1 /* 2 * Postcopy migration for RAM 3 * 4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Dave Gilbert <dgilbert@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14 /* 15 * Postcopy is a migration technique where the execution flips from the 16 * source to the destination before all the data has been copied. 17 */ 18 19 #include "qemu/osdep.h" 20 #include "exec/target_page.h" 21 #include "migration.h" 22 #include "qemu-file.h" 23 #include "savevm.h" 24 #include "postcopy-ram.h" 25 #include "ram.h" 26 #include "sysemu/sysemu.h" 27 #include "sysemu/balloon.h" 28 #include "qemu/error-report.h" 29 #include "trace.h" 30 31 /* Arbitrary limit on size of each discard command, 32 * keeps them around ~200 bytes 33 */ 34 #define MAX_DISCARDS_PER_COMMAND 12 35 36 struct PostcopyDiscardState { 37 const char *ramblock_name; 38 uint16_t cur_entry; 39 /* 40 * Start and length of a discard range (bytes) 41 */ 42 uint64_t start_list[MAX_DISCARDS_PER_COMMAND]; 43 uint64_t length_list[MAX_DISCARDS_PER_COMMAND]; 44 unsigned int nsentwords; 45 unsigned int nsentcmds; 46 }; 47 48 /* Postcopy needs to detect accesses to pages that haven't yet been copied 49 * across, and efficiently map new pages in, the techniques for doing this 50 * are target OS specific. 51 */ 52 #if defined(__linux__) 53 54 #include <poll.h> 55 #include <sys/ioctl.h> 56 #include <sys/syscall.h> 57 #include <asm/types.h> /* for __u64 */ 58 #endif 59 60 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD) 61 #include <sys/eventfd.h> 62 #include <linux/userfaultfd.h> 63 64 typedef struct PostcopyBlocktimeContext { 65 /* time when page fault initiated per vCPU */ 66 int64_t *page_fault_vcpu_time; 67 /* page address per vCPU */ 68 uintptr_t *vcpu_addr; 69 int64_t total_blocktime; 70 /* blocktime per vCPU */ 71 int64_t *vcpu_blocktime; 72 /* point in time when last page fault was initiated */ 73 int64_t last_begin; 74 /* number of vCPU are suspended */ 75 int smp_cpus_down; 76 77 /* 78 * Handler for exit event, necessary for 79 * releasing whole blocktime_ctx 80 */ 81 Notifier exit_notifier; 82 } PostcopyBlocktimeContext; 83 84 static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx) 85 { 86 g_free(ctx->page_fault_vcpu_time); 87 g_free(ctx->vcpu_addr); 88 g_free(ctx->vcpu_blocktime); 89 g_free(ctx); 90 } 91 92 static void migration_exit_cb(Notifier *n, void *data) 93 { 94 PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext, 95 exit_notifier); 96 destroy_blocktime_context(ctx); 97 } 98 99 static struct PostcopyBlocktimeContext *blocktime_context_new(void) 100 { 101 PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1); 102 ctx->page_fault_vcpu_time = g_new0(int64_t, smp_cpus); 103 ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus); 104 ctx->vcpu_blocktime = g_new0(int64_t, smp_cpus); 105 106 ctx->exit_notifier.notify = migration_exit_cb; 107 qemu_add_exit_notifier(&ctx->exit_notifier); 108 return ctx; 109 } 110 111 static int64List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx) 112 { 113 int64List *list = NULL, *entry = NULL; 114 int i; 115 116 for (i = smp_cpus - 1; i >= 0; i--) { 117 entry = g_new0(int64List, 1); 118 entry->value = ctx->vcpu_blocktime[i]; 119 entry->next = list; 120 list = entry; 121 } 122 123 return list; 124 } 125 126 /* 127 * This function just populates MigrationInfo from postcopy's 128 * blocktime context. It will not populate MigrationInfo, 129 * unless postcopy-blocktime capability was set. 130 * 131 * @info: pointer to MigrationInfo to populate 132 */ 133 void fill_destination_postcopy_migration_info(MigrationInfo *info) 134 { 135 MigrationIncomingState *mis = migration_incoming_get_current(); 136 PostcopyBlocktimeContext *bc = mis->blocktime_ctx; 137 138 if (!bc) { 139 return; 140 } 141 142 info->has_postcopy_blocktime = true; 143 info->postcopy_blocktime = bc->total_blocktime; 144 info->has_postcopy_vcpu_blocktime = true; 145 info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc); 146 } 147 148 static uint64_t get_postcopy_total_blocktime(void) 149 { 150 MigrationIncomingState *mis = migration_incoming_get_current(); 151 PostcopyBlocktimeContext *bc = mis->blocktime_ctx; 152 153 if (!bc) { 154 return 0; 155 } 156 157 return bc->total_blocktime; 158 } 159 160 /** 161 * receive_ufd_features: check userfault fd features, to request only supported 162 * features in the future. 163 * 164 * Returns: true on success 165 * 166 * __NR_userfaultfd - should be checked before 167 * @features: out parameter will contain uffdio_api.features provided by kernel 168 * in case of success 169 */ 170 static bool receive_ufd_features(uint64_t *features) 171 { 172 struct uffdio_api api_struct = {0}; 173 int ufd; 174 bool ret = true; 175 176 /* if we are here __NR_userfaultfd should exists */ 177 ufd = syscall(__NR_userfaultfd, O_CLOEXEC); 178 if (ufd == -1) { 179 error_report("%s: syscall __NR_userfaultfd failed: %s", __func__, 180 strerror(errno)); 181 return false; 182 } 183 184 /* ask features */ 185 api_struct.api = UFFD_API; 186 api_struct.features = 0; 187 if (ioctl(ufd, UFFDIO_API, &api_struct)) { 188 error_report("%s: UFFDIO_API failed: %s", __func__, 189 strerror(errno)); 190 ret = false; 191 goto release_ufd; 192 } 193 194 *features = api_struct.features; 195 196 release_ufd: 197 close(ufd); 198 return ret; 199 } 200 201 /** 202 * request_ufd_features: this function should be called only once on a newly 203 * opened ufd, subsequent calls will lead to error. 204 * 205 * Returns: true on succes 206 * 207 * @ufd: fd obtained from userfaultfd syscall 208 * @features: bit mask see UFFD_API_FEATURES 209 */ 210 static bool request_ufd_features(int ufd, uint64_t features) 211 { 212 struct uffdio_api api_struct = {0}; 213 uint64_t ioctl_mask; 214 215 api_struct.api = UFFD_API; 216 api_struct.features = features; 217 if (ioctl(ufd, UFFDIO_API, &api_struct)) { 218 error_report("%s failed: UFFDIO_API failed: %s", __func__, 219 strerror(errno)); 220 return false; 221 } 222 223 ioctl_mask = (__u64)1 << _UFFDIO_REGISTER | 224 (__u64)1 << _UFFDIO_UNREGISTER; 225 if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) { 226 error_report("Missing userfault features: %" PRIx64, 227 (uint64_t)(~api_struct.ioctls & ioctl_mask)); 228 return false; 229 } 230 231 return true; 232 } 233 234 static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis) 235 { 236 uint64_t asked_features = 0; 237 static uint64_t supported_features; 238 239 /* 240 * it's not possible to 241 * request UFFD_API twice per one fd 242 * userfault fd features is persistent 243 */ 244 if (!supported_features) { 245 if (!receive_ufd_features(&supported_features)) { 246 error_report("%s failed", __func__); 247 return false; 248 } 249 } 250 251 #ifdef UFFD_FEATURE_THREAD_ID 252 if (migrate_postcopy_blocktime() && mis && 253 UFFD_FEATURE_THREAD_ID & supported_features) { 254 /* kernel supports that feature */ 255 /* don't create blocktime_context if it exists */ 256 if (!mis->blocktime_ctx) { 257 mis->blocktime_ctx = blocktime_context_new(); 258 } 259 260 asked_features |= UFFD_FEATURE_THREAD_ID; 261 } 262 #endif 263 264 /* 265 * request features, even if asked_features is 0, due to 266 * kernel expects UFFD_API before UFFDIO_REGISTER, per 267 * userfault file descriptor 268 */ 269 if (!request_ufd_features(ufd, asked_features)) { 270 error_report("%s failed: features %" PRIu64, __func__, 271 asked_features); 272 return false; 273 } 274 275 if (getpagesize() != ram_pagesize_summary()) { 276 bool have_hp = false; 277 /* We've got a huge page */ 278 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS 279 have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS; 280 #endif 281 if (!have_hp) { 282 error_report("Userfault on this host does not support huge pages"); 283 return false; 284 } 285 } 286 return true; 287 } 288 289 /* Callback from postcopy_ram_supported_by_host block iterator. 290 */ 291 static int test_ramblock_postcopiable(const char *block_name, void *host_addr, 292 ram_addr_t offset, ram_addr_t length, void *opaque) 293 { 294 RAMBlock *rb = qemu_ram_block_by_name(block_name); 295 size_t pagesize = qemu_ram_pagesize(rb); 296 297 if (qemu_ram_is_shared(rb)) { 298 error_report("Postcopy on shared RAM (%s) is not yet supported", 299 block_name); 300 return 1; 301 } 302 303 if (length % pagesize) { 304 error_report("Postcopy requires RAM blocks to be a page size multiple," 305 " block %s is 0x" RAM_ADDR_FMT " bytes with a " 306 "page size of 0x%zx", block_name, length, pagesize); 307 return 1; 308 } 309 return 0; 310 } 311 312 /* 313 * Note: This has the side effect of munlock'ing all of RAM, that's 314 * normally fine since if the postcopy succeeds it gets turned back on at the 315 * end. 316 */ 317 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis) 318 { 319 long pagesize = getpagesize(); 320 int ufd = -1; 321 bool ret = false; /* Error unless we change it */ 322 void *testarea = NULL; 323 struct uffdio_register reg_struct; 324 struct uffdio_range range_struct; 325 uint64_t feature_mask; 326 327 if (qemu_target_page_size() > pagesize) { 328 error_report("Target page size bigger than host page size"); 329 goto out; 330 } 331 332 ufd = syscall(__NR_userfaultfd, O_CLOEXEC); 333 if (ufd == -1) { 334 error_report("%s: userfaultfd not available: %s", __func__, 335 strerror(errno)); 336 goto out; 337 } 338 339 /* Version and features check */ 340 if (!ufd_check_and_apply(ufd, mis)) { 341 goto out; 342 } 343 344 /* We don't support postcopy with shared RAM yet */ 345 if (qemu_ram_foreach_block(test_ramblock_postcopiable, NULL)) { 346 goto out; 347 } 348 349 /* 350 * userfault and mlock don't go together; we'll put it back later if 351 * it was enabled. 352 */ 353 if (munlockall()) { 354 error_report("%s: munlockall: %s", __func__, strerror(errno)); 355 return -1; 356 } 357 358 /* 359 * We need to check that the ops we need are supported on anon memory 360 * To do that we need to register a chunk and see the flags that 361 * are returned. 362 */ 363 testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE | 364 MAP_ANONYMOUS, -1, 0); 365 if (testarea == MAP_FAILED) { 366 error_report("%s: Failed to map test area: %s", __func__, 367 strerror(errno)); 368 goto out; 369 } 370 g_assert(((size_t)testarea & (pagesize-1)) == 0); 371 372 reg_struct.range.start = (uintptr_t)testarea; 373 reg_struct.range.len = pagesize; 374 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 375 376 if (ioctl(ufd, UFFDIO_REGISTER, ®_struct)) { 377 error_report("%s userfault register: %s", __func__, strerror(errno)); 378 goto out; 379 } 380 381 range_struct.start = (uintptr_t)testarea; 382 range_struct.len = pagesize; 383 if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) { 384 error_report("%s userfault unregister: %s", __func__, strerror(errno)); 385 goto out; 386 } 387 388 feature_mask = (__u64)1 << _UFFDIO_WAKE | 389 (__u64)1 << _UFFDIO_COPY | 390 (__u64)1 << _UFFDIO_ZEROPAGE; 391 if ((reg_struct.ioctls & feature_mask) != feature_mask) { 392 error_report("Missing userfault map features: %" PRIx64, 393 (uint64_t)(~reg_struct.ioctls & feature_mask)); 394 goto out; 395 } 396 397 /* Success! */ 398 ret = true; 399 out: 400 if (testarea) { 401 munmap(testarea, pagesize); 402 } 403 if (ufd != -1) { 404 close(ufd); 405 } 406 return ret; 407 } 408 409 /* 410 * Setup an area of RAM so that it *can* be used for postcopy later; this 411 * must be done right at the start prior to pre-copy. 412 * opaque should be the MIS. 413 */ 414 static int init_range(const char *block_name, void *host_addr, 415 ram_addr_t offset, ram_addr_t length, void *opaque) 416 { 417 trace_postcopy_init_range(block_name, host_addr, offset, length); 418 419 /* 420 * We need the whole of RAM to be truly empty for postcopy, so things 421 * like ROMs and any data tables built during init must be zero'd 422 * - we're going to get the copy from the source anyway. 423 * (Precopy will just overwrite this data, so doesn't need the discard) 424 */ 425 if (ram_discard_range(block_name, 0, length)) { 426 return -1; 427 } 428 429 return 0; 430 } 431 432 /* 433 * At the end of migration, undo the effects of init_range 434 * opaque should be the MIS. 435 */ 436 static int cleanup_range(const char *block_name, void *host_addr, 437 ram_addr_t offset, ram_addr_t length, void *opaque) 438 { 439 MigrationIncomingState *mis = opaque; 440 struct uffdio_range range_struct; 441 trace_postcopy_cleanup_range(block_name, host_addr, offset, length); 442 443 /* 444 * We turned off hugepage for the precopy stage with postcopy enabled 445 * we can turn it back on now. 446 */ 447 qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE); 448 449 /* 450 * We can also turn off userfault now since we should have all the 451 * pages. It can be useful to leave it on to debug postcopy 452 * if you're not sure it's always getting every page. 453 */ 454 range_struct.start = (uintptr_t)host_addr; 455 range_struct.len = length; 456 457 if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) { 458 error_report("%s: userfault unregister %s", __func__, strerror(errno)); 459 460 return -1; 461 } 462 463 return 0; 464 } 465 466 /* 467 * Initialise postcopy-ram, setting the RAM to a state where we can go into 468 * postcopy later; must be called prior to any precopy. 469 * called from arch_init's similarly named ram_postcopy_incoming_init 470 */ 471 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages) 472 { 473 if (qemu_ram_foreach_block(init_range, NULL)) { 474 return -1; 475 } 476 477 return 0; 478 } 479 480 /* 481 * At the end of a migration where postcopy_ram_incoming_init was called. 482 */ 483 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 484 { 485 trace_postcopy_ram_incoming_cleanup_entry(); 486 487 if (mis->have_fault_thread) { 488 uint64_t tmp64; 489 490 if (qemu_ram_foreach_block(cleanup_range, mis)) { 491 return -1; 492 } 493 /* 494 * Tell the fault_thread to exit, it's an eventfd that should 495 * currently be at 0, we're going to increment it to 1 496 */ 497 tmp64 = 1; 498 if (write(mis->userfault_quit_fd, &tmp64, 8) == 8) { 499 trace_postcopy_ram_incoming_cleanup_join(); 500 qemu_thread_join(&mis->fault_thread); 501 } else { 502 /* Not much we can do here, but may as well report it */ 503 error_report("%s: incrementing userfault_quit_fd: %s", __func__, 504 strerror(errno)); 505 } 506 trace_postcopy_ram_incoming_cleanup_closeuf(); 507 close(mis->userfault_fd); 508 close(mis->userfault_quit_fd); 509 mis->have_fault_thread = false; 510 } 511 512 qemu_balloon_inhibit(false); 513 514 if (enable_mlock) { 515 if (os_mlock() < 0) { 516 error_report("mlock: %s", strerror(errno)); 517 /* 518 * It doesn't feel right to fail at this point, we have a valid 519 * VM state. 520 */ 521 } 522 } 523 524 postcopy_state_set(POSTCOPY_INCOMING_END); 525 526 if (mis->postcopy_tmp_page) { 527 munmap(mis->postcopy_tmp_page, mis->largest_page_size); 528 mis->postcopy_tmp_page = NULL; 529 } 530 if (mis->postcopy_tmp_zero_page) { 531 munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size); 532 mis->postcopy_tmp_zero_page = NULL; 533 } 534 trace_postcopy_ram_incoming_cleanup_blocktime( 535 get_postcopy_total_blocktime()); 536 537 trace_postcopy_ram_incoming_cleanup_exit(); 538 return 0; 539 } 540 541 /* 542 * Disable huge pages on an area 543 */ 544 static int nhp_range(const char *block_name, void *host_addr, 545 ram_addr_t offset, ram_addr_t length, void *opaque) 546 { 547 trace_postcopy_nhp_range(block_name, host_addr, offset, length); 548 549 /* 550 * Before we do discards we need to ensure those discards really 551 * do delete areas of the page, even if THP thinks a hugepage would 552 * be a good idea, so force hugepages off. 553 */ 554 qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE); 555 556 return 0; 557 } 558 559 /* 560 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard 561 * however leaving it until after precopy means that most of the precopy 562 * data is still THPd 563 */ 564 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 565 { 566 if (qemu_ram_foreach_block(nhp_range, mis)) { 567 return -1; 568 } 569 570 postcopy_state_set(POSTCOPY_INCOMING_DISCARD); 571 572 return 0; 573 } 574 575 /* 576 * Mark the given area of RAM as requiring notification to unwritten areas 577 * Used as a callback on qemu_ram_foreach_block. 578 * host_addr: Base of area to mark 579 * offset: Offset in the whole ram arena 580 * length: Length of the section 581 * opaque: MigrationIncomingState pointer 582 * Returns 0 on success 583 */ 584 static int ram_block_enable_notify(const char *block_name, void *host_addr, 585 ram_addr_t offset, ram_addr_t length, 586 void *opaque) 587 { 588 MigrationIncomingState *mis = opaque; 589 struct uffdio_register reg_struct; 590 591 reg_struct.range.start = (uintptr_t)host_addr; 592 reg_struct.range.len = length; 593 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 594 595 /* Now tell our userfault_fd that it's responsible for this area */ 596 if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, ®_struct)) { 597 error_report("%s userfault register: %s", __func__, strerror(errno)); 598 return -1; 599 } 600 if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) { 601 error_report("%s userfault: Region doesn't support COPY", __func__); 602 return -1; 603 } 604 605 return 0; 606 } 607 608 static int get_mem_fault_cpu_index(uint32_t pid) 609 { 610 CPUState *cpu_iter; 611 612 CPU_FOREACH(cpu_iter) { 613 if (cpu_iter->thread_id == pid) { 614 trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid); 615 return cpu_iter->cpu_index; 616 } 617 } 618 trace_get_mem_fault_cpu_index(-1, pid); 619 return -1; 620 } 621 622 /* 623 * This function is being called when pagefault occurs. It 624 * tracks down vCPU blocking time. 625 * 626 * @addr: faulted host virtual address 627 * @ptid: faulted process thread id 628 * @rb: ramblock appropriate to addr 629 */ 630 static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid, 631 RAMBlock *rb) 632 { 633 int cpu, already_received; 634 MigrationIncomingState *mis = migration_incoming_get_current(); 635 PostcopyBlocktimeContext *dc = mis->blocktime_ctx; 636 int64_t now_ms; 637 638 if (!dc || ptid == 0) { 639 return; 640 } 641 cpu = get_mem_fault_cpu_index(ptid); 642 if (cpu < 0) { 643 return; 644 } 645 646 now_ms = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 647 if (dc->vcpu_addr[cpu] == 0) { 648 atomic_inc(&dc->smp_cpus_down); 649 } 650 651 atomic_xchg__nocheck(&dc->last_begin, now_ms); 652 atomic_xchg__nocheck(&dc->page_fault_vcpu_time[cpu], now_ms); 653 atomic_xchg__nocheck(&dc->vcpu_addr[cpu], addr); 654 655 /* check it here, not at the begining of the function, 656 * due to, check could accur early than bitmap_set in 657 * qemu_ufd_copy_ioctl */ 658 already_received = ramblock_recv_bitmap_test(rb, (void *)addr); 659 if (already_received) { 660 atomic_xchg__nocheck(&dc->vcpu_addr[cpu], 0); 661 atomic_xchg__nocheck(&dc->page_fault_vcpu_time[cpu], 0); 662 atomic_dec(&dc->smp_cpus_down); 663 } 664 trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu], 665 cpu, already_received); 666 } 667 668 /* 669 * This function just provide calculated blocktime per cpu and trace it. 670 * Total blocktime is calculated in mark_postcopy_blocktime_end. 671 * 672 * 673 * Assume we have 3 CPU 674 * 675 * S1 E1 S1 E1 676 * -----***********------------xxx***************------------------------> CPU1 677 * 678 * S2 E2 679 * ------------****************xxx---------------------------------------> CPU2 680 * 681 * S3 E3 682 * ------------------------****xxx********-------------------------------> CPU3 683 * 684 * We have sequence S1,S2,E1,S3,S1,E2,E3,E1 685 * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3 686 * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 - 687 * it's a part of total blocktime. 688 * S1 - here is last_begin 689 * Legend of the picture is following: 690 * * - means blocktime per vCPU 691 * x - means overlapped blocktime (total blocktime) 692 * 693 * @addr: host virtual address 694 */ 695 static void mark_postcopy_blocktime_end(uintptr_t addr) 696 { 697 MigrationIncomingState *mis = migration_incoming_get_current(); 698 PostcopyBlocktimeContext *dc = mis->blocktime_ctx; 699 int i, affected_cpu = 0; 700 int64_t now_ms; 701 bool vcpu_total_blocktime = false; 702 int64_t read_vcpu_time; 703 704 if (!dc) { 705 return; 706 } 707 708 now_ms = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 709 710 /* lookup cpu, to clear it, 711 * that algorithm looks straighforward, but it's not 712 * optimal, more optimal algorithm is keeping tree or hash 713 * where key is address value is a list of */ 714 for (i = 0; i < smp_cpus; i++) { 715 uint64_t vcpu_blocktime = 0; 716 717 read_vcpu_time = atomic_fetch_add(&dc->page_fault_vcpu_time[i], 0); 718 if (atomic_fetch_add(&dc->vcpu_addr[i], 0) != addr || 719 read_vcpu_time == 0) { 720 continue; 721 } 722 atomic_xchg__nocheck(&dc->vcpu_addr[i], 0); 723 vcpu_blocktime = now_ms - read_vcpu_time; 724 affected_cpu += 1; 725 /* we need to know is that mark_postcopy_end was due to 726 * faulted page, another possible case it's prefetched 727 * page and in that case we shouldn't be here */ 728 if (!vcpu_total_blocktime && 729 atomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) { 730 vcpu_total_blocktime = true; 731 } 732 /* continue cycle, due to one page could affect several vCPUs */ 733 dc->vcpu_blocktime[i] += vcpu_blocktime; 734 } 735 736 atomic_sub(&dc->smp_cpus_down, affected_cpu); 737 if (vcpu_total_blocktime) { 738 dc->total_blocktime += now_ms - atomic_fetch_add(&dc->last_begin, 0); 739 } 740 trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime, 741 affected_cpu); 742 } 743 744 /* 745 * Handle faults detected by the USERFAULT markings 746 */ 747 static void *postcopy_ram_fault_thread(void *opaque) 748 { 749 MigrationIncomingState *mis = opaque; 750 struct uffd_msg msg; 751 int ret; 752 RAMBlock *rb = NULL; 753 RAMBlock *last_rb = NULL; /* last RAMBlock we sent part of */ 754 755 trace_postcopy_ram_fault_thread_entry(); 756 qemu_sem_post(&mis->fault_thread_sem); 757 758 while (true) { 759 ram_addr_t rb_offset; 760 struct pollfd pfd[2]; 761 762 /* 763 * We're mainly waiting for the kernel to give us a faulting HVA, 764 * however we can be told to quit via userfault_quit_fd which is 765 * an eventfd 766 */ 767 pfd[0].fd = mis->userfault_fd; 768 pfd[0].events = POLLIN; 769 pfd[0].revents = 0; 770 pfd[1].fd = mis->userfault_quit_fd; 771 pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */ 772 pfd[1].revents = 0; 773 774 if (poll(pfd, 2, -1 /* Wait forever */) == -1) { 775 error_report("%s: userfault poll: %s", __func__, strerror(errno)); 776 break; 777 } 778 779 if (pfd[1].revents) { 780 trace_postcopy_ram_fault_thread_quit(); 781 break; 782 } 783 784 ret = read(mis->userfault_fd, &msg, sizeof(msg)); 785 if (ret != sizeof(msg)) { 786 if (errno == EAGAIN) { 787 /* 788 * if a wake up happens on the other thread just after 789 * the poll, there is nothing to read. 790 */ 791 continue; 792 } 793 if (ret < 0) { 794 error_report("%s: Failed to read full userfault message: %s", 795 __func__, strerror(errno)); 796 break; 797 } else { 798 error_report("%s: Read %d bytes from userfaultfd expected %zd", 799 __func__, ret, sizeof(msg)); 800 break; /* Lost alignment, don't know what we'd read next */ 801 } 802 } 803 if (msg.event != UFFD_EVENT_PAGEFAULT) { 804 error_report("%s: Read unexpected event %ud from userfaultfd", 805 __func__, msg.event); 806 continue; /* It's not a page fault, shouldn't happen */ 807 } 808 809 rb = qemu_ram_block_from_host( 810 (void *)(uintptr_t)msg.arg.pagefault.address, 811 true, &rb_offset); 812 if (!rb) { 813 error_report("postcopy_ram_fault_thread: Fault outside guest: %" 814 PRIx64, (uint64_t)msg.arg.pagefault.address); 815 break; 816 } 817 818 rb_offset &= ~(qemu_ram_pagesize(rb) - 1); 819 trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address, 820 qemu_ram_get_idstr(rb), 821 rb_offset, 822 msg.arg.pagefault.feat.ptid); 823 824 mark_postcopy_blocktime_begin((uintptr_t)(msg.arg.pagefault.address), 825 msg.arg.pagefault.feat.ptid, rb); 826 /* 827 * Send the request to the source - we want to request one 828 * of our host page sizes (which is >= TPS) 829 */ 830 if (rb != last_rb) { 831 last_rb = rb; 832 migrate_send_rp_req_pages(mis, qemu_ram_get_idstr(rb), 833 rb_offset, qemu_ram_pagesize(rb)); 834 } else { 835 /* Save some space */ 836 migrate_send_rp_req_pages(mis, NULL, 837 rb_offset, qemu_ram_pagesize(rb)); 838 } 839 } 840 trace_postcopy_ram_fault_thread_exit(); 841 return NULL; 842 } 843 844 int postcopy_ram_enable_notify(MigrationIncomingState *mis) 845 { 846 /* Open the fd for the kernel to give us userfaults */ 847 mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK); 848 if (mis->userfault_fd == -1) { 849 error_report("%s: Failed to open userfault fd: %s", __func__, 850 strerror(errno)); 851 return -1; 852 } 853 854 /* 855 * Although the host check already tested the API, we need to 856 * do the check again as an ABI handshake on the new fd. 857 */ 858 if (!ufd_check_and_apply(mis->userfault_fd, mis)) { 859 return -1; 860 } 861 862 /* Now an eventfd we use to tell the fault-thread to quit */ 863 mis->userfault_quit_fd = eventfd(0, EFD_CLOEXEC); 864 if (mis->userfault_quit_fd == -1) { 865 error_report("%s: Opening userfault_quit_fd: %s", __func__, 866 strerror(errno)); 867 close(mis->userfault_fd); 868 return -1; 869 } 870 871 qemu_sem_init(&mis->fault_thread_sem, 0); 872 qemu_thread_create(&mis->fault_thread, "postcopy/fault", 873 postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE); 874 qemu_sem_wait(&mis->fault_thread_sem); 875 qemu_sem_destroy(&mis->fault_thread_sem); 876 mis->have_fault_thread = true; 877 878 /* Mark so that we get notified of accesses to unwritten areas */ 879 if (qemu_ram_foreach_block(ram_block_enable_notify, mis)) { 880 return -1; 881 } 882 883 /* 884 * Ballooning can mark pages as absent while we're postcopying 885 * that would cause false userfaults. 886 */ 887 qemu_balloon_inhibit(true); 888 889 trace_postcopy_ram_enable_notify(); 890 891 return 0; 892 } 893 894 static int qemu_ufd_copy_ioctl(int userfault_fd, void *host_addr, 895 void *from_addr, uint64_t pagesize, RAMBlock *rb) 896 { 897 int ret; 898 if (from_addr) { 899 struct uffdio_copy copy_struct; 900 copy_struct.dst = (uint64_t)(uintptr_t)host_addr; 901 copy_struct.src = (uint64_t)(uintptr_t)from_addr; 902 copy_struct.len = pagesize; 903 copy_struct.mode = 0; 904 ret = ioctl(userfault_fd, UFFDIO_COPY, ©_struct); 905 } else { 906 struct uffdio_zeropage zero_struct; 907 zero_struct.range.start = (uint64_t)(uintptr_t)host_addr; 908 zero_struct.range.len = pagesize; 909 zero_struct.mode = 0; 910 ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct); 911 } 912 if (!ret) { 913 ramblock_recv_bitmap_set_range(rb, host_addr, 914 pagesize / qemu_target_page_size()); 915 mark_postcopy_blocktime_end((uintptr_t)host_addr); 916 917 } 918 return ret; 919 } 920 921 /* 922 * Place a host page (from) at (host) atomically 923 * returns 0 on success 924 */ 925 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from, 926 RAMBlock *rb) 927 { 928 size_t pagesize = qemu_ram_pagesize(rb); 929 930 /* copy also acks to the kernel waking the stalled thread up 931 * TODO: We can inhibit that ack and only do it if it was requested 932 * which would be slightly cheaper, but we'd have to be careful 933 * of the order of updating our page state. 934 */ 935 if (qemu_ufd_copy_ioctl(mis->userfault_fd, host, from, pagesize, rb)) { 936 int e = errno; 937 error_report("%s: %s copy host: %p from: %p (size: %zd)", 938 __func__, strerror(e), host, from, pagesize); 939 940 return -e; 941 } 942 943 trace_postcopy_place_page(host); 944 return 0; 945 } 946 947 /* 948 * Place a zero page at (host) atomically 949 * returns 0 on success 950 */ 951 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host, 952 RAMBlock *rb) 953 { 954 trace_postcopy_place_page_zero(host); 955 956 if (qemu_ram_pagesize(rb) == getpagesize()) { 957 if (qemu_ufd_copy_ioctl(mis->userfault_fd, host, NULL, getpagesize(), 958 rb)) { 959 int e = errno; 960 error_report("%s: %s zero host: %p", 961 __func__, strerror(e), host); 962 963 return -e; 964 } 965 } else { 966 /* The kernel can't use UFFDIO_ZEROPAGE for hugepages */ 967 if (!mis->postcopy_tmp_zero_page) { 968 mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size, 969 PROT_READ | PROT_WRITE, 970 MAP_PRIVATE | MAP_ANONYMOUS, 971 -1, 0); 972 if (mis->postcopy_tmp_zero_page == MAP_FAILED) { 973 int e = errno; 974 mis->postcopy_tmp_zero_page = NULL; 975 error_report("%s: %s mapping large zero page", 976 __func__, strerror(e)); 977 return -e; 978 } 979 memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size); 980 } 981 return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page, 982 rb); 983 } 984 985 return 0; 986 } 987 988 /* 989 * Returns a target page of memory that can be mapped at a later point in time 990 * using postcopy_place_page 991 * The same address is used repeatedly, postcopy_place_page just takes the 992 * backing page away. 993 * Returns: Pointer to allocated page 994 * 995 */ 996 void *postcopy_get_tmp_page(MigrationIncomingState *mis) 997 { 998 if (!mis->postcopy_tmp_page) { 999 mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size, 1000 PROT_READ | PROT_WRITE, MAP_PRIVATE | 1001 MAP_ANONYMOUS, -1, 0); 1002 if (mis->postcopy_tmp_page == MAP_FAILED) { 1003 mis->postcopy_tmp_page = NULL; 1004 error_report("%s: %s", __func__, strerror(errno)); 1005 return NULL; 1006 } 1007 } 1008 1009 return mis->postcopy_tmp_page; 1010 } 1011 1012 #else 1013 /* No target OS support, stubs just fail */ 1014 void fill_destination_postcopy_migration_info(MigrationInfo *info) 1015 { 1016 } 1017 1018 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis) 1019 { 1020 error_report("%s: No OS support", __func__); 1021 return false; 1022 } 1023 1024 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages) 1025 { 1026 error_report("postcopy_ram_incoming_init: No OS support"); 1027 return -1; 1028 } 1029 1030 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 1031 { 1032 assert(0); 1033 return -1; 1034 } 1035 1036 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 1037 { 1038 assert(0); 1039 return -1; 1040 } 1041 1042 int postcopy_ram_enable_notify(MigrationIncomingState *mis) 1043 { 1044 assert(0); 1045 return -1; 1046 } 1047 1048 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from, 1049 RAMBlock *rb) 1050 { 1051 assert(0); 1052 return -1; 1053 } 1054 1055 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host, 1056 RAMBlock *rb) 1057 { 1058 assert(0); 1059 return -1; 1060 } 1061 1062 void *postcopy_get_tmp_page(MigrationIncomingState *mis) 1063 { 1064 assert(0); 1065 return NULL; 1066 } 1067 1068 #endif 1069 1070 /* ------------------------------------------------------------------------- */ 1071 1072 /** 1073 * postcopy_discard_send_init: Called at the start of each RAMBlock before 1074 * asking to discard individual ranges. 1075 * 1076 * @ms: The current migration state. 1077 * @offset: the bitmap offset of the named RAMBlock in the migration 1078 * bitmap. 1079 * @name: RAMBlock that discards will operate on. 1080 * 1081 * returns: a new PDS. 1082 */ 1083 PostcopyDiscardState *postcopy_discard_send_init(MigrationState *ms, 1084 const char *name) 1085 { 1086 PostcopyDiscardState *res = g_malloc0(sizeof(PostcopyDiscardState)); 1087 1088 if (res) { 1089 res->ramblock_name = name; 1090 } 1091 1092 return res; 1093 } 1094 1095 /** 1096 * postcopy_discard_send_range: Called by the bitmap code for each chunk to 1097 * discard. May send a discard message, may just leave it queued to 1098 * be sent later. 1099 * 1100 * @ms: Current migration state. 1101 * @pds: Structure initialised by postcopy_discard_send_init(). 1102 * @start,@length: a range of pages in the migration bitmap in the 1103 * RAM block passed to postcopy_discard_send_init() (length=1 is one page) 1104 */ 1105 void postcopy_discard_send_range(MigrationState *ms, PostcopyDiscardState *pds, 1106 unsigned long start, unsigned long length) 1107 { 1108 size_t tp_size = qemu_target_page_size(); 1109 /* Convert to byte offsets within the RAM block */ 1110 pds->start_list[pds->cur_entry] = start * tp_size; 1111 pds->length_list[pds->cur_entry] = length * tp_size; 1112 trace_postcopy_discard_send_range(pds->ramblock_name, start, length); 1113 pds->cur_entry++; 1114 pds->nsentwords++; 1115 1116 if (pds->cur_entry == MAX_DISCARDS_PER_COMMAND) { 1117 /* Full set, ship it! */ 1118 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 1119 pds->ramblock_name, 1120 pds->cur_entry, 1121 pds->start_list, 1122 pds->length_list); 1123 pds->nsentcmds++; 1124 pds->cur_entry = 0; 1125 } 1126 } 1127 1128 /** 1129 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the 1130 * bitmap code. Sends any outstanding discard messages, frees the PDS 1131 * 1132 * @ms: Current migration state. 1133 * @pds: Structure initialised by postcopy_discard_send_init(). 1134 */ 1135 void postcopy_discard_send_finish(MigrationState *ms, PostcopyDiscardState *pds) 1136 { 1137 /* Anything unsent? */ 1138 if (pds->cur_entry) { 1139 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 1140 pds->ramblock_name, 1141 pds->cur_entry, 1142 pds->start_list, 1143 pds->length_list); 1144 pds->nsentcmds++; 1145 } 1146 1147 trace_postcopy_discard_send_finish(pds->ramblock_name, pds->nsentwords, 1148 pds->nsentcmds); 1149 1150 g_free(pds); 1151 } 1152 1153 /* 1154 * Current state of incoming postcopy; note this is not part of 1155 * MigrationIncomingState since it's state is used during cleanup 1156 * at the end as MIS is being freed. 1157 */ 1158 static PostcopyState incoming_postcopy_state; 1159 1160 PostcopyState postcopy_state_get(void) 1161 { 1162 return atomic_mb_read(&incoming_postcopy_state); 1163 } 1164 1165 /* Set the state and return the old state */ 1166 PostcopyState postcopy_state_set(PostcopyState new_state) 1167 { 1168 return atomic_xchg(&incoming_postcopy_state, new_state); 1169 } 1170