1 /* 2 * Postcopy migration for RAM 3 * 4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Dave Gilbert <dgilbert@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14 /* 15 * Postcopy is a migration technique where the execution flips from the 16 * source to the destination before all the data has been copied. 17 */ 18 19 #include "qemu/osdep.h" 20 #include "qemu/rcu.h" 21 #include "qemu/madvise.h" 22 #include "exec/target_page.h" 23 #include "migration.h" 24 #include "qemu-file.h" 25 #include "savevm.h" 26 #include "postcopy-ram.h" 27 #include "ram.h" 28 #include "qapi/error.h" 29 #include "qemu/notify.h" 30 #include "qemu/rcu.h" 31 #include "sysemu/sysemu.h" 32 #include "qemu/error-report.h" 33 #include "trace.h" 34 #include "hw/boards.h" 35 #include "exec/ramblock.h" 36 #include "socket.h" 37 #include "qemu-file.h" 38 #include "yank_functions.h" 39 #include "tls.h" 40 #include "qemu/userfaultfd.h" 41 42 /* Arbitrary limit on size of each discard command, 43 * keeps them around ~200 bytes 44 */ 45 #define MAX_DISCARDS_PER_COMMAND 12 46 47 struct PostcopyDiscardState { 48 const char *ramblock_name; 49 uint16_t cur_entry; 50 /* 51 * Start and length of a discard range (bytes) 52 */ 53 uint64_t start_list[MAX_DISCARDS_PER_COMMAND]; 54 uint64_t length_list[MAX_DISCARDS_PER_COMMAND]; 55 unsigned int nsentwords; 56 unsigned int nsentcmds; 57 }; 58 59 static NotifierWithReturnList postcopy_notifier_list; 60 61 void postcopy_infrastructure_init(void) 62 { 63 notifier_with_return_list_init(&postcopy_notifier_list); 64 } 65 66 void postcopy_add_notifier(NotifierWithReturn *nn) 67 { 68 notifier_with_return_list_add(&postcopy_notifier_list, nn); 69 } 70 71 void postcopy_remove_notifier(NotifierWithReturn *n) 72 { 73 notifier_with_return_remove(n); 74 } 75 76 int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp) 77 { 78 struct PostcopyNotifyData pnd; 79 pnd.reason = reason; 80 pnd.errp = errp; 81 82 return notifier_with_return_list_notify(&postcopy_notifier_list, 83 &pnd); 84 } 85 86 /* 87 * NOTE: this routine is not thread safe, we can't call it concurrently. But it 88 * should be good enough for migration's purposes. 89 */ 90 void postcopy_thread_create(MigrationIncomingState *mis, 91 QemuThread *thread, const char *name, 92 void *(*fn)(void *), int joinable) 93 { 94 qemu_sem_init(&mis->thread_sync_sem, 0); 95 qemu_thread_create(thread, name, fn, mis, joinable); 96 qemu_sem_wait(&mis->thread_sync_sem); 97 qemu_sem_destroy(&mis->thread_sync_sem); 98 } 99 100 /* Postcopy needs to detect accesses to pages that haven't yet been copied 101 * across, and efficiently map new pages in, the techniques for doing this 102 * are target OS specific. 103 */ 104 #if defined(__linux__) 105 106 #include <poll.h> 107 #include <sys/ioctl.h> 108 #include <sys/syscall.h> 109 #include <asm/types.h> /* for __u64 */ 110 #endif 111 112 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD) 113 #include <sys/eventfd.h> 114 #include <linux/userfaultfd.h> 115 116 typedef struct PostcopyBlocktimeContext { 117 /* time when page fault initiated per vCPU */ 118 uint32_t *page_fault_vcpu_time; 119 /* page address per vCPU */ 120 uintptr_t *vcpu_addr; 121 uint32_t total_blocktime; 122 /* blocktime per vCPU */ 123 uint32_t *vcpu_blocktime; 124 /* point in time when last page fault was initiated */ 125 uint32_t last_begin; 126 /* number of vCPU are suspended */ 127 int smp_cpus_down; 128 uint64_t start_time; 129 130 /* 131 * Handler for exit event, necessary for 132 * releasing whole blocktime_ctx 133 */ 134 Notifier exit_notifier; 135 } PostcopyBlocktimeContext; 136 137 static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx) 138 { 139 g_free(ctx->page_fault_vcpu_time); 140 g_free(ctx->vcpu_addr); 141 g_free(ctx->vcpu_blocktime); 142 g_free(ctx); 143 } 144 145 static void migration_exit_cb(Notifier *n, void *data) 146 { 147 PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext, 148 exit_notifier); 149 destroy_blocktime_context(ctx); 150 } 151 152 static struct PostcopyBlocktimeContext *blocktime_context_new(void) 153 { 154 MachineState *ms = MACHINE(qdev_get_machine()); 155 unsigned int smp_cpus = ms->smp.cpus; 156 PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1); 157 ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus); 158 ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus); 159 ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus); 160 161 ctx->exit_notifier.notify = migration_exit_cb; 162 ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 163 qemu_add_exit_notifier(&ctx->exit_notifier); 164 return ctx; 165 } 166 167 static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx) 168 { 169 MachineState *ms = MACHINE(qdev_get_machine()); 170 uint32List *list = NULL; 171 int i; 172 173 for (i = ms->smp.cpus - 1; i >= 0; i--) { 174 QAPI_LIST_PREPEND(list, ctx->vcpu_blocktime[i]); 175 } 176 177 return list; 178 } 179 180 /* 181 * This function just populates MigrationInfo from postcopy's 182 * blocktime context. It will not populate MigrationInfo, 183 * unless postcopy-blocktime capability was set. 184 * 185 * @info: pointer to MigrationInfo to populate 186 */ 187 void fill_destination_postcopy_migration_info(MigrationInfo *info) 188 { 189 MigrationIncomingState *mis = migration_incoming_get_current(); 190 PostcopyBlocktimeContext *bc = mis->blocktime_ctx; 191 192 if (!bc) { 193 return; 194 } 195 196 info->has_postcopy_blocktime = true; 197 info->postcopy_blocktime = bc->total_blocktime; 198 info->has_postcopy_vcpu_blocktime = true; 199 info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc); 200 } 201 202 static uint32_t get_postcopy_total_blocktime(void) 203 { 204 MigrationIncomingState *mis = migration_incoming_get_current(); 205 PostcopyBlocktimeContext *bc = mis->blocktime_ctx; 206 207 if (!bc) { 208 return 0; 209 } 210 211 return bc->total_blocktime; 212 } 213 214 /** 215 * receive_ufd_features: check userfault fd features, to request only supported 216 * features in the future. 217 * 218 * Returns: true on success 219 * 220 * __NR_userfaultfd - should be checked before 221 * @features: out parameter will contain uffdio_api.features provided by kernel 222 * in case of success 223 */ 224 static bool receive_ufd_features(uint64_t *features) 225 { 226 struct uffdio_api api_struct = {0}; 227 int ufd; 228 bool ret = true; 229 230 ufd = uffd_open(O_CLOEXEC); 231 if (ufd == -1) { 232 error_report("%s: uffd_open() failed: %s", __func__, strerror(errno)); 233 return false; 234 } 235 236 /* ask features */ 237 api_struct.api = UFFD_API; 238 api_struct.features = 0; 239 if (ioctl(ufd, UFFDIO_API, &api_struct)) { 240 error_report("%s: UFFDIO_API failed: %s", __func__, 241 strerror(errno)); 242 ret = false; 243 goto release_ufd; 244 } 245 246 *features = api_struct.features; 247 248 release_ufd: 249 close(ufd); 250 return ret; 251 } 252 253 /** 254 * request_ufd_features: this function should be called only once on a newly 255 * opened ufd, subsequent calls will lead to error. 256 * 257 * Returns: true on success 258 * 259 * @ufd: fd obtained from userfaultfd syscall 260 * @features: bit mask see UFFD_API_FEATURES 261 */ 262 static bool request_ufd_features(int ufd, uint64_t features) 263 { 264 struct uffdio_api api_struct = {0}; 265 uint64_t ioctl_mask; 266 267 api_struct.api = UFFD_API; 268 api_struct.features = features; 269 if (ioctl(ufd, UFFDIO_API, &api_struct)) { 270 error_report("%s failed: UFFDIO_API failed: %s", __func__, 271 strerror(errno)); 272 return false; 273 } 274 275 ioctl_mask = (__u64)1 << _UFFDIO_REGISTER | 276 (__u64)1 << _UFFDIO_UNREGISTER; 277 if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) { 278 error_report("Missing userfault features: %" PRIx64, 279 (uint64_t)(~api_struct.ioctls & ioctl_mask)); 280 return false; 281 } 282 283 return true; 284 } 285 286 static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis) 287 { 288 uint64_t asked_features = 0; 289 static uint64_t supported_features; 290 291 /* 292 * it's not possible to 293 * request UFFD_API twice per one fd 294 * userfault fd features is persistent 295 */ 296 if (!supported_features) { 297 if (!receive_ufd_features(&supported_features)) { 298 error_report("%s failed", __func__); 299 return false; 300 } 301 } 302 303 #ifdef UFFD_FEATURE_THREAD_ID 304 if (UFFD_FEATURE_THREAD_ID & supported_features) { 305 asked_features |= UFFD_FEATURE_THREAD_ID; 306 if (migrate_postcopy_blocktime()) { 307 if (!mis->blocktime_ctx) { 308 mis->blocktime_ctx = blocktime_context_new(); 309 } 310 } 311 } 312 #endif 313 314 /* 315 * request features, even if asked_features is 0, due to 316 * kernel expects UFFD_API before UFFDIO_REGISTER, per 317 * userfault file descriptor 318 */ 319 if (!request_ufd_features(ufd, asked_features)) { 320 error_report("%s failed: features %" PRIu64, __func__, 321 asked_features); 322 return false; 323 } 324 325 if (qemu_real_host_page_size() != ram_pagesize_summary()) { 326 bool have_hp = false; 327 /* We've got a huge page */ 328 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS 329 have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS; 330 #endif 331 if (!have_hp) { 332 error_report("Userfault on this host does not support huge pages"); 333 return false; 334 } 335 } 336 return true; 337 } 338 339 /* Callback from postcopy_ram_supported_by_host block iterator. 340 */ 341 static int test_ramblock_postcopiable(RAMBlock *rb, void *opaque) 342 { 343 const char *block_name = qemu_ram_get_idstr(rb); 344 ram_addr_t length = qemu_ram_get_used_length(rb); 345 size_t pagesize = qemu_ram_pagesize(rb); 346 347 if (length % pagesize) { 348 error_report("Postcopy requires RAM blocks to be a page size multiple," 349 " block %s is 0x" RAM_ADDR_FMT " bytes with a " 350 "page size of 0x%zx", block_name, length, pagesize); 351 return 1; 352 } 353 return 0; 354 } 355 356 /* 357 * Note: This has the side effect of munlock'ing all of RAM, that's 358 * normally fine since if the postcopy succeeds it gets turned back on at the 359 * end. 360 */ 361 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis) 362 { 363 long pagesize = qemu_real_host_page_size(); 364 int ufd = -1; 365 bool ret = false; /* Error unless we change it */ 366 void *testarea = NULL; 367 struct uffdio_register reg_struct; 368 struct uffdio_range range_struct; 369 uint64_t feature_mask; 370 Error *local_err = NULL; 371 372 if (qemu_target_page_size() > pagesize) { 373 error_report("Target page size bigger than host page size"); 374 goto out; 375 } 376 377 ufd = uffd_open(O_CLOEXEC); 378 if (ufd == -1) { 379 error_report("%s: userfaultfd not available: %s", __func__, 380 strerror(errno)); 381 goto out; 382 } 383 384 /* Give devices a chance to object */ 385 if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, &local_err)) { 386 error_report_err(local_err); 387 goto out; 388 } 389 390 /* Version and features check */ 391 if (!ufd_check_and_apply(ufd, mis)) { 392 goto out; 393 } 394 395 /* We don't support postcopy with shared RAM yet */ 396 if (foreach_not_ignored_block(test_ramblock_postcopiable, NULL)) { 397 goto out; 398 } 399 400 /* 401 * userfault and mlock don't go together; we'll put it back later if 402 * it was enabled. 403 */ 404 if (munlockall()) { 405 error_report("%s: munlockall: %s", __func__, strerror(errno)); 406 goto out; 407 } 408 409 /* 410 * We need to check that the ops we need are supported on anon memory 411 * To do that we need to register a chunk and see the flags that 412 * are returned. 413 */ 414 testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE | 415 MAP_ANONYMOUS, -1, 0); 416 if (testarea == MAP_FAILED) { 417 error_report("%s: Failed to map test area: %s", __func__, 418 strerror(errno)); 419 goto out; 420 } 421 g_assert(QEMU_PTR_IS_ALIGNED(testarea, pagesize)); 422 423 reg_struct.range.start = (uintptr_t)testarea; 424 reg_struct.range.len = pagesize; 425 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 426 427 if (ioctl(ufd, UFFDIO_REGISTER, ®_struct)) { 428 error_report("%s userfault register: %s", __func__, strerror(errno)); 429 goto out; 430 } 431 432 range_struct.start = (uintptr_t)testarea; 433 range_struct.len = pagesize; 434 if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) { 435 error_report("%s userfault unregister: %s", __func__, strerror(errno)); 436 goto out; 437 } 438 439 feature_mask = (__u64)1 << _UFFDIO_WAKE | 440 (__u64)1 << _UFFDIO_COPY | 441 (__u64)1 << _UFFDIO_ZEROPAGE; 442 if ((reg_struct.ioctls & feature_mask) != feature_mask) { 443 error_report("Missing userfault map features: %" PRIx64, 444 (uint64_t)(~reg_struct.ioctls & feature_mask)); 445 goto out; 446 } 447 448 /* Success! */ 449 ret = true; 450 out: 451 if (testarea) { 452 munmap(testarea, pagesize); 453 } 454 if (ufd != -1) { 455 close(ufd); 456 } 457 return ret; 458 } 459 460 /* 461 * Setup an area of RAM so that it *can* be used for postcopy later; this 462 * must be done right at the start prior to pre-copy. 463 * opaque should be the MIS. 464 */ 465 static int init_range(RAMBlock *rb, void *opaque) 466 { 467 const char *block_name = qemu_ram_get_idstr(rb); 468 void *host_addr = qemu_ram_get_host_addr(rb); 469 ram_addr_t offset = qemu_ram_get_offset(rb); 470 ram_addr_t length = qemu_ram_get_used_length(rb); 471 trace_postcopy_init_range(block_name, host_addr, offset, length); 472 473 /* 474 * Save the used_length before running the guest. In case we have to 475 * resize RAM blocks when syncing RAM block sizes from the source during 476 * precopy, we'll update it manually via the ram block notifier. 477 */ 478 rb->postcopy_length = length; 479 480 /* 481 * We need the whole of RAM to be truly empty for postcopy, so things 482 * like ROMs and any data tables built during init must be zero'd 483 * - we're going to get the copy from the source anyway. 484 * (Precopy will just overwrite this data, so doesn't need the discard) 485 */ 486 if (ram_discard_range(block_name, 0, length)) { 487 return -1; 488 } 489 490 return 0; 491 } 492 493 /* 494 * At the end of migration, undo the effects of init_range 495 * opaque should be the MIS. 496 */ 497 static int cleanup_range(RAMBlock *rb, void *opaque) 498 { 499 const char *block_name = qemu_ram_get_idstr(rb); 500 void *host_addr = qemu_ram_get_host_addr(rb); 501 ram_addr_t offset = qemu_ram_get_offset(rb); 502 ram_addr_t length = rb->postcopy_length; 503 MigrationIncomingState *mis = opaque; 504 struct uffdio_range range_struct; 505 trace_postcopy_cleanup_range(block_name, host_addr, offset, length); 506 507 /* 508 * We turned off hugepage for the precopy stage with postcopy enabled 509 * we can turn it back on now. 510 */ 511 qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE); 512 513 /* 514 * We can also turn off userfault now since we should have all the 515 * pages. It can be useful to leave it on to debug postcopy 516 * if you're not sure it's always getting every page. 517 */ 518 range_struct.start = (uintptr_t)host_addr; 519 range_struct.len = length; 520 521 if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) { 522 error_report("%s: userfault unregister %s", __func__, strerror(errno)); 523 524 return -1; 525 } 526 527 return 0; 528 } 529 530 /* 531 * Initialise postcopy-ram, setting the RAM to a state where we can go into 532 * postcopy later; must be called prior to any precopy. 533 * called from arch_init's similarly named ram_postcopy_incoming_init 534 */ 535 int postcopy_ram_incoming_init(MigrationIncomingState *mis) 536 { 537 if (foreach_not_ignored_block(init_range, NULL)) { 538 return -1; 539 } 540 541 return 0; 542 } 543 544 static void postcopy_temp_pages_cleanup(MigrationIncomingState *mis) 545 { 546 int i; 547 548 if (mis->postcopy_tmp_pages) { 549 for (i = 0; i < mis->postcopy_channels; i++) { 550 if (mis->postcopy_tmp_pages[i].tmp_huge_page) { 551 munmap(mis->postcopy_tmp_pages[i].tmp_huge_page, 552 mis->largest_page_size); 553 mis->postcopy_tmp_pages[i].tmp_huge_page = NULL; 554 } 555 } 556 g_free(mis->postcopy_tmp_pages); 557 mis->postcopy_tmp_pages = NULL; 558 } 559 560 if (mis->postcopy_tmp_zero_page) { 561 munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size); 562 mis->postcopy_tmp_zero_page = NULL; 563 } 564 } 565 566 /* 567 * At the end of a migration where postcopy_ram_incoming_init was called. 568 */ 569 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 570 { 571 trace_postcopy_ram_incoming_cleanup_entry(); 572 573 if (mis->postcopy_prio_thread_created) { 574 qemu_thread_join(&mis->postcopy_prio_thread); 575 mis->postcopy_prio_thread_created = false; 576 } 577 578 if (mis->have_fault_thread) { 579 Error *local_err = NULL; 580 581 /* Let the fault thread quit */ 582 qatomic_set(&mis->fault_thread_quit, 1); 583 postcopy_fault_thread_notify(mis); 584 trace_postcopy_ram_incoming_cleanup_join(); 585 qemu_thread_join(&mis->fault_thread); 586 587 if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) { 588 error_report_err(local_err); 589 return -1; 590 } 591 592 if (foreach_not_ignored_block(cleanup_range, mis)) { 593 return -1; 594 } 595 596 trace_postcopy_ram_incoming_cleanup_closeuf(); 597 close(mis->userfault_fd); 598 close(mis->userfault_event_fd); 599 mis->have_fault_thread = false; 600 } 601 602 if (enable_mlock) { 603 if (os_mlock() < 0) { 604 error_report("mlock: %s", strerror(errno)); 605 /* 606 * It doesn't feel right to fail at this point, we have a valid 607 * VM state. 608 */ 609 } 610 } 611 612 postcopy_temp_pages_cleanup(mis); 613 614 trace_postcopy_ram_incoming_cleanup_blocktime( 615 get_postcopy_total_blocktime()); 616 617 trace_postcopy_ram_incoming_cleanup_exit(); 618 return 0; 619 } 620 621 /* 622 * Disable huge pages on an area 623 */ 624 static int nhp_range(RAMBlock *rb, void *opaque) 625 { 626 const char *block_name = qemu_ram_get_idstr(rb); 627 void *host_addr = qemu_ram_get_host_addr(rb); 628 ram_addr_t offset = qemu_ram_get_offset(rb); 629 ram_addr_t length = rb->postcopy_length; 630 trace_postcopy_nhp_range(block_name, host_addr, offset, length); 631 632 /* 633 * Before we do discards we need to ensure those discards really 634 * do delete areas of the page, even if THP thinks a hugepage would 635 * be a good idea, so force hugepages off. 636 */ 637 qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE); 638 639 return 0; 640 } 641 642 /* 643 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard 644 * however leaving it until after precopy means that most of the precopy 645 * data is still THPd 646 */ 647 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 648 { 649 if (foreach_not_ignored_block(nhp_range, mis)) { 650 return -1; 651 } 652 653 postcopy_state_set(POSTCOPY_INCOMING_DISCARD); 654 655 return 0; 656 } 657 658 /* 659 * Mark the given area of RAM as requiring notification to unwritten areas 660 * Used as a callback on foreach_not_ignored_block. 661 * host_addr: Base of area to mark 662 * offset: Offset in the whole ram arena 663 * length: Length of the section 664 * opaque: MigrationIncomingState pointer 665 * Returns 0 on success 666 */ 667 static int ram_block_enable_notify(RAMBlock *rb, void *opaque) 668 { 669 MigrationIncomingState *mis = opaque; 670 struct uffdio_register reg_struct; 671 672 reg_struct.range.start = (uintptr_t)qemu_ram_get_host_addr(rb); 673 reg_struct.range.len = rb->postcopy_length; 674 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; 675 676 /* Now tell our userfault_fd that it's responsible for this area */ 677 if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, ®_struct)) { 678 error_report("%s userfault register: %s", __func__, strerror(errno)); 679 return -1; 680 } 681 if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) { 682 error_report("%s userfault: Region doesn't support COPY", __func__); 683 return -1; 684 } 685 if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) { 686 qemu_ram_set_uf_zeroable(rb); 687 } 688 689 return 0; 690 } 691 692 int postcopy_wake_shared(struct PostCopyFD *pcfd, 693 uint64_t client_addr, 694 RAMBlock *rb) 695 { 696 size_t pagesize = qemu_ram_pagesize(rb); 697 struct uffdio_range range; 698 int ret; 699 trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb)); 700 range.start = ROUND_DOWN(client_addr, pagesize); 701 range.len = pagesize; 702 ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range); 703 if (ret) { 704 error_report("%s: Failed to wake: %zx in %s (%s)", 705 __func__, (size_t)client_addr, qemu_ram_get_idstr(rb), 706 strerror(errno)); 707 } 708 return ret; 709 } 710 711 static int postcopy_request_page(MigrationIncomingState *mis, RAMBlock *rb, 712 ram_addr_t start, uint64_t haddr) 713 { 714 void *aligned = (void *)(uintptr_t)ROUND_DOWN(haddr, qemu_ram_pagesize(rb)); 715 716 /* 717 * Discarded pages (via RamDiscardManager) are never migrated. On unlikely 718 * access, place a zeropage, which will also set the relevant bits in the 719 * recv_bitmap accordingly, so we won't try placing a zeropage twice. 720 * 721 * Checking a single bit is sufficient to handle pagesize > TPS as either 722 * all relevant bits are set or not. 723 */ 724 assert(QEMU_IS_ALIGNED(start, qemu_ram_pagesize(rb))); 725 if (ramblock_page_is_discarded(rb, start)) { 726 bool received = ramblock_recv_bitmap_test_byte_offset(rb, start); 727 728 return received ? 0 : postcopy_place_page_zero(mis, aligned, rb); 729 } 730 731 return migrate_send_rp_req_pages(mis, rb, start, haddr); 732 } 733 734 /* 735 * Callback from shared fault handlers to ask for a page, 736 * the page must be specified by a RAMBlock and an offset in that rb 737 * Note: Only for use by shared fault handlers (in fault thread) 738 */ 739 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb, 740 uint64_t client_addr, uint64_t rb_offset) 741 { 742 uint64_t aligned_rbo = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb)); 743 MigrationIncomingState *mis = migration_incoming_get_current(); 744 745 trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb), 746 rb_offset); 747 if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) { 748 trace_postcopy_request_shared_page_present(pcfd->idstr, 749 qemu_ram_get_idstr(rb), rb_offset); 750 return postcopy_wake_shared(pcfd, client_addr, rb); 751 } 752 postcopy_request_page(mis, rb, aligned_rbo, client_addr); 753 return 0; 754 } 755 756 static int get_mem_fault_cpu_index(uint32_t pid) 757 { 758 CPUState *cpu_iter; 759 760 CPU_FOREACH(cpu_iter) { 761 if (cpu_iter->thread_id == pid) { 762 trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid); 763 return cpu_iter->cpu_index; 764 } 765 } 766 trace_get_mem_fault_cpu_index(-1, pid); 767 return -1; 768 } 769 770 static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc) 771 { 772 int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) - 773 dc->start_time; 774 return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX; 775 } 776 777 /* 778 * This function is being called when pagefault occurs. It 779 * tracks down vCPU blocking time. 780 * 781 * @addr: faulted host virtual address 782 * @ptid: faulted process thread id 783 * @rb: ramblock appropriate to addr 784 */ 785 static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid, 786 RAMBlock *rb) 787 { 788 int cpu, already_received; 789 MigrationIncomingState *mis = migration_incoming_get_current(); 790 PostcopyBlocktimeContext *dc = mis->blocktime_ctx; 791 uint32_t low_time_offset; 792 793 if (!dc || ptid == 0) { 794 return; 795 } 796 cpu = get_mem_fault_cpu_index(ptid); 797 if (cpu < 0) { 798 return; 799 } 800 801 low_time_offset = get_low_time_offset(dc); 802 if (dc->vcpu_addr[cpu] == 0) { 803 qatomic_inc(&dc->smp_cpus_down); 804 } 805 806 qatomic_xchg(&dc->last_begin, low_time_offset); 807 qatomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset); 808 qatomic_xchg(&dc->vcpu_addr[cpu], addr); 809 810 /* 811 * check it here, not at the beginning of the function, 812 * due to, check could occur early than bitmap_set in 813 * qemu_ufd_copy_ioctl 814 */ 815 already_received = ramblock_recv_bitmap_test(rb, (void *)addr); 816 if (already_received) { 817 qatomic_xchg(&dc->vcpu_addr[cpu], 0); 818 qatomic_xchg(&dc->page_fault_vcpu_time[cpu], 0); 819 qatomic_dec(&dc->smp_cpus_down); 820 } 821 trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu], 822 cpu, already_received); 823 } 824 825 /* 826 * This function just provide calculated blocktime per cpu and trace it. 827 * Total blocktime is calculated in mark_postcopy_blocktime_end. 828 * 829 * 830 * Assume we have 3 CPU 831 * 832 * S1 E1 S1 E1 833 * -----***********------------xxx***************------------------------> CPU1 834 * 835 * S2 E2 836 * ------------****************xxx---------------------------------------> CPU2 837 * 838 * S3 E3 839 * ------------------------****xxx********-------------------------------> CPU3 840 * 841 * We have sequence S1,S2,E1,S3,S1,E2,E3,E1 842 * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3 843 * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 - 844 * it's a part of total blocktime. 845 * S1 - here is last_begin 846 * Legend of the picture is following: 847 * * - means blocktime per vCPU 848 * x - means overlapped blocktime (total blocktime) 849 * 850 * @addr: host virtual address 851 */ 852 static void mark_postcopy_blocktime_end(uintptr_t addr) 853 { 854 MigrationIncomingState *mis = migration_incoming_get_current(); 855 PostcopyBlocktimeContext *dc = mis->blocktime_ctx; 856 MachineState *ms = MACHINE(qdev_get_machine()); 857 unsigned int smp_cpus = ms->smp.cpus; 858 int i, affected_cpu = 0; 859 bool vcpu_total_blocktime = false; 860 uint32_t read_vcpu_time, low_time_offset; 861 862 if (!dc) { 863 return; 864 } 865 866 low_time_offset = get_low_time_offset(dc); 867 /* lookup cpu, to clear it, 868 * that algorithm looks straightforward, but it's not 869 * optimal, more optimal algorithm is keeping tree or hash 870 * where key is address value is a list of */ 871 for (i = 0; i < smp_cpus; i++) { 872 uint32_t vcpu_blocktime = 0; 873 874 read_vcpu_time = qatomic_fetch_add(&dc->page_fault_vcpu_time[i], 0); 875 if (qatomic_fetch_add(&dc->vcpu_addr[i], 0) != addr || 876 read_vcpu_time == 0) { 877 continue; 878 } 879 qatomic_xchg(&dc->vcpu_addr[i], 0); 880 vcpu_blocktime = low_time_offset - read_vcpu_time; 881 affected_cpu += 1; 882 /* we need to know is that mark_postcopy_end was due to 883 * faulted page, another possible case it's prefetched 884 * page and in that case we shouldn't be here */ 885 if (!vcpu_total_blocktime && 886 qatomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) { 887 vcpu_total_blocktime = true; 888 } 889 /* continue cycle, due to one page could affect several vCPUs */ 890 dc->vcpu_blocktime[i] += vcpu_blocktime; 891 } 892 893 qatomic_sub(&dc->smp_cpus_down, affected_cpu); 894 if (vcpu_total_blocktime) { 895 dc->total_blocktime += low_time_offset - qatomic_fetch_add( 896 &dc->last_begin, 0); 897 } 898 trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime, 899 affected_cpu); 900 } 901 902 static void postcopy_pause_fault_thread(MigrationIncomingState *mis) 903 { 904 trace_postcopy_pause_fault_thread(); 905 qemu_sem_wait(&mis->postcopy_pause_sem_fault); 906 trace_postcopy_pause_fault_thread_continued(); 907 } 908 909 /* 910 * Handle faults detected by the USERFAULT markings 911 */ 912 static void *postcopy_ram_fault_thread(void *opaque) 913 { 914 MigrationIncomingState *mis = opaque; 915 struct uffd_msg msg; 916 int ret; 917 size_t index; 918 RAMBlock *rb = NULL; 919 920 trace_postcopy_ram_fault_thread_entry(); 921 rcu_register_thread(); 922 mis->last_rb = NULL; /* last RAMBlock we sent part of */ 923 qemu_sem_post(&mis->thread_sync_sem); 924 925 struct pollfd *pfd; 926 size_t pfd_len = 2 + mis->postcopy_remote_fds->len; 927 928 pfd = g_new0(struct pollfd, pfd_len); 929 930 pfd[0].fd = mis->userfault_fd; 931 pfd[0].events = POLLIN; 932 pfd[1].fd = mis->userfault_event_fd; 933 pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */ 934 trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd); 935 for (index = 0; index < mis->postcopy_remote_fds->len; index++) { 936 struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds, 937 struct PostCopyFD, index); 938 pfd[2 + index].fd = pcfd->fd; 939 pfd[2 + index].events = POLLIN; 940 trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr, 941 pcfd->fd); 942 } 943 944 while (true) { 945 ram_addr_t rb_offset; 946 int poll_result; 947 948 /* 949 * We're mainly waiting for the kernel to give us a faulting HVA, 950 * however we can be told to quit via userfault_quit_fd which is 951 * an eventfd 952 */ 953 954 poll_result = poll(pfd, pfd_len, -1 /* Wait forever */); 955 if (poll_result == -1) { 956 error_report("%s: userfault poll: %s", __func__, strerror(errno)); 957 break; 958 } 959 960 if (!mis->to_src_file) { 961 /* 962 * Possibly someone tells us that the return path is 963 * broken already using the event. We should hold until 964 * the channel is rebuilt. 965 */ 966 postcopy_pause_fault_thread(mis); 967 } 968 969 if (pfd[1].revents) { 970 uint64_t tmp64 = 0; 971 972 /* Consume the signal */ 973 if (read(mis->userfault_event_fd, &tmp64, 8) != 8) { 974 /* Nothing obviously nicer than posting this error. */ 975 error_report("%s: read() failed", __func__); 976 } 977 978 if (qatomic_read(&mis->fault_thread_quit)) { 979 trace_postcopy_ram_fault_thread_quit(); 980 break; 981 } 982 } 983 984 if (pfd[0].revents) { 985 poll_result--; 986 ret = read(mis->userfault_fd, &msg, sizeof(msg)); 987 if (ret != sizeof(msg)) { 988 if (errno == EAGAIN) { 989 /* 990 * if a wake up happens on the other thread just after 991 * the poll, there is nothing to read. 992 */ 993 continue; 994 } 995 if (ret < 0) { 996 error_report("%s: Failed to read full userfault " 997 "message: %s", 998 __func__, strerror(errno)); 999 break; 1000 } else { 1001 error_report("%s: Read %d bytes from userfaultfd " 1002 "expected %zd", 1003 __func__, ret, sizeof(msg)); 1004 break; /* Lost alignment, don't know what we'd read next */ 1005 } 1006 } 1007 if (msg.event != UFFD_EVENT_PAGEFAULT) { 1008 error_report("%s: Read unexpected event %ud from userfaultfd", 1009 __func__, msg.event); 1010 continue; /* It's not a page fault, shouldn't happen */ 1011 } 1012 1013 rb = qemu_ram_block_from_host( 1014 (void *)(uintptr_t)msg.arg.pagefault.address, 1015 true, &rb_offset); 1016 if (!rb) { 1017 error_report("postcopy_ram_fault_thread: Fault outside guest: %" 1018 PRIx64, (uint64_t)msg.arg.pagefault.address); 1019 break; 1020 } 1021 1022 rb_offset = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb)); 1023 trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address, 1024 qemu_ram_get_idstr(rb), 1025 rb_offset, 1026 msg.arg.pagefault.feat.ptid); 1027 mark_postcopy_blocktime_begin( 1028 (uintptr_t)(msg.arg.pagefault.address), 1029 msg.arg.pagefault.feat.ptid, rb); 1030 1031 retry: 1032 /* 1033 * Send the request to the source - we want to request one 1034 * of our host page sizes (which is >= TPS) 1035 */ 1036 ret = postcopy_request_page(mis, rb, rb_offset, 1037 msg.arg.pagefault.address); 1038 if (ret) { 1039 /* May be network failure, try to wait for recovery */ 1040 postcopy_pause_fault_thread(mis); 1041 goto retry; 1042 } 1043 } 1044 1045 /* Now handle any requests from external processes on shared memory */ 1046 /* TODO: May need to handle devices deregistering during postcopy */ 1047 for (index = 2; index < pfd_len && poll_result; index++) { 1048 if (pfd[index].revents) { 1049 struct PostCopyFD *pcfd = 1050 &g_array_index(mis->postcopy_remote_fds, 1051 struct PostCopyFD, index - 2); 1052 1053 poll_result--; 1054 if (pfd[index].revents & POLLERR) { 1055 error_report("%s: POLLERR on poll %zd fd=%d", 1056 __func__, index, pcfd->fd); 1057 pfd[index].events = 0; 1058 continue; 1059 } 1060 1061 ret = read(pcfd->fd, &msg, sizeof(msg)); 1062 if (ret != sizeof(msg)) { 1063 if (errno == EAGAIN) { 1064 /* 1065 * if a wake up happens on the other thread just after 1066 * the poll, there is nothing to read. 1067 */ 1068 continue; 1069 } 1070 if (ret < 0) { 1071 error_report("%s: Failed to read full userfault " 1072 "message: %s (shared) revents=%d", 1073 __func__, strerror(errno), 1074 pfd[index].revents); 1075 /*TODO: Could just disable this sharer */ 1076 break; 1077 } else { 1078 error_report("%s: Read %d bytes from userfaultfd " 1079 "expected %zd (shared)", 1080 __func__, ret, sizeof(msg)); 1081 /*TODO: Could just disable this sharer */ 1082 break; /*Lost alignment,don't know what we'd read next*/ 1083 } 1084 } 1085 if (msg.event != UFFD_EVENT_PAGEFAULT) { 1086 error_report("%s: Read unexpected event %ud " 1087 "from userfaultfd (shared)", 1088 __func__, msg.event); 1089 continue; /* It's not a page fault, shouldn't happen */ 1090 } 1091 /* Call the device handler registered with us */ 1092 ret = pcfd->handler(pcfd, &msg); 1093 if (ret) { 1094 error_report("%s: Failed to resolve shared fault on %zd/%s", 1095 __func__, index, pcfd->idstr); 1096 /* TODO: Fail? Disable this sharer? */ 1097 } 1098 } 1099 } 1100 } 1101 rcu_unregister_thread(); 1102 trace_postcopy_ram_fault_thread_exit(); 1103 g_free(pfd); 1104 return NULL; 1105 } 1106 1107 static int postcopy_temp_pages_setup(MigrationIncomingState *mis) 1108 { 1109 PostcopyTmpPage *tmp_page; 1110 int err, i, channels; 1111 void *temp_page; 1112 1113 if (migrate_postcopy_preempt()) { 1114 /* If preemption enabled, need extra channel for urgent requests */ 1115 mis->postcopy_channels = RAM_CHANNEL_MAX; 1116 } else { 1117 /* Both precopy/postcopy on the same channel */ 1118 mis->postcopy_channels = 1; 1119 } 1120 1121 channels = mis->postcopy_channels; 1122 mis->postcopy_tmp_pages = g_malloc0_n(sizeof(PostcopyTmpPage), channels); 1123 1124 for (i = 0; i < channels; i++) { 1125 tmp_page = &mis->postcopy_tmp_pages[i]; 1126 temp_page = mmap(NULL, mis->largest_page_size, PROT_READ | PROT_WRITE, 1127 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1128 if (temp_page == MAP_FAILED) { 1129 err = errno; 1130 error_report("%s: Failed to map postcopy_tmp_pages[%d]: %s", 1131 __func__, i, strerror(err)); 1132 /* Clean up will be done later */ 1133 return -err; 1134 } 1135 tmp_page->tmp_huge_page = temp_page; 1136 /* Initialize default states for each tmp page */ 1137 postcopy_temp_page_reset(tmp_page); 1138 } 1139 1140 /* 1141 * Map large zero page when kernel can't use UFFDIO_ZEROPAGE for hugepages 1142 */ 1143 mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size, 1144 PROT_READ | PROT_WRITE, 1145 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1146 if (mis->postcopy_tmp_zero_page == MAP_FAILED) { 1147 err = errno; 1148 mis->postcopy_tmp_zero_page = NULL; 1149 error_report("%s: Failed to map large zero page %s", 1150 __func__, strerror(err)); 1151 return -err; 1152 } 1153 1154 memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size); 1155 1156 return 0; 1157 } 1158 1159 int postcopy_ram_incoming_setup(MigrationIncomingState *mis) 1160 { 1161 /* Open the fd for the kernel to give us userfaults */ 1162 mis->userfault_fd = uffd_open(O_CLOEXEC | O_NONBLOCK); 1163 if (mis->userfault_fd == -1) { 1164 error_report("%s: Failed to open userfault fd: %s", __func__, 1165 strerror(errno)); 1166 return -1; 1167 } 1168 1169 /* 1170 * Although the host check already tested the API, we need to 1171 * do the check again as an ABI handshake on the new fd. 1172 */ 1173 if (!ufd_check_and_apply(mis->userfault_fd, mis)) { 1174 return -1; 1175 } 1176 1177 /* Now an eventfd we use to tell the fault-thread to quit */ 1178 mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC); 1179 if (mis->userfault_event_fd == -1) { 1180 error_report("%s: Opening userfault_event_fd: %s", __func__, 1181 strerror(errno)); 1182 close(mis->userfault_fd); 1183 return -1; 1184 } 1185 1186 postcopy_thread_create(mis, &mis->fault_thread, "fault-default", 1187 postcopy_ram_fault_thread, QEMU_THREAD_JOINABLE); 1188 mis->have_fault_thread = true; 1189 1190 /* Mark so that we get notified of accesses to unwritten areas */ 1191 if (foreach_not_ignored_block(ram_block_enable_notify, mis)) { 1192 error_report("ram_block_enable_notify failed"); 1193 return -1; 1194 } 1195 1196 if (postcopy_temp_pages_setup(mis)) { 1197 /* Error dumped in the sub-function */ 1198 return -1; 1199 } 1200 1201 if (migrate_postcopy_preempt()) { 1202 /* 1203 * This thread needs to be created after the temp pages because 1204 * it'll fetch RAM_CHANNEL_POSTCOPY PostcopyTmpPage immediately. 1205 */ 1206 postcopy_thread_create(mis, &mis->postcopy_prio_thread, "fault-fast", 1207 postcopy_preempt_thread, QEMU_THREAD_JOINABLE); 1208 mis->postcopy_prio_thread_created = true; 1209 } 1210 1211 trace_postcopy_ram_enable_notify(); 1212 1213 return 0; 1214 } 1215 1216 static int qemu_ufd_copy_ioctl(MigrationIncomingState *mis, void *host_addr, 1217 void *from_addr, uint64_t pagesize, RAMBlock *rb) 1218 { 1219 int userfault_fd = mis->userfault_fd; 1220 int ret; 1221 1222 if (from_addr) { 1223 struct uffdio_copy copy_struct; 1224 copy_struct.dst = (uint64_t)(uintptr_t)host_addr; 1225 copy_struct.src = (uint64_t)(uintptr_t)from_addr; 1226 copy_struct.len = pagesize; 1227 copy_struct.mode = 0; 1228 ret = ioctl(userfault_fd, UFFDIO_COPY, ©_struct); 1229 } else { 1230 struct uffdio_zeropage zero_struct; 1231 zero_struct.range.start = (uint64_t)(uintptr_t)host_addr; 1232 zero_struct.range.len = pagesize; 1233 zero_struct.mode = 0; 1234 ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct); 1235 } 1236 if (!ret) { 1237 qemu_mutex_lock(&mis->page_request_mutex); 1238 ramblock_recv_bitmap_set_range(rb, host_addr, 1239 pagesize / qemu_target_page_size()); 1240 /* 1241 * If this page resolves a page fault for a previous recorded faulted 1242 * address, take a special note to maintain the requested page list. 1243 */ 1244 if (g_tree_lookup(mis->page_requested, host_addr)) { 1245 g_tree_remove(mis->page_requested, host_addr); 1246 mis->page_requested_count--; 1247 trace_postcopy_page_req_del(host_addr, mis->page_requested_count); 1248 } 1249 qemu_mutex_unlock(&mis->page_request_mutex); 1250 mark_postcopy_blocktime_end((uintptr_t)host_addr); 1251 } 1252 return ret; 1253 } 1254 1255 int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset) 1256 { 1257 int i; 1258 MigrationIncomingState *mis = migration_incoming_get_current(); 1259 GArray *pcrfds = mis->postcopy_remote_fds; 1260 1261 for (i = 0; i < pcrfds->len; i++) { 1262 struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i); 1263 int ret = cur->waker(cur, rb, offset); 1264 if (ret) { 1265 return ret; 1266 } 1267 } 1268 return 0; 1269 } 1270 1271 /* 1272 * Place a host page (from) at (host) atomically 1273 * returns 0 on success 1274 */ 1275 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from, 1276 RAMBlock *rb) 1277 { 1278 size_t pagesize = qemu_ram_pagesize(rb); 1279 1280 /* copy also acks to the kernel waking the stalled thread up 1281 * TODO: We can inhibit that ack and only do it if it was requested 1282 * which would be slightly cheaper, but we'd have to be careful 1283 * of the order of updating our page state. 1284 */ 1285 if (qemu_ufd_copy_ioctl(mis, host, from, pagesize, rb)) { 1286 int e = errno; 1287 error_report("%s: %s copy host: %p from: %p (size: %zd)", 1288 __func__, strerror(e), host, from, pagesize); 1289 1290 return -e; 1291 } 1292 1293 trace_postcopy_place_page(host); 1294 return postcopy_notify_shared_wake(rb, 1295 qemu_ram_block_host_offset(rb, host)); 1296 } 1297 1298 /* 1299 * Place a zero page at (host) atomically 1300 * returns 0 on success 1301 */ 1302 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host, 1303 RAMBlock *rb) 1304 { 1305 size_t pagesize = qemu_ram_pagesize(rb); 1306 trace_postcopy_place_page_zero(host); 1307 1308 /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE 1309 * but it's not available for everything (e.g. hugetlbpages) 1310 */ 1311 if (qemu_ram_is_uf_zeroable(rb)) { 1312 if (qemu_ufd_copy_ioctl(mis, host, NULL, pagesize, rb)) { 1313 int e = errno; 1314 error_report("%s: %s zero host: %p", 1315 __func__, strerror(e), host); 1316 1317 return -e; 1318 } 1319 return postcopy_notify_shared_wake(rb, 1320 qemu_ram_block_host_offset(rb, 1321 host)); 1322 } else { 1323 return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page, rb); 1324 } 1325 } 1326 1327 #else 1328 /* No target OS support, stubs just fail */ 1329 void fill_destination_postcopy_migration_info(MigrationInfo *info) 1330 { 1331 } 1332 1333 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis) 1334 { 1335 error_report("%s: No OS support", __func__); 1336 return false; 1337 } 1338 1339 int postcopy_ram_incoming_init(MigrationIncomingState *mis) 1340 { 1341 error_report("postcopy_ram_incoming_init: No OS support"); 1342 return -1; 1343 } 1344 1345 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) 1346 { 1347 assert(0); 1348 return -1; 1349 } 1350 1351 int postcopy_ram_prepare_discard(MigrationIncomingState *mis) 1352 { 1353 assert(0); 1354 return -1; 1355 } 1356 1357 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb, 1358 uint64_t client_addr, uint64_t rb_offset) 1359 { 1360 assert(0); 1361 return -1; 1362 } 1363 1364 int postcopy_ram_incoming_setup(MigrationIncomingState *mis) 1365 { 1366 assert(0); 1367 return -1; 1368 } 1369 1370 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from, 1371 RAMBlock *rb) 1372 { 1373 assert(0); 1374 return -1; 1375 } 1376 1377 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host, 1378 RAMBlock *rb) 1379 { 1380 assert(0); 1381 return -1; 1382 } 1383 1384 int postcopy_wake_shared(struct PostCopyFD *pcfd, 1385 uint64_t client_addr, 1386 RAMBlock *rb) 1387 { 1388 assert(0); 1389 return -1; 1390 } 1391 #endif 1392 1393 /* ------------------------------------------------------------------------- */ 1394 void postcopy_temp_page_reset(PostcopyTmpPage *tmp_page) 1395 { 1396 tmp_page->target_pages = 0; 1397 tmp_page->host_addr = NULL; 1398 /* 1399 * This is set to true when reset, and cleared as long as we received any 1400 * of the non-zero small page within this huge page. 1401 */ 1402 tmp_page->all_zero = true; 1403 } 1404 1405 void postcopy_fault_thread_notify(MigrationIncomingState *mis) 1406 { 1407 uint64_t tmp64 = 1; 1408 1409 /* 1410 * Wakeup the fault_thread. It's an eventfd that should currently 1411 * be at 0, we're going to increment it to 1 1412 */ 1413 if (write(mis->userfault_event_fd, &tmp64, 8) != 8) { 1414 /* Not much we can do here, but may as well report it */ 1415 error_report("%s: incrementing failed: %s", __func__, 1416 strerror(errno)); 1417 } 1418 } 1419 1420 /** 1421 * postcopy_discard_send_init: Called at the start of each RAMBlock before 1422 * asking to discard individual ranges. 1423 * 1424 * @ms: The current migration state. 1425 * @offset: the bitmap offset of the named RAMBlock in the migration bitmap. 1426 * @name: RAMBlock that discards will operate on. 1427 */ 1428 static PostcopyDiscardState pds = {0}; 1429 void postcopy_discard_send_init(MigrationState *ms, const char *name) 1430 { 1431 pds.ramblock_name = name; 1432 pds.cur_entry = 0; 1433 pds.nsentwords = 0; 1434 pds.nsentcmds = 0; 1435 } 1436 1437 /** 1438 * postcopy_discard_send_range: Called by the bitmap code for each chunk to 1439 * discard. May send a discard message, may just leave it queued to 1440 * be sent later. 1441 * 1442 * @ms: Current migration state. 1443 * @start,@length: a range of pages in the migration bitmap in the 1444 * RAM block passed to postcopy_discard_send_init() (length=1 is one page) 1445 */ 1446 void postcopy_discard_send_range(MigrationState *ms, unsigned long start, 1447 unsigned long length) 1448 { 1449 size_t tp_size = qemu_target_page_size(); 1450 /* Convert to byte offsets within the RAM block */ 1451 pds.start_list[pds.cur_entry] = start * tp_size; 1452 pds.length_list[pds.cur_entry] = length * tp_size; 1453 trace_postcopy_discard_send_range(pds.ramblock_name, start, length); 1454 pds.cur_entry++; 1455 pds.nsentwords++; 1456 1457 if (pds.cur_entry == MAX_DISCARDS_PER_COMMAND) { 1458 /* Full set, ship it! */ 1459 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 1460 pds.ramblock_name, 1461 pds.cur_entry, 1462 pds.start_list, 1463 pds.length_list); 1464 pds.nsentcmds++; 1465 pds.cur_entry = 0; 1466 } 1467 } 1468 1469 /** 1470 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the 1471 * bitmap code. Sends any outstanding discard messages, frees the PDS 1472 * 1473 * @ms: Current migration state. 1474 */ 1475 void postcopy_discard_send_finish(MigrationState *ms) 1476 { 1477 /* Anything unsent? */ 1478 if (pds.cur_entry) { 1479 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, 1480 pds.ramblock_name, 1481 pds.cur_entry, 1482 pds.start_list, 1483 pds.length_list); 1484 pds.nsentcmds++; 1485 } 1486 1487 trace_postcopy_discard_send_finish(pds.ramblock_name, pds.nsentwords, 1488 pds.nsentcmds); 1489 } 1490 1491 /* 1492 * Current state of incoming postcopy; note this is not part of 1493 * MigrationIncomingState since it's state is used during cleanup 1494 * at the end as MIS is being freed. 1495 */ 1496 static PostcopyState incoming_postcopy_state; 1497 1498 PostcopyState postcopy_state_get(void) 1499 { 1500 return qatomic_mb_read(&incoming_postcopy_state); 1501 } 1502 1503 /* Set the state and return the old state */ 1504 PostcopyState postcopy_state_set(PostcopyState new_state) 1505 { 1506 return qatomic_xchg(&incoming_postcopy_state, new_state); 1507 } 1508 1509 /* Register a handler for external shared memory postcopy 1510 * called on the destination. 1511 */ 1512 void postcopy_register_shared_ufd(struct PostCopyFD *pcfd) 1513 { 1514 MigrationIncomingState *mis = migration_incoming_get_current(); 1515 1516 mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds, 1517 *pcfd); 1518 } 1519 1520 /* Unregister a handler for external shared memory postcopy 1521 */ 1522 void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd) 1523 { 1524 guint i; 1525 MigrationIncomingState *mis = migration_incoming_get_current(); 1526 GArray *pcrfds = mis->postcopy_remote_fds; 1527 1528 if (!pcrfds) { 1529 /* migration has already finished and freed the array */ 1530 return; 1531 } 1532 for (i = 0; i < pcrfds->len; i++) { 1533 struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i); 1534 if (cur->fd == pcfd->fd) { 1535 mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i); 1536 return; 1537 } 1538 } 1539 } 1540 1541 void postcopy_preempt_new_channel(MigrationIncomingState *mis, QEMUFile *file) 1542 { 1543 /* 1544 * The new loading channel has its own threads, so it needs to be 1545 * blocked too. It's by default true, just be explicit. 1546 */ 1547 qemu_file_set_blocking(file, true); 1548 mis->postcopy_qemufile_dst = file; 1549 trace_postcopy_preempt_new_channel(); 1550 } 1551 1552 /* 1553 * Setup the postcopy preempt channel with the IOC. If ERROR is specified, 1554 * setup the error instead. This helper will free the ERROR if specified. 1555 */ 1556 static void 1557 postcopy_preempt_send_channel_done(MigrationState *s, 1558 QIOChannel *ioc, Error *local_err) 1559 { 1560 if (local_err) { 1561 migrate_set_error(s, local_err); 1562 error_free(local_err); 1563 } else { 1564 migration_ioc_register_yank(ioc); 1565 s->postcopy_qemufile_src = qemu_file_new_output(ioc); 1566 trace_postcopy_preempt_new_channel(); 1567 } 1568 1569 /* 1570 * Kick the waiter in all cases. The waiter should check upon 1571 * postcopy_qemufile_src to know whether it failed or not. 1572 */ 1573 qemu_sem_post(&s->postcopy_qemufile_src_sem); 1574 } 1575 1576 static void 1577 postcopy_preempt_tls_handshake(QIOTask *task, gpointer opaque) 1578 { 1579 g_autoptr(QIOChannel) ioc = QIO_CHANNEL(qio_task_get_source(task)); 1580 MigrationState *s = opaque; 1581 Error *local_err = NULL; 1582 1583 qio_task_propagate_error(task, &local_err); 1584 postcopy_preempt_send_channel_done(s, ioc, local_err); 1585 } 1586 1587 static void 1588 postcopy_preempt_send_channel_new(QIOTask *task, gpointer opaque) 1589 { 1590 g_autoptr(QIOChannel) ioc = QIO_CHANNEL(qio_task_get_source(task)); 1591 MigrationState *s = opaque; 1592 QIOChannelTLS *tioc; 1593 Error *local_err = NULL; 1594 1595 if (qio_task_propagate_error(task, &local_err)) { 1596 goto out; 1597 } 1598 1599 if (migrate_channel_requires_tls_upgrade(ioc)) { 1600 tioc = migration_tls_client_create(s, ioc, s->hostname, &local_err); 1601 if (!tioc) { 1602 goto out; 1603 } 1604 trace_postcopy_preempt_tls_handshake(); 1605 qio_channel_set_name(QIO_CHANNEL(tioc), "migration-tls-preempt"); 1606 qio_channel_tls_handshake(tioc, postcopy_preempt_tls_handshake, 1607 s, NULL, NULL); 1608 /* Setup the channel until TLS handshake finished */ 1609 return; 1610 } 1611 1612 out: 1613 /* This handles both good and error cases */ 1614 postcopy_preempt_send_channel_done(s, ioc, local_err); 1615 } 1616 1617 /* Returns 0 if channel established, -1 for error. */ 1618 int postcopy_preempt_wait_channel(MigrationState *s) 1619 { 1620 /* If preempt not enabled, no need to wait */ 1621 if (!migrate_postcopy_preempt()) { 1622 return 0; 1623 } 1624 1625 /* 1626 * We need the postcopy preempt channel to be established before 1627 * starting doing anything. 1628 */ 1629 qemu_sem_wait(&s->postcopy_qemufile_src_sem); 1630 1631 return s->postcopy_qemufile_src ? 0 : -1; 1632 } 1633 1634 int postcopy_preempt_setup(MigrationState *s, Error **errp) 1635 { 1636 if (!migrate_postcopy_preempt()) { 1637 return 0; 1638 } 1639 1640 if (!migrate_multi_channels_is_allowed()) { 1641 error_setg(errp, "Postcopy preempt is not supported as current " 1642 "migration stream does not support multi-channels."); 1643 return -1; 1644 } 1645 1646 /* Kick an async task to connect */ 1647 socket_send_channel_create(postcopy_preempt_send_channel_new, s); 1648 1649 return 0; 1650 } 1651 1652 static void postcopy_pause_ram_fast_load(MigrationIncomingState *mis) 1653 { 1654 trace_postcopy_pause_fast_load(); 1655 qemu_mutex_unlock(&mis->postcopy_prio_thread_mutex); 1656 qemu_sem_wait(&mis->postcopy_pause_sem_fast_load); 1657 qemu_mutex_lock(&mis->postcopy_prio_thread_mutex); 1658 trace_postcopy_pause_fast_load_continued(); 1659 } 1660 1661 void *postcopy_preempt_thread(void *opaque) 1662 { 1663 MigrationIncomingState *mis = opaque; 1664 int ret; 1665 1666 trace_postcopy_preempt_thread_entry(); 1667 1668 rcu_register_thread(); 1669 1670 qemu_sem_post(&mis->thread_sync_sem); 1671 1672 /* Sending RAM_SAVE_FLAG_EOS to terminate this thread */ 1673 qemu_mutex_lock(&mis->postcopy_prio_thread_mutex); 1674 while (1) { 1675 ret = ram_load_postcopy(mis->postcopy_qemufile_dst, 1676 RAM_CHANNEL_POSTCOPY); 1677 /* If error happened, go into recovery routine */ 1678 if (ret) { 1679 postcopy_pause_ram_fast_load(mis); 1680 } else { 1681 /* We're done */ 1682 break; 1683 } 1684 } 1685 qemu_mutex_unlock(&mis->postcopy_prio_thread_mutex); 1686 1687 rcu_unregister_thread(); 1688 1689 trace_postcopy_preempt_thread_exit(); 1690 1691 return NULL; 1692 } 1693