xref: /openbmc/qemu/linux-user/vm86.c (revision 700784bf)
1 /*
2  *  vm86 linux syscall support
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "qemu.h"
22 #include "user-internals.h"
23 
24 //#define DEBUG_VM86
25 
26 #ifdef DEBUG_VM86
27 #  define LOG_VM86(...) qemu_log(__VA_ARGS__);
28 #else
29 #  define LOG_VM86(...) do { } while (0)
30 #endif
31 
32 
33 #define set_flags(X,new,mask) \
34 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
35 
36 #define SAFE_MASK	(0xDD5)
37 #define RETURN_MASK	(0xDFF)
38 
39 static inline int is_revectored(int nr, struct target_revectored_struct *bitmap)
40 {
41     return (((uint8_t *)bitmap)[nr >> 3] >> (nr & 7)) & 1;
42 }
43 
44 static inline void vm_putw(CPUX86State *env, uint32_t segptr,
45                            unsigned int reg16, unsigned int val)
46 {
47     cpu_stw_data(env, segptr + (reg16 & 0xffff), val);
48 }
49 
50 void save_v86_state(CPUX86State *env)
51 {
52     CPUState *cs = env_cpu(env);
53     TaskState *ts = get_task_state(cs);
54     struct target_vm86plus_struct * target_v86;
55 
56     if (!lock_user_struct(VERIFY_WRITE, target_v86, ts->target_v86, 0))
57         /* FIXME - should return an error */
58         return;
59     /* put the VM86 registers in the userspace register structure */
60     target_v86->regs.eax = tswap32(env->regs[R_EAX]);
61     target_v86->regs.ebx = tswap32(env->regs[R_EBX]);
62     target_v86->regs.ecx = tswap32(env->regs[R_ECX]);
63     target_v86->regs.edx = tswap32(env->regs[R_EDX]);
64     target_v86->regs.esi = tswap32(env->regs[R_ESI]);
65     target_v86->regs.edi = tswap32(env->regs[R_EDI]);
66     target_v86->regs.ebp = tswap32(env->regs[R_EBP]);
67     target_v86->regs.esp = tswap32(env->regs[R_ESP]);
68     target_v86->regs.eip = tswap32(env->eip);
69     target_v86->regs.cs = tswap16(env->segs[R_CS].selector);
70     target_v86->regs.ss = tswap16(env->segs[R_SS].selector);
71     target_v86->regs.ds = tswap16(env->segs[R_DS].selector);
72     target_v86->regs.es = tswap16(env->segs[R_ES].selector);
73     target_v86->regs.fs = tswap16(env->segs[R_FS].selector);
74     target_v86->regs.gs = tswap16(env->segs[R_GS].selector);
75     set_flags(env->eflags, ts->v86flags, VIF_MASK | ts->v86mask);
76     target_v86->regs.eflags = tswap32(env->eflags);
77     unlock_user_struct(target_v86, ts->target_v86, 1);
78     LOG_VM86("save_v86_state: eflags=%08x cs:ip=%04x:%04x\n",
79              env->eflags, env->segs[R_CS].selector, env->eip);
80 
81     /* restore 32 bit registers */
82     env->regs[R_EAX] = ts->vm86_saved_regs.eax;
83     env->regs[R_EBX] = ts->vm86_saved_regs.ebx;
84     env->regs[R_ECX] = ts->vm86_saved_regs.ecx;
85     env->regs[R_EDX] = ts->vm86_saved_regs.edx;
86     env->regs[R_ESI] = ts->vm86_saved_regs.esi;
87     env->regs[R_EDI] = ts->vm86_saved_regs.edi;
88     env->regs[R_EBP] = ts->vm86_saved_regs.ebp;
89     env->regs[R_ESP] = ts->vm86_saved_regs.esp;
90     env->eflags = ts->vm86_saved_regs.eflags;
91     env->eip = ts->vm86_saved_regs.eip;
92 
93     cpu_x86_load_seg(env, R_CS, ts->vm86_saved_regs.cs);
94     cpu_x86_load_seg(env, R_SS, ts->vm86_saved_regs.ss);
95     cpu_x86_load_seg(env, R_DS, ts->vm86_saved_regs.ds);
96     cpu_x86_load_seg(env, R_ES, ts->vm86_saved_regs.es);
97     cpu_x86_load_seg(env, R_FS, ts->vm86_saved_regs.fs);
98     cpu_x86_load_seg(env, R_GS, ts->vm86_saved_regs.gs);
99 }
100 
101 /* return from vm86 mode to 32 bit. The vm86() syscall will return
102    'retval' */
103 static inline void return_to_32bit(CPUX86State *env, int retval)
104 {
105     LOG_VM86("return_to_32bit: ret=0x%x\n", retval);
106     save_v86_state(env);
107     env->regs[R_EAX] = retval;
108 }
109 
110 static inline void clear_IF(CPUX86State *env)
111 {
112     CPUState *cs = env_cpu(env);
113     TaskState *ts = get_task_state(cs);
114 
115     ts->v86flags &= ~VIF_MASK;
116 }
117 
118 static inline void clear_TF(CPUX86State *env)
119 {
120     env->eflags &= ~TF_MASK;
121 }
122 
123 static inline void clear_AC(CPUX86State *env)
124 {
125     env->eflags &= ~AC_MASK;
126 }
127 
128 static inline unsigned int get_vflags(CPUX86State *env)
129 {
130     CPUState *cs = env_cpu(env);
131     TaskState *ts = get_task_state(cs);
132     unsigned int flags;
133 
134     flags = env->eflags & RETURN_MASK;
135     if (ts->v86flags & VIF_MASK)
136         flags |= IF_MASK;
137     flags |= IOPL_MASK;
138     return flags | (ts->v86flags & ts->v86mask);
139 }
140 
141 #define ADD16(reg, val) reg = (reg & ~0xffff) | ((reg + (val)) & 0xffff)
142 
143 /* handle VM86 interrupt (NOTE: the CPU core currently does not
144    support TSS interrupt revectoring, so this code is always executed) */
145 static void do_int(CPUX86State *env, int intno)
146 {
147     CPUState *cs = env_cpu(env);
148     TaskState *ts = get_task_state(cs);
149     uint32_t int_addr, segoffs, ssp;
150     unsigned int sp;
151 
152     if (env->segs[R_CS].selector == TARGET_BIOSSEG)
153         goto cannot_handle;
154     if (is_revectored(intno, &ts->vm86plus.int_revectored))
155         goto cannot_handle;
156     if (intno == 0x21 && is_revectored((env->regs[R_EAX] >> 8) & 0xff,
157                                        &ts->vm86plus.int21_revectored))
158         goto cannot_handle;
159     int_addr = (intno << 2);
160     segoffs = cpu_ldl_data(env, int_addr);
161     if ((segoffs >> 16) == TARGET_BIOSSEG)
162         goto cannot_handle;
163     LOG_VM86("VM86: emulating int 0x%x. CS:IP=%04x:%04x\n",
164              intno, segoffs >> 16, segoffs & 0xffff);
165     /* save old state */
166     ssp = env->segs[R_SS].selector << 4;
167     sp = env->regs[R_ESP] & 0xffff;
168     vm_putw(env, ssp, sp - 2, get_vflags(env));
169     vm_putw(env, ssp, sp - 4, env->segs[R_CS].selector);
170     vm_putw(env, ssp, sp - 6, env->eip);
171     ADD16(env->regs[R_ESP], -6);
172     /* goto interrupt handler */
173     env->eip = segoffs & 0xffff;
174     cpu_x86_load_seg(env, R_CS, segoffs >> 16);
175     clear_TF(env);
176     clear_IF(env);
177     clear_AC(env);
178     return;
179  cannot_handle:
180     LOG_VM86("VM86: return to 32 bits int 0x%x\n", intno);
181     return_to_32bit(env, TARGET_VM86_INTx | (intno << 8));
182 }
183 
184 void handle_vm86_trap(CPUX86State *env, int trapno)
185 {
186     if (trapno == 1 || trapno == 3) {
187         return_to_32bit(env, TARGET_VM86_TRAP + (trapno << 8));
188     } else {
189         do_int(env, trapno);
190     }
191 }
192 
193 int do_vm86(CPUX86State *env, long subfunction, abi_ulong vm86_addr)
194 {
195     CPUState *cs = env_cpu(env);
196     TaskState *ts = get_task_state(cs);
197     struct target_vm86plus_struct * target_v86;
198     int ret;
199 
200     switch (subfunction) {
201     case TARGET_VM86_REQUEST_IRQ:
202     case TARGET_VM86_FREE_IRQ:
203     case TARGET_VM86_GET_IRQ_BITS:
204     case TARGET_VM86_GET_AND_RESET_IRQ:
205         qemu_log_mask(LOG_UNIMP, "qemu: unsupported vm86 subfunction (%ld)\n",
206                       subfunction);
207         ret = -TARGET_EINVAL;
208         goto out;
209     case TARGET_VM86_PLUS_INSTALL_CHECK:
210         /* NOTE: on old vm86 stuff this will return the error
211            from verify_area(), because the subfunction is
212            interpreted as (invalid) address to vm86_struct.
213            So the installation check works.
214             */
215         ret = 0;
216         goto out;
217     }
218 
219     /* save current CPU regs */
220     ts->vm86_saved_regs.eax = 0; /* default vm86 syscall return code */
221     ts->vm86_saved_regs.ebx = env->regs[R_EBX];
222     ts->vm86_saved_regs.ecx = env->regs[R_ECX];
223     ts->vm86_saved_regs.edx = env->regs[R_EDX];
224     ts->vm86_saved_regs.esi = env->regs[R_ESI];
225     ts->vm86_saved_regs.edi = env->regs[R_EDI];
226     ts->vm86_saved_regs.ebp = env->regs[R_EBP];
227     ts->vm86_saved_regs.esp = env->regs[R_ESP];
228     ts->vm86_saved_regs.eflags = env->eflags;
229     ts->vm86_saved_regs.eip  = env->eip;
230     ts->vm86_saved_regs.cs = env->segs[R_CS].selector;
231     ts->vm86_saved_regs.ss = env->segs[R_SS].selector;
232     ts->vm86_saved_regs.ds = env->segs[R_DS].selector;
233     ts->vm86_saved_regs.es = env->segs[R_ES].selector;
234     ts->vm86_saved_regs.fs = env->segs[R_FS].selector;
235     ts->vm86_saved_regs.gs = env->segs[R_GS].selector;
236 
237     ts->target_v86 = vm86_addr;
238     if (!lock_user_struct(VERIFY_READ, target_v86, vm86_addr, 1))
239         return -TARGET_EFAULT;
240     /* build vm86 CPU state */
241     ts->v86flags = tswap32(target_v86->regs.eflags);
242     env->eflags = (env->eflags & ~SAFE_MASK) |
243         (tswap32(target_v86->regs.eflags) & SAFE_MASK) | VM_MASK;
244 
245     ts->vm86plus.cpu_type = tswapal(target_v86->cpu_type);
246     switch (ts->vm86plus.cpu_type) {
247     case TARGET_CPU_286:
248         ts->v86mask = 0;
249         break;
250     case TARGET_CPU_386:
251         ts->v86mask = NT_MASK | IOPL_MASK;
252         break;
253     case TARGET_CPU_486:
254         ts->v86mask = AC_MASK | NT_MASK | IOPL_MASK;
255         break;
256     default:
257         ts->v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK;
258         break;
259     }
260 
261     env->regs[R_EBX] = tswap32(target_v86->regs.ebx);
262     env->regs[R_ECX] = tswap32(target_v86->regs.ecx);
263     env->regs[R_EDX] = tswap32(target_v86->regs.edx);
264     env->regs[R_ESI] = tswap32(target_v86->regs.esi);
265     env->regs[R_EDI] = tswap32(target_v86->regs.edi);
266     env->regs[R_EBP] = tswap32(target_v86->regs.ebp);
267     env->regs[R_ESP] = tswap32(target_v86->regs.esp);
268     env->eip = tswap32(target_v86->regs.eip);
269     cpu_x86_load_seg(env, R_CS, tswap16(target_v86->regs.cs));
270     cpu_x86_load_seg(env, R_SS, tswap16(target_v86->regs.ss));
271     cpu_x86_load_seg(env, R_DS, tswap16(target_v86->regs.ds));
272     cpu_x86_load_seg(env, R_ES, tswap16(target_v86->regs.es));
273     cpu_x86_load_seg(env, R_FS, tswap16(target_v86->regs.fs));
274     cpu_x86_load_seg(env, R_GS, tswap16(target_v86->regs.gs));
275     ret = tswap32(target_v86->regs.eax); /* eax will be restored at
276                                             the end of the syscall */
277     memcpy(&ts->vm86plus.int_revectored,
278            &target_v86->int_revectored, 32);
279     memcpy(&ts->vm86plus.int21_revectored,
280            &target_v86->int21_revectored, 32);
281     ts->vm86plus.vm86plus.flags = tswapal(target_v86->vm86plus.flags);
282     memcpy(&ts->vm86plus.vm86plus.vm86dbg_intxxtab,
283            target_v86->vm86plus.vm86dbg_intxxtab, 32);
284     unlock_user_struct(target_v86, vm86_addr, 0);
285 
286     LOG_VM86("do_vm86: cs:ip=%04x:%04x\n",
287              env->segs[R_CS].selector, env->eip);
288     /* now the virtual CPU is ready for vm86 execution ! */
289  out:
290     return ret;
291 }
292