1 /* 2 * Postcopy migration for RAM 3 * 4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Dave Gilbert <dgilbert@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14 /* 15 * Postcopy is a migration technique where the execution flips from the 16 * source to the destination before all the data has been copied. 17 */ 18 19 #include "qemu/osdep.h" 20 #include "qemu/rcu.h" 21 #include "exec/target_page.h" 22 #include "migration.h" 23 #include "qemu-file.h" 24 #include "savevm.h" 25 #include "postcopy-ram.h" 26 #include "ram.h" 27 #include "qapi/error.h" 28 #include "qemu/notify.h" 29 #include "qemu/rcu.h" 30 #include "sysemu/sysemu.h" 31 #include "qemu/error-report.h" 32 #include "trace.h" 33 #include "hw/boards.h" 34 #include "exec/ramblock.h" 35 36 /* Arbitrary limit on size of each discard command, 37 * keeps them around ~200 bytes 38 */ 39 #define MAX_DISCARDS_PER_COMMAND 12 40 41 struct PostcopyDiscardState { 42 const char *ramblock_name; 43 uint16_t cur_entry; 44 /* 45 * Start and length of a discard range (bytes) 46 */ 47 uint64_t start_list[MAX_DISCARDS_PER_COMMAND]; 48 uint64_t length_list[MAX_DISCARDS_PER_COMMAND]; 49 unsigned int nsentwords; 50 unsigned int nsentcmds; 51 }; 52 53 static NotifierWithReturnList postcopy_notifier_list; 54 55 void postcopy_infrastructure_init(void) 56 { 57 notifier_with_return_list_init(&postcopy_notifier_list); 58 } 59 60 void postcopy_add_notifier(NotifierWithReturn *nn) 61 { 62 notifier_with_return_list_add(&postcopy_notifier_list, nn); 63 } 64 65 void postcopy_remove_notifier(NotifierWithReturn *n) 66 { 67 notifier_with_return_remove(n); 68 } 69 70 int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp) 71 { 72 struct PostcopyNotifyData pnd; 73 pnd.reason = reason; 74 pnd.errp = errp; 75 76 return notifier_with_return_list_notify(&postcopy_notifier_list, 77 &pnd); 78 } 79 80 /* Postcopy needs to detect accesses to pages that haven't yet been copied 81 * across, and efficiently map new pages in, the techniques for doing this 82 * are target OS specific. 83 */ 84 #if defined(__linux__) 85 86 #include <poll.h> 87 #include <sys/ioctl.h> 88 #include <sys/syscall.h> 89 #include <asm/types.h> /* for __u64 */ 90 #endif 91 92 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD) 93 #include <sys/eventfd.h> 94 #include <linux/userfaultfd.h> 95 96 typedef struct PostcopyBlocktimeContext { 97 /* time when page fault initiated per vCPU */ 98 uint32_t *page_fault_vcpu_time; 99 /* page address per vCPU */ 100 uintptr_t *vcpu_addr; 101 uint32_t total_blocktime; 102 /* blocktime per vCPU */ 103 uint32_t *vcpu_blocktime; 104 /* point in time when last page fault was initiated */ 105 uint32_t last_begin; 106 /* number of vCPU are suspended */ 107 int smp_cpus_down; 108 uint64_t start_time; 109 110 /* 111 * Handler for exit event, necessary for 112 * releasing whole blocktime_ctx 113 */ 114 Notifier exit_notifier; 115 } PostcopyBlocktimeContext; 116 117 static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx) 118 { 119 g_free(ctx->page_fault_vcpu_time); 120 g_free(ctx->vcpu_addr); 121 g_free(ctx->vcpu_blocktime); 122 g_free(ctx); 123 } 124 125 static void migration_exit_cb(Notifier *n, void *data) 126 { 127 PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext, 128 exit_notifier); 129 destroy_blocktime_context(ctx); 130 } 131 132 static struct PostcopyBlocktimeContext *blocktime_context_new(void) 133 { 134 MachineState *ms = MACHINE(qdev_get_machine()); 135 unsigned int smp_cpus = ms->smp.cpus; 136 PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1); 137 ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus); 138 ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus); 139 ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus); 140 141 ctx->exit_notifier.notify = migration_exit_cb; 142 ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 143 qemu_add_exit_notifier(&ctx->exit_notifier); 144 return ctx; 145 } 146 147 static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx) 148 { 149 MachineState *ms = MACHINE(qdev_get_machine()); 150 uint32List *list = NULL; 151 int i; 152 153 for (i = ms->smp.cpus - 1; i >= 0; i--) { 154 QAPI_LIST_PREPEND(list, ctx->vcpu_blocktime[i]); 155 } 156 157 return list; 158 } 159 160 /* 161 * This function just populates MigrationInfo from postcopy's 162 * blocktime context. It will not populate MigrationInfo, 163 * unless postcopy-blocktime capability was set. 164 * 165 * @info: pointer to MigrationInfo to populate 166 */ 167 void fill_destination_postcopy_migration_info(MigrationInfo *info) 168 { 169 MigrationIncomingState *mis = migration_incoming_get_current(); 170 PostcopyBlocktimeContext *bc = mis->blocktime_ctx; 171 172 if (!bc) { 173 return; 174 } 175 176 info->has_postcopy_blocktime = true; 177 info->postcopy_blocktime = bc->total_blocktime; 178 info->has_postcopy_vcpu_blocktime = true; 179 info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc); 180 } 181 182 static uint32_t get_postcopy_total_blocktime(void) 183 { 184 MigrationIncomingState *mis = migration_incoming_get_current(); 185 PostcopyBlocktimeContext *bc = mis->blocktime_ctx; 186 187 if (!bc) { 188 return 0; 189 } 190 191 return bc->total_blocktime; 192 } 193 194 /** 195 * receive_ufd_features: check userfault fd features, to request only supported 196 * features in the future. 197 * 198 * Returns: true on success 199 * 200 * __NR_userfaultfd - should be checked before 201 * @features: out parameter will contain uffdio_api.features provided by kernel 202 * in case of success 203 */ 204 static bool receive_ufd_features(uint64_t *features) 205 { 206 struct uffdio_api api_struct = {0}; 207 int ufd; 208 bool ret = true; 209 210 /* if we are here __NR_userfaultfd should exists */ 211 ufd = syscall(__NR_userfaultfd, O_CLOEXEC); 212 if (ufd == -1) { 213 error_report("%s: syscall __NR_userfaultfd failed: %s", __func__, 214 strerror(errno)); 215 return false; 216 } 217 218 /* ask features */ 219 api_struct.api = UFFD_API; 220 api_struct.features = 0; 221 if (ioctl(ufd, UFFDIO_API, &api_struct)) { 222 error_report("%s: UFFDIO_API failed: %s", __func__, 223 strerror(errno)); 224 ret = false; 225 goto release_ufd; 226 } 227 228 *features = api_struct.features; 229 230 release_ufd: 231 close(ufd); 232 return ret; 233 } 234 235 /** 236 * request_ufd_features: this function should be called only once on a newly 237 * opened ufd, subsequent calls will lead to error. 238 * 239 * Returns: true on success 240 * 241 * @ufd: fd obtained from userfaultfd syscall 242 * @features: bit mask see UFFD_API_FEATURES 243 */ 244 static bool request_ufd_features(int ufd, uint64_t features) 245 { 246 struct uffdio_api api_struct = {0}; 247 uint64_t ioctl_mask; 248 249 api_struct.api = UFFD_API; 250 api_struct.features = features; 251 if (ioctl(ufd, UFFDIO_API, &api_struct)) { 252 error_report("%s failed: UFFDIO_API failed: %s", __func__, 253 strerror(errno)); 254 return false; 255 } 256 257 ioctl_mask = (__u64)1 << _UFFDIO_REGISTER | 258 (__u64)1 << _UFFDIO_UNREGISTER; 259 if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) { 260 error_report("Missing userfault features: %" PRIx64, 261 (uint64_t)(~api_struct.ioctls & ioctl_mask)); 262 return false; 263 } 264 265 return true; 266 } 267 268 static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis) 269 { 270 uint64_t asked_features = 0; 271 static uint64_t supported_features; 272 273 /* 274 * it's not possible to 275 * request UFFD_API twice per one fd 276 * userfault fd features is persistent 277 */ 278 if (!supported_features) { 279 if (!receive_ufd_features(&supported_features)) { 280 error_report("%s failed", __func__); 281 return false; 282 } 283 } 284 285 #ifdef UFFD_FEATURE_THREAD_ID 286 if (migrate_postcopy_blocktime() && mis && 287 UFFD_FEATURE_THREAD_ID & supported_features) { 288 /* kernel supports that feature */ 289 /* don't create blocktime_context if it exists */ 290 if (!mis->blocktime_ctx) { 291 mis->blocktime_ctx = blocktime_context_new(); 292 } 293 294 asked_features |= UFFD_FEATURE_THREAD_ID; 295 } 296 #endif 297 298 /* 299 * request features, even if asked_features is 0, due to 300 * kernel expects UFFD_API before UFFDIO_REGISTER, per 301 * userfault file descriptor 302 */ 303 if (!request_ufd_features(ufd, asked_features)) { 304 error_report("%s failed: features %" PRIu64, __func__, 305 asked_features); 306 return false; 307 } 308 309 if (qemu_real_host_page_size != ram_pagesize_summary()) { 310 bool have_hp = false; 311 /* We've got a huge page */ 312 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS 313 have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS; 314 #endif 315 if (!have_hp) { 316 error_report("Userfault on this host does not support huge pages"); 317 return false; 318 } 319 } 320 return true; 321 } 322 323 /* Callback from postcopy_ram_supported_by_host block iterator. 324 */ 325 static int test_ramblock_postcopiable(RAMBlock *rb, void *opaque) 326 { 327 const char *block_name = qemu_ram_get_idstr(rb); 328 ram_addr_t length = qemu_ram_get_used_length(rb); 329 size_t pagesize = qemu_ram_pagesize(rb); 330 331 if (length % pagesize) { 332 error_report("Postcopy requires RAM blocks to be a page size multiple," 333 " block %s is 0x" RAM_ADDR_FMT " bytes with a " 334 "page size of 0x%zx", block_name, length, pagesize); 335 return 1; 336 } 337 return 0; 338 } 339 340 /* 341 * Note: This has the side effect of munlock'ing all of RAM, that's 342 * normally fine since if the postcopy succeeds it gets turned back on at the 343 * end. 344 */ 345 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis) 346 { 347 long pagesize = qemu_real_host_page_size; 348 int ufd = -1; 349 bool ret = false; /* Error unless we change it */ 350 void *testarea = NULL; 351 struct uffdio_register reg_struct; 352 struct uffdio_range range_struct; 353 uint64_t feature_mask; 354 Error *local_err = NULL; 355 356 if (qemu_target_page_size() > pagesize) { 357 error_report("Target page size bigger than host page size"); 358 goto out; 359 } 360 361 ufd = syscall(__NR_userfaultfd, O_CLOEXEC); 362 if (ufd == -1) { 363 error_report("%s: userfaultfd not available: %s", __func__, 364 strerror(errno)); 365 goto out; 366 } 367 368 /* Give devices a chance to object */ 369 if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, &local_err)) { 370 error_report_err(local_err); 371 goto out; 372 } 373 374 /* Version and features check */ 375 if (!ufd_check_and_apply(ufd, mis)) { 376 goto out; 377 } 378 379 /* We don't support postcopy with shared RAM yet */ 380 if (foreach_not_ignored_block(test_ramblock_postcopiable, NULL)) { 381 goto out; 382 } 383 384 /* 385 * userfault and mlock don't go together; we'll put it back later if 386 * it was enabled. 387 */ 388 if (munlockall()) { 389 error_report("%s: munlockall: %s", __func__, strerror(errno)); 390 goto out; 391 } 392 393 /* 394 * We need to check that the ops we need are supported on anon memory 395 * To do that we need to register a chunk and see the flags that 396 * are returned. 397 */ 398 testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE | 399 MAP_ANONYMOUS, -1, 0); 400 if (testarea == MAP_FAILED) { 401 error_report("%s: Failed to map test area: %s", __func__, 402 strerror(errno)); 403 goto out; 404 } 405 g_assert(((size_t)testarea & (pagesize - 1)) == 0); 406 407 reg_struct.range.start = (uintptr_t)testarea; 408 reg_struct.range.len = pagesize; 409 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 410 411 if (ioctl(ufd, UFFDIO_REGISTER, ®_struct)) { 412 error_report("%s userfault register: %s", __func__, strerror(errno)); 413 goto out; 414 } 415 416 range_struct.start = (uintptr_t)testarea; 417 range_struct.len = pagesize; 418 if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) { 419 error_report("%s userfault unregister: %s", __func__, strerror(errno)); 420 goto out; 421 } 422 423 feature_mask = (__u64)1 << _UFFDIO_WAKE | 424 (__u64)1 << _UFFDIO_COPY | 425 (__u64)1 << _UFFDIO_ZEROPAGE; 426 if ((reg_struct.ioctls & feature_mask) != feature_mask) { 427 error_report("Missing userfault map features: %" PRIx64, 428 (uint64_t)(~reg_struct.ioctls & feature_mask)); 429 goto out; 430 } 431 432 /* Success! */ 433 ret = true; 434 out: 435 if (testarea) { 436 munmap(testarea, pagesize); 437 } 438 if (ufd != -1) { 439 close(ufd); 440 } 441 return ret; 442 } 443 444 /* 445 * Setup an area of RAM so that it *can* be used for postcopy later; this 446 * must be done right at the start prior to pre-copy. 447 * opaque should be the MIS. 448 */ 449 static int init_range(RAMBlock *rb, void *opaque) 450 { 451 const char *block_name = qemu_ram_get_idstr(rb); 452 void *host_addr = qemu_ram_get_host_addr(rb); 453 ram_addr_t offset = qemu_ram_get_offset(rb); 454 ram_addr_t length = qemu_ram_get_used_length(rb); 455 trace_postcopy_init_range(block_name, host_addr, offset, length); 456 457 /* 458 * Save the used_length before running the guest. In case we have to 459 * resize RAM blocks when syncing RAM block sizes from the source during 460 * precopy, we'll update it manually via the ram block notifier. 461 */ 462 rb->postcopy_length = length; 463 464 /* 465 * We need the whole of RAM to be truly empty for postcopy, so things 466 * like ROMs and any data tables built during init must be zero'd 467 * - we're going to get the copy from the source anyway. 468 * (Precopy will just overwrite this data, so doesn't need the discard) 469 */ 470 if (ram_discard_range(block_name, 0, length)) { 471 return -1; 472 } 473 474 return 0; 475 } 476 477 /* 478 * At the end of migration, undo the effects of init_range 479 * opaque should be the MIS. 480 */ 481 static int cleanup_range(RAMBlock *rb, void *opaque) 482 { 483 const char *block_name = qemu_ram_get_idstr(rb); 484 void *host_addr = qemu_ram_get_host_addr(rb); 485 ram_addr_t offset = qemu_ram_get_offset(rb); 486 ram_addr_t length = rb->postcopy_length; 487 MigrationIncomingState *mis = opaque; 488 struct uffdio_range range_struct; 489 trace_postcopy_cleanup_range(block_name, host_addr, offset, length); 490 491 /* 492 * We turned off hugepage for the precopy stage with postcopy enabled 493 * we can turn it back on now. 494 */ 495 qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE); 496 497 /* 498 * We can also turn off userfault now since we should have all the 499 * pages. It can be useful to leave it on to debug postcopy 500 * if you're not sure it's always getting every page. 501 */ 502 range_struct.start = (uintptr_t)host_addr; 503 range_struct.len = length; 504 505 if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) { 506 error_report("%s: userfault unregister %s", __func__, strerror(errno)); 507 508 return -1; 509 } 510 511 return 0; 512 } 513 514 /* 515 * Initialise postcopy-ram, setting the RAM to a state where we can go into 516 * postcopy later; must be called prior to any precopy. 517 * called from arch_init's similarly named ram_postcopy_incoming_init 518 */ 519 int postcopy_ram_incoming_init(MigrationIncomingState *mis) 520 { 521 if (foreach_not_ignored_block(init_range, NULL)) { 522 return -1; 523 } 524 525 return 0; 526 } 527 528 /* 529 * At the end of a migration where postcopy_ram_incoming_init was called. 530 */ 531 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 532 { 533 trace_postcopy_ram_incoming_cleanup_entry(); 534 535 if (mis->have_fault_thread) { 536 Error *local_err = NULL; 537 538 /* Let the fault thread quit */ 539 qatomic_set(&mis->fault_thread_quit, 1); 540 postcopy_fault_thread_notify(mis); 541 trace_postcopy_ram_incoming_cleanup_join(); 542 qemu_thread_join(&mis->fault_thread); 543 544 if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) { 545 error_report_err(local_err); 546 return -1; 547 } 548 549 if (foreach_not_ignored_block(cleanup_range, mis)) { 550 return -1; 551 } 552 553 trace_postcopy_ram_incoming_cleanup_closeuf(); 554 close(mis->userfault_fd); 555 close(mis->userfault_event_fd); 556 mis->have_fault_thread = false; 557 } 558 559 if (enable_mlock) { 560 if (os_mlock() < 0) { 561 error_report("mlock: %s", strerror(errno)); 562 /* 563 * It doesn't feel right to fail at this point, we have a valid 564 * VM state. 565 */ 566 } 567 } 568 569 if (mis->postcopy_tmp_page) { 570 munmap(mis->postcopy_tmp_page, mis->largest_page_size); 571 mis->postcopy_tmp_page = NULL; 572 } 573 if (mis->postcopy_tmp_zero_page) { 574 munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size); 575 mis->postcopy_tmp_zero_page = NULL; 576 } 577 trace_postcopy_ram_incoming_cleanup_blocktime( 578 get_postcopy_total_blocktime()); 579 580 trace_postcopy_ram_incoming_cleanup_exit(); 581 return 0; 582 } 583 584 /* 585 * Disable huge pages on an area 586 */ 587 static int nhp_range(RAMBlock *rb, void *opaque) 588 { 589 const char *block_name = qemu_ram_get_idstr(rb); 590 void *host_addr = qemu_ram_get_host_addr(rb); 591 ram_addr_t offset = qemu_ram_get_offset(rb); 592 ram_addr_t length = rb->postcopy_length; 593 trace_postcopy_nhp_range(block_name, host_addr, offset, length); 594 595 /* 596 * Before we do discards we need to ensure those discards really 597 * do delete areas of the page, even if THP thinks a hugepage would 598 * be a good idea, so force hugepages off. 599 */ 600 qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE); 601 602 return 0; 603 } 604 605 /* 606 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard 607 * however leaving it until after precopy means that most of the precopy 608 * data is still THPd 609 */ 610 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 611 { 612 if (foreach_not_ignored_block(nhp_range, mis)) { 613 return -1; 614 } 615 616 postcopy_state_set(POSTCOPY_INCOMING_DISCARD); 617 618 return 0; 619 } 620 621 /* 622 * Mark the given area of RAM as requiring notification to unwritten areas 623 * Used as a callback on foreach_not_ignored_block. 624 * host_addr: Base of area to mark 625 * offset: Offset in the whole ram arena 626 * length: Length of the section 627 * opaque: MigrationIncomingState pointer 628 * Returns 0 on success 629 */ 630 static int ram_block_enable_notify(RAMBlock *rb, void *opaque) 631 { 632 MigrationIncomingState *mis = opaque; 633 struct uffdio_register reg_struct; 634 635 reg_struct.range.start = (uintptr_t)qemu_ram_get_host_addr(rb); 636 reg_struct.range.len = rb->postcopy_length; 637 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 638 639 /* Now tell our userfault_fd that it's responsible for this area */ 640 if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, ®_struct)) { 641 error_report("%s userfault register: %s", __func__, strerror(errno)); 642 return -1; 643 } 644 if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) { 645 error_report("%s userfault: Region doesn't support COPY", __func__); 646 return -1; 647 } 648 if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) { 649 qemu_ram_set_uf_zeroable(rb); 650 } 651 652 return 0; 653 } 654 655 int postcopy_wake_shared(struct PostCopyFD *pcfd, 656 uint64_t client_addr, 657 RAMBlock *rb) 658 { 659 size_t pagesize = qemu_ram_pagesize(rb); 660 struct uffdio_range range; 661 int ret; 662 trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb)); 663 range.start = client_addr & ~(pagesize - 1); 664 range.len = pagesize; 665 ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range); 666 if (ret) { 667 error_report("%s: Failed to wake: %zx in %s (%s)", 668 __func__, (size_t)client_addr, qemu_ram_get_idstr(rb), 669 strerror(errno)); 670 } 671 return ret; 672 } 673 674 /* 675 * Callback from shared fault handlers to ask for a page, 676 * the page must be specified by a RAMBlock and an offset in that rb 677 * Note: Only for use by shared fault handlers (in fault thread) 678 */ 679 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb, 680 uint64_t client_addr, uint64_t rb_offset) 681 { 682 size_t pagesize = qemu_ram_pagesize(rb); 683 uint64_t aligned_rbo = rb_offset & ~(pagesize - 1); 684 MigrationIncomingState *mis = migration_incoming_get_current(); 685 686 trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb), 687 rb_offset); 688 if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) { 689 trace_postcopy_request_shared_page_present(pcfd->idstr, 690 qemu_ram_get_idstr(rb), rb_offset); 691 return postcopy_wake_shared(pcfd, client_addr, rb); 692 } 693 migrate_send_rp_req_pages(mis, rb, aligned_rbo, client_addr); 694 return 0; 695 } 696 697 static int get_mem_fault_cpu_index(uint32_t pid) 698 { 699 CPUState *cpu_iter; 700 701 CPU_FOREACH(cpu_iter) { 702 if (cpu_iter->thread_id == pid) { 703 trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid); 704 return cpu_iter->cpu_index; 705 } 706 } 707 trace_get_mem_fault_cpu_index(-1, pid); 708 return -1; 709 } 710 711 static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc) 712 { 713 int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) - 714 dc->start_time; 715 return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX; 716 } 717 718 /* 719 * This function is being called when pagefault occurs. It 720 * tracks down vCPU blocking time. 721 * 722 * @addr: faulted host virtual address 723 * @ptid: faulted process thread id 724 * @rb: ramblock appropriate to addr 725 */ 726 static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid, 727 RAMBlock *rb) 728 { 729 int cpu, already_received; 730 MigrationIncomingState *mis = migration_incoming_get_current(); 731 PostcopyBlocktimeContext *dc = mis->blocktime_ctx; 732 uint32_t low_time_offset; 733 734 if (!dc || ptid == 0) { 735 return; 736 } 737 cpu = get_mem_fault_cpu_index(ptid); 738 if (cpu < 0) { 739 return; 740 } 741 742 low_time_offset = get_low_time_offset(dc); 743 if (dc->vcpu_addr[cpu] == 0) { 744 qatomic_inc(&dc->smp_cpus_down); 745 } 746 747 qatomic_xchg(&dc->last_begin, low_time_offset); 748 qatomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset); 749 qatomic_xchg(&dc->vcpu_addr[cpu], addr); 750 751 /* 752 * check it here, not at the beginning of the function, 753 * due to, check could occur early than bitmap_set in 754 * qemu_ufd_copy_ioctl 755 */ 756 already_received = ramblock_recv_bitmap_test(rb, (void *)addr); 757 if (already_received) { 758 qatomic_xchg(&dc->vcpu_addr[cpu], 0); 759 qatomic_xchg(&dc->page_fault_vcpu_time[cpu], 0); 760 qatomic_dec(&dc->smp_cpus_down); 761 } 762 trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu], 763 cpu, already_received); 764 } 765 766 /* 767 * This function just provide calculated blocktime per cpu and trace it. 768 * Total blocktime is calculated in mark_postcopy_blocktime_end. 769 * 770 * 771 * Assume we have 3 CPU 772 * 773 * S1 E1 S1 E1 774 * -----***********------------xxx***************------------------------> CPU1 775 * 776 * S2 E2 777 * ------------****************xxx---------------------------------------> CPU2 778 * 779 * S3 E3 780 * ------------------------****xxx********-------------------------------> CPU3 781 * 782 * We have sequence S1,S2,E1,S3,S1,E2,E3,E1 783 * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3 784 * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 - 785 * it's a part of total blocktime. 786 * S1 - here is last_begin 787 * Legend of the picture is following: 788 * * - means blocktime per vCPU 789 * x - means overlapped blocktime (total blocktime) 790 * 791 * @addr: host virtual address 792 */ 793 static void mark_postcopy_blocktime_end(uintptr_t addr) 794 { 795 MigrationIncomingState *mis = migration_incoming_get_current(); 796 PostcopyBlocktimeContext *dc = mis->blocktime_ctx; 797 MachineState *ms = MACHINE(qdev_get_machine()); 798 unsigned int smp_cpus = ms->smp.cpus; 799 int i, affected_cpu = 0; 800 bool vcpu_total_blocktime = false; 801 uint32_t read_vcpu_time, low_time_offset; 802 803 if (!dc) { 804 return; 805 } 806 807 low_time_offset = get_low_time_offset(dc); 808 /* lookup cpu, to clear it, 809 * that algorithm looks straightforward, but it's not 810 * optimal, more optimal algorithm is keeping tree or hash 811 * where key is address value is a list of */ 812 for (i = 0; i < smp_cpus; i++) { 813 uint32_t vcpu_blocktime = 0; 814 815 read_vcpu_time = qatomic_fetch_add(&dc->page_fault_vcpu_time[i], 0); 816 if (qatomic_fetch_add(&dc->vcpu_addr[i], 0) != addr || 817 read_vcpu_time == 0) { 818 continue; 819 } 820 qatomic_xchg(&dc->vcpu_addr[i], 0); 821 vcpu_blocktime = low_time_offset - read_vcpu_time; 822 affected_cpu += 1; 823 /* we need to know is that mark_postcopy_end was due to 824 * faulted page, another possible case it's prefetched 825 * page and in that case we shouldn't be here */ 826 if (!vcpu_total_blocktime && 827 qatomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) { 828 vcpu_total_blocktime = true; 829 } 830 /* continue cycle, due to one page could affect several vCPUs */ 831 dc->vcpu_blocktime[i] += vcpu_blocktime; 832 } 833 834 qatomic_sub(&dc->smp_cpus_down, affected_cpu); 835 if (vcpu_total_blocktime) { 836 dc->total_blocktime += low_time_offset - qatomic_fetch_add( 837 &dc->last_begin, 0); 838 } 839 trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime, 840 affected_cpu); 841 } 842 843 static bool postcopy_pause_fault_thread(MigrationIncomingState *mis) 844 { 845 trace_postcopy_pause_fault_thread(); 846 847 qemu_sem_wait(&mis->postcopy_pause_sem_fault); 848 849 trace_postcopy_pause_fault_thread_continued(); 850 851 return true; 852 } 853 854 /* 855 * Handle faults detected by the USERFAULT markings 856 */ 857 static void *postcopy_ram_fault_thread(void *opaque) 858 { 859 MigrationIncomingState *mis = opaque; 860 struct uffd_msg msg; 861 int ret; 862 size_t index; 863 RAMBlock *rb = NULL; 864 865 trace_postcopy_ram_fault_thread_entry(); 866 rcu_register_thread(); 867 mis->last_rb = NULL; /* last RAMBlock we sent part of */ 868 qemu_sem_post(&mis->fault_thread_sem); 869 870 struct pollfd *pfd; 871 size_t pfd_len = 2 + mis->postcopy_remote_fds->len; 872 873 pfd = g_new0(struct pollfd, pfd_len); 874 875 pfd[0].fd = mis->userfault_fd; 876 pfd[0].events = POLLIN; 877 pfd[1].fd = mis->userfault_event_fd; 878 pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */ 879 trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd); 880 for (index = 0; index < mis->postcopy_remote_fds->len; index++) { 881 struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds, 882 struct PostCopyFD, index); 883 pfd[2 + index].fd = pcfd->fd; 884 pfd[2 + index].events = POLLIN; 885 trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr, 886 pcfd->fd); 887 } 888 889 while (true) { 890 ram_addr_t rb_offset; 891 int poll_result; 892 893 /* 894 * We're mainly waiting for the kernel to give us a faulting HVA, 895 * however we can be told to quit via userfault_quit_fd which is 896 * an eventfd 897 */ 898 899 poll_result = poll(pfd, pfd_len, -1 /* Wait forever */); 900 if (poll_result == -1) { 901 error_report("%s: userfault poll: %s", __func__, strerror(errno)); 902 break; 903 } 904 905 if (!mis->to_src_file) { 906 /* 907 * Possibly someone tells us that the return path is 908 * broken already using the event. We should hold until 909 * the channel is rebuilt. 910 */ 911 if (postcopy_pause_fault_thread(mis)) { 912 /* Continue to read the userfaultfd */ 913 } else { 914 error_report("%s: paused but don't allow to continue", 915 __func__); 916 break; 917 } 918 } 919 920 if (pfd[1].revents) { 921 uint64_t tmp64 = 0; 922 923 /* Consume the signal */ 924 if (read(mis->userfault_event_fd, &tmp64, 8) != 8) { 925 /* Nothing obviously nicer than posting this error. */ 926 error_report("%s: read() failed", __func__); 927 } 928 929 if (qatomic_read(&mis->fault_thread_quit)) { 930 trace_postcopy_ram_fault_thread_quit(); 931 break; 932 } 933 } 934 935 if (pfd[0].revents) { 936 poll_result--; 937 ret = read(mis->userfault_fd, &msg, sizeof(msg)); 938 if (ret != sizeof(msg)) { 939 if (errno == EAGAIN) { 940 /* 941 * if a wake up happens on the other thread just after 942 * the poll, there is nothing to read. 943 */ 944 continue; 945 } 946 if (ret < 0) { 947 error_report("%s: Failed to read full userfault " 948 "message: %s", 949 __func__, strerror(errno)); 950 break; 951 } else { 952 error_report("%s: Read %d bytes from userfaultfd " 953 "expected %zd", 954 __func__, ret, sizeof(msg)); 955 break; /* Lost alignment, don't know what we'd read next */ 956 } 957 } 958 if (msg.event != UFFD_EVENT_PAGEFAULT) { 959 error_report("%s: Read unexpected event %ud from userfaultfd", 960 __func__, msg.event); 961 continue; /* It's not a page fault, shouldn't happen */ 962 } 963 964 rb = qemu_ram_block_from_host( 965 (void *)(uintptr_t)msg.arg.pagefault.address, 966 true, &rb_offset); 967 if (!rb) { 968 error_report("postcopy_ram_fault_thread: Fault outside guest: %" 969 PRIx64, (uint64_t)msg.arg.pagefault.address); 970 break; 971 } 972 973 rb_offset &= ~(qemu_ram_pagesize(rb) - 1); 974 trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address, 975 qemu_ram_get_idstr(rb), 976 rb_offset, 977 msg.arg.pagefault.feat.ptid); 978 mark_postcopy_blocktime_begin( 979 (uintptr_t)(msg.arg.pagefault.address), 980 msg.arg.pagefault.feat.ptid, rb); 981 982 retry: 983 /* 984 * Send the request to the source - we want to request one 985 * of our host page sizes (which is >= TPS) 986 */ 987 ret = migrate_send_rp_req_pages(mis, rb, rb_offset, 988 msg.arg.pagefault.address); 989 if (ret) { 990 /* May be network failure, try to wait for recovery */ 991 if (ret == -EIO && postcopy_pause_fault_thread(mis)) { 992 /* We got reconnected somehow, try to continue */ 993 goto retry; 994 } else { 995 /* This is a unavoidable fault */ 996 error_report("%s: migrate_send_rp_req_pages() get %d", 997 __func__, ret); 998 break; 999 } 1000 } 1001 } 1002 1003 /* Now handle any requests from external processes on shared memory */ 1004 /* TODO: May need to handle devices deregistering during postcopy */ 1005 for (index = 2; index < pfd_len && poll_result; index++) { 1006 if (pfd[index].revents) { 1007 struct PostCopyFD *pcfd = 1008 &g_array_index(mis->postcopy_remote_fds, 1009 struct PostCopyFD, index - 2); 1010 1011 poll_result--; 1012 if (pfd[index].revents & POLLERR) { 1013 error_report("%s: POLLERR on poll %zd fd=%d", 1014 __func__, index, pcfd->fd); 1015 pfd[index].events = 0; 1016 continue; 1017 } 1018 1019 ret = read(pcfd->fd, &msg, sizeof(msg)); 1020 if (ret != sizeof(msg)) { 1021 if (errno == EAGAIN) { 1022 /* 1023 * if a wake up happens on the other thread just after 1024 * the poll, there is nothing to read. 1025 */ 1026 continue; 1027 } 1028 if (ret < 0) { 1029 error_report("%s: Failed to read full userfault " 1030 "message: %s (shared) revents=%d", 1031 __func__, strerror(errno), 1032 pfd[index].revents); 1033 /*TODO: Could just disable this sharer */ 1034 break; 1035 } else { 1036 error_report("%s: Read %d bytes from userfaultfd " 1037 "expected %zd (shared)", 1038 __func__, ret, sizeof(msg)); 1039 /*TODO: Could just disable this sharer */ 1040 break; /*Lost alignment,don't know what we'd read next*/ 1041 } 1042 } 1043 if (msg.event != UFFD_EVENT_PAGEFAULT) { 1044 error_report("%s: Read unexpected event %ud " 1045 "from userfaultfd (shared)", 1046 __func__, msg.event); 1047 continue; /* It's not a page fault, shouldn't happen */ 1048 } 1049 /* Call the device handler registered with us */ 1050 ret = pcfd->handler(pcfd, &msg); 1051 if (ret) { 1052 error_report("%s: Failed to resolve shared fault on %zd/%s", 1053 __func__, index, pcfd->idstr); 1054 /* TODO: Fail? Disable this sharer? */ 1055 } 1056 } 1057 } 1058 } 1059 rcu_unregister_thread(); 1060 trace_postcopy_ram_fault_thread_exit(); 1061 g_free(pfd); 1062 return NULL; 1063 } 1064 1065 int postcopy_ram_incoming_setup(MigrationIncomingState *mis) 1066 { 1067 /* Open the fd for the kernel to give us userfaults */ 1068 mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK); 1069 if (mis->userfault_fd == -1) { 1070 error_report("%s: Failed to open userfault fd: %s", __func__, 1071 strerror(errno)); 1072 return -1; 1073 } 1074 1075 /* 1076 * Although the host check already tested the API, we need to 1077 * do the check again as an ABI handshake on the new fd. 1078 */ 1079 if (!ufd_check_and_apply(mis->userfault_fd, mis)) { 1080 return -1; 1081 } 1082 1083 /* Now an eventfd we use to tell the fault-thread to quit */ 1084 mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC); 1085 if (mis->userfault_event_fd == -1) { 1086 error_report("%s: Opening userfault_event_fd: %s", __func__, 1087 strerror(errno)); 1088 close(mis->userfault_fd); 1089 return -1; 1090 } 1091 1092 qemu_sem_init(&mis->fault_thread_sem, 0); 1093 qemu_thread_create(&mis->fault_thread, "postcopy/fault", 1094 postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE); 1095 qemu_sem_wait(&mis->fault_thread_sem); 1096 qemu_sem_destroy(&mis->fault_thread_sem); 1097 mis->have_fault_thread = true; 1098 1099 /* Mark so that we get notified of accesses to unwritten areas */ 1100 if (foreach_not_ignored_block(ram_block_enable_notify, mis)) { 1101 error_report("ram_block_enable_notify failed"); 1102 return -1; 1103 } 1104 1105 mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size, 1106 PROT_READ | PROT_WRITE, MAP_PRIVATE | 1107 MAP_ANONYMOUS, -1, 0); 1108 if (mis->postcopy_tmp_page == MAP_FAILED) { 1109 mis->postcopy_tmp_page = NULL; 1110 error_report("%s: Failed to map postcopy_tmp_page %s", 1111 __func__, strerror(errno)); 1112 return -1; 1113 } 1114 1115 /* 1116 * Map large zero page when kernel can't use UFFDIO_ZEROPAGE for hugepages 1117 */ 1118 mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size, 1119 PROT_READ | PROT_WRITE, 1120 MAP_PRIVATE | MAP_ANONYMOUS, 1121 -1, 0); 1122 if (mis->postcopy_tmp_zero_page == MAP_FAILED) { 1123 int e = errno; 1124 mis->postcopy_tmp_zero_page = NULL; 1125 error_report("%s: Failed to map large zero page %s", 1126 __func__, strerror(e)); 1127 return -e; 1128 } 1129 memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size); 1130 1131 trace_postcopy_ram_enable_notify(); 1132 1133 return 0; 1134 } 1135 1136 static int qemu_ufd_copy_ioctl(MigrationIncomingState *mis, void *host_addr, 1137 void *from_addr, uint64_t pagesize, RAMBlock *rb) 1138 { 1139 int userfault_fd = mis->userfault_fd; 1140 int ret; 1141 1142 if (from_addr) { 1143 struct uffdio_copy copy_struct; 1144 copy_struct.dst = (uint64_t)(uintptr_t)host_addr; 1145 copy_struct.src = (uint64_t)(uintptr_t)from_addr; 1146 copy_struct.len = pagesize; 1147 copy_struct.mode = 0; 1148 ret = ioctl(userfault_fd, UFFDIO_COPY, ©_struct); 1149 } else { 1150 struct uffdio_zeropage zero_struct; 1151 zero_struct.range.start = (uint64_t)(uintptr_t)host_addr; 1152 zero_struct.range.len = pagesize; 1153 zero_struct.mode = 0; 1154 ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct); 1155 } 1156 if (!ret) { 1157 qemu_mutex_lock(&mis->page_request_mutex); 1158 ramblock_recv_bitmap_set_range(rb, host_addr, 1159 pagesize / qemu_target_page_size()); 1160 /* 1161 * If this page resolves a page fault for a previous recorded faulted 1162 * address, take a special note to maintain the requested page list. 1163 */ 1164 if (g_tree_lookup(mis->page_requested, host_addr)) { 1165 g_tree_remove(mis->page_requested, host_addr); 1166 mis->page_requested_count--; 1167 trace_postcopy_page_req_del(host_addr, mis->page_requested_count); 1168 } 1169 qemu_mutex_unlock(&mis->page_request_mutex); 1170 mark_postcopy_blocktime_end((uintptr_t)host_addr); 1171 } 1172 return ret; 1173 } 1174 1175 int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset) 1176 { 1177 int i; 1178 MigrationIncomingState *mis = migration_incoming_get_current(); 1179 GArray *pcrfds = mis->postcopy_remote_fds; 1180 1181 for (i = 0; i < pcrfds->len; i++) { 1182 struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i); 1183 int ret = cur->waker(cur, rb, offset); 1184 if (ret) { 1185 return ret; 1186 } 1187 } 1188 return 0; 1189 } 1190 1191 /* 1192 * Place a host page (from) at (host) atomically 1193 * returns 0 on success 1194 */ 1195 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from, 1196 RAMBlock *rb) 1197 { 1198 size_t pagesize = qemu_ram_pagesize(rb); 1199 1200 /* copy also acks to the kernel waking the stalled thread up 1201 * TODO: We can inhibit that ack and only do it if it was requested 1202 * which would be slightly cheaper, but we'd have to be careful 1203 * of the order of updating our page state. 1204 */ 1205 if (qemu_ufd_copy_ioctl(mis, host, from, pagesize, rb)) { 1206 int e = errno; 1207 error_report("%s: %s copy host: %p from: %p (size: %zd)", 1208 __func__, strerror(e), host, from, pagesize); 1209 1210 return -e; 1211 } 1212 1213 trace_postcopy_place_page(host); 1214 return postcopy_notify_shared_wake(rb, 1215 qemu_ram_block_host_offset(rb, host)); 1216 } 1217 1218 /* 1219 * Place a zero page at (host) atomically 1220 * returns 0 on success 1221 */ 1222 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host, 1223 RAMBlock *rb) 1224 { 1225 size_t pagesize = qemu_ram_pagesize(rb); 1226 trace_postcopy_place_page_zero(host); 1227 1228 /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE 1229 * but it's not available for everything (e.g. hugetlbpages) 1230 */ 1231 if (qemu_ram_is_uf_zeroable(rb)) { 1232 if (qemu_ufd_copy_ioctl(mis, host, NULL, pagesize, rb)) { 1233 int e = errno; 1234 error_report("%s: %s zero host: %p", 1235 __func__, strerror(e), host); 1236 1237 return -e; 1238 } 1239 return postcopy_notify_shared_wake(rb, 1240 qemu_ram_block_host_offset(rb, 1241 host)); 1242 } else { 1243 return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page, rb); 1244 } 1245 } 1246 1247 #else 1248 /* No target OS support, stubs just fail */ 1249 void fill_destination_postcopy_migration_info(MigrationInfo *info) 1250 { 1251 } 1252 1253 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis) 1254 { 1255 error_report("%s: No OS support", __func__); 1256 return false; 1257 } 1258 1259 int postcopy_ram_incoming_init(MigrationIncomingState *mis) 1260 { 1261 error_report("postcopy_ram_incoming_init: No OS support"); 1262 return -1; 1263 } 1264 1265 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 1266 { 1267 assert(0); 1268 return -1; 1269 } 1270 1271 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 1272 { 1273 assert(0); 1274 return -1; 1275 } 1276 1277 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb, 1278 uint64_t client_addr, uint64_t rb_offset) 1279 { 1280 assert(0); 1281 return -1; 1282 } 1283 1284 int postcopy_ram_incoming_setup(MigrationIncomingState *mis) 1285 { 1286 assert(0); 1287 return -1; 1288 } 1289 1290 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from, 1291 RAMBlock *rb) 1292 { 1293 assert(0); 1294 return -1; 1295 } 1296 1297 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host, 1298 RAMBlock *rb) 1299 { 1300 assert(0); 1301 return -1; 1302 } 1303 1304 int postcopy_wake_shared(struct PostCopyFD *pcfd, 1305 uint64_t client_addr, 1306 RAMBlock *rb) 1307 { 1308 assert(0); 1309 return -1; 1310 } 1311 #endif 1312 1313 /* ------------------------------------------------------------------------- */ 1314 1315 void postcopy_fault_thread_notify(MigrationIncomingState *mis) 1316 { 1317 uint64_t tmp64 = 1; 1318 1319 /* 1320 * Wakeup the fault_thread. It's an eventfd that should currently 1321 * be at 0, we're going to increment it to 1 1322 */ 1323 if (write(mis->userfault_event_fd, &tmp64, 8) != 8) { 1324 /* Not much we can do here, but may as well report it */ 1325 error_report("%s: incrementing failed: %s", __func__, 1326 strerror(errno)); 1327 } 1328 } 1329 1330 /** 1331 * postcopy_discard_send_init: Called at the start of each RAMBlock before 1332 * asking to discard individual ranges. 1333 * 1334 * @ms: The current migration state. 1335 * @offset: the bitmap offset of the named RAMBlock in the migration bitmap. 1336 * @name: RAMBlock that discards will operate on. 1337 */ 1338 static PostcopyDiscardState pds = {0}; 1339 void postcopy_discard_send_init(MigrationState *ms, const char *name) 1340 { 1341 pds.ramblock_name = name; 1342 pds.cur_entry = 0; 1343 pds.nsentwords = 0; 1344 pds.nsentcmds = 0; 1345 } 1346 1347 /** 1348 * postcopy_discard_send_range: Called by the bitmap code for each chunk to 1349 * discard. May send a discard message, may just leave it queued to 1350 * be sent later. 1351 * 1352 * @ms: Current migration state. 1353 * @start,@length: a range of pages in the migration bitmap in the 1354 * RAM block passed to postcopy_discard_send_init() (length=1 is one page) 1355 */ 1356 void postcopy_discard_send_range(MigrationState *ms, unsigned long start, 1357 unsigned long length) 1358 { 1359 size_t tp_size = qemu_target_page_size(); 1360 /* Convert to byte offsets within the RAM block */ 1361 pds.start_list[pds.cur_entry] = start * tp_size; 1362 pds.length_list[pds.cur_entry] = length * tp_size; 1363 trace_postcopy_discard_send_range(pds.ramblock_name, start, length); 1364 pds.cur_entry++; 1365 pds.nsentwords++; 1366 1367 if (pds.cur_entry == MAX_DISCARDS_PER_COMMAND) { 1368 /* Full set, ship it! */ 1369 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 1370 pds.ramblock_name, 1371 pds.cur_entry, 1372 pds.start_list, 1373 pds.length_list); 1374 pds.nsentcmds++; 1375 pds.cur_entry = 0; 1376 } 1377 } 1378 1379 /** 1380 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the 1381 * bitmap code. Sends any outstanding discard messages, frees the PDS 1382 * 1383 * @ms: Current migration state. 1384 */ 1385 void postcopy_discard_send_finish(MigrationState *ms) 1386 { 1387 /* Anything unsent? */ 1388 if (pds.cur_entry) { 1389 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 1390 pds.ramblock_name, 1391 pds.cur_entry, 1392 pds.start_list, 1393 pds.length_list); 1394 pds.nsentcmds++; 1395 } 1396 1397 trace_postcopy_discard_send_finish(pds.ramblock_name, pds.nsentwords, 1398 pds.nsentcmds); 1399 } 1400 1401 /* 1402 * Current state of incoming postcopy; note this is not part of 1403 * MigrationIncomingState since it's state is used during cleanup 1404 * at the end as MIS is being freed. 1405 */ 1406 static PostcopyState incoming_postcopy_state; 1407 1408 PostcopyState postcopy_state_get(void) 1409 { 1410 return qatomic_mb_read(&incoming_postcopy_state); 1411 } 1412 1413 /* Set the state and return the old state */ 1414 PostcopyState postcopy_state_set(PostcopyState new_state) 1415 { 1416 return qatomic_xchg(&incoming_postcopy_state, new_state); 1417 } 1418 1419 /* Register a handler for external shared memory postcopy 1420 * called on the destination. 1421 */ 1422 void postcopy_register_shared_ufd(struct PostCopyFD *pcfd) 1423 { 1424 MigrationIncomingState *mis = migration_incoming_get_current(); 1425 1426 mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds, 1427 *pcfd); 1428 } 1429 1430 /* Unregister a handler for external shared memory postcopy 1431 */ 1432 void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd) 1433 { 1434 guint i; 1435 MigrationIncomingState *mis = migration_incoming_get_current(); 1436 GArray *pcrfds = mis->postcopy_remote_fds; 1437 1438 for (i = 0; i < pcrfds->len; i++) { 1439 struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i); 1440 if (cur->fd == pcfd->fd) { 1441 mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i); 1442 return; 1443 } 1444 } 1445 } 1446