1 /* 2 * Postcopy migration for RAM 3 * 4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Dave Gilbert <dgilbert@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14 /* 15 * Postcopy is a migration technique where the execution flips from the 16 * source to the destination before all the data has been copied. 17 */ 18 19 #include "qemu/osdep.h" 20 #include "exec/target_page.h" 21 #include "migration.h" 22 #include "qemu-file.h" 23 #include "savevm.h" 24 #include "postcopy-ram.h" 25 #include "ram.h" 26 #include "qapi/error.h" 27 #include "qemu/notify.h" 28 #include "sysemu/sysemu.h" 29 #include "sysemu/balloon.h" 30 #include "qemu/error-report.h" 31 #include "trace.h" 32 33 /* Arbitrary limit on size of each discard command, 34 * keeps them around ~200 bytes 35 */ 36 #define MAX_DISCARDS_PER_COMMAND 12 37 38 struct PostcopyDiscardState { 39 const char *ramblock_name; 40 uint16_t cur_entry; 41 /* 42 * Start and length of a discard range (bytes) 43 */ 44 uint64_t start_list[MAX_DISCARDS_PER_COMMAND]; 45 uint64_t length_list[MAX_DISCARDS_PER_COMMAND]; 46 unsigned int nsentwords; 47 unsigned int nsentcmds; 48 }; 49 50 static NotifierWithReturnList postcopy_notifier_list; 51 52 void postcopy_infrastructure_init(void) 53 { 54 notifier_with_return_list_init(&postcopy_notifier_list); 55 } 56 57 void postcopy_add_notifier(NotifierWithReturn *nn) 58 { 59 notifier_with_return_list_add(&postcopy_notifier_list, nn); 60 } 61 62 void postcopy_remove_notifier(NotifierWithReturn *n) 63 { 64 notifier_with_return_remove(n); 65 } 66 67 int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp) 68 { 69 struct PostcopyNotifyData pnd; 70 pnd.reason = reason; 71 pnd.errp = errp; 72 73 return notifier_with_return_list_notify(&postcopy_notifier_list, 74 &pnd); 75 } 76 77 /* Postcopy needs to detect accesses to pages that haven't yet been copied 78 * across, and efficiently map new pages in, the techniques for doing this 79 * are target OS specific. 80 */ 81 #if defined(__linux__) 82 83 #include <poll.h> 84 #include <sys/ioctl.h> 85 #include <sys/syscall.h> 86 #include <asm/types.h> /* for __u64 */ 87 #endif 88 89 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD) 90 #include <sys/eventfd.h> 91 #include <linux/userfaultfd.h> 92 93 typedef struct PostcopyBlocktimeContext { 94 /* time when page fault initiated per vCPU */ 95 uint32_t *page_fault_vcpu_time; 96 /* page address per vCPU */ 97 uintptr_t *vcpu_addr; 98 uint32_t total_blocktime; 99 /* blocktime per vCPU */ 100 uint32_t *vcpu_blocktime; 101 /* point in time when last page fault was initiated */ 102 uint32_t last_begin; 103 /* number of vCPU are suspended */ 104 int smp_cpus_down; 105 uint64_t start_time; 106 107 /* 108 * Handler for exit event, necessary for 109 * releasing whole blocktime_ctx 110 */ 111 Notifier exit_notifier; 112 } PostcopyBlocktimeContext; 113 114 static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx) 115 { 116 g_free(ctx->page_fault_vcpu_time); 117 g_free(ctx->vcpu_addr); 118 g_free(ctx->vcpu_blocktime); 119 g_free(ctx); 120 } 121 122 static void migration_exit_cb(Notifier *n, void *data) 123 { 124 PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext, 125 exit_notifier); 126 destroy_blocktime_context(ctx); 127 } 128 129 static struct PostcopyBlocktimeContext *blocktime_context_new(void) 130 { 131 PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1); 132 ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus); 133 ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus); 134 ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus); 135 136 ctx->exit_notifier.notify = migration_exit_cb; 137 ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 138 qemu_add_exit_notifier(&ctx->exit_notifier); 139 return ctx; 140 } 141 142 static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx) 143 { 144 uint32List *list = NULL, *entry = NULL; 145 int i; 146 147 for (i = smp_cpus - 1; i >= 0; i--) { 148 entry = g_new0(uint32List, 1); 149 entry->value = ctx->vcpu_blocktime[i]; 150 entry->next = list; 151 list = entry; 152 } 153 154 return list; 155 } 156 157 /* 158 * This function just populates MigrationInfo from postcopy's 159 * blocktime context. It will not populate MigrationInfo, 160 * unless postcopy-blocktime capability was set. 161 * 162 * @info: pointer to MigrationInfo to populate 163 */ 164 void fill_destination_postcopy_migration_info(MigrationInfo *info) 165 { 166 MigrationIncomingState *mis = migration_incoming_get_current(); 167 PostcopyBlocktimeContext *bc = mis->blocktime_ctx; 168 169 if (!bc) { 170 return; 171 } 172 173 info->has_postcopy_blocktime = true; 174 info->postcopy_blocktime = bc->total_blocktime; 175 info->has_postcopy_vcpu_blocktime = true; 176 info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc); 177 } 178 179 static uint32_t get_postcopy_total_blocktime(void) 180 { 181 MigrationIncomingState *mis = migration_incoming_get_current(); 182 PostcopyBlocktimeContext *bc = mis->blocktime_ctx; 183 184 if (!bc) { 185 return 0; 186 } 187 188 return bc->total_blocktime; 189 } 190 191 /** 192 * receive_ufd_features: check userfault fd features, to request only supported 193 * features in the future. 194 * 195 * Returns: true on success 196 * 197 * __NR_userfaultfd - should be checked before 198 * @features: out parameter will contain uffdio_api.features provided by kernel 199 * in case of success 200 */ 201 static bool receive_ufd_features(uint64_t *features) 202 { 203 struct uffdio_api api_struct = {0}; 204 int ufd; 205 bool ret = true; 206 207 /* if we are here __NR_userfaultfd should exists */ 208 ufd = syscall(__NR_userfaultfd, O_CLOEXEC); 209 if (ufd == -1) { 210 error_report("%s: syscall __NR_userfaultfd failed: %s", __func__, 211 strerror(errno)); 212 return false; 213 } 214 215 /* ask features */ 216 api_struct.api = UFFD_API; 217 api_struct.features = 0; 218 if (ioctl(ufd, UFFDIO_API, &api_struct)) { 219 error_report("%s: UFFDIO_API failed: %s", __func__, 220 strerror(errno)); 221 ret = false; 222 goto release_ufd; 223 } 224 225 *features = api_struct.features; 226 227 release_ufd: 228 close(ufd); 229 return ret; 230 } 231 232 /** 233 * request_ufd_features: this function should be called only once on a newly 234 * opened ufd, subsequent calls will lead to error. 235 * 236 * Returns: true on succes 237 * 238 * @ufd: fd obtained from userfaultfd syscall 239 * @features: bit mask see UFFD_API_FEATURES 240 */ 241 static bool request_ufd_features(int ufd, uint64_t features) 242 { 243 struct uffdio_api api_struct = {0}; 244 uint64_t ioctl_mask; 245 246 api_struct.api = UFFD_API; 247 api_struct.features = features; 248 if (ioctl(ufd, UFFDIO_API, &api_struct)) { 249 error_report("%s failed: UFFDIO_API failed: %s", __func__, 250 strerror(errno)); 251 return false; 252 } 253 254 ioctl_mask = (__u64)1 << _UFFDIO_REGISTER | 255 (__u64)1 << _UFFDIO_UNREGISTER; 256 if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) { 257 error_report("Missing userfault features: %" PRIx64, 258 (uint64_t)(~api_struct.ioctls & ioctl_mask)); 259 return false; 260 } 261 262 return true; 263 } 264 265 static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis) 266 { 267 uint64_t asked_features = 0; 268 static uint64_t supported_features; 269 270 /* 271 * it's not possible to 272 * request UFFD_API twice per one fd 273 * userfault fd features is persistent 274 */ 275 if (!supported_features) { 276 if (!receive_ufd_features(&supported_features)) { 277 error_report("%s failed", __func__); 278 return false; 279 } 280 } 281 282 #ifdef UFFD_FEATURE_THREAD_ID 283 if (migrate_postcopy_blocktime() && mis && 284 UFFD_FEATURE_THREAD_ID & supported_features) { 285 /* kernel supports that feature */ 286 /* don't create blocktime_context if it exists */ 287 if (!mis->blocktime_ctx) { 288 mis->blocktime_ctx = blocktime_context_new(); 289 } 290 291 asked_features |= UFFD_FEATURE_THREAD_ID; 292 } 293 #endif 294 295 /* 296 * request features, even if asked_features is 0, due to 297 * kernel expects UFFD_API before UFFDIO_REGISTER, per 298 * userfault file descriptor 299 */ 300 if (!request_ufd_features(ufd, asked_features)) { 301 error_report("%s failed: features %" PRIu64, __func__, 302 asked_features); 303 return false; 304 } 305 306 if (getpagesize() != ram_pagesize_summary()) { 307 bool have_hp = false; 308 /* We've got a huge page */ 309 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS 310 have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS; 311 #endif 312 if (!have_hp) { 313 error_report("Userfault on this host does not support huge pages"); 314 return false; 315 } 316 } 317 return true; 318 } 319 320 /* Callback from postcopy_ram_supported_by_host block iterator. 321 */ 322 static int test_ramblock_postcopiable(const char *block_name, void *host_addr, 323 ram_addr_t offset, ram_addr_t length, void *opaque) 324 { 325 RAMBlock *rb = qemu_ram_block_by_name(block_name); 326 size_t pagesize = qemu_ram_pagesize(rb); 327 328 if (length % pagesize) { 329 error_report("Postcopy requires RAM blocks to be a page size multiple," 330 " block %s is 0x" RAM_ADDR_FMT " bytes with a " 331 "page size of 0x%zx", block_name, length, pagesize); 332 return 1; 333 } 334 return 0; 335 } 336 337 /* 338 * Note: This has the side effect of munlock'ing all of RAM, that's 339 * normally fine since if the postcopy succeeds it gets turned back on at the 340 * end. 341 */ 342 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis) 343 { 344 long pagesize = getpagesize(); 345 int ufd = -1; 346 bool ret = false; /* Error unless we change it */ 347 void *testarea = NULL; 348 struct uffdio_register reg_struct; 349 struct uffdio_range range_struct; 350 uint64_t feature_mask; 351 Error *local_err = NULL; 352 353 if (qemu_target_page_size() > pagesize) { 354 error_report("Target page size bigger than host page size"); 355 goto out; 356 } 357 358 ufd = syscall(__NR_userfaultfd, O_CLOEXEC); 359 if (ufd == -1) { 360 error_report("%s: userfaultfd not available: %s", __func__, 361 strerror(errno)); 362 goto out; 363 } 364 365 /* Give devices a chance to object */ 366 if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, &local_err)) { 367 error_report_err(local_err); 368 goto out; 369 } 370 371 /* Version and features check */ 372 if (!ufd_check_and_apply(ufd, mis)) { 373 goto out; 374 } 375 376 /* We don't support postcopy with shared RAM yet */ 377 if (qemu_ram_foreach_migratable_block(test_ramblock_postcopiable, NULL)) { 378 goto out; 379 } 380 381 /* 382 * userfault and mlock don't go together; we'll put it back later if 383 * it was enabled. 384 */ 385 if (munlockall()) { 386 error_report("%s: munlockall: %s", __func__, strerror(errno)); 387 return -1; 388 } 389 390 /* 391 * We need to check that the ops we need are supported on anon memory 392 * To do that we need to register a chunk and see the flags that 393 * are returned. 394 */ 395 testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE | 396 MAP_ANONYMOUS, -1, 0); 397 if (testarea == MAP_FAILED) { 398 error_report("%s: Failed to map test area: %s", __func__, 399 strerror(errno)); 400 goto out; 401 } 402 g_assert(((size_t)testarea & (pagesize-1)) == 0); 403 404 reg_struct.range.start = (uintptr_t)testarea; 405 reg_struct.range.len = pagesize; 406 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 407 408 if (ioctl(ufd, UFFDIO_REGISTER, ®_struct)) { 409 error_report("%s userfault register: %s", __func__, strerror(errno)); 410 goto out; 411 } 412 413 range_struct.start = (uintptr_t)testarea; 414 range_struct.len = pagesize; 415 if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) { 416 error_report("%s userfault unregister: %s", __func__, strerror(errno)); 417 goto out; 418 } 419 420 feature_mask = (__u64)1 << _UFFDIO_WAKE | 421 (__u64)1 << _UFFDIO_COPY | 422 (__u64)1 << _UFFDIO_ZEROPAGE; 423 if ((reg_struct.ioctls & feature_mask) != feature_mask) { 424 error_report("Missing userfault map features: %" PRIx64, 425 (uint64_t)(~reg_struct.ioctls & feature_mask)); 426 goto out; 427 } 428 429 /* Success! */ 430 ret = true; 431 out: 432 if (testarea) { 433 munmap(testarea, pagesize); 434 } 435 if (ufd != -1) { 436 close(ufd); 437 } 438 return ret; 439 } 440 441 /* 442 * Setup an area of RAM so that it *can* be used for postcopy later; this 443 * must be done right at the start prior to pre-copy. 444 * opaque should be the MIS. 445 */ 446 static int init_range(const char *block_name, void *host_addr, 447 ram_addr_t offset, ram_addr_t length, void *opaque) 448 { 449 trace_postcopy_init_range(block_name, host_addr, offset, length); 450 451 /* 452 * We need the whole of RAM to be truly empty for postcopy, so things 453 * like ROMs and any data tables built during init must be zero'd 454 * - we're going to get the copy from the source anyway. 455 * (Precopy will just overwrite this data, so doesn't need the discard) 456 */ 457 if (ram_discard_range(block_name, 0, length)) { 458 return -1; 459 } 460 461 return 0; 462 } 463 464 /* 465 * At the end of migration, undo the effects of init_range 466 * opaque should be the MIS. 467 */ 468 static int cleanup_range(const char *block_name, void *host_addr, 469 ram_addr_t offset, ram_addr_t length, void *opaque) 470 { 471 MigrationIncomingState *mis = opaque; 472 struct uffdio_range range_struct; 473 trace_postcopy_cleanup_range(block_name, host_addr, offset, length); 474 475 /* 476 * We turned off hugepage for the precopy stage with postcopy enabled 477 * we can turn it back on now. 478 */ 479 qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE); 480 481 /* 482 * We can also turn off userfault now since we should have all the 483 * pages. It can be useful to leave it on to debug postcopy 484 * if you're not sure it's always getting every page. 485 */ 486 range_struct.start = (uintptr_t)host_addr; 487 range_struct.len = length; 488 489 if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) { 490 error_report("%s: userfault unregister %s", __func__, strerror(errno)); 491 492 return -1; 493 } 494 495 return 0; 496 } 497 498 /* 499 * Initialise postcopy-ram, setting the RAM to a state where we can go into 500 * postcopy later; must be called prior to any precopy. 501 * called from arch_init's similarly named ram_postcopy_incoming_init 502 */ 503 int postcopy_ram_incoming_init(MigrationIncomingState *mis) 504 { 505 if (qemu_ram_foreach_migratable_block(init_range, NULL)) { 506 return -1; 507 } 508 509 return 0; 510 } 511 512 /* 513 * Manage a single vote to the QEMU balloon inhibitor for all postcopy usage, 514 * last caller wins. 515 */ 516 static void postcopy_balloon_inhibit(bool state) 517 { 518 static bool cur_state = false; 519 520 if (state != cur_state) { 521 qemu_balloon_inhibit(state); 522 cur_state = state; 523 } 524 } 525 526 /* 527 * At the end of a migration where postcopy_ram_incoming_init was called. 528 */ 529 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 530 { 531 trace_postcopy_ram_incoming_cleanup_entry(); 532 533 if (mis->have_fault_thread) { 534 Error *local_err = NULL; 535 536 if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) { 537 error_report_err(local_err); 538 return -1; 539 } 540 541 if (qemu_ram_foreach_migratable_block(cleanup_range, mis)) { 542 return -1; 543 } 544 /* Let the fault thread quit */ 545 atomic_set(&mis->fault_thread_quit, 1); 546 postcopy_fault_thread_notify(mis); 547 trace_postcopy_ram_incoming_cleanup_join(); 548 qemu_thread_join(&mis->fault_thread); 549 550 trace_postcopy_ram_incoming_cleanup_closeuf(); 551 close(mis->userfault_fd); 552 close(mis->userfault_event_fd); 553 mis->have_fault_thread = false; 554 } 555 556 postcopy_balloon_inhibit(false); 557 558 if (enable_mlock) { 559 if (os_mlock() < 0) { 560 error_report("mlock: %s", strerror(errno)); 561 /* 562 * It doesn't feel right to fail at this point, we have a valid 563 * VM state. 564 */ 565 } 566 } 567 568 postcopy_state_set(POSTCOPY_INCOMING_END); 569 570 if (mis->postcopy_tmp_page) { 571 munmap(mis->postcopy_tmp_page, mis->largest_page_size); 572 mis->postcopy_tmp_page = NULL; 573 } 574 if (mis->postcopy_tmp_zero_page) { 575 munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size); 576 mis->postcopy_tmp_zero_page = NULL; 577 } 578 trace_postcopy_ram_incoming_cleanup_blocktime( 579 get_postcopy_total_blocktime()); 580 581 trace_postcopy_ram_incoming_cleanup_exit(); 582 return 0; 583 } 584 585 /* 586 * Disable huge pages on an area 587 */ 588 static int nhp_range(const char *block_name, void *host_addr, 589 ram_addr_t offset, ram_addr_t length, void *opaque) 590 { 591 trace_postcopy_nhp_range(block_name, host_addr, offset, length); 592 593 /* 594 * Before we do discards we need to ensure those discards really 595 * do delete areas of the page, even if THP thinks a hugepage would 596 * be a good idea, so force hugepages off. 597 */ 598 qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE); 599 600 return 0; 601 } 602 603 /* 604 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard 605 * however leaving it until after precopy means that most of the precopy 606 * data is still THPd 607 */ 608 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 609 { 610 if (qemu_ram_foreach_migratable_block(nhp_range, mis)) { 611 return -1; 612 } 613 614 postcopy_state_set(POSTCOPY_INCOMING_DISCARD); 615 616 return 0; 617 } 618 619 /* 620 * Mark the given area of RAM as requiring notification to unwritten areas 621 * Used as a callback on qemu_ram_foreach_migratable_block. 622 * host_addr: Base of area to mark 623 * offset: Offset in the whole ram arena 624 * length: Length of the section 625 * opaque: MigrationIncomingState pointer 626 * Returns 0 on success 627 */ 628 static int ram_block_enable_notify(const char *block_name, void *host_addr, 629 ram_addr_t offset, ram_addr_t length, 630 void *opaque) 631 { 632 MigrationIncomingState *mis = opaque; 633 struct uffdio_register reg_struct; 634 635 reg_struct.range.start = (uintptr_t)host_addr; 636 reg_struct.range.len = length; 637 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 638 639 /* Now tell our userfault_fd that it's responsible for this area */ 640 if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, ®_struct)) { 641 error_report("%s userfault register: %s", __func__, strerror(errno)); 642 return -1; 643 } 644 if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) { 645 error_report("%s userfault: Region doesn't support COPY", __func__); 646 return -1; 647 } 648 if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) { 649 RAMBlock *rb = qemu_ram_block_by_name(block_name); 650 qemu_ram_set_uf_zeroable(rb); 651 } 652 653 return 0; 654 } 655 656 int postcopy_wake_shared(struct PostCopyFD *pcfd, 657 uint64_t client_addr, 658 RAMBlock *rb) 659 { 660 size_t pagesize = qemu_ram_pagesize(rb); 661 struct uffdio_range range; 662 int ret; 663 trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb)); 664 range.start = client_addr & ~(pagesize - 1); 665 range.len = pagesize; 666 ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range); 667 if (ret) { 668 error_report("%s: Failed to wake: %zx in %s (%s)", 669 __func__, (size_t)client_addr, qemu_ram_get_idstr(rb), 670 strerror(errno)); 671 } 672 return ret; 673 } 674 675 /* 676 * Callback from shared fault handlers to ask for a page, 677 * the page must be specified by a RAMBlock and an offset in that rb 678 * Note: Only for use by shared fault handlers (in fault thread) 679 */ 680 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb, 681 uint64_t client_addr, uint64_t rb_offset) 682 { 683 size_t pagesize = qemu_ram_pagesize(rb); 684 uint64_t aligned_rbo = rb_offset & ~(pagesize - 1); 685 MigrationIncomingState *mis = migration_incoming_get_current(); 686 687 trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb), 688 rb_offset); 689 if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) { 690 trace_postcopy_request_shared_page_present(pcfd->idstr, 691 qemu_ram_get_idstr(rb), rb_offset); 692 return postcopy_wake_shared(pcfd, client_addr, rb); 693 } 694 if (rb != mis->last_rb) { 695 mis->last_rb = rb; 696 migrate_send_rp_req_pages(mis, qemu_ram_get_idstr(rb), 697 aligned_rbo, pagesize); 698 } else { 699 /* Save some space */ 700 migrate_send_rp_req_pages(mis, NULL, aligned_rbo, pagesize); 701 } 702 return 0; 703 } 704 705 static int get_mem_fault_cpu_index(uint32_t pid) 706 { 707 CPUState *cpu_iter; 708 709 CPU_FOREACH(cpu_iter) { 710 if (cpu_iter->thread_id == pid) { 711 trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid); 712 return cpu_iter->cpu_index; 713 } 714 } 715 trace_get_mem_fault_cpu_index(-1, pid); 716 return -1; 717 } 718 719 static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc) 720 { 721 int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) - 722 dc->start_time; 723 return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX; 724 } 725 726 /* 727 * This function is being called when pagefault occurs. It 728 * tracks down vCPU blocking time. 729 * 730 * @addr: faulted host virtual address 731 * @ptid: faulted process thread id 732 * @rb: ramblock appropriate to addr 733 */ 734 static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid, 735 RAMBlock *rb) 736 { 737 int cpu, already_received; 738 MigrationIncomingState *mis = migration_incoming_get_current(); 739 PostcopyBlocktimeContext *dc = mis->blocktime_ctx; 740 uint32_t low_time_offset; 741 742 if (!dc || ptid == 0) { 743 return; 744 } 745 cpu = get_mem_fault_cpu_index(ptid); 746 if (cpu < 0) { 747 return; 748 } 749 750 low_time_offset = get_low_time_offset(dc); 751 if (dc->vcpu_addr[cpu] == 0) { 752 atomic_inc(&dc->smp_cpus_down); 753 } 754 755 atomic_xchg(&dc->last_begin, low_time_offset); 756 atomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset); 757 atomic_xchg(&dc->vcpu_addr[cpu], addr); 758 759 /* check it here, not at the begining of the function, 760 * due to, check could accur early than bitmap_set in 761 * qemu_ufd_copy_ioctl */ 762 already_received = ramblock_recv_bitmap_test(rb, (void *)addr); 763 if (already_received) { 764 atomic_xchg(&dc->vcpu_addr[cpu], 0); 765 atomic_xchg(&dc->page_fault_vcpu_time[cpu], 0); 766 atomic_dec(&dc->smp_cpus_down); 767 } 768 trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu], 769 cpu, already_received); 770 } 771 772 /* 773 * This function just provide calculated blocktime per cpu and trace it. 774 * Total blocktime is calculated in mark_postcopy_blocktime_end. 775 * 776 * 777 * Assume we have 3 CPU 778 * 779 * S1 E1 S1 E1 780 * -----***********------------xxx***************------------------------> CPU1 781 * 782 * S2 E2 783 * ------------****************xxx---------------------------------------> CPU2 784 * 785 * S3 E3 786 * ------------------------****xxx********-------------------------------> CPU3 787 * 788 * We have sequence S1,S2,E1,S3,S1,E2,E3,E1 789 * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3 790 * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 - 791 * it's a part of total blocktime. 792 * S1 - here is last_begin 793 * Legend of the picture is following: 794 * * - means blocktime per vCPU 795 * x - means overlapped blocktime (total blocktime) 796 * 797 * @addr: host virtual address 798 */ 799 static void mark_postcopy_blocktime_end(uintptr_t addr) 800 { 801 MigrationIncomingState *mis = migration_incoming_get_current(); 802 PostcopyBlocktimeContext *dc = mis->blocktime_ctx; 803 int i, affected_cpu = 0; 804 bool vcpu_total_blocktime = false; 805 uint32_t read_vcpu_time, low_time_offset; 806 807 if (!dc) { 808 return; 809 } 810 811 low_time_offset = get_low_time_offset(dc); 812 /* lookup cpu, to clear it, 813 * that algorithm looks straighforward, but it's not 814 * optimal, more optimal algorithm is keeping tree or hash 815 * where key is address value is a list of */ 816 for (i = 0; i < smp_cpus; i++) { 817 uint32_t vcpu_blocktime = 0; 818 819 read_vcpu_time = atomic_fetch_add(&dc->page_fault_vcpu_time[i], 0); 820 if (atomic_fetch_add(&dc->vcpu_addr[i], 0) != addr || 821 read_vcpu_time == 0) { 822 continue; 823 } 824 atomic_xchg(&dc->vcpu_addr[i], 0); 825 vcpu_blocktime = low_time_offset - read_vcpu_time; 826 affected_cpu += 1; 827 /* we need to know is that mark_postcopy_end was due to 828 * faulted page, another possible case it's prefetched 829 * page and in that case we shouldn't be here */ 830 if (!vcpu_total_blocktime && 831 atomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) { 832 vcpu_total_blocktime = true; 833 } 834 /* continue cycle, due to one page could affect several vCPUs */ 835 dc->vcpu_blocktime[i] += vcpu_blocktime; 836 } 837 838 atomic_sub(&dc->smp_cpus_down, affected_cpu); 839 if (vcpu_total_blocktime) { 840 dc->total_blocktime += low_time_offset - atomic_fetch_add( 841 &dc->last_begin, 0); 842 } 843 trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime, 844 affected_cpu); 845 } 846 847 static bool postcopy_pause_fault_thread(MigrationIncomingState *mis) 848 { 849 trace_postcopy_pause_fault_thread(); 850 851 qemu_sem_wait(&mis->postcopy_pause_sem_fault); 852 853 trace_postcopy_pause_fault_thread_continued(); 854 855 return true; 856 } 857 858 /* 859 * Handle faults detected by the USERFAULT markings 860 */ 861 static void *postcopy_ram_fault_thread(void *opaque) 862 { 863 MigrationIncomingState *mis = opaque; 864 struct uffd_msg msg; 865 int ret; 866 size_t index; 867 RAMBlock *rb = NULL; 868 869 trace_postcopy_ram_fault_thread_entry(); 870 rcu_register_thread(); 871 mis->last_rb = NULL; /* last RAMBlock we sent part of */ 872 qemu_sem_post(&mis->fault_thread_sem); 873 874 struct pollfd *pfd; 875 size_t pfd_len = 2 + mis->postcopy_remote_fds->len; 876 877 pfd = g_new0(struct pollfd, pfd_len); 878 879 pfd[0].fd = mis->userfault_fd; 880 pfd[0].events = POLLIN; 881 pfd[1].fd = mis->userfault_event_fd; 882 pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */ 883 trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd); 884 for (index = 0; index < mis->postcopy_remote_fds->len; index++) { 885 struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds, 886 struct PostCopyFD, index); 887 pfd[2 + index].fd = pcfd->fd; 888 pfd[2 + index].events = POLLIN; 889 trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr, 890 pcfd->fd); 891 } 892 893 while (true) { 894 ram_addr_t rb_offset; 895 int poll_result; 896 897 /* 898 * We're mainly waiting for the kernel to give us a faulting HVA, 899 * however we can be told to quit via userfault_quit_fd which is 900 * an eventfd 901 */ 902 903 poll_result = poll(pfd, pfd_len, -1 /* Wait forever */); 904 if (poll_result == -1) { 905 error_report("%s: userfault poll: %s", __func__, strerror(errno)); 906 break; 907 } 908 909 if (!mis->to_src_file) { 910 /* 911 * Possibly someone tells us that the return path is 912 * broken already using the event. We should hold until 913 * the channel is rebuilt. 914 */ 915 if (postcopy_pause_fault_thread(mis)) { 916 mis->last_rb = NULL; 917 /* Continue to read the userfaultfd */ 918 } else { 919 error_report("%s: paused but don't allow to continue", 920 __func__); 921 break; 922 } 923 } 924 925 if (pfd[1].revents) { 926 uint64_t tmp64 = 0; 927 928 /* Consume the signal */ 929 if (read(mis->userfault_event_fd, &tmp64, 8) != 8) { 930 /* Nothing obviously nicer than posting this error. */ 931 error_report("%s: read() failed", __func__); 932 } 933 934 if (atomic_read(&mis->fault_thread_quit)) { 935 trace_postcopy_ram_fault_thread_quit(); 936 break; 937 } 938 } 939 940 if (pfd[0].revents) { 941 poll_result--; 942 ret = read(mis->userfault_fd, &msg, sizeof(msg)); 943 if (ret != sizeof(msg)) { 944 if (errno == EAGAIN) { 945 /* 946 * if a wake up happens on the other thread just after 947 * the poll, there is nothing to read. 948 */ 949 continue; 950 } 951 if (ret < 0) { 952 error_report("%s: Failed to read full userfault " 953 "message: %s", 954 __func__, strerror(errno)); 955 break; 956 } else { 957 error_report("%s: Read %d bytes from userfaultfd " 958 "expected %zd", 959 __func__, ret, sizeof(msg)); 960 break; /* Lost alignment, don't know what we'd read next */ 961 } 962 } 963 if (msg.event != UFFD_EVENT_PAGEFAULT) { 964 error_report("%s: Read unexpected event %ud from userfaultfd", 965 __func__, msg.event); 966 continue; /* It's not a page fault, shouldn't happen */ 967 } 968 969 rb = qemu_ram_block_from_host( 970 (void *)(uintptr_t)msg.arg.pagefault.address, 971 true, &rb_offset); 972 if (!rb) { 973 error_report("postcopy_ram_fault_thread: Fault outside guest: %" 974 PRIx64, (uint64_t)msg.arg.pagefault.address); 975 break; 976 } 977 978 rb_offset &= ~(qemu_ram_pagesize(rb) - 1); 979 trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address, 980 qemu_ram_get_idstr(rb), 981 rb_offset, 982 msg.arg.pagefault.feat.ptid); 983 mark_postcopy_blocktime_begin( 984 (uintptr_t)(msg.arg.pagefault.address), 985 msg.arg.pagefault.feat.ptid, rb); 986 987 retry: 988 /* 989 * Send the request to the source - we want to request one 990 * of our host page sizes (which is >= TPS) 991 */ 992 if (rb != mis->last_rb) { 993 mis->last_rb = rb; 994 ret = migrate_send_rp_req_pages(mis, 995 qemu_ram_get_idstr(rb), 996 rb_offset, 997 qemu_ram_pagesize(rb)); 998 } else { 999 /* Save some space */ 1000 ret = migrate_send_rp_req_pages(mis, 1001 NULL, 1002 rb_offset, 1003 qemu_ram_pagesize(rb)); 1004 } 1005 1006 if (ret) { 1007 /* May be network failure, try to wait for recovery */ 1008 if (ret == -EIO && postcopy_pause_fault_thread(mis)) { 1009 /* We got reconnected somehow, try to continue */ 1010 mis->last_rb = NULL; 1011 goto retry; 1012 } else { 1013 /* This is a unavoidable fault */ 1014 error_report("%s: migrate_send_rp_req_pages() get %d", 1015 __func__, ret); 1016 break; 1017 } 1018 } 1019 } 1020 1021 /* Now handle any requests from external processes on shared memory */ 1022 /* TODO: May need to handle devices deregistering during postcopy */ 1023 for (index = 2; index < pfd_len && poll_result; index++) { 1024 if (pfd[index].revents) { 1025 struct PostCopyFD *pcfd = 1026 &g_array_index(mis->postcopy_remote_fds, 1027 struct PostCopyFD, index - 2); 1028 1029 poll_result--; 1030 if (pfd[index].revents & POLLERR) { 1031 error_report("%s: POLLERR on poll %zd fd=%d", 1032 __func__, index, pcfd->fd); 1033 pfd[index].events = 0; 1034 continue; 1035 } 1036 1037 ret = read(pcfd->fd, &msg, sizeof(msg)); 1038 if (ret != sizeof(msg)) { 1039 if (errno == EAGAIN) { 1040 /* 1041 * if a wake up happens on the other thread just after 1042 * the poll, there is nothing to read. 1043 */ 1044 continue; 1045 } 1046 if (ret < 0) { 1047 error_report("%s: Failed to read full userfault " 1048 "message: %s (shared) revents=%d", 1049 __func__, strerror(errno), 1050 pfd[index].revents); 1051 /*TODO: Could just disable this sharer */ 1052 break; 1053 } else { 1054 error_report("%s: Read %d bytes from userfaultfd " 1055 "expected %zd (shared)", 1056 __func__, ret, sizeof(msg)); 1057 /*TODO: Could just disable this sharer */ 1058 break; /*Lost alignment,don't know what we'd read next*/ 1059 } 1060 } 1061 if (msg.event != UFFD_EVENT_PAGEFAULT) { 1062 error_report("%s: Read unexpected event %ud " 1063 "from userfaultfd (shared)", 1064 __func__, msg.event); 1065 continue; /* It's not a page fault, shouldn't happen */ 1066 } 1067 /* Call the device handler registered with us */ 1068 ret = pcfd->handler(pcfd, &msg); 1069 if (ret) { 1070 error_report("%s: Failed to resolve shared fault on %zd/%s", 1071 __func__, index, pcfd->idstr); 1072 /* TODO: Fail? Disable this sharer? */ 1073 } 1074 } 1075 } 1076 } 1077 rcu_unregister_thread(); 1078 trace_postcopy_ram_fault_thread_exit(); 1079 g_free(pfd); 1080 return NULL; 1081 } 1082 1083 int postcopy_ram_enable_notify(MigrationIncomingState *mis) 1084 { 1085 /* Open the fd for the kernel to give us userfaults */ 1086 mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK); 1087 if (mis->userfault_fd == -1) { 1088 error_report("%s: Failed to open userfault fd: %s", __func__, 1089 strerror(errno)); 1090 return -1; 1091 } 1092 1093 /* 1094 * Although the host check already tested the API, we need to 1095 * do the check again as an ABI handshake on the new fd. 1096 */ 1097 if (!ufd_check_and_apply(mis->userfault_fd, mis)) { 1098 return -1; 1099 } 1100 1101 /* Now an eventfd we use to tell the fault-thread to quit */ 1102 mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC); 1103 if (mis->userfault_event_fd == -1) { 1104 error_report("%s: Opening userfault_event_fd: %s", __func__, 1105 strerror(errno)); 1106 close(mis->userfault_fd); 1107 return -1; 1108 } 1109 1110 qemu_sem_init(&mis->fault_thread_sem, 0); 1111 qemu_thread_create(&mis->fault_thread, "postcopy/fault", 1112 postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE); 1113 qemu_sem_wait(&mis->fault_thread_sem); 1114 qemu_sem_destroy(&mis->fault_thread_sem); 1115 mis->have_fault_thread = true; 1116 1117 /* Mark so that we get notified of accesses to unwritten areas */ 1118 if (qemu_ram_foreach_migratable_block(ram_block_enable_notify, mis)) { 1119 return -1; 1120 } 1121 1122 /* 1123 * Ballooning can mark pages as absent while we're postcopying 1124 * that would cause false userfaults. 1125 */ 1126 postcopy_balloon_inhibit(true); 1127 1128 trace_postcopy_ram_enable_notify(); 1129 1130 return 0; 1131 } 1132 1133 static int qemu_ufd_copy_ioctl(int userfault_fd, void *host_addr, 1134 void *from_addr, uint64_t pagesize, RAMBlock *rb) 1135 { 1136 int ret; 1137 if (from_addr) { 1138 struct uffdio_copy copy_struct; 1139 copy_struct.dst = (uint64_t)(uintptr_t)host_addr; 1140 copy_struct.src = (uint64_t)(uintptr_t)from_addr; 1141 copy_struct.len = pagesize; 1142 copy_struct.mode = 0; 1143 ret = ioctl(userfault_fd, UFFDIO_COPY, ©_struct); 1144 } else { 1145 struct uffdio_zeropage zero_struct; 1146 zero_struct.range.start = (uint64_t)(uintptr_t)host_addr; 1147 zero_struct.range.len = pagesize; 1148 zero_struct.mode = 0; 1149 ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct); 1150 } 1151 if (!ret) { 1152 ramblock_recv_bitmap_set_range(rb, host_addr, 1153 pagesize / qemu_target_page_size()); 1154 mark_postcopy_blocktime_end((uintptr_t)host_addr); 1155 1156 } 1157 return ret; 1158 } 1159 1160 int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset) 1161 { 1162 int i; 1163 MigrationIncomingState *mis = migration_incoming_get_current(); 1164 GArray *pcrfds = mis->postcopy_remote_fds; 1165 1166 for (i = 0; i < pcrfds->len; i++) { 1167 struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i); 1168 int ret = cur->waker(cur, rb, offset); 1169 if (ret) { 1170 return ret; 1171 } 1172 } 1173 return 0; 1174 } 1175 1176 /* 1177 * Place a host page (from) at (host) atomically 1178 * returns 0 on success 1179 */ 1180 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from, 1181 RAMBlock *rb) 1182 { 1183 size_t pagesize = qemu_ram_pagesize(rb); 1184 1185 /* copy also acks to the kernel waking the stalled thread up 1186 * TODO: We can inhibit that ack and only do it if it was requested 1187 * which would be slightly cheaper, but we'd have to be careful 1188 * of the order of updating our page state. 1189 */ 1190 if (qemu_ufd_copy_ioctl(mis->userfault_fd, host, from, pagesize, rb)) { 1191 int e = errno; 1192 error_report("%s: %s copy host: %p from: %p (size: %zd)", 1193 __func__, strerror(e), host, from, pagesize); 1194 1195 return -e; 1196 } 1197 1198 trace_postcopy_place_page(host); 1199 return postcopy_notify_shared_wake(rb, 1200 qemu_ram_block_host_offset(rb, host)); 1201 } 1202 1203 /* 1204 * Place a zero page at (host) atomically 1205 * returns 0 on success 1206 */ 1207 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host, 1208 RAMBlock *rb) 1209 { 1210 size_t pagesize = qemu_ram_pagesize(rb); 1211 trace_postcopy_place_page_zero(host); 1212 1213 /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE 1214 * but it's not available for everything (e.g. hugetlbpages) 1215 */ 1216 if (qemu_ram_is_uf_zeroable(rb)) { 1217 if (qemu_ufd_copy_ioctl(mis->userfault_fd, host, NULL, pagesize, rb)) { 1218 int e = errno; 1219 error_report("%s: %s zero host: %p", 1220 __func__, strerror(e), host); 1221 1222 return -e; 1223 } 1224 return postcopy_notify_shared_wake(rb, 1225 qemu_ram_block_host_offset(rb, 1226 host)); 1227 } else { 1228 /* The kernel can't use UFFDIO_ZEROPAGE for hugepages */ 1229 if (!mis->postcopy_tmp_zero_page) { 1230 mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size, 1231 PROT_READ | PROT_WRITE, 1232 MAP_PRIVATE | MAP_ANONYMOUS, 1233 -1, 0); 1234 if (mis->postcopy_tmp_zero_page == MAP_FAILED) { 1235 int e = errno; 1236 mis->postcopy_tmp_zero_page = NULL; 1237 error_report("%s: %s mapping large zero page", 1238 __func__, strerror(e)); 1239 return -e; 1240 } 1241 memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size); 1242 } 1243 return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page, 1244 rb); 1245 } 1246 } 1247 1248 /* 1249 * Returns a target page of memory that can be mapped at a later point in time 1250 * using postcopy_place_page 1251 * The same address is used repeatedly, postcopy_place_page just takes the 1252 * backing page away. 1253 * Returns: Pointer to allocated page 1254 * 1255 */ 1256 void *postcopy_get_tmp_page(MigrationIncomingState *mis) 1257 { 1258 if (!mis->postcopy_tmp_page) { 1259 mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size, 1260 PROT_READ | PROT_WRITE, MAP_PRIVATE | 1261 MAP_ANONYMOUS, -1, 0); 1262 if (mis->postcopy_tmp_page == MAP_FAILED) { 1263 mis->postcopy_tmp_page = NULL; 1264 error_report("%s: %s", __func__, strerror(errno)); 1265 return NULL; 1266 } 1267 } 1268 1269 return mis->postcopy_tmp_page; 1270 } 1271 1272 #else 1273 /* No target OS support, stubs just fail */ 1274 void fill_destination_postcopy_migration_info(MigrationInfo *info) 1275 { 1276 } 1277 1278 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis) 1279 { 1280 error_report("%s: No OS support", __func__); 1281 return false; 1282 } 1283 1284 int postcopy_ram_incoming_init(MigrationIncomingState *mis) 1285 { 1286 error_report("postcopy_ram_incoming_init: No OS support"); 1287 return -1; 1288 } 1289 1290 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 1291 { 1292 assert(0); 1293 return -1; 1294 } 1295 1296 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 1297 { 1298 assert(0); 1299 return -1; 1300 } 1301 1302 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb, 1303 uint64_t client_addr, uint64_t rb_offset) 1304 { 1305 assert(0); 1306 return -1; 1307 } 1308 1309 int postcopy_ram_enable_notify(MigrationIncomingState *mis) 1310 { 1311 assert(0); 1312 return -1; 1313 } 1314 1315 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from, 1316 RAMBlock *rb) 1317 { 1318 assert(0); 1319 return -1; 1320 } 1321 1322 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host, 1323 RAMBlock *rb) 1324 { 1325 assert(0); 1326 return -1; 1327 } 1328 1329 void *postcopy_get_tmp_page(MigrationIncomingState *mis) 1330 { 1331 assert(0); 1332 return NULL; 1333 } 1334 1335 int postcopy_wake_shared(struct PostCopyFD *pcfd, 1336 uint64_t client_addr, 1337 RAMBlock *rb) 1338 { 1339 assert(0); 1340 return -1; 1341 } 1342 #endif 1343 1344 /* ------------------------------------------------------------------------- */ 1345 1346 void postcopy_fault_thread_notify(MigrationIncomingState *mis) 1347 { 1348 uint64_t tmp64 = 1; 1349 1350 /* 1351 * Wakeup the fault_thread. It's an eventfd that should currently 1352 * be at 0, we're going to increment it to 1 1353 */ 1354 if (write(mis->userfault_event_fd, &tmp64, 8) != 8) { 1355 /* Not much we can do here, but may as well report it */ 1356 error_report("%s: incrementing failed: %s", __func__, 1357 strerror(errno)); 1358 } 1359 } 1360 1361 /** 1362 * postcopy_discard_send_init: Called at the start of each RAMBlock before 1363 * asking to discard individual ranges. 1364 * 1365 * @ms: The current migration state. 1366 * @offset: the bitmap offset of the named RAMBlock in the migration 1367 * bitmap. 1368 * @name: RAMBlock that discards will operate on. 1369 * 1370 * returns: a new PDS. 1371 */ 1372 PostcopyDiscardState *postcopy_discard_send_init(MigrationState *ms, 1373 const char *name) 1374 { 1375 PostcopyDiscardState *res = g_malloc0(sizeof(PostcopyDiscardState)); 1376 1377 if (res) { 1378 res->ramblock_name = name; 1379 } 1380 1381 return res; 1382 } 1383 1384 /** 1385 * postcopy_discard_send_range: Called by the bitmap code for each chunk to 1386 * discard. May send a discard message, may just leave it queued to 1387 * be sent later. 1388 * 1389 * @ms: Current migration state. 1390 * @pds: Structure initialised by postcopy_discard_send_init(). 1391 * @start,@length: a range of pages in the migration bitmap in the 1392 * RAM block passed to postcopy_discard_send_init() (length=1 is one page) 1393 */ 1394 void postcopy_discard_send_range(MigrationState *ms, PostcopyDiscardState *pds, 1395 unsigned long start, unsigned long length) 1396 { 1397 size_t tp_size = qemu_target_page_size(); 1398 /* Convert to byte offsets within the RAM block */ 1399 pds->start_list[pds->cur_entry] = start * tp_size; 1400 pds->length_list[pds->cur_entry] = length * tp_size; 1401 trace_postcopy_discard_send_range(pds->ramblock_name, start, length); 1402 pds->cur_entry++; 1403 pds->nsentwords++; 1404 1405 if (pds->cur_entry == MAX_DISCARDS_PER_COMMAND) { 1406 /* Full set, ship it! */ 1407 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 1408 pds->ramblock_name, 1409 pds->cur_entry, 1410 pds->start_list, 1411 pds->length_list); 1412 pds->nsentcmds++; 1413 pds->cur_entry = 0; 1414 } 1415 } 1416 1417 /** 1418 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the 1419 * bitmap code. Sends any outstanding discard messages, frees the PDS 1420 * 1421 * @ms: Current migration state. 1422 * @pds: Structure initialised by postcopy_discard_send_init(). 1423 */ 1424 void postcopy_discard_send_finish(MigrationState *ms, PostcopyDiscardState *pds) 1425 { 1426 /* Anything unsent? */ 1427 if (pds->cur_entry) { 1428 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 1429 pds->ramblock_name, 1430 pds->cur_entry, 1431 pds->start_list, 1432 pds->length_list); 1433 pds->nsentcmds++; 1434 } 1435 1436 trace_postcopy_discard_send_finish(pds->ramblock_name, pds->nsentwords, 1437 pds->nsentcmds); 1438 1439 g_free(pds); 1440 } 1441 1442 /* 1443 * Current state of incoming postcopy; note this is not part of 1444 * MigrationIncomingState since it's state is used during cleanup 1445 * at the end as MIS is being freed. 1446 */ 1447 static PostcopyState incoming_postcopy_state; 1448 1449 PostcopyState postcopy_state_get(void) 1450 { 1451 return atomic_mb_read(&incoming_postcopy_state); 1452 } 1453 1454 /* Set the state and return the old state */ 1455 PostcopyState postcopy_state_set(PostcopyState new_state) 1456 { 1457 return atomic_xchg(&incoming_postcopy_state, new_state); 1458 } 1459 1460 /* Register a handler for external shared memory postcopy 1461 * called on the destination. 1462 */ 1463 void postcopy_register_shared_ufd(struct PostCopyFD *pcfd) 1464 { 1465 MigrationIncomingState *mis = migration_incoming_get_current(); 1466 1467 mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds, 1468 *pcfd); 1469 } 1470 1471 /* Unregister a handler for external shared memory postcopy 1472 */ 1473 void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd) 1474 { 1475 guint i; 1476 MigrationIncomingState *mis = migration_incoming_get_current(); 1477 GArray *pcrfds = mis->postcopy_remote_fds; 1478 1479 for (i = 0; i < pcrfds->len; i++) { 1480 struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i); 1481 if (cur->fd == pcfd->fd) { 1482 mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i); 1483 return; 1484 } 1485 } 1486 } 1487