1 /* 2 * Postcopy migration for RAM 3 * 4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Dave Gilbert <dgilbert@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14 /* 15 * Postcopy is a migration technique where the execution flips from the 16 * source to the destination before all the data has been copied. 17 */ 18 19 #include "qemu/osdep.h" 20 21 #include "qemu-common.h" 22 #include "migration/migration.h" 23 #include "migration/postcopy-ram.h" 24 #include "sysemu/sysemu.h" 25 #include "sysemu/balloon.h" 26 #include "qemu/error-report.h" 27 #include "trace.h" 28 29 /* Arbitrary limit on size of each discard command, 30 * keeps them around ~200 bytes 31 */ 32 #define MAX_DISCARDS_PER_COMMAND 12 33 34 struct PostcopyDiscardState { 35 const char *ramblock_name; 36 uint64_t offset; /* Bitmap entry for the 1st bit of this RAMBlock */ 37 uint16_t cur_entry; 38 /* 39 * Start and length of a discard range (bytes) 40 */ 41 uint64_t start_list[MAX_DISCARDS_PER_COMMAND]; 42 uint64_t length_list[MAX_DISCARDS_PER_COMMAND]; 43 unsigned int nsentwords; 44 unsigned int nsentcmds; 45 }; 46 47 /* Postcopy needs to detect accesses to pages that haven't yet been copied 48 * across, and efficiently map new pages in, the techniques for doing this 49 * are target OS specific. 50 */ 51 #if defined(__linux__) 52 53 #include <poll.h> 54 #include <sys/ioctl.h> 55 #include <sys/syscall.h> 56 #include <asm/types.h> /* for __u64 */ 57 #endif 58 59 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD) 60 #include <sys/eventfd.h> 61 #include <linux/userfaultfd.h> 62 63 static bool ufd_version_check(int ufd) 64 { 65 struct uffdio_api api_struct; 66 uint64_t ioctl_mask; 67 68 api_struct.api = UFFD_API; 69 api_struct.features = 0; 70 if (ioctl(ufd, UFFDIO_API, &api_struct)) { 71 error_report("postcopy_ram_supported_by_host: UFFDIO_API failed: %s", 72 strerror(errno)); 73 return false; 74 } 75 76 ioctl_mask = (__u64)1 << _UFFDIO_REGISTER | 77 (__u64)1 << _UFFDIO_UNREGISTER; 78 if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) { 79 error_report("Missing userfault features: %" PRIx64, 80 (uint64_t)(~api_struct.ioctls & ioctl_mask)); 81 return false; 82 } 83 84 return true; 85 } 86 87 /* 88 * Note: This has the side effect of munlock'ing all of RAM, that's 89 * normally fine since if the postcopy succeeds it gets turned back on at the 90 * end. 91 */ 92 bool postcopy_ram_supported_by_host(void) 93 { 94 long pagesize = getpagesize(); 95 int ufd = -1; 96 bool ret = false; /* Error unless we change it */ 97 void *testarea = NULL; 98 struct uffdio_register reg_struct; 99 struct uffdio_range range_struct; 100 uint64_t feature_mask; 101 102 if ((1ul << qemu_target_page_bits()) > pagesize) { 103 error_report("Target page size bigger than host page size"); 104 goto out; 105 } 106 107 ufd = syscall(__NR_userfaultfd, O_CLOEXEC); 108 if (ufd == -1) { 109 error_report("%s: userfaultfd not available: %s", __func__, 110 strerror(errno)); 111 goto out; 112 } 113 114 /* Version and features check */ 115 if (!ufd_version_check(ufd)) { 116 goto out; 117 } 118 119 /* 120 * userfault and mlock don't go together; we'll put it back later if 121 * it was enabled. 122 */ 123 if (munlockall()) { 124 error_report("%s: munlockall: %s", __func__, strerror(errno)); 125 return -1; 126 } 127 128 /* 129 * We need to check that the ops we need are supported on anon memory 130 * To do that we need to register a chunk and see the flags that 131 * are returned. 132 */ 133 testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE | 134 MAP_ANONYMOUS, -1, 0); 135 if (testarea == MAP_FAILED) { 136 error_report("%s: Failed to map test area: %s", __func__, 137 strerror(errno)); 138 goto out; 139 } 140 g_assert(((size_t)testarea & (pagesize-1)) == 0); 141 142 reg_struct.range.start = (uintptr_t)testarea; 143 reg_struct.range.len = pagesize; 144 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 145 146 if (ioctl(ufd, UFFDIO_REGISTER, ®_struct)) { 147 error_report("%s userfault register: %s", __func__, strerror(errno)); 148 goto out; 149 } 150 151 range_struct.start = (uintptr_t)testarea; 152 range_struct.len = pagesize; 153 if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) { 154 error_report("%s userfault unregister: %s", __func__, strerror(errno)); 155 goto out; 156 } 157 158 feature_mask = (__u64)1 << _UFFDIO_WAKE | 159 (__u64)1 << _UFFDIO_COPY | 160 (__u64)1 << _UFFDIO_ZEROPAGE; 161 if ((reg_struct.ioctls & feature_mask) != feature_mask) { 162 error_report("Missing userfault map features: %" PRIx64, 163 (uint64_t)(~reg_struct.ioctls & feature_mask)); 164 goto out; 165 } 166 167 /* Success! */ 168 ret = true; 169 out: 170 if (testarea) { 171 munmap(testarea, pagesize); 172 } 173 if (ufd != -1) { 174 close(ufd); 175 } 176 return ret; 177 } 178 179 /** 180 * postcopy_ram_discard_range: Discard a range of memory. 181 * We can assume that if we've been called postcopy_ram_hosttest returned true. 182 * 183 * @mis: Current incoming migration state. 184 * @start, @length: range of memory to discard. 185 * 186 * returns: 0 on success. 187 */ 188 int postcopy_ram_discard_range(MigrationIncomingState *mis, uint8_t *start, 189 size_t length) 190 { 191 trace_postcopy_ram_discard_range(start, length); 192 if (madvise(start, length, MADV_DONTNEED)) { 193 error_report("%s MADV_DONTNEED: %s", __func__, strerror(errno)); 194 return -1; 195 } 196 197 return 0; 198 } 199 200 /* 201 * Setup an area of RAM so that it *can* be used for postcopy later; this 202 * must be done right at the start prior to pre-copy. 203 * opaque should be the MIS. 204 */ 205 static int init_range(const char *block_name, void *host_addr, 206 ram_addr_t offset, ram_addr_t length, void *opaque) 207 { 208 MigrationIncomingState *mis = opaque; 209 210 trace_postcopy_init_range(block_name, host_addr, offset, length); 211 212 /* 213 * We need the whole of RAM to be truly empty for postcopy, so things 214 * like ROMs and any data tables built during init must be zero'd 215 * - we're going to get the copy from the source anyway. 216 * (Precopy will just overwrite this data, so doesn't need the discard) 217 */ 218 if (postcopy_ram_discard_range(mis, host_addr, length)) { 219 return -1; 220 } 221 222 return 0; 223 } 224 225 /* 226 * At the end of migration, undo the effects of init_range 227 * opaque should be the MIS. 228 */ 229 static int cleanup_range(const char *block_name, void *host_addr, 230 ram_addr_t offset, ram_addr_t length, void *opaque) 231 { 232 MigrationIncomingState *mis = opaque; 233 struct uffdio_range range_struct; 234 trace_postcopy_cleanup_range(block_name, host_addr, offset, length); 235 236 /* 237 * We turned off hugepage for the precopy stage with postcopy enabled 238 * we can turn it back on now. 239 */ 240 qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE); 241 242 /* 243 * We can also turn off userfault now since we should have all the 244 * pages. It can be useful to leave it on to debug postcopy 245 * if you're not sure it's always getting every page. 246 */ 247 range_struct.start = (uintptr_t)host_addr; 248 range_struct.len = length; 249 250 if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) { 251 error_report("%s: userfault unregister %s", __func__, strerror(errno)); 252 253 return -1; 254 } 255 256 return 0; 257 } 258 259 /* 260 * Initialise postcopy-ram, setting the RAM to a state where we can go into 261 * postcopy later; must be called prior to any precopy. 262 * called from arch_init's similarly named ram_postcopy_incoming_init 263 */ 264 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages) 265 { 266 if (qemu_ram_foreach_block(init_range, mis)) { 267 return -1; 268 } 269 270 return 0; 271 } 272 273 /* 274 * At the end of a migration where postcopy_ram_incoming_init was called. 275 */ 276 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 277 { 278 trace_postcopy_ram_incoming_cleanup_entry(); 279 280 if (mis->have_fault_thread) { 281 uint64_t tmp64; 282 283 if (qemu_ram_foreach_block(cleanup_range, mis)) { 284 return -1; 285 } 286 /* 287 * Tell the fault_thread to exit, it's an eventfd that should 288 * currently be at 0, we're going to increment it to 1 289 */ 290 tmp64 = 1; 291 if (write(mis->userfault_quit_fd, &tmp64, 8) == 8) { 292 trace_postcopy_ram_incoming_cleanup_join(); 293 qemu_thread_join(&mis->fault_thread); 294 } else { 295 /* Not much we can do here, but may as well report it */ 296 error_report("%s: incrementing userfault_quit_fd: %s", __func__, 297 strerror(errno)); 298 } 299 trace_postcopy_ram_incoming_cleanup_closeuf(); 300 close(mis->userfault_fd); 301 close(mis->userfault_quit_fd); 302 mis->have_fault_thread = false; 303 } 304 305 qemu_balloon_inhibit(false); 306 307 if (enable_mlock) { 308 if (os_mlock() < 0) { 309 error_report("mlock: %s", strerror(errno)); 310 /* 311 * It doesn't feel right to fail at this point, we have a valid 312 * VM state. 313 */ 314 } 315 } 316 317 postcopy_state_set(POSTCOPY_INCOMING_END); 318 migrate_send_rp_shut(mis, qemu_file_get_error(mis->from_src_file) != 0); 319 320 if (mis->postcopy_tmp_page) { 321 munmap(mis->postcopy_tmp_page, getpagesize()); 322 mis->postcopy_tmp_page = NULL; 323 } 324 trace_postcopy_ram_incoming_cleanup_exit(); 325 return 0; 326 } 327 328 /* 329 * Disable huge pages on an area 330 */ 331 static int nhp_range(const char *block_name, void *host_addr, 332 ram_addr_t offset, ram_addr_t length, void *opaque) 333 { 334 trace_postcopy_nhp_range(block_name, host_addr, offset, length); 335 336 /* 337 * Before we do discards we need to ensure those discards really 338 * do delete areas of the page, even if THP thinks a hugepage would 339 * be a good idea, so force hugepages off. 340 */ 341 qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE); 342 343 return 0; 344 } 345 346 /* 347 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard 348 * however leaving it until after precopy means that most of the precopy 349 * data is still THPd 350 */ 351 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 352 { 353 if (qemu_ram_foreach_block(nhp_range, mis)) { 354 return -1; 355 } 356 357 postcopy_state_set(POSTCOPY_INCOMING_DISCARD); 358 359 return 0; 360 } 361 362 /* 363 * Mark the given area of RAM as requiring notification to unwritten areas 364 * Used as a callback on qemu_ram_foreach_block. 365 * host_addr: Base of area to mark 366 * offset: Offset in the whole ram arena 367 * length: Length of the section 368 * opaque: MigrationIncomingState pointer 369 * Returns 0 on success 370 */ 371 static int ram_block_enable_notify(const char *block_name, void *host_addr, 372 ram_addr_t offset, ram_addr_t length, 373 void *opaque) 374 { 375 MigrationIncomingState *mis = opaque; 376 struct uffdio_register reg_struct; 377 378 reg_struct.range.start = (uintptr_t)host_addr; 379 reg_struct.range.len = length; 380 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 381 382 /* Now tell our userfault_fd that it's responsible for this area */ 383 if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, ®_struct)) { 384 error_report("%s userfault register: %s", __func__, strerror(errno)); 385 return -1; 386 } 387 388 return 0; 389 } 390 391 /* 392 * Handle faults detected by the USERFAULT markings 393 */ 394 static void *postcopy_ram_fault_thread(void *opaque) 395 { 396 MigrationIncomingState *mis = opaque; 397 struct uffd_msg msg; 398 int ret; 399 size_t hostpagesize = getpagesize(); 400 RAMBlock *rb = NULL; 401 RAMBlock *last_rb = NULL; /* last RAMBlock we sent part of */ 402 403 trace_postcopy_ram_fault_thread_entry(); 404 qemu_sem_post(&mis->fault_thread_sem); 405 406 while (true) { 407 ram_addr_t rb_offset; 408 struct pollfd pfd[2]; 409 410 /* 411 * We're mainly waiting for the kernel to give us a faulting HVA, 412 * however we can be told to quit via userfault_quit_fd which is 413 * an eventfd 414 */ 415 pfd[0].fd = mis->userfault_fd; 416 pfd[0].events = POLLIN; 417 pfd[0].revents = 0; 418 pfd[1].fd = mis->userfault_quit_fd; 419 pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */ 420 pfd[1].revents = 0; 421 422 if (poll(pfd, 2, -1 /* Wait forever */) == -1) { 423 error_report("%s: userfault poll: %s", __func__, strerror(errno)); 424 break; 425 } 426 427 if (pfd[1].revents) { 428 trace_postcopy_ram_fault_thread_quit(); 429 break; 430 } 431 432 ret = read(mis->userfault_fd, &msg, sizeof(msg)); 433 if (ret != sizeof(msg)) { 434 if (errno == EAGAIN) { 435 /* 436 * if a wake up happens on the other thread just after 437 * the poll, there is nothing to read. 438 */ 439 continue; 440 } 441 if (ret < 0) { 442 error_report("%s: Failed to read full userfault message: %s", 443 __func__, strerror(errno)); 444 break; 445 } else { 446 error_report("%s: Read %d bytes from userfaultfd expected %zd", 447 __func__, ret, sizeof(msg)); 448 break; /* Lost alignment, don't know what we'd read next */ 449 } 450 } 451 if (msg.event != UFFD_EVENT_PAGEFAULT) { 452 error_report("%s: Read unexpected event %ud from userfaultfd", 453 __func__, msg.event); 454 continue; /* It's not a page fault, shouldn't happen */ 455 } 456 457 rb = qemu_ram_block_from_host( 458 (void *)(uintptr_t)msg.arg.pagefault.address, 459 true, &rb_offset); 460 if (!rb) { 461 error_report("postcopy_ram_fault_thread: Fault outside guest: %" 462 PRIx64, (uint64_t)msg.arg.pagefault.address); 463 break; 464 } 465 466 rb_offset &= ~(hostpagesize - 1); 467 trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address, 468 qemu_ram_get_idstr(rb), 469 rb_offset); 470 471 /* 472 * Send the request to the source - we want to request one 473 * of our host page sizes (which is >= TPS) 474 */ 475 if (rb != last_rb) { 476 last_rb = rb; 477 migrate_send_rp_req_pages(mis, qemu_ram_get_idstr(rb), 478 rb_offset, hostpagesize); 479 } else { 480 /* Save some space */ 481 migrate_send_rp_req_pages(mis, NULL, 482 rb_offset, hostpagesize); 483 } 484 } 485 trace_postcopy_ram_fault_thread_exit(); 486 return NULL; 487 } 488 489 int postcopy_ram_enable_notify(MigrationIncomingState *mis) 490 { 491 /* Open the fd for the kernel to give us userfaults */ 492 mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK); 493 if (mis->userfault_fd == -1) { 494 error_report("%s: Failed to open userfault fd: %s", __func__, 495 strerror(errno)); 496 return -1; 497 } 498 499 /* 500 * Although the host check already tested the API, we need to 501 * do the check again as an ABI handshake on the new fd. 502 */ 503 if (!ufd_version_check(mis->userfault_fd)) { 504 return -1; 505 } 506 507 /* Now an eventfd we use to tell the fault-thread to quit */ 508 mis->userfault_quit_fd = eventfd(0, EFD_CLOEXEC); 509 if (mis->userfault_quit_fd == -1) { 510 error_report("%s: Opening userfault_quit_fd: %s", __func__, 511 strerror(errno)); 512 close(mis->userfault_fd); 513 return -1; 514 } 515 516 qemu_sem_init(&mis->fault_thread_sem, 0); 517 qemu_thread_create(&mis->fault_thread, "postcopy/fault", 518 postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE); 519 qemu_sem_wait(&mis->fault_thread_sem); 520 qemu_sem_destroy(&mis->fault_thread_sem); 521 mis->have_fault_thread = true; 522 523 /* Mark so that we get notified of accesses to unwritten areas */ 524 if (qemu_ram_foreach_block(ram_block_enable_notify, mis)) { 525 return -1; 526 } 527 528 /* 529 * Ballooning can mark pages as absent while we're postcopying 530 * that would cause false userfaults. 531 */ 532 qemu_balloon_inhibit(true); 533 534 trace_postcopy_ram_enable_notify(); 535 536 return 0; 537 } 538 539 /* 540 * Place a host page (from) at (host) atomically 541 * returns 0 on success 542 */ 543 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from) 544 { 545 struct uffdio_copy copy_struct; 546 547 copy_struct.dst = (uint64_t)(uintptr_t)host; 548 copy_struct.src = (uint64_t)(uintptr_t)from; 549 copy_struct.len = getpagesize(); 550 copy_struct.mode = 0; 551 552 /* copy also acks to the kernel waking the stalled thread up 553 * TODO: We can inhibit that ack and only do it if it was requested 554 * which would be slightly cheaper, but we'd have to be careful 555 * of the order of updating our page state. 556 */ 557 if (ioctl(mis->userfault_fd, UFFDIO_COPY, ©_struct)) { 558 int e = errno; 559 error_report("%s: %s copy host: %p from: %p", 560 __func__, strerror(e), host, from); 561 562 return -e; 563 } 564 565 trace_postcopy_place_page(host); 566 return 0; 567 } 568 569 /* 570 * Place a zero page at (host) atomically 571 * returns 0 on success 572 */ 573 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host) 574 { 575 struct uffdio_zeropage zero_struct; 576 577 zero_struct.range.start = (uint64_t)(uintptr_t)host; 578 zero_struct.range.len = getpagesize(); 579 zero_struct.mode = 0; 580 581 if (ioctl(mis->userfault_fd, UFFDIO_ZEROPAGE, &zero_struct)) { 582 int e = errno; 583 error_report("%s: %s zero host: %p", 584 __func__, strerror(e), host); 585 586 return -e; 587 } 588 589 trace_postcopy_place_page_zero(host); 590 return 0; 591 } 592 593 /* 594 * Returns a target page of memory that can be mapped at a later point in time 595 * using postcopy_place_page 596 * The same address is used repeatedly, postcopy_place_page just takes the 597 * backing page away. 598 * Returns: Pointer to allocated page 599 * 600 */ 601 void *postcopy_get_tmp_page(MigrationIncomingState *mis) 602 { 603 if (!mis->postcopy_tmp_page) { 604 mis->postcopy_tmp_page = mmap(NULL, getpagesize(), 605 PROT_READ | PROT_WRITE, MAP_PRIVATE | 606 MAP_ANONYMOUS, -1, 0); 607 if (!mis->postcopy_tmp_page) { 608 error_report("%s: %s", __func__, strerror(errno)); 609 return NULL; 610 } 611 } 612 613 return mis->postcopy_tmp_page; 614 } 615 616 #else 617 /* No target OS support, stubs just fail */ 618 bool postcopy_ram_supported_by_host(void) 619 { 620 error_report("%s: No OS support", __func__); 621 return false; 622 } 623 624 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages) 625 { 626 error_report("postcopy_ram_incoming_init: No OS support"); 627 return -1; 628 } 629 630 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 631 { 632 assert(0); 633 return -1; 634 } 635 636 int postcopy_ram_discard_range(MigrationIncomingState *mis, uint8_t *start, 637 size_t length) 638 { 639 assert(0); 640 return -1; 641 } 642 643 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 644 { 645 assert(0); 646 return -1; 647 } 648 649 int postcopy_ram_enable_notify(MigrationIncomingState *mis) 650 { 651 assert(0); 652 return -1; 653 } 654 655 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from) 656 { 657 assert(0); 658 return -1; 659 } 660 661 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host) 662 { 663 assert(0); 664 return -1; 665 } 666 667 void *postcopy_get_tmp_page(MigrationIncomingState *mis) 668 { 669 assert(0); 670 return NULL; 671 } 672 673 #endif 674 675 /* ------------------------------------------------------------------------- */ 676 677 /** 678 * postcopy_discard_send_init: Called at the start of each RAMBlock before 679 * asking to discard individual ranges. 680 * 681 * @ms: The current migration state. 682 * @offset: the bitmap offset of the named RAMBlock in the migration 683 * bitmap. 684 * @name: RAMBlock that discards will operate on. 685 * 686 * returns: a new PDS. 687 */ 688 PostcopyDiscardState *postcopy_discard_send_init(MigrationState *ms, 689 unsigned long offset, 690 const char *name) 691 { 692 PostcopyDiscardState *res = g_malloc0(sizeof(PostcopyDiscardState)); 693 694 if (res) { 695 res->ramblock_name = name; 696 res->offset = offset; 697 } 698 699 return res; 700 } 701 702 /** 703 * postcopy_discard_send_range: Called by the bitmap code for each chunk to 704 * discard. May send a discard message, may just leave it queued to 705 * be sent later. 706 * 707 * @ms: Current migration state. 708 * @pds: Structure initialised by postcopy_discard_send_init(). 709 * @start,@length: a range of pages in the migration bitmap in the 710 * RAM block passed to postcopy_discard_send_init() (length=1 is one page) 711 */ 712 void postcopy_discard_send_range(MigrationState *ms, PostcopyDiscardState *pds, 713 unsigned long start, unsigned long length) 714 { 715 size_t tp_bits = qemu_target_page_bits(); 716 /* Convert to byte offsets within the RAM block */ 717 pds->start_list[pds->cur_entry] = (start - pds->offset) << tp_bits; 718 pds->length_list[pds->cur_entry] = length << tp_bits; 719 trace_postcopy_discard_send_range(pds->ramblock_name, start, length); 720 pds->cur_entry++; 721 pds->nsentwords++; 722 723 if (pds->cur_entry == MAX_DISCARDS_PER_COMMAND) { 724 /* Full set, ship it! */ 725 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 726 pds->ramblock_name, 727 pds->cur_entry, 728 pds->start_list, 729 pds->length_list); 730 pds->nsentcmds++; 731 pds->cur_entry = 0; 732 } 733 } 734 735 /** 736 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the 737 * bitmap code. Sends any outstanding discard messages, frees the PDS 738 * 739 * @ms: Current migration state. 740 * @pds: Structure initialised by postcopy_discard_send_init(). 741 */ 742 void postcopy_discard_send_finish(MigrationState *ms, PostcopyDiscardState *pds) 743 { 744 /* Anything unsent? */ 745 if (pds->cur_entry) { 746 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 747 pds->ramblock_name, 748 pds->cur_entry, 749 pds->start_list, 750 pds->length_list); 751 pds->nsentcmds++; 752 } 753 754 trace_postcopy_discard_send_finish(pds->ramblock_name, pds->nsentwords, 755 pds->nsentcmds); 756 757 g_free(pds); 758 } 759