1 /* 2 * Postcopy migration for RAM 3 * 4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Dave Gilbert <dgilbert@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14 /* 15 * Postcopy is a migration technique where the execution flips from the 16 * source to the destination before all the data has been copied. 17 */ 18 19 #include "qemu/osdep.h" 20 #include "qemu/madvise.h" 21 #include "exec/target_page.h" 22 #include "migration.h" 23 #include "qemu-file.h" 24 #include "savevm.h" 25 #include "postcopy-ram.h" 26 #include "ram.h" 27 #include "qapi/error.h" 28 #include "qemu/notify.h" 29 #include "qemu/rcu.h" 30 #include "system/system.h" 31 #include "qemu/error-report.h" 32 #include "trace.h" 33 #include "hw/boards.h" 34 #include "system/ramblock.h" 35 #include "socket.h" 36 #include "yank_functions.h" 37 #include "tls.h" 38 #include "qemu/userfaultfd.h" 39 #include "qemu/mmap-alloc.h" 40 #include "options.h" 41 42 /* Arbitrary limit on size of each discard command, 43 * keeps them around ~200 bytes 44 */ 45 #define MAX_DISCARDS_PER_COMMAND 12 46 47 typedef struct PostcopyDiscardState { 48 const char *ramblock_name; 49 uint16_t cur_entry; 50 /* 51 * Start and length of a discard range (bytes) 52 */ 53 uint64_t start_list[MAX_DISCARDS_PER_COMMAND]; 54 uint64_t length_list[MAX_DISCARDS_PER_COMMAND]; 55 unsigned int nsentwords; 56 unsigned int nsentcmds; 57 } PostcopyDiscardState; 58 59 static NotifierWithReturnList postcopy_notifier_list; 60 61 void postcopy_infrastructure_init(void) 62 { 63 notifier_with_return_list_init(&postcopy_notifier_list); 64 } 65 66 void postcopy_add_notifier(NotifierWithReturn *nn) 67 { 68 notifier_with_return_list_add(&postcopy_notifier_list, nn); 69 } 70 71 void postcopy_remove_notifier(NotifierWithReturn *n) 72 { 73 notifier_with_return_remove(n); 74 } 75 76 int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp) 77 { 78 struct PostcopyNotifyData pnd; 79 pnd.reason = reason; 80 81 return notifier_with_return_list_notify(&postcopy_notifier_list, 82 &pnd, errp); 83 } 84 85 /* 86 * NOTE: this routine is not thread safe, we can't call it concurrently. But it 87 * should be good enough for migration's purposes. 88 */ 89 void postcopy_thread_create(MigrationIncomingState *mis, 90 QemuThread *thread, const char *name, 91 void *(*fn)(void *), int joinable) 92 { 93 qemu_event_init(&mis->thread_sync_event, false); 94 qemu_thread_create(thread, name, fn, mis, joinable); 95 qemu_event_wait(&mis->thread_sync_event); 96 qemu_event_destroy(&mis->thread_sync_event); 97 } 98 99 /* Postcopy needs to detect accesses to pages that haven't yet been copied 100 * across, and efficiently map new pages in, the techniques for doing this 101 * are target OS specific. 102 */ 103 #if defined(__linux__) 104 #include <poll.h> 105 #include <sys/ioctl.h> 106 #include <sys/syscall.h> 107 #endif 108 109 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD) 110 #include <sys/eventfd.h> 111 #include <linux/userfaultfd.h> 112 113 /* 114 * Here we use 24 buckets, which means the last bucket will cover [2^24 us, 115 * 2^25 us) ~= [16, 32) seconds. It should be far enough to record even 116 * extreme (perf-wise broken) 1G pages moving over, which can sometimes 117 * take a few seconds due to various reasons. Anything more than that 118 * might be unsensible to account anymore. 119 */ 120 #define BLOCKTIME_LATENCY_BUCKET_N (24) 121 122 /* All the time records are in unit of nanoseconds */ 123 typedef struct PostcopyBlocktimeContext { 124 /* blocktime per vCPU */ 125 uint64_t *vcpu_blocktime_total; 126 /* count of faults per vCPU */ 127 uint64_t *vcpu_faults_count; 128 /* 129 * count of currently blocked faults per vCPU. 130 * 131 * NOTE: Normally there should only be one fault in-progress per vCPU 132 * thread, so logically it _seems_ vcpu_faults_count[] for any vCPU 133 * should be either zero or one. However, there can be reasons we see 134 * >1 faults on the same vCPU thread. 135 * 136 * CASE (1): since the process to resolve faults (ioctl(UFFDIO_COPY), 137 * for example) is done before taking the mutex that protects the 138 * blocktime context, it can happen that we read more than one faulted 139 * addresses per vCPU. 140 * 141 * One example when we can see >1 faulted addresses for one vCPU: 142 * 143 * vcpu1 thread fault thread resolve thread 144 * ============ ============ ============== 145 * 146 * faulted on addr1 147 * read uffd msg (addr1) 148 * MUTEX_LOCK 149 * add entry (cpu1, addr1) 150 * MUTEX_UNLOCK 151 * request remote fault (addr1) 152 * resolve fault (addr1) 153 * addr1 resolved, continue.. 154 * faulted on addr2 155 * read uffd msg (addr2) 156 * MUTEX_LOCK 157 * add entry (cpu1, addr2) <--------------- [A] 158 * MUTEX_UNLOCK 159 * MUTEX_LOCK 160 * remove entry (cpu1, addr1) 161 * MUTEX_UNLOCK 162 * 163 * In above case, we may see (cpu1, addr1) and (cpu1, addr2) entries to 164 * appear together at [A], when it gets the lock before the resolve 165 * thread. Use this counter to maintain such case, and only when it 166 * reaches zero we know the vCPU is not blocked anymore. 167 * 168 * CASE (2): theoretically (the author admit to not have verified 169 * this..), one vCPU thread can also generate more than one userfaultfd 170 * message on the same address. It can happen e.g. for whatever reason 171 * the fault got retried before a resolution arrives. In that extremely 172 * rare case, we could also see two (cpu1, addr1) entries. 173 * 174 * In all cases, be prepared with such re-entrancies with this array. 175 * 176 * Using uint8_t should be far enough for now. For example, when 177 * there're only one resolve thread (postcopy ram listening thread), 178 * the max (concurrent fault entries) should be two. 179 */ 180 uint8_t *vcpu_faults_current; 181 /* 182 * The hash that contains addr1->[(cpu1,ts1),(cpu2,ts2) ...] mappings. 183 * Each of the entry is a tuple of (CPU index, fault timestamp) showing 184 * that a fault was requested. 185 */ 186 GHashTable *vcpu_addr_hash; 187 /* 188 * Each bucket stores the count of faults that were resolved within the 189 * bucket window [2^N us, 2^(N+1) us). 190 */ 191 uint64_t latency_buckets[BLOCKTIME_LATENCY_BUCKET_N]; 192 /* total blocktime when all vCPUs are stopped */ 193 uint64_t total_blocktime; 194 /* point in time when last page fault was initiated */ 195 uint64_t last_begin; 196 /* number of vCPU are suspended */ 197 int smp_cpus_down; 198 199 /* 200 * Fast path for looking up vcpu_index from tid. NOTE: this result 201 * only reflects the vcpu setup when postcopy is running. It may not 202 * always match with the current vcpu setup because vcpus can be hot 203 * attached/detached after migration completes. However this should be 204 * stable when blocktime is using the structure. 205 */ 206 GHashTable *tid_to_vcpu_hash; 207 /* Count of non-vCPU faults. This is only for debugging purpose. */ 208 uint64_t non_vcpu_faults; 209 /* total blocktime when a non-vCPU thread is stopped */ 210 uint64_t non_vcpu_blocktime_total; 211 212 /* 213 * Handler for exit event, necessary for 214 * releasing whole blocktime_ctx 215 */ 216 Notifier exit_notifier; 217 } PostcopyBlocktimeContext; 218 219 typedef struct { 220 /* The time the fault was triggered */ 221 uint64_t fault_time; 222 /* 223 * The vCPU index that was blocked, when cpu==-1, it means it's a 224 * fault from non-vCPU threads. 225 */ 226 int cpu; 227 } BlocktimeVCPUEntry; 228 229 /* Alloc an entry to record a vCPU fault */ 230 static BlocktimeVCPUEntry * 231 blocktime_vcpu_entry_alloc(int cpu, uint64_t fault_time) 232 { 233 BlocktimeVCPUEntry *entry = g_new(BlocktimeVCPUEntry, 1); 234 235 entry->fault_time = fault_time; 236 entry->cpu = cpu; 237 238 return entry; 239 } 240 241 /* Free a @GList of @BlocktimeVCPUEntry */ 242 static void blocktime_vcpu_list_free(gpointer data) 243 { 244 g_list_free_full(data, g_free); 245 } 246 247 static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx) 248 { 249 g_hash_table_destroy(ctx->tid_to_vcpu_hash); 250 g_hash_table_destroy(ctx->vcpu_addr_hash); 251 g_free(ctx->vcpu_blocktime_total); 252 g_free(ctx->vcpu_faults_count); 253 g_free(ctx->vcpu_faults_current); 254 g_free(ctx); 255 } 256 257 static void migration_exit_cb(Notifier *n, void *data) 258 { 259 PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext, 260 exit_notifier); 261 destroy_blocktime_context(ctx); 262 } 263 264 static GHashTable *blocktime_init_tid_to_vcpu_hash(void) 265 { 266 /* 267 * TID as an unsigned int can be directly used as the key. However, 268 * CPU index can NOT be directly used as value, because CPU index can 269 * be 0, which means NULL. Then when lookup we can never know whether 270 * it's 0 or "not found". Hence use an indirection for CPU index. 271 */ 272 GHashTable *table = g_hash_table_new_full(g_direct_hash, g_direct_equal, 273 NULL, g_free); 274 CPUState *cpu; 275 276 /* 277 * Initialize the tid->cpu_id mapping for lookups. The caller needs to 278 * make sure when reaching here the CPU topology is frozen and will be 279 * stable for the whole blocktime trapping period. 280 */ 281 CPU_FOREACH(cpu) { 282 int *value = g_new(int, 1); 283 284 *value = cpu->cpu_index; 285 g_hash_table_insert(table, 286 GUINT_TO_POINTER((uint32_t)cpu->thread_id), 287 value); 288 trace_postcopy_blocktime_tid_cpu_map(cpu->cpu_index, cpu->thread_id); 289 } 290 291 return table; 292 } 293 294 static struct PostcopyBlocktimeContext *blocktime_context_new(void) 295 { 296 MachineState *ms = MACHINE(qdev_get_machine()); 297 unsigned int smp_cpus = ms->smp.cpus; 298 PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1); 299 300 /* Initialize all counters to be zeros */ 301 memset(ctx->latency_buckets, 0, sizeof(ctx->latency_buckets)); 302 303 ctx->vcpu_blocktime_total = g_new0(uint64_t, smp_cpus); 304 ctx->vcpu_faults_count = g_new0(uint64_t, smp_cpus); 305 ctx->vcpu_faults_current = g_new0(uint8_t, smp_cpus); 306 ctx->tid_to_vcpu_hash = blocktime_init_tid_to_vcpu_hash(); 307 308 /* 309 * The key (host virtual addresses) will always be gpointer-sized on 310 * either 32bits or 64bits systems, so it'll fit as a direct key. 311 * 312 * The value will be a list of BlocktimeVCPUEntry entries. 313 */ 314 ctx->vcpu_addr_hash = g_hash_table_new_full(g_direct_hash, 315 g_direct_equal, 316 NULL, 317 blocktime_vcpu_list_free); 318 319 ctx->exit_notifier.notify = migration_exit_cb; 320 qemu_add_exit_notifier(&ctx->exit_notifier); 321 322 return ctx; 323 } 324 325 /* 326 * This function just populates MigrationInfo from postcopy's 327 * blocktime context. It will not populate MigrationInfo, 328 * unless postcopy-blocktime capability was set. 329 * 330 * @info: pointer to MigrationInfo to populate 331 */ 332 void fill_destination_postcopy_migration_info(MigrationInfo *info) 333 { 334 MigrationIncomingState *mis = migration_incoming_get_current(); 335 PostcopyBlocktimeContext *bc = mis->blocktime_ctx; 336 MachineState *ms = MACHINE(qdev_get_machine()); 337 uint64_t latency_total = 0, faults = 0; 338 uint32List *list_blocktime = NULL; 339 uint64List *list_latency = NULL; 340 uint64List *latency_buckets = NULL; 341 int i; 342 343 if (!bc) { 344 return; 345 } 346 347 for (i = ms->smp.cpus - 1; i >= 0; i--) { 348 uint64_t latency, total, count; 349 350 /* Convert ns -> ms */ 351 QAPI_LIST_PREPEND(list_blocktime, 352 (uint32_t)(bc->vcpu_blocktime_total[i] / SCALE_MS)); 353 354 /* The rest in nanoseconds */ 355 total = bc->vcpu_blocktime_total[i]; 356 latency_total += total; 357 count = bc->vcpu_faults_count[i]; 358 faults += count; 359 360 if (count) { 361 latency = total / count; 362 } else { 363 /* No fault detected */ 364 latency = 0; 365 } 366 367 QAPI_LIST_PREPEND(list_latency, latency); 368 } 369 370 for (i = BLOCKTIME_LATENCY_BUCKET_N - 1; i >= 0; i--) { 371 QAPI_LIST_PREPEND(latency_buckets, bc->latency_buckets[i]); 372 } 373 374 latency_total += bc->non_vcpu_blocktime_total; 375 faults += bc->non_vcpu_faults; 376 377 info->has_postcopy_non_vcpu_latency = true; 378 info->postcopy_non_vcpu_latency = bc->non_vcpu_faults ? 379 (bc->non_vcpu_blocktime_total / bc->non_vcpu_faults) : 0; 380 info->has_postcopy_blocktime = true; 381 /* Convert ns -> ms */ 382 info->postcopy_blocktime = (uint32_t)(bc->total_blocktime / SCALE_MS); 383 info->has_postcopy_vcpu_blocktime = true; 384 info->postcopy_vcpu_blocktime = list_blocktime; 385 info->has_postcopy_latency = true; 386 info->postcopy_latency = faults ? (latency_total / faults) : 0; 387 info->has_postcopy_vcpu_latency = true; 388 info->postcopy_vcpu_latency = list_latency; 389 info->has_postcopy_latency_dist = true; 390 info->postcopy_latency_dist = latency_buckets; 391 } 392 393 static uint64_t get_postcopy_total_blocktime(void) 394 { 395 MigrationIncomingState *mis = migration_incoming_get_current(); 396 PostcopyBlocktimeContext *bc = mis->blocktime_ctx; 397 398 if (!bc) { 399 return 0; 400 } 401 402 return bc->total_blocktime; 403 } 404 405 /** 406 * receive_ufd_features: check userfault fd features, to request only supported 407 * features in the future. 408 * 409 * Returns: true on success 410 * 411 * __NR_userfaultfd - should be checked before 412 * @features: out parameter will contain uffdio_api.features provided by kernel 413 * in case of success 414 */ 415 static bool receive_ufd_features(uint64_t *features) 416 { 417 struct uffdio_api api_struct = {0}; 418 int ufd; 419 bool ret = true; 420 421 ufd = uffd_open(O_CLOEXEC); 422 if (ufd == -1) { 423 error_report("%s: uffd_open() failed: %s", __func__, strerror(errno)); 424 return false; 425 } 426 427 /* ask features */ 428 api_struct.api = UFFD_API; 429 api_struct.features = 0; 430 if (ioctl(ufd, UFFDIO_API, &api_struct)) { 431 error_report("%s: UFFDIO_API failed: %s", __func__, 432 strerror(errno)); 433 ret = false; 434 goto release_ufd; 435 } 436 437 *features = api_struct.features; 438 439 release_ufd: 440 close(ufd); 441 return ret; 442 } 443 444 /** 445 * request_ufd_features: this function should be called only once on a newly 446 * opened ufd, subsequent calls will lead to error. 447 * 448 * Returns: true on success 449 * 450 * @ufd: fd obtained from userfaultfd syscall 451 * @features: bit mask see UFFD_API_FEATURES 452 */ 453 static bool request_ufd_features(int ufd, uint64_t features) 454 { 455 struct uffdio_api api_struct = {0}; 456 uint64_t ioctl_mask; 457 458 api_struct.api = UFFD_API; 459 api_struct.features = features; 460 if (ioctl(ufd, UFFDIO_API, &api_struct)) { 461 error_report("%s failed: UFFDIO_API failed: %s", __func__, 462 strerror(errno)); 463 return false; 464 } 465 466 ioctl_mask = 1ULL << _UFFDIO_REGISTER | 467 1ULL << _UFFDIO_UNREGISTER; 468 if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) { 469 error_report("Missing userfault features: %" PRIx64, 470 (uint64_t)(~api_struct.ioctls & ioctl_mask)); 471 return false; 472 } 473 474 return true; 475 } 476 477 static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis, 478 Error **errp) 479 { 480 ERRP_GUARD(); 481 uint64_t asked_features = 0; 482 static uint64_t supported_features; 483 484 /* 485 * it's not possible to 486 * request UFFD_API twice per one fd 487 * userfault fd features is persistent 488 */ 489 if (!supported_features) { 490 if (!receive_ufd_features(&supported_features)) { 491 error_setg(errp, "Userfault feature detection failed"); 492 return false; 493 } 494 } 495 496 #ifdef UFFD_FEATURE_THREAD_ID 497 /* 498 * Postcopy blocktime conditionally needs THREAD_ID feature (introduced 499 * to Linux in 2017). Always try to enable it when QEMU is compiled 500 * with such environment. 501 */ 502 if (UFFD_FEATURE_THREAD_ID & supported_features) { 503 asked_features |= UFFD_FEATURE_THREAD_ID; 504 } 505 #endif 506 507 /* 508 * request features, even if asked_features is 0, due to 509 * kernel expects UFFD_API before UFFDIO_REGISTER, per 510 * userfault file descriptor 511 */ 512 if (!request_ufd_features(ufd, asked_features)) { 513 error_setg(errp, "Failed features %" PRIu64, asked_features); 514 return false; 515 } 516 517 if (qemu_real_host_page_size() != ram_pagesize_summary()) { 518 bool have_hp = false; 519 /* We've got a huge page */ 520 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS 521 have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS; 522 #endif 523 if (!have_hp) { 524 error_setg(errp, 525 "Userfault on this host does not support huge pages"); 526 return false; 527 } 528 } 529 return true; 530 } 531 532 /* Callback from postcopy_ram_supported_by_host block iterator. 533 */ 534 static int test_ramblock_postcopiable(RAMBlock *rb, Error **errp) 535 { 536 const char *block_name = qemu_ram_get_idstr(rb); 537 ram_addr_t length = qemu_ram_get_used_length(rb); 538 size_t pagesize = qemu_ram_pagesize(rb); 539 QemuFsType fs; 540 541 if (length % pagesize) { 542 error_setg(errp, 543 "Postcopy requires RAM blocks to be a page size multiple," 544 " block %s is 0x" RAM_ADDR_FMT " bytes with a " 545 "page size of 0x%zx", block_name, length, pagesize); 546 return 1; 547 } 548 549 if (rb->fd >= 0) { 550 fs = qemu_fd_getfs(rb->fd); 551 if (fs != QEMU_FS_TYPE_TMPFS && fs != QEMU_FS_TYPE_HUGETLBFS) { 552 error_setg(errp, 553 "Host backend files need to be TMPFS or HUGETLBFS only"); 554 return 1; 555 } 556 } 557 558 return 0; 559 } 560 561 /* 562 * Note: This has the side effect of munlock'ing all of RAM, that's 563 * normally fine since if the postcopy succeeds it gets turned back on at the 564 * end. 565 */ 566 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis, Error **errp) 567 { 568 ERRP_GUARD(); 569 long pagesize = qemu_real_host_page_size(); 570 int ufd = -1; 571 bool ret = false; /* Error unless we change it */ 572 void *testarea = NULL; 573 struct uffdio_register reg_struct; 574 struct uffdio_range range_struct; 575 uint64_t feature_mask; 576 RAMBlock *block; 577 578 if (qemu_target_page_size() > pagesize) { 579 error_setg(errp, "Target page size bigger than host page size"); 580 goto out; 581 } 582 583 ufd = uffd_open(O_CLOEXEC); 584 if (ufd == -1) { 585 error_setg(errp, "Userfaultfd not available: %s", strerror(errno)); 586 goto out; 587 } 588 589 /* Give devices a chance to object */ 590 if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, errp)) { 591 goto out; 592 } 593 594 /* Version and features check */ 595 if (!ufd_check_and_apply(ufd, mis, errp)) { 596 goto out; 597 } 598 599 /* 600 * We don't support postcopy with some type of ramblocks. 601 * 602 * NOTE: we explicitly ignored migrate_ram_is_ignored() instead we checked 603 * all possible ramblocks. This is because this function can be called 604 * when creating the migration object, during the phase RAM_MIGRATABLE 605 * is not even properly set for all the ramblocks. 606 * 607 * A side effect of this is we'll also check against RAM_SHARED 608 * ramblocks even if migrate_ignore_shared() is set (in which case 609 * we'll never migrate RAM_SHARED at all), but normally this shouldn't 610 * affect in reality, or we can revisit. 611 */ 612 RAMBLOCK_FOREACH(block) { 613 if (test_ramblock_postcopiable(block, errp)) { 614 goto out; 615 } 616 } 617 618 /* 619 * userfault and mlock don't go together; we'll put it back later if 620 * it was enabled. 621 */ 622 if (munlockall()) { 623 error_setg(errp, "munlockall() failed: %s", strerror(errno)); 624 goto out; 625 } 626 627 /* 628 * We need to check that the ops we need are supported on anon memory 629 * To do that we need to register a chunk and see the flags that 630 * are returned. 631 */ 632 testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE | 633 MAP_ANONYMOUS, -1, 0); 634 if (testarea == MAP_FAILED) { 635 error_setg(errp, "Failed to map test area: %s", strerror(errno)); 636 goto out; 637 } 638 g_assert(QEMU_PTR_IS_ALIGNED(testarea, pagesize)); 639 640 reg_struct.range.start = (uintptr_t)testarea; 641 reg_struct.range.len = pagesize; 642 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 643 644 if (ioctl(ufd, UFFDIO_REGISTER, ®_struct)) { 645 error_setg(errp, "UFFDIO_REGISTER failed: %s", strerror(errno)); 646 goto out; 647 } 648 649 range_struct.start = (uintptr_t)testarea; 650 range_struct.len = pagesize; 651 if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) { 652 error_setg(errp, "UFFDIO_UNREGISTER failed: %s", strerror(errno)); 653 goto out; 654 } 655 656 feature_mask = 1ULL << _UFFDIO_WAKE | 657 1ULL << _UFFDIO_COPY | 658 1ULL << _UFFDIO_ZEROPAGE; 659 if ((reg_struct.ioctls & feature_mask) != feature_mask) { 660 error_setg(errp, "Missing userfault map features: %" PRIx64, 661 (uint64_t)(~reg_struct.ioctls & feature_mask)); 662 goto out; 663 } 664 665 /* Success! */ 666 ret = true; 667 out: 668 if (testarea) { 669 munmap(testarea, pagesize); 670 } 671 if (ufd != -1) { 672 close(ufd); 673 } 674 return ret; 675 } 676 677 /* 678 * Setup an area of RAM so that it *can* be used for postcopy later; this 679 * must be done right at the start prior to pre-copy. 680 * opaque should be the MIS. 681 */ 682 static int init_range(RAMBlock *rb, void *opaque) 683 { 684 const char *block_name = qemu_ram_get_idstr(rb); 685 void *host_addr = qemu_ram_get_host_addr(rb); 686 ram_addr_t offset = qemu_ram_get_offset(rb); 687 ram_addr_t length = qemu_ram_get_used_length(rb); 688 trace_postcopy_init_range(block_name, host_addr, offset, length); 689 690 /* 691 * Save the used_length before running the guest. In case we have to 692 * resize RAM blocks when syncing RAM block sizes from the source during 693 * precopy, we'll update it manually via the ram block notifier. 694 */ 695 rb->postcopy_length = length; 696 697 /* 698 * We need the whole of RAM to be truly empty for postcopy, so things 699 * like ROMs and any data tables built during init must be zero'd 700 * - we're going to get the copy from the source anyway. 701 * (Precopy will just overwrite this data, so doesn't need the discard) 702 */ 703 if (ram_discard_range(block_name, 0, length)) { 704 return -1; 705 } 706 707 return 0; 708 } 709 710 /* 711 * At the end of migration, undo the effects of init_range 712 * opaque should be the MIS. 713 */ 714 static int cleanup_range(RAMBlock *rb, void *opaque) 715 { 716 const char *block_name = qemu_ram_get_idstr(rb); 717 void *host_addr = qemu_ram_get_host_addr(rb); 718 ram_addr_t offset = qemu_ram_get_offset(rb); 719 ram_addr_t length = rb->postcopy_length; 720 MigrationIncomingState *mis = opaque; 721 struct uffdio_range range_struct; 722 trace_postcopy_cleanup_range(block_name, host_addr, offset, length); 723 724 /* 725 * We turned off hugepage for the precopy stage with postcopy enabled 726 * we can turn it back on now. 727 */ 728 qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE); 729 730 /* 731 * We can also turn off userfault now since we should have all the 732 * pages. It can be useful to leave it on to debug postcopy 733 * if you're not sure it's always getting every page. 734 */ 735 range_struct.start = (uintptr_t)host_addr; 736 range_struct.len = length; 737 738 if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) { 739 error_report("%s: userfault unregister %s", __func__, strerror(errno)); 740 741 return -1; 742 } 743 744 return 0; 745 } 746 747 /* 748 * Initialise postcopy-ram, setting the RAM to a state where we can go into 749 * postcopy later; must be called prior to any precopy. 750 * called from arch_init's similarly named ram_postcopy_incoming_init 751 */ 752 int postcopy_ram_incoming_init(MigrationIncomingState *mis) 753 { 754 if (foreach_not_ignored_block(init_range, NULL)) { 755 return -1; 756 } 757 758 return 0; 759 } 760 761 static void postcopy_temp_pages_cleanup(MigrationIncomingState *mis) 762 { 763 int i; 764 765 if (mis->postcopy_tmp_pages) { 766 for (i = 0; i < mis->postcopy_channels; i++) { 767 if (mis->postcopy_tmp_pages[i].tmp_huge_page) { 768 munmap(mis->postcopy_tmp_pages[i].tmp_huge_page, 769 mis->largest_page_size); 770 mis->postcopy_tmp_pages[i].tmp_huge_page = NULL; 771 } 772 } 773 g_free(mis->postcopy_tmp_pages); 774 mis->postcopy_tmp_pages = NULL; 775 } 776 777 if (mis->postcopy_tmp_zero_page) { 778 munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size); 779 mis->postcopy_tmp_zero_page = NULL; 780 } 781 } 782 783 /* 784 * At the end of a migration where postcopy_ram_incoming_init was called. 785 */ 786 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 787 { 788 trace_postcopy_ram_incoming_cleanup_entry(); 789 790 if (mis->preempt_thread_status == PREEMPT_THREAD_CREATED) { 791 /* Notify the fast load thread to quit */ 792 mis->preempt_thread_status = PREEMPT_THREAD_QUIT; 793 /* 794 * Update preempt_thread_status before reading count. Note: mutex 795 * lock only provide ACQUIRE semantic, and it doesn't stops this 796 * write to be reordered after reading the count. 797 */ 798 smp_mb(); 799 /* 800 * It's possible that the preempt thread is still handling the last 801 * pages to arrive which were requested by guest page faults. 802 * Making sure nothing is left behind by waiting on the condvar if 803 * that unlikely case happened. 804 */ 805 WITH_QEMU_LOCK_GUARD(&mis->page_request_mutex) { 806 if (qatomic_read(&mis->page_requested_count)) { 807 /* 808 * It is guaranteed to receive a signal later, because the 809 * count>0 now, so it's destined to be decreased to zero 810 * very soon by the preempt thread. 811 */ 812 qemu_cond_wait(&mis->page_request_cond, 813 &mis->page_request_mutex); 814 } 815 } 816 /* Notify the fast load thread to quit */ 817 if (mis->postcopy_qemufile_dst) { 818 qemu_file_shutdown(mis->postcopy_qemufile_dst); 819 } 820 qemu_thread_join(&mis->postcopy_prio_thread); 821 mis->preempt_thread_status = PREEMPT_THREAD_NONE; 822 } 823 824 if (mis->have_fault_thread) { 825 Error *local_err = NULL; 826 827 /* Let the fault thread quit */ 828 qatomic_set(&mis->fault_thread_quit, 1); 829 postcopy_fault_thread_notify(mis); 830 trace_postcopy_ram_incoming_cleanup_join(); 831 qemu_thread_join(&mis->fault_thread); 832 833 if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) { 834 error_report_err(local_err); 835 return -1; 836 } 837 838 if (foreach_not_ignored_block(cleanup_range, mis)) { 839 return -1; 840 } 841 842 trace_postcopy_ram_incoming_cleanup_closeuf(); 843 close(mis->userfault_fd); 844 close(mis->userfault_event_fd); 845 mis->have_fault_thread = false; 846 } 847 848 if (should_mlock(mlock_state)) { 849 if (os_mlock(is_mlock_on_fault(mlock_state)) < 0) { 850 error_report("mlock: %s", strerror(errno)); 851 /* 852 * It doesn't feel right to fail at this point, we have a valid 853 * VM state. 854 */ 855 } 856 } 857 858 postcopy_temp_pages_cleanup(mis); 859 860 trace_postcopy_ram_incoming_cleanup_blocktime( 861 get_postcopy_total_blocktime()); 862 863 trace_postcopy_ram_incoming_cleanup_exit(); 864 return 0; 865 } 866 867 /* 868 * Disable huge pages on an area 869 */ 870 static int nhp_range(RAMBlock *rb, void *opaque) 871 { 872 const char *block_name = qemu_ram_get_idstr(rb); 873 void *host_addr = qemu_ram_get_host_addr(rb); 874 ram_addr_t offset = qemu_ram_get_offset(rb); 875 ram_addr_t length = rb->postcopy_length; 876 trace_postcopy_nhp_range(block_name, host_addr, offset, length); 877 878 /* 879 * Before we do discards we need to ensure those discards really 880 * do delete areas of the page, even if THP thinks a hugepage would 881 * be a good idea, so force hugepages off. 882 */ 883 qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE); 884 885 return 0; 886 } 887 888 /* 889 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard 890 * however leaving it until after precopy means that most of the precopy 891 * data is still THPd 892 */ 893 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 894 { 895 if (foreach_not_ignored_block(nhp_range, mis)) { 896 return -1; 897 } 898 899 postcopy_state_set(POSTCOPY_INCOMING_DISCARD); 900 901 return 0; 902 } 903 904 /* 905 * Mark the given area of RAM as requiring notification to unwritten areas 906 * Used as a callback on foreach_not_ignored_block. 907 * host_addr: Base of area to mark 908 * offset: Offset in the whole ram arena 909 * length: Length of the section 910 * opaque: MigrationIncomingState pointer 911 * Returns 0 on success 912 */ 913 static int ram_block_enable_notify(RAMBlock *rb, void *opaque) 914 { 915 MigrationIncomingState *mis = opaque; 916 struct uffdio_register reg_struct; 917 918 reg_struct.range.start = (uintptr_t)qemu_ram_get_host_addr(rb); 919 reg_struct.range.len = rb->postcopy_length; 920 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 921 922 /* Now tell our userfault_fd that it's responsible for this area */ 923 if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, ®_struct)) { 924 error_report("%s userfault register: %s", __func__, strerror(errno)); 925 return -1; 926 } 927 if (!(reg_struct.ioctls & (1ULL << _UFFDIO_COPY))) { 928 error_report("%s userfault: Region doesn't support COPY", __func__); 929 return -1; 930 } 931 if (reg_struct.ioctls & (1ULL << _UFFDIO_ZEROPAGE)) { 932 qemu_ram_set_uf_zeroable(rb); 933 } 934 935 return 0; 936 } 937 938 int postcopy_wake_shared(struct PostCopyFD *pcfd, 939 uint64_t client_addr, 940 RAMBlock *rb) 941 { 942 size_t pagesize = qemu_ram_pagesize(rb); 943 trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb)); 944 return uffd_wakeup(pcfd->fd, 945 (void *)(uintptr_t)ROUND_DOWN(client_addr, pagesize), 946 pagesize); 947 } 948 949 /* 950 * NOTE: @tid is only used when postcopy-blocktime feature is enabled, and 951 * also optional: when zero is provided, the fault accounting will be ignored. 952 */ 953 static int postcopy_request_page(MigrationIncomingState *mis, RAMBlock *rb, 954 ram_addr_t start, uint64_t haddr, uint32_t tid) 955 { 956 void *aligned = (void *)(uintptr_t)ROUND_DOWN(haddr, qemu_ram_pagesize(rb)); 957 958 /* 959 * Discarded pages (via RamDiscardManager) are never migrated. On unlikely 960 * access, place a zeropage, which will also set the relevant bits in the 961 * recv_bitmap accordingly, so we won't try placing a zeropage twice. 962 * 963 * Checking a single bit is sufficient to handle pagesize > TPS as either 964 * all relevant bits are set or not. 965 */ 966 assert(QEMU_IS_ALIGNED(start, qemu_ram_pagesize(rb))); 967 if (ramblock_page_is_discarded(rb, start)) { 968 bool received = ramblock_recv_bitmap_test_byte_offset(rb, start); 969 970 return received ? 0 : postcopy_place_page_zero(mis, aligned, rb); 971 } 972 973 return migrate_send_rp_req_pages(mis, rb, start, haddr, tid); 974 } 975 976 /* 977 * Callback from shared fault handlers to ask for a page, 978 * the page must be specified by a RAMBlock and an offset in that rb 979 * Note: Only for use by shared fault handlers (in fault thread) 980 */ 981 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb, 982 uint64_t client_addr, uint64_t rb_offset) 983 { 984 uint64_t aligned_rbo = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb)); 985 MigrationIncomingState *mis = migration_incoming_get_current(); 986 987 trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb), 988 rb_offset); 989 if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) { 990 trace_postcopy_request_shared_page_present(pcfd->idstr, 991 qemu_ram_get_idstr(rb), rb_offset); 992 return postcopy_wake_shared(pcfd, client_addr, rb); 993 } 994 /* TODO: support blocktime tracking */ 995 postcopy_request_page(mis, rb, aligned_rbo, client_addr, 0); 996 return 0; 997 } 998 999 static int blocktime_get_vcpu(PostcopyBlocktimeContext *ctx, uint32_t tid) 1000 { 1001 int *found; 1002 1003 found = g_hash_table_lookup(ctx->tid_to_vcpu_hash, GUINT_TO_POINTER(tid)); 1004 if (!found) { 1005 /* 1006 * NOTE: this is possible, because QEMU's non-vCPU threads can 1007 * also access a missing page. Or, when KVM async pf is enabled, a 1008 * fault can even happen from a kworker.. 1009 */ 1010 return -1; 1011 } 1012 1013 return *found; 1014 } 1015 1016 static uint64_t get_current_ns(void) 1017 { 1018 return (uint64_t)qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 1019 } 1020 1021 /* 1022 * Inject an (cpu, fault_time) entry into the database, using addr as key. 1023 * When cpu==-1, it means it's a non-vCPU fault. 1024 */ 1025 static void blocktime_fault_inject(PostcopyBlocktimeContext *ctx, 1026 uintptr_t addr, int cpu, uint64_t time) 1027 { 1028 BlocktimeVCPUEntry *entry = blocktime_vcpu_entry_alloc(cpu, time); 1029 GHashTable *table = ctx->vcpu_addr_hash; 1030 gpointer key = (gpointer)addr; 1031 GList *head, *list; 1032 gboolean result; 1033 1034 head = g_hash_table_lookup(table, key); 1035 if (head) { 1036 /* 1037 * If existed, steal the @head for list operation rather than 1038 * freeing it, making sure steal succeeded. 1039 */ 1040 result = g_hash_table_steal(table, key); 1041 assert(result == TRUE); 1042 } 1043 1044 /* 1045 * Now the key is guaranteed to be absent. Two cases: 1046 * 1047 * (1) There's no existing entry, list contains the only one. Insert. 1048 * (2) There're existing entries, after stealing we own it, prepend the 1049 * result and re-insert. 1050 */ 1051 list = g_list_prepend(head, entry); 1052 g_hash_table_insert(table, key, list); 1053 1054 trace_postcopy_blocktime_begin(addr, time, cpu, !!head); 1055 } 1056 1057 /* 1058 * This function is being called when pagefault occurs. It tracks down vCPU 1059 * blocking time. It's protected by @page_request_mutex. 1060 * 1061 * @addr: faulted host virtual address 1062 * @ptid: faulted process thread id 1063 * @rb: ramblock appropriate to addr 1064 */ 1065 void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid, 1066 RAMBlock *rb) 1067 { 1068 int cpu; 1069 MigrationIncomingState *mis = migration_incoming_get_current(); 1070 PostcopyBlocktimeContext *dc = mis->blocktime_ctx; 1071 uint64_t current; 1072 1073 if (!dc || ptid == 0) { 1074 return; 1075 } 1076 1077 /* 1078 * The caller should only inject a blocktime entry when the page is 1079 * yet missing. 1080 */ 1081 assert(!ramblock_recv_bitmap_test(rb, (void *)addr)); 1082 1083 current = get_current_ns(); 1084 cpu = blocktime_get_vcpu(dc, ptid); 1085 1086 if (cpu >= 0) { 1087 /* How many faults on this vCPU in total? */ 1088 dc->vcpu_faults_count[cpu]++; 1089 1090 /* 1091 * Account how many concurrent faults on this vCPU we trapped. See 1092 * comments above vcpu_faults_current[] on why it can be more than one. 1093 */ 1094 if (dc->vcpu_faults_current[cpu]++ == 0) { 1095 dc->smp_cpus_down++; 1096 /* 1097 * We use last_begin to cover (1) the 1st fault on this specific 1098 * vCPU, but meanwhile (2) the last vCPU that got blocked. It's 1099 * only used to calculate system-wide blocktime. 1100 */ 1101 dc->last_begin = current; 1102 } 1103 1104 /* Making sure it won't overflow - it really should never! */ 1105 assert(dc->vcpu_faults_current[cpu] <= 255); 1106 } else { 1107 /* 1108 * For non-vCPU thread faults, we don't care about tid or cpu index 1109 * or time the thread is blocked (e.g., a kworker trying to help 1110 * KVM when async_pf=on is OK to be blocked and not affect guest 1111 * responsiveness), but we care about latency. Track it with 1112 * cpu=-1. 1113 * 1114 * Note that this will NOT affect blocktime reports on vCPU being 1115 * blocked, but only about system-wide latency reports. 1116 */ 1117 dc->non_vcpu_faults++; 1118 } 1119 1120 blocktime_fault_inject(dc, addr, cpu, current); 1121 } 1122 1123 static void blocktime_latency_account(PostcopyBlocktimeContext *ctx, 1124 uint64_t time_us) 1125 { 1126 /* 1127 * Convert time (in us) to bucket index it belongs. Take extra caution 1128 * of time_us==0 even if normally rare - when happens put into bucket 0. 1129 */ 1130 int index = time_us ? (63 - clz64(time_us)) : 0; 1131 1132 assert(index >= 0); 1133 1134 /* If it's too large, put into top bucket */ 1135 if (index >= BLOCKTIME_LATENCY_BUCKET_N) { 1136 index = BLOCKTIME_LATENCY_BUCKET_N - 1; 1137 } 1138 1139 ctx->latency_buckets[index]++; 1140 } 1141 1142 typedef struct { 1143 PostcopyBlocktimeContext *ctx; 1144 uint64_t current; 1145 int affected_cpus; 1146 int affected_non_cpus; 1147 } BlockTimeVCPUIter; 1148 1149 static void blocktime_cpu_list_iter_fn(gpointer data, gpointer user_data) 1150 { 1151 BlockTimeVCPUIter *iter = user_data; 1152 PostcopyBlocktimeContext *ctx = iter->ctx; 1153 BlocktimeVCPUEntry *entry = data; 1154 uint64_t time_passed; 1155 int cpu = entry->cpu; 1156 1157 /* 1158 * Time should never go back.. so when the fault is resolved it must be 1159 * later than when it was faulted. 1160 */ 1161 assert(iter->current >= entry->fault_time); 1162 time_passed = iter->current - entry->fault_time; 1163 1164 /* Latency buckets are in microseconds */ 1165 blocktime_latency_account(ctx, time_passed / SCALE_US); 1166 1167 if (cpu >= 0) { 1168 /* 1169 * If we resolved all pending faults on one vCPU due to this page 1170 * resolution, take a note. 1171 */ 1172 if (--ctx->vcpu_faults_current[cpu] == 0) { 1173 ctx->vcpu_blocktime_total[cpu] += time_passed; 1174 iter->affected_cpus += 1; 1175 } 1176 trace_postcopy_blocktime_end_one(cpu, ctx->vcpu_faults_current[cpu]); 1177 } else { 1178 iter->affected_non_cpus++; 1179 ctx->non_vcpu_blocktime_total += time_passed; 1180 /* 1181 * We do not maintain how many pending non-vCPU faults because we 1182 * do not care about blocktime, only latency. 1183 */ 1184 trace_postcopy_blocktime_end_one(-1, 0); 1185 } 1186 } 1187 1188 /* 1189 * This function just provide calculated blocktime per cpu and trace it. 1190 * Total blocktime is calculated in mark_postcopy_blocktime_end. It's 1191 * protected by @page_request_mutex. 1192 * 1193 * Assume we have 3 CPU 1194 * 1195 * S1 E1 S1 E1 1196 * -----***********------------xxx***************------------------------> CPU1 1197 * 1198 * S2 E2 1199 * ------------****************xxx---------------------------------------> CPU2 1200 * 1201 * S3 E3 1202 * ------------------------****xxx********-------------------------------> CPU3 1203 * 1204 * We have sequence S1,S2,E1,S3,S1,E2,E3,E1 1205 * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3 1206 * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 - 1207 * it's a part of total blocktime. 1208 * S1 - here is last_begin 1209 * Legend of the picture is following: 1210 * * - means blocktime per vCPU 1211 * x - means overlapped blocktime (total blocktime) 1212 * 1213 * @addr: host virtual address 1214 */ 1215 static void mark_postcopy_blocktime_end(uintptr_t addr) 1216 { 1217 MigrationIncomingState *mis = migration_incoming_get_current(); 1218 PostcopyBlocktimeContext *dc = mis->blocktime_ctx; 1219 MachineState *ms = MACHINE(qdev_get_machine()); 1220 unsigned int smp_cpus = ms->smp.cpus; 1221 BlockTimeVCPUIter iter = { 1222 .current = get_current_ns(), 1223 .affected_cpus = 0, 1224 .affected_non_cpus = 0, 1225 .ctx = dc, 1226 }; 1227 gpointer key = (gpointer)addr; 1228 GHashTable *table; 1229 GList *list; 1230 1231 if (!dc) { 1232 return; 1233 } 1234 1235 table = dc->vcpu_addr_hash; 1236 /* the address wasn't tracked at all? */ 1237 list = g_hash_table_lookup(table, key); 1238 if (!list) { 1239 return; 1240 } 1241 1242 /* 1243 * Loop over the set of vCPUs that got blocked on this addr, do the 1244 * blocktime accounting. After that, remove the whole list. 1245 */ 1246 g_list_foreach(list, blocktime_cpu_list_iter_fn, &iter); 1247 g_hash_table_remove(table, key); 1248 1249 /* 1250 * If all vCPUs used to be down, and copying this page would free some 1251 * vCPUs, then the system-level blocktime ends here. 1252 */ 1253 if (dc->smp_cpus_down == smp_cpus && iter.affected_cpus) { 1254 dc->total_blocktime += iter.current - dc->last_begin; 1255 } 1256 dc->smp_cpus_down -= iter.affected_cpus; 1257 1258 trace_postcopy_blocktime_end(addr, iter.current, iter.affected_cpus, 1259 iter.affected_non_cpus); 1260 } 1261 1262 static void postcopy_pause_fault_thread(MigrationIncomingState *mis) 1263 { 1264 trace_postcopy_pause_fault_thread(); 1265 qemu_sem_wait(&mis->postcopy_pause_sem_fault); 1266 trace_postcopy_pause_fault_thread_continued(); 1267 } 1268 1269 /* 1270 * Handle faults detected by the USERFAULT markings 1271 */ 1272 static void *postcopy_ram_fault_thread(void *opaque) 1273 { 1274 MigrationIncomingState *mis = opaque; 1275 struct uffd_msg msg; 1276 int ret; 1277 size_t index; 1278 RAMBlock *rb = NULL; 1279 1280 trace_postcopy_ram_fault_thread_entry(); 1281 rcu_register_thread(); 1282 mis->last_rb = NULL; /* last RAMBlock we sent part of */ 1283 qemu_event_set(&mis->thread_sync_event); 1284 1285 struct pollfd *pfd; 1286 size_t pfd_len = 2 + mis->postcopy_remote_fds->len; 1287 1288 pfd = g_new0(struct pollfd, pfd_len); 1289 1290 pfd[0].fd = mis->userfault_fd; 1291 pfd[0].events = POLLIN; 1292 pfd[1].fd = mis->userfault_event_fd; 1293 pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */ 1294 trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd); 1295 for (index = 0; index < mis->postcopy_remote_fds->len; index++) { 1296 struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds, 1297 struct PostCopyFD, index); 1298 pfd[2 + index].fd = pcfd->fd; 1299 pfd[2 + index].events = POLLIN; 1300 trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr, 1301 pcfd->fd); 1302 } 1303 1304 while (true) { 1305 ram_addr_t rb_offset; 1306 int poll_result; 1307 1308 /* 1309 * We're mainly waiting for the kernel to give us a faulting HVA, 1310 * however we can be told to quit via userfault_quit_fd which is 1311 * an eventfd 1312 */ 1313 1314 poll_result = poll(pfd, pfd_len, -1 /* Wait forever */); 1315 if (poll_result == -1) { 1316 error_report("%s: userfault poll: %s", __func__, strerror(errno)); 1317 break; 1318 } 1319 1320 if (!mis->to_src_file) { 1321 /* 1322 * Possibly someone tells us that the return path is 1323 * broken already using the event. We should hold until 1324 * the channel is rebuilt. 1325 */ 1326 postcopy_pause_fault_thread(mis); 1327 } 1328 1329 if (pfd[1].revents) { 1330 uint64_t tmp64 = 0; 1331 1332 /* Consume the signal */ 1333 if (read(mis->userfault_event_fd, &tmp64, 8) != 8) { 1334 /* Nothing obviously nicer than posting this error. */ 1335 error_report("%s: read() failed", __func__); 1336 } 1337 1338 if (qatomic_read(&mis->fault_thread_quit)) { 1339 trace_postcopy_ram_fault_thread_quit(); 1340 break; 1341 } 1342 } 1343 1344 if (pfd[0].revents) { 1345 poll_result--; 1346 ret = read(mis->userfault_fd, &msg, sizeof(msg)); 1347 if (ret != sizeof(msg)) { 1348 if (errno == EAGAIN) { 1349 /* 1350 * if a wake up happens on the other thread just after 1351 * the poll, there is nothing to read. 1352 */ 1353 continue; 1354 } 1355 if (ret < 0) { 1356 error_report("%s: Failed to read full userfault " 1357 "message: %s", 1358 __func__, strerror(errno)); 1359 break; 1360 } else { 1361 error_report("%s: Read %d bytes from userfaultfd " 1362 "expected %zd", 1363 __func__, ret, sizeof(msg)); 1364 break; /* Lost alignment, don't know what we'd read next */ 1365 } 1366 } 1367 if (msg.event != UFFD_EVENT_PAGEFAULT) { 1368 error_report("%s: Read unexpected event %ud from userfaultfd", 1369 __func__, msg.event); 1370 continue; /* It's not a page fault, shouldn't happen */ 1371 } 1372 1373 rb = qemu_ram_block_from_host( 1374 (void *)(uintptr_t)msg.arg.pagefault.address, 1375 true, &rb_offset); 1376 if (!rb) { 1377 error_report("postcopy_ram_fault_thread: Fault outside guest: %" 1378 PRIx64, (uint64_t)msg.arg.pagefault.address); 1379 break; 1380 } 1381 1382 rb_offset = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb)); 1383 trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address, 1384 qemu_ram_get_idstr(rb), 1385 rb_offset, 1386 msg.arg.pagefault.feat.ptid); 1387 retry: 1388 /* 1389 * Send the request to the source - we want to request one 1390 * of our host page sizes (which is >= TPS) 1391 */ 1392 ret = postcopy_request_page(mis, rb, rb_offset, 1393 msg.arg.pagefault.address, 1394 msg.arg.pagefault.feat.ptid); 1395 if (ret) { 1396 /* May be network failure, try to wait for recovery */ 1397 postcopy_pause_fault_thread(mis); 1398 goto retry; 1399 } 1400 } 1401 1402 /* Now handle any requests from external processes on shared memory */ 1403 /* TODO: May need to handle devices deregistering during postcopy */ 1404 for (index = 2; index < pfd_len && poll_result; index++) { 1405 if (pfd[index].revents) { 1406 struct PostCopyFD *pcfd = 1407 &g_array_index(mis->postcopy_remote_fds, 1408 struct PostCopyFD, index - 2); 1409 1410 poll_result--; 1411 if (pfd[index].revents & POLLERR) { 1412 error_report("%s: POLLERR on poll %zd fd=%d", 1413 __func__, index, pcfd->fd); 1414 pfd[index].events = 0; 1415 continue; 1416 } 1417 1418 ret = read(pcfd->fd, &msg, sizeof(msg)); 1419 if (ret != sizeof(msg)) { 1420 if (errno == EAGAIN) { 1421 /* 1422 * if a wake up happens on the other thread just after 1423 * the poll, there is nothing to read. 1424 */ 1425 continue; 1426 } 1427 if (ret < 0) { 1428 error_report("%s: Failed to read full userfault " 1429 "message: %s (shared) revents=%d", 1430 __func__, strerror(errno), 1431 pfd[index].revents); 1432 /*TODO: Could just disable this sharer */ 1433 break; 1434 } else { 1435 error_report("%s: Read %d bytes from userfaultfd " 1436 "expected %zd (shared)", 1437 __func__, ret, sizeof(msg)); 1438 /*TODO: Could just disable this sharer */ 1439 break; /*Lost alignment,don't know what we'd read next*/ 1440 } 1441 } 1442 if (msg.event != UFFD_EVENT_PAGEFAULT) { 1443 error_report("%s: Read unexpected event %ud " 1444 "from userfaultfd (shared)", 1445 __func__, msg.event); 1446 continue; /* It's not a page fault, shouldn't happen */ 1447 } 1448 /* Call the device handler registered with us */ 1449 ret = pcfd->handler(pcfd, &msg); 1450 if (ret) { 1451 error_report("%s: Failed to resolve shared fault on %zd/%s", 1452 __func__, index, pcfd->idstr); 1453 /* TODO: Fail? Disable this sharer? */ 1454 } 1455 } 1456 } 1457 } 1458 rcu_unregister_thread(); 1459 trace_postcopy_ram_fault_thread_exit(); 1460 g_free(pfd); 1461 return NULL; 1462 } 1463 1464 static int postcopy_temp_pages_setup(MigrationIncomingState *mis) 1465 { 1466 PostcopyTmpPage *tmp_page; 1467 int err, i, channels; 1468 void *temp_page; 1469 1470 if (migrate_postcopy_preempt()) { 1471 /* If preemption enabled, need extra channel for urgent requests */ 1472 mis->postcopy_channels = RAM_CHANNEL_MAX; 1473 } else { 1474 /* Both precopy/postcopy on the same channel */ 1475 mis->postcopy_channels = 1; 1476 } 1477 1478 channels = mis->postcopy_channels; 1479 mis->postcopy_tmp_pages = g_malloc0_n(sizeof(PostcopyTmpPage), channels); 1480 1481 for (i = 0; i < channels; i++) { 1482 tmp_page = &mis->postcopy_tmp_pages[i]; 1483 temp_page = mmap(NULL, mis->largest_page_size, PROT_READ | PROT_WRITE, 1484 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1485 if (temp_page == MAP_FAILED) { 1486 err = errno; 1487 error_report("%s: Failed to map postcopy_tmp_pages[%d]: %s", 1488 __func__, i, strerror(err)); 1489 /* Clean up will be done later */ 1490 return -err; 1491 } 1492 tmp_page->tmp_huge_page = temp_page; 1493 /* Initialize default states for each tmp page */ 1494 postcopy_temp_page_reset(tmp_page); 1495 } 1496 1497 /* 1498 * Map large zero page when kernel can't use UFFDIO_ZEROPAGE for hugepages 1499 */ 1500 mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size, 1501 PROT_READ | PROT_WRITE, 1502 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1503 if (mis->postcopy_tmp_zero_page == MAP_FAILED) { 1504 err = errno; 1505 mis->postcopy_tmp_zero_page = NULL; 1506 error_report("%s: Failed to map large zero page %s", 1507 __func__, strerror(err)); 1508 return -err; 1509 } 1510 1511 memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size); 1512 1513 return 0; 1514 } 1515 1516 int postcopy_ram_incoming_setup(MigrationIncomingState *mis) 1517 { 1518 Error *local_err = NULL; 1519 1520 /* Open the fd for the kernel to give us userfaults */ 1521 mis->userfault_fd = uffd_open(O_CLOEXEC | O_NONBLOCK); 1522 if (mis->userfault_fd == -1) { 1523 error_report("%s: Failed to open userfault fd: %s", __func__, 1524 strerror(errno)); 1525 return -1; 1526 } 1527 1528 /* 1529 * Although the host check already tested the API, we need to 1530 * do the check again as an ABI handshake on the new fd. 1531 */ 1532 if (!ufd_check_and_apply(mis->userfault_fd, mis, &local_err)) { 1533 error_report_err(local_err); 1534 return -1; 1535 } 1536 1537 if (migrate_postcopy_blocktime()) { 1538 assert(mis->blocktime_ctx == NULL); 1539 mis->blocktime_ctx = blocktime_context_new(); 1540 } 1541 1542 /* Now an eventfd we use to tell the fault-thread to quit */ 1543 mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC); 1544 if (mis->userfault_event_fd == -1) { 1545 error_report("%s: Opening userfault_event_fd: %s", __func__, 1546 strerror(errno)); 1547 close(mis->userfault_fd); 1548 return -1; 1549 } 1550 1551 postcopy_thread_create(mis, &mis->fault_thread, 1552 MIGRATION_THREAD_DST_FAULT, 1553 postcopy_ram_fault_thread, QEMU_THREAD_JOINABLE); 1554 mis->have_fault_thread = true; 1555 1556 /* Mark so that we get notified of accesses to unwritten areas */ 1557 if (foreach_not_ignored_block(ram_block_enable_notify, mis)) { 1558 error_report("ram_block_enable_notify failed"); 1559 return -1; 1560 } 1561 1562 if (postcopy_temp_pages_setup(mis)) { 1563 /* Error dumped in the sub-function */ 1564 return -1; 1565 } 1566 1567 if (migrate_postcopy_preempt()) { 1568 /* 1569 * This thread needs to be created after the temp pages because 1570 * it'll fetch RAM_CHANNEL_POSTCOPY PostcopyTmpPage immediately. 1571 */ 1572 postcopy_thread_create(mis, &mis->postcopy_prio_thread, 1573 MIGRATION_THREAD_DST_PREEMPT, 1574 postcopy_preempt_thread, QEMU_THREAD_JOINABLE); 1575 mis->preempt_thread_status = PREEMPT_THREAD_CREATED; 1576 } 1577 1578 trace_postcopy_ram_enable_notify(); 1579 1580 return 0; 1581 } 1582 1583 static int qemu_ufd_copy_ioctl(MigrationIncomingState *mis, void *host_addr, 1584 void *from_addr, uint64_t pagesize, RAMBlock *rb) 1585 { 1586 int userfault_fd = mis->userfault_fd; 1587 int ret; 1588 1589 if (from_addr) { 1590 ret = uffd_copy_page(userfault_fd, host_addr, from_addr, pagesize, 1591 false); 1592 } else { 1593 ret = uffd_zero_page(userfault_fd, host_addr, pagesize, false); 1594 } 1595 if (!ret) { 1596 qemu_mutex_lock(&mis->page_request_mutex); 1597 ramblock_recv_bitmap_set_range(rb, host_addr, 1598 pagesize / qemu_target_page_size()); 1599 /* 1600 * If this page resolves a page fault for a previous recorded faulted 1601 * address, take a special note to maintain the requested page list. 1602 */ 1603 if (g_tree_lookup(mis->page_requested, host_addr)) { 1604 g_tree_remove(mis->page_requested, host_addr); 1605 int left_pages = qatomic_dec_fetch(&mis->page_requested_count); 1606 1607 trace_postcopy_page_req_del(host_addr, mis->page_requested_count); 1608 /* Order the update of count and read of preempt status */ 1609 smp_mb(); 1610 if (mis->preempt_thread_status == PREEMPT_THREAD_QUIT && 1611 left_pages == 0) { 1612 /* 1613 * This probably means the main thread is waiting for us. 1614 * Notify that we've finished receiving the last requested 1615 * page. 1616 */ 1617 qemu_cond_signal(&mis->page_request_cond); 1618 } 1619 } 1620 mark_postcopy_blocktime_end((uintptr_t)host_addr); 1621 qemu_mutex_unlock(&mis->page_request_mutex); 1622 } 1623 return ret; 1624 } 1625 1626 int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset) 1627 { 1628 int i; 1629 MigrationIncomingState *mis = migration_incoming_get_current(); 1630 GArray *pcrfds = mis->postcopy_remote_fds; 1631 1632 for (i = 0; i < pcrfds->len; i++) { 1633 struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i); 1634 int ret = cur->waker(cur, rb, offset); 1635 if (ret) { 1636 return ret; 1637 } 1638 } 1639 return 0; 1640 } 1641 1642 /* 1643 * Place a host page (from) at (host) atomically 1644 * returns 0 on success 1645 */ 1646 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from, 1647 RAMBlock *rb) 1648 { 1649 size_t pagesize = qemu_ram_pagesize(rb); 1650 int e; 1651 1652 /* copy also acks to the kernel waking the stalled thread up 1653 * TODO: We can inhibit that ack and only do it if it was requested 1654 * which would be slightly cheaper, but we'd have to be careful 1655 * of the order of updating our page state. 1656 */ 1657 e = qemu_ufd_copy_ioctl(mis, host, from, pagesize, rb); 1658 if (e) { 1659 return e; 1660 } 1661 1662 trace_postcopy_place_page(host); 1663 return postcopy_notify_shared_wake(rb, 1664 qemu_ram_block_host_offset(rb, host)); 1665 } 1666 1667 /* 1668 * Place a zero page at (host) atomically 1669 * returns 0 on success 1670 */ 1671 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host, 1672 RAMBlock *rb) 1673 { 1674 size_t pagesize = qemu_ram_pagesize(rb); 1675 trace_postcopy_place_page_zero(host); 1676 1677 /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE 1678 * but it's not available for everything (e.g. hugetlbpages) 1679 */ 1680 if (qemu_ram_is_uf_zeroable(rb)) { 1681 int e; 1682 e = qemu_ufd_copy_ioctl(mis, host, NULL, pagesize, rb); 1683 if (e) { 1684 return e; 1685 } 1686 return postcopy_notify_shared_wake(rb, 1687 qemu_ram_block_host_offset(rb, 1688 host)); 1689 } else { 1690 return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page, rb); 1691 } 1692 } 1693 1694 #else 1695 /* No target OS support, stubs just fail */ 1696 void fill_destination_postcopy_migration_info(MigrationInfo *info) 1697 { 1698 } 1699 1700 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis, Error **errp) 1701 { 1702 error_report("%s: No OS support", __func__); 1703 return false; 1704 } 1705 1706 int postcopy_ram_incoming_init(MigrationIncomingState *mis) 1707 { 1708 error_report("postcopy_ram_incoming_init: No OS support"); 1709 return -1; 1710 } 1711 1712 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 1713 { 1714 g_assert_not_reached(); 1715 } 1716 1717 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 1718 { 1719 g_assert_not_reached(); 1720 } 1721 1722 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb, 1723 uint64_t client_addr, uint64_t rb_offset) 1724 { 1725 g_assert_not_reached(); 1726 } 1727 1728 int postcopy_ram_incoming_setup(MigrationIncomingState *mis) 1729 { 1730 g_assert_not_reached(); 1731 } 1732 1733 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from, 1734 RAMBlock *rb) 1735 { 1736 g_assert_not_reached(); 1737 } 1738 1739 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host, 1740 RAMBlock *rb) 1741 { 1742 g_assert_not_reached(); 1743 } 1744 1745 int postcopy_wake_shared(struct PostCopyFD *pcfd, 1746 uint64_t client_addr, 1747 RAMBlock *rb) 1748 { 1749 g_assert_not_reached(); 1750 } 1751 1752 void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid, 1753 RAMBlock *rb) 1754 { 1755 } 1756 #endif 1757 1758 /* ------------------------------------------------------------------------- */ 1759 void postcopy_temp_page_reset(PostcopyTmpPage *tmp_page) 1760 { 1761 tmp_page->target_pages = 0; 1762 tmp_page->host_addr = NULL; 1763 /* 1764 * This is set to true when reset, and cleared as long as we received any 1765 * of the non-zero small page within this huge page. 1766 */ 1767 tmp_page->all_zero = true; 1768 } 1769 1770 void postcopy_fault_thread_notify(MigrationIncomingState *mis) 1771 { 1772 uint64_t tmp64 = 1; 1773 1774 /* 1775 * Wakeup the fault_thread. It's an eventfd that should currently 1776 * be at 0, we're going to increment it to 1 1777 */ 1778 if (write(mis->userfault_event_fd, &tmp64, 8) != 8) { 1779 /* Not much we can do here, but may as well report it */ 1780 error_report("%s: incrementing failed: %s", __func__, 1781 strerror(errno)); 1782 } 1783 } 1784 1785 /** 1786 * postcopy_discard_send_init: Called at the start of each RAMBlock before 1787 * asking to discard individual ranges. 1788 * 1789 * @ms: The current migration state. 1790 * @offset: the bitmap offset of the named RAMBlock in the migration bitmap. 1791 * @name: RAMBlock that discards will operate on. 1792 */ 1793 static PostcopyDiscardState pds = {0}; 1794 void postcopy_discard_send_init(MigrationState *ms, const char *name) 1795 { 1796 pds.ramblock_name = name; 1797 pds.cur_entry = 0; 1798 pds.nsentwords = 0; 1799 pds.nsentcmds = 0; 1800 } 1801 1802 /** 1803 * postcopy_discard_send_range: Called by the bitmap code for each chunk to 1804 * discard. May send a discard message, may just leave it queued to 1805 * be sent later. 1806 * 1807 * @ms: Current migration state. 1808 * @start,@length: a range of pages in the migration bitmap in the 1809 * RAM block passed to postcopy_discard_send_init() (length=1 is one page) 1810 */ 1811 void postcopy_discard_send_range(MigrationState *ms, unsigned long start, 1812 unsigned long length) 1813 { 1814 size_t tp_size = qemu_target_page_size(); 1815 /* Convert to byte offsets within the RAM block */ 1816 pds.start_list[pds.cur_entry] = start * tp_size; 1817 pds.length_list[pds.cur_entry] = length * tp_size; 1818 trace_postcopy_discard_send_range(pds.ramblock_name, start, length); 1819 pds.cur_entry++; 1820 pds.nsentwords++; 1821 1822 if (pds.cur_entry == MAX_DISCARDS_PER_COMMAND) { 1823 /* Full set, ship it! */ 1824 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 1825 pds.ramblock_name, 1826 pds.cur_entry, 1827 pds.start_list, 1828 pds.length_list); 1829 pds.nsentcmds++; 1830 pds.cur_entry = 0; 1831 } 1832 } 1833 1834 /** 1835 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the 1836 * bitmap code. Sends any outstanding discard messages, frees the PDS 1837 * 1838 * @ms: Current migration state. 1839 */ 1840 void postcopy_discard_send_finish(MigrationState *ms) 1841 { 1842 /* Anything unsent? */ 1843 if (pds.cur_entry) { 1844 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 1845 pds.ramblock_name, 1846 pds.cur_entry, 1847 pds.start_list, 1848 pds.length_list); 1849 pds.nsentcmds++; 1850 } 1851 1852 trace_postcopy_discard_send_finish(pds.ramblock_name, pds.nsentwords, 1853 pds.nsentcmds); 1854 } 1855 1856 /* 1857 * Current state of incoming postcopy; note this is not part of 1858 * MigrationIncomingState since it's state is used during cleanup 1859 * at the end as MIS is being freed. 1860 */ 1861 static PostcopyState incoming_postcopy_state; 1862 1863 PostcopyState postcopy_state_get(void) 1864 { 1865 return qatomic_load_acquire(&incoming_postcopy_state); 1866 } 1867 1868 /* Set the state and return the old state */ 1869 PostcopyState postcopy_state_set(PostcopyState new_state) 1870 { 1871 return qatomic_xchg(&incoming_postcopy_state, new_state); 1872 } 1873 1874 /* Register a handler for external shared memory postcopy 1875 * called on the destination. 1876 */ 1877 void postcopy_register_shared_ufd(struct PostCopyFD *pcfd) 1878 { 1879 MigrationIncomingState *mis = migration_incoming_get_current(); 1880 1881 mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds, 1882 *pcfd); 1883 } 1884 1885 /* Unregister a handler for external shared memory postcopy 1886 */ 1887 void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd) 1888 { 1889 guint i; 1890 MigrationIncomingState *mis = migration_incoming_get_current(); 1891 GArray *pcrfds = mis->postcopy_remote_fds; 1892 1893 if (!pcrfds) { 1894 /* migration has already finished and freed the array */ 1895 return; 1896 } 1897 for (i = 0; i < pcrfds->len; i++) { 1898 struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i); 1899 if (cur->fd == pcfd->fd) { 1900 mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i); 1901 return; 1902 } 1903 } 1904 } 1905 1906 void postcopy_preempt_new_channel(MigrationIncomingState *mis, QEMUFile *file) 1907 { 1908 /* 1909 * The new loading channel has its own threads, so it needs to be 1910 * blocked too. It's by default true, just be explicit. 1911 */ 1912 qemu_file_set_blocking(file, true); 1913 mis->postcopy_qemufile_dst = file; 1914 qemu_sem_post(&mis->postcopy_qemufile_dst_done); 1915 trace_postcopy_preempt_new_channel(); 1916 } 1917 1918 /* 1919 * Setup the postcopy preempt channel with the IOC. If ERROR is specified, 1920 * setup the error instead. This helper will free the ERROR if specified. 1921 */ 1922 static void 1923 postcopy_preempt_send_channel_done(MigrationState *s, 1924 QIOChannel *ioc, Error *local_err) 1925 { 1926 if (local_err) { 1927 migrate_set_error(s, local_err); 1928 error_free(local_err); 1929 } else { 1930 migration_ioc_register_yank(ioc); 1931 s->postcopy_qemufile_src = qemu_file_new_output(ioc); 1932 trace_postcopy_preempt_new_channel(); 1933 } 1934 1935 /* 1936 * Kick the waiter in all cases. The waiter should check upon 1937 * postcopy_qemufile_src to know whether it failed or not. 1938 */ 1939 qemu_sem_post(&s->postcopy_qemufile_src_sem); 1940 } 1941 1942 static void 1943 postcopy_preempt_tls_handshake(QIOTask *task, gpointer opaque) 1944 { 1945 g_autoptr(QIOChannel) ioc = QIO_CHANNEL(qio_task_get_source(task)); 1946 MigrationState *s = opaque; 1947 Error *local_err = NULL; 1948 1949 qio_task_propagate_error(task, &local_err); 1950 postcopy_preempt_send_channel_done(s, ioc, local_err); 1951 } 1952 1953 static void 1954 postcopy_preempt_send_channel_new(QIOTask *task, gpointer opaque) 1955 { 1956 g_autoptr(QIOChannel) ioc = QIO_CHANNEL(qio_task_get_source(task)); 1957 MigrationState *s = opaque; 1958 QIOChannelTLS *tioc; 1959 Error *local_err = NULL; 1960 1961 if (qio_task_propagate_error(task, &local_err)) { 1962 goto out; 1963 } 1964 1965 if (migrate_channel_requires_tls_upgrade(ioc)) { 1966 tioc = migration_tls_client_create(ioc, s->hostname, &local_err); 1967 if (!tioc) { 1968 goto out; 1969 } 1970 trace_postcopy_preempt_tls_handshake(); 1971 qio_channel_set_name(QIO_CHANNEL(tioc), "migration-tls-preempt"); 1972 qio_channel_tls_handshake(tioc, postcopy_preempt_tls_handshake, 1973 s, NULL, NULL); 1974 /* Setup the channel until TLS handshake finished */ 1975 return; 1976 } 1977 1978 out: 1979 /* This handles both good and error cases */ 1980 postcopy_preempt_send_channel_done(s, ioc, local_err); 1981 } 1982 1983 /* 1984 * This function will kick off an async task to establish the preempt 1985 * channel, and wait until the connection setup completed. Returns 0 if 1986 * channel established, -1 for error. 1987 */ 1988 int postcopy_preempt_establish_channel(MigrationState *s) 1989 { 1990 /* If preempt not enabled, no need to wait */ 1991 if (!migrate_postcopy_preempt()) { 1992 return 0; 1993 } 1994 1995 /* 1996 * Kick off async task to establish preempt channel. Only do so with 1997 * 8.0+ machines, because 7.1/7.2 require the channel to be created in 1998 * setup phase of migration (even if racy in an unreliable network). 1999 */ 2000 if (!s->preempt_pre_7_2) { 2001 postcopy_preempt_setup(s); 2002 } 2003 2004 /* 2005 * We need the postcopy preempt channel to be established before 2006 * starting doing anything. 2007 */ 2008 qemu_sem_wait(&s->postcopy_qemufile_src_sem); 2009 2010 return s->postcopy_qemufile_src ? 0 : -1; 2011 } 2012 2013 void postcopy_preempt_setup(MigrationState *s) 2014 { 2015 /* Kick an async task to connect */ 2016 socket_send_channel_create(postcopy_preempt_send_channel_new, s); 2017 } 2018 2019 static void postcopy_pause_ram_fast_load(MigrationIncomingState *mis) 2020 { 2021 trace_postcopy_pause_fast_load(); 2022 qemu_mutex_unlock(&mis->postcopy_prio_thread_mutex); 2023 qemu_sem_wait(&mis->postcopy_pause_sem_fast_load); 2024 qemu_mutex_lock(&mis->postcopy_prio_thread_mutex); 2025 trace_postcopy_pause_fast_load_continued(); 2026 } 2027 2028 static bool preempt_thread_should_run(MigrationIncomingState *mis) 2029 { 2030 return mis->preempt_thread_status != PREEMPT_THREAD_QUIT; 2031 } 2032 2033 void *postcopy_preempt_thread(void *opaque) 2034 { 2035 MigrationIncomingState *mis = opaque; 2036 int ret; 2037 2038 trace_postcopy_preempt_thread_entry(); 2039 2040 rcu_register_thread(); 2041 2042 qemu_event_set(&mis->thread_sync_event); 2043 2044 /* 2045 * The preempt channel is established in asynchronous way. Wait 2046 * for its completion. 2047 */ 2048 qemu_sem_wait(&mis->postcopy_qemufile_dst_done); 2049 2050 /* Sending RAM_SAVE_FLAG_EOS to terminate this thread */ 2051 qemu_mutex_lock(&mis->postcopy_prio_thread_mutex); 2052 while (preempt_thread_should_run(mis)) { 2053 ret = ram_load_postcopy(mis->postcopy_qemufile_dst, 2054 RAM_CHANNEL_POSTCOPY); 2055 /* If error happened, go into recovery routine */ 2056 if (ret && preempt_thread_should_run(mis)) { 2057 postcopy_pause_ram_fast_load(mis); 2058 } else { 2059 /* We're done */ 2060 break; 2061 } 2062 } 2063 qemu_mutex_unlock(&mis->postcopy_prio_thread_mutex); 2064 2065 rcu_unregister_thread(); 2066 2067 trace_postcopy_preempt_thread_exit(); 2068 2069 return NULL; 2070 } 2071 2072 bool postcopy_is_paused(MigrationStatus status) 2073 { 2074 return status == MIGRATION_STATUS_POSTCOPY_PAUSED || 2075 status == MIGRATION_STATUS_POSTCOPY_RECOVER_SETUP; 2076 } 2077