1 /* 2 * Postcopy migration for RAM 3 * 4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Dave Gilbert <dgilbert@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14 /* 15 * Postcopy is a migration technique where the execution flips from the 16 * source to the destination before all the data has been copied. 17 */ 18 19 #include "qemu/osdep.h" 20 #include "exec/target_page.h" 21 #include "migration.h" 22 #include "qemu-file.h" 23 #include "savevm.h" 24 #include "postcopy-ram.h" 25 #include "ram.h" 26 #include "sysemu/sysemu.h" 27 #include "sysemu/balloon.h" 28 #include "qemu/error-report.h" 29 #include "trace.h" 30 31 /* Arbitrary limit on size of each discard command, 32 * keeps them around ~200 bytes 33 */ 34 #define MAX_DISCARDS_PER_COMMAND 12 35 36 struct PostcopyDiscardState { 37 const char *ramblock_name; 38 uint16_t cur_entry; 39 /* 40 * Start and length of a discard range (bytes) 41 */ 42 uint64_t start_list[MAX_DISCARDS_PER_COMMAND]; 43 uint64_t length_list[MAX_DISCARDS_PER_COMMAND]; 44 unsigned int nsentwords; 45 unsigned int nsentcmds; 46 }; 47 48 /* Postcopy needs to detect accesses to pages that haven't yet been copied 49 * across, and efficiently map new pages in, the techniques for doing this 50 * are target OS specific. 51 */ 52 #if defined(__linux__) 53 54 #include <poll.h> 55 #include <sys/ioctl.h> 56 #include <sys/syscall.h> 57 #include <asm/types.h> /* for __u64 */ 58 #endif 59 60 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD) 61 #include <sys/eventfd.h> 62 #include <linux/userfaultfd.h> 63 64 65 /** 66 * receive_ufd_features: check userfault fd features, to request only supported 67 * features in the future. 68 * 69 * Returns: true on success 70 * 71 * __NR_userfaultfd - should be checked before 72 * @features: out parameter will contain uffdio_api.features provided by kernel 73 * in case of success 74 */ 75 static bool receive_ufd_features(uint64_t *features) 76 { 77 struct uffdio_api api_struct = {0}; 78 int ufd; 79 bool ret = true; 80 81 /* if we are here __NR_userfaultfd should exists */ 82 ufd = syscall(__NR_userfaultfd, O_CLOEXEC); 83 if (ufd == -1) { 84 error_report("%s: syscall __NR_userfaultfd failed: %s", __func__, 85 strerror(errno)); 86 return false; 87 } 88 89 /* ask features */ 90 api_struct.api = UFFD_API; 91 api_struct.features = 0; 92 if (ioctl(ufd, UFFDIO_API, &api_struct)) { 93 error_report("%s: UFFDIO_API failed: %s", __func__, 94 strerror(errno)); 95 ret = false; 96 goto release_ufd; 97 } 98 99 *features = api_struct.features; 100 101 release_ufd: 102 close(ufd); 103 return ret; 104 } 105 106 /** 107 * request_ufd_features: this function should be called only once on a newly 108 * opened ufd, subsequent calls will lead to error. 109 * 110 * Returns: true on succes 111 * 112 * @ufd: fd obtained from userfaultfd syscall 113 * @features: bit mask see UFFD_API_FEATURES 114 */ 115 static bool request_ufd_features(int ufd, uint64_t features) 116 { 117 struct uffdio_api api_struct = {0}; 118 uint64_t ioctl_mask; 119 120 api_struct.api = UFFD_API; 121 api_struct.features = features; 122 if (ioctl(ufd, UFFDIO_API, &api_struct)) { 123 error_report("%s failed: UFFDIO_API failed: %s", __func__, 124 strerror(errno)); 125 return false; 126 } 127 128 ioctl_mask = (__u64)1 << _UFFDIO_REGISTER | 129 (__u64)1 << _UFFDIO_UNREGISTER; 130 if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) { 131 error_report("Missing userfault features: %" PRIx64, 132 (uint64_t)(~api_struct.ioctls & ioctl_mask)); 133 return false; 134 } 135 136 return true; 137 } 138 139 static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis) 140 { 141 uint64_t asked_features = 0; 142 static uint64_t supported_features; 143 144 /* 145 * it's not possible to 146 * request UFFD_API twice per one fd 147 * userfault fd features is persistent 148 */ 149 if (!supported_features) { 150 if (!receive_ufd_features(&supported_features)) { 151 error_report("%s failed", __func__); 152 return false; 153 } 154 } 155 156 /* 157 * request features, even if asked_features is 0, due to 158 * kernel expects UFFD_API before UFFDIO_REGISTER, per 159 * userfault file descriptor 160 */ 161 if (!request_ufd_features(ufd, asked_features)) { 162 error_report("%s failed: features %" PRIu64, __func__, 163 asked_features); 164 return false; 165 } 166 167 if (getpagesize() != ram_pagesize_summary()) { 168 bool have_hp = false; 169 /* We've got a huge page */ 170 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS 171 have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS; 172 #endif 173 if (!have_hp) { 174 error_report("Userfault on this host does not support huge pages"); 175 return false; 176 } 177 } 178 return true; 179 } 180 181 /* Callback from postcopy_ram_supported_by_host block iterator. 182 */ 183 static int test_ramblock_postcopiable(const char *block_name, void *host_addr, 184 ram_addr_t offset, ram_addr_t length, void *opaque) 185 { 186 RAMBlock *rb = qemu_ram_block_by_name(block_name); 187 size_t pagesize = qemu_ram_pagesize(rb); 188 189 if (qemu_ram_is_shared(rb)) { 190 error_report("Postcopy on shared RAM (%s) is not yet supported", 191 block_name); 192 return 1; 193 } 194 195 if (length % pagesize) { 196 error_report("Postcopy requires RAM blocks to be a page size multiple," 197 " block %s is 0x" RAM_ADDR_FMT " bytes with a " 198 "page size of 0x%zx", block_name, length, pagesize); 199 return 1; 200 } 201 return 0; 202 } 203 204 /* 205 * Note: This has the side effect of munlock'ing all of RAM, that's 206 * normally fine since if the postcopy succeeds it gets turned back on at the 207 * end. 208 */ 209 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis) 210 { 211 long pagesize = getpagesize(); 212 int ufd = -1; 213 bool ret = false; /* Error unless we change it */ 214 void *testarea = NULL; 215 struct uffdio_register reg_struct; 216 struct uffdio_range range_struct; 217 uint64_t feature_mask; 218 219 if (qemu_target_page_size() > pagesize) { 220 error_report("Target page size bigger than host page size"); 221 goto out; 222 } 223 224 ufd = syscall(__NR_userfaultfd, O_CLOEXEC); 225 if (ufd == -1) { 226 error_report("%s: userfaultfd not available: %s", __func__, 227 strerror(errno)); 228 goto out; 229 } 230 231 /* Version and features check */ 232 if (!ufd_check_and_apply(ufd, mis)) { 233 goto out; 234 } 235 236 /* We don't support postcopy with shared RAM yet */ 237 if (qemu_ram_foreach_block(test_ramblock_postcopiable, NULL)) { 238 goto out; 239 } 240 241 /* 242 * userfault and mlock don't go together; we'll put it back later if 243 * it was enabled. 244 */ 245 if (munlockall()) { 246 error_report("%s: munlockall: %s", __func__, strerror(errno)); 247 return -1; 248 } 249 250 /* 251 * We need to check that the ops we need are supported on anon memory 252 * To do that we need to register a chunk and see the flags that 253 * are returned. 254 */ 255 testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE | 256 MAP_ANONYMOUS, -1, 0); 257 if (testarea == MAP_FAILED) { 258 error_report("%s: Failed to map test area: %s", __func__, 259 strerror(errno)); 260 goto out; 261 } 262 g_assert(((size_t)testarea & (pagesize-1)) == 0); 263 264 reg_struct.range.start = (uintptr_t)testarea; 265 reg_struct.range.len = pagesize; 266 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 267 268 if (ioctl(ufd, UFFDIO_REGISTER, ®_struct)) { 269 error_report("%s userfault register: %s", __func__, strerror(errno)); 270 goto out; 271 } 272 273 range_struct.start = (uintptr_t)testarea; 274 range_struct.len = pagesize; 275 if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) { 276 error_report("%s userfault unregister: %s", __func__, strerror(errno)); 277 goto out; 278 } 279 280 feature_mask = (__u64)1 << _UFFDIO_WAKE | 281 (__u64)1 << _UFFDIO_COPY | 282 (__u64)1 << _UFFDIO_ZEROPAGE; 283 if ((reg_struct.ioctls & feature_mask) != feature_mask) { 284 error_report("Missing userfault map features: %" PRIx64, 285 (uint64_t)(~reg_struct.ioctls & feature_mask)); 286 goto out; 287 } 288 289 /* Success! */ 290 ret = true; 291 out: 292 if (testarea) { 293 munmap(testarea, pagesize); 294 } 295 if (ufd != -1) { 296 close(ufd); 297 } 298 return ret; 299 } 300 301 /* 302 * Setup an area of RAM so that it *can* be used for postcopy later; this 303 * must be done right at the start prior to pre-copy. 304 * opaque should be the MIS. 305 */ 306 static int init_range(const char *block_name, void *host_addr, 307 ram_addr_t offset, ram_addr_t length, void *opaque) 308 { 309 trace_postcopy_init_range(block_name, host_addr, offset, length); 310 311 /* 312 * We need the whole of RAM to be truly empty for postcopy, so things 313 * like ROMs and any data tables built during init must be zero'd 314 * - we're going to get the copy from the source anyway. 315 * (Precopy will just overwrite this data, so doesn't need the discard) 316 */ 317 if (ram_discard_range(block_name, 0, length)) { 318 return -1; 319 } 320 321 return 0; 322 } 323 324 /* 325 * At the end of migration, undo the effects of init_range 326 * opaque should be the MIS. 327 */ 328 static int cleanup_range(const char *block_name, void *host_addr, 329 ram_addr_t offset, ram_addr_t length, void *opaque) 330 { 331 MigrationIncomingState *mis = opaque; 332 struct uffdio_range range_struct; 333 trace_postcopy_cleanup_range(block_name, host_addr, offset, length); 334 335 /* 336 * We turned off hugepage for the precopy stage with postcopy enabled 337 * we can turn it back on now. 338 */ 339 qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE); 340 341 /* 342 * We can also turn off userfault now since we should have all the 343 * pages. It can be useful to leave it on to debug postcopy 344 * if you're not sure it's always getting every page. 345 */ 346 range_struct.start = (uintptr_t)host_addr; 347 range_struct.len = length; 348 349 if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) { 350 error_report("%s: userfault unregister %s", __func__, strerror(errno)); 351 352 return -1; 353 } 354 355 return 0; 356 } 357 358 /* 359 * Initialise postcopy-ram, setting the RAM to a state where we can go into 360 * postcopy later; must be called prior to any precopy. 361 * called from arch_init's similarly named ram_postcopy_incoming_init 362 */ 363 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages) 364 { 365 if (qemu_ram_foreach_block(init_range, NULL)) { 366 return -1; 367 } 368 369 return 0; 370 } 371 372 /* 373 * At the end of a migration where postcopy_ram_incoming_init was called. 374 */ 375 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 376 { 377 trace_postcopy_ram_incoming_cleanup_entry(); 378 379 if (mis->have_fault_thread) { 380 uint64_t tmp64; 381 382 if (qemu_ram_foreach_block(cleanup_range, mis)) { 383 return -1; 384 } 385 /* 386 * Tell the fault_thread to exit, it's an eventfd that should 387 * currently be at 0, we're going to increment it to 1 388 */ 389 tmp64 = 1; 390 if (write(mis->userfault_quit_fd, &tmp64, 8) == 8) { 391 trace_postcopy_ram_incoming_cleanup_join(); 392 qemu_thread_join(&mis->fault_thread); 393 } else { 394 /* Not much we can do here, but may as well report it */ 395 error_report("%s: incrementing userfault_quit_fd: %s", __func__, 396 strerror(errno)); 397 } 398 trace_postcopy_ram_incoming_cleanup_closeuf(); 399 close(mis->userfault_fd); 400 close(mis->userfault_quit_fd); 401 mis->have_fault_thread = false; 402 } 403 404 qemu_balloon_inhibit(false); 405 406 if (enable_mlock) { 407 if (os_mlock() < 0) { 408 error_report("mlock: %s", strerror(errno)); 409 /* 410 * It doesn't feel right to fail at this point, we have a valid 411 * VM state. 412 */ 413 } 414 } 415 416 postcopy_state_set(POSTCOPY_INCOMING_END); 417 418 if (mis->postcopy_tmp_page) { 419 munmap(mis->postcopy_tmp_page, mis->largest_page_size); 420 mis->postcopy_tmp_page = NULL; 421 } 422 if (mis->postcopy_tmp_zero_page) { 423 munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size); 424 mis->postcopy_tmp_zero_page = NULL; 425 } 426 trace_postcopy_ram_incoming_cleanup_exit(); 427 return 0; 428 } 429 430 /* 431 * Disable huge pages on an area 432 */ 433 static int nhp_range(const char *block_name, void *host_addr, 434 ram_addr_t offset, ram_addr_t length, void *opaque) 435 { 436 trace_postcopy_nhp_range(block_name, host_addr, offset, length); 437 438 /* 439 * Before we do discards we need to ensure those discards really 440 * do delete areas of the page, even if THP thinks a hugepage would 441 * be a good idea, so force hugepages off. 442 */ 443 qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE); 444 445 return 0; 446 } 447 448 /* 449 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard 450 * however leaving it until after precopy means that most of the precopy 451 * data is still THPd 452 */ 453 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 454 { 455 if (qemu_ram_foreach_block(nhp_range, mis)) { 456 return -1; 457 } 458 459 postcopy_state_set(POSTCOPY_INCOMING_DISCARD); 460 461 return 0; 462 } 463 464 /* 465 * Mark the given area of RAM as requiring notification to unwritten areas 466 * Used as a callback on qemu_ram_foreach_block. 467 * host_addr: Base of area to mark 468 * offset: Offset in the whole ram arena 469 * length: Length of the section 470 * opaque: MigrationIncomingState pointer 471 * Returns 0 on success 472 */ 473 static int ram_block_enable_notify(const char *block_name, void *host_addr, 474 ram_addr_t offset, ram_addr_t length, 475 void *opaque) 476 { 477 MigrationIncomingState *mis = opaque; 478 struct uffdio_register reg_struct; 479 480 reg_struct.range.start = (uintptr_t)host_addr; 481 reg_struct.range.len = length; 482 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 483 484 /* Now tell our userfault_fd that it's responsible for this area */ 485 if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, ®_struct)) { 486 error_report("%s userfault register: %s", __func__, strerror(errno)); 487 return -1; 488 } 489 if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) { 490 error_report("%s userfault: Region doesn't support COPY", __func__); 491 return -1; 492 } 493 494 return 0; 495 } 496 497 /* 498 * Handle faults detected by the USERFAULT markings 499 */ 500 static void *postcopy_ram_fault_thread(void *opaque) 501 { 502 MigrationIncomingState *mis = opaque; 503 struct uffd_msg msg; 504 int ret; 505 RAMBlock *rb = NULL; 506 RAMBlock *last_rb = NULL; /* last RAMBlock we sent part of */ 507 508 trace_postcopy_ram_fault_thread_entry(); 509 qemu_sem_post(&mis->fault_thread_sem); 510 511 while (true) { 512 ram_addr_t rb_offset; 513 struct pollfd pfd[2]; 514 515 /* 516 * We're mainly waiting for the kernel to give us a faulting HVA, 517 * however we can be told to quit via userfault_quit_fd which is 518 * an eventfd 519 */ 520 pfd[0].fd = mis->userfault_fd; 521 pfd[0].events = POLLIN; 522 pfd[0].revents = 0; 523 pfd[1].fd = mis->userfault_quit_fd; 524 pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */ 525 pfd[1].revents = 0; 526 527 if (poll(pfd, 2, -1 /* Wait forever */) == -1) { 528 error_report("%s: userfault poll: %s", __func__, strerror(errno)); 529 break; 530 } 531 532 if (pfd[1].revents) { 533 trace_postcopy_ram_fault_thread_quit(); 534 break; 535 } 536 537 ret = read(mis->userfault_fd, &msg, sizeof(msg)); 538 if (ret != sizeof(msg)) { 539 if (errno == EAGAIN) { 540 /* 541 * if a wake up happens on the other thread just after 542 * the poll, there is nothing to read. 543 */ 544 continue; 545 } 546 if (ret < 0) { 547 error_report("%s: Failed to read full userfault message: %s", 548 __func__, strerror(errno)); 549 break; 550 } else { 551 error_report("%s: Read %d bytes from userfaultfd expected %zd", 552 __func__, ret, sizeof(msg)); 553 break; /* Lost alignment, don't know what we'd read next */ 554 } 555 } 556 if (msg.event != UFFD_EVENT_PAGEFAULT) { 557 error_report("%s: Read unexpected event %ud from userfaultfd", 558 __func__, msg.event); 559 continue; /* It's not a page fault, shouldn't happen */ 560 } 561 562 rb = qemu_ram_block_from_host( 563 (void *)(uintptr_t)msg.arg.pagefault.address, 564 true, &rb_offset); 565 if (!rb) { 566 error_report("postcopy_ram_fault_thread: Fault outside guest: %" 567 PRIx64, (uint64_t)msg.arg.pagefault.address); 568 break; 569 } 570 571 rb_offset &= ~(qemu_ram_pagesize(rb) - 1); 572 trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address, 573 qemu_ram_get_idstr(rb), 574 rb_offset); 575 576 /* 577 * Send the request to the source - we want to request one 578 * of our host page sizes (which is >= TPS) 579 */ 580 if (rb != last_rb) { 581 last_rb = rb; 582 migrate_send_rp_req_pages(mis, qemu_ram_get_idstr(rb), 583 rb_offset, qemu_ram_pagesize(rb)); 584 } else { 585 /* Save some space */ 586 migrate_send_rp_req_pages(mis, NULL, 587 rb_offset, qemu_ram_pagesize(rb)); 588 } 589 } 590 trace_postcopy_ram_fault_thread_exit(); 591 return NULL; 592 } 593 594 int postcopy_ram_enable_notify(MigrationIncomingState *mis) 595 { 596 /* Open the fd for the kernel to give us userfaults */ 597 mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK); 598 if (mis->userfault_fd == -1) { 599 error_report("%s: Failed to open userfault fd: %s", __func__, 600 strerror(errno)); 601 return -1; 602 } 603 604 /* 605 * Although the host check already tested the API, we need to 606 * do the check again as an ABI handshake on the new fd. 607 */ 608 if (!ufd_check_and_apply(mis->userfault_fd, mis)) { 609 return -1; 610 } 611 612 /* Now an eventfd we use to tell the fault-thread to quit */ 613 mis->userfault_quit_fd = eventfd(0, EFD_CLOEXEC); 614 if (mis->userfault_quit_fd == -1) { 615 error_report("%s: Opening userfault_quit_fd: %s", __func__, 616 strerror(errno)); 617 close(mis->userfault_fd); 618 return -1; 619 } 620 621 qemu_sem_init(&mis->fault_thread_sem, 0); 622 qemu_thread_create(&mis->fault_thread, "postcopy/fault", 623 postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE); 624 qemu_sem_wait(&mis->fault_thread_sem); 625 qemu_sem_destroy(&mis->fault_thread_sem); 626 mis->have_fault_thread = true; 627 628 /* Mark so that we get notified of accesses to unwritten areas */ 629 if (qemu_ram_foreach_block(ram_block_enable_notify, mis)) { 630 return -1; 631 } 632 633 /* 634 * Ballooning can mark pages as absent while we're postcopying 635 * that would cause false userfaults. 636 */ 637 qemu_balloon_inhibit(true); 638 639 trace_postcopy_ram_enable_notify(); 640 641 return 0; 642 } 643 644 /* 645 * Place a host page (from) at (host) atomically 646 * returns 0 on success 647 */ 648 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from, 649 size_t pagesize) 650 { 651 struct uffdio_copy copy_struct; 652 653 copy_struct.dst = (uint64_t)(uintptr_t)host; 654 copy_struct.src = (uint64_t)(uintptr_t)from; 655 copy_struct.len = pagesize; 656 copy_struct.mode = 0; 657 658 /* copy also acks to the kernel waking the stalled thread up 659 * TODO: We can inhibit that ack and only do it if it was requested 660 * which would be slightly cheaper, but we'd have to be careful 661 * of the order of updating our page state. 662 */ 663 if (ioctl(mis->userfault_fd, UFFDIO_COPY, ©_struct)) { 664 int e = errno; 665 error_report("%s: %s copy host: %p from: %p (size: %zd)", 666 __func__, strerror(e), host, from, pagesize); 667 668 return -e; 669 } 670 671 trace_postcopy_place_page(host); 672 return 0; 673 } 674 675 /* 676 * Place a zero page at (host) atomically 677 * returns 0 on success 678 */ 679 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host, 680 size_t pagesize) 681 { 682 trace_postcopy_place_page_zero(host); 683 684 if (pagesize == getpagesize()) { 685 struct uffdio_zeropage zero_struct; 686 zero_struct.range.start = (uint64_t)(uintptr_t)host; 687 zero_struct.range.len = getpagesize(); 688 zero_struct.mode = 0; 689 690 if (ioctl(mis->userfault_fd, UFFDIO_ZEROPAGE, &zero_struct)) { 691 int e = errno; 692 error_report("%s: %s zero host: %p", 693 __func__, strerror(e), host); 694 695 return -e; 696 } 697 } else { 698 /* The kernel can't use UFFDIO_ZEROPAGE for hugepages */ 699 if (!mis->postcopy_tmp_zero_page) { 700 mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size, 701 PROT_READ | PROT_WRITE, 702 MAP_PRIVATE | MAP_ANONYMOUS, 703 -1, 0); 704 if (mis->postcopy_tmp_zero_page == MAP_FAILED) { 705 int e = errno; 706 mis->postcopy_tmp_zero_page = NULL; 707 error_report("%s: %s mapping large zero page", 708 __func__, strerror(e)); 709 return -e; 710 } 711 memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size); 712 } 713 return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page, 714 pagesize); 715 } 716 717 return 0; 718 } 719 720 /* 721 * Returns a target page of memory that can be mapped at a later point in time 722 * using postcopy_place_page 723 * The same address is used repeatedly, postcopy_place_page just takes the 724 * backing page away. 725 * Returns: Pointer to allocated page 726 * 727 */ 728 void *postcopy_get_tmp_page(MigrationIncomingState *mis) 729 { 730 if (!mis->postcopy_tmp_page) { 731 mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size, 732 PROT_READ | PROT_WRITE, MAP_PRIVATE | 733 MAP_ANONYMOUS, -1, 0); 734 if (mis->postcopy_tmp_page == MAP_FAILED) { 735 mis->postcopy_tmp_page = NULL; 736 error_report("%s: %s", __func__, strerror(errno)); 737 return NULL; 738 } 739 } 740 741 return mis->postcopy_tmp_page; 742 } 743 744 #else 745 /* No target OS support, stubs just fail */ 746 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis) 747 { 748 error_report("%s: No OS support", __func__); 749 return false; 750 } 751 752 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages) 753 { 754 error_report("postcopy_ram_incoming_init: No OS support"); 755 return -1; 756 } 757 758 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 759 { 760 assert(0); 761 return -1; 762 } 763 764 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 765 { 766 assert(0); 767 return -1; 768 } 769 770 int postcopy_ram_enable_notify(MigrationIncomingState *mis) 771 { 772 assert(0); 773 return -1; 774 } 775 776 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from, 777 size_t pagesize) 778 { 779 assert(0); 780 return -1; 781 } 782 783 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host, 784 size_t pagesize) 785 { 786 assert(0); 787 return -1; 788 } 789 790 void *postcopy_get_tmp_page(MigrationIncomingState *mis) 791 { 792 assert(0); 793 return NULL; 794 } 795 796 #endif 797 798 /* ------------------------------------------------------------------------- */ 799 800 /** 801 * postcopy_discard_send_init: Called at the start of each RAMBlock before 802 * asking to discard individual ranges. 803 * 804 * @ms: The current migration state. 805 * @offset: the bitmap offset of the named RAMBlock in the migration 806 * bitmap. 807 * @name: RAMBlock that discards will operate on. 808 * 809 * returns: a new PDS. 810 */ 811 PostcopyDiscardState *postcopy_discard_send_init(MigrationState *ms, 812 const char *name) 813 { 814 PostcopyDiscardState *res = g_malloc0(sizeof(PostcopyDiscardState)); 815 816 if (res) { 817 res->ramblock_name = name; 818 } 819 820 return res; 821 } 822 823 /** 824 * postcopy_discard_send_range: Called by the bitmap code for each chunk to 825 * discard. May send a discard message, may just leave it queued to 826 * be sent later. 827 * 828 * @ms: Current migration state. 829 * @pds: Structure initialised by postcopy_discard_send_init(). 830 * @start,@length: a range of pages in the migration bitmap in the 831 * RAM block passed to postcopy_discard_send_init() (length=1 is one page) 832 */ 833 void postcopy_discard_send_range(MigrationState *ms, PostcopyDiscardState *pds, 834 unsigned long start, unsigned long length) 835 { 836 size_t tp_size = qemu_target_page_size(); 837 /* Convert to byte offsets within the RAM block */ 838 pds->start_list[pds->cur_entry] = start * tp_size; 839 pds->length_list[pds->cur_entry] = length * tp_size; 840 trace_postcopy_discard_send_range(pds->ramblock_name, start, length); 841 pds->cur_entry++; 842 pds->nsentwords++; 843 844 if (pds->cur_entry == MAX_DISCARDS_PER_COMMAND) { 845 /* Full set, ship it! */ 846 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 847 pds->ramblock_name, 848 pds->cur_entry, 849 pds->start_list, 850 pds->length_list); 851 pds->nsentcmds++; 852 pds->cur_entry = 0; 853 } 854 } 855 856 /** 857 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the 858 * bitmap code. Sends any outstanding discard messages, frees the PDS 859 * 860 * @ms: Current migration state. 861 * @pds: Structure initialised by postcopy_discard_send_init(). 862 */ 863 void postcopy_discard_send_finish(MigrationState *ms, PostcopyDiscardState *pds) 864 { 865 /* Anything unsent? */ 866 if (pds->cur_entry) { 867 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 868 pds->ramblock_name, 869 pds->cur_entry, 870 pds->start_list, 871 pds->length_list); 872 pds->nsentcmds++; 873 } 874 875 trace_postcopy_discard_send_finish(pds->ramblock_name, pds->nsentwords, 876 pds->nsentcmds); 877 878 g_free(pds); 879 } 880 881 /* 882 * Current state of incoming postcopy; note this is not part of 883 * MigrationIncomingState since it's state is used during cleanup 884 * at the end as MIS is being freed. 885 */ 886 static PostcopyState incoming_postcopy_state; 887 888 PostcopyState postcopy_state_get(void) 889 { 890 return atomic_mb_read(&incoming_postcopy_state); 891 } 892 893 /* Set the state and return the old state */ 894 PostcopyState postcopy_state_set(PostcopyState new_state) 895 { 896 return atomic_xchg(&incoming_postcopy_state, new_state); 897 } 898