xref: /openbmc/qemu/linux-user/vm86.c (revision 83a71719)
1 /*
2  *  vm86 linux syscall support
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "qemu.h"
22 
23 //#define DEBUG_VM86
24 
25 #ifdef DEBUG_VM86
26 #  define LOG_VM86(...) qemu_log(__VA_ARGS__);
27 #else
28 #  define LOG_VM86(...) do { } while (0)
29 #endif
30 
31 
32 #define set_flags(X,new,mask) \
33 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
34 
35 #define SAFE_MASK	(0xDD5)
36 #define RETURN_MASK	(0xDFF)
37 
38 static inline int is_revectored(int nr, struct target_revectored_struct *bitmap)
39 {
40     return (((uint8_t *)bitmap)[nr >> 3] >> (nr & 7)) & 1;
41 }
42 
43 static inline void vm_putw(CPUX86State *env, uint32_t segptr,
44                            unsigned int reg16, unsigned int val)
45 {
46     cpu_stw_data(env, segptr + (reg16 & 0xffff), val);
47 }
48 
49 static inline void vm_putl(CPUX86State *env, uint32_t segptr,
50                            unsigned int reg16, unsigned int val)
51 {
52     cpu_stl_data(env, segptr + (reg16 & 0xffff), val);
53 }
54 
55 static inline unsigned int vm_getb(CPUX86State *env,
56                                    uint32_t segptr, unsigned int reg16)
57 {
58     return cpu_ldub_data(env, segptr + (reg16 & 0xffff));
59 }
60 
61 static inline unsigned int vm_getw(CPUX86State *env,
62                                    uint32_t segptr, unsigned int reg16)
63 {
64     return cpu_lduw_data(env, segptr + (reg16 & 0xffff));
65 }
66 
67 static inline unsigned int vm_getl(CPUX86State *env,
68                                    uint32_t segptr, unsigned int reg16)
69 {
70     return cpu_ldl_data(env, segptr + (reg16 & 0xffff));
71 }
72 
73 void save_v86_state(CPUX86State *env)
74 {
75     CPUState *cs = CPU(x86_env_get_cpu(env));
76     TaskState *ts = cs->opaque;
77     struct target_vm86plus_struct * target_v86;
78 
79     if (!lock_user_struct(VERIFY_WRITE, target_v86, ts->target_v86, 0))
80         /* FIXME - should return an error */
81         return;
82     /* put the VM86 registers in the userspace register structure */
83     target_v86->regs.eax = tswap32(env->regs[R_EAX]);
84     target_v86->regs.ebx = tswap32(env->regs[R_EBX]);
85     target_v86->regs.ecx = tswap32(env->regs[R_ECX]);
86     target_v86->regs.edx = tswap32(env->regs[R_EDX]);
87     target_v86->regs.esi = tswap32(env->regs[R_ESI]);
88     target_v86->regs.edi = tswap32(env->regs[R_EDI]);
89     target_v86->regs.ebp = tswap32(env->regs[R_EBP]);
90     target_v86->regs.esp = tswap32(env->regs[R_ESP]);
91     target_v86->regs.eip = tswap32(env->eip);
92     target_v86->regs.cs = tswap16(env->segs[R_CS].selector);
93     target_v86->regs.ss = tswap16(env->segs[R_SS].selector);
94     target_v86->regs.ds = tswap16(env->segs[R_DS].selector);
95     target_v86->regs.es = tswap16(env->segs[R_ES].selector);
96     target_v86->regs.fs = tswap16(env->segs[R_FS].selector);
97     target_v86->regs.gs = tswap16(env->segs[R_GS].selector);
98     set_flags(env->eflags, ts->v86flags, VIF_MASK | ts->v86mask);
99     target_v86->regs.eflags = tswap32(env->eflags);
100     unlock_user_struct(target_v86, ts->target_v86, 1);
101     LOG_VM86("save_v86_state: eflags=%08x cs:ip=%04x:%04x\n",
102              env->eflags, env->segs[R_CS].selector, env->eip);
103 
104     /* restore 32 bit registers */
105     env->regs[R_EAX] = ts->vm86_saved_regs.eax;
106     env->regs[R_EBX] = ts->vm86_saved_regs.ebx;
107     env->regs[R_ECX] = ts->vm86_saved_regs.ecx;
108     env->regs[R_EDX] = ts->vm86_saved_regs.edx;
109     env->regs[R_ESI] = ts->vm86_saved_regs.esi;
110     env->regs[R_EDI] = ts->vm86_saved_regs.edi;
111     env->regs[R_EBP] = ts->vm86_saved_regs.ebp;
112     env->regs[R_ESP] = ts->vm86_saved_regs.esp;
113     env->eflags = ts->vm86_saved_regs.eflags;
114     env->eip = ts->vm86_saved_regs.eip;
115 
116     cpu_x86_load_seg(env, R_CS, ts->vm86_saved_regs.cs);
117     cpu_x86_load_seg(env, R_SS, ts->vm86_saved_regs.ss);
118     cpu_x86_load_seg(env, R_DS, ts->vm86_saved_regs.ds);
119     cpu_x86_load_seg(env, R_ES, ts->vm86_saved_regs.es);
120     cpu_x86_load_seg(env, R_FS, ts->vm86_saved_regs.fs);
121     cpu_x86_load_seg(env, R_GS, ts->vm86_saved_regs.gs);
122 }
123 
124 /* return from vm86 mode to 32 bit. The vm86() syscall will return
125    'retval' */
126 static inline void return_to_32bit(CPUX86State *env, int retval)
127 {
128     LOG_VM86("return_to_32bit: ret=0x%x\n", retval);
129     save_v86_state(env);
130     env->regs[R_EAX] = retval;
131 }
132 
133 static inline int set_IF(CPUX86State *env)
134 {
135     CPUState *cs = CPU(x86_env_get_cpu(env));
136     TaskState *ts = cs->opaque;
137 
138     ts->v86flags |= VIF_MASK;
139     if (ts->v86flags & VIP_MASK) {
140         return_to_32bit(env, TARGET_VM86_STI);
141         return 1;
142     }
143     return 0;
144 }
145 
146 static inline void clear_IF(CPUX86State *env)
147 {
148     CPUState *cs = CPU(x86_env_get_cpu(env));
149     TaskState *ts = cs->opaque;
150 
151     ts->v86flags &= ~VIF_MASK;
152 }
153 
154 static inline void clear_TF(CPUX86State *env)
155 {
156     env->eflags &= ~TF_MASK;
157 }
158 
159 static inline void clear_AC(CPUX86State *env)
160 {
161     env->eflags &= ~AC_MASK;
162 }
163 
164 static inline int set_vflags_long(unsigned long eflags, CPUX86State *env)
165 {
166     CPUState *cs = CPU(x86_env_get_cpu(env));
167     TaskState *ts = cs->opaque;
168 
169     set_flags(ts->v86flags, eflags, ts->v86mask);
170     set_flags(env->eflags, eflags, SAFE_MASK);
171     if (eflags & IF_MASK)
172         return set_IF(env);
173     else
174         clear_IF(env);
175     return 0;
176 }
177 
178 static inline int set_vflags_short(unsigned short flags, CPUX86State *env)
179 {
180     CPUState *cs = CPU(x86_env_get_cpu(env));
181     TaskState *ts = cs->opaque;
182 
183     set_flags(ts->v86flags, flags, ts->v86mask & 0xffff);
184     set_flags(env->eflags, flags, SAFE_MASK);
185     if (flags & IF_MASK)
186         return set_IF(env);
187     else
188         clear_IF(env);
189     return 0;
190 }
191 
192 static inline unsigned int get_vflags(CPUX86State *env)
193 {
194     CPUState *cs = CPU(x86_env_get_cpu(env));
195     TaskState *ts = cs->opaque;
196     unsigned int flags;
197 
198     flags = env->eflags & RETURN_MASK;
199     if (ts->v86flags & VIF_MASK)
200         flags |= IF_MASK;
201     flags |= IOPL_MASK;
202     return flags | (ts->v86flags & ts->v86mask);
203 }
204 
205 #define ADD16(reg, val) reg = (reg & ~0xffff) | ((reg + (val)) & 0xffff)
206 
207 /* handle VM86 interrupt (NOTE: the CPU core currently does not
208    support TSS interrupt revectoring, so this code is always executed) */
209 static void do_int(CPUX86State *env, int intno)
210 {
211     CPUState *cs = CPU(x86_env_get_cpu(env));
212     TaskState *ts = cs->opaque;
213     uint32_t int_addr, segoffs, ssp;
214     unsigned int sp;
215 
216     if (env->segs[R_CS].selector == TARGET_BIOSSEG)
217         goto cannot_handle;
218     if (is_revectored(intno, &ts->vm86plus.int_revectored))
219         goto cannot_handle;
220     if (intno == 0x21 && is_revectored((env->regs[R_EAX] >> 8) & 0xff,
221                                        &ts->vm86plus.int21_revectored))
222         goto cannot_handle;
223     int_addr = (intno << 2);
224     segoffs = cpu_ldl_data(env, int_addr);
225     if ((segoffs >> 16) == TARGET_BIOSSEG)
226         goto cannot_handle;
227     LOG_VM86("VM86: emulating int 0x%x. CS:IP=%04x:%04x\n",
228              intno, segoffs >> 16, segoffs & 0xffff);
229     /* save old state */
230     ssp = env->segs[R_SS].selector << 4;
231     sp = env->regs[R_ESP] & 0xffff;
232     vm_putw(env, ssp, sp - 2, get_vflags(env));
233     vm_putw(env, ssp, sp - 4, env->segs[R_CS].selector);
234     vm_putw(env, ssp, sp - 6, env->eip);
235     ADD16(env->regs[R_ESP], -6);
236     /* goto interrupt handler */
237     env->eip = segoffs & 0xffff;
238     cpu_x86_load_seg(env, R_CS, segoffs >> 16);
239     clear_TF(env);
240     clear_IF(env);
241     clear_AC(env);
242     return;
243  cannot_handle:
244     LOG_VM86("VM86: return to 32 bits int 0x%x\n", intno);
245     return_to_32bit(env, TARGET_VM86_INTx | (intno << 8));
246 }
247 
248 void handle_vm86_trap(CPUX86State *env, int trapno)
249 {
250     if (trapno == 1 || trapno == 3) {
251         return_to_32bit(env, TARGET_VM86_TRAP + (trapno << 8));
252     } else {
253         do_int(env, trapno);
254     }
255 }
256 
257 #define CHECK_IF_IN_TRAP() \
258       if ((ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) && \
259           (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_TFpendig)) \
260                 newflags |= TF_MASK
261 
262 #define VM86_FAULT_RETURN \
263         if ((ts->vm86plus.vm86plus.flags & TARGET_force_return_for_pic) && \
264             (ts->v86flags & (IF_MASK | VIF_MASK))) \
265             return_to_32bit(env, TARGET_VM86_PICRETURN); \
266         return
267 
268 void handle_vm86_fault(CPUX86State *env)
269 {
270     CPUState *cs = CPU(x86_env_get_cpu(env));
271     TaskState *ts = cs->opaque;
272     uint32_t csp, ssp;
273     unsigned int ip, sp, newflags, newip, newcs, opcode, intno;
274     int data32, pref_done;
275 
276     csp = env->segs[R_CS].selector << 4;
277     ip = env->eip & 0xffff;
278 
279     ssp = env->segs[R_SS].selector << 4;
280     sp = env->regs[R_ESP] & 0xffff;
281 
282     LOG_VM86("VM86 exception %04x:%08x\n",
283              env->segs[R_CS].selector, env->eip);
284 
285     data32 = 0;
286     pref_done = 0;
287     do {
288         opcode = vm_getb(env, csp, ip);
289         ADD16(ip, 1);
290         switch (opcode) {
291         case 0x66:      /* 32-bit data */     data32=1; break;
292         case 0x67:      /* 32-bit address */  break;
293         case 0x2e:      /* CS */              break;
294         case 0x3e:      /* DS */              break;
295         case 0x26:      /* ES */              break;
296         case 0x36:      /* SS */              break;
297         case 0x65:      /* GS */              break;
298         case 0x64:      /* FS */              break;
299         case 0xf2:      /* repnz */	      break;
300         case 0xf3:      /* rep */             break;
301         default: pref_done = 1;
302         }
303     } while (!pref_done);
304 
305     /* VM86 mode */
306     switch(opcode) {
307     case 0x9c: /* pushf */
308         if (data32) {
309             vm_putl(env, ssp, sp - 4, get_vflags(env));
310             ADD16(env->regs[R_ESP], -4);
311         } else {
312             vm_putw(env, ssp, sp - 2, get_vflags(env));
313             ADD16(env->regs[R_ESP], -2);
314         }
315         env->eip = ip;
316         VM86_FAULT_RETURN;
317 
318     case 0x9d: /* popf */
319         if (data32) {
320             newflags = vm_getl(env, ssp, sp);
321             ADD16(env->regs[R_ESP], 4);
322         } else {
323             newflags = vm_getw(env, ssp, sp);
324             ADD16(env->regs[R_ESP], 2);
325         }
326         env->eip = ip;
327         CHECK_IF_IN_TRAP();
328         if (data32) {
329             if (set_vflags_long(newflags, env))
330                 return;
331         } else {
332             if (set_vflags_short(newflags, env))
333                 return;
334         }
335         VM86_FAULT_RETURN;
336 
337     case 0xcd: /* int */
338         intno = vm_getb(env, csp, ip);
339         ADD16(ip, 1);
340         env->eip = ip;
341         if (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) {
342             if ( (ts->vm86plus.vm86plus.vm86dbg_intxxtab[intno >> 3] >>
343                   (intno &7)) & 1) {
344                 return_to_32bit(env, TARGET_VM86_INTx + (intno << 8));
345                 return;
346             }
347         }
348         do_int(env, intno);
349         break;
350 
351     case 0xcf: /* iret */
352         if (data32) {
353             newip = vm_getl(env, ssp, sp) & 0xffff;
354             newcs = vm_getl(env, ssp, sp + 4) & 0xffff;
355             newflags = vm_getl(env, ssp, sp + 8);
356             ADD16(env->regs[R_ESP], 12);
357         } else {
358             newip = vm_getw(env, ssp, sp);
359             newcs = vm_getw(env, ssp, sp + 2);
360             newflags = vm_getw(env, ssp, sp + 4);
361             ADD16(env->regs[R_ESP], 6);
362         }
363         env->eip = newip;
364         cpu_x86_load_seg(env, R_CS, newcs);
365         CHECK_IF_IN_TRAP();
366         if (data32) {
367             if (set_vflags_long(newflags, env))
368                 return;
369         } else {
370             if (set_vflags_short(newflags, env))
371                 return;
372         }
373         VM86_FAULT_RETURN;
374 
375     case 0xfa: /* cli */
376         env->eip = ip;
377         clear_IF(env);
378         VM86_FAULT_RETURN;
379 
380     case 0xfb: /* sti */
381         env->eip = ip;
382         if (set_IF(env))
383             return;
384         VM86_FAULT_RETURN;
385 
386     default:
387         /* real VM86 GPF exception */
388         return_to_32bit(env, TARGET_VM86_UNKNOWN);
389         break;
390     }
391 }
392 
393 int do_vm86(CPUX86State *env, long subfunction, abi_ulong vm86_addr)
394 {
395     CPUState *cs = CPU(x86_env_get_cpu(env));
396     TaskState *ts = cs->opaque;
397     struct target_vm86plus_struct * target_v86;
398     int ret;
399 
400     switch (subfunction) {
401     case TARGET_VM86_REQUEST_IRQ:
402     case TARGET_VM86_FREE_IRQ:
403     case TARGET_VM86_GET_IRQ_BITS:
404     case TARGET_VM86_GET_AND_RESET_IRQ:
405         gemu_log("qemu: unsupported vm86 subfunction (%ld)\n", subfunction);
406         ret = -TARGET_EINVAL;
407         goto out;
408     case TARGET_VM86_PLUS_INSTALL_CHECK:
409         /* NOTE: on old vm86 stuff this will return the error
410            from verify_area(), because the subfunction is
411            interpreted as (invalid) address to vm86_struct.
412            So the installation check works.
413             */
414         ret = 0;
415         goto out;
416     }
417 
418     /* save current CPU regs */
419     ts->vm86_saved_regs.eax = 0; /* default vm86 syscall return code */
420     ts->vm86_saved_regs.ebx = env->regs[R_EBX];
421     ts->vm86_saved_regs.ecx = env->regs[R_ECX];
422     ts->vm86_saved_regs.edx = env->regs[R_EDX];
423     ts->vm86_saved_regs.esi = env->regs[R_ESI];
424     ts->vm86_saved_regs.edi = env->regs[R_EDI];
425     ts->vm86_saved_regs.ebp = env->regs[R_EBP];
426     ts->vm86_saved_regs.esp = env->regs[R_ESP];
427     ts->vm86_saved_regs.eflags = env->eflags;
428     ts->vm86_saved_regs.eip  = env->eip;
429     ts->vm86_saved_regs.cs = env->segs[R_CS].selector;
430     ts->vm86_saved_regs.ss = env->segs[R_SS].selector;
431     ts->vm86_saved_regs.ds = env->segs[R_DS].selector;
432     ts->vm86_saved_regs.es = env->segs[R_ES].selector;
433     ts->vm86_saved_regs.fs = env->segs[R_FS].selector;
434     ts->vm86_saved_regs.gs = env->segs[R_GS].selector;
435 
436     ts->target_v86 = vm86_addr;
437     if (!lock_user_struct(VERIFY_READ, target_v86, vm86_addr, 1))
438         return -TARGET_EFAULT;
439     /* build vm86 CPU state */
440     ts->v86flags = tswap32(target_v86->regs.eflags);
441     env->eflags = (env->eflags & ~SAFE_MASK) |
442         (tswap32(target_v86->regs.eflags) & SAFE_MASK) | VM_MASK;
443 
444     ts->vm86plus.cpu_type = tswapal(target_v86->cpu_type);
445     switch (ts->vm86plus.cpu_type) {
446     case TARGET_CPU_286:
447         ts->v86mask = 0;
448         break;
449     case TARGET_CPU_386:
450         ts->v86mask = NT_MASK | IOPL_MASK;
451         break;
452     case TARGET_CPU_486:
453         ts->v86mask = AC_MASK | NT_MASK | IOPL_MASK;
454         break;
455     default:
456         ts->v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK;
457         break;
458     }
459 
460     env->regs[R_EBX] = tswap32(target_v86->regs.ebx);
461     env->regs[R_ECX] = tswap32(target_v86->regs.ecx);
462     env->regs[R_EDX] = tswap32(target_v86->regs.edx);
463     env->regs[R_ESI] = tswap32(target_v86->regs.esi);
464     env->regs[R_EDI] = tswap32(target_v86->regs.edi);
465     env->regs[R_EBP] = tswap32(target_v86->regs.ebp);
466     env->regs[R_ESP] = tswap32(target_v86->regs.esp);
467     env->eip = tswap32(target_v86->regs.eip);
468     cpu_x86_load_seg(env, R_CS, tswap16(target_v86->regs.cs));
469     cpu_x86_load_seg(env, R_SS, tswap16(target_v86->regs.ss));
470     cpu_x86_load_seg(env, R_DS, tswap16(target_v86->regs.ds));
471     cpu_x86_load_seg(env, R_ES, tswap16(target_v86->regs.es));
472     cpu_x86_load_seg(env, R_FS, tswap16(target_v86->regs.fs));
473     cpu_x86_load_seg(env, R_GS, tswap16(target_v86->regs.gs));
474     ret = tswap32(target_v86->regs.eax); /* eax will be restored at
475                                             the end of the syscall */
476     memcpy(&ts->vm86plus.int_revectored,
477            &target_v86->int_revectored, 32);
478     memcpy(&ts->vm86plus.int21_revectored,
479            &target_v86->int21_revectored, 32);
480     ts->vm86plus.vm86plus.flags = tswapal(target_v86->vm86plus.flags);
481     memcpy(&ts->vm86plus.vm86plus.vm86dbg_intxxtab,
482            target_v86->vm86plus.vm86dbg_intxxtab, 32);
483     unlock_user_struct(target_v86, vm86_addr, 0);
484 
485     LOG_VM86("do_vm86: cs:ip=%04x:%04x\n",
486              env->segs[R_CS].selector, env->eip);
487     /* now the virtual CPU is ready for vm86 execution ! */
488  out:
489     return ret;
490 }
491