xref: /openbmc/qemu/migration/postcopy-ram.c (revision 80adf54e)
1 /*
2  * Postcopy migration for RAM
3  *
4  * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Dave Gilbert  <dgilbert@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13 
14 /*
15  * Postcopy is a migration technique where the execution flips from the
16  * source to the destination before all the data has been copied.
17  */
18 
19 #include "qemu/osdep.h"
20 #include "exec/target_page.h"
21 #include "migration.h"
22 #include "qemu-file.h"
23 #include "savevm.h"
24 #include "postcopy-ram.h"
25 #include "ram.h"
26 #include "sysemu/sysemu.h"
27 #include "sysemu/balloon.h"
28 #include "qemu/error-report.h"
29 #include "trace.h"
30 
31 /* Arbitrary limit on size of each discard command,
32  * keeps them around ~200 bytes
33  */
34 #define MAX_DISCARDS_PER_COMMAND 12
35 
36 struct PostcopyDiscardState {
37     const char *ramblock_name;
38     uint16_t cur_entry;
39     /*
40      * Start and length of a discard range (bytes)
41      */
42     uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
43     uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
44     unsigned int nsentwords;
45     unsigned int nsentcmds;
46 };
47 
48 /* Postcopy needs to detect accesses to pages that haven't yet been copied
49  * across, and efficiently map new pages in, the techniques for doing this
50  * are target OS specific.
51  */
52 #if defined(__linux__)
53 
54 #include <poll.h>
55 #include <sys/ioctl.h>
56 #include <sys/syscall.h>
57 #include <asm/types.h> /* for __u64 */
58 #endif
59 
60 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
61 #include <sys/eventfd.h>
62 #include <linux/userfaultfd.h>
63 
64 static bool ufd_version_check(int ufd)
65 {
66     struct uffdio_api api_struct;
67     uint64_t ioctl_mask;
68 
69     api_struct.api = UFFD_API;
70     api_struct.features = 0;
71     if (ioctl(ufd, UFFDIO_API, &api_struct)) {
72         error_report("postcopy_ram_supported_by_host: UFFDIO_API failed: %s",
73                      strerror(errno));
74         return false;
75     }
76 
77     ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
78                  (__u64)1 << _UFFDIO_UNREGISTER;
79     if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
80         error_report("Missing userfault features: %" PRIx64,
81                      (uint64_t)(~api_struct.ioctls & ioctl_mask));
82         return false;
83     }
84 
85     if (getpagesize() != ram_pagesize_summary()) {
86         bool have_hp = false;
87         /* We've got a huge page */
88 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS
89         have_hp = api_struct.features & UFFD_FEATURE_MISSING_HUGETLBFS;
90 #endif
91         if (!have_hp) {
92             error_report("Userfault on this host does not support huge pages");
93             return false;
94         }
95     }
96     return true;
97 }
98 
99 /* Callback from postcopy_ram_supported_by_host block iterator.
100  */
101 static int test_ramblock_postcopiable(const char *block_name, void *host_addr,
102                              ram_addr_t offset, ram_addr_t length, void *opaque)
103 {
104     RAMBlock *rb = qemu_ram_block_by_name(block_name);
105     size_t pagesize = qemu_ram_pagesize(rb);
106 
107     if (qemu_ram_is_shared(rb)) {
108         error_report("Postcopy on shared RAM (%s) is not yet supported",
109                      block_name);
110         return 1;
111     }
112 
113     if (length % pagesize) {
114         error_report("Postcopy requires RAM blocks to be a page size multiple,"
115                      " block %s is 0x" RAM_ADDR_FMT " bytes with a "
116                      "page size of 0x%zx", block_name, length, pagesize);
117         return 1;
118     }
119     return 0;
120 }
121 
122 /*
123  * Note: This has the side effect of munlock'ing all of RAM, that's
124  * normally fine since if the postcopy succeeds it gets turned back on at the
125  * end.
126  */
127 bool postcopy_ram_supported_by_host(void)
128 {
129     long pagesize = getpagesize();
130     int ufd = -1;
131     bool ret = false; /* Error unless we change it */
132     void *testarea = NULL;
133     struct uffdio_register reg_struct;
134     struct uffdio_range range_struct;
135     uint64_t feature_mask;
136 
137     if (qemu_target_page_size() > pagesize) {
138         error_report("Target page size bigger than host page size");
139         goto out;
140     }
141 
142     ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
143     if (ufd == -1) {
144         error_report("%s: userfaultfd not available: %s", __func__,
145                      strerror(errno));
146         goto out;
147     }
148 
149     /* Version and features check */
150     if (!ufd_version_check(ufd)) {
151         goto out;
152     }
153 
154     /* We don't support postcopy with shared RAM yet */
155     if (qemu_ram_foreach_block(test_ramblock_postcopiable, NULL)) {
156         goto out;
157     }
158 
159     /*
160      * userfault and mlock don't go together; we'll put it back later if
161      * it was enabled.
162      */
163     if (munlockall()) {
164         error_report("%s: munlockall: %s", __func__,  strerror(errno));
165         return -1;
166     }
167 
168     /*
169      *  We need to check that the ops we need are supported on anon memory
170      *  To do that we need to register a chunk and see the flags that
171      *  are returned.
172      */
173     testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
174                                     MAP_ANONYMOUS, -1, 0);
175     if (testarea == MAP_FAILED) {
176         error_report("%s: Failed to map test area: %s", __func__,
177                      strerror(errno));
178         goto out;
179     }
180     g_assert(((size_t)testarea & (pagesize-1)) == 0);
181 
182     reg_struct.range.start = (uintptr_t)testarea;
183     reg_struct.range.len = pagesize;
184     reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
185 
186     if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
187         error_report("%s userfault register: %s", __func__, strerror(errno));
188         goto out;
189     }
190 
191     range_struct.start = (uintptr_t)testarea;
192     range_struct.len = pagesize;
193     if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
194         error_report("%s userfault unregister: %s", __func__, strerror(errno));
195         goto out;
196     }
197 
198     feature_mask = (__u64)1 << _UFFDIO_WAKE |
199                    (__u64)1 << _UFFDIO_COPY |
200                    (__u64)1 << _UFFDIO_ZEROPAGE;
201     if ((reg_struct.ioctls & feature_mask) != feature_mask) {
202         error_report("Missing userfault map features: %" PRIx64,
203                      (uint64_t)(~reg_struct.ioctls & feature_mask));
204         goto out;
205     }
206 
207     /* Success! */
208     ret = true;
209 out:
210     if (testarea) {
211         munmap(testarea, pagesize);
212     }
213     if (ufd != -1) {
214         close(ufd);
215     }
216     return ret;
217 }
218 
219 /*
220  * Setup an area of RAM so that it *can* be used for postcopy later; this
221  * must be done right at the start prior to pre-copy.
222  * opaque should be the MIS.
223  */
224 static int init_range(const char *block_name, void *host_addr,
225                       ram_addr_t offset, ram_addr_t length, void *opaque)
226 {
227     trace_postcopy_init_range(block_name, host_addr, offset, length);
228 
229     /*
230      * We need the whole of RAM to be truly empty for postcopy, so things
231      * like ROMs and any data tables built during init must be zero'd
232      * - we're going to get the copy from the source anyway.
233      * (Precopy will just overwrite this data, so doesn't need the discard)
234      */
235     if (ram_discard_range(block_name, 0, length)) {
236         return -1;
237     }
238 
239     return 0;
240 }
241 
242 /*
243  * At the end of migration, undo the effects of init_range
244  * opaque should be the MIS.
245  */
246 static int cleanup_range(const char *block_name, void *host_addr,
247                         ram_addr_t offset, ram_addr_t length, void *opaque)
248 {
249     MigrationIncomingState *mis = opaque;
250     struct uffdio_range range_struct;
251     trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
252 
253     /*
254      * We turned off hugepage for the precopy stage with postcopy enabled
255      * we can turn it back on now.
256      */
257     qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
258 
259     /*
260      * We can also turn off userfault now since we should have all the
261      * pages.   It can be useful to leave it on to debug postcopy
262      * if you're not sure it's always getting every page.
263      */
264     range_struct.start = (uintptr_t)host_addr;
265     range_struct.len = length;
266 
267     if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
268         error_report("%s: userfault unregister %s", __func__, strerror(errno));
269 
270         return -1;
271     }
272 
273     return 0;
274 }
275 
276 /*
277  * Initialise postcopy-ram, setting the RAM to a state where we can go into
278  * postcopy later; must be called prior to any precopy.
279  * called from arch_init's similarly named ram_postcopy_incoming_init
280  */
281 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages)
282 {
283     if (qemu_ram_foreach_block(init_range, NULL)) {
284         return -1;
285     }
286 
287     return 0;
288 }
289 
290 /*
291  * At the end of a migration where postcopy_ram_incoming_init was called.
292  */
293 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
294 {
295     trace_postcopy_ram_incoming_cleanup_entry();
296 
297     if (mis->have_fault_thread) {
298         uint64_t tmp64;
299 
300         if (qemu_ram_foreach_block(cleanup_range, mis)) {
301             return -1;
302         }
303         /*
304          * Tell the fault_thread to exit, it's an eventfd that should
305          * currently be at 0, we're going to increment it to 1
306          */
307         tmp64 = 1;
308         if (write(mis->userfault_quit_fd, &tmp64, 8) == 8) {
309             trace_postcopy_ram_incoming_cleanup_join();
310             qemu_thread_join(&mis->fault_thread);
311         } else {
312             /* Not much we can do here, but may as well report it */
313             error_report("%s: incrementing userfault_quit_fd: %s", __func__,
314                          strerror(errno));
315         }
316         trace_postcopy_ram_incoming_cleanup_closeuf();
317         close(mis->userfault_fd);
318         close(mis->userfault_quit_fd);
319         mis->have_fault_thread = false;
320     }
321 
322     qemu_balloon_inhibit(false);
323 
324     if (enable_mlock) {
325         if (os_mlock() < 0) {
326             error_report("mlock: %s", strerror(errno));
327             /*
328              * It doesn't feel right to fail at this point, we have a valid
329              * VM state.
330              */
331         }
332     }
333 
334     postcopy_state_set(POSTCOPY_INCOMING_END);
335 
336     if (mis->postcopy_tmp_page) {
337         munmap(mis->postcopy_tmp_page, mis->largest_page_size);
338         mis->postcopy_tmp_page = NULL;
339     }
340     if (mis->postcopy_tmp_zero_page) {
341         munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
342         mis->postcopy_tmp_zero_page = NULL;
343     }
344     trace_postcopy_ram_incoming_cleanup_exit();
345     return 0;
346 }
347 
348 /*
349  * Disable huge pages on an area
350  */
351 static int nhp_range(const char *block_name, void *host_addr,
352                     ram_addr_t offset, ram_addr_t length, void *opaque)
353 {
354     trace_postcopy_nhp_range(block_name, host_addr, offset, length);
355 
356     /*
357      * Before we do discards we need to ensure those discards really
358      * do delete areas of the page, even if THP thinks a hugepage would
359      * be a good idea, so force hugepages off.
360      */
361     qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
362 
363     return 0;
364 }
365 
366 /*
367  * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
368  * however leaving it until after precopy means that most of the precopy
369  * data is still THPd
370  */
371 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
372 {
373     if (qemu_ram_foreach_block(nhp_range, mis)) {
374         return -1;
375     }
376 
377     postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
378 
379     return 0;
380 }
381 
382 /*
383  * Mark the given area of RAM as requiring notification to unwritten areas
384  * Used as a  callback on qemu_ram_foreach_block.
385  *   host_addr: Base of area to mark
386  *   offset: Offset in the whole ram arena
387  *   length: Length of the section
388  *   opaque: MigrationIncomingState pointer
389  * Returns 0 on success
390  */
391 static int ram_block_enable_notify(const char *block_name, void *host_addr,
392                                    ram_addr_t offset, ram_addr_t length,
393                                    void *opaque)
394 {
395     MigrationIncomingState *mis = opaque;
396     struct uffdio_register reg_struct;
397 
398     reg_struct.range.start = (uintptr_t)host_addr;
399     reg_struct.range.len = length;
400     reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
401 
402     /* Now tell our userfault_fd that it's responsible for this area */
403     if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
404         error_report("%s userfault register: %s", __func__, strerror(errno));
405         return -1;
406     }
407     if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) {
408         error_report("%s userfault: Region doesn't support COPY", __func__);
409         return -1;
410     }
411 
412     return 0;
413 }
414 
415 /*
416  * Handle faults detected by the USERFAULT markings
417  */
418 static void *postcopy_ram_fault_thread(void *opaque)
419 {
420     MigrationIncomingState *mis = opaque;
421     struct uffd_msg msg;
422     int ret;
423     RAMBlock *rb = NULL;
424     RAMBlock *last_rb = NULL; /* last RAMBlock we sent part of */
425 
426     trace_postcopy_ram_fault_thread_entry();
427     qemu_sem_post(&mis->fault_thread_sem);
428 
429     while (true) {
430         ram_addr_t rb_offset;
431         struct pollfd pfd[2];
432 
433         /*
434          * We're mainly waiting for the kernel to give us a faulting HVA,
435          * however we can be told to quit via userfault_quit_fd which is
436          * an eventfd
437          */
438         pfd[0].fd = mis->userfault_fd;
439         pfd[0].events = POLLIN;
440         pfd[0].revents = 0;
441         pfd[1].fd = mis->userfault_quit_fd;
442         pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
443         pfd[1].revents = 0;
444 
445         if (poll(pfd, 2, -1 /* Wait forever */) == -1) {
446             error_report("%s: userfault poll: %s", __func__, strerror(errno));
447             break;
448         }
449 
450         if (pfd[1].revents) {
451             trace_postcopy_ram_fault_thread_quit();
452             break;
453         }
454 
455         ret = read(mis->userfault_fd, &msg, sizeof(msg));
456         if (ret != sizeof(msg)) {
457             if (errno == EAGAIN) {
458                 /*
459                  * if a wake up happens on the other thread just after
460                  * the poll, there is nothing to read.
461                  */
462                 continue;
463             }
464             if (ret < 0) {
465                 error_report("%s: Failed to read full userfault message: %s",
466                              __func__, strerror(errno));
467                 break;
468             } else {
469                 error_report("%s: Read %d bytes from userfaultfd expected %zd",
470                              __func__, ret, sizeof(msg));
471                 break; /* Lost alignment, don't know what we'd read next */
472             }
473         }
474         if (msg.event != UFFD_EVENT_PAGEFAULT) {
475             error_report("%s: Read unexpected event %ud from userfaultfd",
476                          __func__, msg.event);
477             continue; /* It's not a page fault, shouldn't happen */
478         }
479 
480         rb = qemu_ram_block_from_host(
481                  (void *)(uintptr_t)msg.arg.pagefault.address,
482                  true, &rb_offset);
483         if (!rb) {
484             error_report("postcopy_ram_fault_thread: Fault outside guest: %"
485                          PRIx64, (uint64_t)msg.arg.pagefault.address);
486             break;
487         }
488 
489         rb_offset &= ~(qemu_ram_pagesize(rb) - 1);
490         trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
491                                                 qemu_ram_get_idstr(rb),
492                                                 rb_offset);
493 
494         /*
495          * Send the request to the source - we want to request one
496          * of our host page sizes (which is >= TPS)
497          */
498         if (rb != last_rb) {
499             last_rb = rb;
500             migrate_send_rp_req_pages(mis, qemu_ram_get_idstr(rb),
501                                      rb_offset, qemu_ram_pagesize(rb));
502         } else {
503             /* Save some space */
504             migrate_send_rp_req_pages(mis, NULL,
505                                      rb_offset, qemu_ram_pagesize(rb));
506         }
507     }
508     trace_postcopy_ram_fault_thread_exit();
509     return NULL;
510 }
511 
512 int postcopy_ram_enable_notify(MigrationIncomingState *mis)
513 {
514     /* Open the fd for the kernel to give us userfaults */
515     mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
516     if (mis->userfault_fd == -1) {
517         error_report("%s: Failed to open userfault fd: %s", __func__,
518                      strerror(errno));
519         return -1;
520     }
521 
522     /*
523      * Although the host check already tested the API, we need to
524      * do the check again as an ABI handshake on the new fd.
525      */
526     if (!ufd_version_check(mis->userfault_fd)) {
527         return -1;
528     }
529 
530     /* Now an eventfd we use to tell the fault-thread to quit */
531     mis->userfault_quit_fd = eventfd(0, EFD_CLOEXEC);
532     if (mis->userfault_quit_fd == -1) {
533         error_report("%s: Opening userfault_quit_fd: %s", __func__,
534                      strerror(errno));
535         close(mis->userfault_fd);
536         return -1;
537     }
538 
539     qemu_sem_init(&mis->fault_thread_sem, 0);
540     qemu_thread_create(&mis->fault_thread, "postcopy/fault",
541                        postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE);
542     qemu_sem_wait(&mis->fault_thread_sem);
543     qemu_sem_destroy(&mis->fault_thread_sem);
544     mis->have_fault_thread = true;
545 
546     /* Mark so that we get notified of accesses to unwritten areas */
547     if (qemu_ram_foreach_block(ram_block_enable_notify, mis)) {
548         return -1;
549     }
550 
551     /*
552      * Ballooning can mark pages as absent while we're postcopying
553      * that would cause false userfaults.
554      */
555     qemu_balloon_inhibit(true);
556 
557     trace_postcopy_ram_enable_notify();
558 
559     return 0;
560 }
561 
562 /*
563  * Place a host page (from) at (host) atomically
564  * returns 0 on success
565  */
566 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
567                         size_t pagesize)
568 {
569     struct uffdio_copy copy_struct;
570 
571     copy_struct.dst = (uint64_t)(uintptr_t)host;
572     copy_struct.src = (uint64_t)(uintptr_t)from;
573     copy_struct.len = pagesize;
574     copy_struct.mode = 0;
575 
576     /* copy also acks to the kernel waking the stalled thread up
577      * TODO: We can inhibit that ack and only do it if it was requested
578      * which would be slightly cheaper, but we'd have to be careful
579      * of the order of updating our page state.
580      */
581     if (ioctl(mis->userfault_fd, UFFDIO_COPY, &copy_struct)) {
582         int e = errno;
583         error_report("%s: %s copy host: %p from: %p (size: %zd)",
584                      __func__, strerror(e), host, from, pagesize);
585 
586         return -e;
587     }
588 
589     trace_postcopy_place_page(host);
590     return 0;
591 }
592 
593 /*
594  * Place a zero page at (host) atomically
595  * returns 0 on success
596  */
597 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
598                              size_t pagesize)
599 {
600     trace_postcopy_place_page_zero(host);
601 
602     if (pagesize == getpagesize()) {
603         struct uffdio_zeropage zero_struct;
604         zero_struct.range.start = (uint64_t)(uintptr_t)host;
605         zero_struct.range.len = getpagesize();
606         zero_struct.mode = 0;
607 
608         if (ioctl(mis->userfault_fd, UFFDIO_ZEROPAGE, &zero_struct)) {
609             int e = errno;
610             error_report("%s: %s zero host: %p",
611                          __func__, strerror(e), host);
612 
613             return -e;
614         }
615     } else {
616         /* The kernel can't use UFFDIO_ZEROPAGE for hugepages */
617         if (!mis->postcopy_tmp_zero_page) {
618             mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
619                                                PROT_READ | PROT_WRITE,
620                                                MAP_PRIVATE | MAP_ANONYMOUS,
621                                                -1, 0);
622             if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
623                 int e = errno;
624                 mis->postcopy_tmp_zero_page = NULL;
625                 error_report("%s: %s mapping large zero page",
626                              __func__, strerror(e));
627                 return -e;
628             }
629             memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
630         }
631         return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page,
632                                    pagesize);
633     }
634 
635     return 0;
636 }
637 
638 /*
639  * Returns a target page of memory that can be mapped at a later point in time
640  * using postcopy_place_page
641  * The same address is used repeatedly, postcopy_place_page just takes the
642  * backing page away.
643  * Returns: Pointer to allocated page
644  *
645  */
646 void *postcopy_get_tmp_page(MigrationIncomingState *mis)
647 {
648     if (!mis->postcopy_tmp_page) {
649         mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size,
650                              PROT_READ | PROT_WRITE, MAP_PRIVATE |
651                              MAP_ANONYMOUS, -1, 0);
652         if (mis->postcopy_tmp_page == MAP_FAILED) {
653             mis->postcopy_tmp_page = NULL;
654             error_report("%s: %s", __func__, strerror(errno));
655             return NULL;
656         }
657     }
658 
659     return mis->postcopy_tmp_page;
660 }
661 
662 #else
663 /* No target OS support, stubs just fail */
664 bool postcopy_ram_supported_by_host(void)
665 {
666     error_report("%s: No OS support", __func__);
667     return false;
668 }
669 
670 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages)
671 {
672     error_report("postcopy_ram_incoming_init: No OS support");
673     return -1;
674 }
675 
676 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
677 {
678     assert(0);
679     return -1;
680 }
681 
682 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
683 {
684     assert(0);
685     return -1;
686 }
687 
688 int postcopy_ram_enable_notify(MigrationIncomingState *mis)
689 {
690     assert(0);
691     return -1;
692 }
693 
694 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
695                         size_t pagesize)
696 {
697     assert(0);
698     return -1;
699 }
700 
701 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
702                         size_t pagesize)
703 {
704     assert(0);
705     return -1;
706 }
707 
708 void *postcopy_get_tmp_page(MigrationIncomingState *mis)
709 {
710     assert(0);
711     return NULL;
712 }
713 
714 #endif
715 
716 /* ------------------------------------------------------------------------- */
717 
718 /**
719  * postcopy_discard_send_init: Called at the start of each RAMBlock before
720  *   asking to discard individual ranges.
721  *
722  * @ms: The current migration state.
723  * @offset: the bitmap offset of the named RAMBlock in the migration
724  *   bitmap.
725  * @name: RAMBlock that discards will operate on.
726  *
727  * returns: a new PDS.
728  */
729 PostcopyDiscardState *postcopy_discard_send_init(MigrationState *ms,
730                                                  const char *name)
731 {
732     PostcopyDiscardState *res = g_malloc0(sizeof(PostcopyDiscardState));
733 
734     if (res) {
735         res->ramblock_name = name;
736     }
737 
738     return res;
739 }
740 
741 /**
742  * postcopy_discard_send_range: Called by the bitmap code for each chunk to
743  *   discard. May send a discard message, may just leave it queued to
744  *   be sent later.
745  *
746  * @ms: Current migration state.
747  * @pds: Structure initialised by postcopy_discard_send_init().
748  * @start,@length: a range of pages in the migration bitmap in the
749  *   RAM block passed to postcopy_discard_send_init() (length=1 is one page)
750  */
751 void postcopy_discard_send_range(MigrationState *ms, PostcopyDiscardState *pds,
752                                 unsigned long start, unsigned long length)
753 {
754     size_t tp_size = qemu_target_page_size();
755     /* Convert to byte offsets within the RAM block */
756     pds->start_list[pds->cur_entry] = start  * tp_size;
757     pds->length_list[pds->cur_entry] = length * tp_size;
758     trace_postcopy_discard_send_range(pds->ramblock_name, start, length);
759     pds->cur_entry++;
760     pds->nsentwords++;
761 
762     if (pds->cur_entry == MAX_DISCARDS_PER_COMMAND) {
763         /* Full set, ship it! */
764         qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
765                                               pds->ramblock_name,
766                                               pds->cur_entry,
767                                               pds->start_list,
768                                               pds->length_list);
769         pds->nsentcmds++;
770         pds->cur_entry = 0;
771     }
772 }
773 
774 /**
775  * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
776  * bitmap code. Sends any outstanding discard messages, frees the PDS
777  *
778  * @ms: Current migration state.
779  * @pds: Structure initialised by postcopy_discard_send_init().
780  */
781 void postcopy_discard_send_finish(MigrationState *ms, PostcopyDiscardState *pds)
782 {
783     /* Anything unsent? */
784     if (pds->cur_entry) {
785         qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
786                                               pds->ramblock_name,
787                                               pds->cur_entry,
788                                               pds->start_list,
789                                               pds->length_list);
790         pds->nsentcmds++;
791     }
792 
793     trace_postcopy_discard_send_finish(pds->ramblock_name, pds->nsentwords,
794                                        pds->nsentcmds);
795 
796     g_free(pds);
797 }
798 
799 /*
800  * Current state of incoming postcopy; note this is not part of
801  * MigrationIncomingState since it's state is used during cleanup
802  * at the end as MIS is being freed.
803  */
804 static PostcopyState incoming_postcopy_state;
805 
806 PostcopyState  postcopy_state_get(void)
807 {
808     return atomic_mb_read(&incoming_postcopy_state);
809 }
810 
811 /* Set the state and return the old state */
812 PostcopyState postcopy_state_set(PostcopyState new_state)
813 {
814     return atomic_xchg(&incoming_postcopy_state, new_state);
815 }
816