1 /* 2 * Postcopy migration for RAM 3 * 4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Dave Gilbert <dgilbert@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14 /* 15 * Postcopy is a migration technique where the execution flips from the 16 * source to the destination before all the data has been copied. 17 */ 18 19 #include "qemu/osdep.h" 20 #include "qemu/rcu.h" 21 #include "qemu/madvise.h" 22 #include "exec/target_page.h" 23 #include "migration.h" 24 #include "qemu-file.h" 25 #include "savevm.h" 26 #include "postcopy-ram.h" 27 #include "ram.h" 28 #include "qapi/error.h" 29 #include "qemu/notify.h" 30 #include "qemu/rcu.h" 31 #include "sysemu/sysemu.h" 32 #include "qemu/error-report.h" 33 #include "trace.h" 34 #include "hw/boards.h" 35 #include "exec/ramblock.h" 36 37 /* Arbitrary limit on size of each discard command, 38 * keeps them around ~200 bytes 39 */ 40 #define MAX_DISCARDS_PER_COMMAND 12 41 42 struct PostcopyDiscardState { 43 const char *ramblock_name; 44 uint16_t cur_entry; 45 /* 46 * Start and length of a discard range (bytes) 47 */ 48 uint64_t start_list[MAX_DISCARDS_PER_COMMAND]; 49 uint64_t length_list[MAX_DISCARDS_PER_COMMAND]; 50 unsigned int nsentwords; 51 unsigned int nsentcmds; 52 }; 53 54 static NotifierWithReturnList postcopy_notifier_list; 55 56 void postcopy_infrastructure_init(void) 57 { 58 notifier_with_return_list_init(&postcopy_notifier_list); 59 } 60 61 void postcopy_add_notifier(NotifierWithReturn *nn) 62 { 63 notifier_with_return_list_add(&postcopy_notifier_list, nn); 64 } 65 66 void postcopy_remove_notifier(NotifierWithReturn *n) 67 { 68 notifier_with_return_remove(n); 69 } 70 71 int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp) 72 { 73 struct PostcopyNotifyData pnd; 74 pnd.reason = reason; 75 pnd.errp = errp; 76 77 return notifier_with_return_list_notify(&postcopy_notifier_list, 78 &pnd); 79 } 80 81 /* 82 * NOTE: this routine is not thread safe, we can't call it concurrently. But it 83 * should be good enough for migration's purposes. 84 */ 85 void postcopy_thread_create(MigrationIncomingState *mis, 86 QemuThread *thread, const char *name, 87 void *(*fn)(void *), int joinable) 88 { 89 qemu_sem_init(&mis->thread_sync_sem, 0); 90 qemu_thread_create(thread, name, fn, mis, joinable); 91 qemu_sem_wait(&mis->thread_sync_sem); 92 qemu_sem_destroy(&mis->thread_sync_sem); 93 } 94 95 /* Postcopy needs to detect accesses to pages that haven't yet been copied 96 * across, and efficiently map new pages in, the techniques for doing this 97 * are target OS specific. 98 */ 99 #if defined(__linux__) 100 101 #include <poll.h> 102 #include <sys/ioctl.h> 103 #include <sys/syscall.h> 104 #include <asm/types.h> /* for __u64 */ 105 #endif 106 107 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD) 108 #include <sys/eventfd.h> 109 #include <linux/userfaultfd.h> 110 111 typedef struct PostcopyBlocktimeContext { 112 /* time when page fault initiated per vCPU */ 113 uint32_t *page_fault_vcpu_time; 114 /* page address per vCPU */ 115 uintptr_t *vcpu_addr; 116 uint32_t total_blocktime; 117 /* blocktime per vCPU */ 118 uint32_t *vcpu_blocktime; 119 /* point in time when last page fault was initiated */ 120 uint32_t last_begin; 121 /* number of vCPU are suspended */ 122 int smp_cpus_down; 123 uint64_t start_time; 124 125 /* 126 * Handler for exit event, necessary for 127 * releasing whole blocktime_ctx 128 */ 129 Notifier exit_notifier; 130 } PostcopyBlocktimeContext; 131 132 static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx) 133 { 134 g_free(ctx->page_fault_vcpu_time); 135 g_free(ctx->vcpu_addr); 136 g_free(ctx->vcpu_blocktime); 137 g_free(ctx); 138 } 139 140 static void migration_exit_cb(Notifier *n, void *data) 141 { 142 PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext, 143 exit_notifier); 144 destroy_blocktime_context(ctx); 145 } 146 147 static struct PostcopyBlocktimeContext *blocktime_context_new(void) 148 { 149 MachineState *ms = MACHINE(qdev_get_machine()); 150 unsigned int smp_cpus = ms->smp.cpus; 151 PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1); 152 ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus); 153 ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus); 154 ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus); 155 156 ctx->exit_notifier.notify = migration_exit_cb; 157 ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 158 qemu_add_exit_notifier(&ctx->exit_notifier); 159 return ctx; 160 } 161 162 static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx) 163 { 164 MachineState *ms = MACHINE(qdev_get_machine()); 165 uint32List *list = NULL; 166 int i; 167 168 for (i = ms->smp.cpus - 1; i >= 0; i--) { 169 QAPI_LIST_PREPEND(list, ctx->vcpu_blocktime[i]); 170 } 171 172 return list; 173 } 174 175 /* 176 * This function just populates MigrationInfo from postcopy's 177 * blocktime context. It will not populate MigrationInfo, 178 * unless postcopy-blocktime capability was set. 179 * 180 * @info: pointer to MigrationInfo to populate 181 */ 182 void fill_destination_postcopy_migration_info(MigrationInfo *info) 183 { 184 MigrationIncomingState *mis = migration_incoming_get_current(); 185 PostcopyBlocktimeContext *bc = mis->blocktime_ctx; 186 187 if (!bc) { 188 return; 189 } 190 191 info->has_postcopy_blocktime = true; 192 info->postcopy_blocktime = bc->total_blocktime; 193 info->has_postcopy_vcpu_blocktime = true; 194 info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc); 195 } 196 197 static uint32_t get_postcopy_total_blocktime(void) 198 { 199 MigrationIncomingState *mis = migration_incoming_get_current(); 200 PostcopyBlocktimeContext *bc = mis->blocktime_ctx; 201 202 if (!bc) { 203 return 0; 204 } 205 206 return bc->total_blocktime; 207 } 208 209 /** 210 * receive_ufd_features: check userfault fd features, to request only supported 211 * features in the future. 212 * 213 * Returns: true on success 214 * 215 * __NR_userfaultfd - should be checked before 216 * @features: out parameter will contain uffdio_api.features provided by kernel 217 * in case of success 218 */ 219 static bool receive_ufd_features(uint64_t *features) 220 { 221 struct uffdio_api api_struct = {0}; 222 int ufd; 223 bool ret = true; 224 225 /* if we are here __NR_userfaultfd should exists */ 226 ufd = syscall(__NR_userfaultfd, O_CLOEXEC); 227 if (ufd == -1) { 228 error_report("%s: syscall __NR_userfaultfd failed: %s", __func__, 229 strerror(errno)); 230 return false; 231 } 232 233 /* ask features */ 234 api_struct.api = UFFD_API; 235 api_struct.features = 0; 236 if (ioctl(ufd, UFFDIO_API, &api_struct)) { 237 error_report("%s: UFFDIO_API failed: %s", __func__, 238 strerror(errno)); 239 ret = false; 240 goto release_ufd; 241 } 242 243 *features = api_struct.features; 244 245 release_ufd: 246 close(ufd); 247 return ret; 248 } 249 250 /** 251 * request_ufd_features: this function should be called only once on a newly 252 * opened ufd, subsequent calls will lead to error. 253 * 254 * Returns: true on success 255 * 256 * @ufd: fd obtained from userfaultfd syscall 257 * @features: bit mask see UFFD_API_FEATURES 258 */ 259 static bool request_ufd_features(int ufd, uint64_t features) 260 { 261 struct uffdio_api api_struct = {0}; 262 uint64_t ioctl_mask; 263 264 api_struct.api = UFFD_API; 265 api_struct.features = features; 266 if (ioctl(ufd, UFFDIO_API, &api_struct)) { 267 error_report("%s failed: UFFDIO_API failed: %s", __func__, 268 strerror(errno)); 269 return false; 270 } 271 272 ioctl_mask = (__u64)1 << _UFFDIO_REGISTER | 273 (__u64)1 << _UFFDIO_UNREGISTER; 274 if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) { 275 error_report("Missing userfault features: %" PRIx64, 276 (uint64_t)(~api_struct.ioctls & ioctl_mask)); 277 return false; 278 } 279 280 return true; 281 } 282 283 static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis) 284 { 285 uint64_t asked_features = 0; 286 static uint64_t supported_features; 287 288 /* 289 * it's not possible to 290 * request UFFD_API twice per one fd 291 * userfault fd features is persistent 292 */ 293 if (!supported_features) { 294 if (!receive_ufd_features(&supported_features)) { 295 error_report("%s failed", __func__); 296 return false; 297 } 298 } 299 300 #ifdef UFFD_FEATURE_THREAD_ID 301 if (UFFD_FEATURE_THREAD_ID & supported_features) { 302 asked_features |= UFFD_FEATURE_THREAD_ID; 303 if (migrate_postcopy_blocktime()) { 304 if (!mis->blocktime_ctx) { 305 mis->blocktime_ctx = blocktime_context_new(); 306 } 307 } 308 } 309 #endif 310 311 /* 312 * request features, even if asked_features is 0, due to 313 * kernel expects UFFD_API before UFFDIO_REGISTER, per 314 * userfault file descriptor 315 */ 316 if (!request_ufd_features(ufd, asked_features)) { 317 error_report("%s failed: features %" PRIu64, __func__, 318 asked_features); 319 return false; 320 } 321 322 if (qemu_real_host_page_size() != ram_pagesize_summary()) { 323 bool have_hp = false; 324 /* We've got a huge page */ 325 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS 326 have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS; 327 #endif 328 if (!have_hp) { 329 error_report("Userfault on this host does not support huge pages"); 330 return false; 331 } 332 } 333 return true; 334 } 335 336 /* Callback from postcopy_ram_supported_by_host block iterator. 337 */ 338 static int test_ramblock_postcopiable(RAMBlock *rb, void *opaque) 339 { 340 const char *block_name = qemu_ram_get_idstr(rb); 341 ram_addr_t length = qemu_ram_get_used_length(rb); 342 size_t pagesize = qemu_ram_pagesize(rb); 343 344 if (length % pagesize) { 345 error_report("Postcopy requires RAM blocks to be a page size multiple," 346 " block %s is 0x" RAM_ADDR_FMT " bytes with a " 347 "page size of 0x%zx", block_name, length, pagesize); 348 return 1; 349 } 350 return 0; 351 } 352 353 /* 354 * Note: This has the side effect of munlock'ing all of RAM, that's 355 * normally fine since if the postcopy succeeds it gets turned back on at the 356 * end. 357 */ 358 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis) 359 { 360 long pagesize = qemu_real_host_page_size(); 361 int ufd = -1; 362 bool ret = false; /* Error unless we change it */ 363 void *testarea = NULL; 364 struct uffdio_register reg_struct; 365 struct uffdio_range range_struct; 366 uint64_t feature_mask; 367 Error *local_err = NULL; 368 369 if (qemu_target_page_size() > pagesize) { 370 error_report("Target page size bigger than host page size"); 371 goto out; 372 } 373 374 ufd = syscall(__NR_userfaultfd, O_CLOEXEC); 375 if (ufd == -1) { 376 error_report("%s: userfaultfd not available: %s", __func__, 377 strerror(errno)); 378 goto out; 379 } 380 381 /* Give devices a chance to object */ 382 if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, &local_err)) { 383 error_report_err(local_err); 384 goto out; 385 } 386 387 /* Version and features check */ 388 if (!ufd_check_and_apply(ufd, mis)) { 389 goto out; 390 } 391 392 /* We don't support postcopy with shared RAM yet */ 393 if (foreach_not_ignored_block(test_ramblock_postcopiable, NULL)) { 394 goto out; 395 } 396 397 /* 398 * userfault and mlock don't go together; we'll put it back later if 399 * it was enabled. 400 */ 401 if (munlockall()) { 402 error_report("%s: munlockall: %s", __func__, strerror(errno)); 403 goto out; 404 } 405 406 /* 407 * We need to check that the ops we need are supported on anon memory 408 * To do that we need to register a chunk and see the flags that 409 * are returned. 410 */ 411 testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE | 412 MAP_ANONYMOUS, -1, 0); 413 if (testarea == MAP_FAILED) { 414 error_report("%s: Failed to map test area: %s", __func__, 415 strerror(errno)); 416 goto out; 417 } 418 g_assert(QEMU_PTR_IS_ALIGNED(testarea, pagesize)); 419 420 reg_struct.range.start = (uintptr_t)testarea; 421 reg_struct.range.len = pagesize; 422 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 423 424 if (ioctl(ufd, UFFDIO_REGISTER, ®_struct)) { 425 error_report("%s userfault register: %s", __func__, strerror(errno)); 426 goto out; 427 } 428 429 range_struct.start = (uintptr_t)testarea; 430 range_struct.len = pagesize; 431 if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) { 432 error_report("%s userfault unregister: %s", __func__, strerror(errno)); 433 goto out; 434 } 435 436 feature_mask = (__u64)1 << _UFFDIO_WAKE | 437 (__u64)1 << _UFFDIO_COPY | 438 (__u64)1 << _UFFDIO_ZEROPAGE; 439 if ((reg_struct.ioctls & feature_mask) != feature_mask) { 440 error_report("Missing userfault map features: %" PRIx64, 441 (uint64_t)(~reg_struct.ioctls & feature_mask)); 442 goto out; 443 } 444 445 /* Success! */ 446 ret = true; 447 out: 448 if (testarea) { 449 munmap(testarea, pagesize); 450 } 451 if (ufd != -1) { 452 close(ufd); 453 } 454 return ret; 455 } 456 457 /* 458 * Setup an area of RAM so that it *can* be used for postcopy later; this 459 * must be done right at the start prior to pre-copy. 460 * opaque should be the MIS. 461 */ 462 static int init_range(RAMBlock *rb, void *opaque) 463 { 464 const char *block_name = qemu_ram_get_idstr(rb); 465 void *host_addr = qemu_ram_get_host_addr(rb); 466 ram_addr_t offset = qemu_ram_get_offset(rb); 467 ram_addr_t length = qemu_ram_get_used_length(rb); 468 trace_postcopy_init_range(block_name, host_addr, offset, length); 469 470 /* 471 * Save the used_length before running the guest. In case we have to 472 * resize RAM blocks when syncing RAM block sizes from the source during 473 * precopy, we'll update it manually via the ram block notifier. 474 */ 475 rb->postcopy_length = length; 476 477 /* 478 * We need the whole of RAM to be truly empty for postcopy, so things 479 * like ROMs and any data tables built during init must be zero'd 480 * - we're going to get the copy from the source anyway. 481 * (Precopy will just overwrite this data, so doesn't need the discard) 482 */ 483 if (ram_discard_range(block_name, 0, length)) { 484 return -1; 485 } 486 487 return 0; 488 } 489 490 /* 491 * At the end of migration, undo the effects of init_range 492 * opaque should be the MIS. 493 */ 494 static int cleanup_range(RAMBlock *rb, void *opaque) 495 { 496 const char *block_name = qemu_ram_get_idstr(rb); 497 void *host_addr = qemu_ram_get_host_addr(rb); 498 ram_addr_t offset = qemu_ram_get_offset(rb); 499 ram_addr_t length = rb->postcopy_length; 500 MigrationIncomingState *mis = opaque; 501 struct uffdio_range range_struct; 502 trace_postcopy_cleanup_range(block_name, host_addr, offset, length); 503 504 /* 505 * We turned off hugepage for the precopy stage with postcopy enabled 506 * we can turn it back on now. 507 */ 508 qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE); 509 510 /* 511 * We can also turn off userfault now since we should have all the 512 * pages. It can be useful to leave it on to debug postcopy 513 * if you're not sure it's always getting every page. 514 */ 515 range_struct.start = (uintptr_t)host_addr; 516 range_struct.len = length; 517 518 if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) { 519 error_report("%s: userfault unregister %s", __func__, strerror(errno)); 520 521 return -1; 522 } 523 524 return 0; 525 } 526 527 /* 528 * Initialise postcopy-ram, setting the RAM to a state where we can go into 529 * postcopy later; must be called prior to any precopy. 530 * called from arch_init's similarly named ram_postcopy_incoming_init 531 */ 532 int postcopy_ram_incoming_init(MigrationIncomingState *mis) 533 { 534 if (foreach_not_ignored_block(init_range, NULL)) { 535 return -1; 536 } 537 538 return 0; 539 } 540 541 static void postcopy_temp_pages_cleanup(MigrationIncomingState *mis) 542 { 543 int i; 544 545 if (mis->postcopy_tmp_pages) { 546 for (i = 0; i < mis->postcopy_channels; i++) { 547 if (mis->postcopy_tmp_pages[i].tmp_huge_page) { 548 munmap(mis->postcopy_tmp_pages[i].tmp_huge_page, 549 mis->largest_page_size); 550 mis->postcopy_tmp_pages[i].tmp_huge_page = NULL; 551 } 552 } 553 g_free(mis->postcopy_tmp_pages); 554 mis->postcopy_tmp_pages = NULL; 555 } 556 557 if (mis->postcopy_tmp_zero_page) { 558 munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size); 559 mis->postcopy_tmp_zero_page = NULL; 560 } 561 } 562 563 /* 564 * At the end of a migration where postcopy_ram_incoming_init was called. 565 */ 566 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 567 { 568 trace_postcopy_ram_incoming_cleanup_entry(); 569 570 if (mis->have_fault_thread) { 571 Error *local_err = NULL; 572 573 /* Let the fault thread quit */ 574 qatomic_set(&mis->fault_thread_quit, 1); 575 postcopy_fault_thread_notify(mis); 576 trace_postcopy_ram_incoming_cleanup_join(); 577 qemu_thread_join(&mis->fault_thread); 578 579 if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) { 580 error_report_err(local_err); 581 return -1; 582 } 583 584 if (foreach_not_ignored_block(cleanup_range, mis)) { 585 return -1; 586 } 587 588 trace_postcopy_ram_incoming_cleanup_closeuf(); 589 close(mis->userfault_fd); 590 close(mis->userfault_event_fd); 591 mis->have_fault_thread = false; 592 } 593 594 if (enable_mlock) { 595 if (os_mlock() < 0) { 596 error_report("mlock: %s", strerror(errno)); 597 /* 598 * It doesn't feel right to fail at this point, we have a valid 599 * VM state. 600 */ 601 } 602 } 603 604 postcopy_temp_pages_cleanup(mis); 605 606 trace_postcopy_ram_incoming_cleanup_blocktime( 607 get_postcopy_total_blocktime()); 608 609 trace_postcopy_ram_incoming_cleanup_exit(); 610 return 0; 611 } 612 613 /* 614 * Disable huge pages on an area 615 */ 616 static int nhp_range(RAMBlock *rb, void *opaque) 617 { 618 const char *block_name = qemu_ram_get_idstr(rb); 619 void *host_addr = qemu_ram_get_host_addr(rb); 620 ram_addr_t offset = qemu_ram_get_offset(rb); 621 ram_addr_t length = rb->postcopy_length; 622 trace_postcopy_nhp_range(block_name, host_addr, offset, length); 623 624 /* 625 * Before we do discards we need to ensure those discards really 626 * do delete areas of the page, even if THP thinks a hugepage would 627 * be a good idea, so force hugepages off. 628 */ 629 qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE); 630 631 return 0; 632 } 633 634 /* 635 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard 636 * however leaving it until after precopy means that most of the precopy 637 * data is still THPd 638 */ 639 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 640 { 641 if (foreach_not_ignored_block(nhp_range, mis)) { 642 return -1; 643 } 644 645 postcopy_state_set(POSTCOPY_INCOMING_DISCARD); 646 647 return 0; 648 } 649 650 /* 651 * Mark the given area of RAM as requiring notification to unwritten areas 652 * Used as a callback on foreach_not_ignored_block. 653 * host_addr: Base of area to mark 654 * offset: Offset in the whole ram arena 655 * length: Length of the section 656 * opaque: MigrationIncomingState pointer 657 * Returns 0 on success 658 */ 659 static int ram_block_enable_notify(RAMBlock *rb, void *opaque) 660 { 661 MigrationIncomingState *mis = opaque; 662 struct uffdio_register reg_struct; 663 664 reg_struct.range.start = (uintptr_t)qemu_ram_get_host_addr(rb); 665 reg_struct.range.len = rb->postcopy_length; 666 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 667 668 /* Now tell our userfault_fd that it's responsible for this area */ 669 if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, ®_struct)) { 670 error_report("%s userfault register: %s", __func__, strerror(errno)); 671 return -1; 672 } 673 if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) { 674 error_report("%s userfault: Region doesn't support COPY", __func__); 675 return -1; 676 } 677 if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) { 678 qemu_ram_set_uf_zeroable(rb); 679 } 680 681 return 0; 682 } 683 684 int postcopy_wake_shared(struct PostCopyFD *pcfd, 685 uint64_t client_addr, 686 RAMBlock *rb) 687 { 688 size_t pagesize = qemu_ram_pagesize(rb); 689 struct uffdio_range range; 690 int ret; 691 trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb)); 692 range.start = ROUND_DOWN(client_addr, pagesize); 693 range.len = pagesize; 694 ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range); 695 if (ret) { 696 error_report("%s: Failed to wake: %zx in %s (%s)", 697 __func__, (size_t)client_addr, qemu_ram_get_idstr(rb), 698 strerror(errno)); 699 } 700 return ret; 701 } 702 703 static int postcopy_request_page(MigrationIncomingState *mis, RAMBlock *rb, 704 ram_addr_t start, uint64_t haddr) 705 { 706 void *aligned = (void *)(uintptr_t)ROUND_DOWN(haddr, qemu_ram_pagesize(rb)); 707 708 /* 709 * Discarded pages (via RamDiscardManager) are never migrated. On unlikely 710 * access, place a zeropage, which will also set the relevant bits in the 711 * recv_bitmap accordingly, so we won't try placing a zeropage twice. 712 * 713 * Checking a single bit is sufficient to handle pagesize > TPS as either 714 * all relevant bits are set or not. 715 */ 716 assert(QEMU_IS_ALIGNED(start, qemu_ram_pagesize(rb))); 717 if (ramblock_page_is_discarded(rb, start)) { 718 bool received = ramblock_recv_bitmap_test_byte_offset(rb, start); 719 720 return received ? 0 : postcopy_place_page_zero(mis, aligned, rb); 721 } 722 723 return migrate_send_rp_req_pages(mis, rb, start, haddr); 724 } 725 726 /* 727 * Callback from shared fault handlers to ask for a page, 728 * the page must be specified by a RAMBlock and an offset in that rb 729 * Note: Only for use by shared fault handlers (in fault thread) 730 */ 731 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb, 732 uint64_t client_addr, uint64_t rb_offset) 733 { 734 uint64_t aligned_rbo = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb)); 735 MigrationIncomingState *mis = migration_incoming_get_current(); 736 737 trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb), 738 rb_offset); 739 if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) { 740 trace_postcopy_request_shared_page_present(pcfd->idstr, 741 qemu_ram_get_idstr(rb), rb_offset); 742 return postcopy_wake_shared(pcfd, client_addr, rb); 743 } 744 postcopy_request_page(mis, rb, aligned_rbo, client_addr); 745 return 0; 746 } 747 748 static int get_mem_fault_cpu_index(uint32_t pid) 749 { 750 CPUState *cpu_iter; 751 752 CPU_FOREACH(cpu_iter) { 753 if (cpu_iter->thread_id == pid) { 754 trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid); 755 return cpu_iter->cpu_index; 756 } 757 } 758 trace_get_mem_fault_cpu_index(-1, pid); 759 return -1; 760 } 761 762 static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc) 763 { 764 int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) - 765 dc->start_time; 766 return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX; 767 } 768 769 /* 770 * This function is being called when pagefault occurs. It 771 * tracks down vCPU blocking time. 772 * 773 * @addr: faulted host virtual address 774 * @ptid: faulted process thread id 775 * @rb: ramblock appropriate to addr 776 */ 777 static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid, 778 RAMBlock *rb) 779 { 780 int cpu, already_received; 781 MigrationIncomingState *mis = migration_incoming_get_current(); 782 PostcopyBlocktimeContext *dc = mis->blocktime_ctx; 783 uint32_t low_time_offset; 784 785 if (!dc || ptid == 0) { 786 return; 787 } 788 cpu = get_mem_fault_cpu_index(ptid); 789 if (cpu < 0) { 790 return; 791 } 792 793 low_time_offset = get_low_time_offset(dc); 794 if (dc->vcpu_addr[cpu] == 0) { 795 qatomic_inc(&dc->smp_cpus_down); 796 } 797 798 qatomic_xchg(&dc->last_begin, low_time_offset); 799 qatomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset); 800 qatomic_xchg(&dc->vcpu_addr[cpu], addr); 801 802 /* 803 * check it here, not at the beginning of the function, 804 * due to, check could occur early than bitmap_set in 805 * qemu_ufd_copy_ioctl 806 */ 807 already_received = ramblock_recv_bitmap_test(rb, (void *)addr); 808 if (already_received) { 809 qatomic_xchg(&dc->vcpu_addr[cpu], 0); 810 qatomic_xchg(&dc->page_fault_vcpu_time[cpu], 0); 811 qatomic_dec(&dc->smp_cpus_down); 812 } 813 trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu], 814 cpu, already_received); 815 } 816 817 /* 818 * This function just provide calculated blocktime per cpu and trace it. 819 * Total blocktime is calculated in mark_postcopy_blocktime_end. 820 * 821 * 822 * Assume we have 3 CPU 823 * 824 * S1 E1 S1 E1 825 * -----***********------------xxx***************------------------------> CPU1 826 * 827 * S2 E2 828 * ------------****************xxx---------------------------------------> CPU2 829 * 830 * S3 E3 831 * ------------------------****xxx********-------------------------------> CPU3 832 * 833 * We have sequence S1,S2,E1,S3,S1,E2,E3,E1 834 * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3 835 * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 - 836 * it's a part of total blocktime. 837 * S1 - here is last_begin 838 * Legend of the picture is following: 839 * * - means blocktime per vCPU 840 * x - means overlapped blocktime (total blocktime) 841 * 842 * @addr: host virtual address 843 */ 844 static void mark_postcopy_blocktime_end(uintptr_t addr) 845 { 846 MigrationIncomingState *mis = migration_incoming_get_current(); 847 PostcopyBlocktimeContext *dc = mis->blocktime_ctx; 848 MachineState *ms = MACHINE(qdev_get_machine()); 849 unsigned int smp_cpus = ms->smp.cpus; 850 int i, affected_cpu = 0; 851 bool vcpu_total_blocktime = false; 852 uint32_t read_vcpu_time, low_time_offset; 853 854 if (!dc) { 855 return; 856 } 857 858 low_time_offset = get_low_time_offset(dc); 859 /* lookup cpu, to clear it, 860 * that algorithm looks straightforward, but it's not 861 * optimal, more optimal algorithm is keeping tree or hash 862 * where key is address value is a list of */ 863 for (i = 0; i < smp_cpus; i++) { 864 uint32_t vcpu_blocktime = 0; 865 866 read_vcpu_time = qatomic_fetch_add(&dc->page_fault_vcpu_time[i], 0); 867 if (qatomic_fetch_add(&dc->vcpu_addr[i], 0) != addr || 868 read_vcpu_time == 0) { 869 continue; 870 } 871 qatomic_xchg(&dc->vcpu_addr[i], 0); 872 vcpu_blocktime = low_time_offset - read_vcpu_time; 873 affected_cpu += 1; 874 /* we need to know is that mark_postcopy_end was due to 875 * faulted page, another possible case it's prefetched 876 * page and in that case we shouldn't be here */ 877 if (!vcpu_total_blocktime && 878 qatomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) { 879 vcpu_total_blocktime = true; 880 } 881 /* continue cycle, due to one page could affect several vCPUs */ 882 dc->vcpu_blocktime[i] += vcpu_blocktime; 883 } 884 885 qatomic_sub(&dc->smp_cpus_down, affected_cpu); 886 if (vcpu_total_blocktime) { 887 dc->total_blocktime += low_time_offset - qatomic_fetch_add( 888 &dc->last_begin, 0); 889 } 890 trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime, 891 affected_cpu); 892 } 893 894 static void postcopy_pause_fault_thread(MigrationIncomingState *mis) 895 { 896 trace_postcopy_pause_fault_thread(); 897 qemu_sem_wait(&mis->postcopy_pause_sem_fault); 898 trace_postcopy_pause_fault_thread_continued(); 899 } 900 901 /* 902 * Handle faults detected by the USERFAULT markings 903 */ 904 static void *postcopy_ram_fault_thread(void *opaque) 905 { 906 MigrationIncomingState *mis = opaque; 907 struct uffd_msg msg; 908 int ret; 909 size_t index; 910 RAMBlock *rb = NULL; 911 912 trace_postcopy_ram_fault_thread_entry(); 913 rcu_register_thread(); 914 mis->last_rb = NULL; /* last RAMBlock we sent part of */ 915 qemu_sem_post(&mis->thread_sync_sem); 916 917 struct pollfd *pfd; 918 size_t pfd_len = 2 + mis->postcopy_remote_fds->len; 919 920 pfd = g_new0(struct pollfd, pfd_len); 921 922 pfd[0].fd = mis->userfault_fd; 923 pfd[0].events = POLLIN; 924 pfd[1].fd = mis->userfault_event_fd; 925 pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */ 926 trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd); 927 for (index = 0; index < mis->postcopy_remote_fds->len; index++) { 928 struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds, 929 struct PostCopyFD, index); 930 pfd[2 + index].fd = pcfd->fd; 931 pfd[2 + index].events = POLLIN; 932 trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr, 933 pcfd->fd); 934 } 935 936 while (true) { 937 ram_addr_t rb_offset; 938 int poll_result; 939 940 /* 941 * We're mainly waiting for the kernel to give us a faulting HVA, 942 * however we can be told to quit via userfault_quit_fd which is 943 * an eventfd 944 */ 945 946 poll_result = poll(pfd, pfd_len, -1 /* Wait forever */); 947 if (poll_result == -1) { 948 error_report("%s: userfault poll: %s", __func__, strerror(errno)); 949 break; 950 } 951 952 if (!mis->to_src_file) { 953 /* 954 * Possibly someone tells us that the return path is 955 * broken already using the event. We should hold until 956 * the channel is rebuilt. 957 */ 958 postcopy_pause_fault_thread(mis); 959 } 960 961 if (pfd[1].revents) { 962 uint64_t tmp64 = 0; 963 964 /* Consume the signal */ 965 if (read(mis->userfault_event_fd, &tmp64, 8) != 8) { 966 /* Nothing obviously nicer than posting this error. */ 967 error_report("%s: read() failed", __func__); 968 } 969 970 if (qatomic_read(&mis->fault_thread_quit)) { 971 trace_postcopy_ram_fault_thread_quit(); 972 break; 973 } 974 } 975 976 if (pfd[0].revents) { 977 poll_result--; 978 ret = read(mis->userfault_fd, &msg, sizeof(msg)); 979 if (ret != sizeof(msg)) { 980 if (errno == EAGAIN) { 981 /* 982 * if a wake up happens on the other thread just after 983 * the poll, there is nothing to read. 984 */ 985 continue; 986 } 987 if (ret < 0) { 988 error_report("%s: Failed to read full userfault " 989 "message: %s", 990 __func__, strerror(errno)); 991 break; 992 } else { 993 error_report("%s: Read %d bytes from userfaultfd " 994 "expected %zd", 995 __func__, ret, sizeof(msg)); 996 break; /* Lost alignment, don't know what we'd read next */ 997 } 998 } 999 if (msg.event != UFFD_EVENT_PAGEFAULT) { 1000 error_report("%s: Read unexpected event %ud from userfaultfd", 1001 __func__, msg.event); 1002 continue; /* It's not a page fault, shouldn't happen */ 1003 } 1004 1005 rb = qemu_ram_block_from_host( 1006 (void *)(uintptr_t)msg.arg.pagefault.address, 1007 true, &rb_offset); 1008 if (!rb) { 1009 error_report("postcopy_ram_fault_thread: Fault outside guest: %" 1010 PRIx64, (uint64_t)msg.arg.pagefault.address); 1011 break; 1012 } 1013 1014 rb_offset = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb)); 1015 trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address, 1016 qemu_ram_get_idstr(rb), 1017 rb_offset, 1018 msg.arg.pagefault.feat.ptid); 1019 mark_postcopy_blocktime_begin( 1020 (uintptr_t)(msg.arg.pagefault.address), 1021 msg.arg.pagefault.feat.ptid, rb); 1022 1023 retry: 1024 /* 1025 * Send the request to the source - we want to request one 1026 * of our host page sizes (which is >= TPS) 1027 */ 1028 ret = postcopy_request_page(mis, rb, rb_offset, 1029 msg.arg.pagefault.address); 1030 if (ret) { 1031 /* May be network failure, try to wait for recovery */ 1032 postcopy_pause_fault_thread(mis); 1033 goto retry; 1034 } 1035 } 1036 1037 /* Now handle any requests from external processes on shared memory */ 1038 /* TODO: May need to handle devices deregistering during postcopy */ 1039 for (index = 2; index < pfd_len && poll_result; index++) { 1040 if (pfd[index].revents) { 1041 struct PostCopyFD *pcfd = 1042 &g_array_index(mis->postcopy_remote_fds, 1043 struct PostCopyFD, index - 2); 1044 1045 poll_result--; 1046 if (pfd[index].revents & POLLERR) { 1047 error_report("%s: POLLERR on poll %zd fd=%d", 1048 __func__, index, pcfd->fd); 1049 pfd[index].events = 0; 1050 continue; 1051 } 1052 1053 ret = read(pcfd->fd, &msg, sizeof(msg)); 1054 if (ret != sizeof(msg)) { 1055 if (errno == EAGAIN) { 1056 /* 1057 * if a wake up happens on the other thread just after 1058 * the poll, there is nothing to read. 1059 */ 1060 continue; 1061 } 1062 if (ret < 0) { 1063 error_report("%s: Failed to read full userfault " 1064 "message: %s (shared) revents=%d", 1065 __func__, strerror(errno), 1066 pfd[index].revents); 1067 /*TODO: Could just disable this sharer */ 1068 break; 1069 } else { 1070 error_report("%s: Read %d bytes from userfaultfd " 1071 "expected %zd (shared)", 1072 __func__, ret, sizeof(msg)); 1073 /*TODO: Could just disable this sharer */ 1074 break; /*Lost alignment,don't know what we'd read next*/ 1075 } 1076 } 1077 if (msg.event != UFFD_EVENT_PAGEFAULT) { 1078 error_report("%s: Read unexpected event %ud " 1079 "from userfaultfd (shared)", 1080 __func__, msg.event); 1081 continue; /* It's not a page fault, shouldn't happen */ 1082 } 1083 /* Call the device handler registered with us */ 1084 ret = pcfd->handler(pcfd, &msg); 1085 if (ret) { 1086 error_report("%s: Failed to resolve shared fault on %zd/%s", 1087 __func__, index, pcfd->idstr); 1088 /* TODO: Fail? Disable this sharer? */ 1089 } 1090 } 1091 } 1092 } 1093 rcu_unregister_thread(); 1094 trace_postcopy_ram_fault_thread_exit(); 1095 g_free(pfd); 1096 return NULL; 1097 } 1098 1099 static int postcopy_temp_pages_setup(MigrationIncomingState *mis) 1100 { 1101 PostcopyTmpPage *tmp_page; 1102 int err, i, channels; 1103 void *temp_page; 1104 1105 /* TODO: will be boosted when enable postcopy preemption */ 1106 mis->postcopy_channels = 1; 1107 1108 channels = mis->postcopy_channels; 1109 mis->postcopy_tmp_pages = g_malloc0_n(sizeof(PostcopyTmpPage), channels); 1110 1111 for (i = 0; i < channels; i++) { 1112 tmp_page = &mis->postcopy_tmp_pages[i]; 1113 temp_page = mmap(NULL, mis->largest_page_size, PROT_READ | PROT_WRITE, 1114 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1115 if (temp_page == MAP_FAILED) { 1116 err = errno; 1117 error_report("%s: Failed to map postcopy_tmp_pages[%d]: %s", 1118 __func__, i, strerror(err)); 1119 /* Clean up will be done later */ 1120 return -err; 1121 } 1122 tmp_page->tmp_huge_page = temp_page; 1123 /* Initialize default states for each tmp page */ 1124 postcopy_temp_page_reset(tmp_page); 1125 } 1126 1127 /* 1128 * Map large zero page when kernel can't use UFFDIO_ZEROPAGE for hugepages 1129 */ 1130 mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size, 1131 PROT_READ | PROT_WRITE, 1132 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1133 if (mis->postcopy_tmp_zero_page == MAP_FAILED) { 1134 err = errno; 1135 mis->postcopy_tmp_zero_page = NULL; 1136 error_report("%s: Failed to map large zero page %s", 1137 __func__, strerror(err)); 1138 return -err; 1139 } 1140 1141 memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size); 1142 1143 return 0; 1144 } 1145 1146 int postcopy_ram_incoming_setup(MigrationIncomingState *mis) 1147 { 1148 /* Open the fd for the kernel to give us userfaults */ 1149 mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK); 1150 if (mis->userfault_fd == -1) { 1151 error_report("%s: Failed to open userfault fd: %s", __func__, 1152 strerror(errno)); 1153 return -1; 1154 } 1155 1156 /* 1157 * Although the host check already tested the API, we need to 1158 * do the check again as an ABI handshake on the new fd. 1159 */ 1160 if (!ufd_check_and_apply(mis->userfault_fd, mis)) { 1161 return -1; 1162 } 1163 1164 /* Now an eventfd we use to tell the fault-thread to quit */ 1165 mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC); 1166 if (mis->userfault_event_fd == -1) { 1167 error_report("%s: Opening userfault_event_fd: %s", __func__, 1168 strerror(errno)); 1169 close(mis->userfault_fd); 1170 return -1; 1171 } 1172 1173 postcopy_thread_create(mis, &mis->fault_thread, "postcopy/fault", 1174 postcopy_ram_fault_thread, QEMU_THREAD_JOINABLE); 1175 mis->have_fault_thread = true; 1176 1177 /* Mark so that we get notified of accesses to unwritten areas */ 1178 if (foreach_not_ignored_block(ram_block_enable_notify, mis)) { 1179 error_report("ram_block_enable_notify failed"); 1180 return -1; 1181 } 1182 1183 if (postcopy_temp_pages_setup(mis)) { 1184 /* Error dumped in the sub-function */ 1185 return -1; 1186 } 1187 1188 trace_postcopy_ram_enable_notify(); 1189 1190 return 0; 1191 } 1192 1193 static int qemu_ufd_copy_ioctl(MigrationIncomingState *mis, void *host_addr, 1194 void *from_addr, uint64_t pagesize, RAMBlock *rb) 1195 { 1196 int userfault_fd = mis->userfault_fd; 1197 int ret; 1198 1199 if (from_addr) { 1200 struct uffdio_copy copy_struct; 1201 copy_struct.dst = (uint64_t)(uintptr_t)host_addr; 1202 copy_struct.src = (uint64_t)(uintptr_t)from_addr; 1203 copy_struct.len = pagesize; 1204 copy_struct.mode = 0; 1205 ret = ioctl(userfault_fd, UFFDIO_COPY, ©_struct); 1206 } else { 1207 struct uffdio_zeropage zero_struct; 1208 zero_struct.range.start = (uint64_t)(uintptr_t)host_addr; 1209 zero_struct.range.len = pagesize; 1210 zero_struct.mode = 0; 1211 ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct); 1212 } 1213 if (!ret) { 1214 qemu_mutex_lock(&mis->page_request_mutex); 1215 ramblock_recv_bitmap_set_range(rb, host_addr, 1216 pagesize / qemu_target_page_size()); 1217 /* 1218 * If this page resolves a page fault for a previous recorded faulted 1219 * address, take a special note to maintain the requested page list. 1220 */ 1221 if (g_tree_lookup(mis->page_requested, host_addr)) { 1222 g_tree_remove(mis->page_requested, host_addr); 1223 mis->page_requested_count--; 1224 trace_postcopy_page_req_del(host_addr, mis->page_requested_count); 1225 } 1226 qemu_mutex_unlock(&mis->page_request_mutex); 1227 mark_postcopy_blocktime_end((uintptr_t)host_addr); 1228 } 1229 return ret; 1230 } 1231 1232 int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset) 1233 { 1234 int i; 1235 MigrationIncomingState *mis = migration_incoming_get_current(); 1236 GArray *pcrfds = mis->postcopy_remote_fds; 1237 1238 for (i = 0; i < pcrfds->len; i++) { 1239 struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i); 1240 int ret = cur->waker(cur, rb, offset); 1241 if (ret) { 1242 return ret; 1243 } 1244 } 1245 return 0; 1246 } 1247 1248 /* 1249 * Place a host page (from) at (host) atomically 1250 * returns 0 on success 1251 */ 1252 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from, 1253 RAMBlock *rb) 1254 { 1255 size_t pagesize = qemu_ram_pagesize(rb); 1256 1257 /* copy also acks to the kernel waking the stalled thread up 1258 * TODO: We can inhibit that ack and only do it if it was requested 1259 * which would be slightly cheaper, but we'd have to be careful 1260 * of the order of updating our page state. 1261 */ 1262 if (qemu_ufd_copy_ioctl(mis, host, from, pagesize, rb)) { 1263 int e = errno; 1264 error_report("%s: %s copy host: %p from: %p (size: %zd)", 1265 __func__, strerror(e), host, from, pagesize); 1266 1267 return -e; 1268 } 1269 1270 trace_postcopy_place_page(host); 1271 return postcopy_notify_shared_wake(rb, 1272 qemu_ram_block_host_offset(rb, host)); 1273 } 1274 1275 /* 1276 * Place a zero page at (host) atomically 1277 * returns 0 on success 1278 */ 1279 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host, 1280 RAMBlock *rb) 1281 { 1282 size_t pagesize = qemu_ram_pagesize(rb); 1283 trace_postcopy_place_page_zero(host); 1284 1285 /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE 1286 * but it's not available for everything (e.g. hugetlbpages) 1287 */ 1288 if (qemu_ram_is_uf_zeroable(rb)) { 1289 if (qemu_ufd_copy_ioctl(mis, host, NULL, pagesize, rb)) { 1290 int e = errno; 1291 error_report("%s: %s zero host: %p", 1292 __func__, strerror(e), host); 1293 1294 return -e; 1295 } 1296 return postcopy_notify_shared_wake(rb, 1297 qemu_ram_block_host_offset(rb, 1298 host)); 1299 } else { 1300 return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page, rb); 1301 } 1302 } 1303 1304 #else 1305 /* No target OS support, stubs just fail */ 1306 void fill_destination_postcopy_migration_info(MigrationInfo *info) 1307 { 1308 } 1309 1310 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis) 1311 { 1312 error_report("%s: No OS support", __func__); 1313 return false; 1314 } 1315 1316 int postcopy_ram_incoming_init(MigrationIncomingState *mis) 1317 { 1318 error_report("postcopy_ram_incoming_init: No OS support"); 1319 return -1; 1320 } 1321 1322 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 1323 { 1324 assert(0); 1325 return -1; 1326 } 1327 1328 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 1329 { 1330 assert(0); 1331 return -1; 1332 } 1333 1334 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb, 1335 uint64_t client_addr, uint64_t rb_offset) 1336 { 1337 assert(0); 1338 return -1; 1339 } 1340 1341 int postcopy_ram_incoming_setup(MigrationIncomingState *mis) 1342 { 1343 assert(0); 1344 return -1; 1345 } 1346 1347 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from, 1348 RAMBlock *rb) 1349 { 1350 assert(0); 1351 return -1; 1352 } 1353 1354 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host, 1355 RAMBlock *rb) 1356 { 1357 assert(0); 1358 return -1; 1359 } 1360 1361 int postcopy_wake_shared(struct PostCopyFD *pcfd, 1362 uint64_t client_addr, 1363 RAMBlock *rb) 1364 { 1365 assert(0); 1366 return -1; 1367 } 1368 #endif 1369 1370 /* ------------------------------------------------------------------------- */ 1371 void postcopy_temp_page_reset(PostcopyTmpPage *tmp_page) 1372 { 1373 tmp_page->target_pages = 0; 1374 tmp_page->host_addr = NULL; 1375 /* 1376 * This is set to true when reset, and cleared as long as we received any 1377 * of the non-zero small page within this huge page. 1378 */ 1379 tmp_page->all_zero = true; 1380 } 1381 1382 void postcopy_fault_thread_notify(MigrationIncomingState *mis) 1383 { 1384 uint64_t tmp64 = 1; 1385 1386 /* 1387 * Wakeup the fault_thread. It's an eventfd that should currently 1388 * be at 0, we're going to increment it to 1 1389 */ 1390 if (write(mis->userfault_event_fd, &tmp64, 8) != 8) { 1391 /* Not much we can do here, but may as well report it */ 1392 error_report("%s: incrementing failed: %s", __func__, 1393 strerror(errno)); 1394 } 1395 } 1396 1397 /** 1398 * postcopy_discard_send_init: Called at the start of each RAMBlock before 1399 * asking to discard individual ranges. 1400 * 1401 * @ms: The current migration state. 1402 * @offset: the bitmap offset of the named RAMBlock in the migration bitmap. 1403 * @name: RAMBlock that discards will operate on. 1404 */ 1405 static PostcopyDiscardState pds = {0}; 1406 void postcopy_discard_send_init(MigrationState *ms, const char *name) 1407 { 1408 pds.ramblock_name = name; 1409 pds.cur_entry = 0; 1410 pds.nsentwords = 0; 1411 pds.nsentcmds = 0; 1412 } 1413 1414 /** 1415 * postcopy_discard_send_range: Called by the bitmap code for each chunk to 1416 * discard. May send a discard message, may just leave it queued to 1417 * be sent later. 1418 * 1419 * @ms: Current migration state. 1420 * @start,@length: a range of pages in the migration bitmap in the 1421 * RAM block passed to postcopy_discard_send_init() (length=1 is one page) 1422 */ 1423 void postcopy_discard_send_range(MigrationState *ms, unsigned long start, 1424 unsigned long length) 1425 { 1426 size_t tp_size = qemu_target_page_size(); 1427 /* Convert to byte offsets within the RAM block */ 1428 pds.start_list[pds.cur_entry] = start * tp_size; 1429 pds.length_list[pds.cur_entry] = length * tp_size; 1430 trace_postcopy_discard_send_range(pds.ramblock_name, start, length); 1431 pds.cur_entry++; 1432 pds.nsentwords++; 1433 1434 if (pds.cur_entry == MAX_DISCARDS_PER_COMMAND) { 1435 /* Full set, ship it! */ 1436 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 1437 pds.ramblock_name, 1438 pds.cur_entry, 1439 pds.start_list, 1440 pds.length_list); 1441 pds.nsentcmds++; 1442 pds.cur_entry = 0; 1443 } 1444 } 1445 1446 /** 1447 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the 1448 * bitmap code. Sends any outstanding discard messages, frees the PDS 1449 * 1450 * @ms: Current migration state. 1451 */ 1452 void postcopy_discard_send_finish(MigrationState *ms) 1453 { 1454 /* Anything unsent? */ 1455 if (pds.cur_entry) { 1456 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 1457 pds.ramblock_name, 1458 pds.cur_entry, 1459 pds.start_list, 1460 pds.length_list); 1461 pds.nsentcmds++; 1462 } 1463 1464 trace_postcopy_discard_send_finish(pds.ramblock_name, pds.nsentwords, 1465 pds.nsentcmds); 1466 } 1467 1468 /* 1469 * Current state of incoming postcopy; note this is not part of 1470 * MigrationIncomingState since it's state is used during cleanup 1471 * at the end as MIS is being freed. 1472 */ 1473 static PostcopyState incoming_postcopy_state; 1474 1475 PostcopyState postcopy_state_get(void) 1476 { 1477 return qatomic_mb_read(&incoming_postcopy_state); 1478 } 1479 1480 /* Set the state and return the old state */ 1481 PostcopyState postcopy_state_set(PostcopyState new_state) 1482 { 1483 return qatomic_xchg(&incoming_postcopy_state, new_state); 1484 } 1485 1486 /* Register a handler for external shared memory postcopy 1487 * called on the destination. 1488 */ 1489 void postcopy_register_shared_ufd(struct PostCopyFD *pcfd) 1490 { 1491 MigrationIncomingState *mis = migration_incoming_get_current(); 1492 1493 mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds, 1494 *pcfd); 1495 } 1496 1497 /* Unregister a handler for external shared memory postcopy 1498 */ 1499 void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd) 1500 { 1501 guint i; 1502 MigrationIncomingState *mis = migration_incoming_get_current(); 1503 GArray *pcrfds = mis->postcopy_remote_fds; 1504 1505 if (!pcrfds) { 1506 /* migration has already finished and freed the array */ 1507 return; 1508 } 1509 for (i = 0; i < pcrfds->len; i++) { 1510 struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i); 1511 if (cur->fd == pcfd->fd) { 1512 mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i); 1513 return; 1514 } 1515 } 1516 } 1517