1 /* 2 * Postcopy migration for RAM 3 * 4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Dave Gilbert <dgilbert@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14 /* 15 * Postcopy is a migration technique where the execution flips from the 16 * source to the destination before all the data has been copied. 17 */ 18 19 #include "qemu/osdep.h" 20 21 #include "qemu-common.h" 22 #include "migration/migration.h" 23 #include "migration/postcopy-ram.h" 24 #include "sysemu/sysemu.h" 25 #include "sysemu/balloon.h" 26 #include "qemu/error-report.h" 27 #include "trace.h" 28 29 /* Arbitrary limit on size of each discard command, 30 * keeps them around ~200 bytes 31 */ 32 #define MAX_DISCARDS_PER_COMMAND 12 33 34 struct PostcopyDiscardState { 35 const char *ramblock_name; 36 uint64_t offset; /* Bitmap entry for the 1st bit of this RAMBlock */ 37 uint16_t cur_entry; 38 /* 39 * Start and length of a discard range (bytes) 40 */ 41 uint64_t start_list[MAX_DISCARDS_PER_COMMAND]; 42 uint64_t length_list[MAX_DISCARDS_PER_COMMAND]; 43 unsigned int nsentwords; 44 unsigned int nsentcmds; 45 }; 46 47 /* Postcopy needs to detect accesses to pages that haven't yet been copied 48 * across, and efficiently map new pages in, the techniques for doing this 49 * are target OS specific. 50 */ 51 #if defined(__linux__) 52 53 #include <poll.h> 54 #include <sys/ioctl.h> 55 #include <sys/syscall.h> 56 #include <asm/types.h> /* for __u64 */ 57 #endif 58 59 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD) 60 #include <sys/eventfd.h> 61 #include <linux/userfaultfd.h> 62 63 static bool ufd_version_check(int ufd) 64 { 65 struct uffdio_api api_struct; 66 uint64_t ioctl_mask; 67 68 api_struct.api = UFFD_API; 69 api_struct.features = 0; 70 if (ioctl(ufd, UFFDIO_API, &api_struct)) { 71 error_report("postcopy_ram_supported_by_host: UFFDIO_API failed: %s", 72 strerror(errno)); 73 return false; 74 } 75 76 ioctl_mask = (__u64)1 << _UFFDIO_REGISTER | 77 (__u64)1 << _UFFDIO_UNREGISTER; 78 if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) { 79 error_report("Missing userfault features: %" PRIx64, 80 (uint64_t)(~api_struct.ioctls & ioctl_mask)); 81 return false; 82 } 83 84 return true; 85 } 86 87 /* 88 * Check for things that postcopy won't support; returns 0 if the block 89 * is fine. 90 */ 91 static int check_range(const char *block_name, void *host_addr, 92 ram_addr_t offset, ram_addr_t length, void *opaque) 93 { 94 RAMBlock *rb = qemu_ram_block_by_name(block_name); 95 96 if (qemu_ram_pagesize(rb) > getpagesize()) { 97 error_report("Postcopy doesn't support large page sizes yet (%s)", 98 block_name); 99 return -E2BIG; 100 } 101 102 return 0; 103 } 104 105 /* 106 * Note: This has the side effect of munlock'ing all of RAM, that's 107 * normally fine since if the postcopy succeeds it gets turned back on at the 108 * end. 109 */ 110 bool postcopy_ram_supported_by_host(void) 111 { 112 long pagesize = getpagesize(); 113 int ufd = -1; 114 bool ret = false; /* Error unless we change it */ 115 void *testarea = NULL; 116 struct uffdio_register reg_struct; 117 struct uffdio_range range_struct; 118 uint64_t feature_mask; 119 120 if ((1ul << qemu_target_page_bits()) > pagesize) { 121 error_report("Target page size bigger than host page size"); 122 goto out; 123 } 124 125 /* Check for anything about the RAMBlocks we don't support */ 126 if (qemu_ram_foreach_block(check_range, NULL)) { 127 /* check_range will have printed its own error */ 128 goto out; 129 } 130 131 ufd = syscall(__NR_userfaultfd, O_CLOEXEC); 132 if (ufd == -1) { 133 error_report("%s: userfaultfd not available: %s", __func__, 134 strerror(errno)); 135 goto out; 136 } 137 138 /* Version and features check */ 139 if (!ufd_version_check(ufd)) { 140 goto out; 141 } 142 143 /* 144 * userfault and mlock don't go together; we'll put it back later if 145 * it was enabled. 146 */ 147 if (munlockall()) { 148 error_report("%s: munlockall: %s", __func__, strerror(errno)); 149 return -1; 150 } 151 152 /* 153 * We need to check that the ops we need are supported on anon memory 154 * To do that we need to register a chunk and see the flags that 155 * are returned. 156 */ 157 testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE | 158 MAP_ANONYMOUS, -1, 0); 159 if (testarea == MAP_FAILED) { 160 error_report("%s: Failed to map test area: %s", __func__, 161 strerror(errno)); 162 goto out; 163 } 164 g_assert(((size_t)testarea & (pagesize-1)) == 0); 165 166 reg_struct.range.start = (uintptr_t)testarea; 167 reg_struct.range.len = pagesize; 168 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 169 170 if (ioctl(ufd, UFFDIO_REGISTER, ®_struct)) { 171 error_report("%s userfault register: %s", __func__, strerror(errno)); 172 goto out; 173 } 174 175 range_struct.start = (uintptr_t)testarea; 176 range_struct.len = pagesize; 177 if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) { 178 error_report("%s userfault unregister: %s", __func__, strerror(errno)); 179 goto out; 180 } 181 182 feature_mask = (__u64)1 << _UFFDIO_WAKE | 183 (__u64)1 << _UFFDIO_COPY | 184 (__u64)1 << _UFFDIO_ZEROPAGE; 185 if ((reg_struct.ioctls & feature_mask) != feature_mask) { 186 error_report("Missing userfault map features: %" PRIx64, 187 (uint64_t)(~reg_struct.ioctls & feature_mask)); 188 goto out; 189 } 190 191 /* Success! */ 192 ret = true; 193 out: 194 if (testarea) { 195 munmap(testarea, pagesize); 196 } 197 if (ufd != -1) { 198 close(ufd); 199 } 200 return ret; 201 } 202 203 /** 204 * postcopy_ram_discard_range: Discard a range of memory. 205 * We can assume that if we've been called postcopy_ram_hosttest returned true. 206 * 207 * @mis: Current incoming migration state. 208 * @start, @length: range of memory to discard. 209 * 210 * returns: 0 on success. 211 */ 212 int postcopy_ram_discard_range(MigrationIncomingState *mis, uint8_t *start, 213 size_t length) 214 { 215 trace_postcopy_ram_discard_range(start, length); 216 if (madvise(start, length, MADV_DONTNEED)) { 217 error_report("%s MADV_DONTNEED: %s", __func__, strerror(errno)); 218 return -1; 219 } 220 221 return 0; 222 } 223 224 /* 225 * Setup an area of RAM so that it *can* be used for postcopy later; this 226 * must be done right at the start prior to pre-copy. 227 * opaque should be the MIS. 228 */ 229 static int init_range(const char *block_name, void *host_addr, 230 ram_addr_t offset, ram_addr_t length, void *opaque) 231 { 232 MigrationIncomingState *mis = opaque; 233 234 trace_postcopy_init_range(block_name, host_addr, offset, length); 235 236 /* 237 * We need the whole of RAM to be truly empty for postcopy, so things 238 * like ROMs and any data tables built during init must be zero'd 239 * - we're going to get the copy from the source anyway. 240 * (Precopy will just overwrite this data, so doesn't need the discard) 241 */ 242 if (postcopy_ram_discard_range(mis, host_addr, length)) { 243 return -1; 244 } 245 246 return 0; 247 } 248 249 /* 250 * At the end of migration, undo the effects of init_range 251 * opaque should be the MIS. 252 */ 253 static int cleanup_range(const char *block_name, void *host_addr, 254 ram_addr_t offset, ram_addr_t length, void *opaque) 255 { 256 MigrationIncomingState *mis = opaque; 257 struct uffdio_range range_struct; 258 trace_postcopy_cleanup_range(block_name, host_addr, offset, length); 259 260 /* 261 * We turned off hugepage for the precopy stage with postcopy enabled 262 * we can turn it back on now. 263 */ 264 qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE); 265 266 /* 267 * We can also turn off userfault now since we should have all the 268 * pages. It can be useful to leave it on to debug postcopy 269 * if you're not sure it's always getting every page. 270 */ 271 range_struct.start = (uintptr_t)host_addr; 272 range_struct.len = length; 273 274 if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) { 275 error_report("%s: userfault unregister %s", __func__, strerror(errno)); 276 277 return -1; 278 } 279 280 return 0; 281 } 282 283 /* 284 * Initialise postcopy-ram, setting the RAM to a state where we can go into 285 * postcopy later; must be called prior to any precopy. 286 * called from arch_init's similarly named ram_postcopy_incoming_init 287 */ 288 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages) 289 { 290 if (qemu_ram_foreach_block(init_range, mis)) { 291 return -1; 292 } 293 294 return 0; 295 } 296 297 /* 298 * At the end of a migration where postcopy_ram_incoming_init was called. 299 */ 300 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 301 { 302 trace_postcopy_ram_incoming_cleanup_entry(); 303 304 if (mis->have_fault_thread) { 305 uint64_t tmp64; 306 307 if (qemu_ram_foreach_block(cleanup_range, mis)) { 308 return -1; 309 } 310 /* 311 * Tell the fault_thread to exit, it's an eventfd that should 312 * currently be at 0, we're going to increment it to 1 313 */ 314 tmp64 = 1; 315 if (write(mis->userfault_quit_fd, &tmp64, 8) == 8) { 316 trace_postcopy_ram_incoming_cleanup_join(); 317 qemu_thread_join(&mis->fault_thread); 318 } else { 319 /* Not much we can do here, but may as well report it */ 320 error_report("%s: incrementing userfault_quit_fd: %s", __func__, 321 strerror(errno)); 322 } 323 trace_postcopy_ram_incoming_cleanup_closeuf(); 324 close(mis->userfault_fd); 325 close(mis->userfault_quit_fd); 326 mis->have_fault_thread = false; 327 } 328 329 qemu_balloon_inhibit(false); 330 331 if (enable_mlock) { 332 if (os_mlock() < 0) { 333 error_report("mlock: %s", strerror(errno)); 334 /* 335 * It doesn't feel right to fail at this point, we have a valid 336 * VM state. 337 */ 338 } 339 } 340 341 postcopy_state_set(POSTCOPY_INCOMING_END); 342 migrate_send_rp_shut(mis, qemu_file_get_error(mis->from_src_file) != 0); 343 344 if (mis->postcopy_tmp_page) { 345 munmap(mis->postcopy_tmp_page, getpagesize()); 346 mis->postcopy_tmp_page = NULL; 347 } 348 trace_postcopy_ram_incoming_cleanup_exit(); 349 return 0; 350 } 351 352 /* 353 * Disable huge pages on an area 354 */ 355 static int nhp_range(const char *block_name, void *host_addr, 356 ram_addr_t offset, ram_addr_t length, void *opaque) 357 { 358 trace_postcopy_nhp_range(block_name, host_addr, offset, length); 359 360 /* 361 * Before we do discards we need to ensure those discards really 362 * do delete areas of the page, even if THP thinks a hugepage would 363 * be a good idea, so force hugepages off. 364 */ 365 qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE); 366 367 return 0; 368 } 369 370 /* 371 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard 372 * however leaving it until after precopy means that most of the precopy 373 * data is still THPd 374 */ 375 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 376 { 377 if (qemu_ram_foreach_block(nhp_range, mis)) { 378 return -1; 379 } 380 381 postcopy_state_set(POSTCOPY_INCOMING_DISCARD); 382 383 return 0; 384 } 385 386 /* 387 * Mark the given area of RAM as requiring notification to unwritten areas 388 * Used as a callback on qemu_ram_foreach_block. 389 * host_addr: Base of area to mark 390 * offset: Offset in the whole ram arena 391 * length: Length of the section 392 * opaque: MigrationIncomingState pointer 393 * Returns 0 on success 394 */ 395 static int ram_block_enable_notify(const char *block_name, void *host_addr, 396 ram_addr_t offset, ram_addr_t length, 397 void *opaque) 398 { 399 MigrationIncomingState *mis = opaque; 400 struct uffdio_register reg_struct; 401 402 reg_struct.range.start = (uintptr_t)host_addr; 403 reg_struct.range.len = length; 404 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 405 406 /* Now tell our userfault_fd that it's responsible for this area */ 407 if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, ®_struct)) { 408 error_report("%s userfault register: %s", __func__, strerror(errno)); 409 return -1; 410 } 411 412 return 0; 413 } 414 415 /* 416 * Handle faults detected by the USERFAULT markings 417 */ 418 static void *postcopy_ram_fault_thread(void *opaque) 419 { 420 MigrationIncomingState *mis = opaque; 421 struct uffd_msg msg; 422 int ret; 423 size_t hostpagesize = getpagesize(); 424 RAMBlock *rb = NULL; 425 RAMBlock *last_rb = NULL; /* last RAMBlock we sent part of */ 426 427 trace_postcopy_ram_fault_thread_entry(); 428 qemu_sem_post(&mis->fault_thread_sem); 429 430 while (true) { 431 ram_addr_t rb_offset; 432 struct pollfd pfd[2]; 433 434 /* 435 * We're mainly waiting for the kernel to give us a faulting HVA, 436 * however we can be told to quit via userfault_quit_fd which is 437 * an eventfd 438 */ 439 pfd[0].fd = mis->userfault_fd; 440 pfd[0].events = POLLIN; 441 pfd[0].revents = 0; 442 pfd[1].fd = mis->userfault_quit_fd; 443 pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */ 444 pfd[1].revents = 0; 445 446 if (poll(pfd, 2, -1 /* Wait forever */) == -1) { 447 error_report("%s: userfault poll: %s", __func__, strerror(errno)); 448 break; 449 } 450 451 if (pfd[1].revents) { 452 trace_postcopy_ram_fault_thread_quit(); 453 break; 454 } 455 456 ret = read(mis->userfault_fd, &msg, sizeof(msg)); 457 if (ret != sizeof(msg)) { 458 if (errno == EAGAIN) { 459 /* 460 * if a wake up happens on the other thread just after 461 * the poll, there is nothing to read. 462 */ 463 continue; 464 } 465 if (ret < 0) { 466 error_report("%s: Failed to read full userfault message: %s", 467 __func__, strerror(errno)); 468 break; 469 } else { 470 error_report("%s: Read %d bytes from userfaultfd expected %zd", 471 __func__, ret, sizeof(msg)); 472 break; /* Lost alignment, don't know what we'd read next */ 473 } 474 } 475 if (msg.event != UFFD_EVENT_PAGEFAULT) { 476 error_report("%s: Read unexpected event %ud from userfaultfd", 477 __func__, msg.event); 478 continue; /* It's not a page fault, shouldn't happen */ 479 } 480 481 rb = qemu_ram_block_from_host( 482 (void *)(uintptr_t)msg.arg.pagefault.address, 483 true, &rb_offset); 484 if (!rb) { 485 error_report("postcopy_ram_fault_thread: Fault outside guest: %" 486 PRIx64, (uint64_t)msg.arg.pagefault.address); 487 break; 488 } 489 490 rb_offset &= ~(hostpagesize - 1); 491 trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address, 492 qemu_ram_get_idstr(rb), 493 rb_offset); 494 495 /* 496 * Send the request to the source - we want to request one 497 * of our host page sizes (which is >= TPS) 498 */ 499 if (rb != last_rb) { 500 last_rb = rb; 501 migrate_send_rp_req_pages(mis, qemu_ram_get_idstr(rb), 502 rb_offset, hostpagesize); 503 } else { 504 /* Save some space */ 505 migrate_send_rp_req_pages(mis, NULL, 506 rb_offset, hostpagesize); 507 } 508 } 509 trace_postcopy_ram_fault_thread_exit(); 510 return NULL; 511 } 512 513 int postcopy_ram_enable_notify(MigrationIncomingState *mis) 514 { 515 /* Open the fd for the kernel to give us userfaults */ 516 mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK); 517 if (mis->userfault_fd == -1) { 518 error_report("%s: Failed to open userfault fd: %s", __func__, 519 strerror(errno)); 520 return -1; 521 } 522 523 /* 524 * Although the host check already tested the API, we need to 525 * do the check again as an ABI handshake on the new fd. 526 */ 527 if (!ufd_version_check(mis->userfault_fd)) { 528 return -1; 529 } 530 531 /* Now an eventfd we use to tell the fault-thread to quit */ 532 mis->userfault_quit_fd = eventfd(0, EFD_CLOEXEC); 533 if (mis->userfault_quit_fd == -1) { 534 error_report("%s: Opening userfault_quit_fd: %s", __func__, 535 strerror(errno)); 536 close(mis->userfault_fd); 537 return -1; 538 } 539 540 qemu_sem_init(&mis->fault_thread_sem, 0); 541 qemu_thread_create(&mis->fault_thread, "postcopy/fault", 542 postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE); 543 qemu_sem_wait(&mis->fault_thread_sem); 544 qemu_sem_destroy(&mis->fault_thread_sem); 545 mis->have_fault_thread = true; 546 547 /* Mark so that we get notified of accesses to unwritten areas */ 548 if (qemu_ram_foreach_block(ram_block_enable_notify, mis)) { 549 return -1; 550 } 551 552 /* 553 * Ballooning can mark pages as absent while we're postcopying 554 * that would cause false userfaults. 555 */ 556 qemu_balloon_inhibit(true); 557 558 trace_postcopy_ram_enable_notify(); 559 560 return 0; 561 } 562 563 /* 564 * Place a host page (from) at (host) atomically 565 * returns 0 on success 566 */ 567 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from) 568 { 569 struct uffdio_copy copy_struct; 570 571 copy_struct.dst = (uint64_t)(uintptr_t)host; 572 copy_struct.src = (uint64_t)(uintptr_t)from; 573 copy_struct.len = getpagesize(); 574 copy_struct.mode = 0; 575 576 /* copy also acks to the kernel waking the stalled thread up 577 * TODO: We can inhibit that ack and only do it if it was requested 578 * which would be slightly cheaper, but we'd have to be careful 579 * of the order of updating our page state. 580 */ 581 if (ioctl(mis->userfault_fd, UFFDIO_COPY, ©_struct)) { 582 int e = errno; 583 error_report("%s: %s copy host: %p from: %p", 584 __func__, strerror(e), host, from); 585 586 return -e; 587 } 588 589 trace_postcopy_place_page(host); 590 return 0; 591 } 592 593 /* 594 * Place a zero page at (host) atomically 595 * returns 0 on success 596 */ 597 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host) 598 { 599 struct uffdio_zeropage zero_struct; 600 601 zero_struct.range.start = (uint64_t)(uintptr_t)host; 602 zero_struct.range.len = getpagesize(); 603 zero_struct.mode = 0; 604 605 if (ioctl(mis->userfault_fd, UFFDIO_ZEROPAGE, &zero_struct)) { 606 int e = errno; 607 error_report("%s: %s zero host: %p", 608 __func__, strerror(e), host); 609 610 return -e; 611 } 612 613 trace_postcopy_place_page_zero(host); 614 return 0; 615 } 616 617 /* 618 * Returns a target page of memory that can be mapped at a later point in time 619 * using postcopy_place_page 620 * The same address is used repeatedly, postcopy_place_page just takes the 621 * backing page away. 622 * Returns: Pointer to allocated page 623 * 624 */ 625 void *postcopy_get_tmp_page(MigrationIncomingState *mis) 626 { 627 if (!mis->postcopy_tmp_page) { 628 mis->postcopy_tmp_page = mmap(NULL, getpagesize(), 629 PROT_READ | PROT_WRITE, MAP_PRIVATE | 630 MAP_ANONYMOUS, -1, 0); 631 if (mis->postcopy_tmp_page == MAP_FAILED) { 632 mis->postcopy_tmp_page = NULL; 633 error_report("%s: %s", __func__, strerror(errno)); 634 return NULL; 635 } 636 } 637 638 return mis->postcopy_tmp_page; 639 } 640 641 #else 642 /* No target OS support, stubs just fail */ 643 bool postcopy_ram_supported_by_host(void) 644 { 645 error_report("%s: No OS support", __func__); 646 return false; 647 } 648 649 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages) 650 { 651 error_report("postcopy_ram_incoming_init: No OS support"); 652 return -1; 653 } 654 655 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 656 { 657 assert(0); 658 return -1; 659 } 660 661 int postcopy_ram_discard_range(MigrationIncomingState *mis, uint8_t *start, 662 size_t length) 663 { 664 assert(0); 665 return -1; 666 } 667 668 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 669 { 670 assert(0); 671 return -1; 672 } 673 674 int postcopy_ram_enable_notify(MigrationIncomingState *mis) 675 { 676 assert(0); 677 return -1; 678 } 679 680 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from) 681 { 682 assert(0); 683 return -1; 684 } 685 686 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host) 687 { 688 assert(0); 689 return -1; 690 } 691 692 void *postcopy_get_tmp_page(MigrationIncomingState *mis) 693 { 694 assert(0); 695 return NULL; 696 } 697 698 #endif 699 700 /* ------------------------------------------------------------------------- */ 701 702 /** 703 * postcopy_discard_send_init: Called at the start of each RAMBlock before 704 * asking to discard individual ranges. 705 * 706 * @ms: The current migration state. 707 * @offset: the bitmap offset of the named RAMBlock in the migration 708 * bitmap. 709 * @name: RAMBlock that discards will operate on. 710 * 711 * returns: a new PDS. 712 */ 713 PostcopyDiscardState *postcopy_discard_send_init(MigrationState *ms, 714 unsigned long offset, 715 const char *name) 716 { 717 PostcopyDiscardState *res = g_malloc0(sizeof(PostcopyDiscardState)); 718 719 if (res) { 720 res->ramblock_name = name; 721 res->offset = offset; 722 } 723 724 return res; 725 } 726 727 /** 728 * postcopy_discard_send_range: Called by the bitmap code for each chunk to 729 * discard. May send a discard message, may just leave it queued to 730 * be sent later. 731 * 732 * @ms: Current migration state. 733 * @pds: Structure initialised by postcopy_discard_send_init(). 734 * @start,@length: a range of pages in the migration bitmap in the 735 * RAM block passed to postcopy_discard_send_init() (length=1 is one page) 736 */ 737 void postcopy_discard_send_range(MigrationState *ms, PostcopyDiscardState *pds, 738 unsigned long start, unsigned long length) 739 { 740 size_t tp_bits = qemu_target_page_bits(); 741 /* Convert to byte offsets within the RAM block */ 742 pds->start_list[pds->cur_entry] = (start - pds->offset) << tp_bits; 743 pds->length_list[pds->cur_entry] = length << tp_bits; 744 trace_postcopy_discard_send_range(pds->ramblock_name, start, length); 745 pds->cur_entry++; 746 pds->nsentwords++; 747 748 if (pds->cur_entry == MAX_DISCARDS_PER_COMMAND) { 749 /* Full set, ship it! */ 750 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 751 pds->ramblock_name, 752 pds->cur_entry, 753 pds->start_list, 754 pds->length_list); 755 pds->nsentcmds++; 756 pds->cur_entry = 0; 757 } 758 } 759 760 /** 761 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the 762 * bitmap code. Sends any outstanding discard messages, frees the PDS 763 * 764 * @ms: Current migration state. 765 * @pds: Structure initialised by postcopy_discard_send_init(). 766 */ 767 void postcopy_discard_send_finish(MigrationState *ms, PostcopyDiscardState *pds) 768 { 769 /* Anything unsent? */ 770 if (pds->cur_entry) { 771 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 772 pds->ramblock_name, 773 pds->cur_entry, 774 pds->start_list, 775 pds->length_list); 776 pds->nsentcmds++; 777 } 778 779 trace_postcopy_discard_send_finish(pds->ramblock_name, pds->nsentwords, 780 pds->nsentcmds); 781 782 g_free(pds); 783 } 784