xref: /openbmc/qemu/migration/postcopy-ram.c (revision 10df8ff1)
1 /*
2  * Postcopy migration for RAM
3  *
4  * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Dave Gilbert  <dgilbert@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13 
14 /*
15  * Postcopy is a migration technique where the execution flips from the
16  * source to the destination before all the data has been copied.
17  */
18 
19 #include "qemu/osdep.h"
20 #include "exec/target_page.h"
21 #include "migration.h"
22 #include "qemu-file.h"
23 #include "savevm.h"
24 #include "postcopy-ram.h"
25 #include "ram.h"
26 #include "qapi/error.h"
27 #include "qemu/notify.h"
28 #include "sysemu/sysemu.h"
29 #include "sysemu/balloon.h"
30 #include "qemu/error-report.h"
31 #include "trace.h"
32 
33 /* Arbitrary limit on size of each discard command,
34  * keeps them around ~200 bytes
35  */
36 #define MAX_DISCARDS_PER_COMMAND 12
37 
38 struct PostcopyDiscardState {
39     const char *ramblock_name;
40     uint16_t cur_entry;
41     /*
42      * Start and length of a discard range (bytes)
43      */
44     uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
45     uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
46     unsigned int nsentwords;
47     unsigned int nsentcmds;
48 };
49 
50 static NotifierWithReturnList postcopy_notifier_list;
51 
52 void postcopy_infrastructure_init(void)
53 {
54     notifier_with_return_list_init(&postcopy_notifier_list);
55 }
56 
57 void postcopy_add_notifier(NotifierWithReturn *nn)
58 {
59     notifier_with_return_list_add(&postcopy_notifier_list, nn);
60 }
61 
62 void postcopy_remove_notifier(NotifierWithReturn *n)
63 {
64     notifier_with_return_remove(n);
65 }
66 
67 int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp)
68 {
69     struct PostcopyNotifyData pnd;
70     pnd.reason = reason;
71     pnd.errp = errp;
72 
73     return notifier_with_return_list_notify(&postcopy_notifier_list,
74                                             &pnd);
75 }
76 
77 /* Postcopy needs to detect accesses to pages that haven't yet been copied
78  * across, and efficiently map new pages in, the techniques for doing this
79  * are target OS specific.
80  */
81 #if defined(__linux__)
82 
83 #include <poll.h>
84 #include <sys/ioctl.h>
85 #include <sys/syscall.h>
86 #include <asm/types.h> /* for __u64 */
87 #endif
88 
89 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
90 #include <sys/eventfd.h>
91 #include <linux/userfaultfd.h>
92 
93 typedef struct PostcopyBlocktimeContext {
94     /* time when page fault initiated per vCPU */
95     uint32_t *page_fault_vcpu_time;
96     /* page address per vCPU */
97     uintptr_t *vcpu_addr;
98     uint32_t total_blocktime;
99     /* blocktime per vCPU */
100     uint32_t *vcpu_blocktime;
101     /* point in time when last page fault was initiated */
102     uint32_t last_begin;
103     /* number of vCPU are suspended */
104     int smp_cpus_down;
105     uint64_t start_time;
106 
107     /*
108      * Handler for exit event, necessary for
109      * releasing whole blocktime_ctx
110      */
111     Notifier exit_notifier;
112 } PostcopyBlocktimeContext;
113 
114 static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx)
115 {
116     g_free(ctx->page_fault_vcpu_time);
117     g_free(ctx->vcpu_addr);
118     g_free(ctx->vcpu_blocktime);
119     g_free(ctx);
120 }
121 
122 static void migration_exit_cb(Notifier *n, void *data)
123 {
124     PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext,
125                                                  exit_notifier);
126     destroy_blocktime_context(ctx);
127 }
128 
129 static struct PostcopyBlocktimeContext *blocktime_context_new(void)
130 {
131     PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1);
132     ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus);
133     ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus);
134     ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus);
135 
136     ctx->exit_notifier.notify = migration_exit_cb;
137     ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
138     qemu_add_exit_notifier(&ctx->exit_notifier);
139     return ctx;
140 }
141 
142 static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx)
143 {
144     uint32List *list = NULL, *entry = NULL;
145     int i;
146 
147     for (i = smp_cpus - 1; i >= 0; i--) {
148         entry = g_new0(uint32List, 1);
149         entry->value = ctx->vcpu_blocktime[i];
150         entry->next = list;
151         list = entry;
152     }
153 
154     return list;
155 }
156 
157 /*
158  * This function just populates MigrationInfo from postcopy's
159  * blocktime context. It will not populate MigrationInfo,
160  * unless postcopy-blocktime capability was set.
161  *
162  * @info: pointer to MigrationInfo to populate
163  */
164 void fill_destination_postcopy_migration_info(MigrationInfo *info)
165 {
166     MigrationIncomingState *mis = migration_incoming_get_current();
167     PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
168 
169     if (!bc) {
170         return;
171     }
172 
173     info->has_postcopy_blocktime = true;
174     info->postcopy_blocktime = bc->total_blocktime;
175     info->has_postcopy_vcpu_blocktime = true;
176     info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc);
177 }
178 
179 static uint32_t get_postcopy_total_blocktime(void)
180 {
181     MigrationIncomingState *mis = migration_incoming_get_current();
182     PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
183 
184     if (!bc) {
185         return 0;
186     }
187 
188     return bc->total_blocktime;
189 }
190 
191 /**
192  * receive_ufd_features: check userfault fd features, to request only supported
193  * features in the future.
194  *
195  * Returns: true on success
196  *
197  * __NR_userfaultfd - should be checked before
198  *  @features: out parameter will contain uffdio_api.features provided by kernel
199  *              in case of success
200  */
201 static bool receive_ufd_features(uint64_t *features)
202 {
203     struct uffdio_api api_struct = {0};
204     int ufd;
205     bool ret = true;
206 
207     /* if we are here __NR_userfaultfd should exists */
208     ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
209     if (ufd == -1) {
210         error_report("%s: syscall __NR_userfaultfd failed: %s", __func__,
211                      strerror(errno));
212         return false;
213     }
214 
215     /* ask features */
216     api_struct.api = UFFD_API;
217     api_struct.features = 0;
218     if (ioctl(ufd, UFFDIO_API, &api_struct)) {
219         error_report("%s: UFFDIO_API failed: %s", __func__,
220                      strerror(errno));
221         ret = false;
222         goto release_ufd;
223     }
224 
225     *features = api_struct.features;
226 
227 release_ufd:
228     close(ufd);
229     return ret;
230 }
231 
232 /**
233  * request_ufd_features: this function should be called only once on a newly
234  * opened ufd, subsequent calls will lead to error.
235  *
236  * Returns: true on succes
237  *
238  * @ufd: fd obtained from userfaultfd syscall
239  * @features: bit mask see UFFD_API_FEATURES
240  */
241 static bool request_ufd_features(int ufd, uint64_t features)
242 {
243     struct uffdio_api api_struct = {0};
244     uint64_t ioctl_mask;
245 
246     api_struct.api = UFFD_API;
247     api_struct.features = features;
248     if (ioctl(ufd, UFFDIO_API, &api_struct)) {
249         error_report("%s failed: UFFDIO_API failed: %s", __func__,
250                      strerror(errno));
251         return false;
252     }
253 
254     ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
255                  (__u64)1 << _UFFDIO_UNREGISTER;
256     if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
257         error_report("Missing userfault features: %" PRIx64,
258                      (uint64_t)(~api_struct.ioctls & ioctl_mask));
259         return false;
260     }
261 
262     return true;
263 }
264 
265 static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis)
266 {
267     uint64_t asked_features = 0;
268     static uint64_t supported_features;
269 
270     /*
271      * it's not possible to
272      * request UFFD_API twice per one fd
273      * userfault fd features is persistent
274      */
275     if (!supported_features) {
276         if (!receive_ufd_features(&supported_features)) {
277             error_report("%s failed", __func__);
278             return false;
279         }
280     }
281 
282 #ifdef UFFD_FEATURE_THREAD_ID
283     if (migrate_postcopy_blocktime() && mis &&
284         UFFD_FEATURE_THREAD_ID & supported_features) {
285         /* kernel supports that feature */
286         /* don't create blocktime_context if it exists */
287         if (!mis->blocktime_ctx) {
288             mis->blocktime_ctx = blocktime_context_new();
289         }
290 
291         asked_features |= UFFD_FEATURE_THREAD_ID;
292     }
293 #endif
294 
295     /*
296      * request features, even if asked_features is 0, due to
297      * kernel expects UFFD_API before UFFDIO_REGISTER, per
298      * userfault file descriptor
299      */
300     if (!request_ufd_features(ufd, asked_features)) {
301         error_report("%s failed: features %" PRIu64, __func__,
302                      asked_features);
303         return false;
304     }
305 
306     if (getpagesize() != ram_pagesize_summary()) {
307         bool have_hp = false;
308         /* We've got a huge page */
309 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS
310         have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS;
311 #endif
312         if (!have_hp) {
313             error_report("Userfault on this host does not support huge pages");
314             return false;
315         }
316     }
317     return true;
318 }
319 
320 /* Callback from postcopy_ram_supported_by_host block iterator.
321  */
322 static int test_ramblock_postcopiable(const char *block_name, void *host_addr,
323                              ram_addr_t offset, ram_addr_t length, void *opaque)
324 {
325     RAMBlock *rb = qemu_ram_block_by_name(block_name);
326     size_t pagesize = qemu_ram_pagesize(rb);
327 
328     if (length % pagesize) {
329         error_report("Postcopy requires RAM blocks to be a page size multiple,"
330                      " block %s is 0x" RAM_ADDR_FMT " bytes with a "
331                      "page size of 0x%zx", block_name, length, pagesize);
332         return 1;
333     }
334     return 0;
335 }
336 
337 /*
338  * Note: This has the side effect of munlock'ing all of RAM, that's
339  * normally fine since if the postcopy succeeds it gets turned back on at the
340  * end.
341  */
342 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
343 {
344     long pagesize = getpagesize();
345     int ufd = -1;
346     bool ret = false; /* Error unless we change it */
347     void *testarea = NULL;
348     struct uffdio_register reg_struct;
349     struct uffdio_range range_struct;
350     uint64_t feature_mask;
351     Error *local_err = NULL;
352 
353     if (qemu_target_page_size() > pagesize) {
354         error_report("Target page size bigger than host page size");
355         goto out;
356     }
357 
358     ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
359     if (ufd == -1) {
360         error_report("%s: userfaultfd not available: %s", __func__,
361                      strerror(errno));
362         goto out;
363     }
364 
365     /* Give devices a chance to object */
366     if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, &local_err)) {
367         error_report_err(local_err);
368         goto out;
369     }
370 
371     /* Version and features check */
372     if (!ufd_check_and_apply(ufd, mis)) {
373         goto out;
374     }
375 
376     /* We don't support postcopy with shared RAM yet */
377     if (qemu_ram_foreach_migratable_block(test_ramblock_postcopiable, NULL)) {
378         goto out;
379     }
380 
381     /*
382      * userfault and mlock don't go together; we'll put it back later if
383      * it was enabled.
384      */
385     if (munlockall()) {
386         error_report("%s: munlockall: %s", __func__,  strerror(errno));
387         return -1;
388     }
389 
390     /*
391      *  We need to check that the ops we need are supported on anon memory
392      *  To do that we need to register a chunk and see the flags that
393      *  are returned.
394      */
395     testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
396                                     MAP_ANONYMOUS, -1, 0);
397     if (testarea == MAP_FAILED) {
398         error_report("%s: Failed to map test area: %s", __func__,
399                      strerror(errno));
400         goto out;
401     }
402     g_assert(((size_t)testarea & (pagesize-1)) == 0);
403 
404     reg_struct.range.start = (uintptr_t)testarea;
405     reg_struct.range.len = pagesize;
406     reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
407 
408     if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
409         error_report("%s userfault register: %s", __func__, strerror(errno));
410         goto out;
411     }
412 
413     range_struct.start = (uintptr_t)testarea;
414     range_struct.len = pagesize;
415     if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
416         error_report("%s userfault unregister: %s", __func__, strerror(errno));
417         goto out;
418     }
419 
420     feature_mask = (__u64)1 << _UFFDIO_WAKE |
421                    (__u64)1 << _UFFDIO_COPY |
422                    (__u64)1 << _UFFDIO_ZEROPAGE;
423     if ((reg_struct.ioctls & feature_mask) != feature_mask) {
424         error_report("Missing userfault map features: %" PRIx64,
425                      (uint64_t)(~reg_struct.ioctls & feature_mask));
426         goto out;
427     }
428 
429     /* Success! */
430     ret = true;
431 out:
432     if (testarea) {
433         munmap(testarea, pagesize);
434     }
435     if (ufd != -1) {
436         close(ufd);
437     }
438     return ret;
439 }
440 
441 /*
442  * Setup an area of RAM so that it *can* be used for postcopy later; this
443  * must be done right at the start prior to pre-copy.
444  * opaque should be the MIS.
445  */
446 static int init_range(const char *block_name, void *host_addr,
447                       ram_addr_t offset, ram_addr_t length, void *opaque)
448 {
449     trace_postcopy_init_range(block_name, host_addr, offset, length);
450 
451     /*
452      * We need the whole of RAM to be truly empty for postcopy, so things
453      * like ROMs and any data tables built during init must be zero'd
454      * - we're going to get the copy from the source anyway.
455      * (Precopy will just overwrite this data, so doesn't need the discard)
456      */
457     if (ram_discard_range(block_name, 0, length)) {
458         return -1;
459     }
460 
461     return 0;
462 }
463 
464 /*
465  * At the end of migration, undo the effects of init_range
466  * opaque should be the MIS.
467  */
468 static int cleanup_range(const char *block_name, void *host_addr,
469                         ram_addr_t offset, ram_addr_t length, void *opaque)
470 {
471     MigrationIncomingState *mis = opaque;
472     struct uffdio_range range_struct;
473     trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
474 
475     /*
476      * We turned off hugepage for the precopy stage with postcopy enabled
477      * we can turn it back on now.
478      */
479     qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
480 
481     /*
482      * We can also turn off userfault now since we should have all the
483      * pages.   It can be useful to leave it on to debug postcopy
484      * if you're not sure it's always getting every page.
485      */
486     range_struct.start = (uintptr_t)host_addr;
487     range_struct.len = length;
488 
489     if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
490         error_report("%s: userfault unregister %s", __func__, strerror(errno));
491 
492         return -1;
493     }
494 
495     return 0;
496 }
497 
498 /*
499  * Initialise postcopy-ram, setting the RAM to a state where we can go into
500  * postcopy later; must be called prior to any precopy.
501  * called from arch_init's similarly named ram_postcopy_incoming_init
502  */
503 int postcopy_ram_incoming_init(MigrationIncomingState *mis)
504 {
505     if (qemu_ram_foreach_migratable_block(init_range, NULL)) {
506         return -1;
507     }
508 
509     return 0;
510 }
511 
512 /*
513  * Manage a single vote to the QEMU balloon inhibitor for all postcopy usage,
514  * last caller wins.
515  */
516 static void postcopy_balloon_inhibit(bool state)
517 {
518     static bool cur_state = false;
519 
520     if (state != cur_state) {
521         qemu_balloon_inhibit(state);
522         cur_state = state;
523     }
524 }
525 
526 /*
527  * At the end of a migration where postcopy_ram_incoming_init was called.
528  */
529 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
530 {
531     trace_postcopy_ram_incoming_cleanup_entry();
532 
533     if (mis->have_fault_thread) {
534         Error *local_err = NULL;
535 
536         /* Let the fault thread quit */
537         atomic_set(&mis->fault_thread_quit, 1);
538         postcopy_fault_thread_notify(mis);
539         trace_postcopy_ram_incoming_cleanup_join();
540         qemu_thread_join(&mis->fault_thread);
541 
542         if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) {
543             error_report_err(local_err);
544             return -1;
545         }
546 
547         if (qemu_ram_foreach_migratable_block(cleanup_range, mis)) {
548             return -1;
549         }
550 
551         trace_postcopy_ram_incoming_cleanup_closeuf();
552         close(mis->userfault_fd);
553         close(mis->userfault_event_fd);
554         mis->have_fault_thread = false;
555     }
556 
557     postcopy_balloon_inhibit(false);
558 
559     if (enable_mlock) {
560         if (os_mlock() < 0) {
561             error_report("mlock: %s", strerror(errno));
562             /*
563              * It doesn't feel right to fail at this point, we have a valid
564              * VM state.
565              */
566         }
567     }
568 
569     postcopy_state_set(POSTCOPY_INCOMING_END);
570 
571     if (mis->postcopy_tmp_page) {
572         munmap(mis->postcopy_tmp_page, mis->largest_page_size);
573         mis->postcopy_tmp_page = NULL;
574     }
575     if (mis->postcopy_tmp_zero_page) {
576         munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
577         mis->postcopy_tmp_zero_page = NULL;
578     }
579     trace_postcopy_ram_incoming_cleanup_blocktime(
580             get_postcopy_total_blocktime());
581 
582     trace_postcopy_ram_incoming_cleanup_exit();
583     return 0;
584 }
585 
586 /*
587  * Disable huge pages on an area
588  */
589 static int nhp_range(const char *block_name, void *host_addr,
590                     ram_addr_t offset, ram_addr_t length, void *opaque)
591 {
592     trace_postcopy_nhp_range(block_name, host_addr, offset, length);
593 
594     /*
595      * Before we do discards we need to ensure those discards really
596      * do delete areas of the page, even if THP thinks a hugepage would
597      * be a good idea, so force hugepages off.
598      */
599     qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
600 
601     return 0;
602 }
603 
604 /*
605  * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
606  * however leaving it until after precopy means that most of the precopy
607  * data is still THPd
608  */
609 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
610 {
611     if (qemu_ram_foreach_migratable_block(nhp_range, mis)) {
612         return -1;
613     }
614 
615     postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
616 
617     return 0;
618 }
619 
620 /*
621  * Mark the given area of RAM as requiring notification to unwritten areas
622  * Used as a  callback on qemu_ram_foreach_migratable_block.
623  *   host_addr: Base of area to mark
624  *   offset: Offset in the whole ram arena
625  *   length: Length of the section
626  *   opaque: MigrationIncomingState pointer
627  * Returns 0 on success
628  */
629 static int ram_block_enable_notify(const char *block_name, void *host_addr,
630                                    ram_addr_t offset, ram_addr_t length,
631                                    void *opaque)
632 {
633     MigrationIncomingState *mis = opaque;
634     struct uffdio_register reg_struct;
635 
636     reg_struct.range.start = (uintptr_t)host_addr;
637     reg_struct.range.len = length;
638     reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
639 
640     /* Now tell our userfault_fd that it's responsible for this area */
641     if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
642         error_report("%s userfault register: %s", __func__, strerror(errno));
643         return -1;
644     }
645     if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) {
646         error_report("%s userfault: Region doesn't support COPY", __func__);
647         return -1;
648     }
649     if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) {
650         RAMBlock *rb = qemu_ram_block_by_name(block_name);
651         qemu_ram_set_uf_zeroable(rb);
652     }
653 
654     return 0;
655 }
656 
657 int postcopy_wake_shared(struct PostCopyFD *pcfd,
658                          uint64_t client_addr,
659                          RAMBlock *rb)
660 {
661     size_t pagesize = qemu_ram_pagesize(rb);
662     struct uffdio_range range;
663     int ret;
664     trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb));
665     range.start = client_addr & ~(pagesize - 1);
666     range.len = pagesize;
667     ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range);
668     if (ret) {
669         error_report("%s: Failed to wake: %zx in %s (%s)",
670                      __func__, (size_t)client_addr, qemu_ram_get_idstr(rb),
671                      strerror(errno));
672     }
673     return ret;
674 }
675 
676 /*
677  * Callback from shared fault handlers to ask for a page,
678  * the page must be specified by a RAMBlock and an offset in that rb
679  * Note: Only for use by shared fault handlers (in fault thread)
680  */
681 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
682                                  uint64_t client_addr, uint64_t rb_offset)
683 {
684     size_t pagesize = qemu_ram_pagesize(rb);
685     uint64_t aligned_rbo = rb_offset & ~(pagesize - 1);
686     MigrationIncomingState *mis = migration_incoming_get_current();
687 
688     trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb),
689                                        rb_offset);
690     if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) {
691         trace_postcopy_request_shared_page_present(pcfd->idstr,
692                                         qemu_ram_get_idstr(rb), rb_offset);
693         return postcopy_wake_shared(pcfd, client_addr, rb);
694     }
695     if (rb != mis->last_rb) {
696         mis->last_rb = rb;
697         migrate_send_rp_req_pages(mis, qemu_ram_get_idstr(rb),
698                                   aligned_rbo, pagesize);
699     } else {
700         /* Save some space */
701         migrate_send_rp_req_pages(mis, NULL, aligned_rbo, pagesize);
702     }
703     return 0;
704 }
705 
706 static int get_mem_fault_cpu_index(uint32_t pid)
707 {
708     CPUState *cpu_iter;
709 
710     CPU_FOREACH(cpu_iter) {
711         if (cpu_iter->thread_id == pid) {
712             trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid);
713             return cpu_iter->cpu_index;
714         }
715     }
716     trace_get_mem_fault_cpu_index(-1, pid);
717     return -1;
718 }
719 
720 static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc)
721 {
722     int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) -
723                                     dc->start_time;
724     return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX;
725 }
726 
727 /*
728  * This function is being called when pagefault occurs. It
729  * tracks down vCPU blocking time.
730  *
731  * @addr: faulted host virtual address
732  * @ptid: faulted process thread id
733  * @rb: ramblock appropriate to addr
734  */
735 static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid,
736                                           RAMBlock *rb)
737 {
738     int cpu, already_received;
739     MigrationIncomingState *mis = migration_incoming_get_current();
740     PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
741     uint32_t low_time_offset;
742 
743     if (!dc || ptid == 0) {
744         return;
745     }
746     cpu = get_mem_fault_cpu_index(ptid);
747     if (cpu < 0) {
748         return;
749     }
750 
751     low_time_offset = get_low_time_offset(dc);
752     if (dc->vcpu_addr[cpu] == 0) {
753         atomic_inc(&dc->smp_cpus_down);
754     }
755 
756     atomic_xchg(&dc->last_begin, low_time_offset);
757     atomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset);
758     atomic_xchg(&dc->vcpu_addr[cpu], addr);
759 
760     /* check it here, not at the begining of the function,
761      * due to, check could accur early than bitmap_set in
762      * qemu_ufd_copy_ioctl */
763     already_received = ramblock_recv_bitmap_test(rb, (void *)addr);
764     if (already_received) {
765         atomic_xchg(&dc->vcpu_addr[cpu], 0);
766         atomic_xchg(&dc->page_fault_vcpu_time[cpu], 0);
767         atomic_dec(&dc->smp_cpus_down);
768     }
769     trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu],
770                                         cpu, already_received);
771 }
772 
773 /*
774  *  This function just provide calculated blocktime per cpu and trace it.
775  *  Total blocktime is calculated in mark_postcopy_blocktime_end.
776  *
777  *
778  * Assume we have 3 CPU
779  *
780  *      S1        E1           S1               E1
781  * -----***********------------xxx***************------------------------> CPU1
782  *
783  *             S2                E2
784  * ------------****************xxx---------------------------------------> CPU2
785  *
786  *                         S3            E3
787  * ------------------------****xxx********-------------------------------> CPU3
788  *
789  * We have sequence S1,S2,E1,S3,S1,E2,E3,E1
790  * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3
791  * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 -
792  *            it's a part of total blocktime.
793  * S1 - here is last_begin
794  * Legend of the picture is following:
795  *              * - means blocktime per vCPU
796  *              x - means overlapped blocktime (total blocktime)
797  *
798  * @addr: host virtual address
799  */
800 static void mark_postcopy_blocktime_end(uintptr_t addr)
801 {
802     MigrationIncomingState *mis = migration_incoming_get_current();
803     PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
804     int i, affected_cpu = 0;
805     bool vcpu_total_blocktime = false;
806     uint32_t read_vcpu_time, low_time_offset;
807 
808     if (!dc) {
809         return;
810     }
811 
812     low_time_offset = get_low_time_offset(dc);
813     /* lookup cpu, to clear it,
814      * that algorithm looks straighforward, but it's not
815      * optimal, more optimal algorithm is keeping tree or hash
816      * where key is address value is a list of  */
817     for (i = 0; i < smp_cpus; i++) {
818         uint32_t vcpu_blocktime = 0;
819 
820         read_vcpu_time = atomic_fetch_add(&dc->page_fault_vcpu_time[i], 0);
821         if (atomic_fetch_add(&dc->vcpu_addr[i], 0) != addr ||
822             read_vcpu_time == 0) {
823             continue;
824         }
825         atomic_xchg(&dc->vcpu_addr[i], 0);
826         vcpu_blocktime = low_time_offset - read_vcpu_time;
827         affected_cpu += 1;
828         /* we need to know is that mark_postcopy_end was due to
829          * faulted page, another possible case it's prefetched
830          * page and in that case we shouldn't be here */
831         if (!vcpu_total_blocktime &&
832             atomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) {
833             vcpu_total_blocktime = true;
834         }
835         /* continue cycle, due to one page could affect several vCPUs */
836         dc->vcpu_blocktime[i] += vcpu_blocktime;
837     }
838 
839     atomic_sub(&dc->smp_cpus_down, affected_cpu);
840     if (vcpu_total_blocktime) {
841         dc->total_blocktime += low_time_offset - atomic_fetch_add(
842                 &dc->last_begin, 0);
843     }
844     trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime,
845                                       affected_cpu);
846 }
847 
848 static bool postcopy_pause_fault_thread(MigrationIncomingState *mis)
849 {
850     trace_postcopy_pause_fault_thread();
851 
852     qemu_sem_wait(&mis->postcopy_pause_sem_fault);
853 
854     trace_postcopy_pause_fault_thread_continued();
855 
856     return true;
857 }
858 
859 /*
860  * Handle faults detected by the USERFAULT markings
861  */
862 static void *postcopy_ram_fault_thread(void *opaque)
863 {
864     MigrationIncomingState *mis = opaque;
865     struct uffd_msg msg;
866     int ret;
867     size_t index;
868     RAMBlock *rb = NULL;
869 
870     trace_postcopy_ram_fault_thread_entry();
871     rcu_register_thread();
872     mis->last_rb = NULL; /* last RAMBlock we sent part of */
873     qemu_sem_post(&mis->fault_thread_sem);
874 
875     struct pollfd *pfd;
876     size_t pfd_len = 2 + mis->postcopy_remote_fds->len;
877 
878     pfd = g_new0(struct pollfd, pfd_len);
879 
880     pfd[0].fd = mis->userfault_fd;
881     pfd[0].events = POLLIN;
882     pfd[1].fd = mis->userfault_event_fd;
883     pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
884     trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd);
885     for (index = 0; index < mis->postcopy_remote_fds->len; index++) {
886         struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds,
887                                                  struct PostCopyFD, index);
888         pfd[2 + index].fd = pcfd->fd;
889         pfd[2 + index].events = POLLIN;
890         trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr,
891                                                   pcfd->fd);
892     }
893 
894     while (true) {
895         ram_addr_t rb_offset;
896         int poll_result;
897 
898         /*
899          * We're mainly waiting for the kernel to give us a faulting HVA,
900          * however we can be told to quit via userfault_quit_fd which is
901          * an eventfd
902          */
903 
904         poll_result = poll(pfd, pfd_len, -1 /* Wait forever */);
905         if (poll_result == -1) {
906             error_report("%s: userfault poll: %s", __func__, strerror(errno));
907             break;
908         }
909 
910         if (!mis->to_src_file) {
911             /*
912              * Possibly someone tells us that the return path is
913              * broken already using the event. We should hold until
914              * the channel is rebuilt.
915              */
916             if (postcopy_pause_fault_thread(mis)) {
917                 mis->last_rb = NULL;
918                 /* Continue to read the userfaultfd */
919             } else {
920                 error_report("%s: paused but don't allow to continue",
921                              __func__);
922                 break;
923             }
924         }
925 
926         if (pfd[1].revents) {
927             uint64_t tmp64 = 0;
928 
929             /* Consume the signal */
930             if (read(mis->userfault_event_fd, &tmp64, 8) != 8) {
931                 /* Nothing obviously nicer than posting this error. */
932                 error_report("%s: read() failed", __func__);
933             }
934 
935             if (atomic_read(&mis->fault_thread_quit)) {
936                 trace_postcopy_ram_fault_thread_quit();
937                 break;
938             }
939         }
940 
941         if (pfd[0].revents) {
942             poll_result--;
943             ret = read(mis->userfault_fd, &msg, sizeof(msg));
944             if (ret != sizeof(msg)) {
945                 if (errno == EAGAIN) {
946                     /*
947                      * if a wake up happens on the other thread just after
948                      * the poll, there is nothing to read.
949                      */
950                     continue;
951                 }
952                 if (ret < 0) {
953                     error_report("%s: Failed to read full userfault "
954                                  "message: %s",
955                                  __func__, strerror(errno));
956                     break;
957                 } else {
958                     error_report("%s: Read %d bytes from userfaultfd "
959                                  "expected %zd",
960                                  __func__, ret, sizeof(msg));
961                     break; /* Lost alignment, don't know what we'd read next */
962                 }
963             }
964             if (msg.event != UFFD_EVENT_PAGEFAULT) {
965                 error_report("%s: Read unexpected event %ud from userfaultfd",
966                              __func__, msg.event);
967                 continue; /* It's not a page fault, shouldn't happen */
968             }
969 
970             rb = qemu_ram_block_from_host(
971                      (void *)(uintptr_t)msg.arg.pagefault.address,
972                      true, &rb_offset);
973             if (!rb) {
974                 error_report("postcopy_ram_fault_thread: Fault outside guest: %"
975                              PRIx64, (uint64_t)msg.arg.pagefault.address);
976                 break;
977             }
978 
979             rb_offset &= ~(qemu_ram_pagesize(rb) - 1);
980             trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
981                                                 qemu_ram_get_idstr(rb),
982                                                 rb_offset,
983                                                 msg.arg.pagefault.feat.ptid);
984             mark_postcopy_blocktime_begin(
985                     (uintptr_t)(msg.arg.pagefault.address),
986                                 msg.arg.pagefault.feat.ptid, rb);
987 
988 retry:
989             /*
990              * Send the request to the source - we want to request one
991              * of our host page sizes (which is >= TPS)
992              */
993             if (rb != mis->last_rb) {
994                 mis->last_rb = rb;
995                 ret = migrate_send_rp_req_pages(mis,
996                                                 qemu_ram_get_idstr(rb),
997                                                 rb_offset,
998                                                 qemu_ram_pagesize(rb));
999             } else {
1000                 /* Save some space */
1001                 ret = migrate_send_rp_req_pages(mis,
1002                                                 NULL,
1003                                                 rb_offset,
1004                                                 qemu_ram_pagesize(rb));
1005             }
1006 
1007             if (ret) {
1008                 /* May be network failure, try to wait for recovery */
1009                 if (ret == -EIO && postcopy_pause_fault_thread(mis)) {
1010                     /* We got reconnected somehow, try to continue */
1011                     mis->last_rb = NULL;
1012                     goto retry;
1013                 } else {
1014                     /* This is a unavoidable fault */
1015                     error_report("%s: migrate_send_rp_req_pages() get %d",
1016                                  __func__, ret);
1017                     break;
1018                 }
1019             }
1020         }
1021 
1022         /* Now handle any requests from external processes on shared memory */
1023         /* TODO: May need to handle devices deregistering during postcopy */
1024         for (index = 2; index < pfd_len && poll_result; index++) {
1025             if (pfd[index].revents) {
1026                 struct PostCopyFD *pcfd =
1027                     &g_array_index(mis->postcopy_remote_fds,
1028                                    struct PostCopyFD, index - 2);
1029 
1030                 poll_result--;
1031                 if (pfd[index].revents & POLLERR) {
1032                     error_report("%s: POLLERR on poll %zd fd=%d",
1033                                  __func__, index, pcfd->fd);
1034                     pfd[index].events = 0;
1035                     continue;
1036                 }
1037 
1038                 ret = read(pcfd->fd, &msg, sizeof(msg));
1039                 if (ret != sizeof(msg)) {
1040                     if (errno == EAGAIN) {
1041                         /*
1042                          * if a wake up happens on the other thread just after
1043                          * the poll, there is nothing to read.
1044                          */
1045                         continue;
1046                     }
1047                     if (ret < 0) {
1048                         error_report("%s: Failed to read full userfault "
1049                                      "message: %s (shared) revents=%d",
1050                                      __func__, strerror(errno),
1051                                      pfd[index].revents);
1052                         /*TODO: Could just disable this sharer */
1053                         break;
1054                     } else {
1055                         error_report("%s: Read %d bytes from userfaultfd "
1056                                      "expected %zd (shared)",
1057                                      __func__, ret, sizeof(msg));
1058                         /*TODO: Could just disable this sharer */
1059                         break; /*Lost alignment,don't know what we'd read next*/
1060                     }
1061                 }
1062                 if (msg.event != UFFD_EVENT_PAGEFAULT) {
1063                     error_report("%s: Read unexpected event %ud "
1064                                  "from userfaultfd (shared)",
1065                                  __func__, msg.event);
1066                     continue; /* It's not a page fault, shouldn't happen */
1067                 }
1068                 /* Call the device handler registered with us */
1069                 ret = pcfd->handler(pcfd, &msg);
1070                 if (ret) {
1071                     error_report("%s: Failed to resolve shared fault on %zd/%s",
1072                                  __func__, index, pcfd->idstr);
1073                     /* TODO: Fail? Disable this sharer? */
1074                 }
1075             }
1076         }
1077     }
1078     rcu_unregister_thread();
1079     trace_postcopy_ram_fault_thread_exit();
1080     g_free(pfd);
1081     return NULL;
1082 }
1083 
1084 int postcopy_ram_enable_notify(MigrationIncomingState *mis)
1085 {
1086     /* Open the fd for the kernel to give us userfaults */
1087     mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
1088     if (mis->userfault_fd == -1) {
1089         error_report("%s: Failed to open userfault fd: %s", __func__,
1090                      strerror(errno));
1091         return -1;
1092     }
1093 
1094     /*
1095      * Although the host check already tested the API, we need to
1096      * do the check again as an ABI handshake on the new fd.
1097      */
1098     if (!ufd_check_and_apply(mis->userfault_fd, mis)) {
1099         return -1;
1100     }
1101 
1102     /* Now an eventfd we use to tell the fault-thread to quit */
1103     mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC);
1104     if (mis->userfault_event_fd == -1) {
1105         error_report("%s: Opening userfault_event_fd: %s", __func__,
1106                      strerror(errno));
1107         close(mis->userfault_fd);
1108         return -1;
1109     }
1110 
1111     qemu_sem_init(&mis->fault_thread_sem, 0);
1112     qemu_thread_create(&mis->fault_thread, "postcopy/fault",
1113                        postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE);
1114     qemu_sem_wait(&mis->fault_thread_sem);
1115     qemu_sem_destroy(&mis->fault_thread_sem);
1116     mis->have_fault_thread = true;
1117 
1118     /* Mark so that we get notified of accesses to unwritten areas */
1119     if (qemu_ram_foreach_migratable_block(ram_block_enable_notify, mis)) {
1120         error_report("ram_block_enable_notify failed");
1121         return -1;
1122     }
1123 
1124     /*
1125      * Ballooning can mark pages as absent while we're postcopying
1126      * that would cause false userfaults.
1127      */
1128     postcopy_balloon_inhibit(true);
1129 
1130     trace_postcopy_ram_enable_notify();
1131 
1132     return 0;
1133 }
1134 
1135 static int qemu_ufd_copy_ioctl(int userfault_fd, void *host_addr,
1136                                void *from_addr, uint64_t pagesize, RAMBlock *rb)
1137 {
1138     int ret;
1139     if (from_addr) {
1140         struct uffdio_copy copy_struct;
1141         copy_struct.dst = (uint64_t)(uintptr_t)host_addr;
1142         copy_struct.src = (uint64_t)(uintptr_t)from_addr;
1143         copy_struct.len = pagesize;
1144         copy_struct.mode = 0;
1145         ret = ioctl(userfault_fd, UFFDIO_COPY, &copy_struct);
1146     } else {
1147         struct uffdio_zeropage zero_struct;
1148         zero_struct.range.start = (uint64_t)(uintptr_t)host_addr;
1149         zero_struct.range.len = pagesize;
1150         zero_struct.mode = 0;
1151         ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct);
1152     }
1153     if (!ret) {
1154         ramblock_recv_bitmap_set_range(rb, host_addr,
1155                                        pagesize / qemu_target_page_size());
1156         mark_postcopy_blocktime_end((uintptr_t)host_addr);
1157 
1158     }
1159     return ret;
1160 }
1161 
1162 int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset)
1163 {
1164     int i;
1165     MigrationIncomingState *mis = migration_incoming_get_current();
1166     GArray *pcrfds = mis->postcopy_remote_fds;
1167 
1168     for (i = 0; i < pcrfds->len; i++) {
1169         struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1170         int ret = cur->waker(cur, rb, offset);
1171         if (ret) {
1172             return ret;
1173         }
1174     }
1175     return 0;
1176 }
1177 
1178 /*
1179  * Place a host page (from) at (host) atomically
1180  * returns 0 on success
1181  */
1182 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1183                         RAMBlock *rb)
1184 {
1185     size_t pagesize = qemu_ram_pagesize(rb);
1186 
1187     /* copy also acks to the kernel waking the stalled thread up
1188      * TODO: We can inhibit that ack and only do it if it was requested
1189      * which would be slightly cheaper, but we'd have to be careful
1190      * of the order of updating our page state.
1191      */
1192     if (qemu_ufd_copy_ioctl(mis->userfault_fd, host, from, pagesize, rb)) {
1193         int e = errno;
1194         error_report("%s: %s copy host: %p from: %p (size: %zd)",
1195                      __func__, strerror(e), host, from, pagesize);
1196 
1197         return -e;
1198     }
1199 
1200     trace_postcopy_place_page(host);
1201     return postcopy_notify_shared_wake(rb,
1202                                        qemu_ram_block_host_offset(rb, host));
1203 }
1204 
1205 /*
1206  * Place a zero page at (host) atomically
1207  * returns 0 on success
1208  */
1209 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1210                              RAMBlock *rb)
1211 {
1212     size_t pagesize = qemu_ram_pagesize(rb);
1213     trace_postcopy_place_page_zero(host);
1214 
1215     /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE
1216      * but it's not available for everything (e.g. hugetlbpages)
1217      */
1218     if (qemu_ram_is_uf_zeroable(rb)) {
1219         if (qemu_ufd_copy_ioctl(mis->userfault_fd, host, NULL, pagesize, rb)) {
1220             int e = errno;
1221             error_report("%s: %s zero host: %p",
1222                          __func__, strerror(e), host);
1223 
1224             return -e;
1225         }
1226         return postcopy_notify_shared_wake(rb,
1227                                            qemu_ram_block_host_offset(rb,
1228                                                                       host));
1229     } else {
1230         /* The kernel can't use UFFDIO_ZEROPAGE for hugepages */
1231         if (!mis->postcopy_tmp_zero_page) {
1232             mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
1233                                                PROT_READ | PROT_WRITE,
1234                                                MAP_PRIVATE | MAP_ANONYMOUS,
1235                                                -1, 0);
1236             if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
1237                 int e = errno;
1238                 mis->postcopy_tmp_zero_page = NULL;
1239                 error_report("%s: %s mapping large zero page",
1240                              __func__, strerror(e));
1241                 return -e;
1242             }
1243             memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
1244         }
1245         return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page,
1246                                    rb);
1247     }
1248 }
1249 
1250 /*
1251  * Returns a target page of memory that can be mapped at a later point in time
1252  * using postcopy_place_page
1253  * The same address is used repeatedly, postcopy_place_page just takes the
1254  * backing page away.
1255  * Returns: Pointer to allocated page
1256  *
1257  */
1258 void *postcopy_get_tmp_page(MigrationIncomingState *mis)
1259 {
1260     if (!mis->postcopy_tmp_page) {
1261         mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size,
1262                              PROT_READ | PROT_WRITE, MAP_PRIVATE |
1263                              MAP_ANONYMOUS, -1, 0);
1264         if (mis->postcopy_tmp_page == MAP_FAILED) {
1265             mis->postcopy_tmp_page = NULL;
1266             error_report("%s: %s", __func__, strerror(errno));
1267             return NULL;
1268         }
1269     }
1270 
1271     return mis->postcopy_tmp_page;
1272 }
1273 
1274 #else
1275 /* No target OS support, stubs just fail */
1276 void fill_destination_postcopy_migration_info(MigrationInfo *info)
1277 {
1278 }
1279 
1280 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
1281 {
1282     error_report("%s: No OS support", __func__);
1283     return false;
1284 }
1285 
1286 int postcopy_ram_incoming_init(MigrationIncomingState *mis)
1287 {
1288     error_report("postcopy_ram_incoming_init: No OS support");
1289     return -1;
1290 }
1291 
1292 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
1293 {
1294     assert(0);
1295     return -1;
1296 }
1297 
1298 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
1299 {
1300     assert(0);
1301     return -1;
1302 }
1303 
1304 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
1305                                  uint64_t client_addr, uint64_t rb_offset)
1306 {
1307     assert(0);
1308     return -1;
1309 }
1310 
1311 int postcopy_ram_enable_notify(MigrationIncomingState *mis)
1312 {
1313     assert(0);
1314     return -1;
1315 }
1316 
1317 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1318                         RAMBlock *rb)
1319 {
1320     assert(0);
1321     return -1;
1322 }
1323 
1324 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1325                         RAMBlock *rb)
1326 {
1327     assert(0);
1328     return -1;
1329 }
1330 
1331 void *postcopy_get_tmp_page(MigrationIncomingState *mis)
1332 {
1333     assert(0);
1334     return NULL;
1335 }
1336 
1337 int postcopy_wake_shared(struct PostCopyFD *pcfd,
1338                          uint64_t client_addr,
1339                          RAMBlock *rb)
1340 {
1341     assert(0);
1342     return -1;
1343 }
1344 #endif
1345 
1346 /* ------------------------------------------------------------------------- */
1347 
1348 void postcopy_fault_thread_notify(MigrationIncomingState *mis)
1349 {
1350     uint64_t tmp64 = 1;
1351 
1352     /*
1353      * Wakeup the fault_thread.  It's an eventfd that should currently
1354      * be at 0, we're going to increment it to 1
1355      */
1356     if (write(mis->userfault_event_fd, &tmp64, 8) != 8) {
1357         /* Not much we can do here, but may as well report it */
1358         error_report("%s: incrementing failed: %s", __func__,
1359                      strerror(errno));
1360     }
1361 }
1362 
1363 /**
1364  * postcopy_discard_send_init: Called at the start of each RAMBlock before
1365  *   asking to discard individual ranges.
1366  *
1367  * @ms: The current migration state.
1368  * @offset: the bitmap offset of the named RAMBlock in the migration
1369  *   bitmap.
1370  * @name: RAMBlock that discards will operate on.
1371  *
1372  * returns: a new PDS.
1373  */
1374 PostcopyDiscardState *postcopy_discard_send_init(MigrationState *ms,
1375                                                  const char *name)
1376 {
1377     PostcopyDiscardState *res = g_malloc0(sizeof(PostcopyDiscardState));
1378 
1379     if (res) {
1380         res->ramblock_name = name;
1381     }
1382 
1383     return res;
1384 }
1385 
1386 /**
1387  * postcopy_discard_send_range: Called by the bitmap code for each chunk to
1388  *   discard. May send a discard message, may just leave it queued to
1389  *   be sent later.
1390  *
1391  * @ms: Current migration state.
1392  * @pds: Structure initialised by postcopy_discard_send_init().
1393  * @start,@length: a range of pages in the migration bitmap in the
1394  *   RAM block passed to postcopy_discard_send_init() (length=1 is one page)
1395  */
1396 void postcopy_discard_send_range(MigrationState *ms, PostcopyDiscardState *pds,
1397                                 unsigned long start, unsigned long length)
1398 {
1399     size_t tp_size = qemu_target_page_size();
1400     /* Convert to byte offsets within the RAM block */
1401     pds->start_list[pds->cur_entry] = start  * tp_size;
1402     pds->length_list[pds->cur_entry] = length * tp_size;
1403     trace_postcopy_discard_send_range(pds->ramblock_name, start, length);
1404     pds->cur_entry++;
1405     pds->nsentwords++;
1406 
1407     if (pds->cur_entry == MAX_DISCARDS_PER_COMMAND) {
1408         /* Full set, ship it! */
1409         qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1410                                               pds->ramblock_name,
1411                                               pds->cur_entry,
1412                                               pds->start_list,
1413                                               pds->length_list);
1414         pds->nsentcmds++;
1415         pds->cur_entry = 0;
1416     }
1417 }
1418 
1419 /**
1420  * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
1421  * bitmap code. Sends any outstanding discard messages, frees the PDS
1422  *
1423  * @ms: Current migration state.
1424  * @pds: Structure initialised by postcopy_discard_send_init().
1425  */
1426 void postcopy_discard_send_finish(MigrationState *ms, PostcopyDiscardState *pds)
1427 {
1428     /* Anything unsent? */
1429     if (pds->cur_entry) {
1430         qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1431                                               pds->ramblock_name,
1432                                               pds->cur_entry,
1433                                               pds->start_list,
1434                                               pds->length_list);
1435         pds->nsentcmds++;
1436     }
1437 
1438     trace_postcopy_discard_send_finish(pds->ramblock_name, pds->nsentwords,
1439                                        pds->nsentcmds);
1440 
1441     g_free(pds);
1442 }
1443 
1444 /*
1445  * Current state of incoming postcopy; note this is not part of
1446  * MigrationIncomingState since it's state is used during cleanup
1447  * at the end as MIS is being freed.
1448  */
1449 static PostcopyState incoming_postcopy_state;
1450 
1451 PostcopyState  postcopy_state_get(void)
1452 {
1453     return atomic_mb_read(&incoming_postcopy_state);
1454 }
1455 
1456 /* Set the state and return the old state */
1457 PostcopyState postcopy_state_set(PostcopyState new_state)
1458 {
1459     return atomic_xchg(&incoming_postcopy_state, new_state);
1460 }
1461 
1462 /* Register a handler for external shared memory postcopy
1463  * called on the destination.
1464  */
1465 void postcopy_register_shared_ufd(struct PostCopyFD *pcfd)
1466 {
1467     MigrationIncomingState *mis = migration_incoming_get_current();
1468 
1469     mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds,
1470                                                   *pcfd);
1471 }
1472 
1473 /* Unregister a handler for external shared memory postcopy
1474  */
1475 void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd)
1476 {
1477     guint i;
1478     MigrationIncomingState *mis = migration_incoming_get_current();
1479     GArray *pcrfds = mis->postcopy_remote_fds;
1480 
1481     for (i = 0; i < pcrfds->len; i++) {
1482         struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1483         if (cur->fd == pcfd->fd) {
1484             mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i);
1485             return;
1486         }
1487     }
1488 }
1489