1 /* 2 * Postcopy migration for RAM 3 * 4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Dave Gilbert <dgilbert@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14 /* 15 * Postcopy is a migration technique where the execution flips from the 16 * source to the destination before all the data has been copied. 17 */ 18 19 #include "qemu/osdep.h" 20 #include "exec/target_page.h" 21 #include "migration.h" 22 #include "qemu-file.h" 23 #include "savevm.h" 24 #include "postcopy-ram.h" 25 #include "ram.h" 26 #include "sysemu/sysemu.h" 27 #include "sysemu/balloon.h" 28 #include "qemu/error-report.h" 29 #include "trace.h" 30 31 /* Arbitrary limit on size of each discard command, 32 * keeps them around ~200 bytes 33 */ 34 #define MAX_DISCARDS_PER_COMMAND 12 35 36 struct PostcopyDiscardState { 37 const char *ramblock_name; 38 uint16_t cur_entry; 39 /* 40 * Start and length of a discard range (bytes) 41 */ 42 uint64_t start_list[MAX_DISCARDS_PER_COMMAND]; 43 uint64_t length_list[MAX_DISCARDS_PER_COMMAND]; 44 unsigned int nsentwords; 45 unsigned int nsentcmds; 46 }; 47 48 /* Postcopy needs to detect accesses to pages that haven't yet been copied 49 * across, and efficiently map new pages in, the techniques for doing this 50 * are target OS specific. 51 */ 52 #if defined(__linux__) 53 54 #include <poll.h> 55 #include <sys/ioctl.h> 56 #include <sys/syscall.h> 57 #include <asm/types.h> /* for __u64 */ 58 #endif 59 60 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD) 61 #include <sys/eventfd.h> 62 #include <linux/userfaultfd.h> 63 64 static bool ufd_version_check(int ufd) 65 { 66 struct uffdio_api api_struct; 67 uint64_t ioctl_mask; 68 69 api_struct.api = UFFD_API; 70 api_struct.features = 0; 71 if (ioctl(ufd, UFFDIO_API, &api_struct)) { 72 error_report("postcopy_ram_supported_by_host: UFFDIO_API failed: %s", 73 strerror(errno)); 74 return false; 75 } 76 77 ioctl_mask = (__u64)1 << _UFFDIO_REGISTER | 78 (__u64)1 << _UFFDIO_UNREGISTER; 79 if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) { 80 error_report("Missing userfault features: %" PRIx64, 81 (uint64_t)(~api_struct.ioctls & ioctl_mask)); 82 return false; 83 } 84 85 if (getpagesize() != ram_pagesize_summary()) { 86 bool have_hp = false; 87 /* We've got a huge page */ 88 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS 89 have_hp = api_struct.features & UFFD_FEATURE_MISSING_HUGETLBFS; 90 #endif 91 if (!have_hp) { 92 error_report("Userfault on this host does not support huge pages"); 93 return false; 94 } 95 } 96 return true; 97 } 98 99 /* Callback from postcopy_ram_supported_by_host block iterator. 100 */ 101 static int test_ramblock_postcopiable(const char *block_name, void *host_addr, 102 ram_addr_t offset, ram_addr_t length, void *opaque) 103 { 104 RAMBlock *rb = qemu_ram_block_by_name(block_name); 105 size_t pagesize = qemu_ram_pagesize(rb); 106 107 if (qemu_ram_is_shared(rb)) { 108 error_report("Postcopy on shared RAM (%s) is not yet supported", 109 block_name); 110 return 1; 111 } 112 113 if (length % pagesize) { 114 error_report("Postcopy requires RAM blocks to be a page size multiple," 115 " block %s is 0x" RAM_ADDR_FMT " bytes with a " 116 "page size of 0x%zx", block_name, length, pagesize); 117 return 1; 118 } 119 return 0; 120 } 121 122 /* 123 * Note: This has the side effect of munlock'ing all of RAM, that's 124 * normally fine since if the postcopy succeeds it gets turned back on at the 125 * end. 126 */ 127 bool postcopy_ram_supported_by_host(void) 128 { 129 long pagesize = getpagesize(); 130 int ufd = -1; 131 bool ret = false; /* Error unless we change it */ 132 void *testarea = NULL; 133 struct uffdio_register reg_struct; 134 struct uffdio_range range_struct; 135 uint64_t feature_mask; 136 137 if (qemu_target_page_size() > pagesize) { 138 error_report("Target page size bigger than host page size"); 139 goto out; 140 } 141 142 ufd = syscall(__NR_userfaultfd, O_CLOEXEC); 143 if (ufd == -1) { 144 error_report("%s: userfaultfd not available: %s", __func__, 145 strerror(errno)); 146 goto out; 147 } 148 149 /* Version and features check */ 150 if (!ufd_version_check(ufd)) { 151 goto out; 152 } 153 154 /* We don't support postcopy with shared RAM yet */ 155 if (qemu_ram_foreach_block(test_ramblock_postcopiable, NULL)) { 156 goto out; 157 } 158 159 /* 160 * userfault and mlock don't go together; we'll put it back later if 161 * it was enabled. 162 */ 163 if (munlockall()) { 164 error_report("%s: munlockall: %s", __func__, strerror(errno)); 165 return -1; 166 } 167 168 /* 169 * We need to check that the ops we need are supported on anon memory 170 * To do that we need to register a chunk and see the flags that 171 * are returned. 172 */ 173 testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE | 174 MAP_ANONYMOUS, -1, 0); 175 if (testarea == MAP_FAILED) { 176 error_report("%s: Failed to map test area: %s", __func__, 177 strerror(errno)); 178 goto out; 179 } 180 g_assert(((size_t)testarea & (pagesize-1)) == 0); 181 182 reg_struct.range.start = (uintptr_t)testarea; 183 reg_struct.range.len = pagesize; 184 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 185 186 if (ioctl(ufd, UFFDIO_REGISTER, ®_struct)) { 187 error_report("%s userfault register: %s", __func__, strerror(errno)); 188 goto out; 189 } 190 191 range_struct.start = (uintptr_t)testarea; 192 range_struct.len = pagesize; 193 if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) { 194 error_report("%s userfault unregister: %s", __func__, strerror(errno)); 195 goto out; 196 } 197 198 feature_mask = (__u64)1 << _UFFDIO_WAKE | 199 (__u64)1 << _UFFDIO_COPY | 200 (__u64)1 << _UFFDIO_ZEROPAGE; 201 if ((reg_struct.ioctls & feature_mask) != feature_mask) { 202 error_report("Missing userfault map features: %" PRIx64, 203 (uint64_t)(~reg_struct.ioctls & feature_mask)); 204 goto out; 205 } 206 207 /* Success! */ 208 ret = true; 209 out: 210 if (testarea) { 211 munmap(testarea, pagesize); 212 } 213 if (ufd != -1) { 214 close(ufd); 215 } 216 return ret; 217 } 218 219 /* 220 * Setup an area of RAM so that it *can* be used for postcopy later; this 221 * must be done right at the start prior to pre-copy. 222 * opaque should be the MIS. 223 */ 224 static int init_range(const char *block_name, void *host_addr, 225 ram_addr_t offset, ram_addr_t length, void *opaque) 226 { 227 trace_postcopy_init_range(block_name, host_addr, offset, length); 228 229 /* 230 * We need the whole of RAM to be truly empty for postcopy, so things 231 * like ROMs and any data tables built during init must be zero'd 232 * - we're going to get the copy from the source anyway. 233 * (Precopy will just overwrite this data, so doesn't need the discard) 234 */ 235 if (ram_discard_range(block_name, 0, length)) { 236 return -1; 237 } 238 239 return 0; 240 } 241 242 /* 243 * At the end of migration, undo the effects of init_range 244 * opaque should be the MIS. 245 */ 246 static int cleanup_range(const char *block_name, void *host_addr, 247 ram_addr_t offset, ram_addr_t length, void *opaque) 248 { 249 MigrationIncomingState *mis = opaque; 250 struct uffdio_range range_struct; 251 trace_postcopy_cleanup_range(block_name, host_addr, offset, length); 252 253 /* 254 * We turned off hugepage for the precopy stage with postcopy enabled 255 * we can turn it back on now. 256 */ 257 qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE); 258 259 /* 260 * We can also turn off userfault now since we should have all the 261 * pages. It can be useful to leave it on to debug postcopy 262 * if you're not sure it's always getting every page. 263 */ 264 range_struct.start = (uintptr_t)host_addr; 265 range_struct.len = length; 266 267 if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) { 268 error_report("%s: userfault unregister %s", __func__, strerror(errno)); 269 270 return -1; 271 } 272 273 return 0; 274 } 275 276 /* 277 * Initialise postcopy-ram, setting the RAM to a state where we can go into 278 * postcopy later; must be called prior to any precopy. 279 * called from arch_init's similarly named ram_postcopy_incoming_init 280 */ 281 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages) 282 { 283 if (qemu_ram_foreach_block(init_range, NULL)) { 284 return -1; 285 } 286 287 return 0; 288 } 289 290 /* 291 * At the end of a migration where postcopy_ram_incoming_init was called. 292 */ 293 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 294 { 295 trace_postcopy_ram_incoming_cleanup_entry(); 296 297 if (mis->have_fault_thread) { 298 uint64_t tmp64; 299 300 if (qemu_ram_foreach_block(cleanup_range, mis)) { 301 return -1; 302 } 303 /* 304 * Tell the fault_thread to exit, it's an eventfd that should 305 * currently be at 0, we're going to increment it to 1 306 */ 307 tmp64 = 1; 308 if (write(mis->userfault_quit_fd, &tmp64, 8) == 8) { 309 trace_postcopy_ram_incoming_cleanup_join(); 310 qemu_thread_join(&mis->fault_thread); 311 } else { 312 /* Not much we can do here, but may as well report it */ 313 error_report("%s: incrementing userfault_quit_fd: %s", __func__, 314 strerror(errno)); 315 } 316 trace_postcopy_ram_incoming_cleanup_closeuf(); 317 close(mis->userfault_fd); 318 close(mis->userfault_quit_fd); 319 mis->have_fault_thread = false; 320 } 321 322 qemu_balloon_inhibit(false); 323 324 if (enable_mlock) { 325 if (os_mlock() < 0) { 326 error_report("mlock: %s", strerror(errno)); 327 /* 328 * It doesn't feel right to fail at this point, we have a valid 329 * VM state. 330 */ 331 } 332 } 333 334 postcopy_state_set(POSTCOPY_INCOMING_END); 335 336 if (mis->postcopy_tmp_page) { 337 munmap(mis->postcopy_tmp_page, mis->largest_page_size); 338 mis->postcopy_tmp_page = NULL; 339 } 340 if (mis->postcopy_tmp_zero_page) { 341 munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size); 342 mis->postcopy_tmp_zero_page = NULL; 343 } 344 trace_postcopy_ram_incoming_cleanup_exit(); 345 return 0; 346 } 347 348 /* 349 * Disable huge pages on an area 350 */ 351 static int nhp_range(const char *block_name, void *host_addr, 352 ram_addr_t offset, ram_addr_t length, void *opaque) 353 { 354 trace_postcopy_nhp_range(block_name, host_addr, offset, length); 355 356 /* 357 * Before we do discards we need to ensure those discards really 358 * do delete areas of the page, even if THP thinks a hugepage would 359 * be a good idea, so force hugepages off. 360 */ 361 qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE); 362 363 return 0; 364 } 365 366 /* 367 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard 368 * however leaving it until after precopy means that most of the precopy 369 * data is still THPd 370 */ 371 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 372 { 373 if (qemu_ram_foreach_block(nhp_range, mis)) { 374 return -1; 375 } 376 377 postcopy_state_set(POSTCOPY_INCOMING_DISCARD); 378 379 return 0; 380 } 381 382 /* 383 * Mark the given area of RAM as requiring notification to unwritten areas 384 * Used as a callback on qemu_ram_foreach_block. 385 * host_addr: Base of area to mark 386 * offset: Offset in the whole ram arena 387 * length: Length of the section 388 * opaque: MigrationIncomingState pointer 389 * Returns 0 on success 390 */ 391 static int ram_block_enable_notify(const char *block_name, void *host_addr, 392 ram_addr_t offset, ram_addr_t length, 393 void *opaque) 394 { 395 MigrationIncomingState *mis = opaque; 396 struct uffdio_register reg_struct; 397 398 reg_struct.range.start = (uintptr_t)host_addr; 399 reg_struct.range.len = length; 400 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 401 402 /* Now tell our userfault_fd that it's responsible for this area */ 403 if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, ®_struct)) { 404 error_report("%s userfault register: %s", __func__, strerror(errno)); 405 return -1; 406 } 407 if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) { 408 error_report("%s userfault: Region doesn't support COPY", __func__); 409 return -1; 410 } 411 412 return 0; 413 } 414 415 /* 416 * Handle faults detected by the USERFAULT markings 417 */ 418 static void *postcopy_ram_fault_thread(void *opaque) 419 { 420 MigrationIncomingState *mis = opaque; 421 struct uffd_msg msg; 422 int ret; 423 RAMBlock *rb = NULL; 424 RAMBlock *last_rb = NULL; /* last RAMBlock we sent part of */ 425 426 trace_postcopy_ram_fault_thread_entry(); 427 qemu_sem_post(&mis->fault_thread_sem); 428 429 while (true) { 430 ram_addr_t rb_offset; 431 struct pollfd pfd[2]; 432 433 /* 434 * We're mainly waiting for the kernel to give us a faulting HVA, 435 * however we can be told to quit via userfault_quit_fd which is 436 * an eventfd 437 */ 438 pfd[0].fd = mis->userfault_fd; 439 pfd[0].events = POLLIN; 440 pfd[0].revents = 0; 441 pfd[1].fd = mis->userfault_quit_fd; 442 pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */ 443 pfd[1].revents = 0; 444 445 if (poll(pfd, 2, -1 /* Wait forever */) == -1) { 446 error_report("%s: userfault poll: %s", __func__, strerror(errno)); 447 break; 448 } 449 450 if (pfd[1].revents) { 451 trace_postcopy_ram_fault_thread_quit(); 452 break; 453 } 454 455 ret = read(mis->userfault_fd, &msg, sizeof(msg)); 456 if (ret != sizeof(msg)) { 457 if (errno == EAGAIN) { 458 /* 459 * if a wake up happens on the other thread just after 460 * the poll, there is nothing to read. 461 */ 462 continue; 463 } 464 if (ret < 0) { 465 error_report("%s: Failed to read full userfault message: %s", 466 __func__, strerror(errno)); 467 break; 468 } else { 469 error_report("%s: Read %d bytes from userfaultfd expected %zd", 470 __func__, ret, sizeof(msg)); 471 break; /* Lost alignment, don't know what we'd read next */ 472 } 473 } 474 if (msg.event != UFFD_EVENT_PAGEFAULT) { 475 error_report("%s: Read unexpected event %ud from userfaultfd", 476 __func__, msg.event); 477 continue; /* It's not a page fault, shouldn't happen */ 478 } 479 480 rb = qemu_ram_block_from_host( 481 (void *)(uintptr_t)msg.arg.pagefault.address, 482 true, &rb_offset); 483 if (!rb) { 484 error_report("postcopy_ram_fault_thread: Fault outside guest: %" 485 PRIx64, (uint64_t)msg.arg.pagefault.address); 486 break; 487 } 488 489 rb_offset &= ~(qemu_ram_pagesize(rb) - 1); 490 trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address, 491 qemu_ram_get_idstr(rb), 492 rb_offset); 493 494 /* 495 * Send the request to the source - we want to request one 496 * of our host page sizes (which is >= TPS) 497 */ 498 if (rb != last_rb) { 499 last_rb = rb; 500 migrate_send_rp_req_pages(mis, qemu_ram_get_idstr(rb), 501 rb_offset, qemu_ram_pagesize(rb)); 502 } else { 503 /* Save some space */ 504 migrate_send_rp_req_pages(mis, NULL, 505 rb_offset, qemu_ram_pagesize(rb)); 506 } 507 } 508 trace_postcopy_ram_fault_thread_exit(); 509 return NULL; 510 } 511 512 int postcopy_ram_enable_notify(MigrationIncomingState *mis) 513 { 514 /* Open the fd for the kernel to give us userfaults */ 515 mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK); 516 if (mis->userfault_fd == -1) { 517 error_report("%s: Failed to open userfault fd: %s", __func__, 518 strerror(errno)); 519 return -1; 520 } 521 522 /* 523 * Although the host check already tested the API, we need to 524 * do the check again as an ABI handshake on the new fd. 525 */ 526 if (!ufd_version_check(mis->userfault_fd)) { 527 return -1; 528 } 529 530 /* Now an eventfd we use to tell the fault-thread to quit */ 531 mis->userfault_quit_fd = eventfd(0, EFD_CLOEXEC); 532 if (mis->userfault_quit_fd == -1) { 533 error_report("%s: Opening userfault_quit_fd: %s", __func__, 534 strerror(errno)); 535 close(mis->userfault_fd); 536 return -1; 537 } 538 539 qemu_sem_init(&mis->fault_thread_sem, 0); 540 qemu_thread_create(&mis->fault_thread, "postcopy/fault", 541 postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE); 542 qemu_sem_wait(&mis->fault_thread_sem); 543 qemu_sem_destroy(&mis->fault_thread_sem); 544 mis->have_fault_thread = true; 545 546 /* Mark so that we get notified of accesses to unwritten areas */ 547 if (qemu_ram_foreach_block(ram_block_enable_notify, mis)) { 548 return -1; 549 } 550 551 /* 552 * Ballooning can mark pages as absent while we're postcopying 553 * that would cause false userfaults. 554 */ 555 qemu_balloon_inhibit(true); 556 557 trace_postcopy_ram_enable_notify(); 558 559 return 0; 560 } 561 562 /* 563 * Place a host page (from) at (host) atomically 564 * returns 0 on success 565 */ 566 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from, 567 size_t pagesize) 568 { 569 struct uffdio_copy copy_struct; 570 571 copy_struct.dst = (uint64_t)(uintptr_t)host; 572 copy_struct.src = (uint64_t)(uintptr_t)from; 573 copy_struct.len = pagesize; 574 copy_struct.mode = 0; 575 576 /* copy also acks to the kernel waking the stalled thread up 577 * TODO: We can inhibit that ack and only do it if it was requested 578 * which would be slightly cheaper, but we'd have to be careful 579 * of the order of updating our page state. 580 */ 581 if (ioctl(mis->userfault_fd, UFFDIO_COPY, ©_struct)) { 582 int e = errno; 583 error_report("%s: %s copy host: %p from: %p (size: %zd)", 584 __func__, strerror(e), host, from, pagesize); 585 586 return -e; 587 } 588 589 trace_postcopy_place_page(host); 590 return 0; 591 } 592 593 /* 594 * Place a zero page at (host) atomically 595 * returns 0 on success 596 */ 597 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host, 598 size_t pagesize) 599 { 600 trace_postcopy_place_page_zero(host); 601 602 if (pagesize == getpagesize()) { 603 struct uffdio_zeropage zero_struct; 604 zero_struct.range.start = (uint64_t)(uintptr_t)host; 605 zero_struct.range.len = getpagesize(); 606 zero_struct.mode = 0; 607 608 if (ioctl(mis->userfault_fd, UFFDIO_ZEROPAGE, &zero_struct)) { 609 int e = errno; 610 error_report("%s: %s zero host: %p", 611 __func__, strerror(e), host); 612 613 return -e; 614 } 615 } else { 616 /* The kernel can't use UFFDIO_ZEROPAGE for hugepages */ 617 if (!mis->postcopy_tmp_zero_page) { 618 mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size, 619 PROT_READ | PROT_WRITE, 620 MAP_PRIVATE | MAP_ANONYMOUS, 621 -1, 0); 622 if (mis->postcopy_tmp_zero_page == MAP_FAILED) { 623 int e = errno; 624 mis->postcopy_tmp_zero_page = NULL; 625 error_report("%s: %s mapping large zero page", 626 __func__, strerror(e)); 627 return -e; 628 } 629 memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size); 630 } 631 return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page, 632 pagesize); 633 } 634 635 return 0; 636 } 637 638 /* 639 * Returns a target page of memory that can be mapped at a later point in time 640 * using postcopy_place_page 641 * The same address is used repeatedly, postcopy_place_page just takes the 642 * backing page away. 643 * Returns: Pointer to allocated page 644 * 645 */ 646 void *postcopy_get_tmp_page(MigrationIncomingState *mis) 647 { 648 if (!mis->postcopy_tmp_page) { 649 mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size, 650 PROT_READ | PROT_WRITE, MAP_PRIVATE | 651 MAP_ANONYMOUS, -1, 0); 652 if (mis->postcopy_tmp_page == MAP_FAILED) { 653 mis->postcopy_tmp_page = NULL; 654 error_report("%s: %s", __func__, strerror(errno)); 655 return NULL; 656 } 657 } 658 659 return mis->postcopy_tmp_page; 660 } 661 662 #else 663 /* No target OS support, stubs just fail */ 664 bool postcopy_ram_supported_by_host(void) 665 { 666 error_report("%s: No OS support", __func__); 667 return false; 668 } 669 670 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages) 671 { 672 error_report("postcopy_ram_incoming_init: No OS support"); 673 return -1; 674 } 675 676 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 677 { 678 assert(0); 679 return -1; 680 } 681 682 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 683 { 684 assert(0); 685 return -1; 686 } 687 688 int postcopy_ram_enable_notify(MigrationIncomingState *mis) 689 { 690 assert(0); 691 return -1; 692 } 693 694 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from, 695 size_t pagesize) 696 { 697 assert(0); 698 return -1; 699 } 700 701 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host, 702 size_t pagesize) 703 { 704 assert(0); 705 return -1; 706 } 707 708 void *postcopy_get_tmp_page(MigrationIncomingState *mis) 709 { 710 assert(0); 711 return NULL; 712 } 713 714 #endif 715 716 /* ------------------------------------------------------------------------- */ 717 718 /** 719 * postcopy_discard_send_init: Called at the start of each RAMBlock before 720 * asking to discard individual ranges. 721 * 722 * @ms: The current migration state. 723 * @offset: the bitmap offset of the named RAMBlock in the migration 724 * bitmap. 725 * @name: RAMBlock that discards will operate on. 726 * 727 * returns: a new PDS. 728 */ 729 PostcopyDiscardState *postcopy_discard_send_init(MigrationState *ms, 730 const char *name) 731 { 732 PostcopyDiscardState *res = g_malloc0(sizeof(PostcopyDiscardState)); 733 734 if (res) { 735 res->ramblock_name = name; 736 } 737 738 return res; 739 } 740 741 /** 742 * postcopy_discard_send_range: Called by the bitmap code for each chunk to 743 * discard. May send a discard message, may just leave it queued to 744 * be sent later. 745 * 746 * @ms: Current migration state. 747 * @pds: Structure initialised by postcopy_discard_send_init(). 748 * @start,@length: a range of pages in the migration bitmap in the 749 * RAM block passed to postcopy_discard_send_init() (length=1 is one page) 750 */ 751 void postcopy_discard_send_range(MigrationState *ms, PostcopyDiscardState *pds, 752 unsigned long start, unsigned long length) 753 { 754 size_t tp_size = qemu_target_page_size(); 755 /* Convert to byte offsets within the RAM block */ 756 pds->start_list[pds->cur_entry] = start * tp_size; 757 pds->length_list[pds->cur_entry] = length * tp_size; 758 trace_postcopy_discard_send_range(pds->ramblock_name, start, length); 759 pds->cur_entry++; 760 pds->nsentwords++; 761 762 if (pds->cur_entry == MAX_DISCARDS_PER_COMMAND) { 763 /* Full set, ship it! */ 764 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 765 pds->ramblock_name, 766 pds->cur_entry, 767 pds->start_list, 768 pds->length_list); 769 pds->nsentcmds++; 770 pds->cur_entry = 0; 771 } 772 } 773 774 /** 775 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the 776 * bitmap code. Sends any outstanding discard messages, frees the PDS 777 * 778 * @ms: Current migration state. 779 * @pds: Structure initialised by postcopy_discard_send_init(). 780 */ 781 void postcopy_discard_send_finish(MigrationState *ms, PostcopyDiscardState *pds) 782 { 783 /* Anything unsent? */ 784 if (pds->cur_entry) { 785 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 786 pds->ramblock_name, 787 pds->cur_entry, 788 pds->start_list, 789 pds->length_list); 790 pds->nsentcmds++; 791 } 792 793 trace_postcopy_discard_send_finish(pds->ramblock_name, pds->nsentwords, 794 pds->nsentcmds); 795 796 g_free(pds); 797 } 798 799 /* 800 * Current state of incoming postcopy; note this is not part of 801 * MigrationIncomingState since it's state is used during cleanup 802 * at the end as MIS is being freed. 803 */ 804 static PostcopyState incoming_postcopy_state; 805 806 PostcopyState postcopy_state_get(void) 807 { 808 return atomic_mb_read(&incoming_postcopy_state); 809 } 810 811 /* Set the state and return the old state */ 812 PostcopyState postcopy_state_set(PostcopyState new_state) 813 { 814 return atomic_xchg(&incoming_postcopy_state, new_state); 815 } 816