xref: /openbmc/qemu/migration/postcopy-ram.c (revision 56e2cd24)
1 /*
2  * Postcopy migration for RAM
3  *
4  * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Dave Gilbert  <dgilbert@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13 
14 /*
15  * Postcopy is a migration technique where the execution flips from the
16  * source to the destination before all the data has been copied.
17  */
18 
19 #include "qemu/osdep.h"
20 
21 #include "qemu-common.h"
22 #include "migration/migration.h"
23 #include "migration/postcopy-ram.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/balloon.h"
26 #include "qemu/error-report.h"
27 #include "trace.h"
28 
29 /* Arbitrary limit on size of each discard command,
30  * keeps them around ~200 bytes
31  */
32 #define MAX_DISCARDS_PER_COMMAND 12
33 
34 struct PostcopyDiscardState {
35     const char *ramblock_name;
36     uint64_t offset; /* Bitmap entry for the 1st bit of this RAMBlock */
37     uint16_t cur_entry;
38     /*
39      * Start and length of a discard range (bytes)
40      */
41     uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
42     uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
43     unsigned int nsentwords;
44     unsigned int nsentcmds;
45 };
46 
47 /* Postcopy needs to detect accesses to pages that haven't yet been copied
48  * across, and efficiently map new pages in, the techniques for doing this
49  * are target OS specific.
50  */
51 #if defined(__linux__)
52 
53 #include <poll.h>
54 #include <sys/ioctl.h>
55 #include <sys/syscall.h>
56 #include <asm/types.h> /* for __u64 */
57 #endif
58 
59 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
60 #include <sys/eventfd.h>
61 #include <linux/userfaultfd.h>
62 
63 static bool ufd_version_check(int ufd)
64 {
65     struct uffdio_api api_struct;
66     uint64_t ioctl_mask;
67 
68     api_struct.api = UFFD_API;
69     api_struct.features = 0;
70     if (ioctl(ufd, UFFDIO_API, &api_struct)) {
71         error_report("postcopy_ram_supported_by_host: UFFDIO_API failed: %s",
72                      strerror(errno));
73         return false;
74     }
75 
76     ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
77                  (__u64)1 << _UFFDIO_UNREGISTER;
78     if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
79         error_report("Missing userfault features: %" PRIx64,
80                      (uint64_t)(~api_struct.ioctls & ioctl_mask));
81         return false;
82     }
83 
84     if (getpagesize() != ram_pagesize_summary()) {
85         bool have_hp = false;
86         /* We've got a huge page */
87 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS
88         have_hp = api_struct.features & UFFD_FEATURE_MISSING_HUGETLBFS;
89 #endif
90         if (!have_hp) {
91             error_report("Userfault on this host does not support huge pages");
92             return false;
93         }
94     }
95     return true;
96 }
97 
98 /* Callback from postcopy_ram_supported_by_host block iterator.
99  */
100 static int test_range_shared(const char *block_name, void *host_addr,
101                              ram_addr_t offset, ram_addr_t length, void *opaque)
102 {
103     if (qemu_ram_is_shared(qemu_ram_block_by_name(block_name))) {
104         error_report("Postcopy on shared RAM (%s) is not yet supported",
105                      block_name);
106         return 1;
107     }
108     return 0;
109 }
110 
111 /*
112  * Note: This has the side effect of munlock'ing all of RAM, that's
113  * normally fine since if the postcopy succeeds it gets turned back on at the
114  * end.
115  */
116 bool postcopy_ram_supported_by_host(void)
117 {
118     long pagesize = getpagesize();
119     int ufd = -1;
120     bool ret = false; /* Error unless we change it */
121     void *testarea = NULL;
122     struct uffdio_register reg_struct;
123     struct uffdio_range range_struct;
124     uint64_t feature_mask;
125 
126     if ((1ul << qemu_target_page_bits()) > pagesize) {
127         error_report("Target page size bigger than host page size");
128         goto out;
129     }
130 
131     ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
132     if (ufd == -1) {
133         error_report("%s: userfaultfd not available: %s", __func__,
134                      strerror(errno));
135         goto out;
136     }
137 
138     /* Version and features check */
139     if (!ufd_version_check(ufd)) {
140         goto out;
141     }
142 
143     /* We don't support postcopy with shared RAM yet */
144     if (qemu_ram_foreach_block(test_range_shared, NULL)) {
145         goto out;
146     }
147 
148     /*
149      * userfault and mlock don't go together; we'll put it back later if
150      * it was enabled.
151      */
152     if (munlockall()) {
153         error_report("%s: munlockall: %s", __func__,  strerror(errno));
154         return -1;
155     }
156 
157     /*
158      *  We need to check that the ops we need are supported on anon memory
159      *  To do that we need to register a chunk and see the flags that
160      *  are returned.
161      */
162     testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
163                                     MAP_ANONYMOUS, -1, 0);
164     if (testarea == MAP_FAILED) {
165         error_report("%s: Failed to map test area: %s", __func__,
166                      strerror(errno));
167         goto out;
168     }
169     g_assert(((size_t)testarea & (pagesize-1)) == 0);
170 
171     reg_struct.range.start = (uintptr_t)testarea;
172     reg_struct.range.len = pagesize;
173     reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
174 
175     if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
176         error_report("%s userfault register: %s", __func__, strerror(errno));
177         goto out;
178     }
179 
180     range_struct.start = (uintptr_t)testarea;
181     range_struct.len = pagesize;
182     if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
183         error_report("%s userfault unregister: %s", __func__, strerror(errno));
184         goto out;
185     }
186 
187     feature_mask = (__u64)1 << _UFFDIO_WAKE |
188                    (__u64)1 << _UFFDIO_COPY |
189                    (__u64)1 << _UFFDIO_ZEROPAGE;
190     if ((reg_struct.ioctls & feature_mask) != feature_mask) {
191         error_report("Missing userfault map features: %" PRIx64,
192                      (uint64_t)(~reg_struct.ioctls & feature_mask));
193         goto out;
194     }
195 
196     /* Success! */
197     ret = true;
198 out:
199     if (testarea) {
200         munmap(testarea, pagesize);
201     }
202     if (ufd != -1) {
203         close(ufd);
204     }
205     return ret;
206 }
207 
208 /*
209  * Setup an area of RAM so that it *can* be used for postcopy later; this
210  * must be done right at the start prior to pre-copy.
211  * opaque should be the MIS.
212  */
213 static int init_range(const char *block_name, void *host_addr,
214                       ram_addr_t offset, ram_addr_t length, void *opaque)
215 {
216     MigrationIncomingState *mis = opaque;
217 
218     trace_postcopy_init_range(block_name, host_addr, offset, length);
219 
220     /*
221      * We need the whole of RAM to be truly empty for postcopy, so things
222      * like ROMs and any data tables built during init must be zero'd
223      * - we're going to get the copy from the source anyway.
224      * (Precopy will just overwrite this data, so doesn't need the discard)
225      */
226     if (ram_discard_range(mis, block_name, 0, length)) {
227         return -1;
228     }
229 
230     return 0;
231 }
232 
233 /*
234  * At the end of migration, undo the effects of init_range
235  * opaque should be the MIS.
236  */
237 static int cleanup_range(const char *block_name, void *host_addr,
238                         ram_addr_t offset, ram_addr_t length, void *opaque)
239 {
240     MigrationIncomingState *mis = opaque;
241     struct uffdio_range range_struct;
242     trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
243 
244     /*
245      * We turned off hugepage for the precopy stage with postcopy enabled
246      * we can turn it back on now.
247      */
248     qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
249 
250     /*
251      * We can also turn off userfault now since we should have all the
252      * pages.   It can be useful to leave it on to debug postcopy
253      * if you're not sure it's always getting every page.
254      */
255     range_struct.start = (uintptr_t)host_addr;
256     range_struct.len = length;
257 
258     if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
259         error_report("%s: userfault unregister %s", __func__, strerror(errno));
260 
261         return -1;
262     }
263 
264     return 0;
265 }
266 
267 /*
268  * Initialise postcopy-ram, setting the RAM to a state where we can go into
269  * postcopy later; must be called prior to any precopy.
270  * called from arch_init's similarly named ram_postcopy_incoming_init
271  */
272 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages)
273 {
274     if (qemu_ram_foreach_block(init_range, mis)) {
275         return -1;
276     }
277 
278     return 0;
279 }
280 
281 /*
282  * At the end of a migration where postcopy_ram_incoming_init was called.
283  */
284 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
285 {
286     trace_postcopy_ram_incoming_cleanup_entry();
287 
288     if (mis->have_fault_thread) {
289         uint64_t tmp64;
290 
291         if (qemu_ram_foreach_block(cleanup_range, mis)) {
292             return -1;
293         }
294         /*
295          * Tell the fault_thread to exit, it's an eventfd that should
296          * currently be at 0, we're going to increment it to 1
297          */
298         tmp64 = 1;
299         if (write(mis->userfault_quit_fd, &tmp64, 8) == 8) {
300             trace_postcopy_ram_incoming_cleanup_join();
301             qemu_thread_join(&mis->fault_thread);
302         } else {
303             /* Not much we can do here, but may as well report it */
304             error_report("%s: incrementing userfault_quit_fd: %s", __func__,
305                          strerror(errno));
306         }
307         trace_postcopy_ram_incoming_cleanup_closeuf();
308         close(mis->userfault_fd);
309         close(mis->userfault_quit_fd);
310         mis->have_fault_thread = false;
311     }
312 
313     qemu_balloon_inhibit(false);
314 
315     if (enable_mlock) {
316         if (os_mlock() < 0) {
317             error_report("mlock: %s", strerror(errno));
318             /*
319              * It doesn't feel right to fail at this point, we have a valid
320              * VM state.
321              */
322         }
323     }
324 
325     postcopy_state_set(POSTCOPY_INCOMING_END);
326     migrate_send_rp_shut(mis, qemu_file_get_error(mis->from_src_file) != 0);
327 
328     if (mis->postcopy_tmp_page) {
329         munmap(mis->postcopy_tmp_page, mis->largest_page_size);
330         mis->postcopy_tmp_page = NULL;
331     }
332     if (mis->postcopy_tmp_zero_page) {
333         munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
334         mis->postcopy_tmp_zero_page = NULL;
335     }
336     trace_postcopy_ram_incoming_cleanup_exit();
337     return 0;
338 }
339 
340 /*
341  * Disable huge pages on an area
342  */
343 static int nhp_range(const char *block_name, void *host_addr,
344                     ram_addr_t offset, ram_addr_t length, void *opaque)
345 {
346     trace_postcopy_nhp_range(block_name, host_addr, offset, length);
347 
348     /*
349      * Before we do discards we need to ensure those discards really
350      * do delete areas of the page, even if THP thinks a hugepage would
351      * be a good idea, so force hugepages off.
352      */
353     qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
354 
355     return 0;
356 }
357 
358 /*
359  * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
360  * however leaving it until after precopy means that most of the precopy
361  * data is still THPd
362  */
363 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
364 {
365     if (qemu_ram_foreach_block(nhp_range, mis)) {
366         return -1;
367     }
368 
369     postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
370 
371     return 0;
372 }
373 
374 /*
375  * Mark the given area of RAM as requiring notification to unwritten areas
376  * Used as a  callback on qemu_ram_foreach_block.
377  *   host_addr: Base of area to mark
378  *   offset: Offset in the whole ram arena
379  *   length: Length of the section
380  *   opaque: MigrationIncomingState pointer
381  * Returns 0 on success
382  */
383 static int ram_block_enable_notify(const char *block_name, void *host_addr,
384                                    ram_addr_t offset, ram_addr_t length,
385                                    void *opaque)
386 {
387     MigrationIncomingState *mis = opaque;
388     struct uffdio_register reg_struct;
389 
390     reg_struct.range.start = (uintptr_t)host_addr;
391     reg_struct.range.len = length;
392     reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
393 
394     /* Now tell our userfault_fd that it's responsible for this area */
395     if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
396         error_report("%s userfault register: %s", __func__, strerror(errno));
397         return -1;
398     }
399     if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) {
400         error_report("%s userfault: Region doesn't support COPY", __func__);
401         return -1;
402     }
403 
404     return 0;
405 }
406 
407 /*
408  * Handle faults detected by the USERFAULT markings
409  */
410 static void *postcopy_ram_fault_thread(void *opaque)
411 {
412     MigrationIncomingState *mis = opaque;
413     struct uffd_msg msg;
414     int ret;
415     RAMBlock *rb = NULL;
416     RAMBlock *last_rb = NULL; /* last RAMBlock we sent part of */
417 
418     trace_postcopy_ram_fault_thread_entry();
419     qemu_sem_post(&mis->fault_thread_sem);
420 
421     while (true) {
422         ram_addr_t rb_offset;
423         struct pollfd pfd[2];
424 
425         /*
426          * We're mainly waiting for the kernel to give us a faulting HVA,
427          * however we can be told to quit via userfault_quit_fd which is
428          * an eventfd
429          */
430         pfd[0].fd = mis->userfault_fd;
431         pfd[0].events = POLLIN;
432         pfd[0].revents = 0;
433         pfd[1].fd = mis->userfault_quit_fd;
434         pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
435         pfd[1].revents = 0;
436 
437         if (poll(pfd, 2, -1 /* Wait forever */) == -1) {
438             error_report("%s: userfault poll: %s", __func__, strerror(errno));
439             break;
440         }
441 
442         if (pfd[1].revents) {
443             trace_postcopy_ram_fault_thread_quit();
444             break;
445         }
446 
447         ret = read(mis->userfault_fd, &msg, sizeof(msg));
448         if (ret != sizeof(msg)) {
449             if (errno == EAGAIN) {
450                 /*
451                  * if a wake up happens on the other thread just after
452                  * the poll, there is nothing to read.
453                  */
454                 continue;
455             }
456             if (ret < 0) {
457                 error_report("%s: Failed to read full userfault message: %s",
458                              __func__, strerror(errno));
459                 break;
460             } else {
461                 error_report("%s: Read %d bytes from userfaultfd expected %zd",
462                              __func__, ret, sizeof(msg));
463                 break; /* Lost alignment, don't know what we'd read next */
464             }
465         }
466         if (msg.event != UFFD_EVENT_PAGEFAULT) {
467             error_report("%s: Read unexpected event %ud from userfaultfd",
468                          __func__, msg.event);
469             continue; /* It's not a page fault, shouldn't happen */
470         }
471 
472         rb = qemu_ram_block_from_host(
473                  (void *)(uintptr_t)msg.arg.pagefault.address,
474                  true, &rb_offset);
475         if (!rb) {
476             error_report("postcopy_ram_fault_thread: Fault outside guest: %"
477                          PRIx64, (uint64_t)msg.arg.pagefault.address);
478             break;
479         }
480 
481         rb_offset &= ~(qemu_ram_pagesize(rb) - 1);
482         trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
483                                                 qemu_ram_get_idstr(rb),
484                                                 rb_offset);
485 
486         /*
487          * Send the request to the source - we want to request one
488          * of our host page sizes (which is >= TPS)
489          */
490         if (rb != last_rb) {
491             last_rb = rb;
492             migrate_send_rp_req_pages(mis, qemu_ram_get_idstr(rb),
493                                      rb_offset, qemu_ram_pagesize(rb));
494         } else {
495             /* Save some space */
496             migrate_send_rp_req_pages(mis, NULL,
497                                      rb_offset, qemu_ram_pagesize(rb));
498         }
499     }
500     trace_postcopy_ram_fault_thread_exit();
501     return NULL;
502 }
503 
504 int postcopy_ram_enable_notify(MigrationIncomingState *mis)
505 {
506     /* Open the fd for the kernel to give us userfaults */
507     mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
508     if (mis->userfault_fd == -1) {
509         error_report("%s: Failed to open userfault fd: %s", __func__,
510                      strerror(errno));
511         return -1;
512     }
513 
514     /*
515      * Although the host check already tested the API, we need to
516      * do the check again as an ABI handshake on the new fd.
517      */
518     if (!ufd_version_check(mis->userfault_fd)) {
519         return -1;
520     }
521 
522     /* Now an eventfd we use to tell the fault-thread to quit */
523     mis->userfault_quit_fd = eventfd(0, EFD_CLOEXEC);
524     if (mis->userfault_quit_fd == -1) {
525         error_report("%s: Opening userfault_quit_fd: %s", __func__,
526                      strerror(errno));
527         close(mis->userfault_fd);
528         return -1;
529     }
530 
531     qemu_sem_init(&mis->fault_thread_sem, 0);
532     qemu_thread_create(&mis->fault_thread, "postcopy/fault",
533                        postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE);
534     qemu_sem_wait(&mis->fault_thread_sem);
535     qemu_sem_destroy(&mis->fault_thread_sem);
536     mis->have_fault_thread = true;
537 
538     /* Mark so that we get notified of accesses to unwritten areas */
539     if (qemu_ram_foreach_block(ram_block_enable_notify, mis)) {
540         return -1;
541     }
542 
543     /*
544      * Ballooning can mark pages as absent while we're postcopying
545      * that would cause false userfaults.
546      */
547     qemu_balloon_inhibit(true);
548 
549     trace_postcopy_ram_enable_notify();
550 
551     return 0;
552 }
553 
554 /*
555  * Place a host page (from) at (host) atomically
556  * returns 0 on success
557  */
558 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
559                         size_t pagesize)
560 {
561     struct uffdio_copy copy_struct;
562 
563     copy_struct.dst = (uint64_t)(uintptr_t)host;
564     copy_struct.src = (uint64_t)(uintptr_t)from;
565     copy_struct.len = pagesize;
566     copy_struct.mode = 0;
567 
568     /* copy also acks to the kernel waking the stalled thread up
569      * TODO: We can inhibit that ack and only do it if it was requested
570      * which would be slightly cheaper, but we'd have to be careful
571      * of the order of updating our page state.
572      */
573     if (ioctl(mis->userfault_fd, UFFDIO_COPY, &copy_struct)) {
574         int e = errno;
575         error_report("%s: %s copy host: %p from: %p (size: %zd)",
576                      __func__, strerror(e), host, from, pagesize);
577 
578         return -e;
579     }
580 
581     trace_postcopy_place_page(host);
582     return 0;
583 }
584 
585 /*
586  * Place a zero page at (host) atomically
587  * returns 0 on success
588  */
589 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
590                              size_t pagesize)
591 {
592     trace_postcopy_place_page_zero(host);
593 
594     if (pagesize == getpagesize()) {
595         struct uffdio_zeropage zero_struct;
596         zero_struct.range.start = (uint64_t)(uintptr_t)host;
597         zero_struct.range.len = getpagesize();
598         zero_struct.mode = 0;
599 
600         if (ioctl(mis->userfault_fd, UFFDIO_ZEROPAGE, &zero_struct)) {
601             int e = errno;
602             error_report("%s: %s zero host: %p",
603                          __func__, strerror(e), host);
604 
605             return -e;
606         }
607     } else {
608         /* The kernel can't use UFFDIO_ZEROPAGE for hugepages */
609         if (!mis->postcopy_tmp_zero_page) {
610             mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
611                                                PROT_READ | PROT_WRITE,
612                                                MAP_PRIVATE | MAP_ANONYMOUS,
613                                                -1, 0);
614             if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
615                 int e = errno;
616                 mis->postcopy_tmp_zero_page = NULL;
617                 error_report("%s: %s mapping large zero page",
618                              __func__, strerror(e));
619                 return -e;
620             }
621             memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
622         }
623         return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page,
624                                    pagesize);
625     }
626 
627     return 0;
628 }
629 
630 /*
631  * Returns a target page of memory that can be mapped at a later point in time
632  * using postcopy_place_page
633  * The same address is used repeatedly, postcopy_place_page just takes the
634  * backing page away.
635  * Returns: Pointer to allocated page
636  *
637  */
638 void *postcopy_get_tmp_page(MigrationIncomingState *mis)
639 {
640     if (!mis->postcopy_tmp_page) {
641         mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size,
642                              PROT_READ | PROT_WRITE, MAP_PRIVATE |
643                              MAP_ANONYMOUS, -1, 0);
644         if (mis->postcopy_tmp_page == MAP_FAILED) {
645             mis->postcopy_tmp_page = NULL;
646             error_report("%s: %s", __func__, strerror(errno));
647             return NULL;
648         }
649     }
650 
651     return mis->postcopy_tmp_page;
652 }
653 
654 #else
655 /* No target OS support, stubs just fail */
656 bool postcopy_ram_supported_by_host(void)
657 {
658     error_report("%s: No OS support", __func__);
659     return false;
660 }
661 
662 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages)
663 {
664     error_report("postcopy_ram_incoming_init: No OS support");
665     return -1;
666 }
667 
668 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
669 {
670     assert(0);
671     return -1;
672 }
673 
674 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
675 {
676     assert(0);
677     return -1;
678 }
679 
680 int postcopy_ram_enable_notify(MigrationIncomingState *mis)
681 {
682     assert(0);
683     return -1;
684 }
685 
686 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
687                         size_t pagesize)
688 {
689     assert(0);
690     return -1;
691 }
692 
693 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
694                         size_t pagesize)
695 {
696     assert(0);
697     return -1;
698 }
699 
700 void *postcopy_get_tmp_page(MigrationIncomingState *mis)
701 {
702     assert(0);
703     return NULL;
704 }
705 
706 #endif
707 
708 /* ------------------------------------------------------------------------- */
709 
710 /**
711  * postcopy_discard_send_init: Called at the start of each RAMBlock before
712  *   asking to discard individual ranges.
713  *
714  * @ms: The current migration state.
715  * @offset: the bitmap offset of the named RAMBlock in the migration
716  *   bitmap.
717  * @name: RAMBlock that discards will operate on.
718  *
719  * returns: a new PDS.
720  */
721 PostcopyDiscardState *postcopy_discard_send_init(MigrationState *ms,
722                                                  unsigned long offset,
723                                                  const char *name)
724 {
725     PostcopyDiscardState *res = g_malloc0(sizeof(PostcopyDiscardState));
726 
727     if (res) {
728         res->ramblock_name = name;
729         res->offset = offset;
730     }
731 
732     return res;
733 }
734 
735 /**
736  * postcopy_discard_send_range: Called by the bitmap code for each chunk to
737  *   discard. May send a discard message, may just leave it queued to
738  *   be sent later.
739  *
740  * @ms: Current migration state.
741  * @pds: Structure initialised by postcopy_discard_send_init().
742  * @start,@length: a range of pages in the migration bitmap in the
743  *   RAM block passed to postcopy_discard_send_init() (length=1 is one page)
744  */
745 void postcopy_discard_send_range(MigrationState *ms, PostcopyDiscardState *pds,
746                                 unsigned long start, unsigned long length)
747 {
748     size_t tp_bits = qemu_target_page_bits();
749     /* Convert to byte offsets within the RAM block */
750     pds->start_list[pds->cur_entry] = (start - pds->offset) << tp_bits;
751     pds->length_list[pds->cur_entry] = length << tp_bits;
752     trace_postcopy_discard_send_range(pds->ramblock_name, start, length);
753     pds->cur_entry++;
754     pds->nsentwords++;
755 
756     if (pds->cur_entry == MAX_DISCARDS_PER_COMMAND) {
757         /* Full set, ship it! */
758         qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
759                                               pds->ramblock_name,
760                                               pds->cur_entry,
761                                               pds->start_list,
762                                               pds->length_list);
763         pds->nsentcmds++;
764         pds->cur_entry = 0;
765     }
766 }
767 
768 /**
769  * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
770  * bitmap code. Sends any outstanding discard messages, frees the PDS
771  *
772  * @ms: Current migration state.
773  * @pds: Structure initialised by postcopy_discard_send_init().
774  */
775 void postcopy_discard_send_finish(MigrationState *ms, PostcopyDiscardState *pds)
776 {
777     /* Anything unsent? */
778     if (pds->cur_entry) {
779         qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
780                                               pds->ramblock_name,
781                                               pds->cur_entry,
782                                               pds->start_list,
783                                               pds->length_list);
784         pds->nsentcmds++;
785     }
786 
787     trace_postcopy_discard_send_finish(pds->ramblock_name, pds->nsentwords,
788                                        pds->nsentcmds);
789 
790     g_free(pds);
791 }
792