1 /* 2 * Postcopy migration for RAM 3 * 4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Dave Gilbert <dgilbert@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14 /* 15 * Postcopy is a migration technique where the execution flips from the 16 * source to the destination before all the data has been copied. 17 */ 18 19 #include "qemu/osdep.h" 20 #include <glib.h> 21 22 #include "qemu-common.h" 23 #include "migration/migration.h" 24 #include "migration/postcopy-ram.h" 25 #include "sysemu/sysemu.h" 26 #include "sysemu/balloon.h" 27 #include "qemu/error-report.h" 28 #include "trace.h" 29 30 /* Arbitrary limit on size of each discard command, 31 * keeps them around ~200 bytes 32 */ 33 #define MAX_DISCARDS_PER_COMMAND 12 34 35 struct PostcopyDiscardState { 36 const char *ramblock_name; 37 uint64_t offset; /* Bitmap entry for the 1st bit of this RAMBlock */ 38 uint16_t cur_entry; 39 /* 40 * Start and length of a discard range (bytes) 41 */ 42 uint64_t start_list[MAX_DISCARDS_PER_COMMAND]; 43 uint64_t length_list[MAX_DISCARDS_PER_COMMAND]; 44 unsigned int nsentwords; 45 unsigned int nsentcmds; 46 }; 47 48 /* Postcopy needs to detect accesses to pages that haven't yet been copied 49 * across, and efficiently map new pages in, the techniques for doing this 50 * are target OS specific. 51 */ 52 #if defined(__linux__) 53 54 #include <poll.h> 55 #include <sys/mman.h> 56 #include <sys/ioctl.h> 57 #include <sys/syscall.h> 58 #include <asm/types.h> /* for __u64 */ 59 #endif 60 61 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD) 62 #include <sys/eventfd.h> 63 #include <linux/userfaultfd.h> 64 65 static bool ufd_version_check(int ufd) 66 { 67 struct uffdio_api api_struct; 68 uint64_t ioctl_mask; 69 70 api_struct.api = UFFD_API; 71 api_struct.features = 0; 72 if (ioctl(ufd, UFFDIO_API, &api_struct)) { 73 error_report("postcopy_ram_supported_by_host: UFFDIO_API failed: %s", 74 strerror(errno)); 75 return false; 76 } 77 78 ioctl_mask = (__u64)1 << _UFFDIO_REGISTER | 79 (__u64)1 << _UFFDIO_UNREGISTER; 80 if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) { 81 error_report("Missing userfault features: %" PRIx64, 82 (uint64_t)(~api_struct.ioctls & ioctl_mask)); 83 return false; 84 } 85 86 return true; 87 } 88 89 /* 90 * Note: This has the side effect of munlock'ing all of RAM, that's 91 * normally fine since if the postcopy succeeds it gets turned back on at the 92 * end. 93 */ 94 bool postcopy_ram_supported_by_host(void) 95 { 96 long pagesize = getpagesize(); 97 int ufd = -1; 98 bool ret = false; /* Error unless we change it */ 99 void *testarea = NULL; 100 struct uffdio_register reg_struct; 101 struct uffdio_range range_struct; 102 uint64_t feature_mask; 103 104 if ((1ul << qemu_target_page_bits()) > pagesize) { 105 error_report("Target page size bigger than host page size"); 106 goto out; 107 } 108 109 ufd = syscall(__NR_userfaultfd, O_CLOEXEC); 110 if (ufd == -1) { 111 error_report("%s: userfaultfd not available: %s", __func__, 112 strerror(errno)); 113 goto out; 114 } 115 116 /* Version and features check */ 117 if (!ufd_version_check(ufd)) { 118 goto out; 119 } 120 121 /* 122 * userfault and mlock don't go together; we'll put it back later if 123 * it was enabled. 124 */ 125 if (munlockall()) { 126 error_report("%s: munlockall: %s", __func__, strerror(errno)); 127 return -1; 128 } 129 130 /* 131 * We need to check that the ops we need are supported on anon memory 132 * To do that we need to register a chunk and see the flags that 133 * are returned. 134 */ 135 testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE | 136 MAP_ANONYMOUS, -1, 0); 137 if (testarea == MAP_FAILED) { 138 error_report("%s: Failed to map test area: %s", __func__, 139 strerror(errno)); 140 goto out; 141 } 142 g_assert(((size_t)testarea & (pagesize-1)) == 0); 143 144 reg_struct.range.start = (uintptr_t)testarea; 145 reg_struct.range.len = pagesize; 146 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 147 148 if (ioctl(ufd, UFFDIO_REGISTER, ®_struct)) { 149 error_report("%s userfault register: %s", __func__, strerror(errno)); 150 goto out; 151 } 152 153 range_struct.start = (uintptr_t)testarea; 154 range_struct.len = pagesize; 155 if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) { 156 error_report("%s userfault unregister: %s", __func__, strerror(errno)); 157 goto out; 158 } 159 160 feature_mask = (__u64)1 << _UFFDIO_WAKE | 161 (__u64)1 << _UFFDIO_COPY | 162 (__u64)1 << _UFFDIO_ZEROPAGE; 163 if ((reg_struct.ioctls & feature_mask) != feature_mask) { 164 error_report("Missing userfault map features: %" PRIx64, 165 (uint64_t)(~reg_struct.ioctls & feature_mask)); 166 goto out; 167 } 168 169 /* Success! */ 170 ret = true; 171 out: 172 if (testarea) { 173 munmap(testarea, pagesize); 174 } 175 if (ufd != -1) { 176 close(ufd); 177 } 178 return ret; 179 } 180 181 /** 182 * postcopy_ram_discard_range: Discard a range of memory. 183 * We can assume that if we've been called postcopy_ram_hosttest returned true. 184 * 185 * @mis: Current incoming migration state. 186 * @start, @length: range of memory to discard. 187 * 188 * returns: 0 on success. 189 */ 190 int postcopy_ram_discard_range(MigrationIncomingState *mis, uint8_t *start, 191 size_t length) 192 { 193 trace_postcopy_ram_discard_range(start, length); 194 if (madvise(start, length, MADV_DONTNEED)) { 195 error_report("%s MADV_DONTNEED: %s", __func__, strerror(errno)); 196 return -1; 197 } 198 199 return 0; 200 } 201 202 /* 203 * Setup an area of RAM so that it *can* be used for postcopy later; this 204 * must be done right at the start prior to pre-copy. 205 * opaque should be the MIS. 206 */ 207 static int init_range(const char *block_name, void *host_addr, 208 ram_addr_t offset, ram_addr_t length, void *opaque) 209 { 210 MigrationIncomingState *mis = opaque; 211 212 trace_postcopy_init_range(block_name, host_addr, offset, length); 213 214 /* 215 * We need the whole of RAM to be truly empty for postcopy, so things 216 * like ROMs and any data tables built during init must be zero'd 217 * - we're going to get the copy from the source anyway. 218 * (Precopy will just overwrite this data, so doesn't need the discard) 219 */ 220 if (postcopy_ram_discard_range(mis, host_addr, length)) { 221 return -1; 222 } 223 224 return 0; 225 } 226 227 /* 228 * At the end of migration, undo the effects of init_range 229 * opaque should be the MIS. 230 */ 231 static int cleanup_range(const char *block_name, void *host_addr, 232 ram_addr_t offset, ram_addr_t length, void *opaque) 233 { 234 MigrationIncomingState *mis = opaque; 235 struct uffdio_range range_struct; 236 trace_postcopy_cleanup_range(block_name, host_addr, offset, length); 237 238 /* 239 * We turned off hugepage for the precopy stage with postcopy enabled 240 * we can turn it back on now. 241 */ 242 qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE); 243 244 /* 245 * We can also turn off userfault now since we should have all the 246 * pages. It can be useful to leave it on to debug postcopy 247 * if you're not sure it's always getting every page. 248 */ 249 range_struct.start = (uintptr_t)host_addr; 250 range_struct.len = length; 251 252 if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) { 253 error_report("%s: userfault unregister %s", __func__, strerror(errno)); 254 255 return -1; 256 } 257 258 return 0; 259 } 260 261 /* 262 * Initialise postcopy-ram, setting the RAM to a state where we can go into 263 * postcopy later; must be called prior to any precopy. 264 * called from arch_init's similarly named ram_postcopy_incoming_init 265 */ 266 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages) 267 { 268 if (qemu_ram_foreach_block(init_range, mis)) { 269 return -1; 270 } 271 272 return 0; 273 } 274 275 /* 276 * At the end of a migration where postcopy_ram_incoming_init was called. 277 */ 278 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 279 { 280 trace_postcopy_ram_incoming_cleanup_entry(); 281 282 if (mis->have_fault_thread) { 283 uint64_t tmp64; 284 285 if (qemu_ram_foreach_block(cleanup_range, mis)) { 286 return -1; 287 } 288 /* 289 * Tell the fault_thread to exit, it's an eventfd that should 290 * currently be at 0, we're going to increment it to 1 291 */ 292 tmp64 = 1; 293 if (write(mis->userfault_quit_fd, &tmp64, 8) == 8) { 294 trace_postcopy_ram_incoming_cleanup_join(); 295 qemu_thread_join(&mis->fault_thread); 296 } else { 297 /* Not much we can do here, but may as well report it */ 298 error_report("%s: incrementing userfault_quit_fd: %s", __func__, 299 strerror(errno)); 300 } 301 trace_postcopy_ram_incoming_cleanup_closeuf(); 302 close(mis->userfault_fd); 303 close(mis->userfault_quit_fd); 304 mis->have_fault_thread = false; 305 } 306 307 qemu_balloon_inhibit(false); 308 309 if (enable_mlock) { 310 if (os_mlock() < 0) { 311 error_report("mlock: %s", strerror(errno)); 312 /* 313 * It doesn't feel right to fail at this point, we have a valid 314 * VM state. 315 */ 316 } 317 } 318 319 postcopy_state_set(POSTCOPY_INCOMING_END); 320 migrate_send_rp_shut(mis, qemu_file_get_error(mis->from_src_file) != 0); 321 322 if (mis->postcopy_tmp_page) { 323 munmap(mis->postcopy_tmp_page, getpagesize()); 324 mis->postcopy_tmp_page = NULL; 325 } 326 trace_postcopy_ram_incoming_cleanup_exit(); 327 return 0; 328 } 329 330 /* 331 * Disable huge pages on an area 332 */ 333 static int nhp_range(const char *block_name, void *host_addr, 334 ram_addr_t offset, ram_addr_t length, void *opaque) 335 { 336 trace_postcopy_nhp_range(block_name, host_addr, offset, length); 337 338 /* 339 * Before we do discards we need to ensure those discards really 340 * do delete areas of the page, even if THP thinks a hugepage would 341 * be a good idea, so force hugepages off. 342 */ 343 qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE); 344 345 return 0; 346 } 347 348 /* 349 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard 350 * however leaving it until after precopy means that most of the precopy 351 * data is still THPd 352 */ 353 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 354 { 355 if (qemu_ram_foreach_block(nhp_range, mis)) { 356 return -1; 357 } 358 359 postcopy_state_set(POSTCOPY_INCOMING_DISCARD); 360 361 return 0; 362 } 363 364 /* 365 * Mark the given area of RAM as requiring notification to unwritten areas 366 * Used as a callback on qemu_ram_foreach_block. 367 * host_addr: Base of area to mark 368 * offset: Offset in the whole ram arena 369 * length: Length of the section 370 * opaque: MigrationIncomingState pointer 371 * Returns 0 on success 372 */ 373 static int ram_block_enable_notify(const char *block_name, void *host_addr, 374 ram_addr_t offset, ram_addr_t length, 375 void *opaque) 376 { 377 MigrationIncomingState *mis = opaque; 378 struct uffdio_register reg_struct; 379 380 reg_struct.range.start = (uintptr_t)host_addr; 381 reg_struct.range.len = length; 382 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 383 384 /* Now tell our userfault_fd that it's responsible for this area */ 385 if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, ®_struct)) { 386 error_report("%s userfault register: %s", __func__, strerror(errno)); 387 return -1; 388 } 389 390 return 0; 391 } 392 393 /* 394 * Handle faults detected by the USERFAULT markings 395 */ 396 static void *postcopy_ram_fault_thread(void *opaque) 397 { 398 MigrationIncomingState *mis = opaque; 399 struct uffd_msg msg; 400 int ret; 401 size_t hostpagesize = getpagesize(); 402 RAMBlock *rb = NULL; 403 RAMBlock *last_rb = NULL; /* last RAMBlock we sent part of */ 404 405 trace_postcopy_ram_fault_thread_entry(); 406 qemu_sem_post(&mis->fault_thread_sem); 407 408 while (true) { 409 ram_addr_t rb_offset; 410 struct pollfd pfd[2]; 411 412 /* 413 * We're mainly waiting for the kernel to give us a faulting HVA, 414 * however we can be told to quit via userfault_quit_fd which is 415 * an eventfd 416 */ 417 pfd[0].fd = mis->userfault_fd; 418 pfd[0].events = POLLIN; 419 pfd[0].revents = 0; 420 pfd[1].fd = mis->userfault_quit_fd; 421 pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */ 422 pfd[1].revents = 0; 423 424 if (poll(pfd, 2, -1 /* Wait forever */) == -1) { 425 error_report("%s: userfault poll: %s", __func__, strerror(errno)); 426 break; 427 } 428 429 if (pfd[1].revents) { 430 trace_postcopy_ram_fault_thread_quit(); 431 break; 432 } 433 434 ret = read(mis->userfault_fd, &msg, sizeof(msg)); 435 if (ret != sizeof(msg)) { 436 if (errno == EAGAIN) { 437 /* 438 * if a wake up happens on the other thread just after 439 * the poll, there is nothing to read. 440 */ 441 continue; 442 } 443 if (ret < 0) { 444 error_report("%s: Failed to read full userfault message: %s", 445 __func__, strerror(errno)); 446 break; 447 } else { 448 error_report("%s: Read %d bytes from userfaultfd expected %zd", 449 __func__, ret, sizeof(msg)); 450 break; /* Lost alignment, don't know what we'd read next */ 451 } 452 } 453 if (msg.event != UFFD_EVENT_PAGEFAULT) { 454 error_report("%s: Read unexpected event %ud from userfaultfd", 455 __func__, msg.event); 456 continue; /* It's not a page fault, shouldn't happen */ 457 } 458 459 rb = qemu_ram_block_from_host( 460 (void *)(uintptr_t)msg.arg.pagefault.address, 461 true, &rb_offset); 462 if (!rb) { 463 error_report("postcopy_ram_fault_thread: Fault outside guest: %" 464 PRIx64, (uint64_t)msg.arg.pagefault.address); 465 break; 466 } 467 468 rb_offset &= ~(hostpagesize - 1); 469 trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address, 470 qemu_ram_get_idstr(rb), 471 rb_offset); 472 473 /* 474 * Send the request to the source - we want to request one 475 * of our host page sizes (which is >= TPS) 476 */ 477 if (rb != last_rb) { 478 last_rb = rb; 479 migrate_send_rp_req_pages(mis, qemu_ram_get_idstr(rb), 480 rb_offset, hostpagesize); 481 } else { 482 /* Save some space */ 483 migrate_send_rp_req_pages(mis, NULL, 484 rb_offset, hostpagesize); 485 } 486 } 487 trace_postcopy_ram_fault_thread_exit(); 488 return NULL; 489 } 490 491 int postcopy_ram_enable_notify(MigrationIncomingState *mis) 492 { 493 /* Open the fd for the kernel to give us userfaults */ 494 mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK); 495 if (mis->userfault_fd == -1) { 496 error_report("%s: Failed to open userfault fd: %s", __func__, 497 strerror(errno)); 498 return -1; 499 } 500 501 /* 502 * Although the host check already tested the API, we need to 503 * do the check again as an ABI handshake on the new fd. 504 */ 505 if (!ufd_version_check(mis->userfault_fd)) { 506 return -1; 507 } 508 509 /* Now an eventfd we use to tell the fault-thread to quit */ 510 mis->userfault_quit_fd = eventfd(0, EFD_CLOEXEC); 511 if (mis->userfault_quit_fd == -1) { 512 error_report("%s: Opening userfault_quit_fd: %s", __func__, 513 strerror(errno)); 514 close(mis->userfault_fd); 515 return -1; 516 } 517 518 qemu_sem_init(&mis->fault_thread_sem, 0); 519 qemu_thread_create(&mis->fault_thread, "postcopy/fault", 520 postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE); 521 qemu_sem_wait(&mis->fault_thread_sem); 522 qemu_sem_destroy(&mis->fault_thread_sem); 523 mis->have_fault_thread = true; 524 525 /* Mark so that we get notified of accesses to unwritten areas */ 526 if (qemu_ram_foreach_block(ram_block_enable_notify, mis)) { 527 return -1; 528 } 529 530 /* 531 * Ballooning can mark pages as absent while we're postcopying 532 * that would cause false userfaults. 533 */ 534 qemu_balloon_inhibit(true); 535 536 trace_postcopy_ram_enable_notify(); 537 538 return 0; 539 } 540 541 /* 542 * Place a host page (from) at (host) atomically 543 * returns 0 on success 544 */ 545 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from) 546 { 547 struct uffdio_copy copy_struct; 548 549 copy_struct.dst = (uint64_t)(uintptr_t)host; 550 copy_struct.src = (uint64_t)(uintptr_t)from; 551 copy_struct.len = getpagesize(); 552 copy_struct.mode = 0; 553 554 /* copy also acks to the kernel waking the stalled thread up 555 * TODO: We can inhibit that ack and only do it if it was requested 556 * which would be slightly cheaper, but we'd have to be careful 557 * of the order of updating our page state. 558 */ 559 if (ioctl(mis->userfault_fd, UFFDIO_COPY, ©_struct)) { 560 int e = errno; 561 error_report("%s: %s copy host: %p from: %p", 562 __func__, strerror(e), host, from); 563 564 return -e; 565 } 566 567 trace_postcopy_place_page(host); 568 return 0; 569 } 570 571 /* 572 * Place a zero page at (host) atomically 573 * returns 0 on success 574 */ 575 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host) 576 { 577 struct uffdio_zeropage zero_struct; 578 579 zero_struct.range.start = (uint64_t)(uintptr_t)host; 580 zero_struct.range.len = getpagesize(); 581 zero_struct.mode = 0; 582 583 if (ioctl(mis->userfault_fd, UFFDIO_ZEROPAGE, &zero_struct)) { 584 int e = errno; 585 error_report("%s: %s zero host: %p", 586 __func__, strerror(e), host); 587 588 return -e; 589 } 590 591 trace_postcopy_place_page_zero(host); 592 return 0; 593 } 594 595 /* 596 * Returns a target page of memory that can be mapped at a later point in time 597 * using postcopy_place_page 598 * The same address is used repeatedly, postcopy_place_page just takes the 599 * backing page away. 600 * Returns: Pointer to allocated page 601 * 602 */ 603 void *postcopy_get_tmp_page(MigrationIncomingState *mis) 604 { 605 if (!mis->postcopy_tmp_page) { 606 mis->postcopy_tmp_page = mmap(NULL, getpagesize(), 607 PROT_READ | PROT_WRITE, MAP_PRIVATE | 608 MAP_ANONYMOUS, -1, 0); 609 if (!mis->postcopy_tmp_page) { 610 error_report("%s: %s", __func__, strerror(errno)); 611 return NULL; 612 } 613 } 614 615 return mis->postcopy_tmp_page; 616 } 617 618 #else 619 /* No target OS support, stubs just fail */ 620 bool postcopy_ram_supported_by_host(void) 621 { 622 error_report("%s: No OS support", __func__); 623 return false; 624 } 625 626 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages) 627 { 628 error_report("postcopy_ram_incoming_init: No OS support"); 629 return -1; 630 } 631 632 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 633 { 634 assert(0); 635 return -1; 636 } 637 638 int postcopy_ram_discard_range(MigrationIncomingState *mis, uint8_t *start, 639 size_t length) 640 { 641 assert(0); 642 return -1; 643 } 644 645 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 646 { 647 assert(0); 648 return -1; 649 } 650 651 int postcopy_ram_enable_notify(MigrationIncomingState *mis) 652 { 653 assert(0); 654 return -1; 655 } 656 657 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from) 658 { 659 assert(0); 660 return -1; 661 } 662 663 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host) 664 { 665 assert(0); 666 return -1; 667 } 668 669 void *postcopy_get_tmp_page(MigrationIncomingState *mis) 670 { 671 assert(0); 672 return NULL; 673 } 674 675 #endif 676 677 /* ------------------------------------------------------------------------- */ 678 679 /** 680 * postcopy_discard_send_init: Called at the start of each RAMBlock before 681 * asking to discard individual ranges. 682 * 683 * @ms: The current migration state. 684 * @offset: the bitmap offset of the named RAMBlock in the migration 685 * bitmap. 686 * @name: RAMBlock that discards will operate on. 687 * 688 * returns: a new PDS. 689 */ 690 PostcopyDiscardState *postcopy_discard_send_init(MigrationState *ms, 691 unsigned long offset, 692 const char *name) 693 { 694 PostcopyDiscardState *res = g_malloc0(sizeof(PostcopyDiscardState)); 695 696 if (res) { 697 res->ramblock_name = name; 698 res->offset = offset; 699 } 700 701 return res; 702 } 703 704 /** 705 * postcopy_discard_send_range: Called by the bitmap code for each chunk to 706 * discard. May send a discard message, may just leave it queued to 707 * be sent later. 708 * 709 * @ms: Current migration state. 710 * @pds: Structure initialised by postcopy_discard_send_init(). 711 * @start,@length: a range of pages in the migration bitmap in the 712 * RAM block passed to postcopy_discard_send_init() (length=1 is one page) 713 */ 714 void postcopy_discard_send_range(MigrationState *ms, PostcopyDiscardState *pds, 715 unsigned long start, unsigned long length) 716 { 717 size_t tp_bits = qemu_target_page_bits(); 718 /* Convert to byte offsets within the RAM block */ 719 pds->start_list[pds->cur_entry] = (start - pds->offset) << tp_bits; 720 pds->length_list[pds->cur_entry] = length << tp_bits; 721 trace_postcopy_discard_send_range(pds->ramblock_name, start, length); 722 pds->cur_entry++; 723 pds->nsentwords++; 724 725 if (pds->cur_entry == MAX_DISCARDS_PER_COMMAND) { 726 /* Full set, ship it! */ 727 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 728 pds->ramblock_name, 729 pds->cur_entry, 730 pds->start_list, 731 pds->length_list); 732 pds->nsentcmds++; 733 pds->cur_entry = 0; 734 } 735 } 736 737 /** 738 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the 739 * bitmap code. Sends any outstanding discard messages, frees the PDS 740 * 741 * @ms: Current migration state. 742 * @pds: Structure initialised by postcopy_discard_send_init(). 743 */ 744 void postcopy_discard_send_finish(MigrationState *ms, PostcopyDiscardState *pds) 745 { 746 /* Anything unsent? */ 747 if (pds->cur_entry) { 748 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 749 pds->ramblock_name, 750 pds->cur_entry, 751 pds->start_list, 752 pds->length_list); 753 pds->nsentcmds++; 754 } 755 756 trace_postcopy_discard_send_finish(pds->ramblock_name, pds->nsentwords, 757 pds->nsentcmds); 758 759 g_free(pds); 760 } 761