xref: /openbmc/qemu/migration/postcopy-ram.c (revision 8e6fe6b8)
1 /*
2  * Postcopy migration for RAM
3  *
4  * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Dave Gilbert  <dgilbert@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13 
14 /*
15  * Postcopy is a migration technique where the execution flips from the
16  * source to the destination before all the data has been copied.
17  */
18 
19 #include "qemu/osdep.h"
20 #include "exec/target_page.h"
21 #include "migration.h"
22 #include "qemu-file.h"
23 #include "savevm.h"
24 #include "postcopy-ram.h"
25 #include "ram.h"
26 #include "qapi/error.h"
27 #include "qemu/notify.h"
28 #include "sysemu/sysemu.h"
29 #include "sysemu/balloon.h"
30 #include "qemu/error-report.h"
31 #include "trace.h"
32 
33 /* Arbitrary limit on size of each discard command,
34  * keeps them around ~200 bytes
35  */
36 #define MAX_DISCARDS_PER_COMMAND 12
37 
38 struct PostcopyDiscardState {
39     const char *ramblock_name;
40     uint16_t cur_entry;
41     /*
42      * Start and length of a discard range (bytes)
43      */
44     uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
45     uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
46     unsigned int nsentwords;
47     unsigned int nsentcmds;
48 };
49 
50 static NotifierWithReturnList postcopy_notifier_list;
51 
52 void postcopy_infrastructure_init(void)
53 {
54     notifier_with_return_list_init(&postcopy_notifier_list);
55 }
56 
57 void postcopy_add_notifier(NotifierWithReturn *nn)
58 {
59     notifier_with_return_list_add(&postcopy_notifier_list, nn);
60 }
61 
62 void postcopy_remove_notifier(NotifierWithReturn *n)
63 {
64     notifier_with_return_remove(n);
65 }
66 
67 int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp)
68 {
69     struct PostcopyNotifyData pnd;
70     pnd.reason = reason;
71     pnd.errp = errp;
72 
73     return notifier_with_return_list_notify(&postcopy_notifier_list,
74                                             &pnd);
75 }
76 
77 /* Postcopy needs to detect accesses to pages that haven't yet been copied
78  * across, and efficiently map new pages in, the techniques for doing this
79  * are target OS specific.
80  */
81 #if defined(__linux__)
82 
83 #include <poll.h>
84 #include <sys/ioctl.h>
85 #include <sys/syscall.h>
86 #include <asm/types.h> /* for __u64 */
87 #endif
88 
89 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
90 #include <sys/eventfd.h>
91 #include <linux/userfaultfd.h>
92 
93 typedef struct PostcopyBlocktimeContext {
94     /* time when page fault initiated per vCPU */
95     uint32_t *page_fault_vcpu_time;
96     /* page address per vCPU */
97     uintptr_t *vcpu_addr;
98     uint32_t total_blocktime;
99     /* blocktime per vCPU */
100     uint32_t *vcpu_blocktime;
101     /* point in time when last page fault was initiated */
102     uint32_t last_begin;
103     /* number of vCPU are suspended */
104     int smp_cpus_down;
105     uint64_t start_time;
106 
107     /*
108      * Handler for exit event, necessary for
109      * releasing whole blocktime_ctx
110      */
111     Notifier exit_notifier;
112 } PostcopyBlocktimeContext;
113 
114 static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx)
115 {
116     g_free(ctx->page_fault_vcpu_time);
117     g_free(ctx->vcpu_addr);
118     g_free(ctx->vcpu_blocktime);
119     g_free(ctx);
120 }
121 
122 static void migration_exit_cb(Notifier *n, void *data)
123 {
124     PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext,
125                                                  exit_notifier);
126     destroy_blocktime_context(ctx);
127 }
128 
129 static struct PostcopyBlocktimeContext *blocktime_context_new(void)
130 {
131     PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1);
132     ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus);
133     ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus);
134     ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus);
135 
136     ctx->exit_notifier.notify = migration_exit_cb;
137     ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
138     qemu_add_exit_notifier(&ctx->exit_notifier);
139     return ctx;
140 }
141 
142 static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx)
143 {
144     uint32List *list = NULL, *entry = NULL;
145     int i;
146 
147     for (i = smp_cpus - 1; i >= 0; i--) {
148         entry = g_new0(uint32List, 1);
149         entry->value = ctx->vcpu_blocktime[i];
150         entry->next = list;
151         list = entry;
152     }
153 
154     return list;
155 }
156 
157 /*
158  * This function just populates MigrationInfo from postcopy's
159  * blocktime context. It will not populate MigrationInfo,
160  * unless postcopy-blocktime capability was set.
161  *
162  * @info: pointer to MigrationInfo to populate
163  */
164 void fill_destination_postcopy_migration_info(MigrationInfo *info)
165 {
166     MigrationIncomingState *mis = migration_incoming_get_current();
167     PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
168 
169     if (!bc) {
170         return;
171     }
172 
173     info->has_postcopy_blocktime = true;
174     info->postcopy_blocktime = bc->total_blocktime;
175     info->has_postcopy_vcpu_blocktime = true;
176     info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc);
177 }
178 
179 static uint32_t get_postcopy_total_blocktime(void)
180 {
181     MigrationIncomingState *mis = migration_incoming_get_current();
182     PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
183 
184     if (!bc) {
185         return 0;
186     }
187 
188     return bc->total_blocktime;
189 }
190 
191 /**
192  * receive_ufd_features: check userfault fd features, to request only supported
193  * features in the future.
194  *
195  * Returns: true on success
196  *
197  * __NR_userfaultfd - should be checked before
198  *  @features: out parameter will contain uffdio_api.features provided by kernel
199  *              in case of success
200  */
201 static bool receive_ufd_features(uint64_t *features)
202 {
203     struct uffdio_api api_struct = {0};
204     int ufd;
205     bool ret = true;
206 
207     /* if we are here __NR_userfaultfd should exists */
208     ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
209     if (ufd == -1) {
210         error_report("%s: syscall __NR_userfaultfd failed: %s", __func__,
211                      strerror(errno));
212         return false;
213     }
214 
215     /* ask features */
216     api_struct.api = UFFD_API;
217     api_struct.features = 0;
218     if (ioctl(ufd, UFFDIO_API, &api_struct)) {
219         error_report("%s: UFFDIO_API failed: %s", __func__,
220                      strerror(errno));
221         ret = false;
222         goto release_ufd;
223     }
224 
225     *features = api_struct.features;
226 
227 release_ufd:
228     close(ufd);
229     return ret;
230 }
231 
232 /**
233  * request_ufd_features: this function should be called only once on a newly
234  * opened ufd, subsequent calls will lead to error.
235  *
236  * Returns: true on succes
237  *
238  * @ufd: fd obtained from userfaultfd syscall
239  * @features: bit mask see UFFD_API_FEATURES
240  */
241 static bool request_ufd_features(int ufd, uint64_t features)
242 {
243     struct uffdio_api api_struct = {0};
244     uint64_t ioctl_mask;
245 
246     api_struct.api = UFFD_API;
247     api_struct.features = features;
248     if (ioctl(ufd, UFFDIO_API, &api_struct)) {
249         error_report("%s failed: UFFDIO_API failed: %s", __func__,
250                      strerror(errno));
251         return false;
252     }
253 
254     ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
255                  (__u64)1 << _UFFDIO_UNREGISTER;
256     if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
257         error_report("Missing userfault features: %" PRIx64,
258                      (uint64_t)(~api_struct.ioctls & ioctl_mask));
259         return false;
260     }
261 
262     return true;
263 }
264 
265 static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis)
266 {
267     uint64_t asked_features = 0;
268     static uint64_t supported_features;
269 
270     /*
271      * it's not possible to
272      * request UFFD_API twice per one fd
273      * userfault fd features is persistent
274      */
275     if (!supported_features) {
276         if (!receive_ufd_features(&supported_features)) {
277             error_report("%s failed", __func__);
278             return false;
279         }
280     }
281 
282 #ifdef UFFD_FEATURE_THREAD_ID
283     if (migrate_postcopy_blocktime() && mis &&
284         UFFD_FEATURE_THREAD_ID & supported_features) {
285         /* kernel supports that feature */
286         /* don't create blocktime_context if it exists */
287         if (!mis->blocktime_ctx) {
288             mis->blocktime_ctx = blocktime_context_new();
289         }
290 
291         asked_features |= UFFD_FEATURE_THREAD_ID;
292     }
293 #endif
294 
295     /*
296      * request features, even if asked_features is 0, due to
297      * kernel expects UFFD_API before UFFDIO_REGISTER, per
298      * userfault file descriptor
299      */
300     if (!request_ufd_features(ufd, asked_features)) {
301         error_report("%s failed: features %" PRIu64, __func__,
302                      asked_features);
303         return false;
304     }
305 
306     if (getpagesize() != ram_pagesize_summary()) {
307         bool have_hp = false;
308         /* We've got a huge page */
309 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS
310         have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS;
311 #endif
312         if (!have_hp) {
313             error_report("Userfault on this host does not support huge pages");
314             return false;
315         }
316     }
317     return true;
318 }
319 
320 /* Callback from postcopy_ram_supported_by_host block iterator.
321  */
322 static int test_ramblock_postcopiable(RAMBlock *rb, void *opaque)
323 {
324     const char *block_name = qemu_ram_get_idstr(rb);
325     ram_addr_t length = qemu_ram_get_used_length(rb);
326     size_t pagesize = qemu_ram_pagesize(rb);
327 
328     if (length % pagesize) {
329         error_report("Postcopy requires RAM blocks to be a page size multiple,"
330                      " block %s is 0x" RAM_ADDR_FMT " bytes with a "
331                      "page size of 0x%zx", block_name, length, pagesize);
332         return 1;
333     }
334     return 0;
335 }
336 
337 /*
338  * Note: This has the side effect of munlock'ing all of RAM, that's
339  * normally fine since if the postcopy succeeds it gets turned back on at the
340  * end.
341  */
342 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
343 {
344     long pagesize = getpagesize();
345     int ufd = -1;
346     bool ret = false; /* Error unless we change it */
347     void *testarea = NULL;
348     struct uffdio_register reg_struct;
349     struct uffdio_range range_struct;
350     uint64_t feature_mask;
351     Error *local_err = NULL;
352 
353     if (qemu_target_page_size() > pagesize) {
354         error_report("Target page size bigger than host page size");
355         goto out;
356     }
357 
358     ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
359     if (ufd == -1) {
360         error_report("%s: userfaultfd not available: %s", __func__,
361                      strerror(errno));
362         goto out;
363     }
364 
365     /* Give devices a chance to object */
366     if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, &local_err)) {
367         error_report_err(local_err);
368         goto out;
369     }
370 
371     /* Version and features check */
372     if (!ufd_check_and_apply(ufd, mis)) {
373         goto out;
374     }
375 
376     /* We don't support postcopy with shared RAM yet */
377     if (foreach_not_ignored_block(test_ramblock_postcopiable, NULL)) {
378         goto out;
379     }
380 
381     /*
382      * userfault and mlock don't go together; we'll put it back later if
383      * it was enabled.
384      */
385     if (munlockall()) {
386         error_report("%s: munlockall: %s", __func__,  strerror(errno));
387         return -1;
388     }
389 
390     /*
391      *  We need to check that the ops we need are supported on anon memory
392      *  To do that we need to register a chunk and see the flags that
393      *  are returned.
394      */
395     testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
396                                     MAP_ANONYMOUS, -1, 0);
397     if (testarea == MAP_FAILED) {
398         error_report("%s: Failed to map test area: %s", __func__,
399                      strerror(errno));
400         goto out;
401     }
402     g_assert(((size_t)testarea & (pagesize-1)) == 0);
403 
404     reg_struct.range.start = (uintptr_t)testarea;
405     reg_struct.range.len = pagesize;
406     reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
407 
408     if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
409         error_report("%s userfault register: %s", __func__, strerror(errno));
410         goto out;
411     }
412 
413     range_struct.start = (uintptr_t)testarea;
414     range_struct.len = pagesize;
415     if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
416         error_report("%s userfault unregister: %s", __func__, strerror(errno));
417         goto out;
418     }
419 
420     feature_mask = (__u64)1 << _UFFDIO_WAKE |
421                    (__u64)1 << _UFFDIO_COPY |
422                    (__u64)1 << _UFFDIO_ZEROPAGE;
423     if ((reg_struct.ioctls & feature_mask) != feature_mask) {
424         error_report("Missing userfault map features: %" PRIx64,
425                      (uint64_t)(~reg_struct.ioctls & feature_mask));
426         goto out;
427     }
428 
429     /* Success! */
430     ret = true;
431 out:
432     if (testarea) {
433         munmap(testarea, pagesize);
434     }
435     if (ufd != -1) {
436         close(ufd);
437     }
438     return ret;
439 }
440 
441 /*
442  * Setup an area of RAM so that it *can* be used for postcopy later; this
443  * must be done right at the start prior to pre-copy.
444  * opaque should be the MIS.
445  */
446 static int init_range(RAMBlock *rb, void *opaque)
447 {
448     const char *block_name = qemu_ram_get_idstr(rb);
449     void *host_addr = qemu_ram_get_host_addr(rb);
450     ram_addr_t offset = qemu_ram_get_offset(rb);
451     ram_addr_t length = qemu_ram_get_used_length(rb);
452     trace_postcopy_init_range(block_name, host_addr, offset, length);
453 
454     /*
455      * We need the whole of RAM to be truly empty for postcopy, so things
456      * like ROMs and any data tables built during init must be zero'd
457      * - we're going to get the copy from the source anyway.
458      * (Precopy will just overwrite this data, so doesn't need the discard)
459      */
460     if (ram_discard_range(block_name, 0, length)) {
461         return -1;
462     }
463 
464     return 0;
465 }
466 
467 /*
468  * At the end of migration, undo the effects of init_range
469  * opaque should be the MIS.
470  */
471 static int cleanup_range(RAMBlock *rb, void *opaque)
472 {
473     const char *block_name = qemu_ram_get_idstr(rb);
474     void *host_addr = qemu_ram_get_host_addr(rb);
475     ram_addr_t offset = qemu_ram_get_offset(rb);
476     ram_addr_t length = qemu_ram_get_used_length(rb);
477     MigrationIncomingState *mis = opaque;
478     struct uffdio_range range_struct;
479     trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
480 
481     /*
482      * We turned off hugepage for the precopy stage with postcopy enabled
483      * we can turn it back on now.
484      */
485     qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
486 
487     /*
488      * We can also turn off userfault now since we should have all the
489      * pages.   It can be useful to leave it on to debug postcopy
490      * if you're not sure it's always getting every page.
491      */
492     range_struct.start = (uintptr_t)host_addr;
493     range_struct.len = length;
494 
495     if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
496         error_report("%s: userfault unregister %s", __func__, strerror(errno));
497 
498         return -1;
499     }
500 
501     return 0;
502 }
503 
504 /*
505  * Initialise postcopy-ram, setting the RAM to a state where we can go into
506  * postcopy later; must be called prior to any precopy.
507  * called from arch_init's similarly named ram_postcopy_incoming_init
508  */
509 int postcopy_ram_incoming_init(MigrationIncomingState *mis)
510 {
511     if (foreach_not_ignored_block(init_range, NULL)) {
512         return -1;
513     }
514 
515     return 0;
516 }
517 
518 /*
519  * Manage a single vote to the QEMU balloon inhibitor for all postcopy usage,
520  * last caller wins.
521  */
522 static void postcopy_balloon_inhibit(bool state)
523 {
524     static bool cur_state = false;
525 
526     if (state != cur_state) {
527         qemu_balloon_inhibit(state);
528         cur_state = state;
529     }
530 }
531 
532 /*
533  * At the end of a migration where postcopy_ram_incoming_init was called.
534  */
535 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
536 {
537     trace_postcopy_ram_incoming_cleanup_entry();
538 
539     if (mis->have_fault_thread) {
540         Error *local_err = NULL;
541 
542         /* Let the fault thread quit */
543         atomic_set(&mis->fault_thread_quit, 1);
544         postcopy_fault_thread_notify(mis);
545         trace_postcopy_ram_incoming_cleanup_join();
546         qemu_thread_join(&mis->fault_thread);
547 
548         if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) {
549             error_report_err(local_err);
550             return -1;
551         }
552 
553         if (foreach_not_ignored_block(cleanup_range, mis)) {
554             return -1;
555         }
556 
557         trace_postcopy_ram_incoming_cleanup_closeuf();
558         close(mis->userfault_fd);
559         close(mis->userfault_event_fd);
560         mis->have_fault_thread = false;
561     }
562 
563     postcopy_balloon_inhibit(false);
564 
565     if (enable_mlock) {
566         if (os_mlock() < 0) {
567             error_report("mlock: %s", strerror(errno));
568             /*
569              * It doesn't feel right to fail at this point, we have a valid
570              * VM state.
571              */
572         }
573     }
574 
575     postcopy_state_set(POSTCOPY_INCOMING_END);
576 
577     if (mis->postcopy_tmp_page) {
578         munmap(mis->postcopy_tmp_page, mis->largest_page_size);
579         mis->postcopy_tmp_page = NULL;
580     }
581     if (mis->postcopy_tmp_zero_page) {
582         munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
583         mis->postcopy_tmp_zero_page = NULL;
584     }
585     trace_postcopy_ram_incoming_cleanup_blocktime(
586             get_postcopy_total_blocktime());
587 
588     trace_postcopy_ram_incoming_cleanup_exit();
589     return 0;
590 }
591 
592 /*
593  * Disable huge pages on an area
594  */
595 static int nhp_range(RAMBlock *rb, void *opaque)
596 {
597     const char *block_name = qemu_ram_get_idstr(rb);
598     void *host_addr = qemu_ram_get_host_addr(rb);
599     ram_addr_t offset = qemu_ram_get_offset(rb);
600     ram_addr_t length = qemu_ram_get_used_length(rb);
601     trace_postcopy_nhp_range(block_name, host_addr, offset, length);
602 
603     /*
604      * Before we do discards we need to ensure those discards really
605      * do delete areas of the page, even if THP thinks a hugepage would
606      * be a good idea, so force hugepages off.
607      */
608     qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
609 
610     return 0;
611 }
612 
613 /*
614  * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
615  * however leaving it until after precopy means that most of the precopy
616  * data is still THPd
617  */
618 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
619 {
620     if (foreach_not_ignored_block(nhp_range, mis)) {
621         return -1;
622     }
623 
624     postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
625 
626     return 0;
627 }
628 
629 /*
630  * Mark the given area of RAM as requiring notification to unwritten areas
631  * Used as a  callback on foreach_not_ignored_block.
632  *   host_addr: Base of area to mark
633  *   offset: Offset in the whole ram arena
634  *   length: Length of the section
635  *   opaque: MigrationIncomingState pointer
636  * Returns 0 on success
637  */
638 static int ram_block_enable_notify(RAMBlock *rb, void *opaque)
639 {
640     MigrationIncomingState *mis = opaque;
641     struct uffdio_register reg_struct;
642 
643     reg_struct.range.start = (uintptr_t)qemu_ram_get_host_addr(rb);
644     reg_struct.range.len = qemu_ram_get_used_length(rb);
645     reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
646 
647     /* Now tell our userfault_fd that it's responsible for this area */
648     if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
649         error_report("%s userfault register: %s", __func__, strerror(errno));
650         return -1;
651     }
652     if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) {
653         error_report("%s userfault: Region doesn't support COPY", __func__);
654         return -1;
655     }
656     if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) {
657         qemu_ram_set_uf_zeroable(rb);
658     }
659 
660     return 0;
661 }
662 
663 int postcopy_wake_shared(struct PostCopyFD *pcfd,
664                          uint64_t client_addr,
665                          RAMBlock *rb)
666 {
667     size_t pagesize = qemu_ram_pagesize(rb);
668     struct uffdio_range range;
669     int ret;
670     trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb));
671     range.start = client_addr & ~(pagesize - 1);
672     range.len = pagesize;
673     ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range);
674     if (ret) {
675         error_report("%s: Failed to wake: %zx in %s (%s)",
676                      __func__, (size_t)client_addr, qemu_ram_get_idstr(rb),
677                      strerror(errno));
678     }
679     return ret;
680 }
681 
682 /*
683  * Callback from shared fault handlers to ask for a page,
684  * the page must be specified by a RAMBlock and an offset in that rb
685  * Note: Only for use by shared fault handlers (in fault thread)
686  */
687 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
688                                  uint64_t client_addr, uint64_t rb_offset)
689 {
690     size_t pagesize = qemu_ram_pagesize(rb);
691     uint64_t aligned_rbo = rb_offset & ~(pagesize - 1);
692     MigrationIncomingState *mis = migration_incoming_get_current();
693 
694     trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb),
695                                        rb_offset);
696     if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) {
697         trace_postcopy_request_shared_page_present(pcfd->idstr,
698                                         qemu_ram_get_idstr(rb), rb_offset);
699         return postcopy_wake_shared(pcfd, client_addr, rb);
700     }
701     if (rb != mis->last_rb) {
702         mis->last_rb = rb;
703         migrate_send_rp_req_pages(mis, qemu_ram_get_idstr(rb),
704                                   aligned_rbo, pagesize);
705     } else {
706         /* Save some space */
707         migrate_send_rp_req_pages(mis, NULL, aligned_rbo, pagesize);
708     }
709     return 0;
710 }
711 
712 static int get_mem_fault_cpu_index(uint32_t pid)
713 {
714     CPUState *cpu_iter;
715 
716     CPU_FOREACH(cpu_iter) {
717         if (cpu_iter->thread_id == pid) {
718             trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid);
719             return cpu_iter->cpu_index;
720         }
721     }
722     trace_get_mem_fault_cpu_index(-1, pid);
723     return -1;
724 }
725 
726 static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc)
727 {
728     int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) -
729                                     dc->start_time;
730     return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX;
731 }
732 
733 /*
734  * This function is being called when pagefault occurs. It
735  * tracks down vCPU blocking time.
736  *
737  * @addr: faulted host virtual address
738  * @ptid: faulted process thread id
739  * @rb: ramblock appropriate to addr
740  */
741 static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid,
742                                           RAMBlock *rb)
743 {
744     int cpu, already_received;
745     MigrationIncomingState *mis = migration_incoming_get_current();
746     PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
747     uint32_t low_time_offset;
748 
749     if (!dc || ptid == 0) {
750         return;
751     }
752     cpu = get_mem_fault_cpu_index(ptid);
753     if (cpu < 0) {
754         return;
755     }
756 
757     low_time_offset = get_low_time_offset(dc);
758     if (dc->vcpu_addr[cpu] == 0) {
759         atomic_inc(&dc->smp_cpus_down);
760     }
761 
762     atomic_xchg(&dc->last_begin, low_time_offset);
763     atomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset);
764     atomic_xchg(&dc->vcpu_addr[cpu], addr);
765 
766     /* check it here, not at the begining of the function,
767      * due to, check could accur early than bitmap_set in
768      * qemu_ufd_copy_ioctl */
769     already_received = ramblock_recv_bitmap_test(rb, (void *)addr);
770     if (already_received) {
771         atomic_xchg(&dc->vcpu_addr[cpu], 0);
772         atomic_xchg(&dc->page_fault_vcpu_time[cpu], 0);
773         atomic_dec(&dc->smp_cpus_down);
774     }
775     trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu],
776                                         cpu, already_received);
777 }
778 
779 /*
780  *  This function just provide calculated blocktime per cpu and trace it.
781  *  Total blocktime is calculated in mark_postcopy_blocktime_end.
782  *
783  *
784  * Assume we have 3 CPU
785  *
786  *      S1        E1           S1               E1
787  * -----***********------------xxx***************------------------------> CPU1
788  *
789  *             S2                E2
790  * ------------****************xxx---------------------------------------> CPU2
791  *
792  *                         S3            E3
793  * ------------------------****xxx********-------------------------------> CPU3
794  *
795  * We have sequence S1,S2,E1,S3,S1,E2,E3,E1
796  * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3
797  * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 -
798  *            it's a part of total blocktime.
799  * S1 - here is last_begin
800  * Legend of the picture is following:
801  *              * - means blocktime per vCPU
802  *              x - means overlapped blocktime (total blocktime)
803  *
804  * @addr: host virtual address
805  */
806 static void mark_postcopy_blocktime_end(uintptr_t addr)
807 {
808     MigrationIncomingState *mis = migration_incoming_get_current();
809     PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
810     int i, affected_cpu = 0;
811     bool vcpu_total_blocktime = false;
812     uint32_t read_vcpu_time, low_time_offset;
813 
814     if (!dc) {
815         return;
816     }
817 
818     low_time_offset = get_low_time_offset(dc);
819     /* lookup cpu, to clear it,
820      * that algorithm looks straighforward, but it's not
821      * optimal, more optimal algorithm is keeping tree or hash
822      * where key is address value is a list of  */
823     for (i = 0; i < smp_cpus; i++) {
824         uint32_t vcpu_blocktime = 0;
825 
826         read_vcpu_time = atomic_fetch_add(&dc->page_fault_vcpu_time[i], 0);
827         if (atomic_fetch_add(&dc->vcpu_addr[i], 0) != addr ||
828             read_vcpu_time == 0) {
829             continue;
830         }
831         atomic_xchg(&dc->vcpu_addr[i], 0);
832         vcpu_blocktime = low_time_offset - read_vcpu_time;
833         affected_cpu += 1;
834         /* we need to know is that mark_postcopy_end was due to
835          * faulted page, another possible case it's prefetched
836          * page and in that case we shouldn't be here */
837         if (!vcpu_total_blocktime &&
838             atomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) {
839             vcpu_total_blocktime = true;
840         }
841         /* continue cycle, due to one page could affect several vCPUs */
842         dc->vcpu_blocktime[i] += vcpu_blocktime;
843     }
844 
845     atomic_sub(&dc->smp_cpus_down, affected_cpu);
846     if (vcpu_total_blocktime) {
847         dc->total_blocktime += low_time_offset - atomic_fetch_add(
848                 &dc->last_begin, 0);
849     }
850     trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime,
851                                       affected_cpu);
852 }
853 
854 static bool postcopy_pause_fault_thread(MigrationIncomingState *mis)
855 {
856     trace_postcopy_pause_fault_thread();
857 
858     qemu_sem_wait(&mis->postcopy_pause_sem_fault);
859 
860     trace_postcopy_pause_fault_thread_continued();
861 
862     return true;
863 }
864 
865 /*
866  * Handle faults detected by the USERFAULT markings
867  */
868 static void *postcopy_ram_fault_thread(void *opaque)
869 {
870     MigrationIncomingState *mis = opaque;
871     struct uffd_msg msg;
872     int ret;
873     size_t index;
874     RAMBlock *rb = NULL;
875 
876     trace_postcopy_ram_fault_thread_entry();
877     rcu_register_thread();
878     mis->last_rb = NULL; /* last RAMBlock we sent part of */
879     qemu_sem_post(&mis->fault_thread_sem);
880 
881     struct pollfd *pfd;
882     size_t pfd_len = 2 + mis->postcopy_remote_fds->len;
883 
884     pfd = g_new0(struct pollfd, pfd_len);
885 
886     pfd[0].fd = mis->userfault_fd;
887     pfd[0].events = POLLIN;
888     pfd[1].fd = mis->userfault_event_fd;
889     pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
890     trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd);
891     for (index = 0; index < mis->postcopy_remote_fds->len; index++) {
892         struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds,
893                                                  struct PostCopyFD, index);
894         pfd[2 + index].fd = pcfd->fd;
895         pfd[2 + index].events = POLLIN;
896         trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr,
897                                                   pcfd->fd);
898     }
899 
900     while (true) {
901         ram_addr_t rb_offset;
902         int poll_result;
903 
904         /*
905          * We're mainly waiting for the kernel to give us a faulting HVA,
906          * however we can be told to quit via userfault_quit_fd which is
907          * an eventfd
908          */
909 
910         poll_result = poll(pfd, pfd_len, -1 /* Wait forever */);
911         if (poll_result == -1) {
912             error_report("%s: userfault poll: %s", __func__, strerror(errno));
913             break;
914         }
915 
916         if (!mis->to_src_file) {
917             /*
918              * Possibly someone tells us that the return path is
919              * broken already using the event. We should hold until
920              * the channel is rebuilt.
921              */
922             if (postcopy_pause_fault_thread(mis)) {
923                 mis->last_rb = NULL;
924                 /* Continue to read the userfaultfd */
925             } else {
926                 error_report("%s: paused but don't allow to continue",
927                              __func__);
928                 break;
929             }
930         }
931 
932         if (pfd[1].revents) {
933             uint64_t tmp64 = 0;
934 
935             /* Consume the signal */
936             if (read(mis->userfault_event_fd, &tmp64, 8) != 8) {
937                 /* Nothing obviously nicer than posting this error. */
938                 error_report("%s: read() failed", __func__);
939             }
940 
941             if (atomic_read(&mis->fault_thread_quit)) {
942                 trace_postcopy_ram_fault_thread_quit();
943                 break;
944             }
945         }
946 
947         if (pfd[0].revents) {
948             poll_result--;
949             ret = read(mis->userfault_fd, &msg, sizeof(msg));
950             if (ret != sizeof(msg)) {
951                 if (errno == EAGAIN) {
952                     /*
953                      * if a wake up happens on the other thread just after
954                      * the poll, there is nothing to read.
955                      */
956                     continue;
957                 }
958                 if (ret < 0) {
959                     error_report("%s: Failed to read full userfault "
960                                  "message: %s",
961                                  __func__, strerror(errno));
962                     break;
963                 } else {
964                     error_report("%s: Read %d bytes from userfaultfd "
965                                  "expected %zd",
966                                  __func__, ret, sizeof(msg));
967                     break; /* Lost alignment, don't know what we'd read next */
968                 }
969             }
970             if (msg.event != UFFD_EVENT_PAGEFAULT) {
971                 error_report("%s: Read unexpected event %ud from userfaultfd",
972                              __func__, msg.event);
973                 continue; /* It's not a page fault, shouldn't happen */
974             }
975 
976             rb = qemu_ram_block_from_host(
977                      (void *)(uintptr_t)msg.arg.pagefault.address,
978                      true, &rb_offset);
979             if (!rb) {
980                 error_report("postcopy_ram_fault_thread: Fault outside guest: %"
981                              PRIx64, (uint64_t)msg.arg.pagefault.address);
982                 break;
983             }
984 
985             rb_offset &= ~(qemu_ram_pagesize(rb) - 1);
986             trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
987                                                 qemu_ram_get_idstr(rb),
988                                                 rb_offset,
989                                                 msg.arg.pagefault.feat.ptid);
990             mark_postcopy_blocktime_begin(
991                     (uintptr_t)(msg.arg.pagefault.address),
992                                 msg.arg.pagefault.feat.ptid, rb);
993 
994 retry:
995             /*
996              * Send the request to the source - we want to request one
997              * of our host page sizes (which is >= TPS)
998              */
999             if (rb != mis->last_rb) {
1000                 mis->last_rb = rb;
1001                 ret = migrate_send_rp_req_pages(mis,
1002                                                 qemu_ram_get_idstr(rb),
1003                                                 rb_offset,
1004                                                 qemu_ram_pagesize(rb));
1005             } else {
1006                 /* Save some space */
1007                 ret = migrate_send_rp_req_pages(mis,
1008                                                 NULL,
1009                                                 rb_offset,
1010                                                 qemu_ram_pagesize(rb));
1011             }
1012 
1013             if (ret) {
1014                 /* May be network failure, try to wait for recovery */
1015                 if (ret == -EIO && postcopy_pause_fault_thread(mis)) {
1016                     /* We got reconnected somehow, try to continue */
1017                     mis->last_rb = NULL;
1018                     goto retry;
1019                 } else {
1020                     /* This is a unavoidable fault */
1021                     error_report("%s: migrate_send_rp_req_pages() get %d",
1022                                  __func__, ret);
1023                     break;
1024                 }
1025             }
1026         }
1027 
1028         /* Now handle any requests from external processes on shared memory */
1029         /* TODO: May need to handle devices deregistering during postcopy */
1030         for (index = 2; index < pfd_len && poll_result; index++) {
1031             if (pfd[index].revents) {
1032                 struct PostCopyFD *pcfd =
1033                     &g_array_index(mis->postcopy_remote_fds,
1034                                    struct PostCopyFD, index - 2);
1035 
1036                 poll_result--;
1037                 if (pfd[index].revents & POLLERR) {
1038                     error_report("%s: POLLERR on poll %zd fd=%d",
1039                                  __func__, index, pcfd->fd);
1040                     pfd[index].events = 0;
1041                     continue;
1042                 }
1043 
1044                 ret = read(pcfd->fd, &msg, sizeof(msg));
1045                 if (ret != sizeof(msg)) {
1046                     if (errno == EAGAIN) {
1047                         /*
1048                          * if a wake up happens on the other thread just after
1049                          * the poll, there is nothing to read.
1050                          */
1051                         continue;
1052                     }
1053                     if (ret < 0) {
1054                         error_report("%s: Failed to read full userfault "
1055                                      "message: %s (shared) revents=%d",
1056                                      __func__, strerror(errno),
1057                                      pfd[index].revents);
1058                         /*TODO: Could just disable this sharer */
1059                         break;
1060                     } else {
1061                         error_report("%s: Read %d bytes from userfaultfd "
1062                                      "expected %zd (shared)",
1063                                      __func__, ret, sizeof(msg));
1064                         /*TODO: Could just disable this sharer */
1065                         break; /*Lost alignment,don't know what we'd read next*/
1066                     }
1067                 }
1068                 if (msg.event != UFFD_EVENT_PAGEFAULT) {
1069                     error_report("%s: Read unexpected event %ud "
1070                                  "from userfaultfd (shared)",
1071                                  __func__, msg.event);
1072                     continue; /* It's not a page fault, shouldn't happen */
1073                 }
1074                 /* Call the device handler registered with us */
1075                 ret = pcfd->handler(pcfd, &msg);
1076                 if (ret) {
1077                     error_report("%s: Failed to resolve shared fault on %zd/%s",
1078                                  __func__, index, pcfd->idstr);
1079                     /* TODO: Fail? Disable this sharer? */
1080                 }
1081             }
1082         }
1083     }
1084     rcu_unregister_thread();
1085     trace_postcopy_ram_fault_thread_exit();
1086     g_free(pfd);
1087     return NULL;
1088 }
1089 
1090 int postcopy_ram_enable_notify(MigrationIncomingState *mis)
1091 {
1092     /* Open the fd for the kernel to give us userfaults */
1093     mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
1094     if (mis->userfault_fd == -1) {
1095         error_report("%s: Failed to open userfault fd: %s", __func__,
1096                      strerror(errno));
1097         return -1;
1098     }
1099 
1100     /*
1101      * Although the host check already tested the API, we need to
1102      * do the check again as an ABI handshake on the new fd.
1103      */
1104     if (!ufd_check_and_apply(mis->userfault_fd, mis)) {
1105         return -1;
1106     }
1107 
1108     /* Now an eventfd we use to tell the fault-thread to quit */
1109     mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC);
1110     if (mis->userfault_event_fd == -1) {
1111         error_report("%s: Opening userfault_event_fd: %s", __func__,
1112                      strerror(errno));
1113         close(mis->userfault_fd);
1114         return -1;
1115     }
1116 
1117     qemu_sem_init(&mis->fault_thread_sem, 0);
1118     qemu_thread_create(&mis->fault_thread, "postcopy/fault",
1119                        postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE);
1120     qemu_sem_wait(&mis->fault_thread_sem);
1121     qemu_sem_destroy(&mis->fault_thread_sem);
1122     mis->have_fault_thread = true;
1123 
1124     /* Mark so that we get notified of accesses to unwritten areas */
1125     if (foreach_not_ignored_block(ram_block_enable_notify, mis)) {
1126         error_report("ram_block_enable_notify failed");
1127         return -1;
1128     }
1129 
1130     /*
1131      * Ballooning can mark pages as absent while we're postcopying
1132      * that would cause false userfaults.
1133      */
1134     postcopy_balloon_inhibit(true);
1135 
1136     trace_postcopy_ram_enable_notify();
1137 
1138     return 0;
1139 }
1140 
1141 static int qemu_ufd_copy_ioctl(int userfault_fd, void *host_addr,
1142                                void *from_addr, uint64_t pagesize, RAMBlock *rb)
1143 {
1144     int ret;
1145     if (from_addr) {
1146         struct uffdio_copy copy_struct;
1147         copy_struct.dst = (uint64_t)(uintptr_t)host_addr;
1148         copy_struct.src = (uint64_t)(uintptr_t)from_addr;
1149         copy_struct.len = pagesize;
1150         copy_struct.mode = 0;
1151         ret = ioctl(userfault_fd, UFFDIO_COPY, &copy_struct);
1152     } else {
1153         struct uffdio_zeropage zero_struct;
1154         zero_struct.range.start = (uint64_t)(uintptr_t)host_addr;
1155         zero_struct.range.len = pagesize;
1156         zero_struct.mode = 0;
1157         ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct);
1158     }
1159     if (!ret) {
1160         ramblock_recv_bitmap_set_range(rb, host_addr,
1161                                        pagesize / qemu_target_page_size());
1162         mark_postcopy_blocktime_end((uintptr_t)host_addr);
1163 
1164     }
1165     return ret;
1166 }
1167 
1168 int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset)
1169 {
1170     int i;
1171     MigrationIncomingState *mis = migration_incoming_get_current();
1172     GArray *pcrfds = mis->postcopy_remote_fds;
1173 
1174     for (i = 0; i < pcrfds->len; i++) {
1175         struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1176         int ret = cur->waker(cur, rb, offset);
1177         if (ret) {
1178             return ret;
1179         }
1180     }
1181     return 0;
1182 }
1183 
1184 /*
1185  * Place a host page (from) at (host) atomically
1186  * returns 0 on success
1187  */
1188 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1189                         RAMBlock *rb)
1190 {
1191     size_t pagesize = qemu_ram_pagesize(rb);
1192 
1193     /* copy also acks to the kernel waking the stalled thread up
1194      * TODO: We can inhibit that ack and only do it if it was requested
1195      * which would be slightly cheaper, but we'd have to be careful
1196      * of the order of updating our page state.
1197      */
1198     if (qemu_ufd_copy_ioctl(mis->userfault_fd, host, from, pagesize, rb)) {
1199         int e = errno;
1200         error_report("%s: %s copy host: %p from: %p (size: %zd)",
1201                      __func__, strerror(e), host, from, pagesize);
1202 
1203         return -e;
1204     }
1205 
1206     trace_postcopy_place_page(host);
1207     return postcopy_notify_shared_wake(rb,
1208                                        qemu_ram_block_host_offset(rb, host));
1209 }
1210 
1211 /*
1212  * Place a zero page at (host) atomically
1213  * returns 0 on success
1214  */
1215 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1216                              RAMBlock *rb)
1217 {
1218     size_t pagesize = qemu_ram_pagesize(rb);
1219     trace_postcopy_place_page_zero(host);
1220 
1221     /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE
1222      * but it's not available for everything (e.g. hugetlbpages)
1223      */
1224     if (qemu_ram_is_uf_zeroable(rb)) {
1225         if (qemu_ufd_copy_ioctl(mis->userfault_fd, host, NULL, pagesize, rb)) {
1226             int e = errno;
1227             error_report("%s: %s zero host: %p",
1228                          __func__, strerror(e), host);
1229 
1230             return -e;
1231         }
1232         return postcopy_notify_shared_wake(rb,
1233                                            qemu_ram_block_host_offset(rb,
1234                                                                       host));
1235     } else {
1236         /* The kernel can't use UFFDIO_ZEROPAGE for hugepages */
1237         if (!mis->postcopy_tmp_zero_page) {
1238             mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
1239                                                PROT_READ | PROT_WRITE,
1240                                                MAP_PRIVATE | MAP_ANONYMOUS,
1241                                                -1, 0);
1242             if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
1243                 int e = errno;
1244                 mis->postcopy_tmp_zero_page = NULL;
1245                 error_report("%s: %s mapping large zero page",
1246                              __func__, strerror(e));
1247                 return -e;
1248             }
1249             memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
1250         }
1251         return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page,
1252                                    rb);
1253     }
1254 }
1255 
1256 /*
1257  * Returns a target page of memory that can be mapped at a later point in time
1258  * using postcopy_place_page
1259  * The same address is used repeatedly, postcopy_place_page just takes the
1260  * backing page away.
1261  * Returns: Pointer to allocated page
1262  *
1263  */
1264 void *postcopy_get_tmp_page(MigrationIncomingState *mis)
1265 {
1266     if (!mis->postcopy_tmp_page) {
1267         mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size,
1268                              PROT_READ | PROT_WRITE, MAP_PRIVATE |
1269                              MAP_ANONYMOUS, -1, 0);
1270         if (mis->postcopy_tmp_page == MAP_FAILED) {
1271             mis->postcopy_tmp_page = NULL;
1272             error_report("%s: %s", __func__, strerror(errno));
1273             return NULL;
1274         }
1275     }
1276 
1277     return mis->postcopy_tmp_page;
1278 }
1279 
1280 #else
1281 /* No target OS support, stubs just fail */
1282 void fill_destination_postcopy_migration_info(MigrationInfo *info)
1283 {
1284 }
1285 
1286 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
1287 {
1288     error_report("%s: No OS support", __func__);
1289     return false;
1290 }
1291 
1292 int postcopy_ram_incoming_init(MigrationIncomingState *mis)
1293 {
1294     error_report("postcopy_ram_incoming_init: No OS support");
1295     return -1;
1296 }
1297 
1298 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
1299 {
1300     assert(0);
1301     return -1;
1302 }
1303 
1304 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
1305 {
1306     assert(0);
1307     return -1;
1308 }
1309 
1310 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
1311                                  uint64_t client_addr, uint64_t rb_offset)
1312 {
1313     assert(0);
1314     return -1;
1315 }
1316 
1317 int postcopy_ram_enable_notify(MigrationIncomingState *mis)
1318 {
1319     assert(0);
1320     return -1;
1321 }
1322 
1323 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1324                         RAMBlock *rb)
1325 {
1326     assert(0);
1327     return -1;
1328 }
1329 
1330 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1331                         RAMBlock *rb)
1332 {
1333     assert(0);
1334     return -1;
1335 }
1336 
1337 void *postcopy_get_tmp_page(MigrationIncomingState *mis)
1338 {
1339     assert(0);
1340     return NULL;
1341 }
1342 
1343 int postcopy_wake_shared(struct PostCopyFD *pcfd,
1344                          uint64_t client_addr,
1345                          RAMBlock *rb)
1346 {
1347     assert(0);
1348     return -1;
1349 }
1350 #endif
1351 
1352 /* ------------------------------------------------------------------------- */
1353 
1354 void postcopy_fault_thread_notify(MigrationIncomingState *mis)
1355 {
1356     uint64_t tmp64 = 1;
1357 
1358     /*
1359      * Wakeup the fault_thread.  It's an eventfd that should currently
1360      * be at 0, we're going to increment it to 1
1361      */
1362     if (write(mis->userfault_event_fd, &tmp64, 8) != 8) {
1363         /* Not much we can do here, but may as well report it */
1364         error_report("%s: incrementing failed: %s", __func__,
1365                      strerror(errno));
1366     }
1367 }
1368 
1369 /**
1370  * postcopy_discard_send_init: Called at the start of each RAMBlock before
1371  *   asking to discard individual ranges.
1372  *
1373  * @ms: The current migration state.
1374  * @offset: the bitmap offset of the named RAMBlock in the migration
1375  *   bitmap.
1376  * @name: RAMBlock that discards will operate on.
1377  *
1378  * returns: a new PDS.
1379  */
1380 PostcopyDiscardState *postcopy_discard_send_init(MigrationState *ms,
1381                                                  const char *name)
1382 {
1383     PostcopyDiscardState *res = g_malloc0(sizeof(PostcopyDiscardState));
1384 
1385     if (res) {
1386         res->ramblock_name = name;
1387     }
1388 
1389     return res;
1390 }
1391 
1392 /**
1393  * postcopy_discard_send_range: Called by the bitmap code for each chunk to
1394  *   discard. May send a discard message, may just leave it queued to
1395  *   be sent later.
1396  *
1397  * @ms: Current migration state.
1398  * @pds: Structure initialised by postcopy_discard_send_init().
1399  * @start,@length: a range of pages in the migration bitmap in the
1400  *   RAM block passed to postcopy_discard_send_init() (length=1 is one page)
1401  */
1402 void postcopy_discard_send_range(MigrationState *ms, PostcopyDiscardState *pds,
1403                                 unsigned long start, unsigned long length)
1404 {
1405     size_t tp_size = qemu_target_page_size();
1406     /* Convert to byte offsets within the RAM block */
1407     pds->start_list[pds->cur_entry] = start  * tp_size;
1408     pds->length_list[pds->cur_entry] = length * tp_size;
1409     trace_postcopy_discard_send_range(pds->ramblock_name, start, length);
1410     pds->cur_entry++;
1411     pds->nsentwords++;
1412 
1413     if (pds->cur_entry == MAX_DISCARDS_PER_COMMAND) {
1414         /* Full set, ship it! */
1415         qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1416                                               pds->ramblock_name,
1417                                               pds->cur_entry,
1418                                               pds->start_list,
1419                                               pds->length_list);
1420         pds->nsentcmds++;
1421         pds->cur_entry = 0;
1422     }
1423 }
1424 
1425 /**
1426  * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
1427  * bitmap code. Sends any outstanding discard messages, frees the PDS
1428  *
1429  * @ms: Current migration state.
1430  * @pds: Structure initialised by postcopy_discard_send_init().
1431  */
1432 void postcopy_discard_send_finish(MigrationState *ms, PostcopyDiscardState *pds)
1433 {
1434     /* Anything unsent? */
1435     if (pds->cur_entry) {
1436         qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1437                                               pds->ramblock_name,
1438                                               pds->cur_entry,
1439                                               pds->start_list,
1440                                               pds->length_list);
1441         pds->nsentcmds++;
1442     }
1443 
1444     trace_postcopy_discard_send_finish(pds->ramblock_name, pds->nsentwords,
1445                                        pds->nsentcmds);
1446 
1447     g_free(pds);
1448 }
1449 
1450 /*
1451  * Current state of incoming postcopy; note this is not part of
1452  * MigrationIncomingState since it's state is used during cleanup
1453  * at the end as MIS is being freed.
1454  */
1455 static PostcopyState incoming_postcopy_state;
1456 
1457 PostcopyState  postcopy_state_get(void)
1458 {
1459     return atomic_mb_read(&incoming_postcopy_state);
1460 }
1461 
1462 /* Set the state and return the old state */
1463 PostcopyState postcopy_state_set(PostcopyState new_state)
1464 {
1465     return atomic_xchg(&incoming_postcopy_state, new_state);
1466 }
1467 
1468 /* Register a handler for external shared memory postcopy
1469  * called on the destination.
1470  */
1471 void postcopy_register_shared_ufd(struct PostCopyFD *pcfd)
1472 {
1473     MigrationIncomingState *mis = migration_incoming_get_current();
1474 
1475     mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds,
1476                                                   *pcfd);
1477 }
1478 
1479 /* Unregister a handler for external shared memory postcopy
1480  */
1481 void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd)
1482 {
1483     guint i;
1484     MigrationIncomingState *mis = migration_incoming_get_current();
1485     GArray *pcrfds = mis->postcopy_remote_fds;
1486 
1487     for (i = 0; i < pcrfds->len; i++) {
1488         struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1489         if (cur->fd == pcfd->fd) {
1490             mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i);
1491             return;
1492         }
1493     }
1494 }
1495