1 /* 2 * Postcopy migration for RAM 3 * 4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Dave Gilbert <dgilbert@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14 /* 15 * Postcopy is a migration technique where the execution flips from the 16 * source to the destination before all the data has been copied. 17 */ 18 19 #include "qemu/osdep.h" 20 #include "qemu/madvise.h" 21 #include "exec/target_page.h" 22 #include "migration.h" 23 #include "qemu-file.h" 24 #include "savevm.h" 25 #include "postcopy-ram.h" 26 #include "ram.h" 27 #include "qapi/error.h" 28 #include "qemu/notify.h" 29 #include "qemu/rcu.h" 30 #include "sysemu/sysemu.h" 31 #include "qemu/error-report.h" 32 #include "trace.h" 33 #include "hw/boards.h" 34 #include "exec/ramblock.h" 35 #include "socket.h" 36 #include "yank_functions.h" 37 #include "tls.h" 38 #include "qemu/userfaultfd.h" 39 #include "qemu/mmap-alloc.h" 40 #include "options.h" 41 42 /* Arbitrary limit on size of each discard command, 43 * keeps them around ~200 bytes 44 */ 45 #define MAX_DISCARDS_PER_COMMAND 12 46 47 struct PostcopyDiscardState { 48 const char *ramblock_name; 49 uint16_t cur_entry; 50 /* 51 * Start and length of a discard range (bytes) 52 */ 53 uint64_t start_list[MAX_DISCARDS_PER_COMMAND]; 54 uint64_t length_list[MAX_DISCARDS_PER_COMMAND]; 55 unsigned int nsentwords; 56 unsigned int nsentcmds; 57 }; 58 59 static NotifierWithReturnList postcopy_notifier_list; 60 61 void postcopy_infrastructure_init(void) 62 { 63 notifier_with_return_list_init(&postcopy_notifier_list); 64 } 65 66 void postcopy_add_notifier(NotifierWithReturn *nn) 67 { 68 notifier_with_return_list_add(&postcopy_notifier_list, nn); 69 } 70 71 void postcopy_remove_notifier(NotifierWithReturn *n) 72 { 73 notifier_with_return_remove(n); 74 } 75 76 int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp) 77 { 78 struct PostcopyNotifyData pnd; 79 pnd.reason = reason; 80 pnd.errp = errp; 81 82 return notifier_with_return_list_notify(&postcopy_notifier_list, 83 &pnd); 84 } 85 86 /* 87 * NOTE: this routine is not thread safe, we can't call it concurrently. But it 88 * should be good enough for migration's purposes. 89 */ 90 void postcopy_thread_create(MigrationIncomingState *mis, 91 QemuThread *thread, const char *name, 92 void *(*fn)(void *), int joinable) 93 { 94 qemu_sem_init(&mis->thread_sync_sem, 0); 95 qemu_thread_create(thread, name, fn, mis, joinable); 96 qemu_sem_wait(&mis->thread_sync_sem); 97 qemu_sem_destroy(&mis->thread_sync_sem); 98 } 99 100 /* Postcopy needs to detect accesses to pages that haven't yet been copied 101 * across, and efficiently map new pages in, the techniques for doing this 102 * are target OS specific. 103 */ 104 #if defined(__linux__) 105 #include <poll.h> 106 #include <sys/ioctl.h> 107 #include <sys/syscall.h> 108 #endif 109 110 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD) 111 #include <sys/eventfd.h> 112 #include <linux/userfaultfd.h> 113 114 typedef struct PostcopyBlocktimeContext { 115 /* time when page fault initiated per vCPU */ 116 uint32_t *page_fault_vcpu_time; 117 /* page address per vCPU */ 118 uintptr_t *vcpu_addr; 119 uint32_t total_blocktime; 120 /* blocktime per vCPU */ 121 uint32_t *vcpu_blocktime; 122 /* point in time when last page fault was initiated */ 123 uint32_t last_begin; 124 /* number of vCPU are suspended */ 125 int smp_cpus_down; 126 uint64_t start_time; 127 128 /* 129 * Handler for exit event, necessary for 130 * releasing whole blocktime_ctx 131 */ 132 Notifier exit_notifier; 133 } PostcopyBlocktimeContext; 134 135 static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx) 136 { 137 g_free(ctx->page_fault_vcpu_time); 138 g_free(ctx->vcpu_addr); 139 g_free(ctx->vcpu_blocktime); 140 g_free(ctx); 141 } 142 143 static void migration_exit_cb(Notifier *n, void *data) 144 { 145 PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext, 146 exit_notifier); 147 destroy_blocktime_context(ctx); 148 } 149 150 static struct PostcopyBlocktimeContext *blocktime_context_new(void) 151 { 152 MachineState *ms = MACHINE(qdev_get_machine()); 153 unsigned int smp_cpus = ms->smp.cpus; 154 PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1); 155 ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus); 156 ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus); 157 ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus); 158 159 ctx->exit_notifier.notify = migration_exit_cb; 160 ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 161 qemu_add_exit_notifier(&ctx->exit_notifier); 162 return ctx; 163 } 164 165 static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx) 166 { 167 MachineState *ms = MACHINE(qdev_get_machine()); 168 uint32List *list = NULL; 169 int i; 170 171 for (i = ms->smp.cpus - 1; i >= 0; i--) { 172 QAPI_LIST_PREPEND(list, ctx->vcpu_blocktime[i]); 173 } 174 175 return list; 176 } 177 178 /* 179 * This function just populates MigrationInfo from postcopy's 180 * blocktime context. It will not populate MigrationInfo, 181 * unless postcopy-blocktime capability was set. 182 * 183 * @info: pointer to MigrationInfo to populate 184 */ 185 void fill_destination_postcopy_migration_info(MigrationInfo *info) 186 { 187 MigrationIncomingState *mis = migration_incoming_get_current(); 188 PostcopyBlocktimeContext *bc = mis->blocktime_ctx; 189 190 if (!bc) { 191 return; 192 } 193 194 info->has_postcopy_blocktime = true; 195 info->postcopy_blocktime = bc->total_blocktime; 196 info->has_postcopy_vcpu_blocktime = true; 197 info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc); 198 } 199 200 static uint32_t get_postcopy_total_blocktime(void) 201 { 202 MigrationIncomingState *mis = migration_incoming_get_current(); 203 PostcopyBlocktimeContext *bc = mis->blocktime_ctx; 204 205 if (!bc) { 206 return 0; 207 } 208 209 return bc->total_blocktime; 210 } 211 212 /** 213 * receive_ufd_features: check userfault fd features, to request only supported 214 * features in the future. 215 * 216 * Returns: true on success 217 * 218 * __NR_userfaultfd - should be checked before 219 * @features: out parameter will contain uffdio_api.features provided by kernel 220 * in case of success 221 */ 222 static bool receive_ufd_features(uint64_t *features) 223 { 224 struct uffdio_api api_struct = {0}; 225 int ufd; 226 bool ret = true; 227 228 ufd = uffd_open(O_CLOEXEC); 229 if (ufd == -1) { 230 error_report("%s: uffd_open() failed: %s", __func__, strerror(errno)); 231 return false; 232 } 233 234 /* ask features */ 235 api_struct.api = UFFD_API; 236 api_struct.features = 0; 237 if (ioctl(ufd, UFFDIO_API, &api_struct)) { 238 error_report("%s: UFFDIO_API failed: %s", __func__, 239 strerror(errno)); 240 ret = false; 241 goto release_ufd; 242 } 243 244 *features = api_struct.features; 245 246 release_ufd: 247 close(ufd); 248 return ret; 249 } 250 251 /** 252 * request_ufd_features: this function should be called only once on a newly 253 * opened ufd, subsequent calls will lead to error. 254 * 255 * Returns: true on success 256 * 257 * @ufd: fd obtained from userfaultfd syscall 258 * @features: bit mask see UFFD_API_FEATURES 259 */ 260 static bool request_ufd_features(int ufd, uint64_t features) 261 { 262 struct uffdio_api api_struct = {0}; 263 uint64_t ioctl_mask; 264 265 api_struct.api = UFFD_API; 266 api_struct.features = features; 267 if (ioctl(ufd, UFFDIO_API, &api_struct)) { 268 error_report("%s failed: UFFDIO_API failed: %s", __func__, 269 strerror(errno)); 270 return false; 271 } 272 273 ioctl_mask = 1ULL << _UFFDIO_REGISTER | 274 1ULL << _UFFDIO_UNREGISTER; 275 if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) { 276 error_report("Missing userfault features: %" PRIx64, 277 (uint64_t)(~api_struct.ioctls & ioctl_mask)); 278 return false; 279 } 280 281 return true; 282 } 283 284 static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis, 285 Error **errp) 286 { 287 uint64_t asked_features = 0; 288 static uint64_t supported_features; 289 290 ERRP_GUARD(); 291 /* 292 * it's not possible to 293 * request UFFD_API twice per one fd 294 * userfault fd features is persistent 295 */ 296 if (!supported_features) { 297 if (!receive_ufd_features(&supported_features)) { 298 error_setg(errp, "Userfault feature detection failed"); 299 return false; 300 } 301 } 302 303 #ifdef UFFD_FEATURE_THREAD_ID 304 if (UFFD_FEATURE_THREAD_ID & supported_features) { 305 asked_features |= UFFD_FEATURE_THREAD_ID; 306 if (migrate_postcopy_blocktime()) { 307 if (!mis->blocktime_ctx) { 308 mis->blocktime_ctx = blocktime_context_new(); 309 } 310 } 311 } 312 #endif 313 314 /* 315 * request features, even if asked_features is 0, due to 316 * kernel expects UFFD_API before UFFDIO_REGISTER, per 317 * userfault file descriptor 318 */ 319 if (!request_ufd_features(ufd, asked_features)) { 320 error_setg(errp, "Failed features %" PRIu64, asked_features); 321 return false; 322 } 323 324 if (qemu_real_host_page_size() != ram_pagesize_summary()) { 325 bool have_hp = false; 326 /* We've got a huge page */ 327 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS 328 have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS; 329 #endif 330 if (!have_hp) { 331 error_setg(errp, 332 "Userfault on this host does not support huge pages"); 333 return false; 334 } 335 } 336 return true; 337 } 338 339 /* Callback from postcopy_ram_supported_by_host block iterator. 340 */ 341 static int test_ramblock_postcopiable(RAMBlock *rb, Error **errp) 342 { 343 const char *block_name = qemu_ram_get_idstr(rb); 344 ram_addr_t length = qemu_ram_get_used_length(rb); 345 size_t pagesize = qemu_ram_pagesize(rb); 346 QemuFsType fs; 347 348 if (length % pagesize) { 349 error_setg(errp, 350 "Postcopy requires RAM blocks to be a page size multiple," 351 " block %s is 0x" RAM_ADDR_FMT " bytes with a " 352 "page size of 0x%zx", block_name, length, pagesize); 353 return 1; 354 } 355 356 if (rb->fd >= 0) { 357 fs = qemu_fd_getfs(rb->fd); 358 if (fs != QEMU_FS_TYPE_TMPFS && fs != QEMU_FS_TYPE_HUGETLBFS) { 359 error_setg(errp, 360 "Host backend files need to be TMPFS or HUGETLBFS only"); 361 return 1; 362 } 363 } 364 365 return 0; 366 } 367 368 /* 369 * Note: This has the side effect of munlock'ing all of RAM, that's 370 * normally fine since if the postcopy succeeds it gets turned back on at the 371 * end. 372 */ 373 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis, Error **errp) 374 { 375 long pagesize = qemu_real_host_page_size(); 376 int ufd = -1; 377 bool ret = false; /* Error unless we change it */ 378 void *testarea = NULL; 379 struct uffdio_register reg_struct; 380 struct uffdio_range range_struct; 381 uint64_t feature_mask; 382 RAMBlock *block; 383 384 ERRP_GUARD(); 385 if (qemu_target_page_size() > pagesize) { 386 error_setg(errp, "Target page size bigger than host page size"); 387 goto out; 388 } 389 390 ufd = uffd_open(O_CLOEXEC); 391 if (ufd == -1) { 392 error_setg(errp, "Userfaultfd not available: %s", strerror(errno)); 393 goto out; 394 } 395 396 /* Give devices a chance to object */ 397 if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, errp)) { 398 goto out; 399 } 400 401 /* Version and features check */ 402 if (!ufd_check_and_apply(ufd, mis, errp)) { 403 goto out; 404 } 405 406 /* 407 * We don't support postcopy with some type of ramblocks. 408 * 409 * NOTE: we explicitly ignored migrate_ram_is_ignored() instead we checked 410 * all possible ramblocks. This is because this function can be called 411 * when creating the migration object, during the phase RAM_MIGRATABLE 412 * is not even properly set for all the ramblocks. 413 * 414 * A side effect of this is we'll also check against RAM_SHARED 415 * ramblocks even if migrate_ignore_shared() is set (in which case 416 * we'll never migrate RAM_SHARED at all), but normally this shouldn't 417 * affect in reality, or we can revisit. 418 */ 419 RAMBLOCK_FOREACH(block) { 420 if (test_ramblock_postcopiable(block, errp)) { 421 goto out; 422 } 423 } 424 425 /* 426 * userfault and mlock don't go together; we'll put it back later if 427 * it was enabled. 428 */ 429 if (munlockall()) { 430 error_setg(errp, "munlockall() failed: %s", strerror(errno)); 431 goto out; 432 } 433 434 /* 435 * We need to check that the ops we need are supported on anon memory 436 * To do that we need to register a chunk and see the flags that 437 * are returned. 438 */ 439 testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE | 440 MAP_ANONYMOUS, -1, 0); 441 if (testarea == MAP_FAILED) { 442 error_setg(errp, "Failed to map test area: %s", strerror(errno)); 443 goto out; 444 } 445 g_assert(QEMU_PTR_IS_ALIGNED(testarea, pagesize)); 446 447 reg_struct.range.start = (uintptr_t)testarea; 448 reg_struct.range.len = pagesize; 449 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 450 451 if (ioctl(ufd, UFFDIO_REGISTER, ®_struct)) { 452 error_setg(errp, "UFFDIO_REGISTER failed: %s", strerror(errno)); 453 goto out; 454 } 455 456 range_struct.start = (uintptr_t)testarea; 457 range_struct.len = pagesize; 458 if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) { 459 error_setg(errp, "UFFDIO_UNREGISTER failed: %s", strerror(errno)); 460 goto out; 461 } 462 463 feature_mask = 1ULL << _UFFDIO_WAKE | 464 1ULL << _UFFDIO_COPY | 465 1ULL << _UFFDIO_ZEROPAGE; 466 if ((reg_struct.ioctls & feature_mask) != feature_mask) { 467 error_setg(errp, "Missing userfault map features: %" PRIx64, 468 (uint64_t)(~reg_struct.ioctls & feature_mask)); 469 goto out; 470 } 471 472 /* Success! */ 473 ret = true; 474 out: 475 if (testarea) { 476 munmap(testarea, pagesize); 477 } 478 if (ufd != -1) { 479 close(ufd); 480 } 481 return ret; 482 } 483 484 /* 485 * Setup an area of RAM so that it *can* be used for postcopy later; this 486 * must be done right at the start prior to pre-copy. 487 * opaque should be the MIS. 488 */ 489 static int init_range(RAMBlock *rb, void *opaque) 490 { 491 const char *block_name = qemu_ram_get_idstr(rb); 492 void *host_addr = qemu_ram_get_host_addr(rb); 493 ram_addr_t offset = qemu_ram_get_offset(rb); 494 ram_addr_t length = qemu_ram_get_used_length(rb); 495 trace_postcopy_init_range(block_name, host_addr, offset, length); 496 497 /* 498 * Save the used_length before running the guest. In case we have to 499 * resize RAM blocks when syncing RAM block sizes from the source during 500 * precopy, we'll update it manually via the ram block notifier. 501 */ 502 rb->postcopy_length = length; 503 504 /* 505 * We need the whole of RAM to be truly empty for postcopy, so things 506 * like ROMs and any data tables built during init must be zero'd 507 * - we're going to get the copy from the source anyway. 508 * (Precopy will just overwrite this data, so doesn't need the discard) 509 */ 510 if (ram_discard_range(block_name, 0, length)) { 511 return -1; 512 } 513 514 return 0; 515 } 516 517 /* 518 * At the end of migration, undo the effects of init_range 519 * opaque should be the MIS. 520 */ 521 static int cleanup_range(RAMBlock *rb, void *opaque) 522 { 523 const char *block_name = qemu_ram_get_idstr(rb); 524 void *host_addr = qemu_ram_get_host_addr(rb); 525 ram_addr_t offset = qemu_ram_get_offset(rb); 526 ram_addr_t length = rb->postcopy_length; 527 MigrationIncomingState *mis = opaque; 528 struct uffdio_range range_struct; 529 trace_postcopy_cleanup_range(block_name, host_addr, offset, length); 530 531 /* 532 * We turned off hugepage for the precopy stage with postcopy enabled 533 * we can turn it back on now. 534 */ 535 qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE); 536 537 /* 538 * We can also turn off userfault now since we should have all the 539 * pages. It can be useful to leave it on to debug postcopy 540 * if you're not sure it's always getting every page. 541 */ 542 range_struct.start = (uintptr_t)host_addr; 543 range_struct.len = length; 544 545 if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) { 546 error_report("%s: userfault unregister %s", __func__, strerror(errno)); 547 548 return -1; 549 } 550 551 return 0; 552 } 553 554 /* 555 * Initialise postcopy-ram, setting the RAM to a state where we can go into 556 * postcopy later; must be called prior to any precopy. 557 * called from arch_init's similarly named ram_postcopy_incoming_init 558 */ 559 int postcopy_ram_incoming_init(MigrationIncomingState *mis) 560 { 561 if (foreach_not_ignored_block(init_range, NULL)) { 562 return -1; 563 } 564 565 return 0; 566 } 567 568 static void postcopy_temp_pages_cleanup(MigrationIncomingState *mis) 569 { 570 int i; 571 572 if (mis->postcopy_tmp_pages) { 573 for (i = 0; i < mis->postcopy_channels; i++) { 574 if (mis->postcopy_tmp_pages[i].tmp_huge_page) { 575 munmap(mis->postcopy_tmp_pages[i].tmp_huge_page, 576 mis->largest_page_size); 577 mis->postcopy_tmp_pages[i].tmp_huge_page = NULL; 578 } 579 } 580 g_free(mis->postcopy_tmp_pages); 581 mis->postcopy_tmp_pages = NULL; 582 } 583 584 if (mis->postcopy_tmp_zero_page) { 585 munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size); 586 mis->postcopy_tmp_zero_page = NULL; 587 } 588 } 589 590 /* 591 * At the end of a migration where postcopy_ram_incoming_init was called. 592 */ 593 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 594 { 595 trace_postcopy_ram_incoming_cleanup_entry(); 596 597 if (mis->preempt_thread_status == PREEMPT_THREAD_CREATED) { 598 /* Notify the fast load thread to quit */ 599 mis->preempt_thread_status = PREEMPT_THREAD_QUIT; 600 /* 601 * Update preempt_thread_status before reading count. Note: mutex 602 * lock only provide ACQUIRE semantic, and it doesn't stops this 603 * write to be reordered after reading the count. 604 */ 605 smp_mb(); 606 /* 607 * It's possible that the preempt thread is still handling the last 608 * pages to arrive which were requested by guest page faults. 609 * Making sure nothing is left behind by waiting on the condvar if 610 * that unlikely case happened. 611 */ 612 WITH_QEMU_LOCK_GUARD(&mis->page_request_mutex) { 613 if (qatomic_read(&mis->page_requested_count)) { 614 /* 615 * It is guaranteed to receive a signal later, because the 616 * count>0 now, so it's destined to be decreased to zero 617 * very soon by the preempt thread. 618 */ 619 qemu_cond_wait(&mis->page_request_cond, 620 &mis->page_request_mutex); 621 } 622 } 623 /* Notify the fast load thread to quit */ 624 if (mis->postcopy_qemufile_dst) { 625 qemu_file_shutdown(mis->postcopy_qemufile_dst); 626 } 627 qemu_thread_join(&mis->postcopy_prio_thread); 628 mis->preempt_thread_status = PREEMPT_THREAD_NONE; 629 } 630 631 if (mis->have_fault_thread) { 632 Error *local_err = NULL; 633 634 /* Let the fault thread quit */ 635 qatomic_set(&mis->fault_thread_quit, 1); 636 postcopy_fault_thread_notify(mis); 637 trace_postcopy_ram_incoming_cleanup_join(); 638 qemu_thread_join(&mis->fault_thread); 639 640 if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) { 641 error_report_err(local_err); 642 return -1; 643 } 644 645 if (foreach_not_ignored_block(cleanup_range, mis)) { 646 return -1; 647 } 648 649 trace_postcopy_ram_incoming_cleanup_closeuf(); 650 close(mis->userfault_fd); 651 close(mis->userfault_event_fd); 652 mis->have_fault_thread = false; 653 } 654 655 if (enable_mlock) { 656 if (os_mlock() < 0) { 657 error_report("mlock: %s", strerror(errno)); 658 /* 659 * It doesn't feel right to fail at this point, we have a valid 660 * VM state. 661 */ 662 } 663 } 664 665 postcopy_temp_pages_cleanup(mis); 666 667 trace_postcopy_ram_incoming_cleanup_blocktime( 668 get_postcopy_total_blocktime()); 669 670 trace_postcopy_ram_incoming_cleanup_exit(); 671 return 0; 672 } 673 674 /* 675 * Disable huge pages on an area 676 */ 677 static int nhp_range(RAMBlock *rb, void *opaque) 678 { 679 const char *block_name = qemu_ram_get_idstr(rb); 680 void *host_addr = qemu_ram_get_host_addr(rb); 681 ram_addr_t offset = qemu_ram_get_offset(rb); 682 ram_addr_t length = rb->postcopy_length; 683 trace_postcopy_nhp_range(block_name, host_addr, offset, length); 684 685 /* 686 * Before we do discards we need to ensure those discards really 687 * do delete areas of the page, even if THP thinks a hugepage would 688 * be a good idea, so force hugepages off. 689 */ 690 qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE); 691 692 return 0; 693 } 694 695 /* 696 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard 697 * however leaving it until after precopy means that most of the precopy 698 * data is still THPd 699 */ 700 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 701 { 702 if (foreach_not_ignored_block(nhp_range, mis)) { 703 return -1; 704 } 705 706 postcopy_state_set(POSTCOPY_INCOMING_DISCARD); 707 708 return 0; 709 } 710 711 /* 712 * Mark the given area of RAM as requiring notification to unwritten areas 713 * Used as a callback on foreach_not_ignored_block. 714 * host_addr: Base of area to mark 715 * offset: Offset in the whole ram arena 716 * length: Length of the section 717 * opaque: MigrationIncomingState pointer 718 * Returns 0 on success 719 */ 720 static int ram_block_enable_notify(RAMBlock *rb, void *opaque) 721 { 722 MigrationIncomingState *mis = opaque; 723 struct uffdio_register reg_struct; 724 725 reg_struct.range.start = (uintptr_t)qemu_ram_get_host_addr(rb); 726 reg_struct.range.len = rb->postcopy_length; 727 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 728 729 /* Now tell our userfault_fd that it's responsible for this area */ 730 if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, ®_struct)) { 731 error_report("%s userfault register: %s", __func__, strerror(errno)); 732 return -1; 733 } 734 if (!(reg_struct.ioctls & (1ULL << _UFFDIO_COPY))) { 735 error_report("%s userfault: Region doesn't support COPY", __func__); 736 return -1; 737 } 738 if (reg_struct.ioctls & (1ULL << _UFFDIO_ZEROPAGE)) { 739 qemu_ram_set_uf_zeroable(rb); 740 } 741 742 return 0; 743 } 744 745 int postcopy_wake_shared(struct PostCopyFD *pcfd, 746 uint64_t client_addr, 747 RAMBlock *rb) 748 { 749 size_t pagesize = qemu_ram_pagesize(rb); 750 struct uffdio_range range; 751 int ret; 752 trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb)); 753 range.start = ROUND_DOWN(client_addr, pagesize); 754 range.len = pagesize; 755 ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range); 756 if (ret) { 757 error_report("%s: Failed to wake: %zx in %s (%s)", 758 __func__, (size_t)client_addr, qemu_ram_get_idstr(rb), 759 strerror(errno)); 760 } 761 return ret; 762 } 763 764 static int postcopy_request_page(MigrationIncomingState *mis, RAMBlock *rb, 765 ram_addr_t start, uint64_t haddr) 766 { 767 void *aligned = (void *)(uintptr_t)ROUND_DOWN(haddr, qemu_ram_pagesize(rb)); 768 769 /* 770 * Discarded pages (via RamDiscardManager) are never migrated. On unlikely 771 * access, place a zeropage, which will also set the relevant bits in the 772 * recv_bitmap accordingly, so we won't try placing a zeropage twice. 773 * 774 * Checking a single bit is sufficient to handle pagesize > TPS as either 775 * all relevant bits are set or not. 776 */ 777 assert(QEMU_IS_ALIGNED(start, qemu_ram_pagesize(rb))); 778 if (ramblock_page_is_discarded(rb, start)) { 779 bool received = ramblock_recv_bitmap_test_byte_offset(rb, start); 780 781 return received ? 0 : postcopy_place_page_zero(mis, aligned, rb); 782 } 783 784 return migrate_send_rp_req_pages(mis, rb, start, haddr); 785 } 786 787 /* 788 * Callback from shared fault handlers to ask for a page, 789 * the page must be specified by a RAMBlock and an offset in that rb 790 * Note: Only for use by shared fault handlers (in fault thread) 791 */ 792 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb, 793 uint64_t client_addr, uint64_t rb_offset) 794 { 795 uint64_t aligned_rbo = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb)); 796 MigrationIncomingState *mis = migration_incoming_get_current(); 797 798 trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb), 799 rb_offset); 800 if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) { 801 trace_postcopy_request_shared_page_present(pcfd->idstr, 802 qemu_ram_get_idstr(rb), rb_offset); 803 return postcopy_wake_shared(pcfd, client_addr, rb); 804 } 805 postcopy_request_page(mis, rb, aligned_rbo, client_addr); 806 return 0; 807 } 808 809 static int get_mem_fault_cpu_index(uint32_t pid) 810 { 811 CPUState *cpu_iter; 812 813 CPU_FOREACH(cpu_iter) { 814 if (cpu_iter->thread_id == pid) { 815 trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid); 816 return cpu_iter->cpu_index; 817 } 818 } 819 trace_get_mem_fault_cpu_index(-1, pid); 820 return -1; 821 } 822 823 static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc) 824 { 825 int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) - 826 dc->start_time; 827 return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX; 828 } 829 830 /* 831 * This function is being called when pagefault occurs. It 832 * tracks down vCPU blocking time. 833 * 834 * @addr: faulted host virtual address 835 * @ptid: faulted process thread id 836 * @rb: ramblock appropriate to addr 837 */ 838 static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid, 839 RAMBlock *rb) 840 { 841 int cpu, already_received; 842 MigrationIncomingState *mis = migration_incoming_get_current(); 843 PostcopyBlocktimeContext *dc = mis->blocktime_ctx; 844 uint32_t low_time_offset; 845 846 if (!dc || ptid == 0) { 847 return; 848 } 849 cpu = get_mem_fault_cpu_index(ptid); 850 if (cpu < 0) { 851 return; 852 } 853 854 low_time_offset = get_low_time_offset(dc); 855 if (dc->vcpu_addr[cpu] == 0) { 856 qatomic_inc(&dc->smp_cpus_down); 857 } 858 859 qatomic_xchg(&dc->last_begin, low_time_offset); 860 qatomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset); 861 qatomic_xchg(&dc->vcpu_addr[cpu], addr); 862 863 /* 864 * check it here, not at the beginning of the function, 865 * due to, check could occur early than bitmap_set in 866 * qemu_ufd_copy_ioctl 867 */ 868 already_received = ramblock_recv_bitmap_test(rb, (void *)addr); 869 if (already_received) { 870 qatomic_xchg(&dc->vcpu_addr[cpu], 0); 871 qatomic_xchg(&dc->page_fault_vcpu_time[cpu], 0); 872 qatomic_dec(&dc->smp_cpus_down); 873 } 874 trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu], 875 cpu, already_received); 876 } 877 878 /* 879 * This function just provide calculated blocktime per cpu and trace it. 880 * Total blocktime is calculated in mark_postcopy_blocktime_end. 881 * 882 * 883 * Assume we have 3 CPU 884 * 885 * S1 E1 S1 E1 886 * -----***********------------xxx***************------------------------> CPU1 887 * 888 * S2 E2 889 * ------------****************xxx---------------------------------------> CPU2 890 * 891 * S3 E3 892 * ------------------------****xxx********-------------------------------> CPU3 893 * 894 * We have sequence S1,S2,E1,S3,S1,E2,E3,E1 895 * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3 896 * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 - 897 * it's a part of total blocktime. 898 * S1 - here is last_begin 899 * Legend of the picture is following: 900 * * - means blocktime per vCPU 901 * x - means overlapped blocktime (total blocktime) 902 * 903 * @addr: host virtual address 904 */ 905 static void mark_postcopy_blocktime_end(uintptr_t addr) 906 { 907 MigrationIncomingState *mis = migration_incoming_get_current(); 908 PostcopyBlocktimeContext *dc = mis->blocktime_ctx; 909 MachineState *ms = MACHINE(qdev_get_machine()); 910 unsigned int smp_cpus = ms->smp.cpus; 911 int i, affected_cpu = 0; 912 bool vcpu_total_blocktime = false; 913 uint32_t read_vcpu_time, low_time_offset; 914 915 if (!dc) { 916 return; 917 } 918 919 low_time_offset = get_low_time_offset(dc); 920 /* lookup cpu, to clear it, 921 * that algorithm looks straightforward, but it's not 922 * optimal, more optimal algorithm is keeping tree or hash 923 * where key is address value is a list of */ 924 for (i = 0; i < smp_cpus; i++) { 925 uint32_t vcpu_blocktime = 0; 926 927 read_vcpu_time = qatomic_fetch_add(&dc->page_fault_vcpu_time[i], 0); 928 if (qatomic_fetch_add(&dc->vcpu_addr[i], 0) != addr || 929 read_vcpu_time == 0) { 930 continue; 931 } 932 qatomic_xchg(&dc->vcpu_addr[i], 0); 933 vcpu_blocktime = low_time_offset - read_vcpu_time; 934 affected_cpu += 1; 935 /* we need to know is that mark_postcopy_end was due to 936 * faulted page, another possible case it's prefetched 937 * page and in that case we shouldn't be here */ 938 if (!vcpu_total_blocktime && 939 qatomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) { 940 vcpu_total_blocktime = true; 941 } 942 /* continue cycle, due to one page could affect several vCPUs */ 943 dc->vcpu_blocktime[i] += vcpu_blocktime; 944 } 945 946 qatomic_sub(&dc->smp_cpus_down, affected_cpu); 947 if (vcpu_total_blocktime) { 948 dc->total_blocktime += low_time_offset - qatomic_fetch_add( 949 &dc->last_begin, 0); 950 } 951 trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime, 952 affected_cpu); 953 } 954 955 static void postcopy_pause_fault_thread(MigrationIncomingState *mis) 956 { 957 trace_postcopy_pause_fault_thread(); 958 qemu_sem_wait(&mis->postcopy_pause_sem_fault); 959 trace_postcopy_pause_fault_thread_continued(); 960 } 961 962 /* 963 * Handle faults detected by the USERFAULT markings 964 */ 965 static void *postcopy_ram_fault_thread(void *opaque) 966 { 967 MigrationIncomingState *mis = opaque; 968 struct uffd_msg msg; 969 int ret; 970 size_t index; 971 RAMBlock *rb = NULL; 972 973 trace_postcopy_ram_fault_thread_entry(); 974 rcu_register_thread(); 975 mis->last_rb = NULL; /* last RAMBlock we sent part of */ 976 qemu_sem_post(&mis->thread_sync_sem); 977 978 struct pollfd *pfd; 979 size_t pfd_len = 2 + mis->postcopy_remote_fds->len; 980 981 pfd = g_new0(struct pollfd, pfd_len); 982 983 pfd[0].fd = mis->userfault_fd; 984 pfd[0].events = POLLIN; 985 pfd[1].fd = mis->userfault_event_fd; 986 pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */ 987 trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd); 988 for (index = 0; index < mis->postcopy_remote_fds->len; index++) { 989 struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds, 990 struct PostCopyFD, index); 991 pfd[2 + index].fd = pcfd->fd; 992 pfd[2 + index].events = POLLIN; 993 trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr, 994 pcfd->fd); 995 } 996 997 while (true) { 998 ram_addr_t rb_offset; 999 int poll_result; 1000 1001 /* 1002 * We're mainly waiting for the kernel to give us a faulting HVA, 1003 * however we can be told to quit via userfault_quit_fd which is 1004 * an eventfd 1005 */ 1006 1007 poll_result = poll(pfd, pfd_len, -1 /* Wait forever */); 1008 if (poll_result == -1) { 1009 error_report("%s: userfault poll: %s", __func__, strerror(errno)); 1010 break; 1011 } 1012 1013 if (!mis->to_src_file) { 1014 /* 1015 * Possibly someone tells us that the return path is 1016 * broken already using the event. We should hold until 1017 * the channel is rebuilt. 1018 */ 1019 postcopy_pause_fault_thread(mis); 1020 } 1021 1022 if (pfd[1].revents) { 1023 uint64_t tmp64 = 0; 1024 1025 /* Consume the signal */ 1026 if (read(mis->userfault_event_fd, &tmp64, 8) != 8) { 1027 /* Nothing obviously nicer than posting this error. */ 1028 error_report("%s: read() failed", __func__); 1029 } 1030 1031 if (qatomic_read(&mis->fault_thread_quit)) { 1032 trace_postcopy_ram_fault_thread_quit(); 1033 break; 1034 } 1035 } 1036 1037 if (pfd[0].revents) { 1038 poll_result--; 1039 ret = read(mis->userfault_fd, &msg, sizeof(msg)); 1040 if (ret != sizeof(msg)) { 1041 if (errno == EAGAIN) { 1042 /* 1043 * if a wake up happens on the other thread just after 1044 * the poll, there is nothing to read. 1045 */ 1046 continue; 1047 } 1048 if (ret < 0) { 1049 error_report("%s: Failed to read full userfault " 1050 "message: %s", 1051 __func__, strerror(errno)); 1052 break; 1053 } else { 1054 error_report("%s: Read %d bytes from userfaultfd " 1055 "expected %zd", 1056 __func__, ret, sizeof(msg)); 1057 break; /* Lost alignment, don't know what we'd read next */ 1058 } 1059 } 1060 if (msg.event != UFFD_EVENT_PAGEFAULT) { 1061 error_report("%s: Read unexpected event %ud from userfaultfd", 1062 __func__, msg.event); 1063 continue; /* It's not a page fault, shouldn't happen */ 1064 } 1065 1066 rb = qemu_ram_block_from_host( 1067 (void *)(uintptr_t)msg.arg.pagefault.address, 1068 true, &rb_offset); 1069 if (!rb) { 1070 error_report("postcopy_ram_fault_thread: Fault outside guest: %" 1071 PRIx64, (uint64_t)msg.arg.pagefault.address); 1072 break; 1073 } 1074 1075 rb_offset = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb)); 1076 trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address, 1077 qemu_ram_get_idstr(rb), 1078 rb_offset, 1079 msg.arg.pagefault.feat.ptid); 1080 mark_postcopy_blocktime_begin( 1081 (uintptr_t)(msg.arg.pagefault.address), 1082 msg.arg.pagefault.feat.ptid, rb); 1083 1084 retry: 1085 /* 1086 * Send the request to the source - we want to request one 1087 * of our host page sizes (which is >= TPS) 1088 */ 1089 ret = postcopy_request_page(mis, rb, rb_offset, 1090 msg.arg.pagefault.address); 1091 if (ret) { 1092 /* May be network failure, try to wait for recovery */ 1093 postcopy_pause_fault_thread(mis); 1094 goto retry; 1095 } 1096 } 1097 1098 /* Now handle any requests from external processes on shared memory */ 1099 /* TODO: May need to handle devices deregistering during postcopy */ 1100 for (index = 2; index < pfd_len && poll_result; index++) { 1101 if (pfd[index].revents) { 1102 struct PostCopyFD *pcfd = 1103 &g_array_index(mis->postcopy_remote_fds, 1104 struct PostCopyFD, index - 2); 1105 1106 poll_result--; 1107 if (pfd[index].revents & POLLERR) { 1108 error_report("%s: POLLERR on poll %zd fd=%d", 1109 __func__, index, pcfd->fd); 1110 pfd[index].events = 0; 1111 continue; 1112 } 1113 1114 ret = read(pcfd->fd, &msg, sizeof(msg)); 1115 if (ret != sizeof(msg)) { 1116 if (errno == EAGAIN) { 1117 /* 1118 * if a wake up happens on the other thread just after 1119 * the poll, there is nothing to read. 1120 */ 1121 continue; 1122 } 1123 if (ret < 0) { 1124 error_report("%s: Failed to read full userfault " 1125 "message: %s (shared) revents=%d", 1126 __func__, strerror(errno), 1127 pfd[index].revents); 1128 /*TODO: Could just disable this sharer */ 1129 break; 1130 } else { 1131 error_report("%s: Read %d bytes from userfaultfd " 1132 "expected %zd (shared)", 1133 __func__, ret, sizeof(msg)); 1134 /*TODO: Could just disable this sharer */ 1135 break; /*Lost alignment,don't know what we'd read next*/ 1136 } 1137 } 1138 if (msg.event != UFFD_EVENT_PAGEFAULT) { 1139 error_report("%s: Read unexpected event %ud " 1140 "from userfaultfd (shared)", 1141 __func__, msg.event); 1142 continue; /* It's not a page fault, shouldn't happen */ 1143 } 1144 /* Call the device handler registered with us */ 1145 ret = pcfd->handler(pcfd, &msg); 1146 if (ret) { 1147 error_report("%s: Failed to resolve shared fault on %zd/%s", 1148 __func__, index, pcfd->idstr); 1149 /* TODO: Fail? Disable this sharer? */ 1150 } 1151 } 1152 } 1153 } 1154 rcu_unregister_thread(); 1155 trace_postcopy_ram_fault_thread_exit(); 1156 g_free(pfd); 1157 return NULL; 1158 } 1159 1160 static int postcopy_temp_pages_setup(MigrationIncomingState *mis) 1161 { 1162 PostcopyTmpPage *tmp_page; 1163 int err, i, channels; 1164 void *temp_page; 1165 1166 if (migrate_postcopy_preempt()) { 1167 /* If preemption enabled, need extra channel for urgent requests */ 1168 mis->postcopy_channels = RAM_CHANNEL_MAX; 1169 } else { 1170 /* Both precopy/postcopy on the same channel */ 1171 mis->postcopy_channels = 1; 1172 } 1173 1174 channels = mis->postcopy_channels; 1175 mis->postcopy_tmp_pages = g_malloc0_n(sizeof(PostcopyTmpPage), channels); 1176 1177 for (i = 0; i < channels; i++) { 1178 tmp_page = &mis->postcopy_tmp_pages[i]; 1179 temp_page = mmap(NULL, mis->largest_page_size, PROT_READ | PROT_WRITE, 1180 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1181 if (temp_page == MAP_FAILED) { 1182 err = errno; 1183 error_report("%s: Failed to map postcopy_tmp_pages[%d]: %s", 1184 __func__, i, strerror(err)); 1185 /* Clean up will be done later */ 1186 return -err; 1187 } 1188 tmp_page->tmp_huge_page = temp_page; 1189 /* Initialize default states for each tmp page */ 1190 postcopy_temp_page_reset(tmp_page); 1191 } 1192 1193 /* 1194 * Map large zero page when kernel can't use UFFDIO_ZEROPAGE for hugepages 1195 */ 1196 mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size, 1197 PROT_READ | PROT_WRITE, 1198 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1199 if (mis->postcopy_tmp_zero_page == MAP_FAILED) { 1200 err = errno; 1201 mis->postcopy_tmp_zero_page = NULL; 1202 error_report("%s: Failed to map large zero page %s", 1203 __func__, strerror(err)); 1204 return -err; 1205 } 1206 1207 memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size); 1208 1209 return 0; 1210 } 1211 1212 int postcopy_ram_incoming_setup(MigrationIncomingState *mis) 1213 { 1214 Error *local_err = NULL; 1215 1216 /* Open the fd for the kernel to give us userfaults */ 1217 mis->userfault_fd = uffd_open(O_CLOEXEC | O_NONBLOCK); 1218 if (mis->userfault_fd == -1) { 1219 error_report("%s: Failed to open userfault fd: %s", __func__, 1220 strerror(errno)); 1221 return -1; 1222 } 1223 1224 /* 1225 * Although the host check already tested the API, we need to 1226 * do the check again as an ABI handshake on the new fd. 1227 */ 1228 if (!ufd_check_and_apply(mis->userfault_fd, mis, &local_err)) { 1229 error_report_err(local_err); 1230 return -1; 1231 } 1232 1233 /* Now an eventfd we use to tell the fault-thread to quit */ 1234 mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC); 1235 if (mis->userfault_event_fd == -1) { 1236 error_report("%s: Opening userfault_event_fd: %s", __func__, 1237 strerror(errno)); 1238 close(mis->userfault_fd); 1239 return -1; 1240 } 1241 1242 postcopy_thread_create(mis, &mis->fault_thread, "fault-default", 1243 postcopy_ram_fault_thread, QEMU_THREAD_JOINABLE); 1244 mis->have_fault_thread = true; 1245 1246 /* Mark so that we get notified of accesses to unwritten areas */ 1247 if (foreach_not_ignored_block(ram_block_enable_notify, mis)) { 1248 error_report("ram_block_enable_notify failed"); 1249 return -1; 1250 } 1251 1252 if (postcopy_temp_pages_setup(mis)) { 1253 /* Error dumped in the sub-function */ 1254 return -1; 1255 } 1256 1257 if (migrate_postcopy_preempt()) { 1258 /* 1259 * This thread needs to be created after the temp pages because 1260 * it'll fetch RAM_CHANNEL_POSTCOPY PostcopyTmpPage immediately. 1261 */ 1262 postcopy_thread_create(mis, &mis->postcopy_prio_thread, "fault-fast", 1263 postcopy_preempt_thread, QEMU_THREAD_JOINABLE); 1264 mis->preempt_thread_status = PREEMPT_THREAD_CREATED; 1265 } 1266 1267 trace_postcopy_ram_enable_notify(); 1268 1269 return 0; 1270 } 1271 1272 static int qemu_ufd_copy_ioctl(MigrationIncomingState *mis, void *host_addr, 1273 void *from_addr, uint64_t pagesize, RAMBlock *rb) 1274 { 1275 int userfault_fd = mis->userfault_fd; 1276 int ret; 1277 1278 if (from_addr) { 1279 struct uffdio_copy copy_struct; 1280 copy_struct.dst = (uint64_t)(uintptr_t)host_addr; 1281 copy_struct.src = (uint64_t)(uintptr_t)from_addr; 1282 copy_struct.len = pagesize; 1283 copy_struct.mode = 0; 1284 ret = ioctl(userfault_fd, UFFDIO_COPY, ©_struct); 1285 } else { 1286 struct uffdio_zeropage zero_struct; 1287 zero_struct.range.start = (uint64_t)(uintptr_t)host_addr; 1288 zero_struct.range.len = pagesize; 1289 zero_struct.mode = 0; 1290 ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct); 1291 } 1292 if (!ret) { 1293 qemu_mutex_lock(&mis->page_request_mutex); 1294 ramblock_recv_bitmap_set_range(rb, host_addr, 1295 pagesize / qemu_target_page_size()); 1296 /* 1297 * If this page resolves a page fault for a previous recorded faulted 1298 * address, take a special note to maintain the requested page list. 1299 */ 1300 if (g_tree_lookup(mis->page_requested, host_addr)) { 1301 g_tree_remove(mis->page_requested, host_addr); 1302 int left_pages = qatomic_dec_fetch(&mis->page_requested_count); 1303 1304 trace_postcopy_page_req_del(host_addr, mis->page_requested_count); 1305 /* Order the update of count and read of preempt status */ 1306 smp_mb(); 1307 if (mis->preempt_thread_status == PREEMPT_THREAD_QUIT && 1308 left_pages == 0) { 1309 /* 1310 * This probably means the main thread is waiting for us. 1311 * Notify that we've finished receiving the last requested 1312 * page. 1313 */ 1314 qemu_cond_signal(&mis->page_request_cond); 1315 } 1316 } 1317 qemu_mutex_unlock(&mis->page_request_mutex); 1318 mark_postcopy_blocktime_end((uintptr_t)host_addr); 1319 } 1320 return ret; 1321 } 1322 1323 int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset) 1324 { 1325 int i; 1326 MigrationIncomingState *mis = migration_incoming_get_current(); 1327 GArray *pcrfds = mis->postcopy_remote_fds; 1328 1329 for (i = 0; i < pcrfds->len; i++) { 1330 struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i); 1331 int ret = cur->waker(cur, rb, offset); 1332 if (ret) { 1333 return ret; 1334 } 1335 } 1336 return 0; 1337 } 1338 1339 /* 1340 * Place a host page (from) at (host) atomically 1341 * returns 0 on success 1342 */ 1343 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from, 1344 RAMBlock *rb) 1345 { 1346 size_t pagesize = qemu_ram_pagesize(rb); 1347 1348 /* copy also acks to the kernel waking the stalled thread up 1349 * TODO: We can inhibit that ack and only do it if it was requested 1350 * which would be slightly cheaper, but we'd have to be careful 1351 * of the order of updating our page state. 1352 */ 1353 if (qemu_ufd_copy_ioctl(mis, host, from, pagesize, rb)) { 1354 int e = errno; 1355 error_report("%s: %s copy host: %p from: %p (size: %zd)", 1356 __func__, strerror(e), host, from, pagesize); 1357 1358 return -e; 1359 } 1360 1361 trace_postcopy_place_page(host); 1362 return postcopy_notify_shared_wake(rb, 1363 qemu_ram_block_host_offset(rb, host)); 1364 } 1365 1366 /* 1367 * Place a zero page at (host) atomically 1368 * returns 0 on success 1369 */ 1370 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host, 1371 RAMBlock *rb) 1372 { 1373 size_t pagesize = qemu_ram_pagesize(rb); 1374 trace_postcopy_place_page_zero(host); 1375 1376 /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE 1377 * but it's not available for everything (e.g. hugetlbpages) 1378 */ 1379 if (qemu_ram_is_uf_zeroable(rb)) { 1380 if (qemu_ufd_copy_ioctl(mis, host, NULL, pagesize, rb)) { 1381 int e = errno; 1382 error_report("%s: %s zero host: %p", 1383 __func__, strerror(e), host); 1384 1385 return -e; 1386 } 1387 return postcopy_notify_shared_wake(rb, 1388 qemu_ram_block_host_offset(rb, 1389 host)); 1390 } else { 1391 return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page, rb); 1392 } 1393 } 1394 1395 #else 1396 /* No target OS support, stubs just fail */ 1397 void fill_destination_postcopy_migration_info(MigrationInfo *info) 1398 { 1399 } 1400 1401 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis, Error **errp) 1402 { 1403 error_report("%s: No OS support", __func__); 1404 return false; 1405 } 1406 1407 int postcopy_ram_incoming_init(MigrationIncomingState *mis) 1408 { 1409 error_report("postcopy_ram_incoming_init: No OS support"); 1410 return -1; 1411 } 1412 1413 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 1414 { 1415 assert(0); 1416 return -1; 1417 } 1418 1419 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 1420 { 1421 assert(0); 1422 return -1; 1423 } 1424 1425 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb, 1426 uint64_t client_addr, uint64_t rb_offset) 1427 { 1428 assert(0); 1429 return -1; 1430 } 1431 1432 int postcopy_ram_incoming_setup(MigrationIncomingState *mis) 1433 { 1434 assert(0); 1435 return -1; 1436 } 1437 1438 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from, 1439 RAMBlock *rb) 1440 { 1441 assert(0); 1442 return -1; 1443 } 1444 1445 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host, 1446 RAMBlock *rb) 1447 { 1448 assert(0); 1449 return -1; 1450 } 1451 1452 int postcopy_wake_shared(struct PostCopyFD *pcfd, 1453 uint64_t client_addr, 1454 RAMBlock *rb) 1455 { 1456 assert(0); 1457 return -1; 1458 } 1459 #endif 1460 1461 /* ------------------------------------------------------------------------- */ 1462 void postcopy_temp_page_reset(PostcopyTmpPage *tmp_page) 1463 { 1464 tmp_page->target_pages = 0; 1465 tmp_page->host_addr = NULL; 1466 /* 1467 * This is set to true when reset, and cleared as long as we received any 1468 * of the non-zero small page within this huge page. 1469 */ 1470 tmp_page->all_zero = true; 1471 } 1472 1473 void postcopy_fault_thread_notify(MigrationIncomingState *mis) 1474 { 1475 uint64_t tmp64 = 1; 1476 1477 /* 1478 * Wakeup the fault_thread. It's an eventfd that should currently 1479 * be at 0, we're going to increment it to 1 1480 */ 1481 if (write(mis->userfault_event_fd, &tmp64, 8) != 8) { 1482 /* Not much we can do here, but may as well report it */ 1483 error_report("%s: incrementing failed: %s", __func__, 1484 strerror(errno)); 1485 } 1486 } 1487 1488 /** 1489 * postcopy_discard_send_init: Called at the start of each RAMBlock before 1490 * asking to discard individual ranges. 1491 * 1492 * @ms: The current migration state. 1493 * @offset: the bitmap offset of the named RAMBlock in the migration bitmap. 1494 * @name: RAMBlock that discards will operate on. 1495 */ 1496 static PostcopyDiscardState pds = {0}; 1497 void postcopy_discard_send_init(MigrationState *ms, const char *name) 1498 { 1499 pds.ramblock_name = name; 1500 pds.cur_entry = 0; 1501 pds.nsentwords = 0; 1502 pds.nsentcmds = 0; 1503 } 1504 1505 /** 1506 * postcopy_discard_send_range: Called by the bitmap code for each chunk to 1507 * discard. May send a discard message, may just leave it queued to 1508 * be sent later. 1509 * 1510 * @ms: Current migration state. 1511 * @start,@length: a range of pages in the migration bitmap in the 1512 * RAM block passed to postcopy_discard_send_init() (length=1 is one page) 1513 */ 1514 void postcopy_discard_send_range(MigrationState *ms, unsigned long start, 1515 unsigned long length) 1516 { 1517 size_t tp_size = qemu_target_page_size(); 1518 /* Convert to byte offsets within the RAM block */ 1519 pds.start_list[pds.cur_entry] = start * tp_size; 1520 pds.length_list[pds.cur_entry] = length * tp_size; 1521 trace_postcopy_discard_send_range(pds.ramblock_name, start, length); 1522 pds.cur_entry++; 1523 pds.nsentwords++; 1524 1525 if (pds.cur_entry == MAX_DISCARDS_PER_COMMAND) { 1526 /* Full set, ship it! */ 1527 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 1528 pds.ramblock_name, 1529 pds.cur_entry, 1530 pds.start_list, 1531 pds.length_list); 1532 pds.nsentcmds++; 1533 pds.cur_entry = 0; 1534 } 1535 } 1536 1537 /** 1538 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the 1539 * bitmap code. Sends any outstanding discard messages, frees the PDS 1540 * 1541 * @ms: Current migration state. 1542 */ 1543 void postcopy_discard_send_finish(MigrationState *ms) 1544 { 1545 /* Anything unsent? */ 1546 if (pds.cur_entry) { 1547 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 1548 pds.ramblock_name, 1549 pds.cur_entry, 1550 pds.start_list, 1551 pds.length_list); 1552 pds.nsentcmds++; 1553 } 1554 1555 trace_postcopy_discard_send_finish(pds.ramblock_name, pds.nsentwords, 1556 pds.nsentcmds); 1557 } 1558 1559 /* 1560 * Current state of incoming postcopy; note this is not part of 1561 * MigrationIncomingState since it's state is used during cleanup 1562 * at the end as MIS is being freed. 1563 */ 1564 static PostcopyState incoming_postcopy_state; 1565 1566 PostcopyState postcopy_state_get(void) 1567 { 1568 return qatomic_load_acquire(&incoming_postcopy_state); 1569 } 1570 1571 /* Set the state and return the old state */ 1572 PostcopyState postcopy_state_set(PostcopyState new_state) 1573 { 1574 return qatomic_xchg(&incoming_postcopy_state, new_state); 1575 } 1576 1577 /* Register a handler for external shared memory postcopy 1578 * called on the destination. 1579 */ 1580 void postcopy_register_shared_ufd(struct PostCopyFD *pcfd) 1581 { 1582 MigrationIncomingState *mis = migration_incoming_get_current(); 1583 1584 mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds, 1585 *pcfd); 1586 } 1587 1588 /* Unregister a handler for external shared memory postcopy 1589 */ 1590 void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd) 1591 { 1592 guint i; 1593 MigrationIncomingState *mis = migration_incoming_get_current(); 1594 GArray *pcrfds = mis->postcopy_remote_fds; 1595 1596 if (!pcrfds) { 1597 /* migration has already finished and freed the array */ 1598 return; 1599 } 1600 for (i = 0; i < pcrfds->len; i++) { 1601 struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i); 1602 if (cur->fd == pcfd->fd) { 1603 mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i); 1604 return; 1605 } 1606 } 1607 } 1608 1609 void postcopy_preempt_new_channel(MigrationIncomingState *mis, QEMUFile *file) 1610 { 1611 /* 1612 * The new loading channel has its own threads, so it needs to be 1613 * blocked too. It's by default true, just be explicit. 1614 */ 1615 qemu_file_set_blocking(file, true); 1616 mis->postcopy_qemufile_dst = file; 1617 qemu_sem_post(&mis->postcopy_qemufile_dst_done); 1618 trace_postcopy_preempt_new_channel(); 1619 } 1620 1621 /* 1622 * Setup the postcopy preempt channel with the IOC. If ERROR is specified, 1623 * setup the error instead. This helper will free the ERROR if specified. 1624 */ 1625 static void 1626 postcopy_preempt_send_channel_done(MigrationState *s, 1627 QIOChannel *ioc, Error *local_err) 1628 { 1629 if (local_err) { 1630 migrate_set_error(s, local_err); 1631 error_free(local_err); 1632 } else { 1633 migration_ioc_register_yank(ioc); 1634 s->postcopy_qemufile_src = qemu_file_new_output(ioc); 1635 trace_postcopy_preempt_new_channel(); 1636 } 1637 1638 /* 1639 * Kick the waiter in all cases. The waiter should check upon 1640 * postcopy_qemufile_src to know whether it failed or not. 1641 */ 1642 qemu_sem_post(&s->postcopy_qemufile_src_sem); 1643 } 1644 1645 static void 1646 postcopy_preempt_tls_handshake(QIOTask *task, gpointer opaque) 1647 { 1648 g_autoptr(QIOChannel) ioc = QIO_CHANNEL(qio_task_get_source(task)); 1649 MigrationState *s = opaque; 1650 Error *local_err = NULL; 1651 1652 qio_task_propagate_error(task, &local_err); 1653 postcopy_preempt_send_channel_done(s, ioc, local_err); 1654 } 1655 1656 static void 1657 postcopy_preempt_send_channel_new(QIOTask *task, gpointer opaque) 1658 { 1659 g_autoptr(QIOChannel) ioc = QIO_CHANNEL(qio_task_get_source(task)); 1660 MigrationState *s = opaque; 1661 QIOChannelTLS *tioc; 1662 Error *local_err = NULL; 1663 1664 if (qio_task_propagate_error(task, &local_err)) { 1665 goto out; 1666 } 1667 1668 if (migrate_channel_requires_tls_upgrade(ioc)) { 1669 tioc = migration_tls_client_create(ioc, s->hostname, &local_err); 1670 if (!tioc) { 1671 goto out; 1672 } 1673 trace_postcopy_preempt_tls_handshake(); 1674 qio_channel_set_name(QIO_CHANNEL(tioc), "migration-tls-preempt"); 1675 qio_channel_tls_handshake(tioc, postcopy_preempt_tls_handshake, 1676 s, NULL, NULL); 1677 /* Setup the channel until TLS handshake finished */ 1678 return; 1679 } 1680 1681 out: 1682 /* This handles both good and error cases */ 1683 postcopy_preempt_send_channel_done(s, ioc, local_err); 1684 } 1685 1686 /* 1687 * This function will kick off an async task to establish the preempt 1688 * channel, and wait until the connection setup completed. Returns 0 if 1689 * channel established, -1 for error. 1690 */ 1691 int postcopy_preempt_establish_channel(MigrationState *s) 1692 { 1693 /* If preempt not enabled, no need to wait */ 1694 if (!migrate_postcopy_preempt()) { 1695 return 0; 1696 } 1697 1698 /* 1699 * Kick off async task to establish preempt channel. Only do so with 1700 * 8.0+ machines, because 7.1/7.2 require the channel to be created in 1701 * setup phase of migration (even if racy in an unreliable network). 1702 */ 1703 if (!s->preempt_pre_7_2) { 1704 postcopy_preempt_setup(s); 1705 } 1706 1707 /* 1708 * We need the postcopy preempt channel to be established before 1709 * starting doing anything. 1710 */ 1711 qemu_sem_wait(&s->postcopy_qemufile_src_sem); 1712 1713 return s->postcopy_qemufile_src ? 0 : -1; 1714 } 1715 1716 void postcopy_preempt_setup(MigrationState *s) 1717 { 1718 /* Kick an async task to connect */ 1719 socket_send_channel_create(postcopy_preempt_send_channel_new, s); 1720 } 1721 1722 static void postcopy_pause_ram_fast_load(MigrationIncomingState *mis) 1723 { 1724 trace_postcopy_pause_fast_load(); 1725 qemu_mutex_unlock(&mis->postcopy_prio_thread_mutex); 1726 qemu_sem_wait(&mis->postcopy_pause_sem_fast_load); 1727 qemu_mutex_lock(&mis->postcopy_prio_thread_mutex); 1728 trace_postcopy_pause_fast_load_continued(); 1729 } 1730 1731 static bool preempt_thread_should_run(MigrationIncomingState *mis) 1732 { 1733 return mis->preempt_thread_status != PREEMPT_THREAD_QUIT; 1734 } 1735 1736 void *postcopy_preempt_thread(void *opaque) 1737 { 1738 MigrationIncomingState *mis = opaque; 1739 int ret; 1740 1741 trace_postcopy_preempt_thread_entry(); 1742 1743 rcu_register_thread(); 1744 1745 qemu_sem_post(&mis->thread_sync_sem); 1746 1747 /* 1748 * The preempt channel is established in asynchronous way. Wait 1749 * for its completion. 1750 */ 1751 qemu_sem_wait(&mis->postcopy_qemufile_dst_done); 1752 1753 /* Sending RAM_SAVE_FLAG_EOS to terminate this thread */ 1754 qemu_mutex_lock(&mis->postcopy_prio_thread_mutex); 1755 while (preempt_thread_should_run(mis)) { 1756 ret = ram_load_postcopy(mis->postcopy_qemufile_dst, 1757 RAM_CHANNEL_POSTCOPY); 1758 /* If error happened, go into recovery routine */ 1759 if (ret && preempt_thread_should_run(mis)) { 1760 postcopy_pause_ram_fast_load(mis); 1761 } else { 1762 /* We're done */ 1763 break; 1764 } 1765 } 1766 qemu_mutex_unlock(&mis->postcopy_prio_thread_mutex); 1767 1768 rcu_unregister_thread(); 1769 1770 trace_postcopy_preempt_thread_exit(); 1771 1772 return NULL; 1773 } 1774