xref: /openbmc/qemu/linux-user/vm86.c (revision 2b74dd91)
1 /*
2  *  vm86 linux syscall support
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "qemu.h"
22 #include "user-internals.h"
23 
24 //#define DEBUG_VM86
25 
26 #ifdef DEBUG_VM86
27 #  define LOG_VM86(...) qemu_log(__VA_ARGS__);
28 #else
29 #  define LOG_VM86(...) do { } while (0)
30 #endif
31 
32 
33 #define set_flags(X,new,mask) \
34 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
35 
36 #define SAFE_MASK	(0xDD5)
37 #define RETURN_MASK	(0xDFF)
38 
39 static inline int is_revectored(int nr, struct target_revectored_struct *bitmap)
40 {
41     return (((uint8_t *)bitmap)[nr >> 3] >> (nr & 7)) & 1;
42 }
43 
44 static inline void vm_putw(CPUX86State *env, uint32_t segptr,
45                            unsigned int reg16, unsigned int val)
46 {
47     cpu_stw_data(env, segptr + (reg16 & 0xffff), val);
48 }
49 
50 static inline void vm_putl(CPUX86State *env, uint32_t segptr,
51                            unsigned int reg16, unsigned int val)
52 {
53     cpu_stl_data(env, segptr + (reg16 & 0xffff), val);
54 }
55 
56 static inline unsigned int vm_getb(CPUX86State *env,
57                                    uint32_t segptr, unsigned int reg16)
58 {
59     return cpu_ldub_data(env, segptr + (reg16 & 0xffff));
60 }
61 
62 static inline unsigned int vm_getw(CPUX86State *env,
63                                    uint32_t segptr, unsigned int reg16)
64 {
65     return cpu_lduw_data(env, segptr + (reg16 & 0xffff));
66 }
67 
68 static inline unsigned int vm_getl(CPUX86State *env,
69                                    uint32_t segptr, unsigned int reg16)
70 {
71     return cpu_ldl_data(env, segptr + (reg16 & 0xffff));
72 }
73 
74 void save_v86_state(CPUX86State *env)
75 {
76     CPUState *cs = env_cpu(env);
77     TaskState *ts = get_task_state(cs);
78     struct target_vm86plus_struct * target_v86;
79 
80     if (!lock_user_struct(VERIFY_WRITE, target_v86, ts->target_v86, 0))
81         /* FIXME - should return an error */
82         return;
83     /* put the VM86 registers in the userspace register structure */
84     target_v86->regs.eax = tswap32(env->regs[R_EAX]);
85     target_v86->regs.ebx = tswap32(env->regs[R_EBX]);
86     target_v86->regs.ecx = tswap32(env->regs[R_ECX]);
87     target_v86->regs.edx = tswap32(env->regs[R_EDX]);
88     target_v86->regs.esi = tswap32(env->regs[R_ESI]);
89     target_v86->regs.edi = tswap32(env->regs[R_EDI]);
90     target_v86->regs.ebp = tswap32(env->regs[R_EBP]);
91     target_v86->regs.esp = tswap32(env->regs[R_ESP]);
92     target_v86->regs.eip = tswap32(env->eip);
93     target_v86->regs.cs = tswap16(env->segs[R_CS].selector);
94     target_v86->regs.ss = tswap16(env->segs[R_SS].selector);
95     target_v86->regs.ds = tswap16(env->segs[R_DS].selector);
96     target_v86->regs.es = tswap16(env->segs[R_ES].selector);
97     target_v86->regs.fs = tswap16(env->segs[R_FS].selector);
98     target_v86->regs.gs = tswap16(env->segs[R_GS].selector);
99     set_flags(env->eflags, ts->v86flags, VIF_MASK | ts->v86mask);
100     target_v86->regs.eflags = tswap32(env->eflags);
101     unlock_user_struct(target_v86, ts->target_v86, 1);
102     LOG_VM86("save_v86_state: eflags=%08x cs:ip=%04x:%04x\n",
103              env->eflags, env->segs[R_CS].selector, env->eip);
104 
105     /* restore 32 bit registers */
106     env->regs[R_EAX] = ts->vm86_saved_regs.eax;
107     env->regs[R_EBX] = ts->vm86_saved_regs.ebx;
108     env->regs[R_ECX] = ts->vm86_saved_regs.ecx;
109     env->regs[R_EDX] = ts->vm86_saved_regs.edx;
110     env->regs[R_ESI] = ts->vm86_saved_regs.esi;
111     env->regs[R_EDI] = ts->vm86_saved_regs.edi;
112     env->regs[R_EBP] = ts->vm86_saved_regs.ebp;
113     env->regs[R_ESP] = ts->vm86_saved_regs.esp;
114     env->eflags = ts->vm86_saved_regs.eflags;
115     env->eip = ts->vm86_saved_regs.eip;
116 
117     cpu_x86_load_seg(env, R_CS, ts->vm86_saved_regs.cs);
118     cpu_x86_load_seg(env, R_SS, ts->vm86_saved_regs.ss);
119     cpu_x86_load_seg(env, R_DS, ts->vm86_saved_regs.ds);
120     cpu_x86_load_seg(env, R_ES, ts->vm86_saved_regs.es);
121     cpu_x86_load_seg(env, R_FS, ts->vm86_saved_regs.fs);
122     cpu_x86_load_seg(env, R_GS, ts->vm86_saved_regs.gs);
123 }
124 
125 /* return from vm86 mode to 32 bit. The vm86() syscall will return
126    'retval' */
127 static inline void return_to_32bit(CPUX86State *env, int retval)
128 {
129     LOG_VM86("return_to_32bit: ret=0x%x\n", retval);
130     save_v86_state(env);
131     env->regs[R_EAX] = retval;
132 }
133 
134 static inline int set_IF(CPUX86State *env)
135 {
136     CPUState *cs = env_cpu(env);
137     TaskState *ts = get_task_state(cs);
138 
139     ts->v86flags |= VIF_MASK;
140     if (ts->v86flags & VIP_MASK) {
141         return_to_32bit(env, TARGET_VM86_STI);
142         return 1;
143     }
144     return 0;
145 }
146 
147 static inline void clear_IF(CPUX86State *env)
148 {
149     CPUState *cs = env_cpu(env);
150     TaskState *ts = get_task_state(cs);
151 
152     ts->v86flags &= ~VIF_MASK;
153 }
154 
155 static inline void clear_TF(CPUX86State *env)
156 {
157     env->eflags &= ~TF_MASK;
158 }
159 
160 static inline void clear_AC(CPUX86State *env)
161 {
162     env->eflags &= ~AC_MASK;
163 }
164 
165 static inline int set_vflags_long(unsigned long eflags, CPUX86State *env)
166 {
167     CPUState *cs = env_cpu(env);
168     TaskState *ts = get_task_state(cs);
169 
170     set_flags(ts->v86flags, eflags, ts->v86mask);
171     set_flags(env->eflags, eflags, SAFE_MASK);
172     if (eflags & IF_MASK)
173         return set_IF(env);
174     else
175         clear_IF(env);
176     return 0;
177 }
178 
179 static inline int set_vflags_short(unsigned short flags, CPUX86State *env)
180 {
181     CPUState *cs = env_cpu(env);
182     TaskState *ts = get_task_state(cs);
183 
184     set_flags(ts->v86flags, flags, ts->v86mask & 0xffff);
185     set_flags(env->eflags, flags, SAFE_MASK);
186     if (flags & IF_MASK)
187         return set_IF(env);
188     else
189         clear_IF(env);
190     return 0;
191 }
192 
193 static inline unsigned int get_vflags(CPUX86State *env)
194 {
195     CPUState *cs = env_cpu(env);
196     TaskState *ts = get_task_state(cs);
197     unsigned int flags;
198 
199     flags = env->eflags & RETURN_MASK;
200     if (ts->v86flags & VIF_MASK)
201         flags |= IF_MASK;
202     flags |= IOPL_MASK;
203     return flags | (ts->v86flags & ts->v86mask);
204 }
205 
206 #define ADD16(reg, val) reg = (reg & ~0xffff) | ((reg + (val)) & 0xffff)
207 
208 /* handle VM86 interrupt (NOTE: the CPU core currently does not
209    support TSS interrupt revectoring, so this code is always executed) */
210 static void do_int(CPUX86State *env, int intno)
211 {
212     CPUState *cs = env_cpu(env);
213     TaskState *ts = get_task_state(cs);
214     uint32_t int_addr, segoffs, ssp;
215     unsigned int sp;
216 
217     if (env->segs[R_CS].selector == TARGET_BIOSSEG)
218         goto cannot_handle;
219     if (is_revectored(intno, &ts->vm86plus.int_revectored))
220         goto cannot_handle;
221     if (intno == 0x21 && is_revectored((env->regs[R_EAX] >> 8) & 0xff,
222                                        &ts->vm86plus.int21_revectored))
223         goto cannot_handle;
224     int_addr = (intno << 2);
225     segoffs = cpu_ldl_data(env, int_addr);
226     if ((segoffs >> 16) == TARGET_BIOSSEG)
227         goto cannot_handle;
228     LOG_VM86("VM86: emulating int 0x%x. CS:IP=%04x:%04x\n",
229              intno, segoffs >> 16, segoffs & 0xffff);
230     /* save old state */
231     ssp = env->segs[R_SS].selector << 4;
232     sp = env->regs[R_ESP] & 0xffff;
233     vm_putw(env, ssp, sp - 2, get_vflags(env));
234     vm_putw(env, ssp, sp - 4, env->segs[R_CS].selector);
235     vm_putw(env, ssp, sp - 6, env->eip);
236     ADD16(env->regs[R_ESP], -6);
237     /* goto interrupt handler */
238     env->eip = segoffs & 0xffff;
239     cpu_x86_load_seg(env, R_CS, segoffs >> 16);
240     clear_TF(env);
241     clear_IF(env);
242     clear_AC(env);
243     return;
244  cannot_handle:
245     LOG_VM86("VM86: return to 32 bits int 0x%x\n", intno);
246     return_to_32bit(env, TARGET_VM86_INTx | (intno << 8));
247 }
248 
249 void handle_vm86_trap(CPUX86State *env, int trapno)
250 {
251     if (trapno == 1 || trapno == 3) {
252         return_to_32bit(env, TARGET_VM86_TRAP + (trapno << 8));
253     } else {
254         do_int(env, trapno);
255     }
256 }
257 
258 int do_vm86(CPUX86State *env, long subfunction, abi_ulong vm86_addr)
259 {
260     CPUState *cs = env_cpu(env);
261     TaskState *ts = get_task_state(cs);
262     struct target_vm86plus_struct * target_v86;
263     int ret;
264 
265     switch (subfunction) {
266     case TARGET_VM86_REQUEST_IRQ:
267     case TARGET_VM86_FREE_IRQ:
268     case TARGET_VM86_GET_IRQ_BITS:
269     case TARGET_VM86_GET_AND_RESET_IRQ:
270         qemu_log_mask(LOG_UNIMP, "qemu: unsupported vm86 subfunction (%ld)\n",
271                       subfunction);
272         ret = -TARGET_EINVAL;
273         goto out;
274     case TARGET_VM86_PLUS_INSTALL_CHECK:
275         /* NOTE: on old vm86 stuff this will return the error
276            from verify_area(), because the subfunction is
277            interpreted as (invalid) address to vm86_struct.
278            So the installation check works.
279             */
280         ret = 0;
281         goto out;
282     }
283 
284     /* save current CPU regs */
285     ts->vm86_saved_regs.eax = 0; /* default vm86 syscall return code */
286     ts->vm86_saved_regs.ebx = env->regs[R_EBX];
287     ts->vm86_saved_regs.ecx = env->regs[R_ECX];
288     ts->vm86_saved_regs.edx = env->regs[R_EDX];
289     ts->vm86_saved_regs.esi = env->regs[R_ESI];
290     ts->vm86_saved_regs.edi = env->regs[R_EDI];
291     ts->vm86_saved_regs.ebp = env->regs[R_EBP];
292     ts->vm86_saved_regs.esp = env->regs[R_ESP];
293     ts->vm86_saved_regs.eflags = env->eflags;
294     ts->vm86_saved_regs.eip  = env->eip;
295     ts->vm86_saved_regs.cs = env->segs[R_CS].selector;
296     ts->vm86_saved_regs.ss = env->segs[R_SS].selector;
297     ts->vm86_saved_regs.ds = env->segs[R_DS].selector;
298     ts->vm86_saved_regs.es = env->segs[R_ES].selector;
299     ts->vm86_saved_regs.fs = env->segs[R_FS].selector;
300     ts->vm86_saved_regs.gs = env->segs[R_GS].selector;
301 
302     ts->target_v86 = vm86_addr;
303     if (!lock_user_struct(VERIFY_READ, target_v86, vm86_addr, 1))
304         return -TARGET_EFAULT;
305     /* build vm86 CPU state */
306     ts->v86flags = tswap32(target_v86->regs.eflags);
307     env->eflags = (env->eflags & ~SAFE_MASK) |
308         (tswap32(target_v86->regs.eflags) & SAFE_MASK) | VM_MASK;
309 
310     ts->vm86plus.cpu_type = tswapal(target_v86->cpu_type);
311     switch (ts->vm86plus.cpu_type) {
312     case TARGET_CPU_286:
313         ts->v86mask = 0;
314         break;
315     case TARGET_CPU_386:
316         ts->v86mask = NT_MASK | IOPL_MASK;
317         break;
318     case TARGET_CPU_486:
319         ts->v86mask = AC_MASK | NT_MASK | IOPL_MASK;
320         break;
321     default:
322         ts->v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK;
323         break;
324     }
325 
326     env->regs[R_EBX] = tswap32(target_v86->regs.ebx);
327     env->regs[R_ECX] = tswap32(target_v86->regs.ecx);
328     env->regs[R_EDX] = tswap32(target_v86->regs.edx);
329     env->regs[R_ESI] = tswap32(target_v86->regs.esi);
330     env->regs[R_EDI] = tswap32(target_v86->regs.edi);
331     env->regs[R_EBP] = tswap32(target_v86->regs.ebp);
332     env->regs[R_ESP] = tswap32(target_v86->regs.esp);
333     env->eip = tswap32(target_v86->regs.eip);
334     cpu_x86_load_seg(env, R_CS, tswap16(target_v86->regs.cs));
335     cpu_x86_load_seg(env, R_SS, tswap16(target_v86->regs.ss));
336     cpu_x86_load_seg(env, R_DS, tswap16(target_v86->regs.ds));
337     cpu_x86_load_seg(env, R_ES, tswap16(target_v86->regs.es));
338     cpu_x86_load_seg(env, R_FS, tswap16(target_v86->regs.fs));
339     cpu_x86_load_seg(env, R_GS, tswap16(target_v86->regs.gs));
340     ret = tswap32(target_v86->regs.eax); /* eax will be restored at
341                                             the end of the syscall */
342     memcpy(&ts->vm86plus.int_revectored,
343            &target_v86->int_revectored, 32);
344     memcpy(&ts->vm86plus.int21_revectored,
345            &target_v86->int21_revectored, 32);
346     ts->vm86plus.vm86plus.flags = tswapal(target_v86->vm86plus.flags);
347     memcpy(&ts->vm86plus.vm86plus.vm86dbg_intxxtab,
348            target_v86->vm86plus.vm86dbg_intxxtab, 32);
349     unlock_user_struct(target_v86, vm86_addr, 0);
350 
351     LOG_VM86("do_vm86: cs:ip=%04x:%04x\n",
352              env->segs[R_CS].selector, env->eip);
353     /* now the virtual CPU is ready for vm86 execution ! */
354  out:
355     return ret;
356 }
357