rb); 451 void *host_addr = qemu_ram_get_host_addr(rb); 452 ram_addr_t offset = qemu_ram_get_offset(rb); 453 ram_addr_t length = qemu_ram_get_used_length(rb); 454 trace_postcopy_init_range(block_name, host_addr, offset, length); 455 456 /* 457 * Save the used_length before running the guest. In case we have to 458 * resize RAM blocks when syncing RAM block sizes from the source during 459 * precopy, we'll update it manually via the ram block notifier. 460 */ 461 rb->postcopy_length = length; 462 463 /* 464 * We need the whole of RAM to be truly empty for postcopy, so things 465 * like ROMs and any data tables built during init must be zero'd 466 * - we're going to get the copy from the source anyway. 467 * (Precopy will just overwrite this data, so doesn't need the discard) 468 */ 469 if (ram_discard_range(block_name, 0, length)) { 470 return -1; 471 } 472 473 return 0; 474 } 475 476 /* 477 * At the end of migration, undo the effects of init_range 478 * opaque should be the MIS. 479 */ 480 static int cleanup_range(RAMBlock *rb, void *opaque) 481 { 482 const char *block_name = qemu_ram_get_idstr(rb); 483 void *host_addr = qemu_ram_get_host_addr(rb); 484 ram_addr_t offset = qemu_ram_get_offset(rb); 485 ram_addr_t length = rb->postcopy_length; 486 MigrationIncomingState *mis = opaque; 487 struct uffdio_range range_struct; 488 trace_postcopy_cleanup_range(block_name, host_addr, offset, length); 489 490 /* 491 * We turned off hugepage for the precopy stage with postcopy enabled 492 * we can turn it back on now. 493 */ 494 qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE); 495 496 /* 497 * We can also turn off userfault now since we should have all the 498 * pages. It can be useful to leave it on to debug postcopy 499 * if you're not sure it's always getting every page. 500 */ 501 range_struct.start = (uintptr_t)host_addr; 502 range_struct.len = length; 503 504 if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) { 505 error_report("%s: userfault unregister %s", __func__, strerror(errno)); 506 507 return -1; 508 } 509 510 return 0; 511 } 512 513 /* 514 * Initialise postcopy-ram, setting the RAM to a state where we can go into 515 * postcopy later; must be called prior to any precopy. 516 * called from arch_init's similarly named ram_postcopy_incoming_init 517 */ 518 int postcopy_ram_incoming_init(MigrationIncomingState *mis) 519 { 520 if (foreach_not_ignored_block(init_range, NULL)) { 521 return -1; 522 } 523 524 return 0; 525 } 526 527 static void postcopy_temp_pages_cleanup(MigrationIncomingState *mis) 528 { 529 if (mis->postcopy_tmp_page) { 530 munmap(mis->postcopy_tmp_page, mis->largest_page_size); 531 mis->postcopy_tmp_page = NULL; 532 } 533 534 if (mis->postcopy_tmp_zero_page) { 535 munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size); 536 mis->postcopy_tmp_zero_page = NULL; 537 } 538 } 539 540 /* 541 * At the end of a migration where postcopy_ram_incoming_init was called. 542 */ 543 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 544 { 545 trace_postcopy_ram_incoming_cleanup_entry(); 546 547 if (mis->have_fault_thread) { 548 Error *local_err = NULL; 549 550 /* Let the fault thread quit */ 551 qatomic_set(&mis->fault_thread_quit, 1); 552 postcopy_fault_thread_notify(mis); 553 trace_postcopy_ram_incoming_cleanup_join(); 554 qemu_thread_join(&mis->fault_thread); 555 556 if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) { 557 error_report_err(local_err); 558 return -1; 559 } 560 561 if (foreach_not_ignored_block(cleanup_range, mis)) { 562 return -1; 563 } 564 565 trace_postcopy_ram_incoming_cleanup_closeuf(); 566 close(mis->userfault_fd); 567 close(mis->userfault_event_fd); 568 mis->have_fault_thread = false; 569 } 570 571 if (enable_mlock) { 572 if (os_mlock() < 0) { 573 error_report("mlock: %s", strerror(errno)); 574 /* 575 * It doesn't feel right to fail at this point, we have a valid 576 * VM state. 577 */ 578 } 579 } 580 581 postcopy_temp_pages_cleanup(mis); 582 583 trace_postcopy_ram_incoming_cleanup_blocktime( 584 get_postcopy_total_blocktime()); 585 586 trace_postcopy_ram_incoming_cleanup_exit(); 587 return 0; 588 } 589 590 /* 591 * Disable huge pages on an area 592 */ 593 static int nhp_range(RAMBlock *rb, void *opaque) 594 { 595 const char *block_name = qemu_ram_get_idstr(rb); 596 void *host_addr = qemu_ram_get_host_addr(rb); 597 ram_addr_t offset = qemu_ram_get_offset(rb); 598 ram_addr_t length = rb->postcopy_length; 599 trace_postcopy_nhp_range(block_name, host_addr, offset, length); 600 601 /* 602 * Before we do discards we need to ensure those discards really 603 * do delete areas of the page, even if THP thinks a hugepage would 604 * be a good idea, so force hugepages off. 605 */ 606 qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE); 607 608 return 0; 609 } 610 611 /* 612 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard 613 * however leaving it until after precopy means that most of the precopy 614 * data is still THPd 615 */ 616 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 617 { 618 if (foreach_not_ignored_block(nhp_range, mis)) { 619 return -1; 620 } 621 622 postcopy_state_set(POSTCOPY_INCOMING_DISCARD); 623 624 return 0; 625 } 626 627 /* 628 * Mark the given area of RAM as requiring notification to unwritten areas 629 * Used as a callback on foreach_not_ignored_block. 630 * host_addr: Base of area to mark 631 * offset: Offset in the whole ram arena 632 * length: Length of the section 633 * opaque: MigrationIncomingState pointer 634 * Returns 0 on success 635 */ 636 static int ram_block_enable_notify(RAMBlock *rb, void *opaque) 637 { 638 MigrationIncomingState *mis = opaque; 639 struct uffdio_register reg_struct; 640 641 reg_struct.range.start = (uintptr_t)qemu_ram_get_host_addr(rb); 642 reg_struct.range.len = rb->postcopy_length; 643 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 644 645 /* Now tell our userfault_fd that it's responsible for this area */ 646 if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, ®_struct)) { 647 error_report("%s userfault register: %s", __func__, strerror(errno)); 648 return -1; 649 } 650 if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) { 651 error_report("%s userfault: Region doesn't support COPY", __func__); 652 return -1; 653 } 654 if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) { 655 qemu_ram_set_uf_zeroable(rb); 656 } 657 658 return 0; 659 } 660 661 int postcopy_wake_shared(struct PostCopyFD *pcfd, 662 uint64_t client_addr, 663 RAMBlock *rb) 664 { 665 size_t pagesize = qemu_ram_pagesize(rb); 666 struct uffdio_range range; 667 int ret; 668 trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb)); 669 range.start = ROUND_DOWN(client_addr, pagesize); 670 range.len = pagesize; 671 ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range); 672 if (ret) { 673 error_report("%s: Failed to wake: %zx in %s (%s)", 674 __func__, (size_t)client_addr, qemu_ram_get_idstr(rb), 675 strerror(errno)); 676 } 677 return ret; 678 } 679 680 static int postcopy_request_page(MigrationIncomingState *mis, RAMBlock *rb, 681 ram_addr_t start, uint64_t haddr) 682 { 683 void *aligned = (void *)(uintptr_t)ROUND_DOWN(haddr, qemu_ram_pagesize(rb)); 684 685 /* 686 * Discarded pages (via RamDiscardManager) are never migrated. On unlikely 687 * access, place a zeropage, which will also set the relevant bits in the 688 * recv_bitmap accordingly, so we won't try placing a zeropage twice. 689 * 690 * Checking a single bit is sufficient to handle pagesize > TPS as either 691 * all relevant bits are set or not. 692 */ 693 assert(QEMU_IS_ALIGNED(start, qemu_ram_pagesize(rb))); 694 if (ramblock_page_is_discarded(rb, start)) { 695 bool received = ramblock_recv_bitmap_test_byte_offset(rb, start); 696 697 return received ? 0 : postcopy_place_page_zero(mis, aligned, rb); 698 } 699 700 return migrate_send_rp_req_pages(mis, rb, start, haddr); 701 } 702 703 /* 704 * Callback from shared fault handlers to ask for a page, 705 * the page must be specified by a RAMBlock and an offset in that rb 706 * Note: Only for use by shared fault handlers (in fault thread) 707 */ 708 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb, 709 uint64_t client_addr, uint64_t rb_offset) 710 { 711 uint64_t aligned_rbo = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb)); 712 MigrationIncomingState *mis = migration_incoming_get_current(); 713 714 trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb), 715 rb_offset); 716 if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) { 717 trace_postcopy_request_shared_page_present(pcfd->idstr, 718 qemu_ram_get_idstr(rb), rb_offset); 719 return postcopy_wake_shared(pcfd, client_addr, rb); 720 } 721 postcopy_request_page(mis, rb, aligned_rbo, client_addr); 722 return 0; 723 } 724 725 static int get_mem_fault_cpu_index(uint32_t pid) 726 { 727 CPUState *cpu_iter; 728 729 CPU_FOREACH(cpu_iter) { 730 if (cpu_iter->thread_id == pid) { 731 trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid); 732 return cpu_iter->cpu_index; 733 } 734 } 735 trace_get_mem_fault_cpu_index(-1, pid); 736 return -1; 737 } 738 739 static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc) 740 { 741 int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) - 742 dc->start_time; 743 return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX; 744 } 745 746 /* 747 * This function is being called when pagefault occurs. It 748 * tracks down vCPU blocking time. 749 * 750 * @addr: faulted host virtual address 751 * @ptid: faulted process thread id 752 * @rb: ramblock appropriate to addr 753 */ 754 static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid, 755 RAMBlock *rb) 756 { 757 int cpu, already_received; 758 MigrationIncomingState *mis = migration_incoming_get_current(); 759 PostcopyBlocktimeContext *dc = mis->blocktime_ctx; 760 uint32_t low_time_offset; 761 762 if (!dc || ptid == 0) { 763 return; 764 } 765 cpu = get_mem_fault_cpu_index(ptid); 766 if (cpu < 0) { 767 return; 768 } 769 770 low_time_offset = get_low_time_offset(dc); 771 if (dc->vcpu_addr[cpu] == 0) { 772 qatomic_inc(&dc->smp_cpus_down); 773 } 774 775 qatomic_xchg(&dc->last_begin, low_time_offset); 776 qatomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset); 777 qatomic_xchg(&dc->vcpu_addr[cpu], addr); 778 779 /* 780 * check it here, not at the beginning of the function, 781 * due to, check could occur early than bitmap_set in 782 * qemu_ufd_copy_ioctl 783 */ 784 already_received = ramblock_recv_bitmap_test(rb, (void *)addr); 785 if (already_received) { 786 qatomic_xchg(&dc->vcpu_addr[cpu], 0); 787 qatomic_xchg(&dc->page_fault_vcpu_time[cpu], 0); 788 qatomic_dec(&dc->smp_cpus_down); 789 } 790 trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu], 791 cpu, already_received); 792 } 793 794 /* 795 * This function just provide calculated blocktime per cpu and trace it. 796 * Total blocktime is calculated in mark_postcopy_blocktime_end. 797 * 798 * 799 * Assume we have 3 CPU 800 * 801 * S1 E1 S1 E1 802 * -----***********------------xxx***************------------------------> CPU1 803 * 804 * S2 E2 805 * ------------****************xxx---------------------------------------> CPU2 806 * 807 * S3 E3 808 * ------------------------****xxx********-------------------------------> CPU3 809 * 810 * We have sequence S1,S2,E1,S3,S1,E2,E3,E1 811 * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3 812 * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 - 813 * it's a part of total blocktime. 814 * S1 - here is last_begin 815 * Legend of the picture is following: 816 * * - means blocktime per vCPU 817 * x - means overlapped blocktime (total blocktime) 818 * 819 * @addr: host virtual address 820 */ 821 static void mark_postcopy_blocktime_end(uintptr_t addr) 822 { 823 MigrationIncomingState *mis = migration_incoming_get_current(); 824 PostcopyBlocktimeContext *dc = mis->blocktime_ctx; 825 MachineState *ms = MACHINE(qdev_get_machine()); 826 unsigned int smp_cpus = ms->smp.cpus; 827 int i, affected_cpu = 0; 828 bool vcpu_total_blocktime = false; 829 uint32_t read_vcpu_time, low_time_offset; 830 831 if (!dc) { 832 return; 833 } 834 835 low_time_offset = get_low_time_offset(dc); 836 /* lookup cpu, to clear it, 837 * that algorithm looks straightforward, but it's not 838 * optimal, more optimal algorithm is keeping tree or hash 839 * where key is address value is a list of */ 840 for (i = 0; i < smp_cpus; i++) { 841 uint32_t vcpu_blocktime = 0; 842 843 read_vcpu_time = qatomic_fetch_add(&dc->page_fault_vcpu_time[i], 0); 844 if (qatomic_fetch_add(&dc->vcpu_addr[i], 0) != addr || 845 read_vcpu_time == 0) { 846 continue; 847 } 848 qatomic_xchg(&dc->vcpu_addr[i], 0); 849 vcpu_blocktime = low_time_offset - read_vcpu_time; 850 affected_cpu += 1; 851 /* we need to know is that mark_postcopy_end was due to 852 * faulted page, another possible case it's prefetched 853 * page and in that case we shouldn't be here */ 854 if (!vcpu_total_blocktime && 855 qatomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) { 856 vcpu_total_blocktime = true; 857 } 858 /* continue cycle, due to one page could affect several vCPUs */ 859 dc->vcpu_blocktime[i] += vcpu_blocktime; 860 } 861 862 qatomic_sub(&dc->smp_cpus_down, affected_cpu); 863 if (vcpu_total_blocktime) { 864 dc->total_blocktime += low_time_offset - qatomic_fetch_add( 865 &dc->last_begin, 0); 866 } 867 trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime, 868 affected_cpu); 869 } 870 871 static bool postcopy_pause_fault_thread(MigrationIncomingState *mis) 872 { 873 trace_postcopy_pause_fault_thread(); 874 875 qemu_sem_wait(&mis->postcopy_pause_sem_fault); 876 877 trace_postcopy_pause_fault_thread_continued(); 878 879 return true; 880 } 881 882 /* 883 * Handle faults detected by the USERFAULT markings 884 */ 885 static void *postcopy_ram_fault_thread(void *opaque) 886 { 887 MigrationIncomingState *mis = opaque; 888 struct uffd_msg msg; 889 int ret; 890 size_t index; 891 RAMBlock *rb = NULL; 892 893 trace_postcopy_ram_fault_thread_entry(); 894 rcu_register_thread(); 895 mis->last_rb = NULL; /* last RAMBlock we sent part of */ 896 qemu_sem_post(&mis->fault_thread_sem); 897 898 struct pollfd *pfd; 899 size_t pfd_len = 2 + mis->postcopy_remote_fds->len; 900 901 pfd = g_new0(struct pollfd, pfd_len); 902 903 pfd[0].fd = mis->userfault_fd; 904 pfd[0].events = POLLIN; 905 pfd[1].fd = mis->userfault_event_fd; 906 pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */ 907 trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd); 908 for (index = 0; index < mis->postcopy_remote_fds->len; index++) { 909 struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds, 910 struct PostCopyFD, index); 911 pfd[2 + index].fd = pcfd->fd; 912 pfd[2 + index].events = POLLIN; 913 trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr, 914 pcfd->fd); 915 } 916 917 while (true) { 918 ram_addr_t rb_offset; 919 int poll_result; 920 921 /* 922 * We're mainly waiting for the kernel to give us a faulting HVA, 923 * however we can be told to quit via userfault_quit_fd which is 924 * an eventfd 925 */ 926 927 poll_result = poll(pfd, pfd_len, -1 /* Wait forever */); 928 if (poll_result == -1) { 929 error_report("%s: userfault poll: %s", __func__, strerror(errno)); 930 break; 931 } 932 933 if (!mis->to_src_file) { 934 /* 935 * Possibly someone tells us that the return path is 936 * broken already using the event. We should hold until 937 * the channel is rebuilt. 938 */ 939 if (postcopy_pause_fault_thread(mis)) { 940 /* Continue to read the userfaultfd */ 941 } else { 942 error_report("%s: paused but don't allow to continue", 943 __func__); 944 break; 945 } 946 } 947 948 if (pfd[1].revents) { 949 uint64_t tmp64 = 0; 950 951 /* Consume the signal */ 952 if (read(mis->userfault_event_fd, &tmp64, 8) != 8) { 953 /* Nothing obviously nicer than posting this error. */ 954 error_report("%s: read() failed", __func__); 955 } 956 957 if (qatomic_read(&mis->fault_thread_quit)) { 958 trace_postcopy_ram_fault_thread_quit(); 959 break; 960 } 961 } 962 963 if (pfd[0].revents) { 964 poll_result--; 965 ret = read(mis->userfault_fd, &msg, sizeof(msg)); 966 if (ret != sizeof(msg)) { 967 if (errno == EAGAIN) { 968 /* 969 * if a wake up happens on the other thread just after 970 * the poll, there is nothing to read. 971 */ 972 continue; 973 } 974 if (ret < 0) { 975 error_report("%s: Failed to read full userfault " 976 "message: %s", 977 __func__, strerror(errno)); 978 break; 979 } else { 980 error_report("%s: Read %d bytes from userfaultfd " 981 "expected %zd", 982 __func__, ret, sizeof(msg)); 983 break; /* Lost alignment, don't know what we'd read next */ 984 } 985 } 986 if (msg.event != UFFD_EVENT_PAGEFAULT) { 987 error_report("%s: Read unexpected event %ud from userfaultfd", 988 __func__, msg.event); 989 continue; /* It's not a page fault, shouldn't happen */ 990 } 991 992 rb = qemu_ram_block_from_host( 993 (void *)(uintptr_t)msg.arg.pagefault.address, 994 true, &rb_offset); 995 if (!rb) { 996 error_report("postcopy_ram_fault_thread: Fault outside guest: %" 997 PRIx64, (uint64_t)msg.arg.pagefault.address); 998 break; 999 } 1000 1001 rb_offset = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb)); 1002 trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address, 1003 qemu_ram_get_idstr(rb), 1004 rb_offset, 1005 msg.arg.pagefault.feat.ptid); 1006 mark_postcopy_blocktime_begin( 1007 (uintptr_t)(msg.arg.pagefault.address), 1008 msg.arg.pagefault.feat.ptid, rb); 1009 1010 retry: 1011 /* 1012 * Send the request to the source - we want to request one 1013 * of our host page sizes (which is >= TPS) 1014 */ 1015 ret = postcopy_request_page(mis, rb, rb_offset, 1016 msg.arg.pagefault.address); 1017 if (ret) { 1018 /* May be network failure, try to wait for recovery */ 1019 if (ret == -EIO && postcopy_pause_fault_thread(mis)) { 1020 /* We got reconnected somehow, try to continue */ 1021 goto retry; 1022 } else { 1023 /* This is a unavoidable fault */ 1024 error_report("%s: postcopy_request_page() get %d", 1025 __func__, ret); 1026 break; 1027 } 1028 } 1029 } 1030 1031 /* Now handle any requests from external processes on shared memory */ 1032 /* TODO: May need to handle devices deregistering during postcopy */ 1033 for (index = 2; index < pfd_len && poll_result; index++) { 1034 if (pfd[index].revents) { 1035 struct PostCopyFD *pcfd = 1036 &g_array_index(mis->postcopy_remote_fds, 1037 struct PostCopyFD, index - 2); 1038 1039 poll_result--; 1040 if (pfd[index].revents & POLLERR) { 1041 error_report("%s: POLLERR on poll %zd fd=%d", 1042 __func__, index, pcfd->fd); 1043 pfd[index].events = 0; 1044 continue; 1045 } 1046 1047 ret = read(pcfd->fd, &msg, sizeof(msg)); 1048 if (ret != sizeof(msg)) { 1049 if (errno == EAGAIN) { 1050 /* 1051 * if a wake up happens on the other thread just after 1052 * the poll, there is nothing to read. 1053 */ 1054 continue; 1055 } 1056 if (ret < 0) { 1057 error_report("%s: Failed to read full userfault " 1058 "message: %s (shared) revents=%d", 1059 __func__, strerror(errno), 1060 pfd[index].revents); 1061 /*TODO: Could just disable this sharer */ 1062 break; 1063 } else { 1064 error_report("%s: Read %d bytes from userfaultfd " 1065 "expected %zd (shared)", 1066 __func__, ret, sizeof(msg)); 1067 /*TODO: Could just disable this sharer */ 1068 break; /*Lost alignment,don't know what we'd read next*/ 1069 } 1070 } 1071 if (msg.event != UFFD_EVENT_PAGEFAULT) { 1072 error_report("%s: Read unexpected event %ud " 1073 "from userfaultfd (shared)", 1074 __func__, msg.event); 1075 continue; /* It's not a page fault, shouldn't happen */ 1076 } 1077 /* Call the device handler registered with us */ 1078 ret = pcfd->handler(pcfd, &msg); 1079 if (ret) { 1080 error_report("%s: Failed to resolve shared fault on %zd/%s", 1081 __func__, index, pcfd->idstr); 1082 /* TODO: Fail? Disable this sharer? */ 1083 } 1084 } 1085 } 1086 } 1087 rcu_unregister_thread(); 1088 trace_postcopy_ram_fault_thread_exit(); 1089 g_free(pfd); 1090 return NULL; 1091 } 1092 1093 static int postcopy_temp_pages_setup(MigrationIncomingState *mis) 1094 { 1095 int err; 1096 1097 mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size, 1098 PROT_READ | PROT_WRITE, 1099 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1100 if (mis->postcopy_tmp_page == MAP_FAILED) { 1101 err = errno; 1102 mis->postcopy_tmp_page = NULL; 1103 error_report("%s: Failed to map postcopy_tmp_page %s", 1104 __func__, strerror(err)); 1105 return -err; 1106 } 1107 1108 /* 1109 * Map large zero page when kernel can't use UFFDIO_ZEROPAGE for hugepages 1110 */ 1111 mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size, 1112 PROT_READ | PROT_WRITE, 1113 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1114 if (mis->postcopy_tmp_zero_page == MAP_FAILED) { 1115 err = errno; 1116 mis->postcopy_tmp_zero_page = NULL; 1117 error_report("%s: Failed to map large zero page %s", 1118 __func__, strerror(err)); 1119 return -err; 1120 } 1121 1122 memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size); 1123 1124 return 0; 1125 } 1126 1127 int postcopy_ram_incoming_setup(MigrationIncomingState *mis) 1128 { 1129 /* Open the fd for the kernel to give us userfaults */ 1130 mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK); 1131 if (mis->userfault_fd == -1) { 1132 error_report("%s: Failed to open userfault fd: %s", __func__, 1133 strerror(errno)); 1134 return -1; 1135 } 1136 1137 /* 1138 * Although the host check already tested the API, we need to 1139 * do the check again as an ABI handshake on the new fd. 1140 */ 1141 if (!ufd_check_and_apply(mis->userfault_fd, mis)) { 1142 return -1; 1143 } 1144 1145 /* Now an eventfd we use to tell the fault-thread to quit */ 1146 mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC); 1147 if (mis->userfault_event_fd == -1) { 1148 error_report("%s: Opening userfault_event_fd: %s", __func__, 1149 strerror(errno)); 1150 close(mis->userfault_fd); 1151 return -1; 1152 } 1153 1154 qemu_sem_init(&mis->fault_thread_sem, 0); 1155 qemu_thread_create(&mis->fault_thread, "postcopy/fault", 1156 postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE); 1157 qemu_sem_wait(&mis->fault_thread_sem); 1158 qemu_sem_destroy(&mis->fault_thread_sem); 1159 mis->have_fault_thread = true; 1160 1161 /* Mark so that we get notified of accesses to unwritten areas */ 1162 if (foreach_not_ignored_block(ram_block_enable_notify, mis)) { 1163 error_report("ram_block_enable_notify failed"); 1164 return -1; 1165 } 1166 1167 if (postcopy_temp_pages_setup(mis)) { 1168 /* Error dumped in the sub-function */ 1169 return -1; 1170 } 1171 1172 trace_postcopy_ram_enable_notify(); 1173 1174 return 0; 1175 } 1176 1177 static int qemu_ufd_copy_ioctl(MigrationIncomingState *mis, void *host_addr, 1178 void *from_addr, uint64_t pagesize, RAMBlock *rb) 1179 { 1180 int userfault_fd = mis->userfault_fd; 1181 int ret; 1182 1183 if (from_addr) { 1184 struct uffdio_copy copy_struct; 1185 copy_struct.dst = (uint64_t)(uintptr_t)host_addr; 1186 copy_struct.src = (uint64_t)(uintptr_t)from_addr; 1187 copy_struct.len = pagesize; 1188 copy_struct.mode = 0; 1189 ret = ioctl(userfault_fd, UFFDIO_COPY, ©_struct); 1190 } else { 1191 struct uffdio_zeropage zero_struct; 1192 zero_struct.range.start = (uint64_t)(uintptr_t)host_addr; 1193 zero_struct.range.len = pagesize; 1194 zero_struct.mode = 0; 1195 ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct); 1196 } 1197 if (!ret) { 1198 qemu_mutex_lock(&mis->page_request_mutex); 1199 ramblock_recv_bitmap_set_range(rb, host_addr, 1200 pagesize / qemu_target_page_size()); 1201 /* 1202 * If this page resolves a page fault for a previous recorded faulted 1203 * address, take a special note to maintain the requested page list. 1204 */ 1205 if (g_tree_lookup(mis->page_requested, host_addr)) { 1206 g_tree_remove(mis->page_requested, host_addr); 1207 mis->page_requested_count--; 1208 trace_postcopy_page_req_del(host_addr, mis->page_requested_count); 1209 } 1210 qemu_mutex_unlock(&mis->page_request_mutex); 1211 mark_postcopy_blocktime_end((uintptr_t)host_addr); 1212 } 1213 return ret; 1214 } 1215 1216 int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset) 1217 { 1218 int i; 1219 MigrationIncomingState *mis = migration_incoming_get_current(); 1220 GArray *pcrfds = mis->postcopy_remote_fds; 1221 1222 for (i = 0; i < pcrfds->len; i++) { 1223 struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i); 1224 int ret = cur->waker(cur, rb, offset); 1225 if (ret) { 1226 return ret; 1227 } 1228 } 1229 return 0; 1230 } 1231 1232 /* 1233 * Place a host page (from) at (host) atomically 1234 * returns 0 on success 1235 */ 1236 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from, 1237 RAMBlock *rb) 1238 { 1239 size_t pagesize = qemu_ram_pagesize(rb); 1240 1241 /* copy also acks to the kernel waking the stalled thread up 1242 * TODO: We can inhibit that ack and only do it if it was requested 1243 * which would be slightly cheaper, but we'd have to be careful 1244 * of the order of updating our page state. 1245 */ 1246 if (qemu_ufd_copy_ioctl(mis, host, from, pagesize, rb)) { 1247 int e = errno; 1248 error_report("%s: %s copy host: %p from: %p (size: %zd)", 1249 __func__, strerror(e), host, from, pagesize); 1250 1251 return -e; 1252 } 1253 1254 trace_postcopy_place_page(host); 1255 return postcopy_notify_shared_wake(rb, 1256 qemu_ram_block_host_offset(rb, host)); 1257 } 1258 1259 /* 1260 * Place a zero page at (host) atomically 1261 * returns 0 on success 1262 */ 1263 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host, 1264 RAMBlock *rb) 1265 { 1266 size_t pagesize = qemu_ram_pagesize(rb); 1267 trace_postcopy_place_page_zero(host); 1268 1269 /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE 1270 * but it's not available for everything (e.g. hugetlbpages) 1271 */ 1272 if (qemu_ram_is_uf_zeroable(rb)) { 1273 if (qemu_ufd_copy_ioctl(mis, host, NULL, pagesize, rb)) { 1274 int e = errno; 1275 error_report("%s: %s zero host: %p", 1276 __func__, strerror(e), host); 1277 1278 return -e; 1279 } 1280 return postcopy_notify_shared_wake(rb, 1281 qemu_ram_block_host_offset(rb, 1282 host)); 1283 } else { 1284 return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page, rb); 1285 } 1286 } 1287 1288 #else 1289 /* No target OS support, stubs just fail */ 1290 void fill_destination_postcopy_migration_info(MigrationInfo *info) 1291 { 1292 } 1293 1294 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis) 1295 { 1296 error_report("%s: No OS support", __func__); 1297 return false; 1298 } 1299 1300 int postcopy_ram_incoming_init(MigrationIncomingState *mis) 1301 { 1302 error_report("postcopy_ram_incoming_init: No OS support"); 1303 return -1; 1304 } 1305 1306 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 1307 { 1308 assert(0); 1309 return -1; 1310 } 1311 1312 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 1313 { 1314 assert(0); 1315 return -1; 1316 } 1317 1318 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb, 1319 uint64_t client_addr, uint64_t rb_offset) 1320 { 1321 assert(0); 1322 return -1; 1323 } 1324 1325 int postcopy_ram_incoming_setup(MigrationIncomingState *mis) 1326 { 1327 assert(0); 1328 return -1; 1329 } 1330 1331 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from, 1332 RAMBlock *rb) 1333 { 1334 assert(0); 1335 return -1; 1336 } 1337 1338 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host, 1339 RAMBlock *rb) 1340 { 1341 assert(0); 1342 return -1; 1343 } 1344 1345 int postcopy_wake_shared(struct PostCopyFD *pcfd, 1346 uint64_t client_addr, 1347 RAMBlock *rb) 1348 { 1349 assert(0); 1350 return -1; 1351 } 1352 #endif 1353 1354 /* ------------------------------------------------------------------------- */ 1355 1356 void postcopy_fault_thread_notify(MigrationIncomingState *mis) 1357 { 1358 uint64_t tmp64 = 1; 1359 1360 /* 1361 * Wakeup the fault_thread. It's an eventfd that should currently 1362 * be at 0, we're going to increment it to 1 1363 */ 1364 if (write(mis->userfault_event_fd, &tmp64, 8) != 8) { 1365 /* Not much we can do here, but may as well report it */ 1366 error_report("%s: incrementing failed: %s", __func__, 1367 strerror(errno)); 1368 } 1369 } 1370 1371 /** 1372 * postcopy_discard_send_init: Called at the start of each RAMBlock before 1373 * asking to discard individual ranges. 1374 * 1375 * @ms: The current migration state. 1376 * @offset: the bitmap offset of the named RAMBlock in the migration bitmap. 1377 * @name: RAMBlock that discards will operate on. 1378 */ 1379 static PostcopyDiscardState pds = {0}; 1380 void postcopy_discard_send_init(MigrationState *ms, const char *name) 1381 { 1382 pds.ramblock_name = name; 1383 pds.cur_entry = 0; 1384 pds.nsentwords = 0; 1385 pds.nsentcmds = 0; 1386 } 1387 1388 /** 1389 * postcopy_discard_send_range: Called by the bitmap code for each chunk to 1390 * discard. May send a discard message, may just leave it queued to 1391 * be sent later. 1392 * 1393 * @ms: Current migration state. 1394 * @start,@length: a range of pages in the migration bitmap in the 1395 * RAM block passed to postcopy_discard_send_init() (length=1 is one page) 1396 */ 1397 void postcopy_discard_send_range(MigrationState *ms, unsigned long start, 1398 unsigned long length) 1399 { 1400 size_t tp_size = qemu_target_page_size(); 1401 /* Convert to byte offsets within the RAM block */ 1402 pds.start_list[pds.cur_entry] = start * tp_size; 1403 pds.length_list[pds.cur_entry] = length * tp_size; 1404 trace_postcopy_discard_send_range(pds.ramblock_name, start, length); 1405 pds.cur_entry++; 1406 pds.nsentwords++; 1407 1408 if (pds.cur_entry == MAX_DISCARDS_PER_COMMAND) { 1409 /* Full set, ship it! */ 1410 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 1411 pds.ramblock_name, 1412 pds.cur_entry, 1413 pds.start_list, 1414 pds.length_list); 1415 pds.nsentcmds++; 1416 pds.cur_entry = 0; 1417 } 1418 } 1419 1420 /** 1421 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the 1422 * bitmap code. Sends any outstanding discard messages, frees the PDS 1423 * 1424 * @ms: Current migration state. 1425 */ 1426 void postcopy_discard_send_finish(MigrationState *ms) 1427 { 1428 /* Anything unsent? */ 1429 if (pds.cur_entry) { 1430 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 1431 pds.ramblock_name, 1432 pds.cur_entry, 1433 pds.start_list, 1434 pds.length_list); 1435 pds.nsentcmds++; 1436 } 1437 1438 trace_postcopy_discard_send_finish(pds.ramblock_name, pds.nsentwords, 1439 pds.nsentcmds); 1440 } 1441 1442 /* 1443 * Current state of incoming postcopy; note this is not part of 1444 * MigrationIncomingState since it's state is used during cleanup 1445 * at the end as MIS is being freed. 1446 */ 1447 static PostcopyState incoming_postcopy_state; 1448 1449 PostcopyState postcopy_state_get(void) 1450 { 1451 return qatomic_mb_read(&incoming_postcopy_state); 1452 } 1453 1454 /* Set the state and return the old state */ 1455 PostcopyState postcopy_state_set(PostcopyState new_state) 1456 { 1457 return qatomic_xchg(&incoming_postcopy_state, new_state); 1458 } 1459 1460 /* Register a handler for external shared memory postcopy 1461 * called on the destination. 1462 */ 1463 void postcopy_register_shared_ufd(struct PostCopyFD *pcfd) 1464 { 1465 MigrationIncomingState *mis = migration_incoming_get_current(); 1466 1467 mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds, 1468 *pcfd); 1469 } 1470 1471 /* Unregister a handler for external shared memory postcopy 1472 */ 1473 void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd) 1474 { 1475 guint i; 1476 MigrationIncomingState *mis = migration_incoming_get_current(); 1477 GArray *pcrfds = mis->postcopy_remote_fds; 1478 1479 if (!pcrfds) { 1480 /* migration has already finished and freed the array */ 1481 return; 1482 } 1483 for (i = 0; i < pcrfds->len; i++) { 1484 struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i); 1485 if (cur->fd == pcfd->fd) { 1486 mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i); 1487 return; 1488 } 1489 } 1490 } 1491