1 /* 2 * Linux syscalls 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #define _ATFILE_SOURCE 20 #include "qemu/osdep.h" 21 #include "qemu/cutils.h" 22 #include "qemu/path.h" 23 #include "qemu/memfd.h" 24 #include "qemu/queue.h" 25 #include <elf.h> 26 #include <endian.h> 27 #include <grp.h> 28 #include <sys/ipc.h> 29 #include <sys/msg.h> 30 #include <sys/wait.h> 31 #include <sys/mount.h> 32 #include <sys/file.h> 33 #include <sys/fsuid.h> 34 #include <sys/personality.h> 35 #include <sys/prctl.h> 36 #include <sys/resource.h> 37 #include <sys/swap.h> 38 #include <linux/capability.h> 39 #include <sched.h> 40 #include <sys/timex.h> 41 #include <sys/socket.h> 42 #include <linux/sockios.h> 43 #include <sys/un.h> 44 #include <sys/uio.h> 45 #include <poll.h> 46 #include <sys/times.h> 47 #include <sys/shm.h> 48 #include <sys/sem.h> 49 #include <sys/statfs.h> 50 #include <utime.h> 51 #include <sys/sysinfo.h> 52 #include <sys/signalfd.h> 53 //#include <sys/user.h> 54 #include <netinet/in.h> 55 #include <netinet/ip.h> 56 #include <netinet/tcp.h> 57 #include <netinet/udp.h> 58 #include <linux/wireless.h> 59 #include <linux/icmp.h> 60 #include <linux/icmpv6.h> 61 #include <linux/if_tun.h> 62 #include <linux/in6.h> 63 #include <linux/errqueue.h> 64 #include <linux/random.h> 65 #ifdef CONFIG_TIMERFD 66 #include <sys/timerfd.h> 67 #endif 68 #ifdef CONFIG_EVENTFD 69 #include <sys/eventfd.h> 70 #endif 71 #ifdef CONFIG_EPOLL 72 #include <sys/epoll.h> 73 #endif 74 #ifdef CONFIG_ATTR 75 #include "qemu/xattr.h" 76 #endif 77 #ifdef CONFIG_SENDFILE 78 #include <sys/sendfile.h> 79 #endif 80 #ifdef HAVE_SYS_KCOV_H 81 #include <sys/kcov.h> 82 #endif 83 84 #define termios host_termios 85 #define winsize host_winsize 86 #define termio host_termio 87 #define sgttyb host_sgttyb /* same as target */ 88 #define tchars host_tchars /* same as target */ 89 #define ltchars host_ltchars /* same as target */ 90 91 #include <linux/termios.h> 92 #include <linux/unistd.h> 93 #include <linux/cdrom.h> 94 #include <linux/hdreg.h> 95 #include <linux/soundcard.h> 96 #include <linux/kd.h> 97 #include <linux/mtio.h> 98 99 #ifdef HAVE_SYS_MOUNT_FSCONFIG 100 /* 101 * glibc >= 2.36 linux/mount.h conflicts with sys/mount.h, 102 * which in turn prevents use of linux/fs.h. So we have to 103 * define the constants ourselves for now. 104 */ 105 #define FS_IOC_GETFLAGS _IOR('f', 1, long) 106 #define FS_IOC_SETFLAGS _IOW('f', 2, long) 107 #define FS_IOC_GETVERSION _IOR('v', 1, long) 108 #define FS_IOC_SETVERSION _IOW('v', 2, long) 109 #define FS_IOC_FIEMAP _IOWR('f', 11, struct fiemap) 110 #define FS_IOC32_GETFLAGS _IOR('f', 1, int) 111 #define FS_IOC32_SETFLAGS _IOW('f', 2, int) 112 #define FS_IOC32_GETVERSION _IOR('v', 1, int) 113 #define FS_IOC32_SETVERSION _IOW('v', 2, int) 114 115 #define BLKGETSIZE64 _IOR(0x12,114,size_t) 116 #define BLKDISCARD _IO(0x12,119) 117 #define BLKIOMIN _IO(0x12,120) 118 #define BLKIOOPT _IO(0x12,121) 119 #define BLKALIGNOFF _IO(0x12,122) 120 #define BLKPBSZGET _IO(0x12,123) 121 #define BLKDISCARDZEROES _IO(0x12,124) 122 #define BLKSECDISCARD _IO(0x12,125) 123 #define BLKROTATIONAL _IO(0x12,126) 124 #define BLKZEROOUT _IO(0x12,127) 125 126 #define FIBMAP _IO(0x00,1) 127 #define FIGETBSZ _IO(0x00,2) 128 129 struct file_clone_range { 130 __s64 src_fd; 131 __u64 src_offset; 132 __u64 src_length; 133 __u64 dest_offset; 134 }; 135 136 #define FICLONE _IOW(0x94, 9, int) 137 #define FICLONERANGE _IOW(0x94, 13, struct file_clone_range) 138 139 #else 140 #include <linux/fs.h> 141 #endif 142 #include <linux/fd.h> 143 #if defined(CONFIG_FIEMAP) 144 #include <linux/fiemap.h> 145 #endif 146 #include <linux/fb.h> 147 #if defined(CONFIG_USBFS) 148 #include <linux/usbdevice_fs.h> 149 #include <linux/usb/ch9.h> 150 #endif 151 #include <linux/vt.h> 152 #include <linux/dm-ioctl.h> 153 #include <linux/reboot.h> 154 #include <linux/route.h> 155 #include <linux/filter.h> 156 #include <linux/blkpg.h> 157 #include <netpacket/packet.h> 158 #include <linux/netlink.h> 159 #include <linux/if_alg.h> 160 #include <linux/rtc.h> 161 #include <sound/asound.h> 162 #ifdef HAVE_BTRFS_H 163 #include <linux/btrfs.h> 164 #endif 165 #ifdef HAVE_DRM_H 166 #include <libdrm/drm.h> 167 #include <libdrm/i915_drm.h> 168 #endif 169 #include "linux_loop.h" 170 #include "uname.h" 171 172 #include "qemu.h" 173 #include "user-internals.h" 174 #include "strace.h" 175 #include "signal-common.h" 176 #include "loader.h" 177 #include "user-mmap.h" 178 #include "user/safe-syscall.h" 179 #include "qemu/guest-random.h" 180 #include "qemu/selfmap.h" 181 #include "user/syscall-trace.h" 182 #include "special-errno.h" 183 #include "qapi/error.h" 184 #include "fd-trans.h" 185 #include "tcg/tcg.h" 186 #include "cpu_loop-common.h" 187 188 #ifndef CLONE_IO 189 #define CLONE_IO 0x80000000 /* Clone io context */ 190 #endif 191 192 /* We can't directly call the host clone syscall, because this will 193 * badly confuse libc (breaking mutexes, for example). So we must 194 * divide clone flags into: 195 * * flag combinations that look like pthread_create() 196 * * flag combinations that look like fork() 197 * * flags we can implement within QEMU itself 198 * * flags we can't support and will return an error for 199 */ 200 /* For thread creation, all these flags must be present; for 201 * fork, none must be present. 202 */ 203 #define CLONE_THREAD_FLAGS \ 204 (CLONE_VM | CLONE_FS | CLONE_FILES | \ 205 CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM) 206 207 /* These flags are ignored: 208 * CLONE_DETACHED is now ignored by the kernel; 209 * CLONE_IO is just an optimisation hint to the I/O scheduler 210 */ 211 #define CLONE_IGNORED_FLAGS \ 212 (CLONE_DETACHED | CLONE_IO) 213 214 /* Flags for fork which we can implement within QEMU itself */ 215 #define CLONE_OPTIONAL_FORK_FLAGS \ 216 (CLONE_SETTLS | CLONE_PARENT_SETTID | \ 217 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID) 218 219 /* Flags for thread creation which we can implement within QEMU itself */ 220 #define CLONE_OPTIONAL_THREAD_FLAGS \ 221 (CLONE_SETTLS | CLONE_PARENT_SETTID | \ 222 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT) 223 224 #define CLONE_INVALID_FORK_FLAGS \ 225 (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS)) 226 227 #define CLONE_INVALID_THREAD_FLAGS \ 228 (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS | \ 229 CLONE_IGNORED_FLAGS)) 230 231 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits 232 * have almost all been allocated. We cannot support any of 233 * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC, 234 * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED. 235 * The checks against the invalid thread masks above will catch these. 236 * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.) 237 */ 238 239 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted 240 * once. This exercises the codepaths for restart. 241 */ 242 //#define DEBUG_ERESTARTSYS 243 244 //#include <linux/msdos_fs.h> 245 #define VFAT_IOCTL_READDIR_BOTH \ 246 _IOC(_IOC_READ, 'r', 1, (sizeof(struct linux_dirent) + 256) * 2) 247 #define VFAT_IOCTL_READDIR_SHORT \ 248 _IOC(_IOC_READ, 'r', 2, (sizeof(struct linux_dirent) + 256) * 2) 249 250 #undef _syscall0 251 #undef _syscall1 252 #undef _syscall2 253 #undef _syscall3 254 #undef _syscall4 255 #undef _syscall5 256 #undef _syscall6 257 258 #define _syscall0(type,name) \ 259 static type name (void) \ 260 { \ 261 return syscall(__NR_##name); \ 262 } 263 264 #define _syscall1(type,name,type1,arg1) \ 265 static type name (type1 arg1) \ 266 { \ 267 return syscall(__NR_##name, arg1); \ 268 } 269 270 #define _syscall2(type,name,type1,arg1,type2,arg2) \ 271 static type name (type1 arg1,type2 arg2) \ 272 { \ 273 return syscall(__NR_##name, arg1, arg2); \ 274 } 275 276 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \ 277 static type name (type1 arg1,type2 arg2,type3 arg3) \ 278 { \ 279 return syscall(__NR_##name, arg1, arg2, arg3); \ 280 } 281 282 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \ 283 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \ 284 { \ 285 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \ 286 } 287 288 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \ 289 type5,arg5) \ 290 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \ 291 { \ 292 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \ 293 } 294 295 296 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \ 297 type5,arg5,type6,arg6) \ 298 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \ 299 type6 arg6) \ 300 { \ 301 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \ 302 } 303 304 305 #define __NR_sys_uname __NR_uname 306 #define __NR_sys_getcwd1 __NR_getcwd 307 #define __NR_sys_getdents __NR_getdents 308 #define __NR_sys_getdents64 __NR_getdents64 309 #define __NR_sys_getpriority __NR_getpriority 310 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo 311 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo 312 #define __NR_sys_syslog __NR_syslog 313 #if defined(__NR_futex) 314 # define __NR_sys_futex __NR_futex 315 #endif 316 #if defined(__NR_futex_time64) 317 # define __NR_sys_futex_time64 __NR_futex_time64 318 #endif 319 #define __NR_sys_statx __NR_statx 320 321 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__) 322 #define __NR__llseek __NR_lseek 323 #endif 324 325 /* Newer kernel ports have llseek() instead of _llseek() */ 326 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek) 327 #define TARGET_NR__llseek TARGET_NR_llseek 328 #endif 329 330 /* some platforms need to mask more bits than just TARGET_O_NONBLOCK */ 331 #ifndef TARGET_O_NONBLOCK_MASK 332 #define TARGET_O_NONBLOCK_MASK TARGET_O_NONBLOCK 333 #endif 334 335 #define __NR_sys_gettid __NR_gettid 336 _syscall0(int, sys_gettid) 337 338 /* For the 64-bit guest on 32-bit host case we must emulate 339 * getdents using getdents64, because otherwise the host 340 * might hand us back more dirent records than we can fit 341 * into the guest buffer after structure format conversion. 342 * Otherwise we emulate getdents with getdents if the host has it. 343 */ 344 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS 345 #define EMULATE_GETDENTS_WITH_GETDENTS 346 #endif 347 348 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS) 349 _syscall3(int, sys_getdents, uint, fd, struct linux_dirent *, dirp, uint, count); 350 #endif 351 #if (defined(TARGET_NR_getdents) && \ 352 !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \ 353 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64)) 354 _syscall3(int, sys_getdents64, uint, fd, struct linux_dirent64 *, dirp, uint, count); 355 #endif 356 #if defined(TARGET_NR__llseek) && defined(__NR_llseek) 357 _syscall5(int, _llseek, uint, fd, ulong, hi, ulong, lo, 358 loff_t *, res, uint, wh); 359 #endif 360 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo) 361 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig, 362 siginfo_t *, uinfo) 363 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len) 364 #ifdef __NR_exit_group 365 _syscall1(int,exit_group,int,error_code) 366 #endif 367 #if defined(__NR_close_range) && defined(TARGET_NR_close_range) 368 #define __NR_sys_close_range __NR_close_range 369 _syscall3(int,sys_close_range,int,first,int,last,int,flags) 370 #ifndef CLOSE_RANGE_CLOEXEC 371 #define CLOSE_RANGE_CLOEXEC (1U << 2) 372 #endif 373 #endif 374 #if defined(__NR_futex) 375 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val, 376 const struct timespec *,timeout,int *,uaddr2,int,val3) 377 #endif 378 #if defined(__NR_futex_time64) 379 _syscall6(int,sys_futex_time64,int *,uaddr,int,op,int,val, 380 const struct timespec *,timeout,int *,uaddr2,int,val3) 381 #endif 382 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open) 383 _syscall2(int, pidfd_open, pid_t, pid, unsigned int, flags); 384 #endif 385 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal) 386 _syscall4(int, pidfd_send_signal, int, pidfd, int, sig, siginfo_t *, info, 387 unsigned int, flags); 388 #endif 389 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd) 390 _syscall3(int, pidfd_getfd, int, pidfd, int, targetfd, unsigned int, flags); 391 #endif 392 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity 393 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len, 394 unsigned long *, user_mask_ptr); 395 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity 396 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len, 397 unsigned long *, user_mask_ptr); 398 /* sched_attr is not defined in glibc */ 399 struct sched_attr { 400 uint32_t size; 401 uint32_t sched_policy; 402 uint64_t sched_flags; 403 int32_t sched_nice; 404 uint32_t sched_priority; 405 uint64_t sched_runtime; 406 uint64_t sched_deadline; 407 uint64_t sched_period; 408 uint32_t sched_util_min; 409 uint32_t sched_util_max; 410 }; 411 #define __NR_sys_sched_getattr __NR_sched_getattr 412 _syscall4(int, sys_sched_getattr, pid_t, pid, struct sched_attr *, attr, 413 unsigned int, size, unsigned int, flags); 414 #define __NR_sys_sched_setattr __NR_sched_setattr 415 _syscall3(int, sys_sched_setattr, pid_t, pid, struct sched_attr *, attr, 416 unsigned int, flags); 417 #define __NR_sys_sched_getscheduler __NR_sched_getscheduler 418 _syscall1(int, sys_sched_getscheduler, pid_t, pid); 419 #define __NR_sys_sched_setscheduler __NR_sched_setscheduler 420 _syscall3(int, sys_sched_setscheduler, pid_t, pid, int, policy, 421 const struct sched_param *, param); 422 #define __NR_sys_sched_getparam __NR_sched_getparam 423 _syscall2(int, sys_sched_getparam, pid_t, pid, 424 struct sched_param *, param); 425 #define __NR_sys_sched_setparam __NR_sched_setparam 426 _syscall2(int, sys_sched_setparam, pid_t, pid, 427 const struct sched_param *, param); 428 #define __NR_sys_getcpu __NR_getcpu 429 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache); 430 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd, 431 void *, arg); 432 _syscall2(int, capget, struct __user_cap_header_struct *, header, 433 struct __user_cap_data_struct *, data); 434 _syscall2(int, capset, struct __user_cap_header_struct *, header, 435 struct __user_cap_data_struct *, data); 436 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get) 437 _syscall2(int, ioprio_get, int, which, int, who) 438 #endif 439 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set) 440 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio) 441 #endif 442 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom) 443 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags) 444 #endif 445 446 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp) 447 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type, 448 unsigned long, idx1, unsigned long, idx2) 449 #endif 450 451 /* 452 * It is assumed that struct statx is architecture independent. 453 */ 454 #if defined(TARGET_NR_statx) && defined(__NR_statx) 455 _syscall5(int, sys_statx, int, dirfd, const char *, pathname, int, flags, 456 unsigned int, mask, struct target_statx *, statxbuf) 457 #endif 458 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier) 459 _syscall2(int, membarrier, int, cmd, int, flags) 460 #endif 461 462 static const bitmask_transtbl fcntl_flags_tbl[] = { 463 { TARGET_O_ACCMODE, TARGET_O_WRONLY, O_ACCMODE, O_WRONLY, }, 464 { TARGET_O_ACCMODE, TARGET_O_RDWR, O_ACCMODE, O_RDWR, }, 465 { TARGET_O_CREAT, TARGET_O_CREAT, O_CREAT, O_CREAT, }, 466 { TARGET_O_EXCL, TARGET_O_EXCL, O_EXCL, O_EXCL, }, 467 { TARGET_O_NOCTTY, TARGET_O_NOCTTY, O_NOCTTY, O_NOCTTY, }, 468 { TARGET_O_TRUNC, TARGET_O_TRUNC, O_TRUNC, O_TRUNC, }, 469 { TARGET_O_APPEND, TARGET_O_APPEND, O_APPEND, O_APPEND, }, 470 { TARGET_O_NONBLOCK, TARGET_O_NONBLOCK, O_NONBLOCK, O_NONBLOCK, }, 471 { TARGET_O_SYNC, TARGET_O_DSYNC, O_SYNC, O_DSYNC, }, 472 { TARGET_O_SYNC, TARGET_O_SYNC, O_SYNC, O_SYNC, }, 473 { TARGET_FASYNC, TARGET_FASYNC, FASYNC, FASYNC, }, 474 { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, }, 475 { TARGET_O_NOFOLLOW, TARGET_O_NOFOLLOW, O_NOFOLLOW, O_NOFOLLOW, }, 476 #if defined(O_DIRECT) 477 { TARGET_O_DIRECT, TARGET_O_DIRECT, O_DIRECT, O_DIRECT, }, 478 #endif 479 #if defined(O_NOATIME) 480 { TARGET_O_NOATIME, TARGET_O_NOATIME, O_NOATIME, O_NOATIME }, 481 #endif 482 #if defined(O_CLOEXEC) 483 { TARGET_O_CLOEXEC, TARGET_O_CLOEXEC, O_CLOEXEC, O_CLOEXEC }, 484 #endif 485 #if defined(O_PATH) 486 { TARGET_O_PATH, TARGET_O_PATH, O_PATH, O_PATH }, 487 #endif 488 #if defined(O_TMPFILE) 489 { TARGET_O_TMPFILE, TARGET_O_TMPFILE, O_TMPFILE, O_TMPFILE }, 490 #endif 491 /* Don't terminate the list prematurely on 64-bit host+guest. */ 492 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0 493 { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, }, 494 #endif 495 { 0, 0, 0, 0 } 496 }; 497 498 _syscall2(int, sys_getcwd1, char *, buf, size_t, size) 499 500 #if defined(TARGET_NR_utimensat) || defined(TARGET_NR_utimensat_time64) 501 #if defined(__NR_utimensat) 502 #define __NR_sys_utimensat __NR_utimensat 503 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname, 504 const struct timespec *,tsp,int,flags) 505 #else 506 static int sys_utimensat(int dirfd, const char *pathname, 507 const struct timespec times[2], int flags) 508 { 509 errno = ENOSYS; 510 return -1; 511 } 512 #endif 513 #endif /* TARGET_NR_utimensat */ 514 515 #ifdef TARGET_NR_renameat2 516 #if defined(__NR_renameat2) 517 #define __NR_sys_renameat2 __NR_renameat2 518 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd, 519 const char *, new, unsigned int, flags) 520 #else 521 static int sys_renameat2(int oldfd, const char *old, 522 int newfd, const char *new, int flags) 523 { 524 if (flags == 0) { 525 return renameat(oldfd, old, newfd, new); 526 } 527 errno = ENOSYS; 528 return -1; 529 } 530 #endif 531 #endif /* TARGET_NR_renameat2 */ 532 533 #ifdef CONFIG_INOTIFY 534 #include <sys/inotify.h> 535 #else 536 /* Userspace can usually survive runtime without inotify */ 537 #undef TARGET_NR_inotify_init 538 #undef TARGET_NR_inotify_init1 539 #undef TARGET_NR_inotify_add_watch 540 #undef TARGET_NR_inotify_rm_watch 541 #endif /* CONFIG_INOTIFY */ 542 543 #if defined(TARGET_NR_prlimit64) 544 #ifndef __NR_prlimit64 545 # define __NR_prlimit64 -1 546 #endif 547 #define __NR_sys_prlimit64 __NR_prlimit64 548 /* The glibc rlimit structure may not be that used by the underlying syscall */ 549 struct host_rlimit64 { 550 uint64_t rlim_cur; 551 uint64_t rlim_max; 552 }; 553 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource, 554 const struct host_rlimit64 *, new_limit, 555 struct host_rlimit64 *, old_limit) 556 #endif 557 558 559 #if defined(TARGET_NR_timer_create) 560 /* Maximum of 32 active POSIX timers allowed at any one time. */ 561 #define GUEST_TIMER_MAX 32 562 static timer_t g_posix_timers[GUEST_TIMER_MAX]; 563 static int g_posix_timer_allocated[GUEST_TIMER_MAX]; 564 565 static inline int next_free_host_timer(void) 566 { 567 int k; 568 for (k = 0; k < ARRAY_SIZE(g_posix_timer_allocated); k++) { 569 if (qatomic_xchg(g_posix_timer_allocated + k, 1) == 0) { 570 return k; 571 } 572 } 573 return -1; 574 } 575 576 static inline void free_host_timer_slot(int id) 577 { 578 qatomic_store_release(g_posix_timer_allocated + id, 0); 579 } 580 #endif 581 582 static inline int host_to_target_errno(int host_errno) 583 { 584 switch (host_errno) { 585 #define E(X) case X: return TARGET_##X; 586 #include "errnos.c.inc" 587 #undef E 588 default: 589 return host_errno; 590 } 591 } 592 593 static inline int target_to_host_errno(int target_errno) 594 { 595 switch (target_errno) { 596 #define E(X) case TARGET_##X: return X; 597 #include "errnos.c.inc" 598 #undef E 599 default: 600 return target_errno; 601 } 602 } 603 604 abi_long get_errno(abi_long ret) 605 { 606 if (ret == -1) 607 return -host_to_target_errno(errno); 608 else 609 return ret; 610 } 611 612 const char *target_strerror(int err) 613 { 614 if (err == QEMU_ERESTARTSYS) { 615 return "To be restarted"; 616 } 617 if (err == QEMU_ESIGRETURN) { 618 return "Successful exit from sigreturn"; 619 } 620 621 return strerror(target_to_host_errno(err)); 622 } 623 624 static int check_zeroed_user(abi_long addr, size_t ksize, size_t usize) 625 { 626 int i; 627 uint8_t b; 628 if (usize <= ksize) { 629 return 1; 630 } 631 for (i = ksize; i < usize; i++) { 632 if (get_user_u8(b, addr + i)) { 633 return -TARGET_EFAULT; 634 } 635 if (b != 0) { 636 return 0; 637 } 638 } 639 return 1; 640 } 641 642 #define safe_syscall0(type, name) \ 643 static type safe_##name(void) \ 644 { \ 645 return safe_syscall(__NR_##name); \ 646 } 647 648 #define safe_syscall1(type, name, type1, arg1) \ 649 static type safe_##name(type1 arg1) \ 650 { \ 651 return safe_syscall(__NR_##name, arg1); \ 652 } 653 654 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \ 655 static type safe_##name(type1 arg1, type2 arg2) \ 656 { \ 657 return safe_syscall(__NR_##name, arg1, arg2); \ 658 } 659 660 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \ 661 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \ 662 { \ 663 return safe_syscall(__NR_##name, arg1, arg2, arg3); \ 664 } 665 666 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \ 667 type4, arg4) \ 668 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \ 669 { \ 670 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \ 671 } 672 673 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \ 674 type4, arg4, type5, arg5) \ 675 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \ 676 type5 arg5) \ 677 { \ 678 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \ 679 } 680 681 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \ 682 type4, arg4, type5, arg5, type6, arg6) \ 683 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \ 684 type5 arg5, type6 arg6) \ 685 { \ 686 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \ 687 } 688 689 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count) 690 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count) 691 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \ 692 int, flags, mode_t, mode) 693 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid) 694 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \ 695 struct rusage *, rusage) 696 #endif 697 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \ 698 int, options, struct rusage *, rusage) 699 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp) 700 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \ 701 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64) 702 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \ 703 fd_set *, exceptfds, struct timespec *, timeout, void *, sig) 704 #endif 705 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_ppoll_time64) 706 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds, 707 struct timespec *, tsp, const sigset_t *, sigmask, 708 size_t, sigsetsize) 709 #endif 710 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events, 711 int, maxevents, int, timeout, const sigset_t *, sigmask, 712 size_t, sigsetsize) 713 #if defined(__NR_futex) 714 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \ 715 const struct timespec *,timeout,int *,uaddr2,int,val3) 716 #endif 717 #if defined(__NR_futex_time64) 718 safe_syscall6(int,futex_time64,int *,uaddr,int,op,int,val, \ 719 const struct timespec *,timeout,int *,uaddr2,int,val3) 720 #endif 721 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize) 722 safe_syscall2(int, kill, pid_t, pid, int, sig) 723 safe_syscall2(int, tkill, int, tid, int, sig) 724 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig) 725 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt) 726 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt) 727 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt, 728 unsigned long, pos_l, unsigned long, pos_h) 729 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt, 730 unsigned long, pos_l, unsigned long, pos_h) 731 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr, 732 socklen_t, addrlen) 733 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len, 734 int, flags, const struct sockaddr *, addr, socklen_t, addrlen) 735 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len, 736 int, flags, struct sockaddr *, addr, socklen_t *, addrlen) 737 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags) 738 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags) 739 safe_syscall2(int, flock, int, fd, int, operation) 740 #if defined(TARGET_NR_rt_sigtimedwait) || defined(TARGET_NR_rt_sigtimedwait_time64) 741 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo, 742 const struct timespec *, uts, size_t, sigsetsize) 743 #endif 744 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len, 745 int, flags) 746 #if defined(TARGET_NR_nanosleep) 747 safe_syscall2(int, nanosleep, const struct timespec *, req, 748 struct timespec *, rem) 749 #endif 750 #if defined(TARGET_NR_clock_nanosleep) || \ 751 defined(TARGET_NR_clock_nanosleep_time64) 752 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags, 753 const struct timespec *, req, struct timespec *, rem) 754 #endif 755 #ifdef __NR_ipc 756 #ifdef __s390x__ 757 safe_syscall5(int, ipc, int, call, long, first, long, second, long, third, 758 void *, ptr) 759 #else 760 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third, 761 void *, ptr, long, fifth) 762 #endif 763 #endif 764 #ifdef __NR_msgsnd 765 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz, 766 int, flags) 767 #endif 768 #ifdef __NR_msgrcv 769 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz, 770 long, msgtype, int, flags) 771 #endif 772 #ifdef __NR_semtimedop 773 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops, 774 unsigned, nsops, const struct timespec *, timeout) 775 #endif 776 #if defined(TARGET_NR_mq_timedsend) || \ 777 defined(TARGET_NR_mq_timedsend_time64) 778 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr, 779 size_t, len, unsigned, prio, const struct timespec *, timeout) 780 #endif 781 #if defined(TARGET_NR_mq_timedreceive) || \ 782 defined(TARGET_NR_mq_timedreceive_time64) 783 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr, 784 size_t, len, unsigned *, prio, const struct timespec *, timeout) 785 #endif 786 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range) 787 safe_syscall6(ssize_t, copy_file_range, int, infd, loff_t *, pinoff, 788 int, outfd, loff_t *, poutoff, size_t, length, 789 unsigned int, flags) 790 #endif 791 792 /* We do ioctl like this rather than via safe_syscall3 to preserve the 793 * "third argument might be integer or pointer or not present" behaviour of 794 * the libc function. 795 */ 796 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__) 797 /* Similarly for fcntl. Note that callers must always: 798 * pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK 799 * use the flock64 struct rather than unsuffixed flock 800 * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts. 801 */ 802 #ifdef __NR_fcntl64 803 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__) 804 #else 805 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__) 806 #endif 807 808 static inline int host_to_target_sock_type(int host_type) 809 { 810 int target_type; 811 812 switch (host_type & 0xf /* SOCK_TYPE_MASK */) { 813 case SOCK_DGRAM: 814 target_type = TARGET_SOCK_DGRAM; 815 break; 816 case SOCK_STREAM: 817 target_type = TARGET_SOCK_STREAM; 818 break; 819 default: 820 target_type = host_type & 0xf /* SOCK_TYPE_MASK */; 821 break; 822 } 823 824 #if defined(SOCK_CLOEXEC) 825 if (host_type & SOCK_CLOEXEC) { 826 target_type |= TARGET_SOCK_CLOEXEC; 827 } 828 #endif 829 830 #if defined(SOCK_NONBLOCK) 831 if (host_type & SOCK_NONBLOCK) { 832 target_type |= TARGET_SOCK_NONBLOCK; 833 } 834 #endif 835 836 return target_type; 837 } 838 839 static abi_ulong target_brk; 840 static abi_ulong target_original_brk; 841 static abi_ulong brk_page; 842 843 void target_set_brk(abi_ulong new_brk) 844 { 845 target_original_brk = target_brk = HOST_PAGE_ALIGN(new_brk); 846 brk_page = HOST_PAGE_ALIGN(target_brk); 847 } 848 849 //#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0) 850 #define DEBUGF_BRK(message, args...) 851 852 /* do_brk() must return target values and target errnos. */ 853 abi_long do_brk(abi_ulong new_brk) 854 { 855 abi_long mapped_addr; 856 abi_ulong new_alloc_size; 857 858 /* brk pointers are always untagged */ 859 860 DEBUGF_BRK("do_brk(" TARGET_ABI_FMT_lx ") -> ", new_brk); 861 862 if (!new_brk) { 863 DEBUGF_BRK(TARGET_ABI_FMT_lx " (!new_brk)\n", target_brk); 864 return target_brk; 865 } 866 if (new_brk < target_original_brk) { 867 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk < target_original_brk)\n", 868 target_brk); 869 return target_brk; 870 } 871 872 /* If the new brk is less than the highest page reserved to the 873 * target heap allocation, set it and we're almost done... */ 874 if (new_brk <= brk_page) { 875 /* Heap contents are initialized to zero, as for anonymous 876 * mapped pages. */ 877 if (new_brk > target_brk) { 878 memset(g2h_untagged(target_brk), 0, new_brk - target_brk); 879 } 880 target_brk = new_brk; 881 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk <= brk_page)\n", target_brk); 882 return target_brk; 883 } 884 885 /* We need to allocate more memory after the brk... Note that 886 * we don't use MAP_FIXED because that will map over the top of 887 * any existing mapping (like the one with the host libc or qemu 888 * itself); instead we treat "mapped but at wrong address" as 889 * a failure and unmap again. 890 */ 891 new_alloc_size = HOST_PAGE_ALIGN(new_brk - brk_page); 892 mapped_addr = get_errno(target_mmap(brk_page, new_alloc_size, 893 PROT_READ|PROT_WRITE, 894 MAP_ANON|MAP_PRIVATE, 0, 0)); 895 896 if (mapped_addr == brk_page) { 897 /* Heap contents are initialized to zero, as for anonymous 898 * mapped pages. Technically the new pages are already 899 * initialized to zero since they *are* anonymous mapped 900 * pages, however we have to take care with the contents that 901 * come from the remaining part of the previous page: it may 902 * contains garbage data due to a previous heap usage (grown 903 * then shrunken). */ 904 memset(g2h_untagged(target_brk), 0, brk_page - target_brk); 905 906 target_brk = new_brk; 907 brk_page = HOST_PAGE_ALIGN(target_brk); 908 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr == brk_page)\n", 909 target_brk); 910 return target_brk; 911 } else if (mapped_addr != -1) { 912 /* Mapped but at wrong address, meaning there wasn't actually 913 * enough space for this brk. 914 */ 915 target_munmap(mapped_addr, new_alloc_size); 916 mapped_addr = -1; 917 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr != -1)\n", target_brk); 918 } 919 else { 920 DEBUGF_BRK(TARGET_ABI_FMT_lx " (otherwise)\n", target_brk); 921 } 922 923 #if defined(TARGET_ALPHA) 924 /* We (partially) emulate OSF/1 on Alpha, which requires we 925 return a proper errno, not an unchanged brk value. */ 926 return -TARGET_ENOMEM; 927 #endif 928 /* For everything else, return the previous break. */ 929 return target_brk; 930 } 931 932 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \ 933 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64) 934 static inline abi_long copy_from_user_fdset(fd_set *fds, 935 abi_ulong target_fds_addr, 936 int n) 937 { 938 int i, nw, j, k; 939 abi_ulong b, *target_fds; 940 941 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS); 942 if (!(target_fds = lock_user(VERIFY_READ, 943 target_fds_addr, 944 sizeof(abi_ulong) * nw, 945 1))) 946 return -TARGET_EFAULT; 947 948 FD_ZERO(fds); 949 k = 0; 950 for (i = 0; i < nw; i++) { 951 /* grab the abi_ulong */ 952 __get_user(b, &target_fds[i]); 953 for (j = 0; j < TARGET_ABI_BITS; j++) { 954 /* check the bit inside the abi_ulong */ 955 if ((b >> j) & 1) 956 FD_SET(k, fds); 957 k++; 958 } 959 } 960 961 unlock_user(target_fds, target_fds_addr, 0); 962 963 return 0; 964 } 965 966 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr, 967 abi_ulong target_fds_addr, 968 int n) 969 { 970 if (target_fds_addr) { 971 if (copy_from_user_fdset(fds, target_fds_addr, n)) 972 return -TARGET_EFAULT; 973 *fds_ptr = fds; 974 } else { 975 *fds_ptr = NULL; 976 } 977 return 0; 978 } 979 980 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr, 981 const fd_set *fds, 982 int n) 983 { 984 int i, nw, j, k; 985 abi_long v; 986 abi_ulong *target_fds; 987 988 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS); 989 if (!(target_fds = lock_user(VERIFY_WRITE, 990 target_fds_addr, 991 sizeof(abi_ulong) * nw, 992 0))) 993 return -TARGET_EFAULT; 994 995 k = 0; 996 for (i = 0; i < nw; i++) { 997 v = 0; 998 for (j = 0; j < TARGET_ABI_BITS; j++) { 999 v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j); 1000 k++; 1001 } 1002 __put_user(v, &target_fds[i]); 1003 } 1004 1005 unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw); 1006 1007 return 0; 1008 } 1009 #endif 1010 1011 #if defined(__alpha__) 1012 #define HOST_HZ 1024 1013 #else 1014 #define HOST_HZ 100 1015 #endif 1016 1017 static inline abi_long host_to_target_clock_t(long ticks) 1018 { 1019 #if HOST_HZ == TARGET_HZ 1020 return ticks; 1021 #else 1022 return ((int64_t)ticks * TARGET_HZ) / HOST_HZ; 1023 #endif 1024 } 1025 1026 static inline abi_long host_to_target_rusage(abi_ulong target_addr, 1027 const struct rusage *rusage) 1028 { 1029 struct target_rusage *target_rusage; 1030 1031 if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0)) 1032 return -TARGET_EFAULT; 1033 target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec); 1034 target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec); 1035 target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec); 1036 target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec); 1037 target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss); 1038 target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss); 1039 target_rusage->ru_idrss = tswapal(rusage->ru_idrss); 1040 target_rusage->ru_isrss = tswapal(rusage->ru_isrss); 1041 target_rusage->ru_minflt = tswapal(rusage->ru_minflt); 1042 target_rusage->ru_majflt = tswapal(rusage->ru_majflt); 1043 target_rusage->ru_nswap = tswapal(rusage->ru_nswap); 1044 target_rusage->ru_inblock = tswapal(rusage->ru_inblock); 1045 target_rusage->ru_oublock = tswapal(rusage->ru_oublock); 1046 target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd); 1047 target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv); 1048 target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals); 1049 target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw); 1050 target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw); 1051 unlock_user_struct(target_rusage, target_addr, 1); 1052 1053 return 0; 1054 } 1055 1056 #ifdef TARGET_NR_setrlimit 1057 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim) 1058 { 1059 abi_ulong target_rlim_swap; 1060 rlim_t result; 1061 1062 target_rlim_swap = tswapal(target_rlim); 1063 if (target_rlim_swap == TARGET_RLIM_INFINITY) 1064 return RLIM_INFINITY; 1065 1066 result = target_rlim_swap; 1067 if (target_rlim_swap != (rlim_t)result) 1068 return RLIM_INFINITY; 1069 1070 return result; 1071 } 1072 #endif 1073 1074 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit) 1075 static inline abi_ulong host_to_target_rlim(rlim_t rlim) 1076 { 1077 abi_ulong target_rlim_swap; 1078 abi_ulong result; 1079 1080 if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim) 1081 target_rlim_swap = TARGET_RLIM_INFINITY; 1082 else 1083 target_rlim_swap = rlim; 1084 result = tswapal(target_rlim_swap); 1085 1086 return result; 1087 } 1088 #endif 1089 1090 static inline int target_to_host_resource(int code) 1091 { 1092 switch (code) { 1093 case TARGET_RLIMIT_AS: 1094 return RLIMIT_AS; 1095 case TARGET_RLIMIT_CORE: 1096 return RLIMIT_CORE; 1097 case TARGET_RLIMIT_CPU: 1098 return RLIMIT_CPU; 1099 case TARGET_RLIMIT_DATA: 1100 return RLIMIT_DATA; 1101 case TARGET_RLIMIT_FSIZE: 1102 return RLIMIT_FSIZE; 1103 case TARGET_RLIMIT_LOCKS: 1104 return RLIMIT_LOCKS; 1105 case TARGET_RLIMIT_MEMLOCK: 1106 return RLIMIT_MEMLOCK; 1107 case TARGET_RLIMIT_MSGQUEUE: 1108 return RLIMIT_MSGQUEUE; 1109 case TARGET_RLIMIT_NICE: 1110 return RLIMIT_NICE; 1111 case TARGET_RLIMIT_NOFILE: 1112 return RLIMIT_NOFILE; 1113 case TARGET_RLIMIT_NPROC: 1114 return RLIMIT_NPROC; 1115 case TARGET_RLIMIT_RSS: 1116 return RLIMIT_RSS; 1117 case TARGET_RLIMIT_RTPRIO: 1118 return RLIMIT_RTPRIO; 1119 #ifdef RLIMIT_RTTIME 1120 case TARGET_RLIMIT_RTTIME: 1121 return RLIMIT_RTTIME; 1122 #endif 1123 case TARGET_RLIMIT_SIGPENDING: 1124 return RLIMIT_SIGPENDING; 1125 case TARGET_RLIMIT_STACK: 1126 return RLIMIT_STACK; 1127 default: 1128 return code; 1129 } 1130 } 1131 1132 static inline abi_long copy_from_user_timeval(struct timeval *tv, 1133 abi_ulong target_tv_addr) 1134 { 1135 struct target_timeval *target_tv; 1136 1137 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) { 1138 return -TARGET_EFAULT; 1139 } 1140 1141 __get_user(tv->tv_sec, &target_tv->tv_sec); 1142 __get_user(tv->tv_usec, &target_tv->tv_usec); 1143 1144 unlock_user_struct(target_tv, target_tv_addr, 0); 1145 1146 return 0; 1147 } 1148 1149 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr, 1150 const struct timeval *tv) 1151 { 1152 struct target_timeval *target_tv; 1153 1154 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) { 1155 return -TARGET_EFAULT; 1156 } 1157 1158 __put_user(tv->tv_sec, &target_tv->tv_sec); 1159 __put_user(tv->tv_usec, &target_tv->tv_usec); 1160 1161 unlock_user_struct(target_tv, target_tv_addr, 1); 1162 1163 return 0; 1164 } 1165 1166 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME) 1167 static inline abi_long copy_from_user_timeval64(struct timeval *tv, 1168 abi_ulong target_tv_addr) 1169 { 1170 struct target__kernel_sock_timeval *target_tv; 1171 1172 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) { 1173 return -TARGET_EFAULT; 1174 } 1175 1176 __get_user(tv->tv_sec, &target_tv->tv_sec); 1177 __get_user(tv->tv_usec, &target_tv->tv_usec); 1178 1179 unlock_user_struct(target_tv, target_tv_addr, 0); 1180 1181 return 0; 1182 } 1183 #endif 1184 1185 static inline abi_long copy_to_user_timeval64(abi_ulong target_tv_addr, 1186 const struct timeval *tv) 1187 { 1188 struct target__kernel_sock_timeval *target_tv; 1189 1190 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) { 1191 return -TARGET_EFAULT; 1192 } 1193 1194 __put_user(tv->tv_sec, &target_tv->tv_sec); 1195 __put_user(tv->tv_usec, &target_tv->tv_usec); 1196 1197 unlock_user_struct(target_tv, target_tv_addr, 1); 1198 1199 return 0; 1200 } 1201 1202 #if defined(TARGET_NR_futex) || \ 1203 defined(TARGET_NR_rt_sigtimedwait) || \ 1204 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \ 1205 defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \ 1206 defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \ 1207 defined(TARGET_NR_mq_timedreceive) || defined(TARGET_NR_ipc) || \ 1208 defined(TARGET_NR_semop) || defined(TARGET_NR_semtimedop) || \ 1209 defined(TARGET_NR_timer_settime) || \ 1210 (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)) 1211 static inline abi_long target_to_host_timespec(struct timespec *host_ts, 1212 abi_ulong target_addr) 1213 { 1214 struct target_timespec *target_ts; 1215 1216 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) { 1217 return -TARGET_EFAULT; 1218 } 1219 __get_user(host_ts->tv_sec, &target_ts->tv_sec); 1220 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec); 1221 unlock_user_struct(target_ts, target_addr, 0); 1222 return 0; 1223 } 1224 #endif 1225 1226 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64) || \ 1227 defined(TARGET_NR_timer_settime64) || \ 1228 defined(TARGET_NR_mq_timedsend_time64) || \ 1229 defined(TARGET_NR_mq_timedreceive_time64) || \ 1230 (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) || \ 1231 defined(TARGET_NR_clock_nanosleep_time64) || \ 1232 defined(TARGET_NR_rt_sigtimedwait_time64) || \ 1233 defined(TARGET_NR_utimensat) || \ 1234 defined(TARGET_NR_utimensat_time64) || \ 1235 defined(TARGET_NR_semtimedop_time64) || \ 1236 defined(TARGET_NR_pselect6_time64) || defined(TARGET_NR_ppoll_time64) 1237 static inline abi_long target_to_host_timespec64(struct timespec *host_ts, 1238 abi_ulong target_addr) 1239 { 1240 struct target__kernel_timespec *target_ts; 1241 1242 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) { 1243 return -TARGET_EFAULT; 1244 } 1245 __get_user(host_ts->tv_sec, &target_ts->tv_sec); 1246 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec); 1247 /* in 32bit mode, this drops the padding */ 1248 host_ts->tv_nsec = (long)(abi_long)host_ts->tv_nsec; 1249 unlock_user_struct(target_ts, target_addr, 0); 1250 return 0; 1251 } 1252 #endif 1253 1254 static inline abi_long host_to_target_timespec(abi_ulong target_addr, 1255 struct timespec *host_ts) 1256 { 1257 struct target_timespec *target_ts; 1258 1259 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) { 1260 return -TARGET_EFAULT; 1261 } 1262 __put_user(host_ts->tv_sec, &target_ts->tv_sec); 1263 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec); 1264 unlock_user_struct(target_ts, target_addr, 1); 1265 return 0; 1266 } 1267 1268 static inline abi_long host_to_target_timespec64(abi_ulong target_addr, 1269 struct timespec *host_ts) 1270 { 1271 struct target__kernel_timespec *target_ts; 1272 1273 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) { 1274 return -TARGET_EFAULT; 1275 } 1276 __put_user(host_ts->tv_sec, &target_ts->tv_sec); 1277 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec); 1278 unlock_user_struct(target_ts, target_addr, 1); 1279 return 0; 1280 } 1281 1282 #if defined(TARGET_NR_gettimeofday) 1283 static inline abi_long copy_to_user_timezone(abi_ulong target_tz_addr, 1284 struct timezone *tz) 1285 { 1286 struct target_timezone *target_tz; 1287 1288 if (!lock_user_struct(VERIFY_WRITE, target_tz, target_tz_addr, 1)) { 1289 return -TARGET_EFAULT; 1290 } 1291 1292 __put_user(tz->tz_minuteswest, &target_tz->tz_minuteswest); 1293 __put_user(tz->tz_dsttime, &target_tz->tz_dsttime); 1294 1295 unlock_user_struct(target_tz, target_tz_addr, 1); 1296 1297 return 0; 1298 } 1299 #endif 1300 1301 #if defined(TARGET_NR_settimeofday) 1302 static inline abi_long copy_from_user_timezone(struct timezone *tz, 1303 abi_ulong target_tz_addr) 1304 { 1305 struct target_timezone *target_tz; 1306 1307 if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) { 1308 return -TARGET_EFAULT; 1309 } 1310 1311 __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest); 1312 __get_user(tz->tz_dsttime, &target_tz->tz_dsttime); 1313 1314 unlock_user_struct(target_tz, target_tz_addr, 0); 1315 1316 return 0; 1317 } 1318 #endif 1319 1320 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 1321 #include <mqueue.h> 1322 1323 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr, 1324 abi_ulong target_mq_attr_addr) 1325 { 1326 struct target_mq_attr *target_mq_attr; 1327 1328 if (!lock_user_struct(VERIFY_READ, target_mq_attr, 1329 target_mq_attr_addr, 1)) 1330 return -TARGET_EFAULT; 1331 1332 __get_user(attr->mq_flags, &target_mq_attr->mq_flags); 1333 __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg); 1334 __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize); 1335 __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs); 1336 1337 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0); 1338 1339 return 0; 1340 } 1341 1342 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr, 1343 const struct mq_attr *attr) 1344 { 1345 struct target_mq_attr *target_mq_attr; 1346 1347 if (!lock_user_struct(VERIFY_WRITE, target_mq_attr, 1348 target_mq_attr_addr, 0)) 1349 return -TARGET_EFAULT; 1350 1351 __put_user(attr->mq_flags, &target_mq_attr->mq_flags); 1352 __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg); 1353 __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize); 1354 __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs); 1355 1356 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1); 1357 1358 return 0; 1359 } 1360 #endif 1361 1362 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) 1363 /* do_select() must return target values and target errnos. */ 1364 static abi_long do_select(int n, 1365 abi_ulong rfd_addr, abi_ulong wfd_addr, 1366 abi_ulong efd_addr, abi_ulong target_tv_addr) 1367 { 1368 fd_set rfds, wfds, efds; 1369 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr; 1370 struct timeval tv; 1371 struct timespec ts, *ts_ptr; 1372 abi_long ret; 1373 1374 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n); 1375 if (ret) { 1376 return ret; 1377 } 1378 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n); 1379 if (ret) { 1380 return ret; 1381 } 1382 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n); 1383 if (ret) { 1384 return ret; 1385 } 1386 1387 if (target_tv_addr) { 1388 if (copy_from_user_timeval(&tv, target_tv_addr)) 1389 return -TARGET_EFAULT; 1390 ts.tv_sec = tv.tv_sec; 1391 ts.tv_nsec = tv.tv_usec * 1000; 1392 ts_ptr = &ts; 1393 } else { 1394 ts_ptr = NULL; 1395 } 1396 1397 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr, 1398 ts_ptr, NULL)); 1399 1400 if (!is_error(ret)) { 1401 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) 1402 return -TARGET_EFAULT; 1403 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) 1404 return -TARGET_EFAULT; 1405 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) 1406 return -TARGET_EFAULT; 1407 1408 if (target_tv_addr) { 1409 tv.tv_sec = ts.tv_sec; 1410 tv.tv_usec = ts.tv_nsec / 1000; 1411 if (copy_to_user_timeval(target_tv_addr, &tv)) { 1412 return -TARGET_EFAULT; 1413 } 1414 } 1415 } 1416 1417 return ret; 1418 } 1419 1420 #if defined(TARGET_WANT_OLD_SYS_SELECT) 1421 static abi_long do_old_select(abi_ulong arg1) 1422 { 1423 struct target_sel_arg_struct *sel; 1424 abi_ulong inp, outp, exp, tvp; 1425 long nsel; 1426 1427 if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) { 1428 return -TARGET_EFAULT; 1429 } 1430 1431 nsel = tswapal(sel->n); 1432 inp = tswapal(sel->inp); 1433 outp = tswapal(sel->outp); 1434 exp = tswapal(sel->exp); 1435 tvp = tswapal(sel->tvp); 1436 1437 unlock_user_struct(sel, arg1, 0); 1438 1439 return do_select(nsel, inp, outp, exp, tvp); 1440 } 1441 #endif 1442 #endif 1443 1444 #if defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64) 1445 static abi_long do_pselect6(abi_long arg1, abi_long arg2, abi_long arg3, 1446 abi_long arg4, abi_long arg5, abi_long arg6, 1447 bool time64) 1448 { 1449 abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr; 1450 fd_set rfds, wfds, efds; 1451 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr; 1452 struct timespec ts, *ts_ptr; 1453 abi_long ret; 1454 1455 /* 1456 * The 6th arg is actually two args smashed together, 1457 * so we cannot use the C library. 1458 */ 1459 struct { 1460 sigset_t *set; 1461 size_t size; 1462 } sig, *sig_ptr; 1463 1464 abi_ulong arg_sigset, arg_sigsize, *arg7; 1465 1466 n = arg1; 1467 rfd_addr = arg2; 1468 wfd_addr = arg3; 1469 efd_addr = arg4; 1470 ts_addr = arg5; 1471 1472 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n); 1473 if (ret) { 1474 return ret; 1475 } 1476 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n); 1477 if (ret) { 1478 return ret; 1479 } 1480 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n); 1481 if (ret) { 1482 return ret; 1483 } 1484 1485 /* 1486 * This takes a timespec, and not a timeval, so we cannot 1487 * use the do_select() helper ... 1488 */ 1489 if (ts_addr) { 1490 if (time64) { 1491 if (target_to_host_timespec64(&ts, ts_addr)) { 1492 return -TARGET_EFAULT; 1493 } 1494 } else { 1495 if (target_to_host_timespec(&ts, ts_addr)) { 1496 return -TARGET_EFAULT; 1497 } 1498 } 1499 ts_ptr = &ts; 1500 } else { 1501 ts_ptr = NULL; 1502 } 1503 1504 /* Extract the two packed args for the sigset */ 1505 sig_ptr = NULL; 1506 if (arg6) { 1507 arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1); 1508 if (!arg7) { 1509 return -TARGET_EFAULT; 1510 } 1511 arg_sigset = tswapal(arg7[0]); 1512 arg_sigsize = tswapal(arg7[1]); 1513 unlock_user(arg7, arg6, 0); 1514 1515 if (arg_sigset) { 1516 ret = process_sigsuspend_mask(&sig.set, arg_sigset, arg_sigsize); 1517 if (ret != 0) { 1518 return ret; 1519 } 1520 sig_ptr = &sig; 1521 sig.size = SIGSET_T_SIZE; 1522 } 1523 } 1524 1525 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr, 1526 ts_ptr, sig_ptr)); 1527 1528 if (sig_ptr) { 1529 finish_sigsuspend_mask(ret); 1530 } 1531 1532 if (!is_error(ret)) { 1533 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) { 1534 return -TARGET_EFAULT; 1535 } 1536 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) { 1537 return -TARGET_EFAULT; 1538 } 1539 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) { 1540 return -TARGET_EFAULT; 1541 } 1542 if (time64) { 1543 if (ts_addr && host_to_target_timespec64(ts_addr, &ts)) { 1544 return -TARGET_EFAULT; 1545 } 1546 } else { 1547 if (ts_addr && host_to_target_timespec(ts_addr, &ts)) { 1548 return -TARGET_EFAULT; 1549 } 1550 } 1551 } 1552 return ret; 1553 } 1554 #endif 1555 1556 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) || \ 1557 defined(TARGET_NR_ppoll_time64) 1558 static abi_long do_ppoll(abi_long arg1, abi_long arg2, abi_long arg3, 1559 abi_long arg4, abi_long arg5, bool ppoll, bool time64) 1560 { 1561 struct target_pollfd *target_pfd; 1562 unsigned int nfds = arg2; 1563 struct pollfd *pfd; 1564 unsigned int i; 1565 abi_long ret; 1566 1567 pfd = NULL; 1568 target_pfd = NULL; 1569 if (nfds) { 1570 if (nfds > (INT_MAX / sizeof(struct target_pollfd))) { 1571 return -TARGET_EINVAL; 1572 } 1573 target_pfd = lock_user(VERIFY_WRITE, arg1, 1574 sizeof(struct target_pollfd) * nfds, 1); 1575 if (!target_pfd) { 1576 return -TARGET_EFAULT; 1577 } 1578 1579 pfd = alloca(sizeof(struct pollfd) * nfds); 1580 for (i = 0; i < nfds; i++) { 1581 pfd[i].fd = tswap32(target_pfd[i].fd); 1582 pfd[i].events = tswap16(target_pfd[i].events); 1583 } 1584 } 1585 if (ppoll) { 1586 struct timespec _timeout_ts, *timeout_ts = &_timeout_ts; 1587 sigset_t *set = NULL; 1588 1589 if (arg3) { 1590 if (time64) { 1591 if (target_to_host_timespec64(timeout_ts, arg3)) { 1592 unlock_user(target_pfd, arg1, 0); 1593 return -TARGET_EFAULT; 1594 } 1595 } else { 1596 if (target_to_host_timespec(timeout_ts, arg3)) { 1597 unlock_user(target_pfd, arg1, 0); 1598 return -TARGET_EFAULT; 1599 } 1600 } 1601 } else { 1602 timeout_ts = NULL; 1603 } 1604 1605 if (arg4) { 1606 ret = process_sigsuspend_mask(&set, arg4, arg5); 1607 if (ret != 0) { 1608 unlock_user(target_pfd, arg1, 0); 1609 return ret; 1610 } 1611 } 1612 1613 ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts, 1614 set, SIGSET_T_SIZE)); 1615 1616 if (set) { 1617 finish_sigsuspend_mask(ret); 1618 } 1619 if (!is_error(ret) && arg3) { 1620 if (time64) { 1621 if (host_to_target_timespec64(arg3, timeout_ts)) { 1622 return -TARGET_EFAULT; 1623 } 1624 } else { 1625 if (host_to_target_timespec(arg3, timeout_ts)) { 1626 return -TARGET_EFAULT; 1627 } 1628 } 1629 } 1630 } else { 1631 struct timespec ts, *pts; 1632 1633 if (arg3 >= 0) { 1634 /* Convert ms to secs, ns */ 1635 ts.tv_sec = arg3 / 1000; 1636 ts.tv_nsec = (arg3 % 1000) * 1000000LL; 1637 pts = &ts; 1638 } else { 1639 /* -ve poll() timeout means "infinite" */ 1640 pts = NULL; 1641 } 1642 ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0)); 1643 } 1644 1645 if (!is_error(ret)) { 1646 for (i = 0; i < nfds; i++) { 1647 target_pfd[i].revents = tswap16(pfd[i].revents); 1648 } 1649 } 1650 unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds); 1651 return ret; 1652 } 1653 #endif 1654 1655 static abi_long do_pipe(CPUArchState *cpu_env, abi_ulong pipedes, 1656 int flags, int is_pipe2) 1657 { 1658 int host_pipe[2]; 1659 abi_long ret; 1660 ret = pipe2(host_pipe, flags); 1661 1662 if (is_error(ret)) 1663 return get_errno(ret); 1664 1665 /* Several targets have special calling conventions for the original 1666 pipe syscall, but didn't replicate this into the pipe2 syscall. */ 1667 if (!is_pipe2) { 1668 #if defined(TARGET_ALPHA) 1669 cpu_env->ir[IR_A4] = host_pipe[1]; 1670 return host_pipe[0]; 1671 #elif defined(TARGET_MIPS) 1672 cpu_env->active_tc.gpr[3] = host_pipe[1]; 1673 return host_pipe[0]; 1674 #elif defined(TARGET_SH4) 1675 cpu_env->gregs[1] = host_pipe[1]; 1676 return host_pipe[0]; 1677 #elif defined(TARGET_SPARC) 1678 cpu_env->regwptr[1] = host_pipe[1]; 1679 return host_pipe[0]; 1680 #endif 1681 } 1682 1683 if (put_user_s32(host_pipe[0], pipedes) 1684 || put_user_s32(host_pipe[1], pipedes + sizeof(abi_int))) 1685 return -TARGET_EFAULT; 1686 return get_errno(ret); 1687 } 1688 1689 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn, 1690 abi_ulong target_addr, 1691 socklen_t len) 1692 { 1693 struct target_ip_mreqn *target_smreqn; 1694 1695 target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1); 1696 if (!target_smreqn) 1697 return -TARGET_EFAULT; 1698 mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr; 1699 mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr; 1700 if (len == sizeof(struct target_ip_mreqn)) 1701 mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex); 1702 unlock_user(target_smreqn, target_addr, 0); 1703 1704 return 0; 1705 } 1706 1707 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr, 1708 abi_ulong target_addr, 1709 socklen_t len) 1710 { 1711 const socklen_t unix_maxlen = sizeof (struct sockaddr_un); 1712 sa_family_t sa_family; 1713 struct target_sockaddr *target_saddr; 1714 1715 if (fd_trans_target_to_host_addr(fd)) { 1716 return fd_trans_target_to_host_addr(fd)(addr, target_addr, len); 1717 } 1718 1719 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1); 1720 if (!target_saddr) 1721 return -TARGET_EFAULT; 1722 1723 sa_family = tswap16(target_saddr->sa_family); 1724 1725 /* Oops. The caller might send a incomplete sun_path; sun_path 1726 * must be terminated by \0 (see the manual page), but 1727 * unfortunately it is quite common to specify sockaddr_un 1728 * length as "strlen(x->sun_path)" while it should be 1729 * "strlen(...) + 1". We'll fix that here if needed. 1730 * Linux kernel has a similar feature. 1731 */ 1732 1733 if (sa_family == AF_UNIX) { 1734 if (len < unix_maxlen && len > 0) { 1735 char *cp = (char*)target_saddr; 1736 1737 if ( cp[len-1] && !cp[len] ) 1738 len++; 1739 } 1740 if (len > unix_maxlen) 1741 len = unix_maxlen; 1742 } 1743 1744 memcpy(addr, target_saddr, len); 1745 addr->sa_family = sa_family; 1746 if (sa_family == AF_NETLINK) { 1747 struct sockaddr_nl *nladdr; 1748 1749 nladdr = (struct sockaddr_nl *)addr; 1750 nladdr->nl_pid = tswap32(nladdr->nl_pid); 1751 nladdr->nl_groups = tswap32(nladdr->nl_groups); 1752 } else if (sa_family == AF_PACKET) { 1753 struct target_sockaddr_ll *lladdr; 1754 1755 lladdr = (struct target_sockaddr_ll *)addr; 1756 lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex); 1757 lladdr->sll_hatype = tswap16(lladdr->sll_hatype); 1758 } 1759 unlock_user(target_saddr, target_addr, 0); 1760 1761 return 0; 1762 } 1763 1764 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr, 1765 struct sockaddr *addr, 1766 socklen_t len) 1767 { 1768 struct target_sockaddr *target_saddr; 1769 1770 if (len == 0) { 1771 return 0; 1772 } 1773 assert(addr); 1774 1775 target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0); 1776 if (!target_saddr) 1777 return -TARGET_EFAULT; 1778 memcpy(target_saddr, addr, len); 1779 if (len >= offsetof(struct target_sockaddr, sa_family) + 1780 sizeof(target_saddr->sa_family)) { 1781 target_saddr->sa_family = tswap16(addr->sa_family); 1782 } 1783 if (addr->sa_family == AF_NETLINK && 1784 len >= sizeof(struct target_sockaddr_nl)) { 1785 struct target_sockaddr_nl *target_nl = 1786 (struct target_sockaddr_nl *)target_saddr; 1787 target_nl->nl_pid = tswap32(target_nl->nl_pid); 1788 target_nl->nl_groups = tswap32(target_nl->nl_groups); 1789 } else if (addr->sa_family == AF_PACKET) { 1790 struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr; 1791 target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex); 1792 target_ll->sll_hatype = tswap16(target_ll->sll_hatype); 1793 } else if (addr->sa_family == AF_INET6 && 1794 len >= sizeof(struct target_sockaddr_in6)) { 1795 struct target_sockaddr_in6 *target_in6 = 1796 (struct target_sockaddr_in6 *)target_saddr; 1797 target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id); 1798 } 1799 unlock_user(target_saddr, target_addr, len); 1800 1801 return 0; 1802 } 1803 1804 static inline abi_long target_to_host_cmsg(struct msghdr *msgh, 1805 struct target_msghdr *target_msgh) 1806 { 1807 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh); 1808 abi_long msg_controllen; 1809 abi_ulong target_cmsg_addr; 1810 struct target_cmsghdr *target_cmsg, *target_cmsg_start; 1811 socklen_t space = 0; 1812 1813 msg_controllen = tswapal(target_msgh->msg_controllen); 1814 if (msg_controllen < sizeof (struct target_cmsghdr)) 1815 goto the_end; 1816 target_cmsg_addr = tswapal(target_msgh->msg_control); 1817 target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1); 1818 target_cmsg_start = target_cmsg; 1819 if (!target_cmsg) 1820 return -TARGET_EFAULT; 1821 1822 while (cmsg && target_cmsg) { 1823 void *data = CMSG_DATA(cmsg); 1824 void *target_data = TARGET_CMSG_DATA(target_cmsg); 1825 1826 int len = tswapal(target_cmsg->cmsg_len) 1827 - sizeof(struct target_cmsghdr); 1828 1829 space += CMSG_SPACE(len); 1830 if (space > msgh->msg_controllen) { 1831 space -= CMSG_SPACE(len); 1832 /* This is a QEMU bug, since we allocated the payload 1833 * area ourselves (unlike overflow in host-to-target 1834 * conversion, which is just the guest giving us a buffer 1835 * that's too small). It can't happen for the payload types 1836 * we currently support; if it becomes an issue in future 1837 * we would need to improve our allocation strategy to 1838 * something more intelligent than "twice the size of the 1839 * target buffer we're reading from". 1840 */ 1841 qemu_log_mask(LOG_UNIMP, 1842 ("Unsupported ancillary data %d/%d: " 1843 "unhandled msg size\n"), 1844 tswap32(target_cmsg->cmsg_level), 1845 tswap32(target_cmsg->cmsg_type)); 1846 break; 1847 } 1848 1849 if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) { 1850 cmsg->cmsg_level = SOL_SOCKET; 1851 } else { 1852 cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level); 1853 } 1854 cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type); 1855 cmsg->cmsg_len = CMSG_LEN(len); 1856 1857 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) { 1858 int *fd = (int *)data; 1859 int *target_fd = (int *)target_data; 1860 int i, numfds = len / sizeof(int); 1861 1862 for (i = 0; i < numfds; i++) { 1863 __get_user(fd[i], target_fd + i); 1864 } 1865 } else if (cmsg->cmsg_level == SOL_SOCKET 1866 && cmsg->cmsg_type == SCM_CREDENTIALS) { 1867 struct ucred *cred = (struct ucred *)data; 1868 struct target_ucred *target_cred = 1869 (struct target_ucred *)target_data; 1870 1871 __get_user(cred->pid, &target_cred->pid); 1872 __get_user(cred->uid, &target_cred->uid); 1873 __get_user(cred->gid, &target_cred->gid); 1874 } else { 1875 qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n", 1876 cmsg->cmsg_level, cmsg->cmsg_type); 1877 memcpy(data, target_data, len); 1878 } 1879 1880 cmsg = CMSG_NXTHDR(msgh, cmsg); 1881 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg, 1882 target_cmsg_start); 1883 } 1884 unlock_user(target_cmsg, target_cmsg_addr, 0); 1885 the_end: 1886 msgh->msg_controllen = space; 1887 return 0; 1888 } 1889 1890 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh, 1891 struct msghdr *msgh) 1892 { 1893 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh); 1894 abi_long msg_controllen; 1895 abi_ulong target_cmsg_addr; 1896 struct target_cmsghdr *target_cmsg, *target_cmsg_start; 1897 socklen_t space = 0; 1898 1899 msg_controllen = tswapal(target_msgh->msg_controllen); 1900 if (msg_controllen < sizeof (struct target_cmsghdr)) 1901 goto the_end; 1902 target_cmsg_addr = tswapal(target_msgh->msg_control); 1903 target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0); 1904 target_cmsg_start = target_cmsg; 1905 if (!target_cmsg) 1906 return -TARGET_EFAULT; 1907 1908 while (cmsg && target_cmsg) { 1909 void *data = CMSG_DATA(cmsg); 1910 void *target_data = TARGET_CMSG_DATA(target_cmsg); 1911 1912 int len = cmsg->cmsg_len - sizeof(struct cmsghdr); 1913 int tgt_len, tgt_space; 1914 1915 /* We never copy a half-header but may copy half-data; 1916 * this is Linux's behaviour in put_cmsg(). Note that 1917 * truncation here is a guest problem (which we report 1918 * to the guest via the CTRUNC bit), unlike truncation 1919 * in target_to_host_cmsg, which is a QEMU bug. 1920 */ 1921 if (msg_controllen < sizeof(struct target_cmsghdr)) { 1922 target_msgh->msg_flags |= tswap32(MSG_CTRUNC); 1923 break; 1924 } 1925 1926 if (cmsg->cmsg_level == SOL_SOCKET) { 1927 target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET); 1928 } else { 1929 target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level); 1930 } 1931 target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type); 1932 1933 /* Payload types which need a different size of payload on 1934 * the target must adjust tgt_len here. 1935 */ 1936 tgt_len = len; 1937 switch (cmsg->cmsg_level) { 1938 case SOL_SOCKET: 1939 switch (cmsg->cmsg_type) { 1940 case SO_TIMESTAMP: 1941 tgt_len = sizeof(struct target_timeval); 1942 break; 1943 default: 1944 break; 1945 } 1946 break; 1947 default: 1948 break; 1949 } 1950 1951 if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) { 1952 target_msgh->msg_flags |= tswap32(MSG_CTRUNC); 1953 tgt_len = msg_controllen - sizeof(struct target_cmsghdr); 1954 } 1955 1956 /* We must now copy-and-convert len bytes of payload 1957 * into tgt_len bytes of destination space. Bear in mind 1958 * that in both source and destination we may be dealing 1959 * with a truncated value! 1960 */ 1961 switch (cmsg->cmsg_level) { 1962 case SOL_SOCKET: 1963 switch (cmsg->cmsg_type) { 1964 case SCM_RIGHTS: 1965 { 1966 int *fd = (int *)data; 1967 int *target_fd = (int *)target_data; 1968 int i, numfds = tgt_len / sizeof(int); 1969 1970 for (i = 0; i < numfds; i++) { 1971 __put_user(fd[i], target_fd + i); 1972 } 1973 break; 1974 } 1975 case SO_TIMESTAMP: 1976 { 1977 struct timeval *tv = (struct timeval *)data; 1978 struct target_timeval *target_tv = 1979 (struct target_timeval *)target_data; 1980 1981 if (len != sizeof(struct timeval) || 1982 tgt_len != sizeof(struct target_timeval)) { 1983 goto unimplemented; 1984 } 1985 1986 /* copy struct timeval to target */ 1987 __put_user(tv->tv_sec, &target_tv->tv_sec); 1988 __put_user(tv->tv_usec, &target_tv->tv_usec); 1989 break; 1990 } 1991 case SCM_CREDENTIALS: 1992 { 1993 struct ucred *cred = (struct ucred *)data; 1994 struct target_ucred *target_cred = 1995 (struct target_ucred *)target_data; 1996 1997 __put_user(cred->pid, &target_cred->pid); 1998 __put_user(cred->uid, &target_cred->uid); 1999 __put_user(cred->gid, &target_cred->gid); 2000 break; 2001 } 2002 default: 2003 goto unimplemented; 2004 } 2005 break; 2006 2007 case SOL_IP: 2008 switch (cmsg->cmsg_type) { 2009 case IP_TTL: 2010 { 2011 uint32_t *v = (uint32_t *)data; 2012 uint32_t *t_int = (uint32_t *)target_data; 2013 2014 if (len != sizeof(uint32_t) || 2015 tgt_len != sizeof(uint32_t)) { 2016 goto unimplemented; 2017 } 2018 __put_user(*v, t_int); 2019 break; 2020 } 2021 case IP_RECVERR: 2022 { 2023 struct errhdr_t { 2024 struct sock_extended_err ee; 2025 struct sockaddr_in offender; 2026 }; 2027 struct errhdr_t *errh = (struct errhdr_t *)data; 2028 struct errhdr_t *target_errh = 2029 (struct errhdr_t *)target_data; 2030 2031 if (len != sizeof(struct errhdr_t) || 2032 tgt_len != sizeof(struct errhdr_t)) { 2033 goto unimplemented; 2034 } 2035 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno); 2036 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin); 2037 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type); 2038 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code); 2039 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad); 2040 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info); 2041 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data); 2042 host_to_target_sockaddr((unsigned long) &target_errh->offender, 2043 (void *) &errh->offender, sizeof(errh->offender)); 2044 break; 2045 } 2046 default: 2047 goto unimplemented; 2048 } 2049 break; 2050 2051 case SOL_IPV6: 2052 switch (cmsg->cmsg_type) { 2053 case IPV6_HOPLIMIT: 2054 { 2055 uint32_t *v = (uint32_t *)data; 2056 uint32_t *t_int = (uint32_t *)target_data; 2057 2058 if (len != sizeof(uint32_t) || 2059 tgt_len != sizeof(uint32_t)) { 2060 goto unimplemented; 2061 } 2062 __put_user(*v, t_int); 2063 break; 2064 } 2065 case IPV6_RECVERR: 2066 { 2067 struct errhdr6_t { 2068 struct sock_extended_err ee; 2069 struct sockaddr_in6 offender; 2070 }; 2071 struct errhdr6_t *errh = (struct errhdr6_t *)data; 2072 struct errhdr6_t *target_errh = 2073 (struct errhdr6_t *)target_data; 2074 2075 if (len != sizeof(struct errhdr6_t) || 2076 tgt_len != sizeof(struct errhdr6_t)) { 2077 goto unimplemented; 2078 } 2079 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno); 2080 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin); 2081 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type); 2082 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code); 2083 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad); 2084 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info); 2085 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data); 2086 host_to_target_sockaddr((unsigned long) &target_errh->offender, 2087 (void *) &errh->offender, sizeof(errh->offender)); 2088 break; 2089 } 2090 default: 2091 goto unimplemented; 2092 } 2093 break; 2094 2095 default: 2096 unimplemented: 2097 qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n", 2098 cmsg->cmsg_level, cmsg->cmsg_type); 2099 memcpy(target_data, data, MIN(len, tgt_len)); 2100 if (tgt_len > len) { 2101 memset(target_data + len, 0, tgt_len - len); 2102 } 2103 } 2104 2105 target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len)); 2106 tgt_space = TARGET_CMSG_SPACE(tgt_len); 2107 if (msg_controllen < tgt_space) { 2108 tgt_space = msg_controllen; 2109 } 2110 msg_controllen -= tgt_space; 2111 space += tgt_space; 2112 cmsg = CMSG_NXTHDR(msgh, cmsg); 2113 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg, 2114 target_cmsg_start); 2115 } 2116 unlock_user(target_cmsg, target_cmsg_addr, space); 2117 the_end: 2118 target_msgh->msg_controllen = tswapal(space); 2119 return 0; 2120 } 2121 2122 /* do_setsockopt() Must return target values and target errnos. */ 2123 static abi_long do_setsockopt(int sockfd, int level, int optname, 2124 abi_ulong optval_addr, socklen_t optlen) 2125 { 2126 abi_long ret; 2127 int val; 2128 struct ip_mreqn *ip_mreq; 2129 struct ip_mreq_source *ip_mreq_source; 2130 2131 switch(level) { 2132 case SOL_TCP: 2133 case SOL_UDP: 2134 /* TCP and UDP options all take an 'int' value. */ 2135 if (optlen < sizeof(uint32_t)) 2136 return -TARGET_EINVAL; 2137 2138 if (get_user_u32(val, optval_addr)) 2139 return -TARGET_EFAULT; 2140 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val))); 2141 break; 2142 case SOL_IP: 2143 switch(optname) { 2144 case IP_TOS: 2145 case IP_TTL: 2146 case IP_HDRINCL: 2147 case IP_ROUTER_ALERT: 2148 case IP_RECVOPTS: 2149 case IP_RETOPTS: 2150 case IP_PKTINFO: 2151 case IP_MTU_DISCOVER: 2152 case IP_RECVERR: 2153 case IP_RECVTTL: 2154 case IP_RECVTOS: 2155 #ifdef IP_FREEBIND 2156 case IP_FREEBIND: 2157 #endif 2158 case IP_MULTICAST_TTL: 2159 case IP_MULTICAST_LOOP: 2160 val = 0; 2161 if (optlen >= sizeof(uint32_t)) { 2162 if (get_user_u32(val, optval_addr)) 2163 return -TARGET_EFAULT; 2164 } else if (optlen >= 1) { 2165 if (get_user_u8(val, optval_addr)) 2166 return -TARGET_EFAULT; 2167 } 2168 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val))); 2169 break; 2170 case IP_ADD_MEMBERSHIP: 2171 case IP_DROP_MEMBERSHIP: 2172 if (optlen < sizeof (struct target_ip_mreq) || 2173 optlen > sizeof (struct target_ip_mreqn)) 2174 return -TARGET_EINVAL; 2175 2176 ip_mreq = (struct ip_mreqn *) alloca(optlen); 2177 target_to_host_ip_mreq(ip_mreq, optval_addr, optlen); 2178 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen)); 2179 break; 2180 2181 case IP_BLOCK_SOURCE: 2182 case IP_UNBLOCK_SOURCE: 2183 case IP_ADD_SOURCE_MEMBERSHIP: 2184 case IP_DROP_SOURCE_MEMBERSHIP: 2185 if (optlen != sizeof (struct target_ip_mreq_source)) 2186 return -TARGET_EINVAL; 2187 2188 ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1); 2189 if (!ip_mreq_source) { 2190 return -TARGET_EFAULT; 2191 } 2192 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen)); 2193 unlock_user (ip_mreq_source, optval_addr, 0); 2194 break; 2195 2196 default: 2197 goto unimplemented; 2198 } 2199 break; 2200 case SOL_IPV6: 2201 switch (optname) { 2202 case IPV6_MTU_DISCOVER: 2203 case IPV6_MTU: 2204 case IPV6_V6ONLY: 2205 case IPV6_RECVPKTINFO: 2206 case IPV6_UNICAST_HOPS: 2207 case IPV6_MULTICAST_HOPS: 2208 case IPV6_MULTICAST_LOOP: 2209 case IPV6_RECVERR: 2210 case IPV6_RECVHOPLIMIT: 2211 case IPV6_2292HOPLIMIT: 2212 case IPV6_CHECKSUM: 2213 case IPV6_ADDRFORM: 2214 case IPV6_2292PKTINFO: 2215 case IPV6_RECVTCLASS: 2216 case IPV6_RECVRTHDR: 2217 case IPV6_2292RTHDR: 2218 case IPV6_RECVHOPOPTS: 2219 case IPV6_2292HOPOPTS: 2220 case IPV6_RECVDSTOPTS: 2221 case IPV6_2292DSTOPTS: 2222 case IPV6_TCLASS: 2223 case IPV6_ADDR_PREFERENCES: 2224 #ifdef IPV6_RECVPATHMTU 2225 case IPV6_RECVPATHMTU: 2226 #endif 2227 #ifdef IPV6_TRANSPARENT 2228 case IPV6_TRANSPARENT: 2229 #endif 2230 #ifdef IPV6_FREEBIND 2231 case IPV6_FREEBIND: 2232 #endif 2233 #ifdef IPV6_RECVORIGDSTADDR 2234 case IPV6_RECVORIGDSTADDR: 2235 #endif 2236 val = 0; 2237 if (optlen < sizeof(uint32_t)) { 2238 return -TARGET_EINVAL; 2239 } 2240 if (get_user_u32(val, optval_addr)) { 2241 return -TARGET_EFAULT; 2242 } 2243 ret = get_errno(setsockopt(sockfd, level, optname, 2244 &val, sizeof(val))); 2245 break; 2246 case IPV6_PKTINFO: 2247 { 2248 struct in6_pktinfo pki; 2249 2250 if (optlen < sizeof(pki)) { 2251 return -TARGET_EINVAL; 2252 } 2253 2254 if (copy_from_user(&pki, optval_addr, sizeof(pki))) { 2255 return -TARGET_EFAULT; 2256 } 2257 2258 pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex); 2259 2260 ret = get_errno(setsockopt(sockfd, level, optname, 2261 &pki, sizeof(pki))); 2262 break; 2263 } 2264 case IPV6_ADD_MEMBERSHIP: 2265 case IPV6_DROP_MEMBERSHIP: 2266 { 2267 struct ipv6_mreq ipv6mreq; 2268 2269 if (optlen < sizeof(ipv6mreq)) { 2270 return -TARGET_EINVAL; 2271 } 2272 2273 if (copy_from_user(&ipv6mreq, optval_addr, sizeof(ipv6mreq))) { 2274 return -TARGET_EFAULT; 2275 } 2276 2277 ipv6mreq.ipv6mr_interface = tswap32(ipv6mreq.ipv6mr_interface); 2278 2279 ret = get_errno(setsockopt(sockfd, level, optname, 2280 &ipv6mreq, sizeof(ipv6mreq))); 2281 break; 2282 } 2283 default: 2284 goto unimplemented; 2285 } 2286 break; 2287 case SOL_ICMPV6: 2288 switch (optname) { 2289 case ICMPV6_FILTER: 2290 { 2291 struct icmp6_filter icmp6f; 2292 2293 if (optlen > sizeof(icmp6f)) { 2294 optlen = sizeof(icmp6f); 2295 } 2296 2297 if (copy_from_user(&icmp6f, optval_addr, optlen)) { 2298 return -TARGET_EFAULT; 2299 } 2300 2301 for (val = 0; val < 8; val++) { 2302 icmp6f.data[val] = tswap32(icmp6f.data[val]); 2303 } 2304 2305 ret = get_errno(setsockopt(sockfd, level, optname, 2306 &icmp6f, optlen)); 2307 break; 2308 } 2309 default: 2310 goto unimplemented; 2311 } 2312 break; 2313 case SOL_RAW: 2314 switch (optname) { 2315 case ICMP_FILTER: 2316 case IPV6_CHECKSUM: 2317 /* those take an u32 value */ 2318 if (optlen < sizeof(uint32_t)) { 2319 return -TARGET_EINVAL; 2320 } 2321 2322 if (get_user_u32(val, optval_addr)) { 2323 return -TARGET_EFAULT; 2324 } 2325 ret = get_errno(setsockopt(sockfd, level, optname, 2326 &val, sizeof(val))); 2327 break; 2328 2329 default: 2330 goto unimplemented; 2331 } 2332 break; 2333 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE) 2334 case SOL_ALG: 2335 switch (optname) { 2336 case ALG_SET_KEY: 2337 { 2338 char *alg_key = g_malloc(optlen); 2339 2340 if (!alg_key) { 2341 return -TARGET_ENOMEM; 2342 } 2343 if (copy_from_user(alg_key, optval_addr, optlen)) { 2344 g_free(alg_key); 2345 return -TARGET_EFAULT; 2346 } 2347 ret = get_errno(setsockopt(sockfd, level, optname, 2348 alg_key, optlen)); 2349 g_free(alg_key); 2350 break; 2351 } 2352 case ALG_SET_AEAD_AUTHSIZE: 2353 { 2354 ret = get_errno(setsockopt(sockfd, level, optname, 2355 NULL, optlen)); 2356 break; 2357 } 2358 default: 2359 goto unimplemented; 2360 } 2361 break; 2362 #endif 2363 case TARGET_SOL_SOCKET: 2364 switch (optname) { 2365 case TARGET_SO_RCVTIMEO: 2366 { 2367 struct timeval tv; 2368 2369 optname = SO_RCVTIMEO; 2370 2371 set_timeout: 2372 if (optlen != sizeof(struct target_timeval)) { 2373 return -TARGET_EINVAL; 2374 } 2375 2376 if (copy_from_user_timeval(&tv, optval_addr)) { 2377 return -TARGET_EFAULT; 2378 } 2379 2380 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, 2381 &tv, sizeof(tv))); 2382 return ret; 2383 } 2384 case TARGET_SO_SNDTIMEO: 2385 optname = SO_SNDTIMEO; 2386 goto set_timeout; 2387 case TARGET_SO_ATTACH_FILTER: 2388 { 2389 struct target_sock_fprog *tfprog; 2390 struct target_sock_filter *tfilter; 2391 struct sock_fprog fprog; 2392 struct sock_filter *filter; 2393 int i; 2394 2395 if (optlen != sizeof(*tfprog)) { 2396 return -TARGET_EINVAL; 2397 } 2398 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) { 2399 return -TARGET_EFAULT; 2400 } 2401 if (!lock_user_struct(VERIFY_READ, tfilter, 2402 tswapal(tfprog->filter), 0)) { 2403 unlock_user_struct(tfprog, optval_addr, 1); 2404 return -TARGET_EFAULT; 2405 } 2406 2407 fprog.len = tswap16(tfprog->len); 2408 filter = g_try_new(struct sock_filter, fprog.len); 2409 if (filter == NULL) { 2410 unlock_user_struct(tfilter, tfprog->filter, 1); 2411 unlock_user_struct(tfprog, optval_addr, 1); 2412 return -TARGET_ENOMEM; 2413 } 2414 for (i = 0; i < fprog.len; i++) { 2415 filter[i].code = tswap16(tfilter[i].code); 2416 filter[i].jt = tfilter[i].jt; 2417 filter[i].jf = tfilter[i].jf; 2418 filter[i].k = tswap32(tfilter[i].k); 2419 } 2420 fprog.filter = filter; 2421 2422 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, 2423 SO_ATTACH_FILTER, &fprog, sizeof(fprog))); 2424 g_free(filter); 2425 2426 unlock_user_struct(tfilter, tfprog->filter, 1); 2427 unlock_user_struct(tfprog, optval_addr, 1); 2428 return ret; 2429 } 2430 case TARGET_SO_BINDTODEVICE: 2431 { 2432 char *dev_ifname, *addr_ifname; 2433 2434 if (optlen > IFNAMSIZ - 1) { 2435 optlen = IFNAMSIZ - 1; 2436 } 2437 dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1); 2438 if (!dev_ifname) { 2439 return -TARGET_EFAULT; 2440 } 2441 optname = SO_BINDTODEVICE; 2442 addr_ifname = alloca(IFNAMSIZ); 2443 memcpy(addr_ifname, dev_ifname, optlen); 2444 addr_ifname[optlen] = 0; 2445 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, 2446 addr_ifname, optlen)); 2447 unlock_user (dev_ifname, optval_addr, 0); 2448 return ret; 2449 } 2450 case TARGET_SO_LINGER: 2451 { 2452 struct linger lg; 2453 struct target_linger *tlg; 2454 2455 if (optlen != sizeof(struct target_linger)) { 2456 return -TARGET_EINVAL; 2457 } 2458 if (!lock_user_struct(VERIFY_READ, tlg, optval_addr, 1)) { 2459 return -TARGET_EFAULT; 2460 } 2461 __get_user(lg.l_onoff, &tlg->l_onoff); 2462 __get_user(lg.l_linger, &tlg->l_linger); 2463 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, SO_LINGER, 2464 &lg, sizeof(lg))); 2465 unlock_user_struct(tlg, optval_addr, 0); 2466 return ret; 2467 } 2468 /* Options with 'int' argument. */ 2469 case TARGET_SO_DEBUG: 2470 optname = SO_DEBUG; 2471 break; 2472 case TARGET_SO_REUSEADDR: 2473 optname = SO_REUSEADDR; 2474 break; 2475 #ifdef SO_REUSEPORT 2476 case TARGET_SO_REUSEPORT: 2477 optname = SO_REUSEPORT; 2478 break; 2479 #endif 2480 case TARGET_SO_TYPE: 2481 optname = SO_TYPE; 2482 break; 2483 case TARGET_SO_ERROR: 2484 optname = SO_ERROR; 2485 break; 2486 case TARGET_SO_DONTROUTE: 2487 optname = SO_DONTROUTE; 2488 break; 2489 case TARGET_SO_BROADCAST: 2490 optname = SO_BROADCAST; 2491 break; 2492 case TARGET_SO_SNDBUF: 2493 optname = SO_SNDBUF; 2494 break; 2495 case TARGET_SO_SNDBUFFORCE: 2496 optname = SO_SNDBUFFORCE; 2497 break; 2498 case TARGET_SO_RCVBUF: 2499 optname = SO_RCVBUF; 2500 break; 2501 case TARGET_SO_RCVBUFFORCE: 2502 optname = SO_RCVBUFFORCE; 2503 break; 2504 case TARGET_SO_KEEPALIVE: 2505 optname = SO_KEEPALIVE; 2506 break; 2507 case TARGET_SO_OOBINLINE: 2508 optname = SO_OOBINLINE; 2509 break; 2510 case TARGET_SO_NO_CHECK: 2511 optname = SO_NO_CHECK; 2512 break; 2513 case TARGET_SO_PRIORITY: 2514 optname = SO_PRIORITY; 2515 break; 2516 #ifdef SO_BSDCOMPAT 2517 case TARGET_SO_BSDCOMPAT: 2518 optname = SO_BSDCOMPAT; 2519 break; 2520 #endif 2521 case TARGET_SO_PASSCRED: 2522 optname = SO_PASSCRED; 2523 break; 2524 case TARGET_SO_PASSSEC: 2525 optname = SO_PASSSEC; 2526 break; 2527 case TARGET_SO_TIMESTAMP: 2528 optname = SO_TIMESTAMP; 2529 break; 2530 case TARGET_SO_RCVLOWAT: 2531 optname = SO_RCVLOWAT; 2532 break; 2533 default: 2534 goto unimplemented; 2535 } 2536 if (optlen < sizeof(uint32_t)) 2537 return -TARGET_EINVAL; 2538 2539 if (get_user_u32(val, optval_addr)) 2540 return -TARGET_EFAULT; 2541 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val))); 2542 break; 2543 #ifdef SOL_NETLINK 2544 case SOL_NETLINK: 2545 switch (optname) { 2546 case NETLINK_PKTINFO: 2547 case NETLINK_ADD_MEMBERSHIP: 2548 case NETLINK_DROP_MEMBERSHIP: 2549 case NETLINK_BROADCAST_ERROR: 2550 case NETLINK_NO_ENOBUFS: 2551 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) 2552 case NETLINK_LISTEN_ALL_NSID: 2553 case NETLINK_CAP_ACK: 2554 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */ 2555 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) 2556 case NETLINK_EXT_ACK: 2557 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */ 2558 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0) 2559 case NETLINK_GET_STRICT_CHK: 2560 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */ 2561 break; 2562 default: 2563 goto unimplemented; 2564 } 2565 val = 0; 2566 if (optlen < sizeof(uint32_t)) { 2567 return -TARGET_EINVAL; 2568 } 2569 if (get_user_u32(val, optval_addr)) { 2570 return -TARGET_EFAULT; 2571 } 2572 ret = get_errno(setsockopt(sockfd, SOL_NETLINK, optname, &val, 2573 sizeof(val))); 2574 break; 2575 #endif /* SOL_NETLINK */ 2576 default: 2577 unimplemented: 2578 qemu_log_mask(LOG_UNIMP, "Unsupported setsockopt level=%d optname=%d\n", 2579 level, optname); 2580 ret = -TARGET_ENOPROTOOPT; 2581 } 2582 return ret; 2583 } 2584 2585 /* do_getsockopt() Must return target values and target errnos. */ 2586 static abi_long do_getsockopt(int sockfd, int level, int optname, 2587 abi_ulong optval_addr, abi_ulong optlen) 2588 { 2589 abi_long ret; 2590 int len, val; 2591 socklen_t lv; 2592 2593 switch(level) { 2594 case TARGET_SOL_SOCKET: 2595 level = SOL_SOCKET; 2596 switch (optname) { 2597 /* These don't just return a single integer */ 2598 case TARGET_SO_PEERNAME: 2599 goto unimplemented; 2600 case TARGET_SO_RCVTIMEO: { 2601 struct timeval tv; 2602 socklen_t tvlen; 2603 2604 optname = SO_RCVTIMEO; 2605 2606 get_timeout: 2607 if (get_user_u32(len, optlen)) { 2608 return -TARGET_EFAULT; 2609 } 2610 if (len < 0) { 2611 return -TARGET_EINVAL; 2612 } 2613 2614 tvlen = sizeof(tv); 2615 ret = get_errno(getsockopt(sockfd, level, optname, 2616 &tv, &tvlen)); 2617 if (ret < 0) { 2618 return ret; 2619 } 2620 if (len > sizeof(struct target_timeval)) { 2621 len = sizeof(struct target_timeval); 2622 } 2623 if (copy_to_user_timeval(optval_addr, &tv)) { 2624 return -TARGET_EFAULT; 2625 } 2626 if (put_user_u32(len, optlen)) { 2627 return -TARGET_EFAULT; 2628 } 2629 break; 2630 } 2631 case TARGET_SO_SNDTIMEO: 2632 optname = SO_SNDTIMEO; 2633 goto get_timeout; 2634 case TARGET_SO_PEERCRED: { 2635 struct ucred cr; 2636 socklen_t crlen; 2637 struct target_ucred *tcr; 2638 2639 if (get_user_u32(len, optlen)) { 2640 return -TARGET_EFAULT; 2641 } 2642 if (len < 0) { 2643 return -TARGET_EINVAL; 2644 } 2645 2646 crlen = sizeof(cr); 2647 ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED, 2648 &cr, &crlen)); 2649 if (ret < 0) { 2650 return ret; 2651 } 2652 if (len > crlen) { 2653 len = crlen; 2654 } 2655 if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) { 2656 return -TARGET_EFAULT; 2657 } 2658 __put_user(cr.pid, &tcr->pid); 2659 __put_user(cr.uid, &tcr->uid); 2660 __put_user(cr.gid, &tcr->gid); 2661 unlock_user_struct(tcr, optval_addr, 1); 2662 if (put_user_u32(len, optlen)) { 2663 return -TARGET_EFAULT; 2664 } 2665 break; 2666 } 2667 case TARGET_SO_PEERSEC: { 2668 char *name; 2669 2670 if (get_user_u32(len, optlen)) { 2671 return -TARGET_EFAULT; 2672 } 2673 if (len < 0) { 2674 return -TARGET_EINVAL; 2675 } 2676 name = lock_user(VERIFY_WRITE, optval_addr, len, 0); 2677 if (!name) { 2678 return -TARGET_EFAULT; 2679 } 2680 lv = len; 2681 ret = get_errno(getsockopt(sockfd, level, SO_PEERSEC, 2682 name, &lv)); 2683 if (put_user_u32(lv, optlen)) { 2684 ret = -TARGET_EFAULT; 2685 } 2686 unlock_user(name, optval_addr, lv); 2687 break; 2688 } 2689 case TARGET_SO_LINGER: 2690 { 2691 struct linger lg; 2692 socklen_t lglen; 2693 struct target_linger *tlg; 2694 2695 if (get_user_u32(len, optlen)) { 2696 return -TARGET_EFAULT; 2697 } 2698 if (len < 0) { 2699 return -TARGET_EINVAL; 2700 } 2701 2702 lglen = sizeof(lg); 2703 ret = get_errno(getsockopt(sockfd, level, SO_LINGER, 2704 &lg, &lglen)); 2705 if (ret < 0) { 2706 return ret; 2707 } 2708 if (len > lglen) { 2709 len = lglen; 2710 } 2711 if (!lock_user_struct(VERIFY_WRITE, tlg, optval_addr, 0)) { 2712 return -TARGET_EFAULT; 2713 } 2714 __put_user(lg.l_onoff, &tlg->l_onoff); 2715 __put_user(lg.l_linger, &tlg->l_linger); 2716 unlock_user_struct(tlg, optval_addr, 1); 2717 if (put_user_u32(len, optlen)) { 2718 return -TARGET_EFAULT; 2719 } 2720 break; 2721 } 2722 /* Options with 'int' argument. */ 2723 case TARGET_SO_DEBUG: 2724 optname = SO_DEBUG; 2725 goto int_case; 2726 case TARGET_SO_REUSEADDR: 2727 optname = SO_REUSEADDR; 2728 goto int_case; 2729 #ifdef SO_REUSEPORT 2730 case TARGET_SO_REUSEPORT: 2731 optname = SO_REUSEPORT; 2732 goto int_case; 2733 #endif 2734 case TARGET_SO_TYPE: 2735 optname = SO_TYPE; 2736 goto int_case; 2737 case TARGET_SO_ERROR: 2738 optname = SO_ERROR; 2739 goto int_case; 2740 case TARGET_SO_DONTROUTE: 2741 optname = SO_DONTROUTE; 2742 goto int_case; 2743 case TARGET_SO_BROADCAST: 2744 optname = SO_BROADCAST; 2745 goto int_case; 2746 case TARGET_SO_SNDBUF: 2747 optname = SO_SNDBUF; 2748 goto int_case; 2749 case TARGET_SO_RCVBUF: 2750 optname = SO_RCVBUF; 2751 goto int_case; 2752 case TARGET_SO_KEEPALIVE: 2753 optname = SO_KEEPALIVE; 2754 goto int_case; 2755 case TARGET_SO_OOBINLINE: 2756 optname = SO_OOBINLINE; 2757 goto int_case; 2758 case TARGET_SO_NO_CHECK: 2759 optname = SO_NO_CHECK; 2760 goto int_case; 2761 case TARGET_SO_PRIORITY: 2762 optname = SO_PRIORITY; 2763 goto int_case; 2764 #ifdef SO_BSDCOMPAT 2765 case TARGET_SO_BSDCOMPAT: 2766 optname = SO_BSDCOMPAT; 2767 goto int_case; 2768 #endif 2769 case TARGET_SO_PASSCRED: 2770 optname = SO_PASSCRED; 2771 goto int_case; 2772 case TARGET_SO_TIMESTAMP: 2773 optname = SO_TIMESTAMP; 2774 goto int_case; 2775 case TARGET_SO_RCVLOWAT: 2776 optname = SO_RCVLOWAT; 2777 goto int_case; 2778 case TARGET_SO_ACCEPTCONN: 2779 optname = SO_ACCEPTCONN; 2780 goto int_case; 2781 case TARGET_SO_PROTOCOL: 2782 optname = SO_PROTOCOL; 2783 goto int_case; 2784 case TARGET_SO_DOMAIN: 2785 optname = SO_DOMAIN; 2786 goto int_case; 2787 default: 2788 goto int_case; 2789 } 2790 break; 2791 case SOL_TCP: 2792 case SOL_UDP: 2793 /* TCP and UDP options all take an 'int' value. */ 2794 int_case: 2795 if (get_user_u32(len, optlen)) 2796 return -TARGET_EFAULT; 2797 if (len < 0) 2798 return -TARGET_EINVAL; 2799 lv = sizeof(lv); 2800 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 2801 if (ret < 0) 2802 return ret; 2803 if (optname == SO_TYPE) { 2804 val = host_to_target_sock_type(val); 2805 } 2806 if (len > lv) 2807 len = lv; 2808 if (len == 4) { 2809 if (put_user_u32(val, optval_addr)) 2810 return -TARGET_EFAULT; 2811 } else { 2812 if (put_user_u8(val, optval_addr)) 2813 return -TARGET_EFAULT; 2814 } 2815 if (put_user_u32(len, optlen)) 2816 return -TARGET_EFAULT; 2817 break; 2818 case SOL_IP: 2819 switch(optname) { 2820 case IP_TOS: 2821 case IP_TTL: 2822 case IP_HDRINCL: 2823 case IP_ROUTER_ALERT: 2824 case IP_RECVOPTS: 2825 case IP_RETOPTS: 2826 case IP_PKTINFO: 2827 case IP_MTU_DISCOVER: 2828 case IP_RECVERR: 2829 case IP_RECVTOS: 2830 #ifdef IP_FREEBIND 2831 case IP_FREEBIND: 2832 #endif 2833 case IP_MULTICAST_TTL: 2834 case IP_MULTICAST_LOOP: 2835 if (get_user_u32(len, optlen)) 2836 return -TARGET_EFAULT; 2837 if (len < 0) 2838 return -TARGET_EINVAL; 2839 lv = sizeof(lv); 2840 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 2841 if (ret < 0) 2842 return ret; 2843 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) { 2844 len = 1; 2845 if (put_user_u32(len, optlen) 2846 || put_user_u8(val, optval_addr)) 2847 return -TARGET_EFAULT; 2848 } else { 2849 if (len > sizeof(int)) 2850 len = sizeof(int); 2851 if (put_user_u32(len, optlen) 2852 || put_user_u32(val, optval_addr)) 2853 return -TARGET_EFAULT; 2854 } 2855 break; 2856 default: 2857 ret = -TARGET_ENOPROTOOPT; 2858 break; 2859 } 2860 break; 2861 case SOL_IPV6: 2862 switch (optname) { 2863 case IPV6_MTU_DISCOVER: 2864 case IPV6_MTU: 2865 case IPV6_V6ONLY: 2866 case IPV6_RECVPKTINFO: 2867 case IPV6_UNICAST_HOPS: 2868 case IPV6_MULTICAST_HOPS: 2869 case IPV6_MULTICAST_LOOP: 2870 case IPV6_RECVERR: 2871 case IPV6_RECVHOPLIMIT: 2872 case IPV6_2292HOPLIMIT: 2873 case IPV6_CHECKSUM: 2874 case IPV6_ADDRFORM: 2875 case IPV6_2292PKTINFO: 2876 case IPV6_RECVTCLASS: 2877 case IPV6_RECVRTHDR: 2878 case IPV6_2292RTHDR: 2879 case IPV6_RECVHOPOPTS: 2880 case IPV6_2292HOPOPTS: 2881 case IPV6_RECVDSTOPTS: 2882 case IPV6_2292DSTOPTS: 2883 case IPV6_TCLASS: 2884 case IPV6_ADDR_PREFERENCES: 2885 #ifdef IPV6_RECVPATHMTU 2886 case IPV6_RECVPATHMTU: 2887 #endif 2888 #ifdef IPV6_TRANSPARENT 2889 case IPV6_TRANSPARENT: 2890 #endif 2891 #ifdef IPV6_FREEBIND 2892 case IPV6_FREEBIND: 2893 #endif 2894 #ifdef IPV6_RECVORIGDSTADDR 2895 case IPV6_RECVORIGDSTADDR: 2896 #endif 2897 if (get_user_u32(len, optlen)) 2898 return -TARGET_EFAULT; 2899 if (len < 0) 2900 return -TARGET_EINVAL; 2901 lv = sizeof(lv); 2902 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 2903 if (ret < 0) 2904 return ret; 2905 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) { 2906 len = 1; 2907 if (put_user_u32(len, optlen) 2908 || put_user_u8(val, optval_addr)) 2909 return -TARGET_EFAULT; 2910 } else { 2911 if (len > sizeof(int)) 2912 len = sizeof(int); 2913 if (put_user_u32(len, optlen) 2914 || put_user_u32(val, optval_addr)) 2915 return -TARGET_EFAULT; 2916 } 2917 break; 2918 default: 2919 ret = -TARGET_ENOPROTOOPT; 2920 break; 2921 } 2922 break; 2923 #ifdef SOL_NETLINK 2924 case SOL_NETLINK: 2925 switch (optname) { 2926 case NETLINK_PKTINFO: 2927 case NETLINK_BROADCAST_ERROR: 2928 case NETLINK_NO_ENOBUFS: 2929 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) 2930 case NETLINK_LISTEN_ALL_NSID: 2931 case NETLINK_CAP_ACK: 2932 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */ 2933 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) 2934 case NETLINK_EXT_ACK: 2935 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */ 2936 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0) 2937 case NETLINK_GET_STRICT_CHK: 2938 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */ 2939 if (get_user_u32(len, optlen)) { 2940 return -TARGET_EFAULT; 2941 } 2942 if (len != sizeof(val)) { 2943 return -TARGET_EINVAL; 2944 } 2945 lv = len; 2946 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 2947 if (ret < 0) { 2948 return ret; 2949 } 2950 if (put_user_u32(lv, optlen) 2951 || put_user_u32(val, optval_addr)) { 2952 return -TARGET_EFAULT; 2953 } 2954 break; 2955 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) 2956 case NETLINK_LIST_MEMBERSHIPS: 2957 { 2958 uint32_t *results; 2959 int i; 2960 if (get_user_u32(len, optlen)) { 2961 return -TARGET_EFAULT; 2962 } 2963 if (len < 0) { 2964 return -TARGET_EINVAL; 2965 } 2966 results = lock_user(VERIFY_WRITE, optval_addr, len, 1); 2967 if (!results && len > 0) { 2968 return -TARGET_EFAULT; 2969 } 2970 lv = len; 2971 ret = get_errno(getsockopt(sockfd, level, optname, results, &lv)); 2972 if (ret < 0) { 2973 unlock_user(results, optval_addr, 0); 2974 return ret; 2975 } 2976 /* swap host endianess to target endianess. */ 2977 for (i = 0; i < (len / sizeof(uint32_t)); i++) { 2978 results[i] = tswap32(results[i]); 2979 } 2980 if (put_user_u32(lv, optlen)) { 2981 return -TARGET_EFAULT; 2982 } 2983 unlock_user(results, optval_addr, 0); 2984 break; 2985 } 2986 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */ 2987 default: 2988 goto unimplemented; 2989 } 2990 break; 2991 #endif /* SOL_NETLINK */ 2992 default: 2993 unimplemented: 2994 qemu_log_mask(LOG_UNIMP, 2995 "getsockopt level=%d optname=%d not yet supported\n", 2996 level, optname); 2997 ret = -TARGET_EOPNOTSUPP; 2998 break; 2999 } 3000 return ret; 3001 } 3002 3003 /* Convert target low/high pair representing file offset into the host 3004 * low/high pair. This function doesn't handle offsets bigger than 64 bits 3005 * as the kernel doesn't handle them either. 3006 */ 3007 static void target_to_host_low_high(abi_ulong tlow, 3008 abi_ulong thigh, 3009 unsigned long *hlow, 3010 unsigned long *hhigh) 3011 { 3012 uint64_t off = tlow | 3013 ((unsigned long long)thigh << TARGET_LONG_BITS / 2) << 3014 TARGET_LONG_BITS / 2; 3015 3016 *hlow = off; 3017 *hhigh = (off >> HOST_LONG_BITS / 2) >> HOST_LONG_BITS / 2; 3018 } 3019 3020 static struct iovec *lock_iovec(int type, abi_ulong target_addr, 3021 abi_ulong count, int copy) 3022 { 3023 struct target_iovec *target_vec; 3024 struct iovec *vec; 3025 abi_ulong total_len, max_len; 3026 int i; 3027 int err = 0; 3028 bool bad_address = false; 3029 3030 if (count == 0) { 3031 errno = 0; 3032 return NULL; 3033 } 3034 if (count > IOV_MAX) { 3035 errno = EINVAL; 3036 return NULL; 3037 } 3038 3039 vec = g_try_new0(struct iovec, count); 3040 if (vec == NULL) { 3041 errno = ENOMEM; 3042 return NULL; 3043 } 3044 3045 target_vec = lock_user(VERIFY_READ, target_addr, 3046 count * sizeof(struct target_iovec), 1); 3047 if (target_vec == NULL) { 3048 err = EFAULT; 3049 goto fail2; 3050 } 3051 3052 /* ??? If host page size > target page size, this will result in a 3053 value larger than what we can actually support. */ 3054 max_len = 0x7fffffff & TARGET_PAGE_MASK; 3055 total_len = 0; 3056 3057 for (i = 0; i < count; i++) { 3058 abi_ulong base = tswapal(target_vec[i].iov_base); 3059 abi_long len = tswapal(target_vec[i].iov_len); 3060 3061 if (len < 0) { 3062 err = EINVAL; 3063 goto fail; 3064 } else if (len == 0) { 3065 /* Zero length pointer is ignored. */ 3066 vec[i].iov_base = 0; 3067 } else { 3068 vec[i].iov_base = lock_user(type, base, len, copy); 3069 /* If the first buffer pointer is bad, this is a fault. But 3070 * subsequent bad buffers will result in a partial write; this 3071 * is realized by filling the vector with null pointers and 3072 * zero lengths. */ 3073 if (!vec[i].iov_base) { 3074 if (i == 0) { 3075 err = EFAULT; 3076 goto fail; 3077 } else { 3078 bad_address = true; 3079 } 3080 } 3081 if (bad_address) { 3082 len = 0; 3083 } 3084 if (len > max_len - total_len) { 3085 len = max_len - total_len; 3086 } 3087 } 3088 vec[i].iov_len = len; 3089 total_len += len; 3090 } 3091 3092 unlock_user(target_vec, target_addr, 0); 3093 return vec; 3094 3095 fail: 3096 while (--i >= 0) { 3097 if (tswapal(target_vec[i].iov_len) > 0) { 3098 unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0); 3099 } 3100 } 3101 unlock_user(target_vec, target_addr, 0); 3102 fail2: 3103 g_free(vec); 3104 errno = err; 3105 return NULL; 3106 } 3107 3108 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr, 3109 abi_ulong count, int copy) 3110 { 3111 struct target_iovec *target_vec; 3112 int i; 3113 3114 target_vec = lock_user(VERIFY_READ, target_addr, 3115 count * sizeof(struct target_iovec), 1); 3116 if (target_vec) { 3117 for (i = 0; i < count; i++) { 3118 abi_ulong base = tswapal(target_vec[i].iov_base); 3119 abi_long len = tswapal(target_vec[i].iov_len); 3120 if (len < 0) { 3121 break; 3122 } 3123 unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0); 3124 } 3125 unlock_user(target_vec, target_addr, 0); 3126 } 3127 3128 g_free(vec); 3129 } 3130 3131 static inline int target_to_host_sock_type(int *type) 3132 { 3133 int host_type = 0; 3134 int target_type = *type; 3135 3136 switch (target_type & TARGET_SOCK_TYPE_MASK) { 3137 case TARGET_SOCK_DGRAM: 3138 host_type = SOCK_DGRAM; 3139 break; 3140 case TARGET_SOCK_STREAM: 3141 host_type = SOCK_STREAM; 3142 break; 3143 default: 3144 host_type = target_type & TARGET_SOCK_TYPE_MASK; 3145 break; 3146 } 3147 if (target_type & TARGET_SOCK_CLOEXEC) { 3148 #if defined(SOCK_CLOEXEC) 3149 host_type |= SOCK_CLOEXEC; 3150 #else 3151 return -TARGET_EINVAL; 3152 #endif 3153 } 3154 if (target_type & TARGET_SOCK_NONBLOCK) { 3155 #if defined(SOCK_NONBLOCK) 3156 host_type |= SOCK_NONBLOCK; 3157 #elif !defined(O_NONBLOCK) 3158 return -TARGET_EINVAL; 3159 #endif 3160 } 3161 *type = host_type; 3162 return 0; 3163 } 3164 3165 /* Try to emulate socket type flags after socket creation. */ 3166 static int sock_flags_fixup(int fd, int target_type) 3167 { 3168 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK) 3169 if (target_type & TARGET_SOCK_NONBLOCK) { 3170 int flags = fcntl(fd, F_GETFL); 3171 if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) { 3172 close(fd); 3173 return -TARGET_EINVAL; 3174 } 3175 } 3176 #endif 3177 return fd; 3178 } 3179 3180 /* do_socket() Must return target values and target errnos. */ 3181 static abi_long do_socket(int domain, int type, int protocol) 3182 { 3183 int target_type = type; 3184 int ret; 3185 3186 ret = target_to_host_sock_type(&type); 3187 if (ret) { 3188 return ret; 3189 } 3190 3191 if (domain == PF_NETLINK && !( 3192 #ifdef CONFIG_RTNETLINK 3193 protocol == NETLINK_ROUTE || 3194 #endif 3195 protocol == NETLINK_KOBJECT_UEVENT || 3196 protocol == NETLINK_AUDIT)) { 3197 return -TARGET_EPROTONOSUPPORT; 3198 } 3199 3200 if (domain == AF_PACKET || 3201 (domain == AF_INET && type == SOCK_PACKET)) { 3202 protocol = tswap16(protocol); 3203 } 3204 3205 ret = get_errno(socket(domain, type, protocol)); 3206 if (ret >= 0) { 3207 ret = sock_flags_fixup(ret, target_type); 3208 if (type == SOCK_PACKET) { 3209 /* Manage an obsolete case : 3210 * if socket type is SOCK_PACKET, bind by name 3211 */ 3212 fd_trans_register(ret, &target_packet_trans); 3213 } else if (domain == PF_NETLINK) { 3214 switch (protocol) { 3215 #ifdef CONFIG_RTNETLINK 3216 case NETLINK_ROUTE: 3217 fd_trans_register(ret, &target_netlink_route_trans); 3218 break; 3219 #endif 3220 case NETLINK_KOBJECT_UEVENT: 3221 /* nothing to do: messages are strings */ 3222 break; 3223 case NETLINK_AUDIT: 3224 fd_trans_register(ret, &target_netlink_audit_trans); 3225 break; 3226 default: 3227 g_assert_not_reached(); 3228 } 3229 } 3230 } 3231 return ret; 3232 } 3233 3234 /* do_bind() Must return target values and target errnos. */ 3235 static abi_long do_bind(int sockfd, abi_ulong target_addr, 3236 socklen_t addrlen) 3237 { 3238 void *addr; 3239 abi_long ret; 3240 3241 if ((int)addrlen < 0) { 3242 return -TARGET_EINVAL; 3243 } 3244 3245 addr = alloca(addrlen+1); 3246 3247 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen); 3248 if (ret) 3249 return ret; 3250 3251 return get_errno(bind(sockfd, addr, addrlen)); 3252 } 3253 3254 /* do_connect() Must return target values and target errnos. */ 3255 static abi_long do_connect(int sockfd, abi_ulong target_addr, 3256 socklen_t addrlen) 3257 { 3258 void *addr; 3259 abi_long ret; 3260 3261 if ((int)addrlen < 0) { 3262 return -TARGET_EINVAL; 3263 } 3264 3265 addr = alloca(addrlen+1); 3266 3267 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen); 3268 if (ret) 3269 return ret; 3270 3271 return get_errno(safe_connect(sockfd, addr, addrlen)); 3272 } 3273 3274 /* do_sendrecvmsg_locked() Must return target values and target errnos. */ 3275 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp, 3276 int flags, int send) 3277 { 3278 abi_long ret, len; 3279 struct msghdr msg; 3280 abi_ulong count; 3281 struct iovec *vec; 3282 abi_ulong target_vec; 3283 3284 if (msgp->msg_name) { 3285 msg.msg_namelen = tswap32(msgp->msg_namelen); 3286 msg.msg_name = alloca(msg.msg_namelen+1); 3287 ret = target_to_host_sockaddr(fd, msg.msg_name, 3288 tswapal(msgp->msg_name), 3289 msg.msg_namelen); 3290 if (ret == -TARGET_EFAULT) { 3291 /* For connected sockets msg_name and msg_namelen must 3292 * be ignored, so returning EFAULT immediately is wrong. 3293 * Instead, pass a bad msg_name to the host kernel, and 3294 * let it decide whether to return EFAULT or not. 3295 */ 3296 msg.msg_name = (void *)-1; 3297 } else if (ret) { 3298 goto out2; 3299 } 3300 } else { 3301 msg.msg_name = NULL; 3302 msg.msg_namelen = 0; 3303 } 3304 msg.msg_controllen = 2 * tswapal(msgp->msg_controllen); 3305 msg.msg_control = alloca(msg.msg_controllen); 3306 memset(msg.msg_control, 0, msg.msg_controllen); 3307 3308 msg.msg_flags = tswap32(msgp->msg_flags); 3309 3310 count = tswapal(msgp->msg_iovlen); 3311 target_vec = tswapal(msgp->msg_iov); 3312 3313 if (count > IOV_MAX) { 3314 /* sendrcvmsg returns a different errno for this condition than 3315 * readv/writev, so we must catch it here before lock_iovec() does. 3316 */ 3317 ret = -TARGET_EMSGSIZE; 3318 goto out2; 3319 } 3320 3321 vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE, 3322 target_vec, count, send); 3323 if (vec == NULL) { 3324 ret = -host_to_target_errno(errno); 3325 goto out2; 3326 } 3327 msg.msg_iovlen = count; 3328 msg.msg_iov = vec; 3329 3330 if (send) { 3331 if (fd_trans_target_to_host_data(fd)) { 3332 void *host_msg; 3333 3334 host_msg = g_malloc(msg.msg_iov->iov_len); 3335 memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len); 3336 ret = fd_trans_target_to_host_data(fd)(host_msg, 3337 msg.msg_iov->iov_len); 3338 if (ret >= 0) { 3339 msg.msg_iov->iov_base = host_msg; 3340 ret = get_errno(safe_sendmsg(fd, &msg, flags)); 3341 } 3342 g_free(host_msg); 3343 } else { 3344 ret = target_to_host_cmsg(&msg, msgp); 3345 if (ret == 0) { 3346 ret = get_errno(safe_sendmsg(fd, &msg, flags)); 3347 } 3348 } 3349 } else { 3350 ret = get_errno(safe_recvmsg(fd, &msg, flags)); 3351 if (!is_error(ret)) { 3352 len = ret; 3353 if (fd_trans_host_to_target_data(fd)) { 3354 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base, 3355 MIN(msg.msg_iov->iov_len, len)); 3356 } 3357 if (!is_error(ret)) { 3358 ret = host_to_target_cmsg(msgp, &msg); 3359 } 3360 if (!is_error(ret)) { 3361 msgp->msg_namelen = tswap32(msg.msg_namelen); 3362 msgp->msg_flags = tswap32(msg.msg_flags); 3363 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) { 3364 ret = host_to_target_sockaddr(tswapal(msgp->msg_name), 3365 msg.msg_name, msg.msg_namelen); 3366 if (ret) { 3367 goto out; 3368 } 3369 } 3370 3371 ret = len; 3372 } 3373 } 3374 } 3375 3376 out: 3377 unlock_iovec(vec, target_vec, count, !send); 3378 out2: 3379 return ret; 3380 } 3381 3382 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg, 3383 int flags, int send) 3384 { 3385 abi_long ret; 3386 struct target_msghdr *msgp; 3387 3388 if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE, 3389 msgp, 3390 target_msg, 3391 send ? 1 : 0)) { 3392 return -TARGET_EFAULT; 3393 } 3394 ret = do_sendrecvmsg_locked(fd, msgp, flags, send); 3395 unlock_user_struct(msgp, target_msg, send ? 0 : 1); 3396 return ret; 3397 } 3398 3399 /* We don't rely on the C library to have sendmmsg/recvmmsg support, 3400 * so it might not have this *mmsg-specific flag either. 3401 */ 3402 #ifndef MSG_WAITFORONE 3403 #define MSG_WAITFORONE 0x10000 3404 #endif 3405 3406 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec, 3407 unsigned int vlen, unsigned int flags, 3408 int send) 3409 { 3410 struct target_mmsghdr *mmsgp; 3411 abi_long ret = 0; 3412 int i; 3413 3414 if (vlen > UIO_MAXIOV) { 3415 vlen = UIO_MAXIOV; 3416 } 3417 3418 mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1); 3419 if (!mmsgp) { 3420 return -TARGET_EFAULT; 3421 } 3422 3423 for (i = 0; i < vlen; i++) { 3424 ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send); 3425 if (is_error(ret)) { 3426 break; 3427 } 3428 mmsgp[i].msg_len = tswap32(ret); 3429 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 3430 if (flags & MSG_WAITFORONE) { 3431 flags |= MSG_DONTWAIT; 3432 } 3433 } 3434 3435 unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i); 3436 3437 /* Return number of datagrams sent if we sent any at all; 3438 * otherwise return the error. 3439 */ 3440 if (i) { 3441 return i; 3442 } 3443 return ret; 3444 } 3445 3446 /* do_accept4() Must return target values and target errnos. */ 3447 static abi_long do_accept4(int fd, abi_ulong target_addr, 3448 abi_ulong target_addrlen_addr, int flags) 3449 { 3450 socklen_t addrlen, ret_addrlen; 3451 void *addr; 3452 abi_long ret; 3453 int host_flags; 3454 3455 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl); 3456 3457 if (target_addr == 0) { 3458 return get_errno(safe_accept4(fd, NULL, NULL, host_flags)); 3459 } 3460 3461 /* linux returns EFAULT if addrlen pointer is invalid */ 3462 if (get_user_u32(addrlen, target_addrlen_addr)) 3463 return -TARGET_EFAULT; 3464 3465 if ((int)addrlen < 0) { 3466 return -TARGET_EINVAL; 3467 } 3468 3469 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) { 3470 return -TARGET_EFAULT; 3471 } 3472 3473 addr = alloca(addrlen); 3474 3475 ret_addrlen = addrlen; 3476 ret = get_errno(safe_accept4(fd, addr, &ret_addrlen, host_flags)); 3477 if (!is_error(ret)) { 3478 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen)); 3479 if (put_user_u32(ret_addrlen, target_addrlen_addr)) { 3480 ret = -TARGET_EFAULT; 3481 } 3482 } 3483 return ret; 3484 } 3485 3486 /* do_getpeername() Must return target values and target errnos. */ 3487 static abi_long do_getpeername(int fd, abi_ulong target_addr, 3488 abi_ulong target_addrlen_addr) 3489 { 3490 socklen_t addrlen, ret_addrlen; 3491 void *addr; 3492 abi_long ret; 3493 3494 if (get_user_u32(addrlen, target_addrlen_addr)) 3495 return -TARGET_EFAULT; 3496 3497 if ((int)addrlen < 0) { 3498 return -TARGET_EINVAL; 3499 } 3500 3501 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) { 3502 return -TARGET_EFAULT; 3503 } 3504 3505 addr = alloca(addrlen); 3506 3507 ret_addrlen = addrlen; 3508 ret = get_errno(getpeername(fd, addr, &ret_addrlen)); 3509 if (!is_error(ret)) { 3510 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen)); 3511 if (put_user_u32(ret_addrlen, target_addrlen_addr)) { 3512 ret = -TARGET_EFAULT; 3513 } 3514 } 3515 return ret; 3516 } 3517 3518 /* do_getsockname() Must return target values and target errnos. */ 3519 static abi_long do_getsockname(int fd, abi_ulong target_addr, 3520 abi_ulong target_addrlen_addr) 3521 { 3522 socklen_t addrlen, ret_addrlen; 3523 void *addr; 3524 abi_long ret; 3525 3526 if (get_user_u32(addrlen, target_addrlen_addr)) 3527 return -TARGET_EFAULT; 3528 3529 if ((int)addrlen < 0) { 3530 return -TARGET_EINVAL; 3531 } 3532 3533 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) { 3534 return -TARGET_EFAULT; 3535 } 3536 3537 addr = alloca(addrlen); 3538 3539 ret_addrlen = addrlen; 3540 ret = get_errno(getsockname(fd, addr, &ret_addrlen)); 3541 if (!is_error(ret)) { 3542 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen)); 3543 if (put_user_u32(ret_addrlen, target_addrlen_addr)) { 3544 ret = -TARGET_EFAULT; 3545 } 3546 } 3547 return ret; 3548 } 3549 3550 /* do_socketpair() Must return target values and target errnos. */ 3551 static abi_long do_socketpair(int domain, int type, int protocol, 3552 abi_ulong target_tab_addr) 3553 { 3554 int tab[2]; 3555 abi_long ret; 3556 3557 target_to_host_sock_type(&type); 3558 3559 ret = get_errno(socketpair(domain, type, protocol, tab)); 3560 if (!is_error(ret)) { 3561 if (put_user_s32(tab[0], target_tab_addr) 3562 || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0]))) 3563 ret = -TARGET_EFAULT; 3564 } 3565 return ret; 3566 } 3567 3568 /* do_sendto() Must return target values and target errnos. */ 3569 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags, 3570 abi_ulong target_addr, socklen_t addrlen) 3571 { 3572 void *addr; 3573 void *host_msg; 3574 void *copy_msg = NULL; 3575 abi_long ret; 3576 3577 if ((int)addrlen < 0) { 3578 return -TARGET_EINVAL; 3579 } 3580 3581 host_msg = lock_user(VERIFY_READ, msg, len, 1); 3582 if (!host_msg) 3583 return -TARGET_EFAULT; 3584 if (fd_trans_target_to_host_data(fd)) { 3585 copy_msg = host_msg; 3586 host_msg = g_malloc(len); 3587 memcpy(host_msg, copy_msg, len); 3588 ret = fd_trans_target_to_host_data(fd)(host_msg, len); 3589 if (ret < 0) { 3590 goto fail; 3591 } 3592 } 3593 if (target_addr) { 3594 addr = alloca(addrlen+1); 3595 ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen); 3596 if (ret) { 3597 goto fail; 3598 } 3599 ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen)); 3600 } else { 3601 ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0)); 3602 } 3603 fail: 3604 if (copy_msg) { 3605 g_free(host_msg); 3606 host_msg = copy_msg; 3607 } 3608 unlock_user(host_msg, msg, 0); 3609 return ret; 3610 } 3611 3612 /* do_recvfrom() Must return target values and target errnos. */ 3613 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags, 3614 abi_ulong target_addr, 3615 abi_ulong target_addrlen) 3616 { 3617 socklen_t addrlen, ret_addrlen; 3618 void *addr; 3619 void *host_msg; 3620 abi_long ret; 3621 3622 if (!msg) { 3623 host_msg = NULL; 3624 } else { 3625 host_msg = lock_user(VERIFY_WRITE, msg, len, 0); 3626 if (!host_msg) { 3627 return -TARGET_EFAULT; 3628 } 3629 } 3630 if (target_addr) { 3631 if (get_user_u32(addrlen, target_addrlen)) { 3632 ret = -TARGET_EFAULT; 3633 goto fail; 3634 } 3635 if ((int)addrlen < 0) { 3636 ret = -TARGET_EINVAL; 3637 goto fail; 3638 } 3639 addr = alloca(addrlen); 3640 ret_addrlen = addrlen; 3641 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, 3642 addr, &ret_addrlen)); 3643 } else { 3644 addr = NULL; /* To keep compiler quiet. */ 3645 addrlen = 0; /* To keep compiler quiet. */ 3646 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0)); 3647 } 3648 if (!is_error(ret)) { 3649 if (fd_trans_host_to_target_data(fd)) { 3650 abi_long trans; 3651 trans = fd_trans_host_to_target_data(fd)(host_msg, MIN(ret, len)); 3652 if (is_error(trans)) { 3653 ret = trans; 3654 goto fail; 3655 } 3656 } 3657 if (target_addr) { 3658 host_to_target_sockaddr(target_addr, addr, 3659 MIN(addrlen, ret_addrlen)); 3660 if (put_user_u32(ret_addrlen, target_addrlen)) { 3661 ret = -TARGET_EFAULT; 3662 goto fail; 3663 } 3664 } 3665 unlock_user(host_msg, msg, len); 3666 } else { 3667 fail: 3668 unlock_user(host_msg, msg, 0); 3669 } 3670 return ret; 3671 } 3672 3673 #ifdef TARGET_NR_socketcall 3674 /* do_socketcall() must return target values and target errnos. */ 3675 static abi_long do_socketcall(int num, abi_ulong vptr) 3676 { 3677 static const unsigned nargs[] = { /* number of arguments per operation */ 3678 [TARGET_SYS_SOCKET] = 3, /* domain, type, protocol */ 3679 [TARGET_SYS_BIND] = 3, /* fd, addr, addrlen */ 3680 [TARGET_SYS_CONNECT] = 3, /* fd, addr, addrlen */ 3681 [TARGET_SYS_LISTEN] = 2, /* fd, backlog */ 3682 [TARGET_SYS_ACCEPT] = 3, /* fd, addr, addrlen */ 3683 [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */ 3684 [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */ 3685 [TARGET_SYS_SOCKETPAIR] = 4, /* domain, type, protocol, tab */ 3686 [TARGET_SYS_SEND] = 4, /* fd, msg, len, flags */ 3687 [TARGET_SYS_RECV] = 4, /* fd, msg, len, flags */ 3688 [TARGET_SYS_SENDTO] = 6, /* fd, msg, len, flags, addr, addrlen */ 3689 [TARGET_SYS_RECVFROM] = 6, /* fd, msg, len, flags, addr, addrlen */ 3690 [TARGET_SYS_SHUTDOWN] = 2, /* fd, how */ 3691 [TARGET_SYS_SETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */ 3692 [TARGET_SYS_GETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */ 3693 [TARGET_SYS_SENDMSG] = 3, /* fd, msg, flags */ 3694 [TARGET_SYS_RECVMSG] = 3, /* fd, msg, flags */ 3695 [TARGET_SYS_ACCEPT4] = 4, /* fd, addr, addrlen, flags */ 3696 [TARGET_SYS_RECVMMSG] = 4, /* fd, msgvec, vlen, flags */ 3697 [TARGET_SYS_SENDMMSG] = 4, /* fd, msgvec, vlen, flags */ 3698 }; 3699 abi_long a[6]; /* max 6 args */ 3700 unsigned i; 3701 3702 /* check the range of the first argument num */ 3703 /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */ 3704 if (num < 1 || num > TARGET_SYS_SENDMMSG) { 3705 return -TARGET_EINVAL; 3706 } 3707 /* ensure we have space for args */ 3708 if (nargs[num] > ARRAY_SIZE(a)) { 3709 return -TARGET_EINVAL; 3710 } 3711 /* collect the arguments in a[] according to nargs[] */ 3712 for (i = 0; i < nargs[num]; ++i) { 3713 if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) { 3714 return -TARGET_EFAULT; 3715 } 3716 } 3717 /* now when we have the args, invoke the appropriate underlying function */ 3718 switch (num) { 3719 case TARGET_SYS_SOCKET: /* domain, type, protocol */ 3720 return do_socket(a[0], a[1], a[2]); 3721 case TARGET_SYS_BIND: /* sockfd, addr, addrlen */ 3722 return do_bind(a[0], a[1], a[2]); 3723 case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */ 3724 return do_connect(a[0], a[1], a[2]); 3725 case TARGET_SYS_LISTEN: /* sockfd, backlog */ 3726 return get_errno(listen(a[0], a[1])); 3727 case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */ 3728 return do_accept4(a[0], a[1], a[2], 0); 3729 case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */ 3730 return do_getsockname(a[0], a[1], a[2]); 3731 case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */ 3732 return do_getpeername(a[0], a[1], a[2]); 3733 case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */ 3734 return do_socketpair(a[0], a[1], a[2], a[3]); 3735 case TARGET_SYS_SEND: /* sockfd, msg, len, flags */ 3736 return do_sendto(a[0], a[1], a[2], a[3], 0, 0); 3737 case TARGET_SYS_RECV: /* sockfd, msg, len, flags */ 3738 return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0); 3739 case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */ 3740 return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]); 3741 case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */ 3742 return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]); 3743 case TARGET_SYS_SHUTDOWN: /* sockfd, how */ 3744 return get_errno(shutdown(a[0], a[1])); 3745 case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */ 3746 return do_setsockopt(a[0], a[1], a[2], a[3], a[4]); 3747 case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */ 3748 return do_getsockopt(a[0], a[1], a[2], a[3], a[4]); 3749 case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */ 3750 return do_sendrecvmsg(a[0], a[1], a[2], 1); 3751 case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */ 3752 return do_sendrecvmsg(a[0], a[1], a[2], 0); 3753 case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */ 3754 return do_accept4(a[0], a[1], a[2], a[3]); 3755 case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */ 3756 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0); 3757 case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */ 3758 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1); 3759 default: 3760 qemu_log_mask(LOG_UNIMP, "Unsupported socketcall: %d\n", num); 3761 return -TARGET_EINVAL; 3762 } 3763 } 3764 #endif 3765 3766 #define N_SHM_REGIONS 32 3767 3768 static struct shm_region { 3769 abi_ulong start; 3770 abi_ulong size; 3771 bool in_use; 3772 } shm_regions[N_SHM_REGIONS]; 3773 3774 #ifndef TARGET_SEMID64_DS 3775 /* asm-generic version of this struct */ 3776 struct target_semid64_ds 3777 { 3778 struct target_ipc_perm sem_perm; 3779 abi_ulong sem_otime; 3780 #if TARGET_ABI_BITS == 32 3781 abi_ulong __unused1; 3782 #endif 3783 abi_ulong sem_ctime; 3784 #if TARGET_ABI_BITS == 32 3785 abi_ulong __unused2; 3786 #endif 3787 abi_ulong sem_nsems; 3788 abi_ulong __unused3; 3789 abi_ulong __unused4; 3790 }; 3791 #endif 3792 3793 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip, 3794 abi_ulong target_addr) 3795 { 3796 struct target_ipc_perm *target_ip; 3797 struct target_semid64_ds *target_sd; 3798 3799 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 3800 return -TARGET_EFAULT; 3801 target_ip = &(target_sd->sem_perm); 3802 host_ip->__key = tswap32(target_ip->__key); 3803 host_ip->uid = tswap32(target_ip->uid); 3804 host_ip->gid = tswap32(target_ip->gid); 3805 host_ip->cuid = tswap32(target_ip->cuid); 3806 host_ip->cgid = tswap32(target_ip->cgid); 3807 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC) 3808 host_ip->mode = tswap32(target_ip->mode); 3809 #else 3810 host_ip->mode = tswap16(target_ip->mode); 3811 #endif 3812 #if defined(TARGET_PPC) 3813 host_ip->__seq = tswap32(target_ip->__seq); 3814 #else 3815 host_ip->__seq = tswap16(target_ip->__seq); 3816 #endif 3817 unlock_user_struct(target_sd, target_addr, 0); 3818 return 0; 3819 } 3820 3821 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr, 3822 struct ipc_perm *host_ip) 3823 { 3824 struct target_ipc_perm *target_ip; 3825 struct target_semid64_ds *target_sd; 3826 3827 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 3828 return -TARGET_EFAULT; 3829 target_ip = &(target_sd->sem_perm); 3830 target_ip->__key = tswap32(host_ip->__key); 3831 target_ip->uid = tswap32(host_ip->uid); 3832 target_ip->gid = tswap32(host_ip->gid); 3833 target_ip->cuid = tswap32(host_ip->cuid); 3834 target_ip->cgid = tswap32(host_ip->cgid); 3835 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC) 3836 target_ip->mode = tswap32(host_ip->mode); 3837 #else 3838 target_ip->mode = tswap16(host_ip->mode); 3839 #endif 3840 #if defined(TARGET_PPC) 3841 target_ip->__seq = tswap32(host_ip->__seq); 3842 #else 3843 target_ip->__seq = tswap16(host_ip->__seq); 3844 #endif 3845 unlock_user_struct(target_sd, target_addr, 1); 3846 return 0; 3847 } 3848 3849 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd, 3850 abi_ulong target_addr) 3851 { 3852 struct target_semid64_ds *target_sd; 3853 3854 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 3855 return -TARGET_EFAULT; 3856 if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr)) 3857 return -TARGET_EFAULT; 3858 host_sd->sem_nsems = tswapal(target_sd->sem_nsems); 3859 host_sd->sem_otime = tswapal(target_sd->sem_otime); 3860 host_sd->sem_ctime = tswapal(target_sd->sem_ctime); 3861 unlock_user_struct(target_sd, target_addr, 0); 3862 return 0; 3863 } 3864 3865 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr, 3866 struct semid_ds *host_sd) 3867 { 3868 struct target_semid64_ds *target_sd; 3869 3870 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 3871 return -TARGET_EFAULT; 3872 if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm))) 3873 return -TARGET_EFAULT; 3874 target_sd->sem_nsems = tswapal(host_sd->sem_nsems); 3875 target_sd->sem_otime = tswapal(host_sd->sem_otime); 3876 target_sd->sem_ctime = tswapal(host_sd->sem_ctime); 3877 unlock_user_struct(target_sd, target_addr, 1); 3878 return 0; 3879 } 3880 3881 struct target_seminfo { 3882 int semmap; 3883 int semmni; 3884 int semmns; 3885 int semmnu; 3886 int semmsl; 3887 int semopm; 3888 int semume; 3889 int semusz; 3890 int semvmx; 3891 int semaem; 3892 }; 3893 3894 static inline abi_long host_to_target_seminfo(abi_ulong target_addr, 3895 struct seminfo *host_seminfo) 3896 { 3897 struct target_seminfo *target_seminfo; 3898 if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0)) 3899 return -TARGET_EFAULT; 3900 __put_user(host_seminfo->semmap, &target_seminfo->semmap); 3901 __put_user(host_seminfo->semmni, &target_seminfo->semmni); 3902 __put_user(host_seminfo->semmns, &target_seminfo->semmns); 3903 __put_user(host_seminfo->semmnu, &target_seminfo->semmnu); 3904 __put_user(host_seminfo->semmsl, &target_seminfo->semmsl); 3905 __put_user(host_seminfo->semopm, &target_seminfo->semopm); 3906 __put_user(host_seminfo->semume, &target_seminfo->semume); 3907 __put_user(host_seminfo->semusz, &target_seminfo->semusz); 3908 __put_user(host_seminfo->semvmx, &target_seminfo->semvmx); 3909 __put_user(host_seminfo->semaem, &target_seminfo->semaem); 3910 unlock_user_struct(target_seminfo, target_addr, 1); 3911 return 0; 3912 } 3913 3914 union semun { 3915 int val; 3916 struct semid_ds *buf; 3917 unsigned short *array; 3918 struct seminfo *__buf; 3919 }; 3920 3921 union target_semun { 3922 int val; 3923 abi_ulong buf; 3924 abi_ulong array; 3925 abi_ulong __buf; 3926 }; 3927 3928 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array, 3929 abi_ulong target_addr) 3930 { 3931 int nsems; 3932 unsigned short *array; 3933 union semun semun; 3934 struct semid_ds semid_ds; 3935 int i, ret; 3936 3937 semun.buf = &semid_ds; 3938 3939 ret = semctl(semid, 0, IPC_STAT, semun); 3940 if (ret == -1) 3941 return get_errno(ret); 3942 3943 nsems = semid_ds.sem_nsems; 3944 3945 *host_array = g_try_new(unsigned short, nsems); 3946 if (!*host_array) { 3947 return -TARGET_ENOMEM; 3948 } 3949 array = lock_user(VERIFY_READ, target_addr, 3950 nsems*sizeof(unsigned short), 1); 3951 if (!array) { 3952 g_free(*host_array); 3953 return -TARGET_EFAULT; 3954 } 3955 3956 for(i=0; i<nsems; i++) { 3957 __get_user((*host_array)[i], &array[i]); 3958 } 3959 unlock_user(array, target_addr, 0); 3960 3961 return 0; 3962 } 3963 3964 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr, 3965 unsigned short **host_array) 3966 { 3967 int nsems; 3968 unsigned short *array; 3969 union semun semun; 3970 struct semid_ds semid_ds; 3971 int i, ret; 3972 3973 semun.buf = &semid_ds; 3974 3975 ret = semctl(semid, 0, IPC_STAT, semun); 3976 if (ret == -1) 3977 return get_errno(ret); 3978 3979 nsems = semid_ds.sem_nsems; 3980 3981 array = lock_user(VERIFY_WRITE, target_addr, 3982 nsems*sizeof(unsigned short), 0); 3983 if (!array) 3984 return -TARGET_EFAULT; 3985 3986 for(i=0; i<nsems; i++) { 3987 __put_user((*host_array)[i], &array[i]); 3988 } 3989 g_free(*host_array); 3990 unlock_user(array, target_addr, 1); 3991 3992 return 0; 3993 } 3994 3995 static inline abi_long do_semctl(int semid, int semnum, int cmd, 3996 abi_ulong target_arg) 3997 { 3998 union target_semun target_su = { .buf = target_arg }; 3999 union semun arg; 4000 struct semid_ds dsarg; 4001 unsigned short *array = NULL; 4002 struct seminfo seminfo; 4003 abi_long ret = -TARGET_EINVAL; 4004 abi_long err; 4005 cmd &= 0xff; 4006 4007 switch( cmd ) { 4008 case GETVAL: 4009 case SETVAL: 4010 /* In 64 bit cross-endian situations, we will erroneously pick up 4011 * the wrong half of the union for the "val" element. To rectify 4012 * this, the entire 8-byte structure is byteswapped, followed by 4013 * a swap of the 4 byte val field. In other cases, the data is 4014 * already in proper host byte order. */ 4015 if (sizeof(target_su.val) != (sizeof(target_su.buf))) { 4016 target_su.buf = tswapal(target_su.buf); 4017 arg.val = tswap32(target_su.val); 4018 } else { 4019 arg.val = target_su.val; 4020 } 4021 ret = get_errno(semctl(semid, semnum, cmd, arg)); 4022 break; 4023 case GETALL: 4024 case SETALL: 4025 err = target_to_host_semarray(semid, &array, target_su.array); 4026 if (err) 4027 return err; 4028 arg.array = array; 4029 ret = get_errno(semctl(semid, semnum, cmd, arg)); 4030 err = host_to_target_semarray(semid, target_su.array, &array); 4031 if (err) 4032 return err; 4033 break; 4034 case IPC_STAT: 4035 case IPC_SET: 4036 case SEM_STAT: 4037 err = target_to_host_semid_ds(&dsarg, target_su.buf); 4038 if (err) 4039 return err; 4040 arg.buf = &dsarg; 4041 ret = get_errno(semctl(semid, semnum, cmd, arg)); 4042 err = host_to_target_semid_ds(target_su.buf, &dsarg); 4043 if (err) 4044 return err; 4045 break; 4046 case IPC_INFO: 4047 case SEM_INFO: 4048 arg.__buf = &seminfo; 4049 ret = get_errno(semctl(semid, semnum, cmd, arg)); 4050 err = host_to_target_seminfo(target_su.__buf, &seminfo); 4051 if (err) 4052 return err; 4053 break; 4054 case IPC_RMID: 4055 case GETPID: 4056 case GETNCNT: 4057 case GETZCNT: 4058 ret = get_errno(semctl(semid, semnum, cmd, NULL)); 4059 break; 4060 } 4061 4062 return ret; 4063 } 4064 4065 struct target_sembuf { 4066 unsigned short sem_num; 4067 short sem_op; 4068 short sem_flg; 4069 }; 4070 4071 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf, 4072 abi_ulong target_addr, 4073 unsigned nsops) 4074 { 4075 struct target_sembuf *target_sembuf; 4076 int i; 4077 4078 target_sembuf = lock_user(VERIFY_READ, target_addr, 4079 nsops*sizeof(struct target_sembuf), 1); 4080 if (!target_sembuf) 4081 return -TARGET_EFAULT; 4082 4083 for(i=0; i<nsops; i++) { 4084 __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num); 4085 __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op); 4086 __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg); 4087 } 4088 4089 unlock_user(target_sembuf, target_addr, 0); 4090 4091 return 0; 4092 } 4093 4094 #if defined(TARGET_NR_ipc) || defined(TARGET_NR_semop) || \ 4095 defined(TARGET_NR_semtimedop) || defined(TARGET_NR_semtimedop_time64) 4096 4097 /* 4098 * This macro is required to handle the s390 variants, which passes the 4099 * arguments in a different order than default. 4100 */ 4101 #ifdef __s390x__ 4102 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \ 4103 (__nsops), (__timeout), (__sops) 4104 #else 4105 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \ 4106 (__nsops), 0, (__sops), (__timeout) 4107 #endif 4108 4109 static inline abi_long do_semtimedop(int semid, 4110 abi_long ptr, 4111 unsigned nsops, 4112 abi_long timeout, bool time64) 4113 { 4114 struct sembuf *sops; 4115 struct timespec ts, *pts = NULL; 4116 abi_long ret; 4117 4118 if (timeout) { 4119 pts = &ts; 4120 if (time64) { 4121 if (target_to_host_timespec64(pts, timeout)) { 4122 return -TARGET_EFAULT; 4123 } 4124 } else { 4125 if (target_to_host_timespec(pts, timeout)) { 4126 return -TARGET_EFAULT; 4127 } 4128 } 4129 } 4130 4131 if (nsops > TARGET_SEMOPM) { 4132 return -TARGET_E2BIG; 4133 } 4134 4135 sops = g_new(struct sembuf, nsops); 4136 4137 if (target_to_host_sembuf(sops, ptr, nsops)) { 4138 g_free(sops); 4139 return -TARGET_EFAULT; 4140 } 4141 4142 ret = -TARGET_ENOSYS; 4143 #ifdef __NR_semtimedop 4144 ret = get_errno(safe_semtimedop(semid, sops, nsops, pts)); 4145 #endif 4146 #ifdef __NR_ipc 4147 if (ret == -TARGET_ENOSYS) { 4148 ret = get_errno(safe_ipc(IPCOP_semtimedop, semid, 4149 SEMTIMEDOP_IPC_ARGS(nsops, sops, (long)pts))); 4150 } 4151 #endif 4152 g_free(sops); 4153 return ret; 4154 } 4155 #endif 4156 4157 struct target_msqid_ds 4158 { 4159 struct target_ipc_perm msg_perm; 4160 abi_ulong msg_stime; 4161 #if TARGET_ABI_BITS == 32 4162 abi_ulong __unused1; 4163 #endif 4164 abi_ulong msg_rtime; 4165 #if TARGET_ABI_BITS == 32 4166 abi_ulong __unused2; 4167 #endif 4168 abi_ulong msg_ctime; 4169 #if TARGET_ABI_BITS == 32 4170 abi_ulong __unused3; 4171 #endif 4172 abi_ulong __msg_cbytes; 4173 abi_ulong msg_qnum; 4174 abi_ulong msg_qbytes; 4175 abi_ulong msg_lspid; 4176 abi_ulong msg_lrpid; 4177 abi_ulong __unused4; 4178 abi_ulong __unused5; 4179 }; 4180 4181 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md, 4182 abi_ulong target_addr) 4183 { 4184 struct target_msqid_ds *target_md; 4185 4186 if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1)) 4187 return -TARGET_EFAULT; 4188 if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr)) 4189 return -TARGET_EFAULT; 4190 host_md->msg_stime = tswapal(target_md->msg_stime); 4191 host_md->msg_rtime = tswapal(target_md->msg_rtime); 4192 host_md->msg_ctime = tswapal(target_md->msg_ctime); 4193 host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes); 4194 host_md->msg_qnum = tswapal(target_md->msg_qnum); 4195 host_md->msg_qbytes = tswapal(target_md->msg_qbytes); 4196 host_md->msg_lspid = tswapal(target_md->msg_lspid); 4197 host_md->msg_lrpid = tswapal(target_md->msg_lrpid); 4198 unlock_user_struct(target_md, target_addr, 0); 4199 return 0; 4200 } 4201 4202 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr, 4203 struct msqid_ds *host_md) 4204 { 4205 struct target_msqid_ds *target_md; 4206 4207 if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0)) 4208 return -TARGET_EFAULT; 4209 if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm))) 4210 return -TARGET_EFAULT; 4211 target_md->msg_stime = tswapal(host_md->msg_stime); 4212 target_md->msg_rtime = tswapal(host_md->msg_rtime); 4213 target_md->msg_ctime = tswapal(host_md->msg_ctime); 4214 target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes); 4215 target_md->msg_qnum = tswapal(host_md->msg_qnum); 4216 target_md->msg_qbytes = tswapal(host_md->msg_qbytes); 4217 target_md->msg_lspid = tswapal(host_md->msg_lspid); 4218 target_md->msg_lrpid = tswapal(host_md->msg_lrpid); 4219 unlock_user_struct(target_md, target_addr, 1); 4220 return 0; 4221 } 4222 4223 struct target_msginfo { 4224 int msgpool; 4225 int msgmap; 4226 int msgmax; 4227 int msgmnb; 4228 int msgmni; 4229 int msgssz; 4230 int msgtql; 4231 unsigned short int msgseg; 4232 }; 4233 4234 static inline abi_long host_to_target_msginfo(abi_ulong target_addr, 4235 struct msginfo *host_msginfo) 4236 { 4237 struct target_msginfo *target_msginfo; 4238 if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0)) 4239 return -TARGET_EFAULT; 4240 __put_user(host_msginfo->msgpool, &target_msginfo->msgpool); 4241 __put_user(host_msginfo->msgmap, &target_msginfo->msgmap); 4242 __put_user(host_msginfo->msgmax, &target_msginfo->msgmax); 4243 __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb); 4244 __put_user(host_msginfo->msgmni, &target_msginfo->msgmni); 4245 __put_user(host_msginfo->msgssz, &target_msginfo->msgssz); 4246 __put_user(host_msginfo->msgtql, &target_msginfo->msgtql); 4247 __put_user(host_msginfo->msgseg, &target_msginfo->msgseg); 4248 unlock_user_struct(target_msginfo, target_addr, 1); 4249 return 0; 4250 } 4251 4252 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr) 4253 { 4254 struct msqid_ds dsarg; 4255 struct msginfo msginfo; 4256 abi_long ret = -TARGET_EINVAL; 4257 4258 cmd &= 0xff; 4259 4260 switch (cmd) { 4261 case IPC_STAT: 4262 case IPC_SET: 4263 case MSG_STAT: 4264 if (target_to_host_msqid_ds(&dsarg,ptr)) 4265 return -TARGET_EFAULT; 4266 ret = get_errno(msgctl(msgid, cmd, &dsarg)); 4267 if (host_to_target_msqid_ds(ptr,&dsarg)) 4268 return -TARGET_EFAULT; 4269 break; 4270 case IPC_RMID: 4271 ret = get_errno(msgctl(msgid, cmd, NULL)); 4272 break; 4273 case IPC_INFO: 4274 case MSG_INFO: 4275 ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo)); 4276 if (host_to_target_msginfo(ptr, &msginfo)) 4277 return -TARGET_EFAULT; 4278 break; 4279 } 4280 4281 return ret; 4282 } 4283 4284 struct target_msgbuf { 4285 abi_long mtype; 4286 char mtext[1]; 4287 }; 4288 4289 static inline abi_long do_msgsnd(int msqid, abi_long msgp, 4290 ssize_t msgsz, int msgflg) 4291 { 4292 struct target_msgbuf *target_mb; 4293 struct msgbuf *host_mb; 4294 abi_long ret = 0; 4295 4296 if (msgsz < 0) { 4297 return -TARGET_EINVAL; 4298 } 4299 4300 if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0)) 4301 return -TARGET_EFAULT; 4302 host_mb = g_try_malloc(msgsz + sizeof(long)); 4303 if (!host_mb) { 4304 unlock_user_struct(target_mb, msgp, 0); 4305 return -TARGET_ENOMEM; 4306 } 4307 host_mb->mtype = (abi_long) tswapal(target_mb->mtype); 4308 memcpy(host_mb->mtext, target_mb->mtext, msgsz); 4309 ret = -TARGET_ENOSYS; 4310 #ifdef __NR_msgsnd 4311 ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg)); 4312 #endif 4313 #ifdef __NR_ipc 4314 if (ret == -TARGET_ENOSYS) { 4315 #ifdef __s390x__ 4316 ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg, 4317 host_mb)); 4318 #else 4319 ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg, 4320 host_mb, 0)); 4321 #endif 4322 } 4323 #endif 4324 g_free(host_mb); 4325 unlock_user_struct(target_mb, msgp, 0); 4326 4327 return ret; 4328 } 4329 4330 #ifdef __NR_ipc 4331 #if defined(__sparc__) 4332 /* SPARC for msgrcv it does not use the kludge on final 2 arguments. */ 4333 #define MSGRCV_ARGS(__msgp, __msgtyp) __msgp, __msgtyp 4334 #elif defined(__s390x__) 4335 /* The s390 sys_ipc variant has only five parameters. */ 4336 #define MSGRCV_ARGS(__msgp, __msgtyp) \ 4337 ((long int[]){(long int)__msgp, __msgtyp}) 4338 #else 4339 #define MSGRCV_ARGS(__msgp, __msgtyp) \ 4340 ((long int[]){(long int)__msgp, __msgtyp}), 0 4341 #endif 4342 #endif 4343 4344 static inline abi_long do_msgrcv(int msqid, abi_long msgp, 4345 ssize_t msgsz, abi_long msgtyp, 4346 int msgflg) 4347 { 4348 struct target_msgbuf *target_mb; 4349 char *target_mtext; 4350 struct msgbuf *host_mb; 4351 abi_long ret = 0; 4352 4353 if (msgsz < 0) { 4354 return -TARGET_EINVAL; 4355 } 4356 4357 if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0)) 4358 return -TARGET_EFAULT; 4359 4360 host_mb = g_try_malloc(msgsz + sizeof(long)); 4361 if (!host_mb) { 4362 ret = -TARGET_ENOMEM; 4363 goto end; 4364 } 4365 ret = -TARGET_ENOSYS; 4366 #ifdef __NR_msgrcv 4367 ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg)); 4368 #endif 4369 #ifdef __NR_ipc 4370 if (ret == -TARGET_ENOSYS) { 4371 ret = get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv), msqid, msgsz, 4372 msgflg, MSGRCV_ARGS(host_mb, msgtyp))); 4373 } 4374 #endif 4375 4376 if (ret > 0) { 4377 abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong); 4378 target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0); 4379 if (!target_mtext) { 4380 ret = -TARGET_EFAULT; 4381 goto end; 4382 } 4383 memcpy(target_mb->mtext, host_mb->mtext, ret); 4384 unlock_user(target_mtext, target_mtext_addr, ret); 4385 } 4386 4387 target_mb->mtype = tswapal(host_mb->mtype); 4388 4389 end: 4390 if (target_mb) 4391 unlock_user_struct(target_mb, msgp, 1); 4392 g_free(host_mb); 4393 return ret; 4394 } 4395 4396 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd, 4397 abi_ulong target_addr) 4398 { 4399 struct target_shmid_ds *target_sd; 4400 4401 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 4402 return -TARGET_EFAULT; 4403 if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr)) 4404 return -TARGET_EFAULT; 4405 __get_user(host_sd->shm_segsz, &target_sd->shm_segsz); 4406 __get_user(host_sd->shm_atime, &target_sd->shm_atime); 4407 __get_user(host_sd->shm_dtime, &target_sd->shm_dtime); 4408 __get_user(host_sd->shm_ctime, &target_sd->shm_ctime); 4409 __get_user(host_sd->shm_cpid, &target_sd->shm_cpid); 4410 __get_user(host_sd->shm_lpid, &target_sd->shm_lpid); 4411 __get_user(host_sd->shm_nattch, &target_sd->shm_nattch); 4412 unlock_user_struct(target_sd, target_addr, 0); 4413 return 0; 4414 } 4415 4416 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr, 4417 struct shmid_ds *host_sd) 4418 { 4419 struct target_shmid_ds *target_sd; 4420 4421 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 4422 return -TARGET_EFAULT; 4423 if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm))) 4424 return -TARGET_EFAULT; 4425 __put_user(host_sd->shm_segsz, &target_sd->shm_segsz); 4426 __put_user(host_sd->shm_atime, &target_sd->shm_atime); 4427 __put_user(host_sd->shm_dtime, &target_sd->shm_dtime); 4428 __put_user(host_sd->shm_ctime, &target_sd->shm_ctime); 4429 __put_user(host_sd->shm_cpid, &target_sd->shm_cpid); 4430 __put_user(host_sd->shm_lpid, &target_sd->shm_lpid); 4431 __put_user(host_sd->shm_nattch, &target_sd->shm_nattch); 4432 unlock_user_struct(target_sd, target_addr, 1); 4433 return 0; 4434 } 4435 4436 struct target_shminfo { 4437 abi_ulong shmmax; 4438 abi_ulong shmmin; 4439 abi_ulong shmmni; 4440 abi_ulong shmseg; 4441 abi_ulong shmall; 4442 }; 4443 4444 static inline abi_long host_to_target_shminfo(abi_ulong target_addr, 4445 struct shminfo *host_shminfo) 4446 { 4447 struct target_shminfo *target_shminfo; 4448 if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0)) 4449 return -TARGET_EFAULT; 4450 __put_user(host_shminfo->shmmax, &target_shminfo->shmmax); 4451 __put_user(host_shminfo->shmmin, &target_shminfo->shmmin); 4452 __put_user(host_shminfo->shmmni, &target_shminfo->shmmni); 4453 __put_user(host_shminfo->shmseg, &target_shminfo->shmseg); 4454 __put_user(host_shminfo->shmall, &target_shminfo->shmall); 4455 unlock_user_struct(target_shminfo, target_addr, 1); 4456 return 0; 4457 } 4458 4459 struct target_shm_info { 4460 int used_ids; 4461 abi_ulong shm_tot; 4462 abi_ulong shm_rss; 4463 abi_ulong shm_swp; 4464 abi_ulong swap_attempts; 4465 abi_ulong swap_successes; 4466 }; 4467 4468 static inline abi_long host_to_target_shm_info(abi_ulong target_addr, 4469 struct shm_info *host_shm_info) 4470 { 4471 struct target_shm_info *target_shm_info; 4472 if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0)) 4473 return -TARGET_EFAULT; 4474 __put_user(host_shm_info->used_ids, &target_shm_info->used_ids); 4475 __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot); 4476 __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss); 4477 __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp); 4478 __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts); 4479 __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes); 4480 unlock_user_struct(target_shm_info, target_addr, 1); 4481 return 0; 4482 } 4483 4484 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf) 4485 { 4486 struct shmid_ds dsarg; 4487 struct shminfo shminfo; 4488 struct shm_info shm_info; 4489 abi_long ret = -TARGET_EINVAL; 4490 4491 cmd &= 0xff; 4492 4493 switch(cmd) { 4494 case IPC_STAT: 4495 case IPC_SET: 4496 case SHM_STAT: 4497 if (target_to_host_shmid_ds(&dsarg, buf)) 4498 return -TARGET_EFAULT; 4499 ret = get_errno(shmctl(shmid, cmd, &dsarg)); 4500 if (host_to_target_shmid_ds(buf, &dsarg)) 4501 return -TARGET_EFAULT; 4502 break; 4503 case IPC_INFO: 4504 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo)); 4505 if (host_to_target_shminfo(buf, &shminfo)) 4506 return -TARGET_EFAULT; 4507 break; 4508 case SHM_INFO: 4509 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info)); 4510 if (host_to_target_shm_info(buf, &shm_info)) 4511 return -TARGET_EFAULT; 4512 break; 4513 case IPC_RMID: 4514 case SHM_LOCK: 4515 case SHM_UNLOCK: 4516 ret = get_errno(shmctl(shmid, cmd, NULL)); 4517 break; 4518 } 4519 4520 return ret; 4521 } 4522 4523 #ifndef TARGET_FORCE_SHMLBA 4524 /* For most architectures, SHMLBA is the same as the page size; 4525 * some architectures have larger values, in which case they should 4526 * define TARGET_FORCE_SHMLBA and provide a target_shmlba() function. 4527 * This corresponds to the kernel arch code defining __ARCH_FORCE_SHMLBA 4528 * and defining its own value for SHMLBA. 4529 * 4530 * The kernel also permits SHMLBA to be set by the architecture to a 4531 * value larger than the page size without setting __ARCH_FORCE_SHMLBA; 4532 * this means that addresses are rounded to the large size if 4533 * SHM_RND is set but addresses not aligned to that size are not rejected 4534 * as long as they are at least page-aligned. Since the only architecture 4535 * which uses this is ia64 this code doesn't provide for that oddity. 4536 */ 4537 static inline abi_ulong target_shmlba(CPUArchState *cpu_env) 4538 { 4539 return TARGET_PAGE_SIZE; 4540 } 4541 #endif 4542 4543 static inline abi_ulong do_shmat(CPUArchState *cpu_env, 4544 int shmid, abi_ulong shmaddr, int shmflg) 4545 { 4546 CPUState *cpu = env_cpu(cpu_env); 4547 abi_long raddr; 4548 void *host_raddr; 4549 struct shmid_ds shm_info; 4550 int i,ret; 4551 abi_ulong shmlba; 4552 4553 /* shmat pointers are always untagged */ 4554 4555 /* find out the length of the shared memory segment */ 4556 ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info)); 4557 if (is_error(ret)) { 4558 /* can't get length, bail out */ 4559 return ret; 4560 } 4561 4562 shmlba = target_shmlba(cpu_env); 4563 4564 if (shmaddr & (shmlba - 1)) { 4565 if (shmflg & SHM_RND) { 4566 shmaddr &= ~(shmlba - 1); 4567 } else { 4568 return -TARGET_EINVAL; 4569 } 4570 } 4571 if (!guest_range_valid_untagged(shmaddr, shm_info.shm_segsz)) { 4572 return -TARGET_EINVAL; 4573 } 4574 4575 mmap_lock(); 4576 4577 /* 4578 * We're mapping shared memory, so ensure we generate code for parallel 4579 * execution and flush old translations. This will work up to the level 4580 * supported by the host -- anything that requires EXCP_ATOMIC will not 4581 * be atomic with respect to an external process. 4582 */ 4583 if (!(cpu->tcg_cflags & CF_PARALLEL)) { 4584 cpu->tcg_cflags |= CF_PARALLEL; 4585 tb_flush(cpu); 4586 } 4587 4588 if (shmaddr) 4589 host_raddr = shmat(shmid, (void *)g2h_untagged(shmaddr), shmflg); 4590 else { 4591 abi_ulong mmap_start; 4592 4593 /* In order to use the host shmat, we need to honor host SHMLBA. */ 4594 mmap_start = mmap_find_vma(0, shm_info.shm_segsz, MAX(SHMLBA, shmlba)); 4595 4596 if (mmap_start == -1) { 4597 errno = ENOMEM; 4598 host_raddr = (void *)-1; 4599 } else 4600 host_raddr = shmat(shmid, g2h_untagged(mmap_start), 4601 shmflg | SHM_REMAP); 4602 } 4603 4604 if (host_raddr == (void *)-1) { 4605 mmap_unlock(); 4606 return get_errno((long)host_raddr); 4607 } 4608 raddr=h2g((unsigned long)host_raddr); 4609 4610 page_set_flags(raddr, raddr + shm_info.shm_segsz, 4611 PAGE_VALID | PAGE_RESET | PAGE_READ | 4612 (shmflg & SHM_RDONLY ? 0 : PAGE_WRITE)); 4613 4614 for (i = 0; i < N_SHM_REGIONS; i++) { 4615 if (!shm_regions[i].in_use) { 4616 shm_regions[i].in_use = true; 4617 shm_regions[i].start = raddr; 4618 shm_regions[i].size = shm_info.shm_segsz; 4619 break; 4620 } 4621 } 4622 4623 mmap_unlock(); 4624 return raddr; 4625 4626 } 4627 4628 static inline abi_long do_shmdt(abi_ulong shmaddr) 4629 { 4630 int i; 4631 abi_long rv; 4632 4633 /* shmdt pointers are always untagged */ 4634 4635 mmap_lock(); 4636 4637 for (i = 0; i < N_SHM_REGIONS; ++i) { 4638 if (shm_regions[i].in_use && shm_regions[i].start == shmaddr) { 4639 shm_regions[i].in_use = false; 4640 page_set_flags(shmaddr, shmaddr + shm_regions[i].size, 0); 4641 break; 4642 } 4643 } 4644 rv = get_errno(shmdt(g2h_untagged(shmaddr))); 4645 4646 mmap_unlock(); 4647 4648 return rv; 4649 } 4650 4651 #ifdef TARGET_NR_ipc 4652 /* ??? This only works with linear mappings. */ 4653 /* do_ipc() must return target values and target errnos. */ 4654 static abi_long do_ipc(CPUArchState *cpu_env, 4655 unsigned int call, abi_long first, 4656 abi_long second, abi_long third, 4657 abi_long ptr, abi_long fifth) 4658 { 4659 int version; 4660 abi_long ret = 0; 4661 4662 version = call >> 16; 4663 call &= 0xffff; 4664 4665 switch (call) { 4666 case IPCOP_semop: 4667 ret = do_semtimedop(first, ptr, second, 0, false); 4668 break; 4669 case IPCOP_semtimedop: 4670 /* 4671 * The s390 sys_ipc variant has only five parameters instead of six 4672 * (as for default variant) and the only difference is the handling of 4673 * SEMTIMEDOP where on s390 the third parameter is used as a pointer 4674 * to a struct timespec where the generic variant uses fifth parameter. 4675 */ 4676 #if defined(TARGET_S390X) 4677 ret = do_semtimedop(first, ptr, second, third, TARGET_ABI_BITS == 64); 4678 #else 4679 ret = do_semtimedop(first, ptr, second, fifth, TARGET_ABI_BITS == 64); 4680 #endif 4681 break; 4682 4683 case IPCOP_semget: 4684 ret = get_errno(semget(first, second, third)); 4685 break; 4686 4687 case IPCOP_semctl: { 4688 /* The semun argument to semctl is passed by value, so dereference the 4689 * ptr argument. */ 4690 abi_ulong atptr; 4691 get_user_ual(atptr, ptr); 4692 ret = do_semctl(first, second, third, atptr); 4693 break; 4694 } 4695 4696 case IPCOP_msgget: 4697 ret = get_errno(msgget(first, second)); 4698 break; 4699 4700 case IPCOP_msgsnd: 4701 ret = do_msgsnd(first, ptr, second, third); 4702 break; 4703 4704 case IPCOP_msgctl: 4705 ret = do_msgctl(first, second, ptr); 4706 break; 4707 4708 case IPCOP_msgrcv: 4709 switch (version) { 4710 case 0: 4711 { 4712 struct target_ipc_kludge { 4713 abi_long msgp; 4714 abi_long msgtyp; 4715 } *tmp; 4716 4717 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) { 4718 ret = -TARGET_EFAULT; 4719 break; 4720 } 4721 4722 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third); 4723 4724 unlock_user_struct(tmp, ptr, 0); 4725 break; 4726 } 4727 default: 4728 ret = do_msgrcv(first, ptr, second, fifth, third); 4729 } 4730 break; 4731 4732 case IPCOP_shmat: 4733 switch (version) { 4734 default: 4735 { 4736 abi_ulong raddr; 4737 raddr = do_shmat(cpu_env, first, ptr, second); 4738 if (is_error(raddr)) 4739 return get_errno(raddr); 4740 if (put_user_ual(raddr, third)) 4741 return -TARGET_EFAULT; 4742 break; 4743 } 4744 case 1: 4745 ret = -TARGET_EINVAL; 4746 break; 4747 } 4748 break; 4749 case IPCOP_shmdt: 4750 ret = do_shmdt(ptr); 4751 break; 4752 4753 case IPCOP_shmget: 4754 /* IPC_* flag values are the same on all linux platforms */ 4755 ret = get_errno(shmget(first, second, third)); 4756 break; 4757 4758 /* IPC_* and SHM_* command values are the same on all linux platforms */ 4759 case IPCOP_shmctl: 4760 ret = do_shmctl(first, second, ptr); 4761 break; 4762 default: 4763 qemu_log_mask(LOG_UNIMP, "Unsupported ipc call: %d (version %d)\n", 4764 call, version); 4765 ret = -TARGET_ENOSYS; 4766 break; 4767 } 4768 return ret; 4769 } 4770 #endif 4771 4772 /* kernel structure types definitions */ 4773 4774 #define STRUCT(name, ...) STRUCT_ ## name, 4775 #define STRUCT_SPECIAL(name) STRUCT_ ## name, 4776 enum { 4777 #include "syscall_types.h" 4778 STRUCT_MAX 4779 }; 4780 #undef STRUCT 4781 #undef STRUCT_SPECIAL 4782 4783 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL }; 4784 #define STRUCT_SPECIAL(name) 4785 #include "syscall_types.h" 4786 #undef STRUCT 4787 #undef STRUCT_SPECIAL 4788 4789 #define MAX_STRUCT_SIZE 4096 4790 4791 #ifdef CONFIG_FIEMAP 4792 /* So fiemap access checks don't overflow on 32 bit systems. 4793 * This is very slightly smaller than the limit imposed by 4794 * the underlying kernel. 4795 */ 4796 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \ 4797 / sizeof(struct fiemap_extent)) 4798 4799 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp, 4800 int fd, int cmd, abi_long arg) 4801 { 4802 /* The parameter for this ioctl is a struct fiemap followed 4803 * by an array of struct fiemap_extent whose size is set 4804 * in fiemap->fm_extent_count. The array is filled in by the 4805 * ioctl. 4806 */ 4807 int target_size_in, target_size_out; 4808 struct fiemap *fm; 4809 const argtype *arg_type = ie->arg_type; 4810 const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) }; 4811 void *argptr, *p; 4812 abi_long ret; 4813 int i, extent_size = thunk_type_size(extent_arg_type, 0); 4814 uint32_t outbufsz; 4815 int free_fm = 0; 4816 4817 assert(arg_type[0] == TYPE_PTR); 4818 assert(ie->access == IOC_RW); 4819 arg_type++; 4820 target_size_in = thunk_type_size(arg_type, 0); 4821 argptr = lock_user(VERIFY_READ, arg, target_size_in, 1); 4822 if (!argptr) { 4823 return -TARGET_EFAULT; 4824 } 4825 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 4826 unlock_user(argptr, arg, 0); 4827 fm = (struct fiemap *)buf_temp; 4828 if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) { 4829 return -TARGET_EINVAL; 4830 } 4831 4832 outbufsz = sizeof (*fm) + 4833 (sizeof(struct fiemap_extent) * fm->fm_extent_count); 4834 4835 if (outbufsz > MAX_STRUCT_SIZE) { 4836 /* We can't fit all the extents into the fixed size buffer. 4837 * Allocate one that is large enough and use it instead. 4838 */ 4839 fm = g_try_malloc(outbufsz); 4840 if (!fm) { 4841 return -TARGET_ENOMEM; 4842 } 4843 memcpy(fm, buf_temp, sizeof(struct fiemap)); 4844 free_fm = 1; 4845 } 4846 ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm)); 4847 if (!is_error(ret)) { 4848 target_size_out = target_size_in; 4849 /* An extent_count of 0 means we were only counting the extents 4850 * so there are no structs to copy 4851 */ 4852 if (fm->fm_extent_count != 0) { 4853 target_size_out += fm->fm_mapped_extents * extent_size; 4854 } 4855 argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0); 4856 if (!argptr) { 4857 ret = -TARGET_EFAULT; 4858 } else { 4859 /* Convert the struct fiemap */ 4860 thunk_convert(argptr, fm, arg_type, THUNK_TARGET); 4861 if (fm->fm_extent_count != 0) { 4862 p = argptr + target_size_in; 4863 /* ...and then all the struct fiemap_extents */ 4864 for (i = 0; i < fm->fm_mapped_extents; i++) { 4865 thunk_convert(p, &fm->fm_extents[i], extent_arg_type, 4866 THUNK_TARGET); 4867 p += extent_size; 4868 } 4869 } 4870 unlock_user(argptr, arg, target_size_out); 4871 } 4872 } 4873 if (free_fm) { 4874 g_free(fm); 4875 } 4876 return ret; 4877 } 4878 #endif 4879 4880 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp, 4881 int fd, int cmd, abi_long arg) 4882 { 4883 const argtype *arg_type = ie->arg_type; 4884 int target_size; 4885 void *argptr; 4886 int ret; 4887 struct ifconf *host_ifconf; 4888 uint32_t outbufsz; 4889 const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) }; 4890 const argtype ifreq_max_type[] = { MK_STRUCT(STRUCT_ifmap_ifreq) }; 4891 int target_ifreq_size; 4892 int nb_ifreq; 4893 int free_buf = 0; 4894 int i; 4895 int target_ifc_len; 4896 abi_long target_ifc_buf; 4897 int host_ifc_len; 4898 char *host_ifc_buf; 4899 4900 assert(arg_type[0] == TYPE_PTR); 4901 assert(ie->access == IOC_RW); 4902 4903 arg_type++; 4904 target_size = thunk_type_size(arg_type, 0); 4905 4906 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 4907 if (!argptr) 4908 return -TARGET_EFAULT; 4909 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 4910 unlock_user(argptr, arg, 0); 4911 4912 host_ifconf = (struct ifconf *)(unsigned long)buf_temp; 4913 target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf; 4914 target_ifreq_size = thunk_type_size(ifreq_max_type, 0); 4915 4916 if (target_ifc_buf != 0) { 4917 target_ifc_len = host_ifconf->ifc_len; 4918 nb_ifreq = target_ifc_len / target_ifreq_size; 4919 host_ifc_len = nb_ifreq * sizeof(struct ifreq); 4920 4921 outbufsz = sizeof(*host_ifconf) + host_ifc_len; 4922 if (outbufsz > MAX_STRUCT_SIZE) { 4923 /* 4924 * We can't fit all the extents into the fixed size buffer. 4925 * Allocate one that is large enough and use it instead. 4926 */ 4927 host_ifconf = g_try_malloc(outbufsz); 4928 if (!host_ifconf) { 4929 return -TARGET_ENOMEM; 4930 } 4931 memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf)); 4932 free_buf = 1; 4933 } 4934 host_ifc_buf = (char *)host_ifconf + sizeof(*host_ifconf); 4935 4936 host_ifconf->ifc_len = host_ifc_len; 4937 } else { 4938 host_ifc_buf = NULL; 4939 } 4940 host_ifconf->ifc_buf = host_ifc_buf; 4941 4942 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf)); 4943 if (!is_error(ret)) { 4944 /* convert host ifc_len to target ifc_len */ 4945 4946 nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq); 4947 target_ifc_len = nb_ifreq * target_ifreq_size; 4948 host_ifconf->ifc_len = target_ifc_len; 4949 4950 /* restore target ifc_buf */ 4951 4952 host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf; 4953 4954 /* copy struct ifconf to target user */ 4955 4956 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 4957 if (!argptr) 4958 return -TARGET_EFAULT; 4959 thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET); 4960 unlock_user(argptr, arg, target_size); 4961 4962 if (target_ifc_buf != 0) { 4963 /* copy ifreq[] to target user */ 4964 argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0); 4965 for (i = 0; i < nb_ifreq ; i++) { 4966 thunk_convert(argptr + i * target_ifreq_size, 4967 host_ifc_buf + i * sizeof(struct ifreq), 4968 ifreq_arg_type, THUNK_TARGET); 4969 } 4970 unlock_user(argptr, target_ifc_buf, target_ifc_len); 4971 } 4972 } 4973 4974 if (free_buf) { 4975 g_free(host_ifconf); 4976 } 4977 4978 return ret; 4979 } 4980 4981 #if defined(CONFIG_USBFS) 4982 #if HOST_LONG_BITS > 64 4983 #error USBDEVFS thunks do not support >64 bit hosts yet. 4984 #endif 4985 struct live_urb { 4986 uint64_t target_urb_adr; 4987 uint64_t target_buf_adr; 4988 char *target_buf_ptr; 4989 struct usbdevfs_urb host_urb; 4990 }; 4991 4992 static GHashTable *usbdevfs_urb_hashtable(void) 4993 { 4994 static GHashTable *urb_hashtable; 4995 4996 if (!urb_hashtable) { 4997 urb_hashtable = g_hash_table_new(g_int64_hash, g_int64_equal); 4998 } 4999 return urb_hashtable; 5000 } 5001 5002 static void urb_hashtable_insert(struct live_urb *urb) 5003 { 5004 GHashTable *urb_hashtable = usbdevfs_urb_hashtable(); 5005 g_hash_table_insert(urb_hashtable, urb, urb); 5006 } 5007 5008 static struct live_urb *urb_hashtable_lookup(uint64_t target_urb_adr) 5009 { 5010 GHashTable *urb_hashtable = usbdevfs_urb_hashtable(); 5011 return g_hash_table_lookup(urb_hashtable, &target_urb_adr); 5012 } 5013 5014 static void urb_hashtable_remove(struct live_urb *urb) 5015 { 5016 GHashTable *urb_hashtable = usbdevfs_urb_hashtable(); 5017 g_hash_table_remove(urb_hashtable, urb); 5018 } 5019 5020 static abi_long 5021 do_ioctl_usbdevfs_reapurb(const IOCTLEntry *ie, uint8_t *buf_temp, 5022 int fd, int cmd, abi_long arg) 5023 { 5024 const argtype usbfsurb_arg_type[] = { MK_STRUCT(STRUCT_usbdevfs_urb) }; 5025 const argtype ptrvoid_arg_type[] = { TYPE_PTRVOID, 0, 0 }; 5026 struct live_urb *lurb; 5027 void *argptr; 5028 uint64_t hurb; 5029 int target_size; 5030 uintptr_t target_urb_adr; 5031 abi_long ret; 5032 5033 target_size = thunk_type_size(usbfsurb_arg_type, THUNK_TARGET); 5034 5035 memset(buf_temp, 0, sizeof(uint64_t)); 5036 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5037 if (is_error(ret)) { 5038 return ret; 5039 } 5040 5041 memcpy(&hurb, buf_temp, sizeof(uint64_t)); 5042 lurb = (void *)((uintptr_t)hurb - offsetof(struct live_urb, host_urb)); 5043 if (!lurb->target_urb_adr) { 5044 return -TARGET_EFAULT; 5045 } 5046 urb_hashtable_remove(lurb); 5047 unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 5048 lurb->host_urb.buffer_length); 5049 lurb->target_buf_ptr = NULL; 5050 5051 /* restore the guest buffer pointer */ 5052 lurb->host_urb.buffer = (void *)(uintptr_t)lurb->target_buf_adr; 5053 5054 /* update the guest urb struct */ 5055 argptr = lock_user(VERIFY_WRITE, lurb->target_urb_adr, target_size, 0); 5056 if (!argptr) { 5057 g_free(lurb); 5058 return -TARGET_EFAULT; 5059 } 5060 thunk_convert(argptr, &lurb->host_urb, usbfsurb_arg_type, THUNK_TARGET); 5061 unlock_user(argptr, lurb->target_urb_adr, target_size); 5062 5063 target_size = thunk_type_size(ptrvoid_arg_type, THUNK_TARGET); 5064 /* write back the urb handle */ 5065 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5066 if (!argptr) { 5067 g_free(lurb); 5068 return -TARGET_EFAULT; 5069 } 5070 5071 /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */ 5072 target_urb_adr = lurb->target_urb_adr; 5073 thunk_convert(argptr, &target_urb_adr, ptrvoid_arg_type, THUNK_TARGET); 5074 unlock_user(argptr, arg, target_size); 5075 5076 g_free(lurb); 5077 return ret; 5078 } 5079 5080 static abi_long 5081 do_ioctl_usbdevfs_discardurb(const IOCTLEntry *ie, 5082 uint8_t *buf_temp __attribute__((unused)), 5083 int fd, int cmd, abi_long arg) 5084 { 5085 struct live_urb *lurb; 5086 5087 /* map target address back to host URB with metadata. */ 5088 lurb = urb_hashtable_lookup(arg); 5089 if (!lurb) { 5090 return -TARGET_EFAULT; 5091 } 5092 return get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb)); 5093 } 5094 5095 static abi_long 5096 do_ioctl_usbdevfs_submiturb(const IOCTLEntry *ie, uint8_t *buf_temp, 5097 int fd, int cmd, abi_long arg) 5098 { 5099 const argtype *arg_type = ie->arg_type; 5100 int target_size; 5101 abi_long ret; 5102 void *argptr; 5103 int rw_dir; 5104 struct live_urb *lurb; 5105 5106 /* 5107 * each submitted URB needs to map to a unique ID for the 5108 * kernel, and that unique ID needs to be a pointer to 5109 * host memory. hence, we need to malloc for each URB. 5110 * isochronous transfers have a variable length struct. 5111 */ 5112 arg_type++; 5113 target_size = thunk_type_size(arg_type, THUNK_TARGET); 5114 5115 /* construct host copy of urb and metadata */ 5116 lurb = g_try_new0(struct live_urb, 1); 5117 if (!lurb) { 5118 return -TARGET_ENOMEM; 5119 } 5120 5121 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5122 if (!argptr) { 5123 g_free(lurb); 5124 return -TARGET_EFAULT; 5125 } 5126 thunk_convert(&lurb->host_urb, argptr, arg_type, THUNK_HOST); 5127 unlock_user(argptr, arg, 0); 5128 5129 lurb->target_urb_adr = arg; 5130 lurb->target_buf_adr = (uintptr_t)lurb->host_urb.buffer; 5131 5132 /* buffer space used depends on endpoint type so lock the entire buffer */ 5133 /* control type urbs should check the buffer contents for true direction */ 5134 rw_dir = lurb->host_urb.endpoint & USB_DIR_IN ? VERIFY_WRITE : VERIFY_READ; 5135 lurb->target_buf_ptr = lock_user(rw_dir, lurb->target_buf_adr, 5136 lurb->host_urb.buffer_length, 1); 5137 if (lurb->target_buf_ptr == NULL) { 5138 g_free(lurb); 5139 return -TARGET_EFAULT; 5140 } 5141 5142 /* update buffer pointer in host copy */ 5143 lurb->host_urb.buffer = lurb->target_buf_ptr; 5144 5145 ret = get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb)); 5146 if (is_error(ret)) { 5147 unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 0); 5148 g_free(lurb); 5149 } else { 5150 urb_hashtable_insert(lurb); 5151 } 5152 5153 return ret; 5154 } 5155 #endif /* CONFIG_USBFS */ 5156 5157 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd, 5158 int cmd, abi_long arg) 5159 { 5160 void *argptr; 5161 struct dm_ioctl *host_dm; 5162 abi_long guest_data; 5163 uint32_t guest_data_size; 5164 int target_size; 5165 const argtype *arg_type = ie->arg_type; 5166 abi_long ret; 5167 void *big_buf = NULL; 5168 char *host_data; 5169 5170 arg_type++; 5171 target_size = thunk_type_size(arg_type, 0); 5172 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5173 if (!argptr) { 5174 ret = -TARGET_EFAULT; 5175 goto out; 5176 } 5177 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5178 unlock_user(argptr, arg, 0); 5179 5180 /* buf_temp is too small, so fetch things into a bigger buffer */ 5181 big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2); 5182 memcpy(big_buf, buf_temp, target_size); 5183 buf_temp = big_buf; 5184 host_dm = big_buf; 5185 5186 guest_data = arg + host_dm->data_start; 5187 if ((guest_data - arg) < 0) { 5188 ret = -TARGET_EINVAL; 5189 goto out; 5190 } 5191 guest_data_size = host_dm->data_size - host_dm->data_start; 5192 host_data = (char*)host_dm + host_dm->data_start; 5193 5194 argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1); 5195 if (!argptr) { 5196 ret = -TARGET_EFAULT; 5197 goto out; 5198 } 5199 5200 switch (ie->host_cmd) { 5201 case DM_REMOVE_ALL: 5202 case DM_LIST_DEVICES: 5203 case DM_DEV_CREATE: 5204 case DM_DEV_REMOVE: 5205 case DM_DEV_SUSPEND: 5206 case DM_DEV_STATUS: 5207 case DM_DEV_WAIT: 5208 case DM_TABLE_STATUS: 5209 case DM_TABLE_CLEAR: 5210 case DM_TABLE_DEPS: 5211 case DM_LIST_VERSIONS: 5212 /* no input data */ 5213 break; 5214 case DM_DEV_RENAME: 5215 case DM_DEV_SET_GEOMETRY: 5216 /* data contains only strings */ 5217 memcpy(host_data, argptr, guest_data_size); 5218 break; 5219 case DM_TARGET_MSG: 5220 memcpy(host_data, argptr, guest_data_size); 5221 *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr); 5222 break; 5223 case DM_TABLE_LOAD: 5224 { 5225 void *gspec = argptr; 5226 void *cur_data = host_data; 5227 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) }; 5228 int spec_size = thunk_type_size(arg_type, 0); 5229 int i; 5230 5231 for (i = 0; i < host_dm->target_count; i++) { 5232 struct dm_target_spec *spec = cur_data; 5233 uint32_t next; 5234 int slen; 5235 5236 thunk_convert(spec, gspec, arg_type, THUNK_HOST); 5237 slen = strlen((char*)gspec + spec_size) + 1; 5238 next = spec->next; 5239 spec->next = sizeof(*spec) + slen; 5240 strcpy((char*)&spec[1], gspec + spec_size); 5241 gspec += next; 5242 cur_data += spec->next; 5243 } 5244 break; 5245 } 5246 default: 5247 ret = -TARGET_EINVAL; 5248 unlock_user(argptr, guest_data, 0); 5249 goto out; 5250 } 5251 unlock_user(argptr, guest_data, 0); 5252 5253 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5254 if (!is_error(ret)) { 5255 guest_data = arg + host_dm->data_start; 5256 guest_data_size = host_dm->data_size - host_dm->data_start; 5257 argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0); 5258 switch (ie->host_cmd) { 5259 case DM_REMOVE_ALL: 5260 case DM_DEV_CREATE: 5261 case DM_DEV_REMOVE: 5262 case DM_DEV_RENAME: 5263 case DM_DEV_SUSPEND: 5264 case DM_DEV_STATUS: 5265 case DM_TABLE_LOAD: 5266 case DM_TABLE_CLEAR: 5267 case DM_TARGET_MSG: 5268 case DM_DEV_SET_GEOMETRY: 5269 /* no return data */ 5270 break; 5271 case DM_LIST_DEVICES: 5272 { 5273 struct dm_name_list *nl = (void*)host_dm + host_dm->data_start; 5274 uint32_t remaining_data = guest_data_size; 5275 void *cur_data = argptr; 5276 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) }; 5277 int nl_size = 12; /* can't use thunk_size due to alignment */ 5278 5279 while (1) { 5280 uint32_t next = nl->next; 5281 if (next) { 5282 nl->next = nl_size + (strlen(nl->name) + 1); 5283 } 5284 if (remaining_data < nl->next) { 5285 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5286 break; 5287 } 5288 thunk_convert(cur_data, nl, arg_type, THUNK_TARGET); 5289 strcpy(cur_data + nl_size, nl->name); 5290 cur_data += nl->next; 5291 remaining_data -= nl->next; 5292 if (!next) { 5293 break; 5294 } 5295 nl = (void*)nl + next; 5296 } 5297 break; 5298 } 5299 case DM_DEV_WAIT: 5300 case DM_TABLE_STATUS: 5301 { 5302 struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start; 5303 void *cur_data = argptr; 5304 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) }; 5305 int spec_size = thunk_type_size(arg_type, 0); 5306 int i; 5307 5308 for (i = 0; i < host_dm->target_count; i++) { 5309 uint32_t next = spec->next; 5310 int slen = strlen((char*)&spec[1]) + 1; 5311 spec->next = (cur_data - argptr) + spec_size + slen; 5312 if (guest_data_size < spec->next) { 5313 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5314 break; 5315 } 5316 thunk_convert(cur_data, spec, arg_type, THUNK_TARGET); 5317 strcpy(cur_data + spec_size, (char*)&spec[1]); 5318 cur_data = argptr + spec->next; 5319 spec = (void*)host_dm + host_dm->data_start + next; 5320 } 5321 break; 5322 } 5323 case DM_TABLE_DEPS: 5324 { 5325 void *hdata = (void*)host_dm + host_dm->data_start; 5326 int count = *(uint32_t*)hdata; 5327 uint64_t *hdev = hdata + 8; 5328 uint64_t *gdev = argptr + 8; 5329 int i; 5330 5331 *(uint32_t*)argptr = tswap32(count); 5332 for (i = 0; i < count; i++) { 5333 *gdev = tswap64(*hdev); 5334 gdev++; 5335 hdev++; 5336 } 5337 break; 5338 } 5339 case DM_LIST_VERSIONS: 5340 { 5341 struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start; 5342 uint32_t remaining_data = guest_data_size; 5343 void *cur_data = argptr; 5344 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) }; 5345 int vers_size = thunk_type_size(arg_type, 0); 5346 5347 while (1) { 5348 uint32_t next = vers->next; 5349 if (next) { 5350 vers->next = vers_size + (strlen(vers->name) + 1); 5351 } 5352 if (remaining_data < vers->next) { 5353 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5354 break; 5355 } 5356 thunk_convert(cur_data, vers, arg_type, THUNK_TARGET); 5357 strcpy(cur_data + vers_size, vers->name); 5358 cur_data += vers->next; 5359 remaining_data -= vers->next; 5360 if (!next) { 5361 break; 5362 } 5363 vers = (void*)vers + next; 5364 } 5365 break; 5366 } 5367 default: 5368 unlock_user(argptr, guest_data, 0); 5369 ret = -TARGET_EINVAL; 5370 goto out; 5371 } 5372 unlock_user(argptr, guest_data, guest_data_size); 5373 5374 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5375 if (!argptr) { 5376 ret = -TARGET_EFAULT; 5377 goto out; 5378 } 5379 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5380 unlock_user(argptr, arg, target_size); 5381 } 5382 out: 5383 g_free(big_buf); 5384 return ret; 5385 } 5386 5387 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd, 5388 int cmd, abi_long arg) 5389 { 5390 void *argptr; 5391 int target_size; 5392 const argtype *arg_type = ie->arg_type; 5393 const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) }; 5394 abi_long ret; 5395 5396 struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp; 5397 struct blkpg_partition host_part; 5398 5399 /* Read and convert blkpg */ 5400 arg_type++; 5401 target_size = thunk_type_size(arg_type, 0); 5402 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5403 if (!argptr) { 5404 ret = -TARGET_EFAULT; 5405 goto out; 5406 } 5407 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5408 unlock_user(argptr, arg, 0); 5409 5410 switch (host_blkpg->op) { 5411 case BLKPG_ADD_PARTITION: 5412 case BLKPG_DEL_PARTITION: 5413 /* payload is struct blkpg_partition */ 5414 break; 5415 default: 5416 /* Unknown opcode */ 5417 ret = -TARGET_EINVAL; 5418 goto out; 5419 } 5420 5421 /* Read and convert blkpg->data */ 5422 arg = (abi_long)(uintptr_t)host_blkpg->data; 5423 target_size = thunk_type_size(part_arg_type, 0); 5424 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5425 if (!argptr) { 5426 ret = -TARGET_EFAULT; 5427 goto out; 5428 } 5429 thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST); 5430 unlock_user(argptr, arg, 0); 5431 5432 /* Swizzle the data pointer to our local copy and call! */ 5433 host_blkpg->data = &host_part; 5434 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg)); 5435 5436 out: 5437 return ret; 5438 } 5439 5440 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp, 5441 int fd, int cmd, abi_long arg) 5442 { 5443 const argtype *arg_type = ie->arg_type; 5444 const StructEntry *se; 5445 const argtype *field_types; 5446 const int *dst_offsets, *src_offsets; 5447 int target_size; 5448 void *argptr; 5449 abi_ulong *target_rt_dev_ptr = NULL; 5450 unsigned long *host_rt_dev_ptr = NULL; 5451 abi_long ret; 5452 int i; 5453 5454 assert(ie->access == IOC_W); 5455 assert(*arg_type == TYPE_PTR); 5456 arg_type++; 5457 assert(*arg_type == TYPE_STRUCT); 5458 target_size = thunk_type_size(arg_type, 0); 5459 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5460 if (!argptr) { 5461 return -TARGET_EFAULT; 5462 } 5463 arg_type++; 5464 assert(*arg_type == (int)STRUCT_rtentry); 5465 se = struct_entries + *arg_type++; 5466 assert(se->convert[0] == NULL); 5467 /* convert struct here to be able to catch rt_dev string */ 5468 field_types = se->field_types; 5469 dst_offsets = se->field_offsets[THUNK_HOST]; 5470 src_offsets = se->field_offsets[THUNK_TARGET]; 5471 for (i = 0; i < se->nb_fields; i++) { 5472 if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) { 5473 assert(*field_types == TYPE_PTRVOID); 5474 target_rt_dev_ptr = argptr + src_offsets[i]; 5475 host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]); 5476 if (*target_rt_dev_ptr != 0) { 5477 *host_rt_dev_ptr = (unsigned long)lock_user_string( 5478 tswapal(*target_rt_dev_ptr)); 5479 if (!*host_rt_dev_ptr) { 5480 unlock_user(argptr, arg, 0); 5481 return -TARGET_EFAULT; 5482 } 5483 } else { 5484 *host_rt_dev_ptr = 0; 5485 } 5486 field_types++; 5487 continue; 5488 } 5489 field_types = thunk_convert(buf_temp + dst_offsets[i], 5490 argptr + src_offsets[i], 5491 field_types, THUNK_HOST); 5492 } 5493 unlock_user(argptr, arg, 0); 5494 5495 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5496 5497 assert(host_rt_dev_ptr != NULL); 5498 assert(target_rt_dev_ptr != NULL); 5499 if (*host_rt_dev_ptr != 0) { 5500 unlock_user((void *)*host_rt_dev_ptr, 5501 *target_rt_dev_ptr, 0); 5502 } 5503 return ret; 5504 } 5505 5506 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp, 5507 int fd, int cmd, abi_long arg) 5508 { 5509 int sig = target_to_host_signal(arg); 5510 return get_errno(safe_ioctl(fd, ie->host_cmd, sig)); 5511 } 5512 5513 static abi_long do_ioctl_SIOCGSTAMP(const IOCTLEntry *ie, uint8_t *buf_temp, 5514 int fd, int cmd, abi_long arg) 5515 { 5516 struct timeval tv; 5517 abi_long ret; 5518 5519 ret = get_errno(safe_ioctl(fd, SIOCGSTAMP, &tv)); 5520 if (is_error(ret)) { 5521 return ret; 5522 } 5523 5524 if (cmd == (int)TARGET_SIOCGSTAMP_OLD) { 5525 if (copy_to_user_timeval(arg, &tv)) { 5526 return -TARGET_EFAULT; 5527 } 5528 } else { 5529 if (copy_to_user_timeval64(arg, &tv)) { 5530 return -TARGET_EFAULT; 5531 } 5532 } 5533 5534 return ret; 5535 } 5536 5537 static abi_long do_ioctl_SIOCGSTAMPNS(const IOCTLEntry *ie, uint8_t *buf_temp, 5538 int fd, int cmd, abi_long arg) 5539 { 5540 struct timespec ts; 5541 abi_long ret; 5542 5543 ret = get_errno(safe_ioctl(fd, SIOCGSTAMPNS, &ts)); 5544 if (is_error(ret)) { 5545 return ret; 5546 } 5547 5548 if (cmd == (int)TARGET_SIOCGSTAMPNS_OLD) { 5549 if (host_to_target_timespec(arg, &ts)) { 5550 return -TARGET_EFAULT; 5551 } 5552 } else{ 5553 if (host_to_target_timespec64(arg, &ts)) { 5554 return -TARGET_EFAULT; 5555 } 5556 } 5557 5558 return ret; 5559 } 5560 5561 #ifdef TIOCGPTPEER 5562 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp, 5563 int fd, int cmd, abi_long arg) 5564 { 5565 int flags = target_to_host_bitmask(arg, fcntl_flags_tbl); 5566 return get_errno(safe_ioctl(fd, ie->host_cmd, flags)); 5567 } 5568 #endif 5569 5570 #ifdef HAVE_DRM_H 5571 5572 static void unlock_drm_version(struct drm_version *host_ver, 5573 struct target_drm_version *target_ver, 5574 bool copy) 5575 { 5576 unlock_user(host_ver->name, target_ver->name, 5577 copy ? host_ver->name_len : 0); 5578 unlock_user(host_ver->date, target_ver->date, 5579 copy ? host_ver->date_len : 0); 5580 unlock_user(host_ver->desc, target_ver->desc, 5581 copy ? host_ver->desc_len : 0); 5582 } 5583 5584 static inline abi_long target_to_host_drmversion(struct drm_version *host_ver, 5585 struct target_drm_version *target_ver) 5586 { 5587 memset(host_ver, 0, sizeof(*host_ver)); 5588 5589 __get_user(host_ver->name_len, &target_ver->name_len); 5590 if (host_ver->name_len) { 5591 host_ver->name = lock_user(VERIFY_WRITE, target_ver->name, 5592 target_ver->name_len, 0); 5593 if (!host_ver->name) { 5594 return -EFAULT; 5595 } 5596 } 5597 5598 __get_user(host_ver->date_len, &target_ver->date_len); 5599 if (host_ver->date_len) { 5600 host_ver->date = lock_user(VERIFY_WRITE, target_ver->date, 5601 target_ver->date_len, 0); 5602 if (!host_ver->date) { 5603 goto err; 5604 } 5605 } 5606 5607 __get_user(host_ver->desc_len, &target_ver->desc_len); 5608 if (host_ver->desc_len) { 5609 host_ver->desc = lock_user(VERIFY_WRITE, target_ver->desc, 5610 target_ver->desc_len, 0); 5611 if (!host_ver->desc) { 5612 goto err; 5613 } 5614 } 5615 5616 return 0; 5617 err: 5618 unlock_drm_version(host_ver, target_ver, false); 5619 return -EFAULT; 5620 } 5621 5622 static inline void host_to_target_drmversion( 5623 struct target_drm_version *target_ver, 5624 struct drm_version *host_ver) 5625 { 5626 __put_user(host_ver->version_major, &target_ver->version_major); 5627 __put_user(host_ver->version_minor, &target_ver->version_minor); 5628 __put_user(host_ver->version_patchlevel, &target_ver->version_patchlevel); 5629 __put_user(host_ver->name_len, &target_ver->name_len); 5630 __put_user(host_ver->date_len, &target_ver->date_len); 5631 __put_user(host_ver->desc_len, &target_ver->desc_len); 5632 unlock_drm_version(host_ver, target_ver, true); 5633 } 5634 5635 static abi_long do_ioctl_drm(const IOCTLEntry *ie, uint8_t *buf_temp, 5636 int fd, int cmd, abi_long arg) 5637 { 5638 struct drm_version *ver; 5639 struct target_drm_version *target_ver; 5640 abi_long ret; 5641 5642 switch (ie->host_cmd) { 5643 case DRM_IOCTL_VERSION: 5644 if (!lock_user_struct(VERIFY_WRITE, target_ver, arg, 0)) { 5645 return -TARGET_EFAULT; 5646 } 5647 ver = (struct drm_version *)buf_temp; 5648 ret = target_to_host_drmversion(ver, target_ver); 5649 if (!is_error(ret)) { 5650 ret = get_errno(safe_ioctl(fd, ie->host_cmd, ver)); 5651 if (is_error(ret)) { 5652 unlock_drm_version(ver, target_ver, false); 5653 } else { 5654 host_to_target_drmversion(target_ver, ver); 5655 } 5656 } 5657 unlock_user_struct(target_ver, arg, 0); 5658 return ret; 5659 } 5660 return -TARGET_ENOSYS; 5661 } 5662 5663 static abi_long do_ioctl_drm_i915_getparam(const IOCTLEntry *ie, 5664 struct drm_i915_getparam *gparam, 5665 int fd, abi_long arg) 5666 { 5667 abi_long ret; 5668 int value; 5669 struct target_drm_i915_getparam *target_gparam; 5670 5671 if (!lock_user_struct(VERIFY_READ, target_gparam, arg, 0)) { 5672 return -TARGET_EFAULT; 5673 } 5674 5675 __get_user(gparam->param, &target_gparam->param); 5676 gparam->value = &value; 5677 ret = get_errno(safe_ioctl(fd, ie->host_cmd, gparam)); 5678 put_user_s32(value, target_gparam->value); 5679 5680 unlock_user_struct(target_gparam, arg, 0); 5681 return ret; 5682 } 5683 5684 static abi_long do_ioctl_drm_i915(const IOCTLEntry *ie, uint8_t *buf_temp, 5685 int fd, int cmd, abi_long arg) 5686 { 5687 switch (ie->host_cmd) { 5688 case DRM_IOCTL_I915_GETPARAM: 5689 return do_ioctl_drm_i915_getparam(ie, 5690 (struct drm_i915_getparam *)buf_temp, 5691 fd, arg); 5692 default: 5693 return -TARGET_ENOSYS; 5694 } 5695 } 5696 5697 #endif 5698 5699 static abi_long do_ioctl_TUNSETTXFILTER(const IOCTLEntry *ie, uint8_t *buf_temp, 5700 int fd, int cmd, abi_long arg) 5701 { 5702 struct tun_filter *filter = (struct tun_filter *)buf_temp; 5703 struct tun_filter *target_filter; 5704 char *target_addr; 5705 5706 assert(ie->access == IOC_W); 5707 5708 target_filter = lock_user(VERIFY_READ, arg, sizeof(*target_filter), 1); 5709 if (!target_filter) { 5710 return -TARGET_EFAULT; 5711 } 5712 filter->flags = tswap16(target_filter->flags); 5713 filter->count = tswap16(target_filter->count); 5714 unlock_user(target_filter, arg, 0); 5715 5716 if (filter->count) { 5717 if (offsetof(struct tun_filter, addr) + filter->count * ETH_ALEN > 5718 MAX_STRUCT_SIZE) { 5719 return -TARGET_EFAULT; 5720 } 5721 5722 target_addr = lock_user(VERIFY_READ, 5723 arg + offsetof(struct tun_filter, addr), 5724 filter->count * ETH_ALEN, 1); 5725 if (!target_addr) { 5726 return -TARGET_EFAULT; 5727 } 5728 memcpy(filter->addr, target_addr, filter->count * ETH_ALEN); 5729 unlock_user(target_addr, arg + offsetof(struct tun_filter, addr), 0); 5730 } 5731 5732 return get_errno(safe_ioctl(fd, ie->host_cmd, filter)); 5733 } 5734 5735 IOCTLEntry ioctl_entries[] = { 5736 #define IOCTL(cmd, access, ...) \ 5737 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } }, 5738 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \ 5739 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } }, 5740 #define IOCTL_IGNORE(cmd) \ 5741 { TARGET_ ## cmd, 0, #cmd }, 5742 #include "ioctls.h" 5743 { 0, 0, }, 5744 }; 5745 5746 /* ??? Implement proper locking for ioctls. */ 5747 /* do_ioctl() Must return target values and target errnos. */ 5748 static abi_long do_ioctl(int fd, int cmd, abi_long arg) 5749 { 5750 const IOCTLEntry *ie; 5751 const argtype *arg_type; 5752 abi_long ret; 5753 uint8_t buf_temp[MAX_STRUCT_SIZE]; 5754 int target_size; 5755 void *argptr; 5756 5757 ie = ioctl_entries; 5758 for(;;) { 5759 if (ie->target_cmd == 0) { 5760 qemu_log_mask( 5761 LOG_UNIMP, "Unsupported ioctl: cmd=0x%04lx\n", (long)cmd); 5762 return -TARGET_ENOSYS; 5763 } 5764 if (ie->target_cmd == cmd) 5765 break; 5766 ie++; 5767 } 5768 arg_type = ie->arg_type; 5769 if (ie->do_ioctl) { 5770 return ie->do_ioctl(ie, buf_temp, fd, cmd, arg); 5771 } else if (!ie->host_cmd) { 5772 /* Some architectures define BSD ioctls in their headers 5773 that are not implemented in Linux. */ 5774 return -TARGET_ENOSYS; 5775 } 5776 5777 switch(arg_type[0]) { 5778 case TYPE_NULL: 5779 /* no argument */ 5780 ret = get_errno(safe_ioctl(fd, ie->host_cmd)); 5781 break; 5782 case TYPE_PTRVOID: 5783 case TYPE_INT: 5784 case TYPE_LONG: 5785 case TYPE_ULONG: 5786 ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg)); 5787 break; 5788 case TYPE_PTR: 5789 arg_type++; 5790 target_size = thunk_type_size(arg_type, 0); 5791 switch(ie->access) { 5792 case IOC_R: 5793 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5794 if (!is_error(ret)) { 5795 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5796 if (!argptr) 5797 return -TARGET_EFAULT; 5798 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5799 unlock_user(argptr, arg, target_size); 5800 } 5801 break; 5802 case IOC_W: 5803 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5804 if (!argptr) 5805 return -TARGET_EFAULT; 5806 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5807 unlock_user(argptr, arg, 0); 5808 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5809 break; 5810 default: 5811 case IOC_RW: 5812 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5813 if (!argptr) 5814 return -TARGET_EFAULT; 5815 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5816 unlock_user(argptr, arg, 0); 5817 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5818 if (!is_error(ret)) { 5819 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5820 if (!argptr) 5821 return -TARGET_EFAULT; 5822 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5823 unlock_user(argptr, arg, target_size); 5824 } 5825 break; 5826 } 5827 break; 5828 default: 5829 qemu_log_mask(LOG_UNIMP, 5830 "Unsupported ioctl type: cmd=0x%04lx type=%d\n", 5831 (long)cmd, arg_type[0]); 5832 ret = -TARGET_ENOSYS; 5833 break; 5834 } 5835 return ret; 5836 } 5837 5838 static const bitmask_transtbl iflag_tbl[] = { 5839 { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK }, 5840 { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT }, 5841 { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR }, 5842 { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK }, 5843 { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK }, 5844 { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP }, 5845 { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR }, 5846 { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR }, 5847 { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL }, 5848 { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC }, 5849 { TARGET_IXON, TARGET_IXON, IXON, IXON }, 5850 { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY }, 5851 { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF }, 5852 { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL }, 5853 { TARGET_IUTF8, TARGET_IUTF8, IUTF8, IUTF8}, 5854 { 0, 0, 0, 0 } 5855 }; 5856 5857 static const bitmask_transtbl oflag_tbl[] = { 5858 { TARGET_OPOST, TARGET_OPOST, OPOST, OPOST }, 5859 { TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC }, 5860 { TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR }, 5861 { TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL }, 5862 { TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR }, 5863 { TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET }, 5864 { TARGET_OFILL, TARGET_OFILL, OFILL, OFILL }, 5865 { TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL }, 5866 { TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 }, 5867 { TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 }, 5868 { TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 }, 5869 { TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 }, 5870 { TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 }, 5871 { TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 }, 5872 { TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 }, 5873 { TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 }, 5874 { TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 }, 5875 { TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 }, 5876 { TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 }, 5877 { TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 }, 5878 { TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 }, 5879 { TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 }, 5880 { TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 }, 5881 { TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 }, 5882 { 0, 0, 0, 0 } 5883 }; 5884 5885 static const bitmask_transtbl cflag_tbl[] = { 5886 { TARGET_CBAUD, TARGET_B0, CBAUD, B0 }, 5887 { TARGET_CBAUD, TARGET_B50, CBAUD, B50 }, 5888 { TARGET_CBAUD, TARGET_B75, CBAUD, B75 }, 5889 { TARGET_CBAUD, TARGET_B110, CBAUD, B110 }, 5890 { TARGET_CBAUD, TARGET_B134, CBAUD, B134 }, 5891 { TARGET_CBAUD, TARGET_B150, CBAUD, B150 }, 5892 { TARGET_CBAUD, TARGET_B200, CBAUD, B200 }, 5893 { TARGET_CBAUD, TARGET_B300, CBAUD, B300 }, 5894 { TARGET_CBAUD, TARGET_B600, CBAUD, B600 }, 5895 { TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 }, 5896 { TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 }, 5897 { TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 }, 5898 { TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 }, 5899 { TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 }, 5900 { TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 }, 5901 { TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 }, 5902 { TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 }, 5903 { TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 }, 5904 { TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 }, 5905 { TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 }, 5906 { TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 }, 5907 { TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 }, 5908 { TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 }, 5909 { TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 }, 5910 { TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB }, 5911 { TARGET_CREAD, TARGET_CREAD, CREAD, CREAD }, 5912 { TARGET_PARENB, TARGET_PARENB, PARENB, PARENB }, 5913 { TARGET_PARODD, TARGET_PARODD, PARODD, PARODD }, 5914 { TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL }, 5915 { TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL }, 5916 { TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS }, 5917 { 0, 0, 0, 0 } 5918 }; 5919 5920 static const bitmask_transtbl lflag_tbl[] = { 5921 { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG }, 5922 { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON }, 5923 { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE }, 5924 { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO }, 5925 { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE }, 5926 { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK }, 5927 { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL }, 5928 { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH }, 5929 { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP }, 5930 { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL }, 5931 { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT }, 5932 { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE }, 5933 { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO }, 5934 { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN }, 5935 { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN }, 5936 { TARGET_EXTPROC, TARGET_EXTPROC, EXTPROC, EXTPROC}, 5937 { 0, 0, 0, 0 } 5938 }; 5939 5940 static void target_to_host_termios (void *dst, const void *src) 5941 { 5942 struct host_termios *host = dst; 5943 const struct target_termios *target = src; 5944 5945 host->c_iflag = 5946 target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl); 5947 host->c_oflag = 5948 target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl); 5949 host->c_cflag = 5950 target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl); 5951 host->c_lflag = 5952 target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl); 5953 host->c_line = target->c_line; 5954 5955 memset(host->c_cc, 0, sizeof(host->c_cc)); 5956 host->c_cc[VINTR] = target->c_cc[TARGET_VINTR]; 5957 host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT]; 5958 host->c_cc[VERASE] = target->c_cc[TARGET_VERASE]; 5959 host->c_cc[VKILL] = target->c_cc[TARGET_VKILL]; 5960 host->c_cc[VEOF] = target->c_cc[TARGET_VEOF]; 5961 host->c_cc[VTIME] = target->c_cc[TARGET_VTIME]; 5962 host->c_cc[VMIN] = target->c_cc[TARGET_VMIN]; 5963 host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC]; 5964 host->c_cc[VSTART] = target->c_cc[TARGET_VSTART]; 5965 host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP]; 5966 host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP]; 5967 host->c_cc[VEOL] = target->c_cc[TARGET_VEOL]; 5968 host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT]; 5969 host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD]; 5970 host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE]; 5971 host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT]; 5972 host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2]; 5973 } 5974 5975 static void host_to_target_termios (void *dst, const void *src) 5976 { 5977 struct target_termios *target = dst; 5978 const struct host_termios *host = src; 5979 5980 target->c_iflag = 5981 tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl)); 5982 target->c_oflag = 5983 tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl)); 5984 target->c_cflag = 5985 tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl)); 5986 target->c_lflag = 5987 tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl)); 5988 target->c_line = host->c_line; 5989 5990 memset(target->c_cc, 0, sizeof(target->c_cc)); 5991 target->c_cc[TARGET_VINTR] = host->c_cc[VINTR]; 5992 target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT]; 5993 target->c_cc[TARGET_VERASE] = host->c_cc[VERASE]; 5994 target->c_cc[TARGET_VKILL] = host->c_cc[VKILL]; 5995 target->c_cc[TARGET_VEOF] = host->c_cc[VEOF]; 5996 target->c_cc[TARGET_VTIME] = host->c_cc[VTIME]; 5997 target->c_cc[TARGET_VMIN] = host->c_cc[VMIN]; 5998 target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC]; 5999 target->c_cc[TARGET_VSTART] = host->c_cc[VSTART]; 6000 target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP]; 6001 target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP]; 6002 target->c_cc[TARGET_VEOL] = host->c_cc[VEOL]; 6003 target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT]; 6004 target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD]; 6005 target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE]; 6006 target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT]; 6007 target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2]; 6008 } 6009 6010 static const StructEntry struct_termios_def = { 6011 .convert = { host_to_target_termios, target_to_host_termios }, 6012 .size = { sizeof(struct target_termios), sizeof(struct host_termios) }, 6013 .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) }, 6014 .print = print_termios, 6015 }; 6016 6017 static const bitmask_transtbl mmap_flags_tbl[] = { 6018 { TARGET_MAP_SHARED, TARGET_MAP_SHARED, MAP_SHARED, MAP_SHARED }, 6019 { TARGET_MAP_PRIVATE, TARGET_MAP_PRIVATE, MAP_PRIVATE, MAP_PRIVATE }, 6020 { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED }, 6021 { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS, 6022 MAP_ANONYMOUS, MAP_ANONYMOUS }, 6023 { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN, 6024 MAP_GROWSDOWN, MAP_GROWSDOWN }, 6025 { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE, 6026 MAP_DENYWRITE, MAP_DENYWRITE }, 6027 { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE, 6028 MAP_EXECUTABLE, MAP_EXECUTABLE }, 6029 { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED }, 6030 { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE, 6031 MAP_NORESERVE, MAP_NORESERVE }, 6032 { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB }, 6033 /* MAP_STACK had been ignored by the kernel for quite some time. 6034 Recognize it for the target insofar as we do not want to pass 6035 it through to the host. */ 6036 { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 }, 6037 { 0, 0, 0, 0 } 6038 }; 6039 6040 /* 6041 * NOTE: TARGET_ABI32 is defined for TARGET_I386 (but not for TARGET_X86_64) 6042 * TARGET_I386 is defined if TARGET_X86_64 is defined 6043 */ 6044 #if defined(TARGET_I386) 6045 6046 /* NOTE: there is really one LDT for all the threads */ 6047 static uint8_t *ldt_table; 6048 6049 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount) 6050 { 6051 int size; 6052 void *p; 6053 6054 if (!ldt_table) 6055 return 0; 6056 size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE; 6057 if (size > bytecount) 6058 size = bytecount; 6059 p = lock_user(VERIFY_WRITE, ptr, size, 0); 6060 if (!p) 6061 return -TARGET_EFAULT; 6062 /* ??? Should this by byteswapped? */ 6063 memcpy(p, ldt_table, size); 6064 unlock_user(p, ptr, size); 6065 return size; 6066 } 6067 6068 /* XXX: add locking support */ 6069 static abi_long write_ldt(CPUX86State *env, 6070 abi_ulong ptr, unsigned long bytecount, int oldmode) 6071 { 6072 struct target_modify_ldt_ldt_s ldt_info; 6073 struct target_modify_ldt_ldt_s *target_ldt_info; 6074 int seg_32bit, contents, read_exec_only, limit_in_pages; 6075 int seg_not_present, useable, lm; 6076 uint32_t *lp, entry_1, entry_2; 6077 6078 if (bytecount != sizeof(ldt_info)) 6079 return -TARGET_EINVAL; 6080 if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1)) 6081 return -TARGET_EFAULT; 6082 ldt_info.entry_number = tswap32(target_ldt_info->entry_number); 6083 ldt_info.base_addr = tswapal(target_ldt_info->base_addr); 6084 ldt_info.limit = tswap32(target_ldt_info->limit); 6085 ldt_info.flags = tswap32(target_ldt_info->flags); 6086 unlock_user_struct(target_ldt_info, ptr, 0); 6087 6088 if (ldt_info.entry_number >= TARGET_LDT_ENTRIES) 6089 return -TARGET_EINVAL; 6090 seg_32bit = ldt_info.flags & 1; 6091 contents = (ldt_info.flags >> 1) & 3; 6092 read_exec_only = (ldt_info.flags >> 3) & 1; 6093 limit_in_pages = (ldt_info.flags >> 4) & 1; 6094 seg_not_present = (ldt_info.flags >> 5) & 1; 6095 useable = (ldt_info.flags >> 6) & 1; 6096 #ifdef TARGET_ABI32 6097 lm = 0; 6098 #else 6099 lm = (ldt_info.flags >> 7) & 1; 6100 #endif 6101 if (contents == 3) { 6102 if (oldmode) 6103 return -TARGET_EINVAL; 6104 if (seg_not_present == 0) 6105 return -TARGET_EINVAL; 6106 } 6107 /* allocate the LDT */ 6108 if (!ldt_table) { 6109 env->ldt.base = target_mmap(0, 6110 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE, 6111 PROT_READ|PROT_WRITE, 6112 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 6113 if (env->ldt.base == -1) 6114 return -TARGET_ENOMEM; 6115 memset(g2h_untagged(env->ldt.base), 0, 6116 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE); 6117 env->ldt.limit = 0xffff; 6118 ldt_table = g2h_untagged(env->ldt.base); 6119 } 6120 6121 /* NOTE: same code as Linux kernel */ 6122 /* Allow LDTs to be cleared by the user. */ 6123 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) { 6124 if (oldmode || 6125 (contents == 0 && 6126 read_exec_only == 1 && 6127 seg_32bit == 0 && 6128 limit_in_pages == 0 && 6129 seg_not_present == 1 && 6130 useable == 0 )) { 6131 entry_1 = 0; 6132 entry_2 = 0; 6133 goto install; 6134 } 6135 } 6136 6137 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) | 6138 (ldt_info.limit & 0x0ffff); 6139 entry_2 = (ldt_info.base_addr & 0xff000000) | 6140 ((ldt_info.base_addr & 0x00ff0000) >> 16) | 6141 (ldt_info.limit & 0xf0000) | 6142 ((read_exec_only ^ 1) << 9) | 6143 (contents << 10) | 6144 ((seg_not_present ^ 1) << 15) | 6145 (seg_32bit << 22) | 6146 (limit_in_pages << 23) | 6147 (lm << 21) | 6148 0x7000; 6149 if (!oldmode) 6150 entry_2 |= (useable << 20); 6151 6152 /* Install the new entry ... */ 6153 install: 6154 lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3)); 6155 lp[0] = tswap32(entry_1); 6156 lp[1] = tswap32(entry_2); 6157 return 0; 6158 } 6159 6160 /* specific and weird i386 syscalls */ 6161 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr, 6162 unsigned long bytecount) 6163 { 6164 abi_long ret; 6165 6166 switch (func) { 6167 case 0: 6168 ret = read_ldt(ptr, bytecount); 6169 break; 6170 case 1: 6171 ret = write_ldt(env, ptr, bytecount, 1); 6172 break; 6173 case 0x11: 6174 ret = write_ldt(env, ptr, bytecount, 0); 6175 break; 6176 default: 6177 ret = -TARGET_ENOSYS; 6178 break; 6179 } 6180 return ret; 6181 } 6182 6183 #if defined(TARGET_ABI32) 6184 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr) 6185 { 6186 uint64_t *gdt_table = g2h_untagged(env->gdt.base); 6187 struct target_modify_ldt_ldt_s ldt_info; 6188 struct target_modify_ldt_ldt_s *target_ldt_info; 6189 int seg_32bit, contents, read_exec_only, limit_in_pages; 6190 int seg_not_present, useable, lm; 6191 uint32_t *lp, entry_1, entry_2; 6192 int i; 6193 6194 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1); 6195 if (!target_ldt_info) 6196 return -TARGET_EFAULT; 6197 ldt_info.entry_number = tswap32(target_ldt_info->entry_number); 6198 ldt_info.base_addr = tswapal(target_ldt_info->base_addr); 6199 ldt_info.limit = tswap32(target_ldt_info->limit); 6200 ldt_info.flags = tswap32(target_ldt_info->flags); 6201 if (ldt_info.entry_number == -1) { 6202 for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) { 6203 if (gdt_table[i] == 0) { 6204 ldt_info.entry_number = i; 6205 target_ldt_info->entry_number = tswap32(i); 6206 break; 6207 } 6208 } 6209 } 6210 unlock_user_struct(target_ldt_info, ptr, 1); 6211 6212 if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN || 6213 ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX) 6214 return -TARGET_EINVAL; 6215 seg_32bit = ldt_info.flags & 1; 6216 contents = (ldt_info.flags >> 1) & 3; 6217 read_exec_only = (ldt_info.flags >> 3) & 1; 6218 limit_in_pages = (ldt_info.flags >> 4) & 1; 6219 seg_not_present = (ldt_info.flags >> 5) & 1; 6220 useable = (ldt_info.flags >> 6) & 1; 6221 #ifdef TARGET_ABI32 6222 lm = 0; 6223 #else 6224 lm = (ldt_info.flags >> 7) & 1; 6225 #endif 6226 6227 if (contents == 3) { 6228 if (seg_not_present == 0) 6229 return -TARGET_EINVAL; 6230 } 6231 6232 /* NOTE: same code as Linux kernel */ 6233 /* Allow LDTs to be cleared by the user. */ 6234 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) { 6235 if ((contents == 0 && 6236 read_exec_only == 1 && 6237 seg_32bit == 0 && 6238 limit_in_pages == 0 && 6239 seg_not_present == 1 && 6240 useable == 0 )) { 6241 entry_1 = 0; 6242 entry_2 = 0; 6243 goto install; 6244 } 6245 } 6246 6247 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) | 6248 (ldt_info.limit & 0x0ffff); 6249 entry_2 = (ldt_info.base_addr & 0xff000000) | 6250 ((ldt_info.base_addr & 0x00ff0000) >> 16) | 6251 (ldt_info.limit & 0xf0000) | 6252 ((read_exec_only ^ 1) << 9) | 6253 (contents << 10) | 6254 ((seg_not_present ^ 1) << 15) | 6255 (seg_32bit << 22) | 6256 (limit_in_pages << 23) | 6257 (useable << 20) | 6258 (lm << 21) | 6259 0x7000; 6260 6261 /* Install the new entry ... */ 6262 install: 6263 lp = (uint32_t *)(gdt_table + ldt_info.entry_number); 6264 lp[0] = tswap32(entry_1); 6265 lp[1] = tswap32(entry_2); 6266 return 0; 6267 } 6268 6269 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr) 6270 { 6271 struct target_modify_ldt_ldt_s *target_ldt_info; 6272 uint64_t *gdt_table = g2h_untagged(env->gdt.base); 6273 uint32_t base_addr, limit, flags; 6274 int seg_32bit, contents, read_exec_only, limit_in_pages, idx; 6275 int seg_not_present, useable, lm; 6276 uint32_t *lp, entry_1, entry_2; 6277 6278 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1); 6279 if (!target_ldt_info) 6280 return -TARGET_EFAULT; 6281 idx = tswap32(target_ldt_info->entry_number); 6282 if (idx < TARGET_GDT_ENTRY_TLS_MIN || 6283 idx > TARGET_GDT_ENTRY_TLS_MAX) { 6284 unlock_user_struct(target_ldt_info, ptr, 1); 6285 return -TARGET_EINVAL; 6286 } 6287 lp = (uint32_t *)(gdt_table + idx); 6288 entry_1 = tswap32(lp[0]); 6289 entry_2 = tswap32(lp[1]); 6290 6291 read_exec_only = ((entry_2 >> 9) & 1) ^ 1; 6292 contents = (entry_2 >> 10) & 3; 6293 seg_not_present = ((entry_2 >> 15) & 1) ^ 1; 6294 seg_32bit = (entry_2 >> 22) & 1; 6295 limit_in_pages = (entry_2 >> 23) & 1; 6296 useable = (entry_2 >> 20) & 1; 6297 #ifdef TARGET_ABI32 6298 lm = 0; 6299 #else 6300 lm = (entry_2 >> 21) & 1; 6301 #endif 6302 flags = (seg_32bit << 0) | (contents << 1) | 6303 (read_exec_only << 3) | (limit_in_pages << 4) | 6304 (seg_not_present << 5) | (useable << 6) | (lm << 7); 6305 limit = (entry_1 & 0xffff) | (entry_2 & 0xf0000); 6306 base_addr = (entry_1 >> 16) | 6307 (entry_2 & 0xff000000) | 6308 ((entry_2 & 0xff) << 16); 6309 target_ldt_info->base_addr = tswapal(base_addr); 6310 target_ldt_info->limit = tswap32(limit); 6311 target_ldt_info->flags = tswap32(flags); 6312 unlock_user_struct(target_ldt_info, ptr, 1); 6313 return 0; 6314 } 6315 6316 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr) 6317 { 6318 return -TARGET_ENOSYS; 6319 } 6320 #else 6321 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr) 6322 { 6323 abi_long ret = 0; 6324 abi_ulong val; 6325 int idx; 6326 6327 switch(code) { 6328 case TARGET_ARCH_SET_GS: 6329 case TARGET_ARCH_SET_FS: 6330 if (code == TARGET_ARCH_SET_GS) 6331 idx = R_GS; 6332 else 6333 idx = R_FS; 6334 cpu_x86_load_seg(env, idx, 0); 6335 env->segs[idx].base = addr; 6336 break; 6337 case TARGET_ARCH_GET_GS: 6338 case TARGET_ARCH_GET_FS: 6339 if (code == TARGET_ARCH_GET_GS) 6340 idx = R_GS; 6341 else 6342 idx = R_FS; 6343 val = env->segs[idx].base; 6344 if (put_user(val, addr, abi_ulong)) 6345 ret = -TARGET_EFAULT; 6346 break; 6347 default: 6348 ret = -TARGET_EINVAL; 6349 break; 6350 } 6351 return ret; 6352 } 6353 #endif /* defined(TARGET_ABI32 */ 6354 #endif /* defined(TARGET_I386) */ 6355 6356 /* 6357 * These constants are generic. Supply any that are missing from the host. 6358 */ 6359 #ifndef PR_SET_NAME 6360 # define PR_SET_NAME 15 6361 # define PR_GET_NAME 16 6362 #endif 6363 #ifndef PR_SET_FP_MODE 6364 # define PR_SET_FP_MODE 45 6365 # define PR_GET_FP_MODE 46 6366 # define PR_FP_MODE_FR (1 << 0) 6367 # define PR_FP_MODE_FRE (1 << 1) 6368 #endif 6369 #ifndef PR_SVE_SET_VL 6370 # define PR_SVE_SET_VL 50 6371 # define PR_SVE_GET_VL 51 6372 # define PR_SVE_VL_LEN_MASK 0xffff 6373 # define PR_SVE_VL_INHERIT (1 << 17) 6374 #endif 6375 #ifndef PR_PAC_RESET_KEYS 6376 # define PR_PAC_RESET_KEYS 54 6377 # define PR_PAC_APIAKEY (1 << 0) 6378 # define PR_PAC_APIBKEY (1 << 1) 6379 # define PR_PAC_APDAKEY (1 << 2) 6380 # define PR_PAC_APDBKEY (1 << 3) 6381 # define PR_PAC_APGAKEY (1 << 4) 6382 #endif 6383 #ifndef PR_SET_TAGGED_ADDR_CTRL 6384 # define PR_SET_TAGGED_ADDR_CTRL 55 6385 # define PR_GET_TAGGED_ADDR_CTRL 56 6386 # define PR_TAGGED_ADDR_ENABLE (1UL << 0) 6387 #endif 6388 #ifndef PR_MTE_TCF_SHIFT 6389 # define PR_MTE_TCF_SHIFT 1 6390 # define PR_MTE_TCF_NONE (0UL << PR_MTE_TCF_SHIFT) 6391 # define PR_MTE_TCF_SYNC (1UL << PR_MTE_TCF_SHIFT) 6392 # define PR_MTE_TCF_ASYNC (2UL << PR_MTE_TCF_SHIFT) 6393 # define PR_MTE_TCF_MASK (3UL << PR_MTE_TCF_SHIFT) 6394 # define PR_MTE_TAG_SHIFT 3 6395 # define PR_MTE_TAG_MASK (0xffffUL << PR_MTE_TAG_SHIFT) 6396 #endif 6397 #ifndef PR_SET_IO_FLUSHER 6398 # define PR_SET_IO_FLUSHER 57 6399 # define PR_GET_IO_FLUSHER 58 6400 #endif 6401 #ifndef PR_SET_SYSCALL_USER_DISPATCH 6402 # define PR_SET_SYSCALL_USER_DISPATCH 59 6403 #endif 6404 #ifndef PR_SME_SET_VL 6405 # define PR_SME_SET_VL 63 6406 # define PR_SME_GET_VL 64 6407 # define PR_SME_VL_LEN_MASK 0xffff 6408 # define PR_SME_VL_INHERIT (1 << 17) 6409 #endif 6410 6411 #include "target_prctl.h" 6412 6413 static abi_long do_prctl_inval0(CPUArchState *env) 6414 { 6415 return -TARGET_EINVAL; 6416 } 6417 6418 static abi_long do_prctl_inval1(CPUArchState *env, abi_long arg2) 6419 { 6420 return -TARGET_EINVAL; 6421 } 6422 6423 #ifndef do_prctl_get_fp_mode 6424 #define do_prctl_get_fp_mode do_prctl_inval0 6425 #endif 6426 #ifndef do_prctl_set_fp_mode 6427 #define do_prctl_set_fp_mode do_prctl_inval1 6428 #endif 6429 #ifndef do_prctl_sve_get_vl 6430 #define do_prctl_sve_get_vl do_prctl_inval0 6431 #endif 6432 #ifndef do_prctl_sve_set_vl 6433 #define do_prctl_sve_set_vl do_prctl_inval1 6434 #endif 6435 #ifndef do_prctl_reset_keys 6436 #define do_prctl_reset_keys do_prctl_inval1 6437 #endif 6438 #ifndef do_prctl_set_tagged_addr_ctrl 6439 #define do_prctl_set_tagged_addr_ctrl do_prctl_inval1 6440 #endif 6441 #ifndef do_prctl_get_tagged_addr_ctrl 6442 #define do_prctl_get_tagged_addr_ctrl do_prctl_inval0 6443 #endif 6444 #ifndef do_prctl_get_unalign 6445 #define do_prctl_get_unalign do_prctl_inval1 6446 #endif 6447 #ifndef do_prctl_set_unalign 6448 #define do_prctl_set_unalign do_prctl_inval1 6449 #endif 6450 #ifndef do_prctl_sme_get_vl 6451 #define do_prctl_sme_get_vl do_prctl_inval0 6452 #endif 6453 #ifndef do_prctl_sme_set_vl 6454 #define do_prctl_sme_set_vl do_prctl_inval1 6455 #endif 6456 6457 static abi_long do_prctl(CPUArchState *env, abi_long option, abi_long arg2, 6458 abi_long arg3, abi_long arg4, abi_long arg5) 6459 { 6460 abi_long ret; 6461 6462 switch (option) { 6463 case PR_GET_PDEATHSIG: 6464 { 6465 int deathsig; 6466 ret = get_errno(prctl(PR_GET_PDEATHSIG, &deathsig, 6467 arg3, arg4, arg5)); 6468 if (!is_error(ret) && 6469 put_user_s32(host_to_target_signal(deathsig), arg2)) { 6470 return -TARGET_EFAULT; 6471 } 6472 return ret; 6473 } 6474 case PR_SET_PDEATHSIG: 6475 return get_errno(prctl(PR_SET_PDEATHSIG, target_to_host_signal(arg2), 6476 arg3, arg4, arg5)); 6477 case PR_GET_NAME: 6478 { 6479 void *name = lock_user(VERIFY_WRITE, arg2, 16, 1); 6480 if (!name) { 6481 return -TARGET_EFAULT; 6482 } 6483 ret = get_errno(prctl(PR_GET_NAME, (uintptr_t)name, 6484 arg3, arg4, arg5)); 6485 unlock_user(name, arg2, 16); 6486 return ret; 6487 } 6488 case PR_SET_NAME: 6489 { 6490 void *name = lock_user(VERIFY_READ, arg2, 16, 1); 6491 if (!name) { 6492 return -TARGET_EFAULT; 6493 } 6494 ret = get_errno(prctl(PR_SET_NAME, (uintptr_t)name, 6495 arg3, arg4, arg5)); 6496 unlock_user(name, arg2, 0); 6497 return ret; 6498 } 6499 case PR_GET_FP_MODE: 6500 return do_prctl_get_fp_mode(env); 6501 case PR_SET_FP_MODE: 6502 return do_prctl_set_fp_mode(env, arg2); 6503 case PR_SVE_GET_VL: 6504 return do_prctl_sve_get_vl(env); 6505 case PR_SVE_SET_VL: 6506 return do_prctl_sve_set_vl(env, arg2); 6507 case PR_SME_GET_VL: 6508 return do_prctl_sme_get_vl(env); 6509 case PR_SME_SET_VL: 6510 return do_prctl_sme_set_vl(env, arg2); 6511 case PR_PAC_RESET_KEYS: 6512 if (arg3 || arg4 || arg5) { 6513 return -TARGET_EINVAL; 6514 } 6515 return do_prctl_reset_keys(env, arg2); 6516 case PR_SET_TAGGED_ADDR_CTRL: 6517 if (arg3 || arg4 || arg5) { 6518 return -TARGET_EINVAL; 6519 } 6520 return do_prctl_set_tagged_addr_ctrl(env, arg2); 6521 case PR_GET_TAGGED_ADDR_CTRL: 6522 if (arg2 || arg3 || arg4 || arg5) { 6523 return -TARGET_EINVAL; 6524 } 6525 return do_prctl_get_tagged_addr_ctrl(env); 6526 6527 case PR_GET_UNALIGN: 6528 return do_prctl_get_unalign(env, arg2); 6529 case PR_SET_UNALIGN: 6530 return do_prctl_set_unalign(env, arg2); 6531 6532 case PR_CAP_AMBIENT: 6533 case PR_CAPBSET_READ: 6534 case PR_CAPBSET_DROP: 6535 case PR_GET_DUMPABLE: 6536 case PR_SET_DUMPABLE: 6537 case PR_GET_KEEPCAPS: 6538 case PR_SET_KEEPCAPS: 6539 case PR_GET_SECUREBITS: 6540 case PR_SET_SECUREBITS: 6541 case PR_GET_TIMING: 6542 case PR_SET_TIMING: 6543 case PR_GET_TIMERSLACK: 6544 case PR_SET_TIMERSLACK: 6545 case PR_MCE_KILL: 6546 case PR_MCE_KILL_GET: 6547 case PR_GET_NO_NEW_PRIVS: 6548 case PR_SET_NO_NEW_PRIVS: 6549 case PR_GET_IO_FLUSHER: 6550 case PR_SET_IO_FLUSHER: 6551 /* Some prctl options have no pointer arguments and we can pass on. */ 6552 return get_errno(prctl(option, arg2, arg3, arg4, arg5)); 6553 6554 case PR_GET_CHILD_SUBREAPER: 6555 case PR_SET_CHILD_SUBREAPER: 6556 case PR_GET_SPECULATION_CTRL: 6557 case PR_SET_SPECULATION_CTRL: 6558 case PR_GET_TID_ADDRESS: 6559 /* TODO */ 6560 return -TARGET_EINVAL; 6561 6562 case PR_GET_FPEXC: 6563 case PR_SET_FPEXC: 6564 /* Was used for SPE on PowerPC. */ 6565 return -TARGET_EINVAL; 6566 6567 case PR_GET_ENDIAN: 6568 case PR_SET_ENDIAN: 6569 case PR_GET_FPEMU: 6570 case PR_SET_FPEMU: 6571 case PR_SET_MM: 6572 case PR_GET_SECCOMP: 6573 case PR_SET_SECCOMP: 6574 case PR_SET_SYSCALL_USER_DISPATCH: 6575 case PR_GET_THP_DISABLE: 6576 case PR_SET_THP_DISABLE: 6577 case PR_GET_TSC: 6578 case PR_SET_TSC: 6579 /* Disable to prevent the target disabling stuff we need. */ 6580 return -TARGET_EINVAL; 6581 6582 default: 6583 qemu_log_mask(LOG_UNIMP, "Unsupported prctl: " TARGET_ABI_FMT_ld "\n", 6584 option); 6585 return -TARGET_EINVAL; 6586 } 6587 } 6588 6589 #define NEW_STACK_SIZE 0x40000 6590 6591 6592 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER; 6593 typedef struct { 6594 CPUArchState *env; 6595 pthread_mutex_t mutex; 6596 pthread_cond_t cond; 6597 pthread_t thread; 6598 uint32_t tid; 6599 abi_ulong child_tidptr; 6600 abi_ulong parent_tidptr; 6601 sigset_t sigmask; 6602 } new_thread_info; 6603 6604 static void *clone_func(void *arg) 6605 { 6606 new_thread_info *info = arg; 6607 CPUArchState *env; 6608 CPUState *cpu; 6609 TaskState *ts; 6610 6611 rcu_register_thread(); 6612 tcg_register_thread(); 6613 env = info->env; 6614 cpu = env_cpu(env); 6615 thread_cpu = cpu; 6616 ts = (TaskState *)cpu->opaque; 6617 info->tid = sys_gettid(); 6618 task_settid(ts); 6619 if (info->child_tidptr) 6620 put_user_u32(info->tid, info->child_tidptr); 6621 if (info->parent_tidptr) 6622 put_user_u32(info->tid, info->parent_tidptr); 6623 qemu_guest_random_seed_thread_part2(cpu->random_seed); 6624 /* Enable signals. */ 6625 sigprocmask(SIG_SETMASK, &info->sigmask, NULL); 6626 /* Signal to the parent that we're ready. */ 6627 pthread_mutex_lock(&info->mutex); 6628 pthread_cond_broadcast(&info->cond); 6629 pthread_mutex_unlock(&info->mutex); 6630 /* Wait until the parent has finished initializing the tls state. */ 6631 pthread_mutex_lock(&clone_lock); 6632 pthread_mutex_unlock(&clone_lock); 6633 cpu_loop(env); 6634 /* never exits */ 6635 return NULL; 6636 } 6637 6638 /* do_fork() Must return host values and target errnos (unlike most 6639 do_*() functions). */ 6640 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp, 6641 abi_ulong parent_tidptr, target_ulong newtls, 6642 abi_ulong child_tidptr) 6643 { 6644 CPUState *cpu = env_cpu(env); 6645 int ret; 6646 TaskState *ts; 6647 CPUState *new_cpu; 6648 CPUArchState *new_env; 6649 sigset_t sigmask; 6650 6651 flags &= ~CLONE_IGNORED_FLAGS; 6652 6653 /* Emulate vfork() with fork() */ 6654 if (flags & CLONE_VFORK) 6655 flags &= ~(CLONE_VFORK | CLONE_VM); 6656 6657 if (flags & CLONE_VM) { 6658 TaskState *parent_ts = (TaskState *)cpu->opaque; 6659 new_thread_info info; 6660 pthread_attr_t attr; 6661 6662 if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) || 6663 (flags & CLONE_INVALID_THREAD_FLAGS)) { 6664 return -TARGET_EINVAL; 6665 } 6666 6667 ts = g_new0(TaskState, 1); 6668 init_task_state(ts); 6669 6670 /* Grab a mutex so that thread setup appears atomic. */ 6671 pthread_mutex_lock(&clone_lock); 6672 6673 /* 6674 * If this is our first additional thread, we need to ensure we 6675 * generate code for parallel execution and flush old translations. 6676 * Do this now so that the copy gets CF_PARALLEL too. 6677 */ 6678 if (!(cpu->tcg_cflags & CF_PARALLEL)) { 6679 cpu->tcg_cflags |= CF_PARALLEL; 6680 tb_flush(cpu); 6681 } 6682 6683 /* we create a new CPU instance. */ 6684 new_env = cpu_copy(env); 6685 /* Init regs that differ from the parent. */ 6686 cpu_clone_regs_child(new_env, newsp, flags); 6687 cpu_clone_regs_parent(env, flags); 6688 new_cpu = env_cpu(new_env); 6689 new_cpu->opaque = ts; 6690 ts->bprm = parent_ts->bprm; 6691 ts->info = parent_ts->info; 6692 ts->signal_mask = parent_ts->signal_mask; 6693 6694 if (flags & CLONE_CHILD_CLEARTID) { 6695 ts->child_tidptr = child_tidptr; 6696 } 6697 6698 if (flags & CLONE_SETTLS) { 6699 cpu_set_tls (new_env, newtls); 6700 } 6701 6702 memset(&info, 0, sizeof(info)); 6703 pthread_mutex_init(&info.mutex, NULL); 6704 pthread_mutex_lock(&info.mutex); 6705 pthread_cond_init(&info.cond, NULL); 6706 info.env = new_env; 6707 if (flags & CLONE_CHILD_SETTID) { 6708 info.child_tidptr = child_tidptr; 6709 } 6710 if (flags & CLONE_PARENT_SETTID) { 6711 info.parent_tidptr = parent_tidptr; 6712 } 6713 6714 ret = pthread_attr_init(&attr); 6715 ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE); 6716 ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); 6717 /* It is not safe to deliver signals until the child has finished 6718 initializing, so temporarily block all signals. */ 6719 sigfillset(&sigmask); 6720 sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask); 6721 cpu->random_seed = qemu_guest_random_seed_thread_part1(); 6722 6723 ret = pthread_create(&info.thread, &attr, clone_func, &info); 6724 /* TODO: Free new CPU state if thread creation failed. */ 6725 6726 sigprocmask(SIG_SETMASK, &info.sigmask, NULL); 6727 pthread_attr_destroy(&attr); 6728 if (ret == 0) { 6729 /* Wait for the child to initialize. */ 6730 pthread_cond_wait(&info.cond, &info.mutex); 6731 ret = info.tid; 6732 } else { 6733 ret = -1; 6734 } 6735 pthread_mutex_unlock(&info.mutex); 6736 pthread_cond_destroy(&info.cond); 6737 pthread_mutex_destroy(&info.mutex); 6738 pthread_mutex_unlock(&clone_lock); 6739 } else { 6740 /* if no CLONE_VM, we consider it is a fork */ 6741 if (flags & CLONE_INVALID_FORK_FLAGS) { 6742 return -TARGET_EINVAL; 6743 } 6744 6745 /* We can't support custom termination signals */ 6746 if ((flags & CSIGNAL) != TARGET_SIGCHLD) { 6747 return -TARGET_EINVAL; 6748 } 6749 6750 if (block_signals()) { 6751 return -QEMU_ERESTARTSYS; 6752 } 6753 6754 fork_start(); 6755 ret = fork(); 6756 if (ret == 0) { 6757 /* Child Process. */ 6758 cpu_clone_regs_child(env, newsp, flags); 6759 fork_end(1); 6760 /* There is a race condition here. The parent process could 6761 theoretically read the TID in the child process before the child 6762 tid is set. This would require using either ptrace 6763 (not implemented) or having *_tidptr to point at a shared memory 6764 mapping. We can't repeat the spinlock hack used above because 6765 the child process gets its own copy of the lock. */ 6766 if (flags & CLONE_CHILD_SETTID) 6767 put_user_u32(sys_gettid(), child_tidptr); 6768 if (flags & CLONE_PARENT_SETTID) 6769 put_user_u32(sys_gettid(), parent_tidptr); 6770 ts = (TaskState *)cpu->opaque; 6771 if (flags & CLONE_SETTLS) 6772 cpu_set_tls (env, newtls); 6773 if (flags & CLONE_CHILD_CLEARTID) 6774 ts->child_tidptr = child_tidptr; 6775 } else { 6776 cpu_clone_regs_parent(env, flags); 6777 fork_end(0); 6778 } 6779 } 6780 return ret; 6781 } 6782 6783 /* warning : doesn't handle linux specific flags... */ 6784 static int target_to_host_fcntl_cmd(int cmd) 6785 { 6786 int ret; 6787 6788 switch(cmd) { 6789 case TARGET_F_DUPFD: 6790 case TARGET_F_GETFD: 6791 case TARGET_F_SETFD: 6792 case TARGET_F_GETFL: 6793 case TARGET_F_SETFL: 6794 case TARGET_F_OFD_GETLK: 6795 case TARGET_F_OFD_SETLK: 6796 case TARGET_F_OFD_SETLKW: 6797 ret = cmd; 6798 break; 6799 case TARGET_F_GETLK: 6800 ret = F_GETLK64; 6801 break; 6802 case TARGET_F_SETLK: 6803 ret = F_SETLK64; 6804 break; 6805 case TARGET_F_SETLKW: 6806 ret = F_SETLKW64; 6807 break; 6808 case TARGET_F_GETOWN: 6809 ret = F_GETOWN; 6810 break; 6811 case TARGET_F_SETOWN: 6812 ret = F_SETOWN; 6813 break; 6814 case TARGET_F_GETSIG: 6815 ret = F_GETSIG; 6816 break; 6817 case TARGET_F_SETSIG: 6818 ret = F_SETSIG; 6819 break; 6820 #if TARGET_ABI_BITS == 32 6821 case TARGET_F_GETLK64: 6822 ret = F_GETLK64; 6823 break; 6824 case TARGET_F_SETLK64: 6825 ret = F_SETLK64; 6826 break; 6827 case TARGET_F_SETLKW64: 6828 ret = F_SETLKW64; 6829 break; 6830 #endif 6831 case TARGET_F_SETLEASE: 6832 ret = F_SETLEASE; 6833 break; 6834 case TARGET_F_GETLEASE: 6835 ret = F_GETLEASE; 6836 break; 6837 #ifdef F_DUPFD_CLOEXEC 6838 case TARGET_F_DUPFD_CLOEXEC: 6839 ret = F_DUPFD_CLOEXEC; 6840 break; 6841 #endif 6842 case TARGET_F_NOTIFY: 6843 ret = F_NOTIFY; 6844 break; 6845 #ifdef F_GETOWN_EX 6846 case TARGET_F_GETOWN_EX: 6847 ret = F_GETOWN_EX; 6848 break; 6849 #endif 6850 #ifdef F_SETOWN_EX 6851 case TARGET_F_SETOWN_EX: 6852 ret = F_SETOWN_EX; 6853 break; 6854 #endif 6855 #ifdef F_SETPIPE_SZ 6856 case TARGET_F_SETPIPE_SZ: 6857 ret = F_SETPIPE_SZ; 6858 break; 6859 case TARGET_F_GETPIPE_SZ: 6860 ret = F_GETPIPE_SZ; 6861 break; 6862 #endif 6863 #ifdef F_ADD_SEALS 6864 case TARGET_F_ADD_SEALS: 6865 ret = F_ADD_SEALS; 6866 break; 6867 case TARGET_F_GET_SEALS: 6868 ret = F_GET_SEALS; 6869 break; 6870 #endif 6871 default: 6872 ret = -TARGET_EINVAL; 6873 break; 6874 } 6875 6876 #if defined(__powerpc64__) 6877 /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and 6878 * is not supported by kernel. The glibc fcntl call actually adjusts 6879 * them to 5, 6 and 7 before making the syscall(). Since we make the 6880 * syscall directly, adjust to what is supported by the kernel. 6881 */ 6882 if (ret >= F_GETLK64 && ret <= F_SETLKW64) { 6883 ret -= F_GETLK64 - 5; 6884 } 6885 #endif 6886 6887 return ret; 6888 } 6889 6890 #define FLOCK_TRANSTBL \ 6891 switch (type) { \ 6892 TRANSTBL_CONVERT(F_RDLCK); \ 6893 TRANSTBL_CONVERT(F_WRLCK); \ 6894 TRANSTBL_CONVERT(F_UNLCK); \ 6895 } 6896 6897 static int target_to_host_flock(int type) 6898 { 6899 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a 6900 FLOCK_TRANSTBL 6901 #undef TRANSTBL_CONVERT 6902 return -TARGET_EINVAL; 6903 } 6904 6905 static int host_to_target_flock(int type) 6906 { 6907 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a 6908 FLOCK_TRANSTBL 6909 #undef TRANSTBL_CONVERT 6910 /* if we don't know how to convert the value coming 6911 * from the host we copy to the target field as-is 6912 */ 6913 return type; 6914 } 6915 6916 static inline abi_long copy_from_user_flock(struct flock64 *fl, 6917 abi_ulong target_flock_addr) 6918 { 6919 struct target_flock *target_fl; 6920 int l_type; 6921 6922 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 6923 return -TARGET_EFAULT; 6924 } 6925 6926 __get_user(l_type, &target_fl->l_type); 6927 l_type = target_to_host_flock(l_type); 6928 if (l_type < 0) { 6929 return l_type; 6930 } 6931 fl->l_type = l_type; 6932 __get_user(fl->l_whence, &target_fl->l_whence); 6933 __get_user(fl->l_start, &target_fl->l_start); 6934 __get_user(fl->l_len, &target_fl->l_len); 6935 __get_user(fl->l_pid, &target_fl->l_pid); 6936 unlock_user_struct(target_fl, target_flock_addr, 0); 6937 return 0; 6938 } 6939 6940 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr, 6941 const struct flock64 *fl) 6942 { 6943 struct target_flock *target_fl; 6944 short l_type; 6945 6946 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 6947 return -TARGET_EFAULT; 6948 } 6949 6950 l_type = host_to_target_flock(fl->l_type); 6951 __put_user(l_type, &target_fl->l_type); 6952 __put_user(fl->l_whence, &target_fl->l_whence); 6953 __put_user(fl->l_start, &target_fl->l_start); 6954 __put_user(fl->l_len, &target_fl->l_len); 6955 __put_user(fl->l_pid, &target_fl->l_pid); 6956 unlock_user_struct(target_fl, target_flock_addr, 1); 6957 return 0; 6958 } 6959 6960 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr); 6961 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl); 6962 6963 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32 6964 struct target_oabi_flock64 { 6965 abi_short l_type; 6966 abi_short l_whence; 6967 abi_llong l_start; 6968 abi_llong l_len; 6969 abi_int l_pid; 6970 } QEMU_PACKED; 6971 6972 static inline abi_long copy_from_user_oabi_flock64(struct flock64 *fl, 6973 abi_ulong target_flock_addr) 6974 { 6975 struct target_oabi_flock64 *target_fl; 6976 int l_type; 6977 6978 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 6979 return -TARGET_EFAULT; 6980 } 6981 6982 __get_user(l_type, &target_fl->l_type); 6983 l_type = target_to_host_flock(l_type); 6984 if (l_type < 0) { 6985 return l_type; 6986 } 6987 fl->l_type = l_type; 6988 __get_user(fl->l_whence, &target_fl->l_whence); 6989 __get_user(fl->l_start, &target_fl->l_start); 6990 __get_user(fl->l_len, &target_fl->l_len); 6991 __get_user(fl->l_pid, &target_fl->l_pid); 6992 unlock_user_struct(target_fl, target_flock_addr, 0); 6993 return 0; 6994 } 6995 6996 static inline abi_long copy_to_user_oabi_flock64(abi_ulong target_flock_addr, 6997 const struct flock64 *fl) 6998 { 6999 struct target_oabi_flock64 *target_fl; 7000 short l_type; 7001 7002 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 7003 return -TARGET_EFAULT; 7004 } 7005 7006 l_type = host_to_target_flock(fl->l_type); 7007 __put_user(l_type, &target_fl->l_type); 7008 __put_user(fl->l_whence, &target_fl->l_whence); 7009 __put_user(fl->l_start, &target_fl->l_start); 7010 __put_user(fl->l_len, &target_fl->l_len); 7011 __put_user(fl->l_pid, &target_fl->l_pid); 7012 unlock_user_struct(target_fl, target_flock_addr, 1); 7013 return 0; 7014 } 7015 #endif 7016 7017 static inline abi_long copy_from_user_flock64(struct flock64 *fl, 7018 abi_ulong target_flock_addr) 7019 { 7020 struct target_flock64 *target_fl; 7021 int l_type; 7022 7023 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 7024 return -TARGET_EFAULT; 7025 } 7026 7027 __get_user(l_type, &target_fl->l_type); 7028 l_type = target_to_host_flock(l_type); 7029 if (l_type < 0) { 7030 return l_type; 7031 } 7032 fl->l_type = l_type; 7033 __get_user(fl->l_whence, &target_fl->l_whence); 7034 __get_user(fl->l_start, &target_fl->l_start); 7035 __get_user(fl->l_len, &target_fl->l_len); 7036 __get_user(fl->l_pid, &target_fl->l_pid); 7037 unlock_user_struct(target_fl, target_flock_addr, 0); 7038 return 0; 7039 } 7040 7041 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr, 7042 const struct flock64 *fl) 7043 { 7044 struct target_flock64 *target_fl; 7045 short l_type; 7046 7047 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 7048 return -TARGET_EFAULT; 7049 } 7050 7051 l_type = host_to_target_flock(fl->l_type); 7052 __put_user(l_type, &target_fl->l_type); 7053 __put_user(fl->l_whence, &target_fl->l_whence); 7054 __put_user(fl->l_start, &target_fl->l_start); 7055 __put_user(fl->l_len, &target_fl->l_len); 7056 __put_user(fl->l_pid, &target_fl->l_pid); 7057 unlock_user_struct(target_fl, target_flock_addr, 1); 7058 return 0; 7059 } 7060 7061 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg) 7062 { 7063 struct flock64 fl64; 7064 #ifdef F_GETOWN_EX 7065 struct f_owner_ex fox; 7066 struct target_f_owner_ex *target_fox; 7067 #endif 7068 abi_long ret; 7069 int host_cmd = target_to_host_fcntl_cmd(cmd); 7070 7071 if (host_cmd == -TARGET_EINVAL) 7072 return host_cmd; 7073 7074 switch(cmd) { 7075 case TARGET_F_GETLK: 7076 ret = copy_from_user_flock(&fl64, arg); 7077 if (ret) { 7078 return ret; 7079 } 7080 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 7081 if (ret == 0) { 7082 ret = copy_to_user_flock(arg, &fl64); 7083 } 7084 break; 7085 7086 case TARGET_F_SETLK: 7087 case TARGET_F_SETLKW: 7088 ret = copy_from_user_flock(&fl64, arg); 7089 if (ret) { 7090 return ret; 7091 } 7092 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 7093 break; 7094 7095 case TARGET_F_GETLK64: 7096 case TARGET_F_OFD_GETLK: 7097 ret = copy_from_user_flock64(&fl64, arg); 7098 if (ret) { 7099 return ret; 7100 } 7101 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 7102 if (ret == 0) { 7103 ret = copy_to_user_flock64(arg, &fl64); 7104 } 7105 break; 7106 case TARGET_F_SETLK64: 7107 case TARGET_F_SETLKW64: 7108 case TARGET_F_OFD_SETLK: 7109 case TARGET_F_OFD_SETLKW: 7110 ret = copy_from_user_flock64(&fl64, arg); 7111 if (ret) { 7112 return ret; 7113 } 7114 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 7115 break; 7116 7117 case TARGET_F_GETFL: 7118 ret = get_errno(safe_fcntl(fd, host_cmd, arg)); 7119 if (ret >= 0) { 7120 ret = host_to_target_bitmask(ret, fcntl_flags_tbl); 7121 } 7122 break; 7123 7124 case TARGET_F_SETFL: 7125 ret = get_errno(safe_fcntl(fd, host_cmd, 7126 target_to_host_bitmask(arg, 7127 fcntl_flags_tbl))); 7128 break; 7129 7130 #ifdef F_GETOWN_EX 7131 case TARGET_F_GETOWN_EX: 7132 ret = get_errno(safe_fcntl(fd, host_cmd, &fox)); 7133 if (ret >= 0) { 7134 if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0)) 7135 return -TARGET_EFAULT; 7136 target_fox->type = tswap32(fox.type); 7137 target_fox->pid = tswap32(fox.pid); 7138 unlock_user_struct(target_fox, arg, 1); 7139 } 7140 break; 7141 #endif 7142 7143 #ifdef F_SETOWN_EX 7144 case TARGET_F_SETOWN_EX: 7145 if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1)) 7146 return -TARGET_EFAULT; 7147 fox.type = tswap32(target_fox->type); 7148 fox.pid = tswap32(target_fox->pid); 7149 unlock_user_struct(target_fox, arg, 0); 7150 ret = get_errno(safe_fcntl(fd, host_cmd, &fox)); 7151 break; 7152 #endif 7153 7154 case TARGET_F_SETSIG: 7155 ret = get_errno(safe_fcntl(fd, host_cmd, target_to_host_signal(arg))); 7156 break; 7157 7158 case TARGET_F_GETSIG: 7159 ret = host_to_target_signal(get_errno(safe_fcntl(fd, host_cmd, arg))); 7160 break; 7161 7162 case TARGET_F_SETOWN: 7163 case TARGET_F_GETOWN: 7164 case TARGET_F_SETLEASE: 7165 case TARGET_F_GETLEASE: 7166 case TARGET_F_SETPIPE_SZ: 7167 case TARGET_F_GETPIPE_SZ: 7168 case TARGET_F_ADD_SEALS: 7169 case TARGET_F_GET_SEALS: 7170 ret = get_errno(safe_fcntl(fd, host_cmd, arg)); 7171 break; 7172 7173 default: 7174 ret = get_errno(safe_fcntl(fd, cmd, arg)); 7175 break; 7176 } 7177 return ret; 7178 } 7179 7180 #ifdef USE_UID16 7181 7182 static inline int high2lowuid(int uid) 7183 { 7184 if (uid > 65535) 7185 return 65534; 7186 else 7187 return uid; 7188 } 7189 7190 static inline int high2lowgid(int gid) 7191 { 7192 if (gid > 65535) 7193 return 65534; 7194 else 7195 return gid; 7196 } 7197 7198 static inline int low2highuid(int uid) 7199 { 7200 if ((int16_t)uid == -1) 7201 return -1; 7202 else 7203 return uid; 7204 } 7205 7206 static inline int low2highgid(int gid) 7207 { 7208 if ((int16_t)gid == -1) 7209 return -1; 7210 else 7211 return gid; 7212 } 7213 static inline int tswapid(int id) 7214 { 7215 return tswap16(id); 7216 } 7217 7218 #define put_user_id(x, gaddr) put_user_u16(x, gaddr) 7219 7220 #else /* !USE_UID16 */ 7221 static inline int high2lowuid(int uid) 7222 { 7223 return uid; 7224 } 7225 static inline int high2lowgid(int gid) 7226 { 7227 return gid; 7228 } 7229 static inline int low2highuid(int uid) 7230 { 7231 return uid; 7232 } 7233 static inline int low2highgid(int gid) 7234 { 7235 return gid; 7236 } 7237 static inline int tswapid(int id) 7238 { 7239 return tswap32(id); 7240 } 7241 7242 #define put_user_id(x, gaddr) put_user_u32(x, gaddr) 7243 7244 #endif /* USE_UID16 */ 7245 7246 /* We must do direct syscalls for setting UID/GID, because we want to 7247 * implement the Linux system call semantics of "change only for this thread", 7248 * not the libc/POSIX semantics of "change for all threads in process". 7249 * (See http://ewontfix.com/17/ for more details.) 7250 * We use the 32-bit version of the syscalls if present; if it is not 7251 * then either the host architecture supports 32-bit UIDs natively with 7252 * the standard syscall, or the 16-bit UID is the best we can do. 7253 */ 7254 #ifdef __NR_setuid32 7255 #define __NR_sys_setuid __NR_setuid32 7256 #else 7257 #define __NR_sys_setuid __NR_setuid 7258 #endif 7259 #ifdef __NR_setgid32 7260 #define __NR_sys_setgid __NR_setgid32 7261 #else 7262 #define __NR_sys_setgid __NR_setgid 7263 #endif 7264 #ifdef __NR_setresuid32 7265 #define __NR_sys_setresuid __NR_setresuid32 7266 #else 7267 #define __NR_sys_setresuid __NR_setresuid 7268 #endif 7269 #ifdef __NR_setresgid32 7270 #define __NR_sys_setresgid __NR_setresgid32 7271 #else 7272 #define __NR_sys_setresgid __NR_setresgid 7273 #endif 7274 7275 _syscall1(int, sys_setuid, uid_t, uid) 7276 _syscall1(int, sys_setgid, gid_t, gid) 7277 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid) 7278 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid) 7279 7280 void syscall_init(void) 7281 { 7282 IOCTLEntry *ie; 7283 const argtype *arg_type; 7284 int size; 7285 7286 thunk_init(STRUCT_MAX); 7287 7288 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def); 7289 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def); 7290 #include "syscall_types.h" 7291 #undef STRUCT 7292 #undef STRUCT_SPECIAL 7293 7294 /* we patch the ioctl size if necessary. We rely on the fact that 7295 no ioctl has all the bits at '1' in the size field */ 7296 ie = ioctl_entries; 7297 while (ie->target_cmd != 0) { 7298 if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) == 7299 TARGET_IOC_SIZEMASK) { 7300 arg_type = ie->arg_type; 7301 if (arg_type[0] != TYPE_PTR) { 7302 fprintf(stderr, "cannot patch size for ioctl 0x%x\n", 7303 ie->target_cmd); 7304 exit(1); 7305 } 7306 arg_type++; 7307 size = thunk_type_size(arg_type, 0); 7308 ie->target_cmd = (ie->target_cmd & 7309 ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) | 7310 (size << TARGET_IOC_SIZESHIFT); 7311 } 7312 7313 /* automatic consistency check if same arch */ 7314 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \ 7315 (defined(__x86_64__) && defined(TARGET_X86_64)) 7316 if (unlikely(ie->target_cmd != ie->host_cmd)) { 7317 fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n", 7318 ie->name, ie->target_cmd, ie->host_cmd); 7319 } 7320 #endif 7321 ie++; 7322 } 7323 } 7324 7325 #ifdef TARGET_NR_truncate64 7326 static inline abi_long target_truncate64(CPUArchState *cpu_env, const char *arg1, 7327 abi_long arg2, 7328 abi_long arg3, 7329 abi_long arg4) 7330 { 7331 if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) { 7332 arg2 = arg3; 7333 arg3 = arg4; 7334 } 7335 return get_errno(truncate64(arg1, target_offset64(arg2, arg3))); 7336 } 7337 #endif 7338 7339 #ifdef TARGET_NR_ftruncate64 7340 static inline abi_long target_ftruncate64(CPUArchState *cpu_env, abi_long arg1, 7341 abi_long arg2, 7342 abi_long arg3, 7343 abi_long arg4) 7344 { 7345 if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) { 7346 arg2 = arg3; 7347 arg3 = arg4; 7348 } 7349 return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3))); 7350 } 7351 #endif 7352 7353 #if defined(TARGET_NR_timer_settime) || \ 7354 (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)) 7355 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_its, 7356 abi_ulong target_addr) 7357 { 7358 if (target_to_host_timespec(&host_its->it_interval, target_addr + 7359 offsetof(struct target_itimerspec, 7360 it_interval)) || 7361 target_to_host_timespec(&host_its->it_value, target_addr + 7362 offsetof(struct target_itimerspec, 7363 it_value))) { 7364 return -TARGET_EFAULT; 7365 } 7366 7367 return 0; 7368 } 7369 #endif 7370 7371 #if defined(TARGET_NR_timer_settime64) || \ 7372 (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) 7373 static inline abi_long target_to_host_itimerspec64(struct itimerspec *host_its, 7374 abi_ulong target_addr) 7375 { 7376 if (target_to_host_timespec64(&host_its->it_interval, target_addr + 7377 offsetof(struct target__kernel_itimerspec, 7378 it_interval)) || 7379 target_to_host_timespec64(&host_its->it_value, target_addr + 7380 offsetof(struct target__kernel_itimerspec, 7381 it_value))) { 7382 return -TARGET_EFAULT; 7383 } 7384 7385 return 0; 7386 } 7387 #endif 7388 7389 #if ((defined(TARGET_NR_timerfd_gettime) || \ 7390 defined(TARGET_NR_timerfd_settime)) && defined(CONFIG_TIMERFD)) || \ 7391 defined(TARGET_NR_timer_gettime) || defined(TARGET_NR_timer_settime) 7392 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr, 7393 struct itimerspec *host_its) 7394 { 7395 if (host_to_target_timespec(target_addr + offsetof(struct target_itimerspec, 7396 it_interval), 7397 &host_its->it_interval) || 7398 host_to_target_timespec(target_addr + offsetof(struct target_itimerspec, 7399 it_value), 7400 &host_its->it_value)) { 7401 return -TARGET_EFAULT; 7402 } 7403 return 0; 7404 } 7405 #endif 7406 7407 #if ((defined(TARGET_NR_timerfd_gettime64) || \ 7408 defined(TARGET_NR_timerfd_settime64)) && defined(CONFIG_TIMERFD)) || \ 7409 defined(TARGET_NR_timer_gettime64) || defined(TARGET_NR_timer_settime64) 7410 static inline abi_long host_to_target_itimerspec64(abi_ulong target_addr, 7411 struct itimerspec *host_its) 7412 { 7413 if (host_to_target_timespec64(target_addr + 7414 offsetof(struct target__kernel_itimerspec, 7415 it_interval), 7416 &host_its->it_interval) || 7417 host_to_target_timespec64(target_addr + 7418 offsetof(struct target__kernel_itimerspec, 7419 it_value), 7420 &host_its->it_value)) { 7421 return -TARGET_EFAULT; 7422 } 7423 return 0; 7424 } 7425 #endif 7426 7427 #if defined(TARGET_NR_adjtimex) || \ 7428 (defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)) 7429 static inline abi_long target_to_host_timex(struct timex *host_tx, 7430 abi_long target_addr) 7431 { 7432 struct target_timex *target_tx; 7433 7434 if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) { 7435 return -TARGET_EFAULT; 7436 } 7437 7438 __get_user(host_tx->modes, &target_tx->modes); 7439 __get_user(host_tx->offset, &target_tx->offset); 7440 __get_user(host_tx->freq, &target_tx->freq); 7441 __get_user(host_tx->maxerror, &target_tx->maxerror); 7442 __get_user(host_tx->esterror, &target_tx->esterror); 7443 __get_user(host_tx->status, &target_tx->status); 7444 __get_user(host_tx->constant, &target_tx->constant); 7445 __get_user(host_tx->precision, &target_tx->precision); 7446 __get_user(host_tx->tolerance, &target_tx->tolerance); 7447 __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec); 7448 __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec); 7449 __get_user(host_tx->tick, &target_tx->tick); 7450 __get_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7451 __get_user(host_tx->jitter, &target_tx->jitter); 7452 __get_user(host_tx->shift, &target_tx->shift); 7453 __get_user(host_tx->stabil, &target_tx->stabil); 7454 __get_user(host_tx->jitcnt, &target_tx->jitcnt); 7455 __get_user(host_tx->calcnt, &target_tx->calcnt); 7456 __get_user(host_tx->errcnt, &target_tx->errcnt); 7457 __get_user(host_tx->stbcnt, &target_tx->stbcnt); 7458 __get_user(host_tx->tai, &target_tx->tai); 7459 7460 unlock_user_struct(target_tx, target_addr, 0); 7461 return 0; 7462 } 7463 7464 static inline abi_long host_to_target_timex(abi_long target_addr, 7465 struct timex *host_tx) 7466 { 7467 struct target_timex *target_tx; 7468 7469 if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) { 7470 return -TARGET_EFAULT; 7471 } 7472 7473 __put_user(host_tx->modes, &target_tx->modes); 7474 __put_user(host_tx->offset, &target_tx->offset); 7475 __put_user(host_tx->freq, &target_tx->freq); 7476 __put_user(host_tx->maxerror, &target_tx->maxerror); 7477 __put_user(host_tx->esterror, &target_tx->esterror); 7478 __put_user(host_tx->status, &target_tx->status); 7479 __put_user(host_tx->constant, &target_tx->constant); 7480 __put_user(host_tx->precision, &target_tx->precision); 7481 __put_user(host_tx->tolerance, &target_tx->tolerance); 7482 __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec); 7483 __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec); 7484 __put_user(host_tx->tick, &target_tx->tick); 7485 __put_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7486 __put_user(host_tx->jitter, &target_tx->jitter); 7487 __put_user(host_tx->shift, &target_tx->shift); 7488 __put_user(host_tx->stabil, &target_tx->stabil); 7489 __put_user(host_tx->jitcnt, &target_tx->jitcnt); 7490 __put_user(host_tx->calcnt, &target_tx->calcnt); 7491 __put_user(host_tx->errcnt, &target_tx->errcnt); 7492 __put_user(host_tx->stbcnt, &target_tx->stbcnt); 7493 __put_user(host_tx->tai, &target_tx->tai); 7494 7495 unlock_user_struct(target_tx, target_addr, 1); 7496 return 0; 7497 } 7498 #endif 7499 7500 7501 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME) 7502 static inline abi_long target_to_host_timex64(struct timex *host_tx, 7503 abi_long target_addr) 7504 { 7505 struct target__kernel_timex *target_tx; 7506 7507 if (copy_from_user_timeval64(&host_tx->time, target_addr + 7508 offsetof(struct target__kernel_timex, 7509 time))) { 7510 return -TARGET_EFAULT; 7511 } 7512 7513 if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) { 7514 return -TARGET_EFAULT; 7515 } 7516 7517 __get_user(host_tx->modes, &target_tx->modes); 7518 __get_user(host_tx->offset, &target_tx->offset); 7519 __get_user(host_tx->freq, &target_tx->freq); 7520 __get_user(host_tx->maxerror, &target_tx->maxerror); 7521 __get_user(host_tx->esterror, &target_tx->esterror); 7522 __get_user(host_tx->status, &target_tx->status); 7523 __get_user(host_tx->constant, &target_tx->constant); 7524 __get_user(host_tx->precision, &target_tx->precision); 7525 __get_user(host_tx->tolerance, &target_tx->tolerance); 7526 __get_user(host_tx->tick, &target_tx->tick); 7527 __get_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7528 __get_user(host_tx->jitter, &target_tx->jitter); 7529 __get_user(host_tx->shift, &target_tx->shift); 7530 __get_user(host_tx->stabil, &target_tx->stabil); 7531 __get_user(host_tx->jitcnt, &target_tx->jitcnt); 7532 __get_user(host_tx->calcnt, &target_tx->calcnt); 7533 __get_user(host_tx->errcnt, &target_tx->errcnt); 7534 __get_user(host_tx->stbcnt, &target_tx->stbcnt); 7535 __get_user(host_tx->tai, &target_tx->tai); 7536 7537 unlock_user_struct(target_tx, target_addr, 0); 7538 return 0; 7539 } 7540 7541 static inline abi_long host_to_target_timex64(abi_long target_addr, 7542 struct timex *host_tx) 7543 { 7544 struct target__kernel_timex *target_tx; 7545 7546 if (copy_to_user_timeval64(target_addr + 7547 offsetof(struct target__kernel_timex, time), 7548 &host_tx->time)) { 7549 return -TARGET_EFAULT; 7550 } 7551 7552 if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) { 7553 return -TARGET_EFAULT; 7554 } 7555 7556 __put_user(host_tx->modes, &target_tx->modes); 7557 __put_user(host_tx->offset, &target_tx->offset); 7558 __put_user(host_tx->freq, &target_tx->freq); 7559 __put_user(host_tx->maxerror, &target_tx->maxerror); 7560 __put_user(host_tx->esterror, &target_tx->esterror); 7561 __put_user(host_tx->status, &target_tx->status); 7562 __put_user(host_tx->constant, &target_tx->constant); 7563 __put_user(host_tx->precision, &target_tx->precision); 7564 __put_user(host_tx->tolerance, &target_tx->tolerance); 7565 __put_user(host_tx->tick, &target_tx->tick); 7566 __put_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7567 __put_user(host_tx->jitter, &target_tx->jitter); 7568 __put_user(host_tx->shift, &target_tx->shift); 7569 __put_user(host_tx->stabil, &target_tx->stabil); 7570 __put_user(host_tx->jitcnt, &target_tx->jitcnt); 7571 __put_user(host_tx->calcnt, &target_tx->calcnt); 7572 __put_user(host_tx->errcnt, &target_tx->errcnt); 7573 __put_user(host_tx->stbcnt, &target_tx->stbcnt); 7574 __put_user(host_tx->tai, &target_tx->tai); 7575 7576 unlock_user_struct(target_tx, target_addr, 1); 7577 return 0; 7578 } 7579 #endif 7580 7581 #ifndef HAVE_SIGEV_NOTIFY_THREAD_ID 7582 #define sigev_notify_thread_id _sigev_un._tid 7583 #endif 7584 7585 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp, 7586 abi_ulong target_addr) 7587 { 7588 struct target_sigevent *target_sevp; 7589 7590 if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) { 7591 return -TARGET_EFAULT; 7592 } 7593 7594 /* This union is awkward on 64 bit systems because it has a 32 bit 7595 * integer and a pointer in it; we follow the conversion approach 7596 * used for handling sigval types in signal.c so the guest should get 7597 * the correct value back even if we did a 64 bit byteswap and it's 7598 * using the 32 bit integer. 7599 */ 7600 host_sevp->sigev_value.sival_ptr = 7601 (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr); 7602 host_sevp->sigev_signo = 7603 target_to_host_signal(tswap32(target_sevp->sigev_signo)); 7604 host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify); 7605 host_sevp->sigev_notify_thread_id = tswap32(target_sevp->_sigev_un._tid); 7606 7607 unlock_user_struct(target_sevp, target_addr, 1); 7608 return 0; 7609 } 7610 7611 #if defined(TARGET_NR_mlockall) 7612 static inline int target_to_host_mlockall_arg(int arg) 7613 { 7614 int result = 0; 7615 7616 if (arg & TARGET_MCL_CURRENT) { 7617 result |= MCL_CURRENT; 7618 } 7619 if (arg & TARGET_MCL_FUTURE) { 7620 result |= MCL_FUTURE; 7621 } 7622 #ifdef MCL_ONFAULT 7623 if (arg & TARGET_MCL_ONFAULT) { 7624 result |= MCL_ONFAULT; 7625 } 7626 #endif 7627 7628 return result; 7629 } 7630 #endif 7631 7632 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) || \ 7633 defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) || \ 7634 defined(TARGET_NR_newfstatat)) 7635 static inline abi_long host_to_target_stat64(CPUArchState *cpu_env, 7636 abi_ulong target_addr, 7637 struct stat *host_st) 7638 { 7639 #if defined(TARGET_ARM) && defined(TARGET_ABI32) 7640 if (cpu_env->eabi) { 7641 struct target_eabi_stat64 *target_st; 7642 7643 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0)) 7644 return -TARGET_EFAULT; 7645 memset(target_st, 0, sizeof(struct target_eabi_stat64)); 7646 __put_user(host_st->st_dev, &target_st->st_dev); 7647 __put_user(host_st->st_ino, &target_st->st_ino); 7648 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO 7649 __put_user(host_st->st_ino, &target_st->__st_ino); 7650 #endif 7651 __put_user(host_st->st_mode, &target_st->st_mode); 7652 __put_user(host_st->st_nlink, &target_st->st_nlink); 7653 __put_user(host_st->st_uid, &target_st->st_uid); 7654 __put_user(host_st->st_gid, &target_st->st_gid); 7655 __put_user(host_st->st_rdev, &target_st->st_rdev); 7656 __put_user(host_st->st_size, &target_st->st_size); 7657 __put_user(host_st->st_blksize, &target_st->st_blksize); 7658 __put_user(host_st->st_blocks, &target_st->st_blocks); 7659 __put_user(host_st->st_atime, &target_st->target_st_atime); 7660 __put_user(host_st->st_mtime, &target_st->target_st_mtime); 7661 __put_user(host_st->st_ctime, &target_st->target_st_ctime); 7662 #ifdef HAVE_STRUCT_STAT_ST_ATIM 7663 __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec); 7664 __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec); 7665 __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec); 7666 #endif 7667 unlock_user_struct(target_st, target_addr, 1); 7668 } else 7669 #endif 7670 { 7671 #if defined(TARGET_HAS_STRUCT_STAT64) 7672 struct target_stat64 *target_st; 7673 #else 7674 struct target_stat *target_st; 7675 #endif 7676 7677 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0)) 7678 return -TARGET_EFAULT; 7679 memset(target_st, 0, sizeof(*target_st)); 7680 __put_user(host_st->st_dev, &target_st->st_dev); 7681 __put_user(host_st->st_ino, &target_st->st_ino); 7682 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO 7683 __put_user(host_st->st_ino, &target_st->__st_ino); 7684 #endif 7685 __put_user(host_st->st_mode, &target_st->st_mode); 7686 __put_user(host_st->st_nlink, &target_st->st_nlink); 7687 __put_user(host_st->st_uid, &target_st->st_uid); 7688 __put_user(host_st->st_gid, &target_st->st_gid); 7689 __put_user(host_st->st_rdev, &target_st->st_rdev); 7690 /* XXX: better use of kernel struct */ 7691 __put_user(host_st->st_size, &target_st->st_size); 7692 __put_user(host_st->st_blksize, &target_st->st_blksize); 7693 __put_user(host_st->st_blocks, &target_st->st_blocks); 7694 __put_user(host_st->st_atime, &target_st->target_st_atime); 7695 __put_user(host_st->st_mtime, &target_st->target_st_mtime); 7696 __put_user(host_st->st_ctime, &target_st->target_st_ctime); 7697 #ifdef HAVE_STRUCT_STAT_ST_ATIM 7698 __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec); 7699 __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec); 7700 __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec); 7701 #endif 7702 unlock_user_struct(target_st, target_addr, 1); 7703 } 7704 7705 return 0; 7706 } 7707 #endif 7708 7709 #if defined(TARGET_NR_statx) && defined(__NR_statx) 7710 static inline abi_long host_to_target_statx(struct target_statx *host_stx, 7711 abi_ulong target_addr) 7712 { 7713 struct target_statx *target_stx; 7714 7715 if (!lock_user_struct(VERIFY_WRITE, target_stx, target_addr, 0)) { 7716 return -TARGET_EFAULT; 7717 } 7718 memset(target_stx, 0, sizeof(*target_stx)); 7719 7720 __put_user(host_stx->stx_mask, &target_stx->stx_mask); 7721 __put_user(host_stx->stx_blksize, &target_stx->stx_blksize); 7722 __put_user(host_stx->stx_attributes, &target_stx->stx_attributes); 7723 __put_user(host_stx->stx_nlink, &target_stx->stx_nlink); 7724 __put_user(host_stx->stx_uid, &target_stx->stx_uid); 7725 __put_user(host_stx->stx_gid, &target_stx->stx_gid); 7726 __put_user(host_stx->stx_mode, &target_stx->stx_mode); 7727 __put_user(host_stx->stx_ino, &target_stx->stx_ino); 7728 __put_user(host_stx->stx_size, &target_stx->stx_size); 7729 __put_user(host_stx->stx_blocks, &target_stx->stx_blocks); 7730 __put_user(host_stx->stx_attributes_mask, &target_stx->stx_attributes_mask); 7731 __put_user(host_stx->stx_atime.tv_sec, &target_stx->stx_atime.tv_sec); 7732 __put_user(host_stx->stx_atime.tv_nsec, &target_stx->stx_atime.tv_nsec); 7733 __put_user(host_stx->stx_btime.tv_sec, &target_stx->stx_btime.tv_sec); 7734 __put_user(host_stx->stx_btime.tv_nsec, &target_stx->stx_btime.tv_nsec); 7735 __put_user(host_stx->stx_ctime.tv_sec, &target_stx->stx_ctime.tv_sec); 7736 __put_user(host_stx->stx_ctime.tv_nsec, &target_stx->stx_ctime.tv_nsec); 7737 __put_user(host_stx->stx_mtime.tv_sec, &target_stx->stx_mtime.tv_sec); 7738 __put_user(host_stx->stx_mtime.tv_nsec, &target_stx->stx_mtime.tv_nsec); 7739 __put_user(host_stx->stx_rdev_major, &target_stx->stx_rdev_major); 7740 __put_user(host_stx->stx_rdev_minor, &target_stx->stx_rdev_minor); 7741 __put_user(host_stx->stx_dev_major, &target_stx->stx_dev_major); 7742 __put_user(host_stx->stx_dev_minor, &target_stx->stx_dev_minor); 7743 7744 unlock_user_struct(target_stx, target_addr, 1); 7745 7746 return 0; 7747 } 7748 #endif 7749 7750 static int do_sys_futex(int *uaddr, int op, int val, 7751 const struct timespec *timeout, int *uaddr2, 7752 int val3) 7753 { 7754 #if HOST_LONG_BITS == 64 7755 #if defined(__NR_futex) 7756 /* always a 64-bit time_t, it doesn't define _time64 version */ 7757 return sys_futex(uaddr, op, val, timeout, uaddr2, val3); 7758 7759 #endif 7760 #else /* HOST_LONG_BITS == 64 */ 7761 #if defined(__NR_futex_time64) 7762 if (sizeof(timeout->tv_sec) == 8) { 7763 /* _time64 function on 32bit arch */ 7764 return sys_futex_time64(uaddr, op, val, timeout, uaddr2, val3); 7765 } 7766 #endif 7767 #if defined(__NR_futex) 7768 /* old function on 32bit arch */ 7769 return sys_futex(uaddr, op, val, timeout, uaddr2, val3); 7770 #endif 7771 #endif /* HOST_LONG_BITS == 64 */ 7772 g_assert_not_reached(); 7773 } 7774 7775 static int do_safe_futex(int *uaddr, int op, int val, 7776 const struct timespec *timeout, int *uaddr2, 7777 int val3) 7778 { 7779 #if HOST_LONG_BITS == 64 7780 #if defined(__NR_futex) 7781 /* always a 64-bit time_t, it doesn't define _time64 version */ 7782 return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3)); 7783 #endif 7784 #else /* HOST_LONG_BITS == 64 */ 7785 #if defined(__NR_futex_time64) 7786 if (sizeof(timeout->tv_sec) == 8) { 7787 /* _time64 function on 32bit arch */ 7788 return get_errno(safe_futex_time64(uaddr, op, val, timeout, uaddr2, 7789 val3)); 7790 } 7791 #endif 7792 #if defined(__NR_futex) 7793 /* old function on 32bit arch */ 7794 return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3)); 7795 #endif 7796 #endif /* HOST_LONG_BITS == 64 */ 7797 return -TARGET_ENOSYS; 7798 } 7799 7800 /* ??? Using host futex calls even when target atomic operations 7801 are not really atomic probably breaks things. However implementing 7802 futexes locally would make futexes shared between multiple processes 7803 tricky. However they're probably useless because guest atomic 7804 operations won't work either. */ 7805 #if defined(TARGET_NR_futex) || defined(TARGET_NR_futex_time64) 7806 static int do_futex(CPUState *cpu, bool time64, target_ulong uaddr, 7807 int op, int val, target_ulong timeout, 7808 target_ulong uaddr2, int val3) 7809 { 7810 struct timespec ts, *pts = NULL; 7811 void *haddr2 = NULL; 7812 int base_op; 7813 7814 /* We assume FUTEX_* constants are the same on both host and target. */ 7815 #ifdef FUTEX_CMD_MASK 7816 base_op = op & FUTEX_CMD_MASK; 7817 #else 7818 base_op = op; 7819 #endif 7820 switch (base_op) { 7821 case FUTEX_WAIT: 7822 case FUTEX_WAIT_BITSET: 7823 val = tswap32(val); 7824 break; 7825 case FUTEX_WAIT_REQUEUE_PI: 7826 val = tswap32(val); 7827 haddr2 = g2h(cpu, uaddr2); 7828 break; 7829 case FUTEX_LOCK_PI: 7830 case FUTEX_LOCK_PI2: 7831 break; 7832 case FUTEX_WAKE: 7833 case FUTEX_WAKE_BITSET: 7834 case FUTEX_TRYLOCK_PI: 7835 case FUTEX_UNLOCK_PI: 7836 timeout = 0; 7837 break; 7838 case FUTEX_FD: 7839 val = target_to_host_signal(val); 7840 timeout = 0; 7841 break; 7842 case FUTEX_CMP_REQUEUE: 7843 case FUTEX_CMP_REQUEUE_PI: 7844 val3 = tswap32(val3); 7845 /* fall through */ 7846 case FUTEX_REQUEUE: 7847 case FUTEX_WAKE_OP: 7848 /* 7849 * For these, the 4th argument is not TIMEOUT, but VAL2. 7850 * But the prototype of do_safe_futex takes a pointer, so 7851 * insert casts to satisfy the compiler. We do not need 7852 * to tswap VAL2 since it's not compared to guest memory. 7853 */ 7854 pts = (struct timespec *)(uintptr_t)timeout; 7855 timeout = 0; 7856 haddr2 = g2h(cpu, uaddr2); 7857 break; 7858 default: 7859 return -TARGET_ENOSYS; 7860 } 7861 if (timeout) { 7862 pts = &ts; 7863 if (time64 7864 ? target_to_host_timespec64(pts, timeout) 7865 : target_to_host_timespec(pts, timeout)) { 7866 return -TARGET_EFAULT; 7867 } 7868 } 7869 return do_safe_futex(g2h(cpu, uaddr), op, val, pts, haddr2, val3); 7870 } 7871 #endif 7872 7873 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 7874 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname, 7875 abi_long handle, abi_long mount_id, 7876 abi_long flags) 7877 { 7878 struct file_handle *target_fh; 7879 struct file_handle *fh; 7880 int mid = 0; 7881 abi_long ret; 7882 char *name; 7883 unsigned int size, total_size; 7884 7885 if (get_user_s32(size, handle)) { 7886 return -TARGET_EFAULT; 7887 } 7888 7889 name = lock_user_string(pathname); 7890 if (!name) { 7891 return -TARGET_EFAULT; 7892 } 7893 7894 total_size = sizeof(struct file_handle) + size; 7895 target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0); 7896 if (!target_fh) { 7897 unlock_user(name, pathname, 0); 7898 return -TARGET_EFAULT; 7899 } 7900 7901 fh = g_malloc0(total_size); 7902 fh->handle_bytes = size; 7903 7904 ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags)); 7905 unlock_user(name, pathname, 0); 7906 7907 /* man name_to_handle_at(2): 7908 * Other than the use of the handle_bytes field, the caller should treat 7909 * the file_handle structure as an opaque data type 7910 */ 7911 7912 memcpy(target_fh, fh, total_size); 7913 target_fh->handle_bytes = tswap32(fh->handle_bytes); 7914 target_fh->handle_type = tswap32(fh->handle_type); 7915 g_free(fh); 7916 unlock_user(target_fh, handle, total_size); 7917 7918 if (put_user_s32(mid, mount_id)) { 7919 return -TARGET_EFAULT; 7920 } 7921 7922 return ret; 7923 7924 } 7925 #endif 7926 7927 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 7928 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle, 7929 abi_long flags) 7930 { 7931 struct file_handle *target_fh; 7932 struct file_handle *fh; 7933 unsigned int size, total_size; 7934 abi_long ret; 7935 7936 if (get_user_s32(size, handle)) { 7937 return -TARGET_EFAULT; 7938 } 7939 7940 total_size = sizeof(struct file_handle) + size; 7941 target_fh = lock_user(VERIFY_READ, handle, total_size, 1); 7942 if (!target_fh) { 7943 return -TARGET_EFAULT; 7944 } 7945 7946 fh = g_memdup(target_fh, total_size); 7947 fh->handle_bytes = size; 7948 fh->handle_type = tswap32(target_fh->handle_type); 7949 7950 ret = get_errno(open_by_handle_at(mount_fd, fh, 7951 target_to_host_bitmask(flags, fcntl_flags_tbl))); 7952 7953 g_free(fh); 7954 7955 unlock_user(target_fh, handle, total_size); 7956 7957 return ret; 7958 } 7959 #endif 7960 7961 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4) 7962 7963 static abi_long do_signalfd4(int fd, abi_long mask, int flags) 7964 { 7965 int host_flags; 7966 target_sigset_t *target_mask; 7967 sigset_t host_mask; 7968 abi_long ret; 7969 7970 if (flags & ~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC)) { 7971 return -TARGET_EINVAL; 7972 } 7973 if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) { 7974 return -TARGET_EFAULT; 7975 } 7976 7977 target_to_host_sigset(&host_mask, target_mask); 7978 7979 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl); 7980 7981 ret = get_errno(signalfd(fd, &host_mask, host_flags)); 7982 if (ret >= 0) { 7983 fd_trans_register(ret, &target_signalfd_trans); 7984 } 7985 7986 unlock_user_struct(target_mask, mask, 0); 7987 7988 return ret; 7989 } 7990 #endif 7991 7992 /* Map host to target signal numbers for the wait family of syscalls. 7993 Assume all other status bits are the same. */ 7994 int host_to_target_waitstatus(int status) 7995 { 7996 if (WIFSIGNALED(status)) { 7997 return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f); 7998 } 7999 if (WIFSTOPPED(status)) { 8000 return (host_to_target_signal(WSTOPSIG(status)) << 8) 8001 | (status & 0xff); 8002 } 8003 return status; 8004 } 8005 8006 static int open_self_cmdline(CPUArchState *cpu_env, int fd) 8007 { 8008 CPUState *cpu = env_cpu(cpu_env); 8009 struct linux_binprm *bprm = ((TaskState *)cpu->opaque)->bprm; 8010 int i; 8011 8012 for (i = 0; i < bprm->argc; i++) { 8013 size_t len = strlen(bprm->argv[i]) + 1; 8014 8015 if (write(fd, bprm->argv[i], len) != len) { 8016 return -1; 8017 } 8018 } 8019 8020 return 0; 8021 } 8022 8023 static int open_self_maps(CPUArchState *cpu_env, int fd) 8024 { 8025 CPUState *cpu = env_cpu(cpu_env); 8026 TaskState *ts = cpu->opaque; 8027 GSList *map_info = read_self_maps(); 8028 GSList *s; 8029 int count; 8030 8031 for (s = map_info; s; s = g_slist_next(s)) { 8032 MapInfo *e = (MapInfo *) s->data; 8033 8034 if (h2g_valid(e->start)) { 8035 unsigned long min = e->start; 8036 unsigned long max = e->end; 8037 int flags = page_get_flags(h2g(min)); 8038 const char *path; 8039 8040 max = h2g_valid(max - 1) ? 8041 max : (uintptr_t) g2h_untagged(GUEST_ADDR_MAX) + 1; 8042 8043 if (page_check_range(h2g(min), max - min, flags) == -1) { 8044 continue; 8045 } 8046 8047 #ifdef TARGET_HPPA 8048 if (h2g(max) == ts->info->stack_limit) { 8049 #else 8050 if (h2g(min) == ts->info->stack_limit) { 8051 #endif 8052 path = "[stack]"; 8053 } else { 8054 path = e->path; 8055 } 8056 8057 count = dprintf(fd, TARGET_ABI_FMT_ptr "-" TARGET_ABI_FMT_ptr 8058 " %c%c%c%c %08" PRIx64 " %s %"PRId64, 8059 h2g(min), h2g(max - 1) + 1, 8060 (flags & PAGE_READ) ? 'r' : '-', 8061 (flags & PAGE_WRITE_ORG) ? 'w' : '-', 8062 (flags & PAGE_EXEC) ? 'x' : '-', 8063 e->is_priv ? 'p' : 's', 8064 (uint64_t) e->offset, e->dev, e->inode); 8065 if (path) { 8066 dprintf(fd, "%*s%s\n", 73 - count, "", path); 8067 } else { 8068 dprintf(fd, "\n"); 8069 } 8070 } 8071 } 8072 8073 free_self_maps(map_info); 8074 8075 #ifdef TARGET_VSYSCALL_PAGE 8076 /* 8077 * We only support execution from the vsyscall page. 8078 * This is as if CONFIG_LEGACY_VSYSCALL_XONLY=y from v5.3. 8079 */ 8080 count = dprintf(fd, TARGET_FMT_lx "-" TARGET_FMT_lx 8081 " --xp 00000000 00:00 0", 8082 TARGET_VSYSCALL_PAGE, TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE); 8083 dprintf(fd, "%*s%s\n", 73 - count, "", "[vsyscall]"); 8084 #endif 8085 8086 return 0; 8087 } 8088 8089 static int open_self_stat(CPUArchState *cpu_env, int fd) 8090 { 8091 CPUState *cpu = env_cpu(cpu_env); 8092 TaskState *ts = cpu->opaque; 8093 g_autoptr(GString) buf = g_string_new(NULL); 8094 int i; 8095 8096 for (i = 0; i < 44; i++) { 8097 if (i == 0) { 8098 /* pid */ 8099 g_string_printf(buf, FMT_pid " ", getpid()); 8100 } else if (i == 1) { 8101 /* app name */ 8102 gchar *bin = g_strrstr(ts->bprm->argv[0], "/"); 8103 bin = bin ? bin + 1 : ts->bprm->argv[0]; 8104 g_string_printf(buf, "(%.15s) ", bin); 8105 } else if (i == 3) { 8106 /* ppid */ 8107 g_string_printf(buf, FMT_pid " ", getppid()); 8108 } else if (i == 21) { 8109 /* starttime */ 8110 g_string_printf(buf, "%" PRIu64 " ", ts->start_boottime); 8111 } else if (i == 27) { 8112 /* stack bottom */ 8113 g_string_printf(buf, TARGET_ABI_FMT_ld " ", ts->info->start_stack); 8114 } else { 8115 /* for the rest, there is MasterCard */ 8116 g_string_printf(buf, "0%c", i == 43 ? '\n' : ' '); 8117 } 8118 8119 if (write(fd, buf->str, buf->len) != buf->len) { 8120 return -1; 8121 } 8122 } 8123 8124 return 0; 8125 } 8126 8127 static int open_self_auxv(CPUArchState *cpu_env, int fd) 8128 { 8129 CPUState *cpu = env_cpu(cpu_env); 8130 TaskState *ts = cpu->opaque; 8131 abi_ulong auxv = ts->info->saved_auxv; 8132 abi_ulong len = ts->info->auxv_len; 8133 char *ptr; 8134 8135 /* 8136 * Auxiliary vector is stored in target process stack. 8137 * read in whole auxv vector and copy it to file 8138 */ 8139 ptr = lock_user(VERIFY_READ, auxv, len, 0); 8140 if (ptr != NULL) { 8141 while (len > 0) { 8142 ssize_t r; 8143 r = write(fd, ptr, len); 8144 if (r <= 0) { 8145 break; 8146 } 8147 len -= r; 8148 ptr += r; 8149 } 8150 lseek(fd, 0, SEEK_SET); 8151 unlock_user(ptr, auxv, len); 8152 } 8153 8154 return 0; 8155 } 8156 8157 static int is_proc_myself(const char *filename, const char *entry) 8158 { 8159 if (!strncmp(filename, "/proc/", strlen("/proc/"))) { 8160 filename += strlen("/proc/"); 8161 if (!strncmp(filename, "self/", strlen("self/"))) { 8162 filename += strlen("self/"); 8163 } else if (*filename >= '1' && *filename <= '9') { 8164 char myself[80]; 8165 snprintf(myself, sizeof(myself), "%d/", getpid()); 8166 if (!strncmp(filename, myself, strlen(myself))) { 8167 filename += strlen(myself); 8168 } else { 8169 return 0; 8170 } 8171 } else { 8172 return 0; 8173 } 8174 if (!strcmp(filename, entry)) { 8175 return 1; 8176 } 8177 } 8178 return 0; 8179 } 8180 8181 static void excp_dump_file(FILE *logfile, CPUArchState *env, 8182 const char *fmt, int code) 8183 { 8184 if (logfile) { 8185 CPUState *cs = env_cpu(env); 8186 8187 fprintf(logfile, fmt, code); 8188 fprintf(logfile, "Failing executable: %s\n", exec_path); 8189 cpu_dump_state(cs, logfile, 0); 8190 open_self_maps(env, fileno(logfile)); 8191 } 8192 } 8193 8194 void target_exception_dump(CPUArchState *env, const char *fmt, int code) 8195 { 8196 /* dump to console */ 8197 excp_dump_file(stderr, env, fmt, code); 8198 8199 /* dump to log file */ 8200 if (qemu_log_separate()) { 8201 FILE *logfile = qemu_log_trylock(); 8202 8203 excp_dump_file(logfile, env, fmt, code); 8204 qemu_log_unlock(logfile); 8205 } 8206 } 8207 8208 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN || \ 8209 defined(TARGET_SPARC) || defined(TARGET_M68K) || defined(TARGET_HPPA) 8210 static int is_proc(const char *filename, const char *entry) 8211 { 8212 return strcmp(filename, entry) == 0; 8213 } 8214 #endif 8215 8216 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 8217 static int open_net_route(CPUArchState *cpu_env, int fd) 8218 { 8219 FILE *fp; 8220 char *line = NULL; 8221 size_t len = 0; 8222 ssize_t read; 8223 8224 fp = fopen("/proc/net/route", "r"); 8225 if (fp == NULL) { 8226 return -1; 8227 } 8228 8229 /* read header */ 8230 8231 read = getline(&line, &len, fp); 8232 dprintf(fd, "%s", line); 8233 8234 /* read routes */ 8235 8236 while ((read = getline(&line, &len, fp)) != -1) { 8237 char iface[16]; 8238 uint32_t dest, gw, mask; 8239 unsigned int flags, refcnt, use, metric, mtu, window, irtt; 8240 int fields; 8241 8242 fields = sscanf(line, 8243 "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n", 8244 iface, &dest, &gw, &flags, &refcnt, &use, &metric, 8245 &mask, &mtu, &window, &irtt); 8246 if (fields != 11) { 8247 continue; 8248 } 8249 dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n", 8250 iface, tswap32(dest), tswap32(gw), flags, refcnt, use, 8251 metric, tswap32(mask), mtu, window, irtt); 8252 } 8253 8254 free(line); 8255 fclose(fp); 8256 8257 return 0; 8258 } 8259 #endif 8260 8261 #if defined(TARGET_SPARC) 8262 static int open_cpuinfo(CPUArchState *cpu_env, int fd) 8263 { 8264 dprintf(fd, "type\t\t: sun4u\n"); 8265 return 0; 8266 } 8267 #endif 8268 8269 #if defined(TARGET_HPPA) 8270 static int open_cpuinfo(CPUArchState *cpu_env, int fd) 8271 { 8272 dprintf(fd, "cpu family\t: PA-RISC 1.1e\n"); 8273 dprintf(fd, "cpu\t\t: PA7300LC (PCX-L2)\n"); 8274 dprintf(fd, "capabilities\t: os32\n"); 8275 dprintf(fd, "model\t\t: 9000/778/B160L\n"); 8276 dprintf(fd, "model name\t: Merlin L2 160 QEMU (9000/778/B160L)\n"); 8277 return 0; 8278 } 8279 #endif 8280 8281 #if defined(TARGET_M68K) 8282 static int open_hardware(CPUArchState *cpu_env, int fd) 8283 { 8284 dprintf(fd, "Model:\t\tqemu-m68k\n"); 8285 return 0; 8286 } 8287 #endif 8288 8289 static int do_openat(CPUArchState *cpu_env, int dirfd, const char *pathname, int flags, mode_t mode) 8290 { 8291 struct fake_open { 8292 const char *filename; 8293 int (*fill)(CPUArchState *cpu_env, int fd); 8294 int (*cmp)(const char *s1, const char *s2); 8295 }; 8296 const struct fake_open *fake_open; 8297 static const struct fake_open fakes[] = { 8298 { "maps", open_self_maps, is_proc_myself }, 8299 { "stat", open_self_stat, is_proc_myself }, 8300 { "auxv", open_self_auxv, is_proc_myself }, 8301 { "cmdline", open_self_cmdline, is_proc_myself }, 8302 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 8303 { "/proc/net/route", open_net_route, is_proc }, 8304 #endif 8305 #if defined(TARGET_SPARC) || defined(TARGET_HPPA) 8306 { "/proc/cpuinfo", open_cpuinfo, is_proc }, 8307 #endif 8308 #if defined(TARGET_M68K) 8309 { "/proc/hardware", open_hardware, is_proc }, 8310 #endif 8311 { NULL, NULL, NULL } 8312 }; 8313 8314 if (is_proc_myself(pathname, "exe")) { 8315 return safe_openat(dirfd, exec_path, flags, mode); 8316 } 8317 8318 for (fake_open = fakes; fake_open->filename; fake_open++) { 8319 if (fake_open->cmp(pathname, fake_open->filename)) { 8320 break; 8321 } 8322 } 8323 8324 if (fake_open->filename) { 8325 const char *tmpdir; 8326 char filename[PATH_MAX]; 8327 int fd, r; 8328 8329 fd = memfd_create("qemu-open", 0); 8330 if (fd < 0) { 8331 if (errno != ENOSYS) { 8332 return fd; 8333 } 8334 /* create temporary file to map stat to */ 8335 tmpdir = getenv("TMPDIR"); 8336 if (!tmpdir) 8337 tmpdir = "/tmp"; 8338 snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir); 8339 fd = mkstemp(filename); 8340 if (fd < 0) { 8341 return fd; 8342 } 8343 unlink(filename); 8344 } 8345 8346 if ((r = fake_open->fill(cpu_env, fd))) { 8347 int e = errno; 8348 close(fd); 8349 errno = e; 8350 return r; 8351 } 8352 lseek(fd, 0, SEEK_SET); 8353 8354 return fd; 8355 } 8356 8357 return safe_openat(dirfd, path(pathname), flags, mode); 8358 } 8359 8360 #define TIMER_MAGIC 0x0caf0000 8361 #define TIMER_MAGIC_MASK 0xffff0000 8362 8363 /* Convert QEMU provided timer ID back to internal 16bit index format */ 8364 static target_timer_t get_timer_id(abi_long arg) 8365 { 8366 target_timer_t timerid = arg; 8367 8368 if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) { 8369 return -TARGET_EINVAL; 8370 } 8371 8372 timerid &= 0xffff; 8373 8374 if (timerid >= ARRAY_SIZE(g_posix_timers)) { 8375 return -TARGET_EINVAL; 8376 } 8377 8378 return timerid; 8379 } 8380 8381 static int target_to_host_cpu_mask(unsigned long *host_mask, 8382 size_t host_size, 8383 abi_ulong target_addr, 8384 size_t target_size) 8385 { 8386 unsigned target_bits = sizeof(abi_ulong) * 8; 8387 unsigned host_bits = sizeof(*host_mask) * 8; 8388 abi_ulong *target_mask; 8389 unsigned i, j; 8390 8391 assert(host_size >= target_size); 8392 8393 target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1); 8394 if (!target_mask) { 8395 return -TARGET_EFAULT; 8396 } 8397 memset(host_mask, 0, host_size); 8398 8399 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) { 8400 unsigned bit = i * target_bits; 8401 abi_ulong val; 8402 8403 __get_user(val, &target_mask[i]); 8404 for (j = 0; j < target_bits; j++, bit++) { 8405 if (val & (1UL << j)) { 8406 host_mask[bit / host_bits] |= 1UL << (bit % host_bits); 8407 } 8408 } 8409 } 8410 8411 unlock_user(target_mask, target_addr, 0); 8412 return 0; 8413 } 8414 8415 static int host_to_target_cpu_mask(const unsigned long *host_mask, 8416 size_t host_size, 8417 abi_ulong target_addr, 8418 size_t target_size) 8419 { 8420 unsigned target_bits = sizeof(abi_ulong) * 8; 8421 unsigned host_bits = sizeof(*host_mask) * 8; 8422 abi_ulong *target_mask; 8423 unsigned i, j; 8424 8425 assert(host_size >= target_size); 8426 8427 target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0); 8428 if (!target_mask) { 8429 return -TARGET_EFAULT; 8430 } 8431 8432 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) { 8433 unsigned bit = i * target_bits; 8434 abi_ulong val = 0; 8435 8436 for (j = 0; j < target_bits; j++, bit++) { 8437 if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) { 8438 val |= 1UL << j; 8439 } 8440 } 8441 __put_user(val, &target_mask[i]); 8442 } 8443 8444 unlock_user(target_mask, target_addr, target_size); 8445 return 0; 8446 } 8447 8448 #ifdef TARGET_NR_getdents 8449 static int do_getdents(abi_long dirfd, abi_long arg2, abi_long count) 8450 { 8451 g_autofree void *hdirp = NULL; 8452 void *tdirp; 8453 int hlen, hoff, toff; 8454 int hreclen, treclen; 8455 off64_t prev_diroff = 0; 8456 8457 hdirp = g_try_malloc(count); 8458 if (!hdirp) { 8459 return -TARGET_ENOMEM; 8460 } 8461 8462 #ifdef EMULATE_GETDENTS_WITH_GETDENTS 8463 hlen = sys_getdents(dirfd, hdirp, count); 8464 #else 8465 hlen = sys_getdents64(dirfd, hdirp, count); 8466 #endif 8467 8468 hlen = get_errno(hlen); 8469 if (is_error(hlen)) { 8470 return hlen; 8471 } 8472 8473 tdirp = lock_user(VERIFY_WRITE, arg2, count, 0); 8474 if (!tdirp) { 8475 return -TARGET_EFAULT; 8476 } 8477 8478 for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) { 8479 #ifdef EMULATE_GETDENTS_WITH_GETDENTS 8480 struct linux_dirent *hde = hdirp + hoff; 8481 #else 8482 struct linux_dirent64 *hde = hdirp + hoff; 8483 #endif 8484 struct target_dirent *tde = tdirp + toff; 8485 int namelen; 8486 uint8_t type; 8487 8488 namelen = strlen(hde->d_name); 8489 hreclen = hde->d_reclen; 8490 treclen = offsetof(struct target_dirent, d_name) + namelen + 2; 8491 treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent)); 8492 8493 if (toff + treclen > count) { 8494 /* 8495 * If the host struct is smaller than the target struct, or 8496 * requires less alignment and thus packs into less space, 8497 * then the host can return more entries than we can pass 8498 * on to the guest. 8499 */ 8500 if (toff == 0) { 8501 toff = -TARGET_EINVAL; /* result buffer is too small */ 8502 break; 8503 } 8504 /* 8505 * Return what we have, resetting the file pointer to the 8506 * location of the first record not returned. 8507 */ 8508 lseek64(dirfd, prev_diroff, SEEK_SET); 8509 break; 8510 } 8511 8512 prev_diroff = hde->d_off; 8513 tde->d_ino = tswapal(hde->d_ino); 8514 tde->d_off = tswapal(hde->d_off); 8515 tde->d_reclen = tswap16(treclen); 8516 memcpy(tde->d_name, hde->d_name, namelen + 1); 8517 8518 /* 8519 * The getdents type is in what was formerly a padding byte at the 8520 * end of the structure. 8521 */ 8522 #ifdef EMULATE_GETDENTS_WITH_GETDENTS 8523 type = *((uint8_t *)hde + hreclen - 1); 8524 #else 8525 type = hde->d_type; 8526 #endif 8527 *((uint8_t *)tde + treclen - 1) = type; 8528 } 8529 8530 unlock_user(tdirp, arg2, toff); 8531 return toff; 8532 } 8533 #endif /* TARGET_NR_getdents */ 8534 8535 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64) 8536 static int do_getdents64(abi_long dirfd, abi_long arg2, abi_long count) 8537 { 8538 g_autofree void *hdirp = NULL; 8539 void *tdirp; 8540 int hlen, hoff, toff; 8541 int hreclen, treclen; 8542 off64_t prev_diroff = 0; 8543 8544 hdirp = g_try_malloc(count); 8545 if (!hdirp) { 8546 return -TARGET_ENOMEM; 8547 } 8548 8549 hlen = get_errno(sys_getdents64(dirfd, hdirp, count)); 8550 if (is_error(hlen)) { 8551 return hlen; 8552 } 8553 8554 tdirp = lock_user(VERIFY_WRITE, arg2, count, 0); 8555 if (!tdirp) { 8556 return -TARGET_EFAULT; 8557 } 8558 8559 for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) { 8560 struct linux_dirent64 *hde = hdirp + hoff; 8561 struct target_dirent64 *tde = tdirp + toff; 8562 int namelen; 8563 8564 namelen = strlen(hde->d_name) + 1; 8565 hreclen = hde->d_reclen; 8566 treclen = offsetof(struct target_dirent64, d_name) + namelen; 8567 treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent64)); 8568 8569 if (toff + treclen > count) { 8570 /* 8571 * If the host struct is smaller than the target struct, or 8572 * requires less alignment and thus packs into less space, 8573 * then the host can return more entries than we can pass 8574 * on to the guest. 8575 */ 8576 if (toff == 0) { 8577 toff = -TARGET_EINVAL; /* result buffer is too small */ 8578 break; 8579 } 8580 /* 8581 * Return what we have, resetting the file pointer to the 8582 * location of the first record not returned. 8583 */ 8584 lseek64(dirfd, prev_diroff, SEEK_SET); 8585 break; 8586 } 8587 8588 prev_diroff = hde->d_off; 8589 tde->d_ino = tswap64(hde->d_ino); 8590 tde->d_off = tswap64(hde->d_off); 8591 tde->d_reclen = tswap16(treclen); 8592 tde->d_type = hde->d_type; 8593 memcpy(tde->d_name, hde->d_name, namelen); 8594 } 8595 8596 unlock_user(tdirp, arg2, toff); 8597 return toff; 8598 } 8599 #endif /* TARGET_NR_getdents64 */ 8600 8601 #if defined(TARGET_NR_pivot_root) && defined(__NR_pivot_root) 8602 _syscall2(int, pivot_root, const char *, new_root, const char *, put_old) 8603 #endif 8604 8605 /* This is an internal helper for do_syscall so that it is easier 8606 * to have a single return point, so that actions, such as logging 8607 * of syscall results, can be performed. 8608 * All errnos that do_syscall() returns must be -TARGET_<errcode>. 8609 */ 8610 static abi_long do_syscall1(CPUArchState *cpu_env, int num, abi_long arg1, 8611 abi_long arg2, abi_long arg3, abi_long arg4, 8612 abi_long arg5, abi_long arg6, abi_long arg7, 8613 abi_long arg8) 8614 { 8615 CPUState *cpu = env_cpu(cpu_env); 8616 abi_long ret; 8617 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \ 8618 || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \ 8619 || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \ 8620 || defined(TARGET_NR_statx) 8621 struct stat st; 8622 #endif 8623 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \ 8624 || defined(TARGET_NR_fstatfs) 8625 struct statfs stfs; 8626 #endif 8627 void *p; 8628 8629 switch(num) { 8630 case TARGET_NR_exit: 8631 /* In old applications this may be used to implement _exit(2). 8632 However in threaded applications it is used for thread termination, 8633 and _exit_group is used for application termination. 8634 Do thread termination if we have more then one thread. */ 8635 8636 if (block_signals()) { 8637 return -QEMU_ERESTARTSYS; 8638 } 8639 8640 pthread_mutex_lock(&clone_lock); 8641 8642 if (CPU_NEXT(first_cpu)) { 8643 TaskState *ts = cpu->opaque; 8644 8645 object_property_set_bool(OBJECT(cpu), "realized", false, NULL); 8646 object_unref(OBJECT(cpu)); 8647 /* 8648 * At this point the CPU should be unrealized and removed 8649 * from cpu lists. We can clean-up the rest of the thread 8650 * data without the lock held. 8651 */ 8652 8653 pthread_mutex_unlock(&clone_lock); 8654 8655 if (ts->child_tidptr) { 8656 put_user_u32(0, ts->child_tidptr); 8657 do_sys_futex(g2h(cpu, ts->child_tidptr), 8658 FUTEX_WAKE, INT_MAX, NULL, NULL, 0); 8659 } 8660 thread_cpu = NULL; 8661 g_free(ts); 8662 rcu_unregister_thread(); 8663 pthread_exit(NULL); 8664 } 8665 8666 pthread_mutex_unlock(&clone_lock); 8667 preexit_cleanup(cpu_env, arg1); 8668 _exit(arg1); 8669 return 0; /* avoid warning */ 8670 case TARGET_NR_read: 8671 if (arg2 == 0 && arg3 == 0) { 8672 return get_errno(safe_read(arg1, 0, 0)); 8673 } else { 8674 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0))) 8675 return -TARGET_EFAULT; 8676 ret = get_errno(safe_read(arg1, p, arg3)); 8677 if (ret >= 0 && 8678 fd_trans_host_to_target_data(arg1)) { 8679 ret = fd_trans_host_to_target_data(arg1)(p, ret); 8680 } 8681 unlock_user(p, arg2, ret); 8682 } 8683 return ret; 8684 case TARGET_NR_write: 8685 if (arg2 == 0 && arg3 == 0) { 8686 return get_errno(safe_write(arg1, 0, 0)); 8687 } 8688 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1))) 8689 return -TARGET_EFAULT; 8690 if (fd_trans_target_to_host_data(arg1)) { 8691 void *copy = g_malloc(arg3); 8692 memcpy(copy, p, arg3); 8693 ret = fd_trans_target_to_host_data(arg1)(copy, arg3); 8694 if (ret >= 0) { 8695 ret = get_errno(safe_write(arg1, copy, ret)); 8696 } 8697 g_free(copy); 8698 } else { 8699 ret = get_errno(safe_write(arg1, p, arg3)); 8700 } 8701 unlock_user(p, arg2, 0); 8702 return ret; 8703 8704 #ifdef TARGET_NR_open 8705 case TARGET_NR_open: 8706 if (!(p = lock_user_string(arg1))) 8707 return -TARGET_EFAULT; 8708 ret = get_errno(do_openat(cpu_env, AT_FDCWD, p, 8709 target_to_host_bitmask(arg2, fcntl_flags_tbl), 8710 arg3)); 8711 fd_trans_unregister(ret); 8712 unlock_user(p, arg1, 0); 8713 return ret; 8714 #endif 8715 case TARGET_NR_openat: 8716 if (!(p = lock_user_string(arg2))) 8717 return -TARGET_EFAULT; 8718 ret = get_errno(do_openat(cpu_env, arg1, p, 8719 target_to_host_bitmask(arg3, fcntl_flags_tbl), 8720 arg4)); 8721 fd_trans_unregister(ret); 8722 unlock_user(p, arg2, 0); 8723 return ret; 8724 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 8725 case TARGET_NR_name_to_handle_at: 8726 ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5); 8727 return ret; 8728 #endif 8729 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 8730 case TARGET_NR_open_by_handle_at: 8731 ret = do_open_by_handle_at(arg1, arg2, arg3); 8732 fd_trans_unregister(ret); 8733 return ret; 8734 #endif 8735 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open) 8736 case TARGET_NR_pidfd_open: 8737 return get_errno(pidfd_open(arg1, arg2)); 8738 #endif 8739 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal) 8740 case TARGET_NR_pidfd_send_signal: 8741 { 8742 siginfo_t uinfo, *puinfo; 8743 8744 if (arg3) { 8745 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1); 8746 if (!p) { 8747 return -TARGET_EFAULT; 8748 } 8749 target_to_host_siginfo(&uinfo, p); 8750 unlock_user(p, arg3, 0); 8751 puinfo = &uinfo; 8752 } else { 8753 puinfo = NULL; 8754 } 8755 ret = get_errno(pidfd_send_signal(arg1, target_to_host_signal(arg2), 8756 puinfo, arg4)); 8757 } 8758 return ret; 8759 #endif 8760 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd) 8761 case TARGET_NR_pidfd_getfd: 8762 return get_errno(pidfd_getfd(arg1, arg2, arg3)); 8763 #endif 8764 case TARGET_NR_close: 8765 fd_trans_unregister(arg1); 8766 return get_errno(close(arg1)); 8767 #if defined(__NR_close_range) && defined(TARGET_NR_close_range) 8768 case TARGET_NR_close_range: 8769 ret = get_errno(sys_close_range(arg1, arg2, arg3)); 8770 if (ret == 0 && !(arg3 & CLOSE_RANGE_CLOEXEC)) { 8771 abi_long fd, maxfd; 8772 maxfd = MIN(arg2, target_fd_max); 8773 for (fd = arg1; fd < maxfd; fd++) { 8774 fd_trans_unregister(fd); 8775 } 8776 } 8777 return ret; 8778 #endif 8779 8780 case TARGET_NR_brk: 8781 return do_brk(arg1); 8782 #ifdef TARGET_NR_fork 8783 case TARGET_NR_fork: 8784 return get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0)); 8785 #endif 8786 #ifdef TARGET_NR_waitpid 8787 case TARGET_NR_waitpid: 8788 { 8789 int status; 8790 ret = get_errno(safe_wait4(arg1, &status, arg3, 0)); 8791 if (!is_error(ret) && arg2 && ret 8792 && put_user_s32(host_to_target_waitstatus(status), arg2)) 8793 return -TARGET_EFAULT; 8794 } 8795 return ret; 8796 #endif 8797 #ifdef TARGET_NR_waitid 8798 case TARGET_NR_waitid: 8799 { 8800 siginfo_t info; 8801 info.si_pid = 0; 8802 ret = get_errno(safe_waitid(arg1, arg2, &info, arg4, NULL)); 8803 if (!is_error(ret) && arg3 && info.si_pid != 0) { 8804 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0))) 8805 return -TARGET_EFAULT; 8806 host_to_target_siginfo(p, &info); 8807 unlock_user(p, arg3, sizeof(target_siginfo_t)); 8808 } 8809 } 8810 return ret; 8811 #endif 8812 #ifdef TARGET_NR_creat /* not on alpha */ 8813 case TARGET_NR_creat: 8814 if (!(p = lock_user_string(arg1))) 8815 return -TARGET_EFAULT; 8816 ret = get_errno(creat(p, arg2)); 8817 fd_trans_unregister(ret); 8818 unlock_user(p, arg1, 0); 8819 return ret; 8820 #endif 8821 #ifdef TARGET_NR_link 8822 case TARGET_NR_link: 8823 { 8824 void * p2; 8825 p = lock_user_string(arg1); 8826 p2 = lock_user_string(arg2); 8827 if (!p || !p2) 8828 ret = -TARGET_EFAULT; 8829 else 8830 ret = get_errno(link(p, p2)); 8831 unlock_user(p2, arg2, 0); 8832 unlock_user(p, arg1, 0); 8833 } 8834 return ret; 8835 #endif 8836 #if defined(TARGET_NR_linkat) 8837 case TARGET_NR_linkat: 8838 { 8839 void * p2 = NULL; 8840 if (!arg2 || !arg4) 8841 return -TARGET_EFAULT; 8842 p = lock_user_string(arg2); 8843 p2 = lock_user_string(arg4); 8844 if (!p || !p2) 8845 ret = -TARGET_EFAULT; 8846 else 8847 ret = get_errno(linkat(arg1, p, arg3, p2, arg5)); 8848 unlock_user(p, arg2, 0); 8849 unlock_user(p2, arg4, 0); 8850 } 8851 return ret; 8852 #endif 8853 #ifdef TARGET_NR_unlink 8854 case TARGET_NR_unlink: 8855 if (!(p = lock_user_string(arg1))) 8856 return -TARGET_EFAULT; 8857 ret = get_errno(unlink(p)); 8858 unlock_user(p, arg1, 0); 8859 return ret; 8860 #endif 8861 #if defined(TARGET_NR_unlinkat) 8862 case TARGET_NR_unlinkat: 8863 if (!(p = lock_user_string(arg2))) 8864 return -TARGET_EFAULT; 8865 ret = get_errno(unlinkat(arg1, p, arg3)); 8866 unlock_user(p, arg2, 0); 8867 return ret; 8868 #endif 8869 case TARGET_NR_execve: 8870 { 8871 char **argp, **envp; 8872 int argc, envc; 8873 abi_ulong gp; 8874 abi_ulong guest_argp; 8875 abi_ulong guest_envp; 8876 abi_ulong addr; 8877 char **q; 8878 8879 argc = 0; 8880 guest_argp = arg2; 8881 for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) { 8882 if (get_user_ual(addr, gp)) 8883 return -TARGET_EFAULT; 8884 if (!addr) 8885 break; 8886 argc++; 8887 } 8888 envc = 0; 8889 guest_envp = arg3; 8890 for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) { 8891 if (get_user_ual(addr, gp)) 8892 return -TARGET_EFAULT; 8893 if (!addr) 8894 break; 8895 envc++; 8896 } 8897 8898 argp = g_new0(char *, argc + 1); 8899 envp = g_new0(char *, envc + 1); 8900 8901 for (gp = guest_argp, q = argp; gp; 8902 gp += sizeof(abi_ulong), q++) { 8903 if (get_user_ual(addr, gp)) 8904 goto execve_efault; 8905 if (!addr) 8906 break; 8907 if (!(*q = lock_user_string(addr))) 8908 goto execve_efault; 8909 } 8910 *q = NULL; 8911 8912 for (gp = guest_envp, q = envp; gp; 8913 gp += sizeof(abi_ulong), q++) { 8914 if (get_user_ual(addr, gp)) 8915 goto execve_efault; 8916 if (!addr) 8917 break; 8918 if (!(*q = lock_user_string(addr))) 8919 goto execve_efault; 8920 } 8921 *q = NULL; 8922 8923 if (!(p = lock_user_string(arg1))) 8924 goto execve_efault; 8925 /* Although execve() is not an interruptible syscall it is 8926 * a special case where we must use the safe_syscall wrapper: 8927 * if we allow a signal to happen before we make the host 8928 * syscall then we will 'lose' it, because at the point of 8929 * execve the process leaves QEMU's control. So we use the 8930 * safe syscall wrapper to ensure that we either take the 8931 * signal as a guest signal, or else it does not happen 8932 * before the execve completes and makes it the other 8933 * program's problem. 8934 */ 8935 if (is_proc_myself(p, "exe")) { 8936 ret = get_errno(safe_execve(exec_path, argp, envp)); 8937 } else { 8938 ret = get_errno(safe_execve(p, argp, envp)); 8939 } 8940 unlock_user(p, arg1, 0); 8941 8942 goto execve_end; 8943 8944 execve_efault: 8945 ret = -TARGET_EFAULT; 8946 8947 execve_end: 8948 for (gp = guest_argp, q = argp; *q; 8949 gp += sizeof(abi_ulong), q++) { 8950 if (get_user_ual(addr, gp) 8951 || !addr) 8952 break; 8953 unlock_user(*q, addr, 0); 8954 } 8955 for (gp = guest_envp, q = envp; *q; 8956 gp += sizeof(abi_ulong), q++) { 8957 if (get_user_ual(addr, gp) 8958 || !addr) 8959 break; 8960 unlock_user(*q, addr, 0); 8961 } 8962 8963 g_free(argp); 8964 g_free(envp); 8965 } 8966 return ret; 8967 case TARGET_NR_chdir: 8968 if (!(p = lock_user_string(arg1))) 8969 return -TARGET_EFAULT; 8970 ret = get_errno(chdir(p)); 8971 unlock_user(p, arg1, 0); 8972 return ret; 8973 #ifdef TARGET_NR_time 8974 case TARGET_NR_time: 8975 { 8976 time_t host_time; 8977 ret = get_errno(time(&host_time)); 8978 if (!is_error(ret) 8979 && arg1 8980 && put_user_sal(host_time, arg1)) 8981 return -TARGET_EFAULT; 8982 } 8983 return ret; 8984 #endif 8985 #ifdef TARGET_NR_mknod 8986 case TARGET_NR_mknod: 8987 if (!(p = lock_user_string(arg1))) 8988 return -TARGET_EFAULT; 8989 ret = get_errno(mknod(p, arg2, arg3)); 8990 unlock_user(p, arg1, 0); 8991 return ret; 8992 #endif 8993 #if defined(TARGET_NR_mknodat) 8994 case TARGET_NR_mknodat: 8995 if (!(p = lock_user_string(arg2))) 8996 return -TARGET_EFAULT; 8997 ret = get_errno(mknodat(arg1, p, arg3, arg4)); 8998 unlock_user(p, arg2, 0); 8999 return ret; 9000 #endif 9001 #ifdef TARGET_NR_chmod 9002 case TARGET_NR_chmod: 9003 if (!(p = lock_user_string(arg1))) 9004 return -TARGET_EFAULT; 9005 ret = get_errno(chmod(p, arg2)); 9006 unlock_user(p, arg1, 0); 9007 return ret; 9008 #endif 9009 #ifdef TARGET_NR_lseek 9010 case TARGET_NR_lseek: 9011 return get_errno(lseek(arg1, arg2, arg3)); 9012 #endif 9013 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA) 9014 /* Alpha specific */ 9015 case TARGET_NR_getxpid: 9016 cpu_env->ir[IR_A4] = getppid(); 9017 return get_errno(getpid()); 9018 #endif 9019 #ifdef TARGET_NR_getpid 9020 case TARGET_NR_getpid: 9021 return get_errno(getpid()); 9022 #endif 9023 case TARGET_NR_mount: 9024 { 9025 /* need to look at the data field */ 9026 void *p2, *p3; 9027 9028 if (arg1) { 9029 p = lock_user_string(arg1); 9030 if (!p) { 9031 return -TARGET_EFAULT; 9032 } 9033 } else { 9034 p = NULL; 9035 } 9036 9037 p2 = lock_user_string(arg2); 9038 if (!p2) { 9039 if (arg1) { 9040 unlock_user(p, arg1, 0); 9041 } 9042 return -TARGET_EFAULT; 9043 } 9044 9045 if (arg3) { 9046 p3 = lock_user_string(arg3); 9047 if (!p3) { 9048 if (arg1) { 9049 unlock_user(p, arg1, 0); 9050 } 9051 unlock_user(p2, arg2, 0); 9052 return -TARGET_EFAULT; 9053 } 9054 } else { 9055 p3 = NULL; 9056 } 9057 9058 /* FIXME - arg5 should be locked, but it isn't clear how to 9059 * do that since it's not guaranteed to be a NULL-terminated 9060 * string. 9061 */ 9062 if (!arg5) { 9063 ret = mount(p, p2, p3, (unsigned long)arg4, NULL); 9064 } else { 9065 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(cpu, arg5)); 9066 } 9067 ret = get_errno(ret); 9068 9069 if (arg1) { 9070 unlock_user(p, arg1, 0); 9071 } 9072 unlock_user(p2, arg2, 0); 9073 if (arg3) { 9074 unlock_user(p3, arg3, 0); 9075 } 9076 } 9077 return ret; 9078 #if defined(TARGET_NR_umount) || defined(TARGET_NR_oldumount) 9079 #if defined(TARGET_NR_umount) 9080 case TARGET_NR_umount: 9081 #endif 9082 #if defined(TARGET_NR_oldumount) 9083 case TARGET_NR_oldumount: 9084 #endif 9085 if (!(p = lock_user_string(arg1))) 9086 return -TARGET_EFAULT; 9087 ret = get_errno(umount(p)); 9088 unlock_user(p, arg1, 0); 9089 return ret; 9090 #endif 9091 #ifdef TARGET_NR_stime /* not on alpha */ 9092 case TARGET_NR_stime: 9093 { 9094 struct timespec ts; 9095 ts.tv_nsec = 0; 9096 if (get_user_sal(ts.tv_sec, arg1)) { 9097 return -TARGET_EFAULT; 9098 } 9099 return get_errno(clock_settime(CLOCK_REALTIME, &ts)); 9100 } 9101 #endif 9102 #ifdef TARGET_NR_alarm /* not on alpha */ 9103 case TARGET_NR_alarm: 9104 return alarm(arg1); 9105 #endif 9106 #ifdef TARGET_NR_pause /* not on alpha */ 9107 case TARGET_NR_pause: 9108 if (!block_signals()) { 9109 sigsuspend(&((TaskState *)cpu->opaque)->signal_mask); 9110 } 9111 return -TARGET_EINTR; 9112 #endif 9113 #ifdef TARGET_NR_utime 9114 case TARGET_NR_utime: 9115 { 9116 struct utimbuf tbuf, *host_tbuf; 9117 struct target_utimbuf *target_tbuf; 9118 if (arg2) { 9119 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1)) 9120 return -TARGET_EFAULT; 9121 tbuf.actime = tswapal(target_tbuf->actime); 9122 tbuf.modtime = tswapal(target_tbuf->modtime); 9123 unlock_user_struct(target_tbuf, arg2, 0); 9124 host_tbuf = &tbuf; 9125 } else { 9126 host_tbuf = NULL; 9127 } 9128 if (!(p = lock_user_string(arg1))) 9129 return -TARGET_EFAULT; 9130 ret = get_errno(utime(p, host_tbuf)); 9131 unlock_user(p, arg1, 0); 9132 } 9133 return ret; 9134 #endif 9135 #ifdef TARGET_NR_utimes 9136 case TARGET_NR_utimes: 9137 { 9138 struct timeval *tvp, tv[2]; 9139 if (arg2) { 9140 if (copy_from_user_timeval(&tv[0], arg2) 9141 || copy_from_user_timeval(&tv[1], 9142 arg2 + sizeof(struct target_timeval))) 9143 return -TARGET_EFAULT; 9144 tvp = tv; 9145 } else { 9146 tvp = NULL; 9147 } 9148 if (!(p = lock_user_string(arg1))) 9149 return -TARGET_EFAULT; 9150 ret = get_errno(utimes(p, tvp)); 9151 unlock_user(p, arg1, 0); 9152 } 9153 return ret; 9154 #endif 9155 #if defined(TARGET_NR_futimesat) 9156 case TARGET_NR_futimesat: 9157 { 9158 struct timeval *tvp, tv[2]; 9159 if (arg3) { 9160 if (copy_from_user_timeval(&tv[0], arg3) 9161 || copy_from_user_timeval(&tv[1], 9162 arg3 + sizeof(struct target_timeval))) 9163 return -TARGET_EFAULT; 9164 tvp = tv; 9165 } else { 9166 tvp = NULL; 9167 } 9168 if (!(p = lock_user_string(arg2))) { 9169 return -TARGET_EFAULT; 9170 } 9171 ret = get_errno(futimesat(arg1, path(p), tvp)); 9172 unlock_user(p, arg2, 0); 9173 } 9174 return ret; 9175 #endif 9176 #ifdef TARGET_NR_access 9177 case TARGET_NR_access: 9178 if (!(p = lock_user_string(arg1))) { 9179 return -TARGET_EFAULT; 9180 } 9181 ret = get_errno(access(path(p), arg2)); 9182 unlock_user(p, arg1, 0); 9183 return ret; 9184 #endif 9185 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat) 9186 case TARGET_NR_faccessat: 9187 if (!(p = lock_user_string(arg2))) { 9188 return -TARGET_EFAULT; 9189 } 9190 ret = get_errno(faccessat(arg1, p, arg3, 0)); 9191 unlock_user(p, arg2, 0); 9192 return ret; 9193 #endif 9194 #if defined(TARGET_NR_faccessat2) 9195 case TARGET_NR_faccessat2: 9196 if (!(p = lock_user_string(arg2))) { 9197 return -TARGET_EFAULT; 9198 } 9199 ret = get_errno(faccessat(arg1, p, arg3, arg4)); 9200 unlock_user(p, arg2, 0); 9201 return ret; 9202 #endif 9203 #ifdef TARGET_NR_nice /* not on alpha */ 9204 case TARGET_NR_nice: 9205 return get_errno(nice(arg1)); 9206 #endif 9207 case TARGET_NR_sync: 9208 sync(); 9209 return 0; 9210 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS) 9211 case TARGET_NR_syncfs: 9212 return get_errno(syncfs(arg1)); 9213 #endif 9214 case TARGET_NR_kill: 9215 return get_errno(safe_kill(arg1, target_to_host_signal(arg2))); 9216 #ifdef TARGET_NR_rename 9217 case TARGET_NR_rename: 9218 { 9219 void *p2; 9220 p = lock_user_string(arg1); 9221 p2 = lock_user_string(arg2); 9222 if (!p || !p2) 9223 ret = -TARGET_EFAULT; 9224 else 9225 ret = get_errno(rename(p, p2)); 9226 unlock_user(p2, arg2, 0); 9227 unlock_user(p, arg1, 0); 9228 } 9229 return ret; 9230 #endif 9231 #if defined(TARGET_NR_renameat) 9232 case TARGET_NR_renameat: 9233 { 9234 void *p2; 9235 p = lock_user_string(arg2); 9236 p2 = lock_user_string(arg4); 9237 if (!p || !p2) 9238 ret = -TARGET_EFAULT; 9239 else 9240 ret = get_errno(renameat(arg1, p, arg3, p2)); 9241 unlock_user(p2, arg4, 0); 9242 unlock_user(p, arg2, 0); 9243 } 9244 return ret; 9245 #endif 9246 #if defined(TARGET_NR_renameat2) 9247 case TARGET_NR_renameat2: 9248 { 9249 void *p2; 9250 p = lock_user_string(arg2); 9251 p2 = lock_user_string(arg4); 9252 if (!p || !p2) { 9253 ret = -TARGET_EFAULT; 9254 } else { 9255 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5)); 9256 } 9257 unlock_user(p2, arg4, 0); 9258 unlock_user(p, arg2, 0); 9259 } 9260 return ret; 9261 #endif 9262 #ifdef TARGET_NR_mkdir 9263 case TARGET_NR_mkdir: 9264 if (!(p = lock_user_string(arg1))) 9265 return -TARGET_EFAULT; 9266 ret = get_errno(mkdir(p, arg2)); 9267 unlock_user(p, arg1, 0); 9268 return ret; 9269 #endif 9270 #if defined(TARGET_NR_mkdirat) 9271 case TARGET_NR_mkdirat: 9272 if (!(p = lock_user_string(arg2))) 9273 return -TARGET_EFAULT; 9274 ret = get_errno(mkdirat(arg1, p, arg3)); 9275 unlock_user(p, arg2, 0); 9276 return ret; 9277 #endif 9278 #ifdef TARGET_NR_rmdir 9279 case TARGET_NR_rmdir: 9280 if (!(p = lock_user_string(arg1))) 9281 return -TARGET_EFAULT; 9282 ret = get_errno(rmdir(p)); 9283 unlock_user(p, arg1, 0); 9284 return ret; 9285 #endif 9286 case TARGET_NR_dup: 9287 ret = get_errno(dup(arg1)); 9288 if (ret >= 0) { 9289 fd_trans_dup(arg1, ret); 9290 } 9291 return ret; 9292 #ifdef TARGET_NR_pipe 9293 case TARGET_NR_pipe: 9294 return do_pipe(cpu_env, arg1, 0, 0); 9295 #endif 9296 #ifdef TARGET_NR_pipe2 9297 case TARGET_NR_pipe2: 9298 return do_pipe(cpu_env, arg1, 9299 target_to_host_bitmask(arg2, fcntl_flags_tbl), 1); 9300 #endif 9301 case TARGET_NR_times: 9302 { 9303 struct target_tms *tmsp; 9304 struct tms tms; 9305 ret = get_errno(times(&tms)); 9306 if (arg1) { 9307 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0); 9308 if (!tmsp) 9309 return -TARGET_EFAULT; 9310 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime)); 9311 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime)); 9312 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime)); 9313 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime)); 9314 } 9315 if (!is_error(ret)) 9316 ret = host_to_target_clock_t(ret); 9317 } 9318 return ret; 9319 case TARGET_NR_acct: 9320 if (arg1 == 0) { 9321 ret = get_errno(acct(NULL)); 9322 } else { 9323 if (!(p = lock_user_string(arg1))) { 9324 return -TARGET_EFAULT; 9325 } 9326 ret = get_errno(acct(path(p))); 9327 unlock_user(p, arg1, 0); 9328 } 9329 return ret; 9330 #ifdef TARGET_NR_umount2 9331 case TARGET_NR_umount2: 9332 if (!(p = lock_user_string(arg1))) 9333 return -TARGET_EFAULT; 9334 ret = get_errno(umount2(p, arg2)); 9335 unlock_user(p, arg1, 0); 9336 return ret; 9337 #endif 9338 case TARGET_NR_ioctl: 9339 return do_ioctl(arg1, arg2, arg3); 9340 #ifdef TARGET_NR_fcntl 9341 case TARGET_NR_fcntl: 9342 return do_fcntl(arg1, arg2, arg3); 9343 #endif 9344 case TARGET_NR_setpgid: 9345 return get_errno(setpgid(arg1, arg2)); 9346 case TARGET_NR_umask: 9347 return get_errno(umask(arg1)); 9348 case TARGET_NR_chroot: 9349 if (!(p = lock_user_string(arg1))) 9350 return -TARGET_EFAULT; 9351 ret = get_errno(chroot(p)); 9352 unlock_user(p, arg1, 0); 9353 return ret; 9354 #ifdef TARGET_NR_dup2 9355 case TARGET_NR_dup2: 9356 ret = get_errno(dup2(arg1, arg2)); 9357 if (ret >= 0) { 9358 fd_trans_dup(arg1, arg2); 9359 } 9360 return ret; 9361 #endif 9362 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3) 9363 case TARGET_NR_dup3: 9364 { 9365 int host_flags; 9366 9367 if ((arg3 & ~TARGET_O_CLOEXEC) != 0) { 9368 return -EINVAL; 9369 } 9370 host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl); 9371 ret = get_errno(dup3(arg1, arg2, host_flags)); 9372 if (ret >= 0) { 9373 fd_trans_dup(arg1, arg2); 9374 } 9375 return ret; 9376 } 9377 #endif 9378 #ifdef TARGET_NR_getppid /* not on alpha */ 9379 case TARGET_NR_getppid: 9380 return get_errno(getppid()); 9381 #endif 9382 #ifdef TARGET_NR_getpgrp 9383 case TARGET_NR_getpgrp: 9384 return get_errno(getpgrp()); 9385 #endif 9386 case TARGET_NR_setsid: 9387 return get_errno(setsid()); 9388 #ifdef TARGET_NR_sigaction 9389 case TARGET_NR_sigaction: 9390 { 9391 #if defined(TARGET_MIPS) 9392 struct target_sigaction act, oact, *pact, *old_act; 9393 9394 if (arg2) { 9395 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 9396 return -TARGET_EFAULT; 9397 act._sa_handler = old_act->_sa_handler; 9398 target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]); 9399 act.sa_flags = old_act->sa_flags; 9400 unlock_user_struct(old_act, arg2, 0); 9401 pact = &act; 9402 } else { 9403 pact = NULL; 9404 } 9405 9406 ret = get_errno(do_sigaction(arg1, pact, &oact, 0)); 9407 9408 if (!is_error(ret) && arg3) { 9409 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 9410 return -TARGET_EFAULT; 9411 old_act->_sa_handler = oact._sa_handler; 9412 old_act->sa_flags = oact.sa_flags; 9413 old_act->sa_mask.sig[0] = oact.sa_mask.sig[0]; 9414 old_act->sa_mask.sig[1] = 0; 9415 old_act->sa_mask.sig[2] = 0; 9416 old_act->sa_mask.sig[3] = 0; 9417 unlock_user_struct(old_act, arg3, 1); 9418 } 9419 #else 9420 struct target_old_sigaction *old_act; 9421 struct target_sigaction act, oact, *pact; 9422 if (arg2) { 9423 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 9424 return -TARGET_EFAULT; 9425 act._sa_handler = old_act->_sa_handler; 9426 target_siginitset(&act.sa_mask, old_act->sa_mask); 9427 act.sa_flags = old_act->sa_flags; 9428 #ifdef TARGET_ARCH_HAS_SA_RESTORER 9429 act.sa_restorer = old_act->sa_restorer; 9430 #endif 9431 unlock_user_struct(old_act, arg2, 0); 9432 pact = &act; 9433 } else { 9434 pact = NULL; 9435 } 9436 ret = get_errno(do_sigaction(arg1, pact, &oact, 0)); 9437 if (!is_error(ret) && arg3) { 9438 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 9439 return -TARGET_EFAULT; 9440 old_act->_sa_handler = oact._sa_handler; 9441 old_act->sa_mask = oact.sa_mask.sig[0]; 9442 old_act->sa_flags = oact.sa_flags; 9443 #ifdef TARGET_ARCH_HAS_SA_RESTORER 9444 old_act->sa_restorer = oact.sa_restorer; 9445 #endif 9446 unlock_user_struct(old_act, arg3, 1); 9447 } 9448 #endif 9449 } 9450 return ret; 9451 #endif 9452 case TARGET_NR_rt_sigaction: 9453 { 9454 /* 9455 * For Alpha and SPARC this is a 5 argument syscall, with 9456 * a 'restorer' parameter which must be copied into the 9457 * sa_restorer field of the sigaction struct. 9458 * For Alpha that 'restorer' is arg5; for SPARC it is arg4, 9459 * and arg5 is the sigsetsize. 9460 */ 9461 #if defined(TARGET_ALPHA) 9462 target_ulong sigsetsize = arg4; 9463 target_ulong restorer = arg5; 9464 #elif defined(TARGET_SPARC) 9465 target_ulong restorer = arg4; 9466 target_ulong sigsetsize = arg5; 9467 #else 9468 target_ulong sigsetsize = arg4; 9469 target_ulong restorer = 0; 9470 #endif 9471 struct target_sigaction *act = NULL; 9472 struct target_sigaction *oact = NULL; 9473 9474 if (sigsetsize != sizeof(target_sigset_t)) { 9475 return -TARGET_EINVAL; 9476 } 9477 if (arg2 && !lock_user_struct(VERIFY_READ, act, arg2, 1)) { 9478 return -TARGET_EFAULT; 9479 } 9480 if (arg3 && !lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) { 9481 ret = -TARGET_EFAULT; 9482 } else { 9483 ret = get_errno(do_sigaction(arg1, act, oact, restorer)); 9484 if (oact) { 9485 unlock_user_struct(oact, arg3, 1); 9486 } 9487 } 9488 if (act) { 9489 unlock_user_struct(act, arg2, 0); 9490 } 9491 } 9492 return ret; 9493 #ifdef TARGET_NR_sgetmask /* not on alpha */ 9494 case TARGET_NR_sgetmask: 9495 { 9496 sigset_t cur_set; 9497 abi_ulong target_set; 9498 ret = do_sigprocmask(0, NULL, &cur_set); 9499 if (!ret) { 9500 host_to_target_old_sigset(&target_set, &cur_set); 9501 ret = target_set; 9502 } 9503 } 9504 return ret; 9505 #endif 9506 #ifdef TARGET_NR_ssetmask /* not on alpha */ 9507 case TARGET_NR_ssetmask: 9508 { 9509 sigset_t set, oset; 9510 abi_ulong target_set = arg1; 9511 target_to_host_old_sigset(&set, &target_set); 9512 ret = do_sigprocmask(SIG_SETMASK, &set, &oset); 9513 if (!ret) { 9514 host_to_target_old_sigset(&target_set, &oset); 9515 ret = target_set; 9516 } 9517 } 9518 return ret; 9519 #endif 9520 #ifdef TARGET_NR_sigprocmask 9521 case TARGET_NR_sigprocmask: 9522 { 9523 #if defined(TARGET_ALPHA) 9524 sigset_t set, oldset; 9525 abi_ulong mask; 9526 int how; 9527 9528 switch (arg1) { 9529 case TARGET_SIG_BLOCK: 9530 how = SIG_BLOCK; 9531 break; 9532 case TARGET_SIG_UNBLOCK: 9533 how = SIG_UNBLOCK; 9534 break; 9535 case TARGET_SIG_SETMASK: 9536 how = SIG_SETMASK; 9537 break; 9538 default: 9539 return -TARGET_EINVAL; 9540 } 9541 mask = arg2; 9542 target_to_host_old_sigset(&set, &mask); 9543 9544 ret = do_sigprocmask(how, &set, &oldset); 9545 if (!is_error(ret)) { 9546 host_to_target_old_sigset(&mask, &oldset); 9547 ret = mask; 9548 cpu_env->ir[IR_V0] = 0; /* force no error */ 9549 } 9550 #else 9551 sigset_t set, oldset, *set_ptr; 9552 int how; 9553 9554 if (arg2) { 9555 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1); 9556 if (!p) { 9557 return -TARGET_EFAULT; 9558 } 9559 target_to_host_old_sigset(&set, p); 9560 unlock_user(p, arg2, 0); 9561 set_ptr = &set; 9562 switch (arg1) { 9563 case TARGET_SIG_BLOCK: 9564 how = SIG_BLOCK; 9565 break; 9566 case TARGET_SIG_UNBLOCK: 9567 how = SIG_UNBLOCK; 9568 break; 9569 case TARGET_SIG_SETMASK: 9570 how = SIG_SETMASK; 9571 break; 9572 default: 9573 return -TARGET_EINVAL; 9574 } 9575 } else { 9576 how = 0; 9577 set_ptr = NULL; 9578 } 9579 ret = do_sigprocmask(how, set_ptr, &oldset); 9580 if (!is_error(ret) && arg3) { 9581 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0))) 9582 return -TARGET_EFAULT; 9583 host_to_target_old_sigset(p, &oldset); 9584 unlock_user(p, arg3, sizeof(target_sigset_t)); 9585 } 9586 #endif 9587 } 9588 return ret; 9589 #endif 9590 case TARGET_NR_rt_sigprocmask: 9591 { 9592 int how = arg1; 9593 sigset_t set, oldset, *set_ptr; 9594 9595 if (arg4 != sizeof(target_sigset_t)) { 9596 return -TARGET_EINVAL; 9597 } 9598 9599 if (arg2) { 9600 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1); 9601 if (!p) { 9602 return -TARGET_EFAULT; 9603 } 9604 target_to_host_sigset(&set, p); 9605 unlock_user(p, arg2, 0); 9606 set_ptr = &set; 9607 switch(how) { 9608 case TARGET_SIG_BLOCK: 9609 how = SIG_BLOCK; 9610 break; 9611 case TARGET_SIG_UNBLOCK: 9612 how = SIG_UNBLOCK; 9613 break; 9614 case TARGET_SIG_SETMASK: 9615 how = SIG_SETMASK; 9616 break; 9617 default: 9618 return -TARGET_EINVAL; 9619 } 9620 } else { 9621 how = 0; 9622 set_ptr = NULL; 9623 } 9624 ret = do_sigprocmask(how, set_ptr, &oldset); 9625 if (!is_error(ret) && arg3) { 9626 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0))) 9627 return -TARGET_EFAULT; 9628 host_to_target_sigset(p, &oldset); 9629 unlock_user(p, arg3, sizeof(target_sigset_t)); 9630 } 9631 } 9632 return ret; 9633 #ifdef TARGET_NR_sigpending 9634 case TARGET_NR_sigpending: 9635 { 9636 sigset_t set; 9637 ret = get_errno(sigpending(&set)); 9638 if (!is_error(ret)) { 9639 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0))) 9640 return -TARGET_EFAULT; 9641 host_to_target_old_sigset(p, &set); 9642 unlock_user(p, arg1, sizeof(target_sigset_t)); 9643 } 9644 } 9645 return ret; 9646 #endif 9647 case TARGET_NR_rt_sigpending: 9648 { 9649 sigset_t set; 9650 9651 /* Yes, this check is >, not != like most. We follow the kernel's 9652 * logic and it does it like this because it implements 9653 * NR_sigpending through the same code path, and in that case 9654 * the old_sigset_t is smaller in size. 9655 */ 9656 if (arg2 > sizeof(target_sigset_t)) { 9657 return -TARGET_EINVAL; 9658 } 9659 9660 ret = get_errno(sigpending(&set)); 9661 if (!is_error(ret)) { 9662 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0))) 9663 return -TARGET_EFAULT; 9664 host_to_target_sigset(p, &set); 9665 unlock_user(p, arg1, sizeof(target_sigset_t)); 9666 } 9667 } 9668 return ret; 9669 #ifdef TARGET_NR_sigsuspend 9670 case TARGET_NR_sigsuspend: 9671 { 9672 sigset_t *set; 9673 9674 #if defined(TARGET_ALPHA) 9675 TaskState *ts = cpu->opaque; 9676 /* target_to_host_old_sigset will bswap back */ 9677 abi_ulong mask = tswapal(arg1); 9678 set = &ts->sigsuspend_mask; 9679 target_to_host_old_sigset(set, &mask); 9680 #else 9681 ret = process_sigsuspend_mask(&set, arg1, sizeof(target_sigset_t)); 9682 if (ret != 0) { 9683 return ret; 9684 } 9685 #endif 9686 ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE)); 9687 finish_sigsuspend_mask(ret); 9688 } 9689 return ret; 9690 #endif 9691 case TARGET_NR_rt_sigsuspend: 9692 { 9693 sigset_t *set; 9694 9695 ret = process_sigsuspend_mask(&set, arg1, arg2); 9696 if (ret != 0) { 9697 return ret; 9698 } 9699 ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE)); 9700 finish_sigsuspend_mask(ret); 9701 } 9702 return ret; 9703 #ifdef TARGET_NR_rt_sigtimedwait 9704 case TARGET_NR_rt_sigtimedwait: 9705 { 9706 sigset_t set; 9707 struct timespec uts, *puts; 9708 siginfo_t uinfo; 9709 9710 if (arg4 != sizeof(target_sigset_t)) { 9711 return -TARGET_EINVAL; 9712 } 9713 9714 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1))) 9715 return -TARGET_EFAULT; 9716 target_to_host_sigset(&set, p); 9717 unlock_user(p, arg1, 0); 9718 if (arg3) { 9719 puts = &uts; 9720 if (target_to_host_timespec(puts, arg3)) { 9721 return -TARGET_EFAULT; 9722 } 9723 } else { 9724 puts = NULL; 9725 } 9726 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts, 9727 SIGSET_T_SIZE)); 9728 if (!is_error(ret)) { 9729 if (arg2) { 9730 p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t), 9731 0); 9732 if (!p) { 9733 return -TARGET_EFAULT; 9734 } 9735 host_to_target_siginfo(p, &uinfo); 9736 unlock_user(p, arg2, sizeof(target_siginfo_t)); 9737 } 9738 ret = host_to_target_signal(ret); 9739 } 9740 } 9741 return ret; 9742 #endif 9743 #ifdef TARGET_NR_rt_sigtimedwait_time64 9744 case TARGET_NR_rt_sigtimedwait_time64: 9745 { 9746 sigset_t set; 9747 struct timespec uts, *puts; 9748 siginfo_t uinfo; 9749 9750 if (arg4 != sizeof(target_sigset_t)) { 9751 return -TARGET_EINVAL; 9752 } 9753 9754 p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1); 9755 if (!p) { 9756 return -TARGET_EFAULT; 9757 } 9758 target_to_host_sigset(&set, p); 9759 unlock_user(p, arg1, 0); 9760 if (arg3) { 9761 puts = &uts; 9762 if (target_to_host_timespec64(puts, arg3)) { 9763 return -TARGET_EFAULT; 9764 } 9765 } else { 9766 puts = NULL; 9767 } 9768 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts, 9769 SIGSET_T_SIZE)); 9770 if (!is_error(ret)) { 9771 if (arg2) { 9772 p = lock_user(VERIFY_WRITE, arg2, 9773 sizeof(target_siginfo_t), 0); 9774 if (!p) { 9775 return -TARGET_EFAULT; 9776 } 9777 host_to_target_siginfo(p, &uinfo); 9778 unlock_user(p, arg2, sizeof(target_siginfo_t)); 9779 } 9780 ret = host_to_target_signal(ret); 9781 } 9782 } 9783 return ret; 9784 #endif 9785 case TARGET_NR_rt_sigqueueinfo: 9786 { 9787 siginfo_t uinfo; 9788 9789 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1); 9790 if (!p) { 9791 return -TARGET_EFAULT; 9792 } 9793 target_to_host_siginfo(&uinfo, p); 9794 unlock_user(p, arg3, 0); 9795 ret = get_errno(sys_rt_sigqueueinfo(arg1, target_to_host_signal(arg2), &uinfo)); 9796 } 9797 return ret; 9798 case TARGET_NR_rt_tgsigqueueinfo: 9799 { 9800 siginfo_t uinfo; 9801 9802 p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1); 9803 if (!p) { 9804 return -TARGET_EFAULT; 9805 } 9806 target_to_host_siginfo(&uinfo, p); 9807 unlock_user(p, arg4, 0); 9808 ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, target_to_host_signal(arg3), &uinfo)); 9809 } 9810 return ret; 9811 #ifdef TARGET_NR_sigreturn 9812 case TARGET_NR_sigreturn: 9813 if (block_signals()) { 9814 return -QEMU_ERESTARTSYS; 9815 } 9816 return do_sigreturn(cpu_env); 9817 #endif 9818 case TARGET_NR_rt_sigreturn: 9819 if (block_signals()) { 9820 return -QEMU_ERESTARTSYS; 9821 } 9822 return do_rt_sigreturn(cpu_env); 9823 case TARGET_NR_sethostname: 9824 if (!(p = lock_user_string(arg1))) 9825 return -TARGET_EFAULT; 9826 ret = get_errno(sethostname(p, arg2)); 9827 unlock_user(p, arg1, 0); 9828 return ret; 9829 #ifdef TARGET_NR_setrlimit 9830 case TARGET_NR_setrlimit: 9831 { 9832 int resource = target_to_host_resource(arg1); 9833 struct target_rlimit *target_rlim; 9834 struct rlimit rlim; 9835 if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1)) 9836 return -TARGET_EFAULT; 9837 rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur); 9838 rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max); 9839 unlock_user_struct(target_rlim, arg2, 0); 9840 /* 9841 * If we just passed through resource limit settings for memory then 9842 * they would also apply to QEMU's own allocations, and QEMU will 9843 * crash or hang or die if its allocations fail. Ideally we would 9844 * track the guest allocations in QEMU and apply the limits ourselves. 9845 * For now, just tell the guest the call succeeded but don't actually 9846 * limit anything. 9847 */ 9848 if (resource != RLIMIT_AS && 9849 resource != RLIMIT_DATA && 9850 resource != RLIMIT_STACK) { 9851 return get_errno(setrlimit(resource, &rlim)); 9852 } else { 9853 return 0; 9854 } 9855 } 9856 #endif 9857 #ifdef TARGET_NR_getrlimit 9858 case TARGET_NR_getrlimit: 9859 { 9860 int resource = target_to_host_resource(arg1); 9861 struct target_rlimit *target_rlim; 9862 struct rlimit rlim; 9863 9864 ret = get_errno(getrlimit(resource, &rlim)); 9865 if (!is_error(ret)) { 9866 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0)) 9867 return -TARGET_EFAULT; 9868 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur); 9869 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max); 9870 unlock_user_struct(target_rlim, arg2, 1); 9871 } 9872 } 9873 return ret; 9874 #endif 9875 case TARGET_NR_getrusage: 9876 { 9877 struct rusage rusage; 9878 ret = get_errno(getrusage(arg1, &rusage)); 9879 if (!is_error(ret)) { 9880 ret = host_to_target_rusage(arg2, &rusage); 9881 } 9882 } 9883 return ret; 9884 #if defined(TARGET_NR_gettimeofday) 9885 case TARGET_NR_gettimeofday: 9886 { 9887 struct timeval tv; 9888 struct timezone tz; 9889 9890 ret = get_errno(gettimeofday(&tv, &tz)); 9891 if (!is_error(ret)) { 9892 if (arg1 && copy_to_user_timeval(arg1, &tv)) { 9893 return -TARGET_EFAULT; 9894 } 9895 if (arg2 && copy_to_user_timezone(arg2, &tz)) { 9896 return -TARGET_EFAULT; 9897 } 9898 } 9899 } 9900 return ret; 9901 #endif 9902 #if defined(TARGET_NR_settimeofday) 9903 case TARGET_NR_settimeofday: 9904 { 9905 struct timeval tv, *ptv = NULL; 9906 struct timezone tz, *ptz = NULL; 9907 9908 if (arg1) { 9909 if (copy_from_user_timeval(&tv, arg1)) { 9910 return -TARGET_EFAULT; 9911 } 9912 ptv = &tv; 9913 } 9914 9915 if (arg2) { 9916 if (copy_from_user_timezone(&tz, arg2)) { 9917 return -TARGET_EFAULT; 9918 } 9919 ptz = &tz; 9920 } 9921 9922 return get_errno(settimeofday(ptv, ptz)); 9923 } 9924 #endif 9925 #if defined(TARGET_NR_select) 9926 case TARGET_NR_select: 9927 #if defined(TARGET_WANT_NI_OLD_SELECT) 9928 /* some architectures used to have old_select here 9929 * but now ENOSYS it. 9930 */ 9931 ret = -TARGET_ENOSYS; 9932 #elif defined(TARGET_WANT_OLD_SYS_SELECT) 9933 ret = do_old_select(arg1); 9934 #else 9935 ret = do_select(arg1, arg2, arg3, arg4, arg5); 9936 #endif 9937 return ret; 9938 #endif 9939 #ifdef TARGET_NR_pselect6 9940 case TARGET_NR_pselect6: 9941 return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, false); 9942 #endif 9943 #ifdef TARGET_NR_pselect6_time64 9944 case TARGET_NR_pselect6_time64: 9945 return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, true); 9946 #endif 9947 #ifdef TARGET_NR_symlink 9948 case TARGET_NR_symlink: 9949 { 9950 void *p2; 9951 p = lock_user_string(arg1); 9952 p2 = lock_user_string(arg2); 9953 if (!p || !p2) 9954 ret = -TARGET_EFAULT; 9955 else 9956 ret = get_errno(symlink(p, p2)); 9957 unlock_user(p2, arg2, 0); 9958 unlock_user(p, arg1, 0); 9959 } 9960 return ret; 9961 #endif 9962 #if defined(TARGET_NR_symlinkat) 9963 case TARGET_NR_symlinkat: 9964 { 9965 void *p2; 9966 p = lock_user_string(arg1); 9967 p2 = lock_user_string(arg3); 9968 if (!p || !p2) 9969 ret = -TARGET_EFAULT; 9970 else 9971 ret = get_errno(symlinkat(p, arg2, p2)); 9972 unlock_user(p2, arg3, 0); 9973 unlock_user(p, arg1, 0); 9974 } 9975 return ret; 9976 #endif 9977 #ifdef TARGET_NR_readlink 9978 case TARGET_NR_readlink: 9979 { 9980 void *p2; 9981 p = lock_user_string(arg1); 9982 p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0); 9983 if (!p || !p2) { 9984 ret = -TARGET_EFAULT; 9985 } else if (!arg3) { 9986 /* Short circuit this for the magic exe check. */ 9987 ret = -TARGET_EINVAL; 9988 } else if (is_proc_myself((const char *)p, "exe")) { 9989 char real[PATH_MAX], *temp; 9990 temp = realpath(exec_path, real); 9991 /* Return value is # of bytes that we wrote to the buffer. */ 9992 if (temp == NULL) { 9993 ret = get_errno(-1); 9994 } else { 9995 /* Don't worry about sign mismatch as earlier mapping 9996 * logic would have thrown a bad address error. */ 9997 ret = MIN(strlen(real), arg3); 9998 /* We cannot NUL terminate the string. */ 9999 memcpy(p2, real, ret); 10000 } 10001 } else { 10002 ret = get_errno(readlink(path(p), p2, arg3)); 10003 } 10004 unlock_user(p2, arg2, ret); 10005 unlock_user(p, arg1, 0); 10006 } 10007 return ret; 10008 #endif 10009 #if defined(TARGET_NR_readlinkat) 10010 case TARGET_NR_readlinkat: 10011 { 10012 void *p2; 10013 p = lock_user_string(arg2); 10014 p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0); 10015 if (!p || !p2) { 10016 ret = -TARGET_EFAULT; 10017 } else if (!arg4) { 10018 /* Short circuit this for the magic exe check. */ 10019 ret = -TARGET_EINVAL; 10020 } else if (is_proc_myself((const char *)p, "exe")) { 10021 char real[PATH_MAX], *temp; 10022 temp = realpath(exec_path, real); 10023 /* Return value is # of bytes that we wrote to the buffer. */ 10024 if (temp == NULL) { 10025 ret = get_errno(-1); 10026 } else { 10027 /* Don't worry about sign mismatch as earlier mapping 10028 * logic would have thrown a bad address error. */ 10029 ret = MIN(strlen(real), arg4); 10030 /* We cannot NUL terminate the string. */ 10031 memcpy(p2, real, ret); 10032 } 10033 } else { 10034 ret = get_errno(readlinkat(arg1, path(p), p2, arg4)); 10035 } 10036 unlock_user(p2, arg3, ret); 10037 unlock_user(p, arg2, 0); 10038 } 10039 return ret; 10040 #endif 10041 #ifdef TARGET_NR_swapon 10042 case TARGET_NR_swapon: 10043 if (!(p = lock_user_string(arg1))) 10044 return -TARGET_EFAULT; 10045 ret = get_errno(swapon(p, arg2)); 10046 unlock_user(p, arg1, 0); 10047 return ret; 10048 #endif 10049 case TARGET_NR_reboot: 10050 if (arg3 == LINUX_REBOOT_CMD_RESTART2) { 10051 /* arg4 must be ignored in all other cases */ 10052 p = lock_user_string(arg4); 10053 if (!p) { 10054 return -TARGET_EFAULT; 10055 } 10056 ret = get_errno(reboot(arg1, arg2, arg3, p)); 10057 unlock_user(p, arg4, 0); 10058 } else { 10059 ret = get_errno(reboot(arg1, arg2, arg3, NULL)); 10060 } 10061 return ret; 10062 #ifdef TARGET_NR_mmap 10063 case TARGET_NR_mmap: 10064 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \ 10065 (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \ 10066 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \ 10067 || defined(TARGET_S390X) 10068 { 10069 abi_ulong *v; 10070 abi_ulong v1, v2, v3, v4, v5, v6; 10071 if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1))) 10072 return -TARGET_EFAULT; 10073 v1 = tswapal(v[0]); 10074 v2 = tswapal(v[1]); 10075 v3 = tswapal(v[2]); 10076 v4 = tswapal(v[3]); 10077 v5 = tswapal(v[4]); 10078 v6 = tswapal(v[5]); 10079 unlock_user(v, arg1, 0); 10080 ret = get_errno(target_mmap(v1, v2, v3, 10081 target_to_host_bitmask(v4, mmap_flags_tbl), 10082 v5, v6)); 10083 } 10084 #else 10085 /* mmap pointers are always untagged */ 10086 ret = get_errno(target_mmap(arg1, arg2, arg3, 10087 target_to_host_bitmask(arg4, mmap_flags_tbl), 10088 arg5, 10089 arg6)); 10090 #endif 10091 return ret; 10092 #endif 10093 #ifdef TARGET_NR_mmap2 10094 case TARGET_NR_mmap2: 10095 #ifndef MMAP_SHIFT 10096 #define MMAP_SHIFT 12 10097 #endif 10098 ret = target_mmap(arg1, arg2, arg3, 10099 target_to_host_bitmask(arg4, mmap_flags_tbl), 10100 arg5, arg6 << MMAP_SHIFT); 10101 return get_errno(ret); 10102 #endif 10103 case TARGET_NR_munmap: 10104 arg1 = cpu_untagged_addr(cpu, arg1); 10105 return get_errno(target_munmap(arg1, arg2)); 10106 case TARGET_NR_mprotect: 10107 arg1 = cpu_untagged_addr(cpu, arg1); 10108 { 10109 TaskState *ts = cpu->opaque; 10110 /* Special hack to detect libc making the stack executable. */ 10111 if ((arg3 & PROT_GROWSDOWN) 10112 && arg1 >= ts->info->stack_limit 10113 && arg1 <= ts->info->start_stack) { 10114 arg3 &= ~PROT_GROWSDOWN; 10115 arg2 = arg2 + arg1 - ts->info->stack_limit; 10116 arg1 = ts->info->stack_limit; 10117 } 10118 } 10119 return get_errno(target_mprotect(arg1, arg2, arg3)); 10120 #ifdef TARGET_NR_mremap 10121 case TARGET_NR_mremap: 10122 arg1 = cpu_untagged_addr(cpu, arg1); 10123 /* mremap new_addr (arg5) is always untagged */ 10124 return get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5)); 10125 #endif 10126 /* ??? msync/mlock/munlock are broken for softmmu. */ 10127 #ifdef TARGET_NR_msync 10128 case TARGET_NR_msync: 10129 return get_errno(msync(g2h(cpu, arg1), arg2, arg3)); 10130 #endif 10131 #ifdef TARGET_NR_mlock 10132 case TARGET_NR_mlock: 10133 return get_errno(mlock(g2h(cpu, arg1), arg2)); 10134 #endif 10135 #ifdef TARGET_NR_munlock 10136 case TARGET_NR_munlock: 10137 return get_errno(munlock(g2h(cpu, arg1), arg2)); 10138 #endif 10139 #ifdef TARGET_NR_mlockall 10140 case TARGET_NR_mlockall: 10141 return get_errno(mlockall(target_to_host_mlockall_arg(arg1))); 10142 #endif 10143 #ifdef TARGET_NR_munlockall 10144 case TARGET_NR_munlockall: 10145 return get_errno(munlockall()); 10146 #endif 10147 #ifdef TARGET_NR_truncate 10148 case TARGET_NR_truncate: 10149 if (!(p = lock_user_string(arg1))) 10150 return -TARGET_EFAULT; 10151 ret = get_errno(truncate(p, arg2)); 10152 unlock_user(p, arg1, 0); 10153 return ret; 10154 #endif 10155 #ifdef TARGET_NR_ftruncate 10156 case TARGET_NR_ftruncate: 10157 return get_errno(ftruncate(arg1, arg2)); 10158 #endif 10159 case TARGET_NR_fchmod: 10160 return get_errno(fchmod(arg1, arg2)); 10161 #if defined(TARGET_NR_fchmodat) 10162 case TARGET_NR_fchmodat: 10163 if (!(p = lock_user_string(arg2))) 10164 return -TARGET_EFAULT; 10165 ret = get_errno(fchmodat(arg1, p, arg3, 0)); 10166 unlock_user(p, arg2, 0); 10167 return ret; 10168 #endif 10169 case TARGET_NR_getpriority: 10170 /* Note that negative values are valid for getpriority, so we must 10171 differentiate based on errno settings. */ 10172 errno = 0; 10173 ret = getpriority(arg1, arg2); 10174 if (ret == -1 && errno != 0) { 10175 return -host_to_target_errno(errno); 10176 } 10177 #ifdef TARGET_ALPHA 10178 /* Return value is the unbiased priority. Signal no error. */ 10179 cpu_env->ir[IR_V0] = 0; 10180 #else 10181 /* Return value is a biased priority to avoid negative numbers. */ 10182 ret = 20 - ret; 10183 #endif 10184 return ret; 10185 case TARGET_NR_setpriority: 10186 return get_errno(setpriority(arg1, arg2, arg3)); 10187 #ifdef TARGET_NR_statfs 10188 case TARGET_NR_statfs: 10189 if (!(p = lock_user_string(arg1))) { 10190 return -TARGET_EFAULT; 10191 } 10192 ret = get_errno(statfs(path(p), &stfs)); 10193 unlock_user(p, arg1, 0); 10194 convert_statfs: 10195 if (!is_error(ret)) { 10196 struct target_statfs *target_stfs; 10197 10198 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0)) 10199 return -TARGET_EFAULT; 10200 __put_user(stfs.f_type, &target_stfs->f_type); 10201 __put_user(stfs.f_bsize, &target_stfs->f_bsize); 10202 __put_user(stfs.f_blocks, &target_stfs->f_blocks); 10203 __put_user(stfs.f_bfree, &target_stfs->f_bfree); 10204 __put_user(stfs.f_bavail, &target_stfs->f_bavail); 10205 __put_user(stfs.f_files, &target_stfs->f_files); 10206 __put_user(stfs.f_ffree, &target_stfs->f_ffree); 10207 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]); 10208 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]); 10209 __put_user(stfs.f_namelen, &target_stfs->f_namelen); 10210 __put_user(stfs.f_frsize, &target_stfs->f_frsize); 10211 #ifdef _STATFS_F_FLAGS 10212 __put_user(stfs.f_flags, &target_stfs->f_flags); 10213 #else 10214 __put_user(0, &target_stfs->f_flags); 10215 #endif 10216 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare)); 10217 unlock_user_struct(target_stfs, arg2, 1); 10218 } 10219 return ret; 10220 #endif 10221 #ifdef TARGET_NR_fstatfs 10222 case TARGET_NR_fstatfs: 10223 ret = get_errno(fstatfs(arg1, &stfs)); 10224 goto convert_statfs; 10225 #endif 10226 #ifdef TARGET_NR_statfs64 10227 case TARGET_NR_statfs64: 10228 if (!(p = lock_user_string(arg1))) { 10229 return -TARGET_EFAULT; 10230 } 10231 ret = get_errno(statfs(path(p), &stfs)); 10232 unlock_user(p, arg1, 0); 10233 convert_statfs64: 10234 if (!is_error(ret)) { 10235 struct target_statfs64 *target_stfs; 10236 10237 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0)) 10238 return -TARGET_EFAULT; 10239 __put_user(stfs.f_type, &target_stfs->f_type); 10240 __put_user(stfs.f_bsize, &target_stfs->f_bsize); 10241 __put_user(stfs.f_blocks, &target_stfs->f_blocks); 10242 __put_user(stfs.f_bfree, &target_stfs->f_bfree); 10243 __put_user(stfs.f_bavail, &target_stfs->f_bavail); 10244 __put_user(stfs.f_files, &target_stfs->f_files); 10245 __put_user(stfs.f_ffree, &target_stfs->f_ffree); 10246 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]); 10247 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]); 10248 __put_user(stfs.f_namelen, &target_stfs->f_namelen); 10249 __put_user(stfs.f_frsize, &target_stfs->f_frsize); 10250 #ifdef _STATFS_F_FLAGS 10251 __put_user(stfs.f_flags, &target_stfs->f_flags); 10252 #else 10253 __put_user(0, &target_stfs->f_flags); 10254 #endif 10255 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare)); 10256 unlock_user_struct(target_stfs, arg3, 1); 10257 } 10258 return ret; 10259 case TARGET_NR_fstatfs64: 10260 ret = get_errno(fstatfs(arg1, &stfs)); 10261 goto convert_statfs64; 10262 #endif 10263 #ifdef TARGET_NR_socketcall 10264 case TARGET_NR_socketcall: 10265 return do_socketcall(arg1, arg2); 10266 #endif 10267 #ifdef TARGET_NR_accept 10268 case TARGET_NR_accept: 10269 return do_accept4(arg1, arg2, arg3, 0); 10270 #endif 10271 #ifdef TARGET_NR_accept4 10272 case TARGET_NR_accept4: 10273 return do_accept4(arg1, arg2, arg3, arg4); 10274 #endif 10275 #ifdef TARGET_NR_bind 10276 case TARGET_NR_bind: 10277 return do_bind(arg1, arg2, arg3); 10278 #endif 10279 #ifdef TARGET_NR_connect 10280 case TARGET_NR_connect: 10281 return do_connect(arg1, arg2, arg3); 10282 #endif 10283 #ifdef TARGET_NR_getpeername 10284 case TARGET_NR_getpeername: 10285 return do_getpeername(arg1, arg2, arg3); 10286 #endif 10287 #ifdef TARGET_NR_getsockname 10288 case TARGET_NR_getsockname: 10289 return do_getsockname(arg1, arg2, arg3); 10290 #endif 10291 #ifdef TARGET_NR_getsockopt 10292 case TARGET_NR_getsockopt: 10293 return do_getsockopt(arg1, arg2, arg3, arg4, arg5); 10294 #endif 10295 #ifdef TARGET_NR_listen 10296 case TARGET_NR_listen: 10297 return get_errno(listen(arg1, arg2)); 10298 #endif 10299 #ifdef TARGET_NR_recv 10300 case TARGET_NR_recv: 10301 return do_recvfrom(arg1, arg2, arg3, arg4, 0, 0); 10302 #endif 10303 #ifdef TARGET_NR_recvfrom 10304 case TARGET_NR_recvfrom: 10305 return do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6); 10306 #endif 10307 #ifdef TARGET_NR_recvmsg 10308 case TARGET_NR_recvmsg: 10309 return do_sendrecvmsg(arg1, arg2, arg3, 0); 10310 #endif 10311 #ifdef TARGET_NR_send 10312 case TARGET_NR_send: 10313 return do_sendto(arg1, arg2, arg3, arg4, 0, 0); 10314 #endif 10315 #ifdef TARGET_NR_sendmsg 10316 case TARGET_NR_sendmsg: 10317 return do_sendrecvmsg(arg1, arg2, arg3, 1); 10318 #endif 10319 #ifdef TARGET_NR_sendmmsg 10320 case TARGET_NR_sendmmsg: 10321 return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1); 10322 #endif 10323 #ifdef TARGET_NR_recvmmsg 10324 case TARGET_NR_recvmmsg: 10325 return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0); 10326 #endif 10327 #ifdef TARGET_NR_sendto 10328 case TARGET_NR_sendto: 10329 return do_sendto(arg1, arg2, arg3, arg4, arg5, arg6); 10330 #endif 10331 #ifdef TARGET_NR_shutdown 10332 case TARGET_NR_shutdown: 10333 return get_errno(shutdown(arg1, arg2)); 10334 #endif 10335 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom) 10336 case TARGET_NR_getrandom: 10337 p = lock_user(VERIFY_WRITE, arg1, arg2, 0); 10338 if (!p) { 10339 return -TARGET_EFAULT; 10340 } 10341 ret = get_errno(getrandom(p, arg2, arg3)); 10342 unlock_user(p, arg1, ret); 10343 return ret; 10344 #endif 10345 #ifdef TARGET_NR_socket 10346 case TARGET_NR_socket: 10347 return do_socket(arg1, arg2, arg3); 10348 #endif 10349 #ifdef TARGET_NR_socketpair 10350 case TARGET_NR_socketpair: 10351 return do_socketpair(arg1, arg2, arg3, arg4); 10352 #endif 10353 #ifdef TARGET_NR_setsockopt 10354 case TARGET_NR_setsockopt: 10355 return do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5); 10356 #endif 10357 #if defined(TARGET_NR_syslog) 10358 case TARGET_NR_syslog: 10359 { 10360 int len = arg2; 10361 10362 switch (arg1) { 10363 case TARGET_SYSLOG_ACTION_CLOSE: /* Close log */ 10364 case TARGET_SYSLOG_ACTION_OPEN: /* Open log */ 10365 case TARGET_SYSLOG_ACTION_CLEAR: /* Clear ring buffer */ 10366 case TARGET_SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging */ 10367 case TARGET_SYSLOG_ACTION_CONSOLE_ON: /* Enable logging */ 10368 case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */ 10369 case TARGET_SYSLOG_ACTION_SIZE_UNREAD: /* Number of chars */ 10370 case TARGET_SYSLOG_ACTION_SIZE_BUFFER: /* Size of the buffer */ 10371 return get_errno(sys_syslog((int)arg1, NULL, (int)arg3)); 10372 case TARGET_SYSLOG_ACTION_READ: /* Read from log */ 10373 case TARGET_SYSLOG_ACTION_READ_CLEAR: /* Read/clear msgs */ 10374 case TARGET_SYSLOG_ACTION_READ_ALL: /* Read last messages */ 10375 { 10376 if (len < 0) { 10377 return -TARGET_EINVAL; 10378 } 10379 if (len == 0) { 10380 return 0; 10381 } 10382 p = lock_user(VERIFY_WRITE, arg2, arg3, 0); 10383 if (!p) { 10384 return -TARGET_EFAULT; 10385 } 10386 ret = get_errno(sys_syslog((int)arg1, p, (int)arg3)); 10387 unlock_user(p, arg2, arg3); 10388 } 10389 return ret; 10390 default: 10391 return -TARGET_EINVAL; 10392 } 10393 } 10394 break; 10395 #endif 10396 case TARGET_NR_setitimer: 10397 { 10398 struct itimerval value, ovalue, *pvalue; 10399 10400 if (arg2) { 10401 pvalue = &value; 10402 if (copy_from_user_timeval(&pvalue->it_interval, arg2) 10403 || copy_from_user_timeval(&pvalue->it_value, 10404 arg2 + sizeof(struct target_timeval))) 10405 return -TARGET_EFAULT; 10406 } else { 10407 pvalue = NULL; 10408 } 10409 ret = get_errno(setitimer(arg1, pvalue, &ovalue)); 10410 if (!is_error(ret) && arg3) { 10411 if (copy_to_user_timeval(arg3, 10412 &ovalue.it_interval) 10413 || copy_to_user_timeval(arg3 + sizeof(struct target_timeval), 10414 &ovalue.it_value)) 10415 return -TARGET_EFAULT; 10416 } 10417 } 10418 return ret; 10419 case TARGET_NR_getitimer: 10420 { 10421 struct itimerval value; 10422 10423 ret = get_errno(getitimer(arg1, &value)); 10424 if (!is_error(ret) && arg2) { 10425 if (copy_to_user_timeval(arg2, 10426 &value.it_interval) 10427 || copy_to_user_timeval(arg2 + sizeof(struct target_timeval), 10428 &value.it_value)) 10429 return -TARGET_EFAULT; 10430 } 10431 } 10432 return ret; 10433 #ifdef TARGET_NR_stat 10434 case TARGET_NR_stat: 10435 if (!(p = lock_user_string(arg1))) { 10436 return -TARGET_EFAULT; 10437 } 10438 ret = get_errno(stat(path(p), &st)); 10439 unlock_user(p, arg1, 0); 10440 goto do_stat; 10441 #endif 10442 #ifdef TARGET_NR_lstat 10443 case TARGET_NR_lstat: 10444 if (!(p = lock_user_string(arg1))) { 10445 return -TARGET_EFAULT; 10446 } 10447 ret = get_errno(lstat(path(p), &st)); 10448 unlock_user(p, arg1, 0); 10449 goto do_stat; 10450 #endif 10451 #ifdef TARGET_NR_fstat 10452 case TARGET_NR_fstat: 10453 { 10454 ret = get_errno(fstat(arg1, &st)); 10455 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat) 10456 do_stat: 10457 #endif 10458 if (!is_error(ret)) { 10459 struct target_stat *target_st; 10460 10461 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0)) 10462 return -TARGET_EFAULT; 10463 memset(target_st, 0, sizeof(*target_st)); 10464 __put_user(st.st_dev, &target_st->st_dev); 10465 __put_user(st.st_ino, &target_st->st_ino); 10466 __put_user(st.st_mode, &target_st->st_mode); 10467 __put_user(st.st_uid, &target_st->st_uid); 10468 __put_user(st.st_gid, &target_st->st_gid); 10469 __put_user(st.st_nlink, &target_st->st_nlink); 10470 __put_user(st.st_rdev, &target_st->st_rdev); 10471 __put_user(st.st_size, &target_st->st_size); 10472 __put_user(st.st_blksize, &target_st->st_blksize); 10473 __put_user(st.st_blocks, &target_st->st_blocks); 10474 __put_user(st.st_atime, &target_st->target_st_atime); 10475 __put_user(st.st_mtime, &target_st->target_st_mtime); 10476 __put_user(st.st_ctime, &target_st->target_st_ctime); 10477 #if defined(HAVE_STRUCT_STAT_ST_ATIM) && defined(TARGET_STAT_HAVE_NSEC) 10478 __put_user(st.st_atim.tv_nsec, 10479 &target_st->target_st_atime_nsec); 10480 __put_user(st.st_mtim.tv_nsec, 10481 &target_st->target_st_mtime_nsec); 10482 __put_user(st.st_ctim.tv_nsec, 10483 &target_st->target_st_ctime_nsec); 10484 #endif 10485 unlock_user_struct(target_st, arg2, 1); 10486 } 10487 } 10488 return ret; 10489 #endif 10490 case TARGET_NR_vhangup: 10491 return get_errno(vhangup()); 10492 #ifdef TARGET_NR_syscall 10493 case TARGET_NR_syscall: 10494 return do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5, 10495 arg6, arg7, arg8, 0); 10496 #endif 10497 #if defined(TARGET_NR_wait4) 10498 case TARGET_NR_wait4: 10499 { 10500 int status; 10501 abi_long status_ptr = arg2; 10502 struct rusage rusage, *rusage_ptr; 10503 abi_ulong target_rusage = arg4; 10504 abi_long rusage_err; 10505 if (target_rusage) 10506 rusage_ptr = &rusage; 10507 else 10508 rusage_ptr = NULL; 10509 ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr)); 10510 if (!is_error(ret)) { 10511 if (status_ptr && ret) { 10512 status = host_to_target_waitstatus(status); 10513 if (put_user_s32(status, status_ptr)) 10514 return -TARGET_EFAULT; 10515 } 10516 if (target_rusage) { 10517 rusage_err = host_to_target_rusage(target_rusage, &rusage); 10518 if (rusage_err) { 10519 ret = rusage_err; 10520 } 10521 } 10522 } 10523 } 10524 return ret; 10525 #endif 10526 #ifdef TARGET_NR_swapoff 10527 case TARGET_NR_swapoff: 10528 if (!(p = lock_user_string(arg1))) 10529 return -TARGET_EFAULT; 10530 ret = get_errno(swapoff(p)); 10531 unlock_user(p, arg1, 0); 10532 return ret; 10533 #endif 10534 case TARGET_NR_sysinfo: 10535 { 10536 struct target_sysinfo *target_value; 10537 struct sysinfo value; 10538 ret = get_errno(sysinfo(&value)); 10539 if (!is_error(ret) && arg1) 10540 { 10541 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0)) 10542 return -TARGET_EFAULT; 10543 __put_user(value.uptime, &target_value->uptime); 10544 __put_user(value.loads[0], &target_value->loads[0]); 10545 __put_user(value.loads[1], &target_value->loads[1]); 10546 __put_user(value.loads[2], &target_value->loads[2]); 10547 __put_user(value.totalram, &target_value->totalram); 10548 __put_user(value.freeram, &target_value->freeram); 10549 __put_user(value.sharedram, &target_value->sharedram); 10550 __put_user(value.bufferram, &target_value->bufferram); 10551 __put_user(value.totalswap, &target_value->totalswap); 10552 __put_user(value.freeswap, &target_value->freeswap); 10553 __put_user(value.procs, &target_value->procs); 10554 __put_user(value.totalhigh, &target_value->totalhigh); 10555 __put_user(value.freehigh, &target_value->freehigh); 10556 __put_user(value.mem_unit, &target_value->mem_unit); 10557 unlock_user_struct(target_value, arg1, 1); 10558 } 10559 } 10560 return ret; 10561 #ifdef TARGET_NR_ipc 10562 case TARGET_NR_ipc: 10563 return do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6); 10564 #endif 10565 #ifdef TARGET_NR_semget 10566 case TARGET_NR_semget: 10567 return get_errno(semget(arg1, arg2, arg3)); 10568 #endif 10569 #ifdef TARGET_NR_semop 10570 case TARGET_NR_semop: 10571 return do_semtimedop(arg1, arg2, arg3, 0, false); 10572 #endif 10573 #ifdef TARGET_NR_semtimedop 10574 case TARGET_NR_semtimedop: 10575 return do_semtimedop(arg1, arg2, arg3, arg4, false); 10576 #endif 10577 #ifdef TARGET_NR_semtimedop_time64 10578 case TARGET_NR_semtimedop_time64: 10579 return do_semtimedop(arg1, arg2, arg3, arg4, true); 10580 #endif 10581 #ifdef TARGET_NR_semctl 10582 case TARGET_NR_semctl: 10583 return do_semctl(arg1, arg2, arg3, arg4); 10584 #endif 10585 #ifdef TARGET_NR_msgctl 10586 case TARGET_NR_msgctl: 10587 return do_msgctl(arg1, arg2, arg3); 10588 #endif 10589 #ifdef TARGET_NR_msgget 10590 case TARGET_NR_msgget: 10591 return get_errno(msgget(arg1, arg2)); 10592 #endif 10593 #ifdef TARGET_NR_msgrcv 10594 case TARGET_NR_msgrcv: 10595 return do_msgrcv(arg1, arg2, arg3, arg4, arg5); 10596 #endif 10597 #ifdef TARGET_NR_msgsnd 10598 case TARGET_NR_msgsnd: 10599 return do_msgsnd(arg1, arg2, arg3, arg4); 10600 #endif 10601 #ifdef TARGET_NR_shmget 10602 case TARGET_NR_shmget: 10603 return get_errno(shmget(arg1, arg2, arg3)); 10604 #endif 10605 #ifdef TARGET_NR_shmctl 10606 case TARGET_NR_shmctl: 10607 return do_shmctl(arg1, arg2, arg3); 10608 #endif 10609 #ifdef TARGET_NR_shmat 10610 case TARGET_NR_shmat: 10611 return do_shmat(cpu_env, arg1, arg2, arg3); 10612 #endif 10613 #ifdef TARGET_NR_shmdt 10614 case TARGET_NR_shmdt: 10615 return do_shmdt(arg1); 10616 #endif 10617 case TARGET_NR_fsync: 10618 return get_errno(fsync(arg1)); 10619 case TARGET_NR_clone: 10620 /* Linux manages to have three different orderings for its 10621 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines 10622 * match the kernel's CONFIG_CLONE_* settings. 10623 * Microblaze is further special in that it uses a sixth 10624 * implicit argument to clone for the TLS pointer. 10625 */ 10626 #if defined(TARGET_MICROBLAZE) 10627 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5)); 10628 #elif defined(TARGET_CLONE_BACKWARDS) 10629 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5)); 10630 #elif defined(TARGET_CLONE_BACKWARDS2) 10631 ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4)); 10632 #else 10633 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4)); 10634 #endif 10635 return ret; 10636 #ifdef __NR_exit_group 10637 /* new thread calls */ 10638 case TARGET_NR_exit_group: 10639 preexit_cleanup(cpu_env, arg1); 10640 return get_errno(exit_group(arg1)); 10641 #endif 10642 case TARGET_NR_setdomainname: 10643 if (!(p = lock_user_string(arg1))) 10644 return -TARGET_EFAULT; 10645 ret = get_errno(setdomainname(p, arg2)); 10646 unlock_user(p, arg1, 0); 10647 return ret; 10648 case TARGET_NR_uname: 10649 /* no need to transcode because we use the linux syscall */ 10650 { 10651 struct new_utsname * buf; 10652 10653 if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0)) 10654 return -TARGET_EFAULT; 10655 ret = get_errno(sys_uname(buf)); 10656 if (!is_error(ret)) { 10657 /* Overwrite the native machine name with whatever is being 10658 emulated. */ 10659 g_strlcpy(buf->machine, cpu_to_uname_machine(cpu_env), 10660 sizeof(buf->machine)); 10661 /* Allow the user to override the reported release. */ 10662 if (qemu_uname_release && *qemu_uname_release) { 10663 g_strlcpy(buf->release, qemu_uname_release, 10664 sizeof(buf->release)); 10665 } 10666 } 10667 unlock_user_struct(buf, arg1, 1); 10668 } 10669 return ret; 10670 #ifdef TARGET_I386 10671 case TARGET_NR_modify_ldt: 10672 return do_modify_ldt(cpu_env, arg1, arg2, arg3); 10673 #if !defined(TARGET_X86_64) 10674 case TARGET_NR_vm86: 10675 return do_vm86(cpu_env, arg1, arg2); 10676 #endif 10677 #endif 10678 #if defined(TARGET_NR_adjtimex) 10679 case TARGET_NR_adjtimex: 10680 { 10681 struct timex host_buf; 10682 10683 if (target_to_host_timex(&host_buf, arg1) != 0) { 10684 return -TARGET_EFAULT; 10685 } 10686 ret = get_errno(adjtimex(&host_buf)); 10687 if (!is_error(ret)) { 10688 if (host_to_target_timex(arg1, &host_buf) != 0) { 10689 return -TARGET_EFAULT; 10690 } 10691 } 10692 } 10693 return ret; 10694 #endif 10695 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME) 10696 case TARGET_NR_clock_adjtime: 10697 { 10698 struct timex htx, *phtx = &htx; 10699 10700 if (target_to_host_timex(phtx, arg2) != 0) { 10701 return -TARGET_EFAULT; 10702 } 10703 ret = get_errno(clock_adjtime(arg1, phtx)); 10704 if (!is_error(ret) && phtx) { 10705 if (host_to_target_timex(arg2, phtx) != 0) { 10706 return -TARGET_EFAULT; 10707 } 10708 } 10709 } 10710 return ret; 10711 #endif 10712 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME) 10713 case TARGET_NR_clock_adjtime64: 10714 { 10715 struct timex htx; 10716 10717 if (target_to_host_timex64(&htx, arg2) != 0) { 10718 return -TARGET_EFAULT; 10719 } 10720 ret = get_errno(clock_adjtime(arg1, &htx)); 10721 if (!is_error(ret) && host_to_target_timex64(arg2, &htx)) { 10722 return -TARGET_EFAULT; 10723 } 10724 } 10725 return ret; 10726 #endif 10727 case TARGET_NR_getpgid: 10728 return get_errno(getpgid(arg1)); 10729 case TARGET_NR_fchdir: 10730 return get_errno(fchdir(arg1)); 10731 case TARGET_NR_personality: 10732 return get_errno(personality(arg1)); 10733 #ifdef TARGET_NR__llseek /* Not on alpha */ 10734 case TARGET_NR__llseek: 10735 { 10736 int64_t res; 10737 #if !defined(__NR_llseek) 10738 res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5); 10739 if (res == -1) { 10740 ret = get_errno(res); 10741 } else { 10742 ret = 0; 10743 } 10744 #else 10745 ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5)); 10746 #endif 10747 if ((ret == 0) && put_user_s64(res, arg4)) { 10748 return -TARGET_EFAULT; 10749 } 10750 } 10751 return ret; 10752 #endif 10753 #ifdef TARGET_NR_getdents 10754 case TARGET_NR_getdents: 10755 return do_getdents(arg1, arg2, arg3); 10756 #endif /* TARGET_NR_getdents */ 10757 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64) 10758 case TARGET_NR_getdents64: 10759 return do_getdents64(arg1, arg2, arg3); 10760 #endif /* TARGET_NR_getdents64 */ 10761 #if defined(TARGET_NR__newselect) 10762 case TARGET_NR__newselect: 10763 return do_select(arg1, arg2, arg3, arg4, arg5); 10764 #endif 10765 #ifdef TARGET_NR_poll 10766 case TARGET_NR_poll: 10767 return do_ppoll(arg1, arg2, arg3, arg4, arg5, false, false); 10768 #endif 10769 #ifdef TARGET_NR_ppoll 10770 case TARGET_NR_ppoll: 10771 return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, false); 10772 #endif 10773 #ifdef TARGET_NR_ppoll_time64 10774 case TARGET_NR_ppoll_time64: 10775 return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, true); 10776 #endif 10777 case TARGET_NR_flock: 10778 /* NOTE: the flock constant seems to be the same for every 10779 Linux platform */ 10780 return get_errno(safe_flock(arg1, arg2)); 10781 case TARGET_NR_readv: 10782 { 10783 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0); 10784 if (vec != NULL) { 10785 ret = get_errno(safe_readv(arg1, vec, arg3)); 10786 unlock_iovec(vec, arg2, arg3, 1); 10787 } else { 10788 ret = -host_to_target_errno(errno); 10789 } 10790 } 10791 return ret; 10792 case TARGET_NR_writev: 10793 { 10794 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 10795 if (vec != NULL) { 10796 ret = get_errno(safe_writev(arg1, vec, arg3)); 10797 unlock_iovec(vec, arg2, arg3, 0); 10798 } else { 10799 ret = -host_to_target_errno(errno); 10800 } 10801 } 10802 return ret; 10803 #if defined(TARGET_NR_preadv) 10804 case TARGET_NR_preadv: 10805 { 10806 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0); 10807 if (vec != NULL) { 10808 unsigned long low, high; 10809 10810 target_to_host_low_high(arg4, arg5, &low, &high); 10811 ret = get_errno(safe_preadv(arg1, vec, arg3, low, high)); 10812 unlock_iovec(vec, arg2, arg3, 1); 10813 } else { 10814 ret = -host_to_target_errno(errno); 10815 } 10816 } 10817 return ret; 10818 #endif 10819 #if defined(TARGET_NR_pwritev) 10820 case TARGET_NR_pwritev: 10821 { 10822 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 10823 if (vec != NULL) { 10824 unsigned long low, high; 10825 10826 target_to_host_low_high(arg4, arg5, &low, &high); 10827 ret = get_errno(safe_pwritev(arg1, vec, arg3, low, high)); 10828 unlock_iovec(vec, arg2, arg3, 0); 10829 } else { 10830 ret = -host_to_target_errno(errno); 10831 } 10832 } 10833 return ret; 10834 #endif 10835 case TARGET_NR_getsid: 10836 return get_errno(getsid(arg1)); 10837 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */ 10838 case TARGET_NR_fdatasync: 10839 return get_errno(fdatasync(arg1)); 10840 #endif 10841 case TARGET_NR_sched_getaffinity: 10842 { 10843 unsigned int mask_size; 10844 unsigned long *mask; 10845 10846 /* 10847 * sched_getaffinity needs multiples of ulong, so need to take 10848 * care of mismatches between target ulong and host ulong sizes. 10849 */ 10850 if (arg2 & (sizeof(abi_ulong) - 1)) { 10851 return -TARGET_EINVAL; 10852 } 10853 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1); 10854 10855 mask = alloca(mask_size); 10856 memset(mask, 0, mask_size); 10857 ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask)); 10858 10859 if (!is_error(ret)) { 10860 if (ret > arg2) { 10861 /* More data returned than the caller's buffer will fit. 10862 * This only happens if sizeof(abi_long) < sizeof(long) 10863 * and the caller passed us a buffer holding an odd number 10864 * of abi_longs. If the host kernel is actually using the 10865 * extra 4 bytes then fail EINVAL; otherwise we can just 10866 * ignore them and only copy the interesting part. 10867 */ 10868 int numcpus = sysconf(_SC_NPROCESSORS_CONF); 10869 if (numcpus > arg2 * 8) { 10870 return -TARGET_EINVAL; 10871 } 10872 ret = arg2; 10873 } 10874 10875 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) { 10876 return -TARGET_EFAULT; 10877 } 10878 } 10879 } 10880 return ret; 10881 case TARGET_NR_sched_setaffinity: 10882 { 10883 unsigned int mask_size; 10884 unsigned long *mask; 10885 10886 /* 10887 * sched_setaffinity needs multiples of ulong, so need to take 10888 * care of mismatches between target ulong and host ulong sizes. 10889 */ 10890 if (arg2 & (sizeof(abi_ulong) - 1)) { 10891 return -TARGET_EINVAL; 10892 } 10893 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1); 10894 mask = alloca(mask_size); 10895 10896 ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2); 10897 if (ret) { 10898 return ret; 10899 } 10900 10901 return get_errno(sys_sched_setaffinity(arg1, mask_size, mask)); 10902 } 10903 case TARGET_NR_getcpu: 10904 { 10905 unsigned cpu, node; 10906 ret = get_errno(sys_getcpu(arg1 ? &cpu : NULL, 10907 arg2 ? &node : NULL, 10908 NULL)); 10909 if (is_error(ret)) { 10910 return ret; 10911 } 10912 if (arg1 && put_user_u32(cpu, arg1)) { 10913 return -TARGET_EFAULT; 10914 } 10915 if (arg2 && put_user_u32(node, arg2)) { 10916 return -TARGET_EFAULT; 10917 } 10918 } 10919 return ret; 10920 case TARGET_NR_sched_setparam: 10921 { 10922 struct target_sched_param *target_schp; 10923 struct sched_param schp; 10924 10925 if (arg2 == 0) { 10926 return -TARGET_EINVAL; 10927 } 10928 if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1)) { 10929 return -TARGET_EFAULT; 10930 } 10931 schp.sched_priority = tswap32(target_schp->sched_priority); 10932 unlock_user_struct(target_schp, arg2, 0); 10933 return get_errno(sys_sched_setparam(arg1, &schp)); 10934 } 10935 case TARGET_NR_sched_getparam: 10936 { 10937 struct target_sched_param *target_schp; 10938 struct sched_param schp; 10939 10940 if (arg2 == 0) { 10941 return -TARGET_EINVAL; 10942 } 10943 ret = get_errno(sys_sched_getparam(arg1, &schp)); 10944 if (!is_error(ret)) { 10945 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0)) { 10946 return -TARGET_EFAULT; 10947 } 10948 target_schp->sched_priority = tswap32(schp.sched_priority); 10949 unlock_user_struct(target_schp, arg2, 1); 10950 } 10951 } 10952 return ret; 10953 case TARGET_NR_sched_setscheduler: 10954 { 10955 struct target_sched_param *target_schp; 10956 struct sched_param schp; 10957 if (arg3 == 0) { 10958 return -TARGET_EINVAL; 10959 } 10960 if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1)) { 10961 return -TARGET_EFAULT; 10962 } 10963 schp.sched_priority = tswap32(target_schp->sched_priority); 10964 unlock_user_struct(target_schp, arg3, 0); 10965 return get_errno(sys_sched_setscheduler(arg1, arg2, &schp)); 10966 } 10967 case TARGET_NR_sched_getscheduler: 10968 return get_errno(sys_sched_getscheduler(arg1)); 10969 case TARGET_NR_sched_getattr: 10970 { 10971 struct target_sched_attr *target_scha; 10972 struct sched_attr scha; 10973 if (arg2 == 0) { 10974 return -TARGET_EINVAL; 10975 } 10976 if (arg3 > sizeof(scha)) { 10977 arg3 = sizeof(scha); 10978 } 10979 ret = get_errno(sys_sched_getattr(arg1, &scha, arg3, arg4)); 10980 if (!is_error(ret)) { 10981 target_scha = lock_user(VERIFY_WRITE, arg2, arg3, 0); 10982 if (!target_scha) { 10983 return -TARGET_EFAULT; 10984 } 10985 target_scha->size = tswap32(scha.size); 10986 target_scha->sched_policy = tswap32(scha.sched_policy); 10987 target_scha->sched_flags = tswap64(scha.sched_flags); 10988 target_scha->sched_nice = tswap32(scha.sched_nice); 10989 target_scha->sched_priority = tswap32(scha.sched_priority); 10990 target_scha->sched_runtime = tswap64(scha.sched_runtime); 10991 target_scha->sched_deadline = tswap64(scha.sched_deadline); 10992 target_scha->sched_period = tswap64(scha.sched_period); 10993 if (scha.size > offsetof(struct sched_attr, sched_util_min)) { 10994 target_scha->sched_util_min = tswap32(scha.sched_util_min); 10995 target_scha->sched_util_max = tswap32(scha.sched_util_max); 10996 } 10997 unlock_user(target_scha, arg2, arg3); 10998 } 10999 return ret; 11000 } 11001 case TARGET_NR_sched_setattr: 11002 { 11003 struct target_sched_attr *target_scha; 11004 struct sched_attr scha; 11005 uint32_t size; 11006 int zeroed; 11007 if (arg2 == 0) { 11008 return -TARGET_EINVAL; 11009 } 11010 if (get_user_u32(size, arg2)) { 11011 return -TARGET_EFAULT; 11012 } 11013 if (!size) { 11014 size = offsetof(struct target_sched_attr, sched_util_min); 11015 } 11016 if (size < offsetof(struct target_sched_attr, sched_util_min)) { 11017 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) { 11018 return -TARGET_EFAULT; 11019 } 11020 return -TARGET_E2BIG; 11021 } 11022 11023 zeroed = check_zeroed_user(arg2, sizeof(struct target_sched_attr), size); 11024 if (zeroed < 0) { 11025 return zeroed; 11026 } else if (zeroed == 0) { 11027 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) { 11028 return -TARGET_EFAULT; 11029 } 11030 return -TARGET_E2BIG; 11031 } 11032 if (size > sizeof(struct target_sched_attr)) { 11033 size = sizeof(struct target_sched_attr); 11034 } 11035 11036 target_scha = lock_user(VERIFY_READ, arg2, size, 1); 11037 if (!target_scha) { 11038 return -TARGET_EFAULT; 11039 } 11040 scha.size = size; 11041 scha.sched_policy = tswap32(target_scha->sched_policy); 11042 scha.sched_flags = tswap64(target_scha->sched_flags); 11043 scha.sched_nice = tswap32(target_scha->sched_nice); 11044 scha.sched_priority = tswap32(target_scha->sched_priority); 11045 scha.sched_runtime = tswap64(target_scha->sched_runtime); 11046 scha.sched_deadline = tswap64(target_scha->sched_deadline); 11047 scha.sched_period = tswap64(target_scha->sched_period); 11048 if (size > offsetof(struct target_sched_attr, sched_util_min)) { 11049 scha.sched_util_min = tswap32(target_scha->sched_util_min); 11050 scha.sched_util_max = tswap32(target_scha->sched_util_max); 11051 } 11052 unlock_user(target_scha, arg2, 0); 11053 return get_errno(sys_sched_setattr(arg1, &scha, arg3)); 11054 } 11055 case TARGET_NR_sched_yield: 11056 return get_errno(sched_yield()); 11057 case TARGET_NR_sched_get_priority_max: 11058 return get_errno(sched_get_priority_max(arg1)); 11059 case TARGET_NR_sched_get_priority_min: 11060 return get_errno(sched_get_priority_min(arg1)); 11061 #ifdef TARGET_NR_sched_rr_get_interval 11062 case TARGET_NR_sched_rr_get_interval: 11063 { 11064 struct timespec ts; 11065 ret = get_errno(sched_rr_get_interval(arg1, &ts)); 11066 if (!is_error(ret)) { 11067 ret = host_to_target_timespec(arg2, &ts); 11068 } 11069 } 11070 return ret; 11071 #endif 11072 #ifdef TARGET_NR_sched_rr_get_interval_time64 11073 case TARGET_NR_sched_rr_get_interval_time64: 11074 { 11075 struct timespec ts; 11076 ret = get_errno(sched_rr_get_interval(arg1, &ts)); 11077 if (!is_error(ret)) { 11078 ret = host_to_target_timespec64(arg2, &ts); 11079 } 11080 } 11081 return ret; 11082 #endif 11083 #if defined(TARGET_NR_nanosleep) 11084 case TARGET_NR_nanosleep: 11085 { 11086 struct timespec req, rem; 11087 target_to_host_timespec(&req, arg1); 11088 ret = get_errno(safe_nanosleep(&req, &rem)); 11089 if (is_error(ret) && arg2) { 11090 host_to_target_timespec(arg2, &rem); 11091 } 11092 } 11093 return ret; 11094 #endif 11095 case TARGET_NR_prctl: 11096 return do_prctl(cpu_env, arg1, arg2, arg3, arg4, arg5); 11097 break; 11098 #ifdef TARGET_NR_arch_prctl 11099 case TARGET_NR_arch_prctl: 11100 return do_arch_prctl(cpu_env, arg1, arg2); 11101 #endif 11102 #ifdef TARGET_NR_pread64 11103 case TARGET_NR_pread64: 11104 if (regpairs_aligned(cpu_env, num)) { 11105 arg4 = arg5; 11106 arg5 = arg6; 11107 } 11108 if (arg2 == 0 && arg3 == 0) { 11109 /* Special-case NULL buffer and zero length, which should succeed */ 11110 p = 0; 11111 } else { 11112 p = lock_user(VERIFY_WRITE, arg2, arg3, 0); 11113 if (!p) { 11114 return -TARGET_EFAULT; 11115 } 11116 } 11117 ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5))); 11118 unlock_user(p, arg2, ret); 11119 return ret; 11120 case TARGET_NR_pwrite64: 11121 if (regpairs_aligned(cpu_env, num)) { 11122 arg4 = arg5; 11123 arg5 = arg6; 11124 } 11125 if (arg2 == 0 && arg3 == 0) { 11126 /* Special-case NULL buffer and zero length, which should succeed */ 11127 p = 0; 11128 } else { 11129 p = lock_user(VERIFY_READ, arg2, arg3, 1); 11130 if (!p) { 11131 return -TARGET_EFAULT; 11132 } 11133 } 11134 ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5))); 11135 unlock_user(p, arg2, 0); 11136 return ret; 11137 #endif 11138 case TARGET_NR_getcwd: 11139 if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0))) 11140 return -TARGET_EFAULT; 11141 ret = get_errno(sys_getcwd1(p, arg2)); 11142 unlock_user(p, arg1, ret); 11143 return ret; 11144 case TARGET_NR_capget: 11145 case TARGET_NR_capset: 11146 { 11147 struct target_user_cap_header *target_header; 11148 struct target_user_cap_data *target_data = NULL; 11149 struct __user_cap_header_struct header; 11150 struct __user_cap_data_struct data[2]; 11151 struct __user_cap_data_struct *dataptr = NULL; 11152 int i, target_datalen; 11153 int data_items = 1; 11154 11155 if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) { 11156 return -TARGET_EFAULT; 11157 } 11158 header.version = tswap32(target_header->version); 11159 header.pid = tswap32(target_header->pid); 11160 11161 if (header.version != _LINUX_CAPABILITY_VERSION) { 11162 /* Version 2 and up takes pointer to two user_data structs */ 11163 data_items = 2; 11164 } 11165 11166 target_datalen = sizeof(*target_data) * data_items; 11167 11168 if (arg2) { 11169 if (num == TARGET_NR_capget) { 11170 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0); 11171 } else { 11172 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1); 11173 } 11174 if (!target_data) { 11175 unlock_user_struct(target_header, arg1, 0); 11176 return -TARGET_EFAULT; 11177 } 11178 11179 if (num == TARGET_NR_capset) { 11180 for (i = 0; i < data_items; i++) { 11181 data[i].effective = tswap32(target_data[i].effective); 11182 data[i].permitted = tswap32(target_data[i].permitted); 11183 data[i].inheritable = tswap32(target_data[i].inheritable); 11184 } 11185 } 11186 11187 dataptr = data; 11188 } 11189 11190 if (num == TARGET_NR_capget) { 11191 ret = get_errno(capget(&header, dataptr)); 11192 } else { 11193 ret = get_errno(capset(&header, dataptr)); 11194 } 11195 11196 /* The kernel always updates version for both capget and capset */ 11197 target_header->version = tswap32(header.version); 11198 unlock_user_struct(target_header, arg1, 1); 11199 11200 if (arg2) { 11201 if (num == TARGET_NR_capget) { 11202 for (i = 0; i < data_items; i++) { 11203 target_data[i].effective = tswap32(data[i].effective); 11204 target_data[i].permitted = tswap32(data[i].permitted); 11205 target_data[i].inheritable = tswap32(data[i].inheritable); 11206 } 11207 unlock_user(target_data, arg2, target_datalen); 11208 } else { 11209 unlock_user(target_data, arg2, 0); 11210 } 11211 } 11212 return ret; 11213 } 11214 case TARGET_NR_sigaltstack: 11215 return do_sigaltstack(arg1, arg2, cpu_env); 11216 11217 #ifdef CONFIG_SENDFILE 11218 #ifdef TARGET_NR_sendfile 11219 case TARGET_NR_sendfile: 11220 { 11221 off_t *offp = NULL; 11222 off_t off; 11223 if (arg3) { 11224 ret = get_user_sal(off, arg3); 11225 if (is_error(ret)) { 11226 return ret; 11227 } 11228 offp = &off; 11229 } 11230 ret = get_errno(sendfile(arg1, arg2, offp, arg4)); 11231 if (!is_error(ret) && arg3) { 11232 abi_long ret2 = put_user_sal(off, arg3); 11233 if (is_error(ret2)) { 11234 ret = ret2; 11235 } 11236 } 11237 return ret; 11238 } 11239 #endif 11240 #ifdef TARGET_NR_sendfile64 11241 case TARGET_NR_sendfile64: 11242 { 11243 off_t *offp = NULL; 11244 off_t off; 11245 if (arg3) { 11246 ret = get_user_s64(off, arg3); 11247 if (is_error(ret)) { 11248 return ret; 11249 } 11250 offp = &off; 11251 } 11252 ret = get_errno(sendfile(arg1, arg2, offp, arg4)); 11253 if (!is_error(ret) && arg3) { 11254 abi_long ret2 = put_user_s64(off, arg3); 11255 if (is_error(ret2)) { 11256 ret = ret2; 11257 } 11258 } 11259 return ret; 11260 } 11261 #endif 11262 #endif 11263 #ifdef TARGET_NR_vfork 11264 case TARGET_NR_vfork: 11265 return get_errno(do_fork(cpu_env, 11266 CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD, 11267 0, 0, 0, 0)); 11268 #endif 11269 #ifdef TARGET_NR_ugetrlimit 11270 case TARGET_NR_ugetrlimit: 11271 { 11272 struct rlimit rlim; 11273 int resource = target_to_host_resource(arg1); 11274 ret = get_errno(getrlimit(resource, &rlim)); 11275 if (!is_error(ret)) { 11276 struct target_rlimit *target_rlim; 11277 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0)) 11278 return -TARGET_EFAULT; 11279 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur); 11280 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max); 11281 unlock_user_struct(target_rlim, arg2, 1); 11282 } 11283 return ret; 11284 } 11285 #endif 11286 #ifdef TARGET_NR_truncate64 11287 case TARGET_NR_truncate64: 11288 if (!(p = lock_user_string(arg1))) 11289 return -TARGET_EFAULT; 11290 ret = target_truncate64(cpu_env, p, arg2, arg3, arg4); 11291 unlock_user(p, arg1, 0); 11292 return ret; 11293 #endif 11294 #ifdef TARGET_NR_ftruncate64 11295 case TARGET_NR_ftruncate64: 11296 return target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4); 11297 #endif 11298 #ifdef TARGET_NR_stat64 11299 case TARGET_NR_stat64: 11300 if (!(p = lock_user_string(arg1))) { 11301 return -TARGET_EFAULT; 11302 } 11303 ret = get_errno(stat(path(p), &st)); 11304 unlock_user(p, arg1, 0); 11305 if (!is_error(ret)) 11306 ret = host_to_target_stat64(cpu_env, arg2, &st); 11307 return ret; 11308 #endif 11309 #ifdef TARGET_NR_lstat64 11310 case TARGET_NR_lstat64: 11311 if (!(p = lock_user_string(arg1))) { 11312 return -TARGET_EFAULT; 11313 } 11314 ret = get_errno(lstat(path(p), &st)); 11315 unlock_user(p, arg1, 0); 11316 if (!is_error(ret)) 11317 ret = host_to_target_stat64(cpu_env, arg2, &st); 11318 return ret; 11319 #endif 11320 #ifdef TARGET_NR_fstat64 11321 case TARGET_NR_fstat64: 11322 ret = get_errno(fstat(arg1, &st)); 11323 if (!is_error(ret)) 11324 ret = host_to_target_stat64(cpu_env, arg2, &st); 11325 return ret; 11326 #endif 11327 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat)) 11328 #ifdef TARGET_NR_fstatat64 11329 case TARGET_NR_fstatat64: 11330 #endif 11331 #ifdef TARGET_NR_newfstatat 11332 case TARGET_NR_newfstatat: 11333 #endif 11334 if (!(p = lock_user_string(arg2))) { 11335 return -TARGET_EFAULT; 11336 } 11337 ret = get_errno(fstatat(arg1, path(p), &st, arg4)); 11338 unlock_user(p, arg2, 0); 11339 if (!is_error(ret)) 11340 ret = host_to_target_stat64(cpu_env, arg3, &st); 11341 return ret; 11342 #endif 11343 #if defined(TARGET_NR_statx) 11344 case TARGET_NR_statx: 11345 { 11346 struct target_statx *target_stx; 11347 int dirfd = arg1; 11348 int flags = arg3; 11349 11350 p = lock_user_string(arg2); 11351 if (p == NULL) { 11352 return -TARGET_EFAULT; 11353 } 11354 #if defined(__NR_statx) 11355 { 11356 /* 11357 * It is assumed that struct statx is architecture independent. 11358 */ 11359 struct target_statx host_stx; 11360 int mask = arg4; 11361 11362 ret = get_errno(sys_statx(dirfd, p, flags, mask, &host_stx)); 11363 if (!is_error(ret)) { 11364 if (host_to_target_statx(&host_stx, arg5) != 0) { 11365 unlock_user(p, arg2, 0); 11366 return -TARGET_EFAULT; 11367 } 11368 } 11369 11370 if (ret != -TARGET_ENOSYS) { 11371 unlock_user(p, arg2, 0); 11372 return ret; 11373 } 11374 } 11375 #endif 11376 ret = get_errno(fstatat(dirfd, path(p), &st, flags)); 11377 unlock_user(p, arg2, 0); 11378 11379 if (!is_error(ret)) { 11380 if (!lock_user_struct(VERIFY_WRITE, target_stx, arg5, 0)) { 11381 return -TARGET_EFAULT; 11382 } 11383 memset(target_stx, 0, sizeof(*target_stx)); 11384 __put_user(major(st.st_dev), &target_stx->stx_dev_major); 11385 __put_user(minor(st.st_dev), &target_stx->stx_dev_minor); 11386 __put_user(st.st_ino, &target_stx->stx_ino); 11387 __put_user(st.st_mode, &target_stx->stx_mode); 11388 __put_user(st.st_uid, &target_stx->stx_uid); 11389 __put_user(st.st_gid, &target_stx->stx_gid); 11390 __put_user(st.st_nlink, &target_stx->stx_nlink); 11391 __put_user(major(st.st_rdev), &target_stx->stx_rdev_major); 11392 __put_user(minor(st.st_rdev), &target_stx->stx_rdev_minor); 11393 __put_user(st.st_size, &target_stx->stx_size); 11394 __put_user(st.st_blksize, &target_stx->stx_blksize); 11395 __put_user(st.st_blocks, &target_stx->stx_blocks); 11396 __put_user(st.st_atime, &target_stx->stx_atime.tv_sec); 11397 __put_user(st.st_mtime, &target_stx->stx_mtime.tv_sec); 11398 __put_user(st.st_ctime, &target_stx->stx_ctime.tv_sec); 11399 unlock_user_struct(target_stx, arg5, 1); 11400 } 11401 } 11402 return ret; 11403 #endif 11404 #ifdef TARGET_NR_lchown 11405 case TARGET_NR_lchown: 11406 if (!(p = lock_user_string(arg1))) 11407 return -TARGET_EFAULT; 11408 ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3))); 11409 unlock_user(p, arg1, 0); 11410 return ret; 11411 #endif 11412 #ifdef TARGET_NR_getuid 11413 case TARGET_NR_getuid: 11414 return get_errno(high2lowuid(getuid())); 11415 #endif 11416 #ifdef TARGET_NR_getgid 11417 case TARGET_NR_getgid: 11418 return get_errno(high2lowgid(getgid())); 11419 #endif 11420 #ifdef TARGET_NR_geteuid 11421 case TARGET_NR_geteuid: 11422 return get_errno(high2lowuid(geteuid())); 11423 #endif 11424 #ifdef TARGET_NR_getegid 11425 case TARGET_NR_getegid: 11426 return get_errno(high2lowgid(getegid())); 11427 #endif 11428 case TARGET_NR_setreuid: 11429 return get_errno(setreuid(low2highuid(arg1), low2highuid(arg2))); 11430 case TARGET_NR_setregid: 11431 return get_errno(setregid(low2highgid(arg1), low2highgid(arg2))); 11432 case TARGET_NR_getgroups: 11433 { 11434 int gidsetsize = arg1; 11435 target_id *target_grouplist; 11436 gid_t *grouplist; 11437 int i; 11438 11439 grouplist = alloca(gidsetsize * sizeof(gid_t)); 11440 ret = get_errno(getgroups(gidsetsize, grouplist)); 11441 if (gidsetsize == 0) 11442 return ret; 11443 if (!is_error(ret)) { 11444 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * sizeof(target_id), 0); 11445 if (!target_grouplist) 11446 return -TARGET_EFAULT; 11447 for(i = 0;i < ret; i++) 11448 target_grouplist[i] = tswapid(high2lowgid(grouplist[i])); 11449 unlock_user(target_grouplist, arg2, gidsetsize * sizeof(target_id)); 11450 } 11451 } 11452 return ret; 11453 case TARGET_NR_setgroups: 11454 { 11455 int gidsetsize = arg1; 11456 target_id *target_grouplist; 11457 gid_t *grouplist = NULL; 11458 int i; 11459 if (gidsetsize) { 11460 grouplist = alloca(gidsetsize * sizeof(gid_t)); 11461 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * sizeof(target_id), 1); 11462 if (!target_grouplist) { 11463 return -TARGET_EFAULT; 11464 } 11465 for (i = 0; i < gidsetsize; i++) { 11466 grouplist[i] = low2highgid(tswapid(target_grouplist[i])); 11467 } 11468 unlock_user(target_grouplist, arg2, 0); 11469 } 11470 return get_errno(setgroups(gidsetsize, grouplist)); 11471 } 11472 case TARGET_NR_fchown: 11473 return get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3))); 11474 #if defined(TARGET_NR_fchownat) 11475 case TARGET_NR_fchownat: 11476 if (!(p = lock_user_string(arg2))) 11477 return -TARGET_EFAULT; 11478 ret = get_errno(fchownat(arg1, p, low2highuid(arg3), 11479 low2highgid(arg4), arg5)); 11480 unlock_user(p, arg2, 0); 11481 return ret; 11482 #endif 11483 #ifdef TARGET_NR_setresuid 11484 case TARGET_NR_setresuid: 11485 return get_errno(sys_setresuid(low2highuid(arg1), 11486 low2highuid(arg2), 11487 low2highuid(arg3))); 11488 #endif 11489 #ifdef TARGET_NR_getresuid 11490 case TARGET_NR_getresuid: 11491 { 11492 uid_t ruid, euid, suid; 11493 ret = get_errno(getresuid(&ruid, &euid, &suid)); 11494 if (!is_error(ret)) { 11495 if (put_user_id(high2lowuid(ruid), arg1) 11496 || put_user_id(high2lowuid(euid), arg2) 11497 || put_user_id(high2lowuid(suid), arg3)) 11498 return -TARGET_EFAULT; 11499 } 11500 } 11501 return ret; 11502 #endif 11503 #ifdef TARGET_NR_getresgid 11504 case TARGET_NR_setresgid: 11505 return get_errno(sys_setresgid(low2highgid(arg1), 11506 low2highgid(arg2), 11507 low2highgid(arg3))); 11508 #endif 11509 #ifdef TARGET_NR_getresgid 11510 case TARGET_NR_getresgid: 11511 { 11512 gid_t rgid, egid, sgid; 11513 ret = get_errno(getresgid(&rgid, &egid, &sgid)); 11514 if (!is_error(ret)) { 11515 if (put_user_id(high2lowgid(rgid), arg1) 11516 || put_user_id(high2lowgid(egid), arg2) 11517 || put_user_id(high2lowgid(sgid), arg3)) 11518 return -TARGET_EFAULT; 11519 } 11520 } 11521 return ret; 11522 #endif 11523 #ifdef TARGET_NR_chown 11524 case TARGET_NR_chown: 11525 if (!(p = lock_user_string(arg1))) 11526 return -TARGET_EFAULT; 11527 ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3))); 11528 unlock_user(p, arg1, 0); 11529 return ret; 11530 #endif 11531 case TARGET_NR_setuid: 11532 return get_errno(sys_setuid(low2highuid(arg1))); 11533 case TARGET_NR_setgid: 11534 return get_errno(sys_setgid(low2highgid(arg1))); 11535 case TARGET_NR_setfsuid: 11536 return get_errno(setfsuid(arg1)); 11537 case TARGET_NR_setfsgid: 11538 return get_errno(setfsgid(arg1)); 11539 11540 #ifdef TARGET_NR_lchown32 11541 case TARGET_NR_lchown32: 11542 if (!(p = lock_user_string(arg1))) 11543 return -TARGET_EFAULT; 11544 ret = get_errno(lchown(p, arg2, arg3)); 11545 unlock_user(p, arg1, 0); 11546 return ret; 11547 #endif 11548 #ifdef TARGET_NR_getuid32 11549 case TARGET_NR_getuid32: 11550 return get_errno(getuid()); 11551 #endif 11552 11553 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA) 11554 /* Alpha specific */ 11555 case TARGET_NR_getxuid: 11556 { 11557 uid_t euid; 11558 euid=geteuid(); 11559 cpu_env->ir[IR_A4]=euid; 11560 } 11561 return get_errno(getuid()); 11562 #endif 11563 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA) 11564 /* Alpha specific */ 11565 case TARGET_NR_getxgid: 11566 { 11567 uid_t egid; 11568 egid=getegid(); 11569 cpu_env->ir[IR_A4]=egid; 11570 } 11571 return get_errno(getgid()); 11572 #endif 11573 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA) 11574 /* Alpha specific */ 11575 case TARGET_NR_osf_getsysinfo: 11576 ret = -TARGET_EOPNOTSUPP; 11577 switch (arg1) { 11578 case TARGET_GSI_IEEE_FP_CONTROL: 11579 { 11580 uint64_t fpcr = cpu_alpha_load_fpcr(cpu_env); 11581 uint64_t swcr = cpu_env->swcr; 11582 11583 swcr &= ~SWCR_STATUS_MASK; 11584 swcr |= (fpcr >> 35) & SWCR_STATUS_MASK; 11585 11586 if (put_user_u64 (swcr, arg2)) 11587 return -TARGET_EFAULT; 11588 ret = 0; 11589 } 11590 break; 11591 11592 /* case GSI_IEEE_STATE_AT_SIGNAL: 11593 -- Not implemented in linux kernel. 11594 case GSI_UACPROC: 11595 -- Retrieves current unaligned access state; not much used. 11596 case GSI_PROC_TYPE: 11597 -- Retrieves implver information; surely not used. 11598 case GSI_GET_HWRPB: 11599 -- Grabs a copy of the HWRPB; surely not used. 11600 */ 11601 } 11602 return ret; 11603 #endif 11604 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA) 11605 /* Alpha specific */ 11606 case TARGET_NR_osf_setsysinfo: 11607 ret = -TARGET_EOPNOTSUPP; 11608 switch (arg1) { 11609 case TARGET_SSI_IEEE_FP_CONTROL: 11610 { 11611 uint64_t swcr, fpcr; 11612 11613 if (get_user_u64 (swcr, arg2)) { 11614 return -TARGET_EFAULT; 11615 } 11616 11617 /* 11618 * The kernel calls swcr_update_status to update the 11619 * status bits from the fpcr at every point that it 11620 * could be queried. Therefore, we store the status 11621 * bits only in FPCR. 11622 */ 11623 cpu_env->swcr = swcr & (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK); 11624 11625 fpcr = cpu_alpha_load_fpcr(cpu_env); 11626 fpcr &= ((uint64_t)FPCR_DYN_MASK << 32); 11627 fpcr |= alpha_ieee_swcr_to_fpcr(swcr); 11628 cpu_alpha_store_fpcr(cpu_env, fpcr); 11629 ret = 0; 11630 } 11631 break; 11632 11633 case TARGET_SSI_IEEE_RAISE_EXCEPTION: 11634 { 11635 uint64_t exc, fpcr, fex; 11636 11637 if (get_user_u64(exc, arg2)) { 11638 return -TARGET_EFAULT; 11639 } 11640 exc &= SWCR_STATUS_MASK; 11641 fpcr = cpu_alpha_load_fpcr(cpu_env); 11642 11643 /* Old exceptions are not signaled. */ 11644 fex = alpha_ieee_fpcr_to_swcr(fpcr); 11645 fex = exc & ~fex; 11646 fex >>= SWCR_STATUS_TO_EXCSUM_SHIFT; 11647 fex &= (cpu_env)->swcr; 11648 11649 /* Update the hardware fpcr. */ 11650 fpcr |= alpha_ieee_swcr_to_fpcr(exc); 11651 cpu_alpha_store_fpcr(cpu_env, fpcr); 11652 11653 if (fex) { 11654 int si_code = TARGET_FPE_FLTUNK; 11655 target_siginfo_t info; 11656 11657 if (fex & SWCR_TRAP_ENABLE_DNO) { 11658 si_code = TARGET_FPE_FLTUND; 11659 } 11660 if (fex & SWCR_TRAP_ENABLE_INE) { 11661 si_code = TARGET_FPE_FLTRES; 11662 } 11663 if (fex & SWCR_TRAP_ENABLE_UNF) { 11664 si_code = TARGET_FPE_FLTUND; 11665 } 11666 if (fex & SWCR_TRAP_ENABLE_OVF) { 11667 si_code = TARGET_FPE_FLTOVF; 11668 } 11669 if (fex & SWCR_TRAP_ENABLE_DZE) { 11670 si_code = TARGET_FPE_FLTDIV; 11671 } 11672 if (fex & SWCR_TRAP_ENABLE_INV) { 11673 si_code = TARGET_FPE_FLTINV; 11674 } 11675 11676 info.si_signo = SIGFPE; 11677 info.si_errno = 0; 11678 info.si_code = si_code; 11679 info._sifields._sigfault._addr = (cpu_env)->pc; 11680 queue_signal(cpu_env, info.si_signo, 11681 QEMU_SI_FAULT, &info); 11682 } 11683 ret = 0; 11684 } 11685 break; 11686 11687 /* case SSI_NVPAIRS: 11688 -- Used with SSIN_UACPROC to enable unaligned accesses. 11689 case SSI_IEEE_STATE_AT_SIGNAL: 11690 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL: 11691 -- Not implemented in linux kernel 11692 */ 11693 } 11694 return ret; 11695 #endif 11696 #ifdef TARGET_NR_osf_sigprocmask 11697 /* Alpha specific. */ 11698 case TARGET_NR_osf_sigprocmask: 11699 { 11700 abi_ulong mask; 11701 int how; 11702 sigset_t set, oldset; 11703 11704 switch(arg1) { 11705 case TARGET_SIG_BLOCK: 11706 how = SIG_BLOCK; 11707 break; 11708 case TARGET_SIG_UNBLOCK: 11709 how = SIG_UNBLOCK; 11710 break; 11711 case TARGET_SIG_SETMASK: 11712 how = SIG_SETMASK; 11713 break; 11714 default: 11715 return -TARGET_EINVAL; 11716 } 11717 mask = arg2; 11718 target_to_host_old_sigset(&set, &mask); 11719 ret = do_sigprocmask(how, &set, &oldset); 11720 if (!ret) { 11721 host_to_target_old_sigset(&mask, &oldset); 11722 ret = mask; 11723 } 11724 } 11725 return ret; 11726 #endif 11727 11728 #ifdef TARGET_NR_getgid32 11729 case TARGET_NR_getgid32: 11730 return get_errno(getgid()); 11731 #endif 11732 #ifdef TARGET_NR_geteuid32 11733 case TARGET_NR_geteuid32: 11734 return get_errno(geteuid()); 11735 #endif 11736 #ifdef TARGET_NR_getegid32 11737 case TARGET_NR_getegid32: 11738 return get_errno(getegid()); 11739 #endif 11740 #ifdef TARGET_NR_setreuid32 11741 case TARGET_NR_setreuid32: 11742 return get_errno(setreuid(arg1, arg2)); 11743 #endif 11744 #ifdef TARGET_NR_setregid32 11745 case TARGET_NR_setregid32: 11746 return get_errno(setregid(arg1, arg2)); 11747 #endif 11748 #ifdef TARGET_NR_getgroups32 11749 case TARGET_NR_getgroups32: 11750 { 11751 int gidsetsize = arg1; 11752 uint32_t *target_grouplist; 11753 gid_t *grouplist; 11754 int i; 11755 11756 grouplist = alloca(gidsetsize * sizeof(gid_t)); 11757 ret = get_errno(getgroups(gidsetsize, grouplist)); 11758 if (gidsetsize == 0) 11759 return ret; 11760 if (!is_error(ret)) { 11761 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * 4, 0); 11762 if (!target_grouplist) { 11763 return -TARGET_EFAULT; 11764 } 11765 for(i = 0;i < ret; i++) 11766 target_grouplist[i] = tswap32(grouplist[i]); 11767 unlock_user(target_grouplist, arg2, gidsetsize * 4); 11768 } 11769 } 11770 return ret; 11771 #endif 11772 #ifdef TARGET_NR_setgroups32 11773 case TARGET_NR_setgroups32: 11774 { 11775 int gidsetsize = arg1; 11776 uint32_t *target_grouplist; 11777 gid_t *grouplist; 11778 int i; 11779 11780 grouplist = alloca(gidsetsize * sizeof(gid_t)); 11781 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * 4, 1); 11782 if (!target_grouplist) { 11783 return -TARGET_EFAULT; 11784 } 11785 for(i = 0;i < gidsetsize; i++) 11786 grouplist[i] = tswap32(target_grouplist[i]); 11787 unlock_user(target_grouplist, arg2, 0); 11788 return get_errno(setgroups(gidsetsize, grouplist)); 11789 } 11790 #endif 11791 #ifdef TARGET_NR_fchown32 11792 case TARGET_NR_fchown32: 11793 return get_errno(fchown(arg1, arg2, arg3)); 11794 #endif 11795 #ifdef TARGET_NR_setresuid32 11796 case TARGET_NR_setresuid32: 11797 return get_errno(sys_setresuid(arg1, arg2, arg3)); 11798 #endif 11799 #ifdef TARGET_NR_getresuid32 11800 case TARGET_NR_getresuid32: 11801 { 11802 uid_t ruid, euid, suid; 11803 ret = get_errno(getresuid(&ruid, &euid, &suid)); 11804 if (!is_error(ret)) { 11805 if (put_user_u32(ruid, arg1) 11806 || put_user_u32(euid, arg2) 11807 || put_user_u32(suid, arg3)) 11808 return -TARGET_EFAULT; 11809 } 11810 } 11811 return ret; 11812 #endif 11813 #ifdef TARGET_NR_setresgid32 11814 case TARGET_NR_setresgid32: 11815 return get_errno(sys_setresgid(arg1, arg2, arg3)); 11816 #endif 11817 #ifdef TARGET_NR_getresgid32 11818 case TARGET_NR_getresgid32: 11819 { 11820 gid_t rgid, egid, sgid; 11821 ret = get_errno(getresgid(&rgid, &egid, &sgid)); 11822 if (!is_error(ret)) { 11823 if (put_user_u32(rgid, arg1) 11824 || put_user_u32(egid, arg2) 11825 || put_user_u32(sgid, arg3)) 11826 return -TARGET_EFAULT; 11827 } 11828 } 11829 return ret; 11830 #endif 11831 #ifdef TARGET_NR_chown32 11832 case TARGET_NR_chown32: 11833 if (!(p = lock_user_string(arg1))) 11834 return -TARGET_EFAULT; 11835 ret = get_errno(chown(p, arg2, arg3)); 11836 unlock_user(p, arg1, 0); 11837 return ret; 11838 #endif 11839 #ifdef TARGET_NR_setuid32 11840 case TARGET_NR_setuid32: 11841 return get_errno(sys_setuid(arg1)); 11842 #endif 11843 #ifdef TARGET_NR_setgid32 11844 case TARGET_NR_setgid32: 11845 return get_errno(sys_setgid(arg1)); 11846 #endif 11847 #ifdef TARGET_NR_setfsuid32 11848 case TARGET_NR_setfsuid32: 11849 return get_errno(setfsuid(arg1)); 11850 #endif 11851 #ifdef TARGET_NR_setfsgid32 11852 case TARGET_NR_setfsgid32: 11853 return get_errno(setfsgid(arg1)); 11854 #endif 11855 #ifdef TARGET_NR_mincore 11856 case TARGET_NR_mincore: 11857 { 11858 void *a = lock_user(VERIFY_READ, arg1, arg2, 0); 11859 if (!a) { 11860 return -TARGET_ENOMEM; 11861 } 11862 p = lock_user_string(arg3); 11863 if (!p) { 11864 ret = -TARGET_EFAULT; 11865 } else { 11866 ret = get_errno(mincore(a, arg2, p)); 11867 unlock_user(p, arg3, ret); 11868 } 11869 unlock_user(a, arg1, 0); 11870 } 11871 return ret; 11872 #endif 11873 #ifdef TARGET_NR_arm_fadvise64_64 11874 case TARGET_NR_arm_fadvise64_64: 11875 /* arm_fadvise64_64 looks like fadvise64_64 but 11876 * with different argument order: fd, advice, offset, len 11877 * rather than the usual fd, offset, len, advice. 11878 * Note that offset and len are both 64-bit so appear as 11879 * pairs of 32-bit registers. 11880 */ 11881 ret = posix_fadvise(arg1, target_offset64(arg3, arg4), 11882 target_offset64(arg5, arg6), arg2); 11883 return -host_to_target_errno(ret); 11884 #endif 11885 11886 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32) 11887 11888 #ifdef TARGET_NR_fadvise64_64 11889 case TARGET_NR_fadvise64_64: 11890 #if defined(TARGET_PPC) || defined(TARGET_XTENSA) 11891 /* 6 args: fd, advice, offset (high, low), len (high, low) */ 11892 ret = arg2; 11893 arg2 = arg3; 11894 arg3 = arg4; 11895 arg4 = arg5; 11896 arg5 = arg6; 11897 arg6 = ret; 11898 #else 11899 /* 6 args: fd, offset (high, low), len (high, low), advice */ 11900 if (regpairs_aligned(cpu_env, num)) { 11901 /* offset is in (3,4), len in (5,6) and advice in 7 */ 11902 arg2 = arg3; 11903 arg3 = arg4; 11904 arg4 = arg5; 11905 arg5 = arg6; 11906 arg6 = arg7; 11907 } 11908 #endif 11909 ret = posix_fadvise(arg1, target_offset64(arg2, arg3), 11910 target_offset64(arg4, arg5), arg6); 11911 return -host_to_target_errno(ret); 11912 #endif 11913 11914 #ifdef TARGET_NR_fadvise64 11915 case TARGET_NR_fadvise64: 11916 /* 5 args: fd, offset (high, low), len, advice */ 11917 if (regpairs_aligned(cpu_env, num)) { 11918 /* offset is in (3,4), len in 5 and advice in 6 */ 11919 arg2 = arg3; 11920 arg3 = arg4; 11921 arg4 = arg5; 11922 arg5 = arg6; 11923 } 11924 ret = posix_fadvise(arg1, target_offset64(arg2, arg3), arg4, arg5); 11925 return -host_to_target_errno(ret); 11926 #endif 11927 11928 #else /* not a 32-bit ABI */ 11929 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64) 11930 #ifdef TARGET_NR_fadvise64_64 11931 case TARGET_NR_fadvise64_64: 11932 #endif 11933 #ifdef TARGET_NR_fadvise64 11934 case TARGET_NR_fadvise64: 11935 #endif 11936 #ifdef TARGET_S390X 11937 switch (arg4) { 11938 case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */ 11939 case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */ 11940 case 6: arg4 = POSIX_FADV_DONTNEED; break; 11941 case 7: arg4 = POSIX_FADV_NOREUSE; break; 11942 default: break; 11943 } 11944 #endif 11945 return -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4)); 11946 #endif 11947 #endif /* end of 64-bit ABI fadvise handling */ 11948 11949 #ifdef TARGET_NR_madvise 11950 case TARGET_NR_madvise: 11951 return target_madvise(arg1, arg2, arg3); 11952 #endif 11953 #ifdef TARGET_NR_fcntl64 11954 case TARGET_NR_fcntl64: 11955 { 11956 int cmd; 11957 struct flock64 fl; 11958 from_flock64_fn *copyfrom = copy_from_user_flock64; 11959 to_flock64_fn *copyto = copy_to_user_flock64; 11960 11961 #ifdef TARGET_ARM 11962 if (!cpu_env->eabi) { 11963 copyfrom = copy_from_user_oabi_flock64; 11964 copyto = copy_to_user_oabi_flock64; 11965 } 11966 #endif 11967 11968 cmd = target_to_host_fcntl_cmd(arg2); 11969 if (cmd == -TARGET_EINVAL) { 11970 return cmd; 11971 } 11972 11973 switch(arg2) { 11974 case TARGET_F_GETLK64: 11975 ret = copyfrom(&fl, arg3); 11976 if (ret) { 11977 break; 11978 } 11979 ret = get_errno(safe_fcntl(arg1, cmd, &fl)); 11980 if (ret == 0) { 11981 ret = copyto(arg3, &fl); 11982 } 11983 break; 11984 11985 case TARGET_F_SETLK64: 11986 case TARGET_F_SETLKW64: 11987 ret = copyfrom(&fl, arg3); 11988 if (ret) { 11989 break; 11990 } 11991 ret = get_errno(safe_fcntl(arg1, cmd, &fl)); 11992 break; 11993 default: 11994 ret = do_fcntl(arg1, arg2, arg3); 11995 break; 11996 } 11997 return ret; 11998 } 11999 #endif 12000 #ifdef TARGET_NR_cacheflush 12001 case TARGET_NR_cacheflush: 12002 /* self-modifying code is handled automatically, so nothing needed */ 12003 return 0; 12004 #endif 12005 #ifdef TARGET_NR_getpagesize 12006 case TARGET_NR_getpagesize: 12007 return TARGET_PAGE_SIZE; 12008 #endif 12009 case TARGET_NR_gettid: 12010 return get_errno(sys_gettid()); 12011 #ifdef TARGET_NR_readahead 12012 case TARGET_NR_readahead: 12013 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32) 12014 if (regpairs_aligned(cpu_env, num)) { 12015 arg2 = arg3; 12016 arg3 = arg4; 12017 arg4 = arg5; 12018 } 12019 ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4)); 12020 #else 12021 ret = get_errno(readahead(arg1, arg2, arg3)); 12022 #endif 12023 return ret; 12024 #endif 12025 #ifdef CONFIG_ATTR 12026 #ifdef TARGET_NR_setxattr 12027 case TARGET_NR_listxattr: 12028 case TARGET_NR_llistxattr: 12029 { 12030 void *p, *b = 0; 12031 if (arg2) { 12032 b = lock_user(VERIFY_WRITE, arg2, arg3, 0); 12033 if (!b) { 12034 return -TARGET_EFAULT; 12035 } 12036 } 12037 p = lock_user_string(arg1); 12038 if (p) { 12039 if (num == TARGET_NR_listxattr) { 12040 ret = get_errno(listxattr(p, b, arg3)); 12041 } else { 12042 ret = get_errno(llistxattr(p, b, arg3)); 12043 } 12044 } else { 12045 ret = -TARGET_EFAULT; 12046 } 12047 unlock_user(p, arg1, 0); 12048 unlock_user(b, arg2, arg3); 12049 return ret; 12050 } 12051 case TARGET_NR_flistxattr: 12052 { 12053 void *b = 0; 12054 if (arg2) { 12055 b = lock_user(VERIFY_WRITE, arg2, arg3, 0); 12056 if (!b) { 12057 return -TARGET_EFAULT; 12058 } 12059 } 12060 ret = get_errno(flistxattr(arg1, b, arg3)); 12061 unlock_user(b, arg2, arg3); 12062 return ret; 12063 } 12064 case TARGET_NR_setxattr: 12065 case TARGET_NR_lsetxattr: 12066 { 12067 void *p, *n, *v = 0; 12068 if (arg3) { 12069 v = lock_user(VERIFY_READ, arg3, arg4, 1); 12070 if (!v) { 12071 return -TARGET_EFAULT; 12072 } 12073 } 12074 p = lock_user_string(arg1); 12075 n = lock_user_string(arg2); 12076 if (p && n) { 12077 if (num == TARGET_NR_setxattr) { 12078 ret = get_errno(setxattr(p, n, v, arg4, arg5)); 12079 } else { 12080 ret = get_errno(lsetxattr(p, n, v, arg4, arg5)); 12081 } 12082 } else { 12083 ret = -TARGET_EFAULT; 12084 } 12085 unlock_user(p, arg1, 0); 12086 unlock_user(n, arg2, 0); 12087 unlock_user(v, arg3, 0); 12088 } 12089 return ret; 12090 case TARGET_NR_fsetxattr: 12091 { 12092 void *n, *v = 0; 12093 if (arg3) { 12094 v = lock_user(VERIFY_READ, arg3, arg4, 1); 12095 if (!v) { 12096 return -TARGET_EFAULT; 12097 } 12098 } 12099 n = lock_user_string(arg2); 12100 if (n) { 12101 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5)); 12102 } else { 12103 ret = -TARGET_EFAULT; 12104 } 12105 unlock_user(n, arg2, 0); 12106 unlock_user(v, arg3, 0); 12107 } 12108 return ret; 12109 case TARGET_NR_getxattr: 12110 case TARGET_NR_lgetxattr: 12111 { 12112 void *p, *n, *v = 0; 12113 if (arg3) { 12114 v = lock_user(VERIFY_WRITE, arg3, arg4, 0); 12115 if (!v) { 12116 return -TARGET_EFAULT; 12117 } 12118 } 12119 p = lock_user_string(arg1); 12120 n = lock_user_string(arg2); 12121 if (p && n) { 12122 if (num == TARGET_NR_getxattr) { 12123 ret = get_errno(getxattr(p, n, v, arg4)); 12124 } else { 12125 ret = get_errno(lgetxattr(p, n, v, arg4)); 12126 } 12127 } else { 12128 ret = -TARGET_EFAULT; 12129 } 12130 unlock_user(p, arg1, 0); 12131 unlock_user(n, arg2, 0); 12132 unlock_user(v, arg3, arg4); 12133 } 12134 return ret; 12135 case TARGET_NR_fgetxattr: 12136 { 12137 void *n, *v = 0; 12138 if (arg3) { 12139 v = lock_user(VERIFY_WRITE, arg3, arg4, 0); 12140 if (!v) { 12141 return -TARGET_EFAULT; 12142 } 12143 } 12144 n = lock_user_string(arg2); 12145 if (n) { 12146 ret = get_errno(fgetxattr(arg1, n, v, arg4)); 12147 } else { 12148 ret = -TARGET_EFAULT; 12149 } 12150 unlock_user(n, arg2, 0); 12151 unlock_user(v, arg3, arg4); 12152 } 12153 return ret; 12154 case TARGET_NR_removexattr: 12155 case TARGET_NR_lremovexattr: 12156 { 12157 void *p, *n; 12158 p = lock_user_string(arg1); 12159 n = lock_user_string(arg2); 12160 if (p && n) { 12161 if (num == TARGET_NR_removexattr) { 12162 ret = get_errno(removexattr(p, n)); 12163 } else { 12164 ret = get_errno(lremovexattr(p, n)); 12165 } 12166 } else { 12167 ret = -TARGET_EFAULT; 12168 } 12169 unlock_user(p, arg1, 0); 12170 unlock_user(n, arg2, 0); 12171 } 12172 return ret; 12173 case TARGET_NR_fremovexattr: 12174 { 12175 void *n; 12176 n = lock_user_string(arg2); 12177 if (n) { 12178 ret = get_errno(fremovexattr(arg1, n)); 12179 } else { 12180 ret = -TARGET_EFAULT; 12181 } 12182 unlock_user(n, arg2, 0); 12183 } 12184 return ret; 12185 #endif 12186 #endif /* CONFIG_ATTR */ 12187 #ifdef TARGET_NR_set_thread_area 12188 case TARGET_NR_set_thread_area: 12189 #if defined(TARGET_MIPS) 12190 cpu_env->active_tc.CP0_UserLocal = arg1; 12191 return 0; 12192 #elif defined(TARGET_CRIS) 12193 if (arg1 & 0xff) 12194 ret = -TARGET_EINVAL; 12195 else { 12196 cpu_env->pregs[PR_PID] = arg1; 12197 ret = 0; 12198 } 12199 return ret; 12200 #elif defined(TARGET_I386) && defined(TARGET_ABI32) 12201 return do_set_thread_area(cpu_env, arg1); 12202 #elif defined(TARGET_M68K) 12203 { 12204 TaskState *ts = cpu->opaque; 12205 ts->tp_value = arg1; 12206 return 0; 12207 } 12208 #else 12209 return -TARGET_ENOSYS; 12210 #endif 12211 #endif 12212 #ifdef TARGET_NR_get_thread_area 12213 case TARGET_NR_get_thread_area: 12214 #if defined(TARGET_I386) && defined(TARGET_ABI32) 12215 return do_get_thread_area(cpu_env, arg1); 12216 #elif defined(TARGET_M68K) 12217 { 12218 TaskState *ts = cpu->opaque; 12219 return ts->tp_value; 12220 } 12221 #else 12222 return -TARGET_ENOSYS; 12223 #endif 12224 #endif 12225 #ifdef TARGET_NR_getdomainname 12226 case TARGET_NR_getdomainname: 12227 return -TARGET_ENOSYS; 12228 #endif 12229 12230 #ifdef TARGET_NR_clock_settime 12231 case TARGET_NR_clock_settime: 12232 { 12233 struct timespec ts; 12234 12235 ret = target_to_host_timespec(&ts, arg2); 12236 if (!is_error(ret)) { 12237 ret = get_errno(clock_settime(arg1, &ts)); 12238 } 12239 return ret; 12240 } 12241 #endif 12242 #ifdef TARGET_NR_clock_settime64 12243 case TARGET_NR_clock_settime64: 12244 { 12245 struct timespec ts; 12246 12247 ret = target_to_host_timespec64(&ts, arg2); 12248 if (!is_error(ret)) { 12249 ret = get_errno(clock_settime(arg1, &ts)); 12250 } 12251 return ret; 12252 } 12253 #endif 12254 #ifdef TARGET_NR_clock_gettime 12255 case TARGET_NR_clock_gettime: 12256 { 12257 struct timespec ts; 12258 ret = get_errno(clock_gettime(arg1, &ts)); 12259 if (!is_error(ret)) { 12260 ret = host_to_target_timespec(arg2, &ts); 12261 } 12262 return ret; 12263 } 12264 #endif 12265 #ifdef TARGET_NR_clock_gettime64 12266 case TARGET_NR_clock_gettime64: 12267 { 12268 struct timespec ts; 12269 ret = get_errno(clock_gettime(arg1, &ts)); 12270 if (!is_error(ret)) { 12271 ret = host_to_target_timespec64(arg2, &ts); 12272 } 12273 return ret; 12274 } 12275 #endif 12276 #ifdef TARGET_NR_clock_getres 12277 case TARGET_NR_clock_getres: 12278 { 12279 struct timespec ts; 12280 ret = get_errno(clock_getres(arg1, &ts)); 12281 if (!is_error(ret)) { 12282 host_to_target_timespec(arg2, &ts); 12283 } 12284 return ret; 12285 } 12286 #endif 12287 #ifdef TARGET_NR_clock_getres_time64 12288 case TARGET_NR_clock_getres_time64: 12289 { 12290 struct timespec ts; 12291 ret = get_errno(clock_getres(arg1, &ts)); 12292 if (!is_error(ret)) { 12293 host_to_target_timespec64(arg2, &ts); 12294 } 12295 return ret; 12296 } 12297 #endif 12298 #ifdef TARGET_NR_clock_nanosleep 12299 case TARGET_NR_clock_nanosleep: 12300 { 12301 struct timespec ts; 12302 if (target_to_host_timespec(&ts, arg3)) { 12303 return -TARGET_EFAULT; 12304 } 12305 ret = get_errno(safe_clock_nanosleep(arg1, arg2, 12306 &ts, arg4 ? &ts : NULL)); 12307 /* 12308 * if the call is interrupted by a signal handler, it fails 12309 * with error -TARGET_EINTR and if arg4 is not NULL and arg2 is not 12310 * TIMER_ABSTIME, it returns the remaining unslept time in arg4. 12311 */ 12312 if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME && 12313 host_to_target_timespec(arg4, &ts)) { 12314 return -TARGET_EFAULT; 12315 } 12316 12317 return ret; 12318 } 12319 #endif 12320 #ifdef TARGET_NR_clock_nanosleep_time64 12321 case TARGET_NR_clock_nanosleep_time64: 12322 { 12323 struct timespec ts; 12324 12325 if (target_to_host_timespec64(&ts, arg3)) { 12326 return -TARGET_EFAULT; 12327 } 12328 12329 ret = get_errno(safe_clock_nanosleep(arg1, arg2, 12330 &ts, arg4 ? &ts : NULL)); 12331 12332 if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME && 12333 host_to_target_timespec64(arg4, &ts)) { 12334 return -TARGET_EFAULT; 12335 } 12336 return ret; 12337 } 12338 #endif 12339 12340 #if defined(TARGET_NR_set_tid_address) 12341 case TARGET_NR_set_tid_address: 12342 { 12343 TaskState *ts = cpu->opaque; 12344 ts->child_tidptr = arg1; 12345 /* do not call host set_tid_address() syscall, instead return tid() */ 12346 return get_errno(sys_gettid()); 12347 } 12348 #endif 12349 12350 case TARGET_NR_tkill: 12351 return get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2))); 12352 12353 case TARGET_NR_tgkill: 12354 return get_errno(safe_tgkill((int)arg1, (int)arg2, 12355 target_to_host_signal(arg3))); 12356 12357 #ifdef TARGET_NR_set_robust_list 12358 case TARGET_NR_set_robust_list: 12359 case TARGET_NR_get_robust_list: 12360 /* The ABI for supporting robust futexes has userspace pass 12361 * the kernel a pointer to a linked list which is updated by 12362 * userspace after the syscall; the list is walked by the kernel 12363 * when the thread exits. Since the linked list in QEMU guest 12364 * memory isn't a valid linked list for the host and we have 12365 * no way to reliably intercept the thread-death event, we can't 12366 * support these. Silently return ENOSYS so that guest userspace 12367 * falls back to a non-robust futex implementation (which should 12368 * be OK except in the corner case of the guest crashing while 12369 * holding a mutex that is shared with another process via 12370 * shared memory). 12371 */ 12372 return -TARGET_ENOSYS; 12373 #endif 12374 12375 #if defined(TARGET_NR_utimensat) 12376 case TARGET_NR_utimensat: 12377 { 12378 struct timespec *tsp, ts[2]; 12379 if (!arg3) { 12380 tsp = NULL; 12381 } else { 12382 if (target_to_host_timespec(ts, arg3)) { 12383 return -TARGET_EFAULT; 12384 } 12385 if (target_to_host_timespec(ts + 1, arg3 + 12386 sizeof(struct target_timespec))) { 12387 return -TARGET_EFAULT; 12388 } 12389 tsp = ts; 12390 } 12391 if (!arg2) 12392 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4)); 12393 else { 12394 if (!(p = lock_user_string(arg2))) { 12395 return -TARGET_EFAULT; 12396 } 12397 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4)); 12398 unlock_user(p, arg2, 0); 12399 } 12400 } 12401 return ret; 12402 #endif 12403 #ifdef TARGET_NR_utimensat_time64 12404 case TARGET_NR_utimensat_time64: 12405 { 12406 struct timespec *tsp, ts[2]; 12407 if (!arg3) { 12408 tsp = NULL; 12409 } else { 12410 if (target_to_host_timespec64(ts, arg3)) { 12411 return -TARGET_EFAULT; 12412 } 12413 if (target_to_host_timespec64(ts + 1, arg3 + 12414 sizeof(struct target__kernel_timespec))) { 12415 return -TARGET_EFAULT; 12416 } 12417 tsp = ts; 12418 } 12419 if (!arg2) 12420 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4)); 12421 else { 12422 p = lock_user_string(arg2); 12423 if (!p) { 12424 return -TARGET_EFAULT; 12425 } 12426 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4)); 12427 unlock_user(p, arg2, 0); 12428 } 12429 } 12430 return ret; 12431 #endif 12432 #ifdef TARGET_NR_futex 12433 case TARGET_NR_futex: 12434 return do_futex(cpu, false, arg1, arg2, arg3, arg4, arg5, arg6); 12435 #endif 12436 #ifdef TARGET_NR_futex_time64 12437 case TARGET_NR_futex_time64: 12438 return do_futex(cpu, true, arg1, arg2, arg3, arg4, arg5, arg6); 12439 #endif 12440 #ifdef CONFIG_INOTIFY 12441 #if defined(TARGET_NR_inotify_init) 12442 case TARGET_NR_inotify_init: 12443 ret = get_errno(inotify_init()); 12444 if (ret >= 0) { 12445 fd_trans_register(ret, &target_inotify_trans); 12446 } 12447 return ret; 12448 #endif 12449 #if defined(TARGET_NR_inotify_init1) && defined(CONFIG_INOTIFY1) 12450 case TARGET_NR_inotify_init1: 12451 ret = get_errno(inotify_init1(target_to_host_bitmask(arg1, 12452 fcntl_flags_tbl))); 12453 if (ret >= 0) { 12454 fd_trans_register(ret, &target_inotify_trans); 12455 } 12456 return ret; 12457 #endif 12458 #if defined(TARGET_NR_inotify_add_watch) 12459 case TARGET_NR_inotify_add_watch: 12460 p = lock_user_string(arg2); 12461 ret = get_errno(inotify_add_watch(arg1, path(p), arg3)); 12462 unlock_user(p, arg2, 0); 12463 return ret; 12464 #endif 12465 #if defined(TARGET_NR_inotify_rm_watch) 12466 case TARGET_NR_inotify_rm_watch: 12467 return get_errno(inotify_rm_watch(arg1, arg2)); 12468 #endif 12469 #endif 12470 12471 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 12472 case TARGET_NR_mq_open: 12473 { 12474 struct mq_attr posix_mq_attr; 12475 struct mq_attr *pposix_mq_attr; 12476 int host_flags; 12477 12478 host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl); 12479 pposix_mq_attr = NULL; 12480 if (arg4) { 12481 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) { 12482 return -TARGET_EFAULT; 12483 } 12484 pposix_mq_attr = &posix_mq_attr; 12485 } 12486 p = lock_user_string(arg1 - 1); 12487 if (!p) { 12488 return -TARGET_EFAULT; 12489 } 12490 ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr)); 12491 unlock_user (p, arg1, 0); 12492 } 12493 return ret; 12494 12495 case TARGET_NR_mq_unlink: 12496 p = lock_user_string(arg1 - 1); 12497 if (!p) { 12498 return -TARGET_EFAULT; 12499 } 12500 ret = get_errno(mq_unlink(p)); 12501 unlock_user (p, arg1, 0); 12502 return ret; 12503 12504 #ifdef TARGET_NR_mq_timedsend 12505 case TARGET_NR_mq_timedsend: 12506 { 12507 struct timespec ts; 12508 12509 p = lock_user (VERIFY_READ, arg2, arg3, 1); 12510 if (arg5 != 0) { 12511 if (target_to_host_timespec(&ts, arg5)) { 12512 return -TARGET_EFAULT; 12513 } 12514 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts)); 12515 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) { 12516 return -TARGET_EFAULT; 12517 } 12518 } else { 12519 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL)); 12520 } 12521 unlock_user (p, arg2, arg3); 12522 } 12523 return ret; 12524 #endif 12525 #ifdef TARGET_NR_mq_timedsend_time64 12526 case TARGET_NR_mq_timedsend_time64: 12527 { 12528 struct timespec ts; 12529 12530 p = lock_user(VERIFY_READ, arg2, arg3, 1); 12531 if (arg5 != 0) { 12532 if (target_to_host_timespec64(&ts, arg5)) { 12533 return -TARGET_EFAULT; 12534 } 12535 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts)); 12536 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) { 12537 return -TARGET_EFAULT; 12538 } 12539 } else { 12540 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL)); 12541 } 12542 unlock_user(p, arg2, arg3); 12543 } 12544 return ret; 12545 #endif 12546 12547 #ifdef TARGET_NR_mq_timedreceive 12548 case TARGET_NR_mq_timedreceive: 12549 { 12550 struct timespec ts; 12551 unsigned int prio; 12552 12553 p = lock_user (VERIFY_READ, arg2, arg3, 1); 12554 if (arg5 != 0) { 12555 if (target_to_host_timespec(&ts, arg5)) { 12556 return -TARGET_EFAULT; 12557 } 12558 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 12559 &prio, &ts)); 12560 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) { 12561 return -TARGET_EFAULT; 12562 } 12563 } else { 12564 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 12565 &prio, NULL)); 12566 } 12567 unlock_user (p, arg2, arg3); 12568 if (arg4 != 0) 12569 put_user_u32(prio, arg4); 12570 } 12571 return ret; 12572 #endif 12573 #ifdef TARGET_NR_mq_timedreceive_time64 12574 case TARGET_NR_mq_timedreceive_time64: 12575 { 12576 struct timespec ts; 12577 unsigned int prio; 12578 12579 p = lock_user(VERIFY_READ, arg2, arg3, 1); 12580 if (arg5 != 0) { 12581 if (target_to_host_timespec64(&ts, arg5)) { 12582 return -TARGET_EFAULT; 12583 } 12584 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 12585 &prio, &ts)); 12586 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) { 12587 return -TARGET_EFAULT; 12588 } 12589 } else { 12590 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 12591 &prio, NULL)); 12592 } 12593 unlock_user(p, arg2, arg3); 12594 if (arg4 != 0) { 12595 put_user_u32(prio, arg4); 12596 } 12597 } 12598 return ret; 12599 #endif 12600 12601 /* Not implemented for now... */ 12602 /* case TARGET_NR_mq_notify: */ 12603 /* break; */ 12604 12605 case TARGET_NR_mq_getsetattr: 12606 { 12607 struct mq_attr posix_mq_attr_in, posix_mq_attr_out; 12608 ret = 0; 12609 if (arg2 != 0) { 12610 copy_from_user_mq_attr(&posix_mq_attr_in, arg2); 12611 ret = get_errno(mq_setattr(arg1, &posix_mq_attr_in, 12612 &posix_mq_attr_out)); 12613 } else if (arg3 != 0) { 12614 ret = get_errno(mq_getattr(arg1, &posix_mq_attr_out)); 12615 } 12616 if (ret == 0 && arg3 != 0) { 12617 copy_to_user_mq_attr(arg3, &posix_mq_attr_out); 12618 } 12619 } 12620 return ret; 12621 #endif 12622 12623 #ifdef CONFIG_SPLICE 12624 #ifdef TARGET_NR_tee 12625 case TARGET_NR_tee: 12626 { 12627 ret = get_errno(tee(arg1,arg2,arg3,arg4)); 12628 } 12629 return ret; 12630 #endif 12631 #ifdef TARGET_NR_splice 12632 case TARGET_NR_splice: 12633 { 12634 loff_t loff_in, loff_out; 12635 loff_t *ploff_in = NULL, *ploff_out = NULL; 12636 if (arg2) { 12637 if (get_user_u64(loff_in, arg2)) { 12638 return -TARGET_EFAULT; 12639 } 12640 ploff_in = &loff_in; 12641 } 12642 if (arg4) { 12643 if (get_user_u64(loff_out, arg4)) { 12644 return -TARGET_EFAULT; 12645 } 12646 ploff_out = &loff_out; 12647 } 12648 ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6)); 12649 if (arg2) { 12650 if (put_user_u64(loff_in, arg2)) { 12651 return -TARGET_EFAULT; 12652 } 12653 } 12654 if (arg4) { 12655 if (put_user_u64(loff_out, arg4)) { 12656 return -TARGET_EFAULT; 12657 } 12658 } 12659 } 12660 return ret; 12661 #endif 12662 #ifdef TARGET_NR_vmsplice 12663 case TARGET_NR_vmsplice: 12664 { 12665 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 12666 if (vec != NULL) { 12667 ret = get_errno(vmsplice(arg1, vec, arg3, arg4)); 12668 unlock_iovec(vec, arg2, arg3, 0); 12669 } else { 12670 ret = -host_to_target_errno(errno); 12671 } 12672 } 12673 return ret; 12674 #endif 12675 #endif /* CONFIG_SPLICE */ 12676 #ifdef CONFIG_EVENTFD 12677 #if defined(TARGET_NR_eventfd) 12678 case TARGET_NR_eventfd: 12679 ret = get_errno(eventfd(arg1, 0)); 12680 if (ret >= 0) { 12681 fd_trans_register(ret, &target_eventfd_trans); 12682 } 12683 return ret; 12684 #endif 12685 #if defined(TARGET_NR_eventfd2) 12686 case TARGET_NR_eventfd2: 12687 { 12688 int host_flags = arg2 & (~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC)); 12689 if (arg2 & TARGET_O_NONBLOCK) { 12690 host_flags |= O_NONBLOCK; 12691 } 12692 if (arg2 & TARGET_O_CLOEXEC) { 12693 host_flags |= O_CLOEXEC; 12694 } 12695 ret = get_errno(eventfd(arg1, host_flags)); 12696 if (ret >= 0) { 12697 fd_trans_register(ret, &target_eventfd_trans); 12698 } 12699 return ret; 12700 } 12701 #endif 12702 #endif /* CONFIG_EVENTFD */ 12703 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate) 12704 case TARGET_NR_fallocate: 12705 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32) 12706 ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4), 12707 target_offset64(arg5, arg6))); 12708 #else 12709 ret = get_errno(fallocate(arg1, arg2, arg3, arg4)); 12710 #endif 12711 return ret; 12712 #endif 12713 #if defined(CONFIG_SYNC_FILE_RANGE) 12714 #if defined(TARGET_NR_sync_file_range) 12715 case TARGET_NR_sync_file_range: 12716 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32) 12717 #if defined(TARGET_MIPS) 12718 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4), 12719 target_offset64(arg5, arg6), arg7)); 12720 #else 12721 ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3), 12722 target_offset64(arg4, arg5), arg6)); 12723 #endif /* !TARGET_MIPS */ 12724 #else 12725 ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4)); 12726 #endif 12727 return ret; 12728 #endif 12729 #if defined(TARGET_NR_sync_file_range2) || \ 12730 defined(TARGET_NR_arm_sync_file_range) 12731 #if defined(TARGET_NR_sync_file_range2) 12732 case TARGET_NR_sync_file_range2: 12733 #endif 12734 #if defined(TARGET_NR_arm_sync_file_range) 12735 case TARGET_NR_arm_sync_file_range: 12736 #endif 12737 /* This is like sync_file_range but the arguments are reordered */ 12738 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32) 12739 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4), 12740 target_offset64(arg5, arg6), arg2)); 12741 #else 12742 ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2)); 12743 #endif 12744 return ret; 12745 #endif 12746 #endif 12747 #if defined(TARGET_NR_signalfd4) 12748 case TARGET_NR_signalfd4: 12749 return do_signalfd4(arg1, arg2, arg4); 12750 #endif 12751 #if defined(TARGET_NR_signalfd) 12752 case TARGET_NR_signalfd: 12753 return do_signalfd4(arg1, arg2, 0); 12754 #endif 12755 #if defined(CONFIG_EPOLL) 12756 #if defined(TARGET_NR_epoll_create) 12757 case TARGET_NR_epoll_create: 12758 return get_errno(epoll_create(arg1)); 12759 #endif 12760 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1) 12761 case TARGET_NR_epoll_create1: 12762 return get_errno(epoll_create1(target_to_host_bitmask(arg1, fcntl_flags_tbl))); 12763 #endif 12764 #if defined(TARGET_NR_epoll_ctl) 12765 case TARGET_NR_epoll_ctl: 12766 { 12767 struct epoll_event ep; 12768 struct epoll_event *epp = 0; 12769 if (arg4) { 12770 if (arg2 != EPOLL_CTL_DEL) { 12771 struct target_epoll_event *target_ep; 12772 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) { 12773 return -TARGET_EFAULT; 12774 } 12775 ep.events = tswap32(target_ep->events); 12776 /* 12777 * The epoll_data_t union is just opaque data to the kernel, 12778 * so we transfer all 64 bits across and need not worry what 12779 * actual data type it is. 12780 */ 12781 ep.data.u64 = tswap64(target_ep->data.u64); 12782 unlock_user_struct(target_ep, arg4, 0); 12783 } 12784 /* 12785 * before kernel 2.6.9, EPOLL_CTL_DEL operation required a 12786 * non-null pointer, even though this argument is ignored. 12787 * 12788 */ 12789 epp = &ep; 12790 } 12791 return get_errno(epoll_ctl(arg1, arg2, arg3, epp)); 12792 } 12793 #endif 12794 12795 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait) 12796 #if defined(TARGET_NR_epoll_wait) 12797 case TARGET_NR_epoll_wait: 12798 #endif 12799 #if defined(TARGET_NR_epoll_pwait) 12800 case TARGET_NR_epoll_pwait: 12801 #endif 12802 { 12803 struct target_epoll_event *target_ep; 12804 struct epoll_event *ep; 12805 int epfd = arg1; 12806 int maxevents = arg3; 12807 int timeout = arg4; 12808 12809 if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) { 12810 return -TARGET_EINVAL; 12811 } 12812 12813 target_ep = lock_user(VERIFY_WRITE, arg2, 12814 maxevents * sizeof(struct target_epoll_event), 1); 12815 if (!target_ep) { 12816 return -TARGET_EFAULT; 12817 } 12818 12819 ep = g_try_new(struct epoll_event, maxevents); 12820 if (!ep) { 12821 unlock_user(target_ep, arg2, 0); 12822 return -TARGET_ENOMEM; 12823 } 12824 12825 switch (num) { 12826 #if defined(TARGET_NR_epoll_pwait) 12827 case TARGET_NR_epoll_pwait: 12828 { 12829 sigset_t *set = NULL; 12830 12831 if (arg5) { 12832 ret = process_sigsuspend_mask(&set, arg5, arg6); 12833 if (ret != 0) { 12834 break; 12835 } 12836 } 12837 12838 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout, 12839 set, SIGSET_T_SIZE)); 12840 12841 if (set) { 12842 finish_sigsuspend_mask(ret); 12843 } 12844 break; 12845 } 12846 #endif 12847 #if defined(TARGET_NR_epoll_wait) 12848 case TARGET_NR_epoll_wait: 12849 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout, 12850 NULL, 0)); 12851 break; 12852 #endif 12853 default: 12854 ret = -TARGET_ENOSYS; 12855 } 12856 if (!is_error(ret)) { 12857 int i; 12858 for (i = 0; i < ret; i++) { 12859 target_ep[i].events = tswap32(ep[i].events); 12860 target_ep[i].data.u64 = tswap64(ep[i].data.u64); 12861 } 12862 unlock_user(target_ep, arg2, 12863 ret * sizeof(struct target_epoll_event)); 12864 } else { 12865 unlock_user(target_ep, arg2, 0); 12866 } 12867 g_free(ep); 12868 return ret; 12869 } 12870 #endif 12871 #endif 12872 #ifdef TARGET_NR_prlimit64 12873 case TARGET_NR_prlimit64: 12874 { 12875 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */ 12876 struct target_rlimit64 *target_rnew, *target_rold; 12877 struct host_rlimit64 rnew, rold, *rnewp = 0; 12878 int resource = target_to_host_resource(arg2); 12879 12880 if (arg3 && (resource != RLIMIT_AS && 12881 resource != RLIMIT_DATA && 12882 resource != RLIMIT_STACK)) { 12883 if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) { 12884 return -TARGET_EFAULT; 12885 } 12886 rnew.rlim_cur = tswap64(target_rnew->rlim_cur); 12887 rnew.rlim_max = tswap64(target_rnew->rlim_max); 12888 unlock_user_struct(target_rnew, arg3, 0); 12889 rnewp = &rnew; 12890 } 12891 12892 ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0)); 12893 if (!is_error(ret) && arg4) { 12894 if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) { 12895 return -TARGET_EFAULT; 12896 } 12897 target_rold->rlim_cur = tswap64(rold.rlim_cur); 12898 target_rold->rlim_max = tswap64(rold.rlim_max); 12899 unlock_user_struct(target_rold, arg4, 1); 12900 } 12901 return ret; 12902 } 12903 #endif 12904 #ifdef TARGET_NR_gethostname 12905 case TARGET_NR_gethostname: 12906 { 12907 char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0); 12908 if (name) { 12909 ret = get_errno(gethostname(name, arg2)); 12910 unlock_user(name, arg1, arg2); 12911 } else { 12912 ret = -TARGET_EFAULT; 12913 } 12914 return ret; 12915 } 12916 #endif 12917 #ifdef TARGET_NR_atomic_cmpxchg_32 12918 case TARGET_NR_atomic_cmpxchg_32: 12919 { 12920 /* should use start_exclusive from main.c */ 12921 abi_ulong mem_value; 12922 if (get_user_u32(mem_value, arg6)) { 12923 target_siginfo_t info; 12924 info.si_signo = SIGSEGV; 12925 info.si_errno = 0; 12926 info.si_code = TARGET_SEGV_MAPERR; 12927 info._sifields._sigfault._addr = arg6; 12928 queue_signal(cpu_env, info.si_signo, QEMU_SI_FAULT, &info); 12929 ret = 0xdeadbeef; 12930 12931 } 12932 if (mem_value == arg2) 12933 put_user_u32(arg1, arg6); 12934 return mem_value; 12935 } 12936 #endif 12937 #ifdef TARGET_NR_atomic_barrier 12938 case TARGET_NR_atomic_barrier: 12939 /* Like the kernel implementation and the 12940 qemu arm barrier, no-op this? */ 12941 return 0; 12942 #endif 12943 12944 #ifdef TARGET_NR_timer_create 12945 case TARGET_NR_timer_create: 12946 { 12947 /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */ 12948 12949 struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL; 12950 12951 int clkid = arg1; 12952 int timer_index = next_free_host_timer(); 12953 12954 if (timer_index < 0) { 12955 ret = -TARGET_EAGAIN; 12956 } else { 12957 timer_t *phtimer = g_posix_timers + timer_index; 12958 12959 if (arg2) { 12960 phost_sevp = &host_sevp; 12961 ret = target_to_host_sigevent(phost_sevp, arg2); 12962 if (ret != 0) { 12963 free_host_timer_slot(timer_index); 12964 return ret; 12965 } 12966 } 12967 12968 ret = get_errno(timer_create(clkid, phost_sevp, phtimer)); 12969 if (ret) { 12970 free_host_timer_slot(timer_index); 12971 } else { 12972 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) { 12973 timer_delete(*phtimer); 12974 free_host_timer_slot(timer_index); 12975 return -TARGET_EFAULT; 12976 } 12977 } 12978 } 12979 return ret; 12980 } 12981 #endif 12982 12983 #ifdef TARGET_NR_timer_settime 12984 case TARGET_NR_timer_settime: 12985 { 12986 /* args: timer_t timerid, int flags, const struct itimerspec *new_value, 12987 * struct itimerspec * old_value */ 12988 target_timer_t timerid = get_timer_id(arg1); 12989 12990 if (timerid < 0) { 12991 ret = timerid; 12992 } else if (arg3 == 0) { 12993 ret = -TARGET_EINVAL; 12994 } else { 12995 timer_t htimer = g_posix_timers[timerid]; 12996 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},}; 12997 12998 if (target_to_host_itimerspec(&hspec_new, arg3)) { 12999 return -TARGET_EFAULT; 13000 } 13001 ret = get_errno( 13002 timer_settime(htimer, arg2, &hspec_new, &hspec_old)); 13003 if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) { 13004 return -TARGET_EFAULT; 13005 } 13006 } 13007 return ret; 13008 } 13009 #endif 13010 13011 #ifdef TARGET_NR_timer_settime64 13012 case TARGET_NR_timer_settime64: 13013 { 13014 target_timer_t timerid = get_timer_id(arg1); 13015 13016 if (timerid < 0) { 13017 ret = timerid; 13018 } else if (arg3 == 0) { 13019 ret = -TARGET_EINVAL; 13020 } else { 13021 timer_t htimer = g_posix_timers[timerid]; 13022 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},}; 13023 13024 if (target_to_host_itimerspec64(&hspec_new, arg3)) { 13025 return -TARGET_EFAULT; 13026 } 13027 ret = get_errno( 13028 timer_settime(htimer, arg2, &hspec_new, &hspec_old)); 13029 if (arg4 && host_to_target_itimerspec64(arg4, &hspec_old)) { 13030 return -TARGET_EFAULT; 13031 } 13032 } 13033 return ret; 13034 } 13035 #endif 13036 13037 #ifdef TARGET_NR_timer_gettime 13038 case TARGET_NR_timer_gettime: 13039 { 13040 /* args: timer_t timerid, struct itimerspec *curr_value */ 13041 target_timer_t timerid = get_timer_id(arg1); 13042 13043 if (timerid < 0) { 13044 ret = timerid; 13045 } else if (!arg2) { 13046 ret = -TARGET_EFAULT; 13047 } else { 13048 timer_t htimer = g_posix_timers[timerid]; 13049 struct itimerspec hspec; 13050 ret = get_errno(timer_gettime(htimer, &hspec)); 13051 13052 if (host_to_target_itimerspec(arg2, &hspec)) { 13053 ret = -TARGET_EFAULT; 13054 } 13055 } 13056 return ret; 13057 } 13058 #endif 13059 13060 #ifdef TARGET_NR_timer_gettime64 13061 case TARGET_NR_timer_gettime64: 13062 { 13063 /* args: timer_t timerid, struct itimerspec64 *curr_value */ 13064 target_timer_t timerid = get_timer_id(arg1); 13065 13066 if (timerid < 0) { 13067 ret = timerid; 13068 } else if (!arg2) { 13069 ret = -TARGET_EFAULT; 13070 } else { 13071 timer_t htimer = g_posix_timers[timerid]; 13072 struct itimerspec hspec; 13073 ret = get_errno(timer_gettime(htimer, &hspec)); 13074 13075 if (host_to_target_itimerspec64(arg2, &hspec)) { 13076 ret = -TARGET_EFAULT; 13077 } 13078 } 13079 return ret; 13080 } 13081 #endif 13082 13083 #ifdef TARGET_NR_timer_getoverrun 13084 case TARGET_NR_timer_getoverrun: 13085 { 13086 /* args: timer_t timerid */ 13087 target_timer_t timerid = get_timer_id(arg1); 13088 13089 if (timerid < 0) { 13090 ret = timerid; 13091 } else { 13092 timer_t htimer = g_posix_timers[timerid]; 13093 ret = get_errno(timer_getoverrun(htimer)); 13094 } 13095 return ret; 13096 } 13097 #endif 13098 13099 #ifdef TARGET_NR_timer_delete 13100 case TARGET_NR_timer_delete: 13101 { 13102 /* args: timer_t timerid */ 13103 target_timer_t timerid = get_timer_id(arg1); 13104 13105 if (timerid < 0) { 13106 ret = timerid; 13107 } else { 13108 timer_t htimer = g_posix_timers[timerid]; 13109 ret = get_errno(timer_delete(htimer)); 13110 free_host_timer_slot(timerid); 13111 } 13112 return ret; 13113 } 13114 #endif 13115 13116 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD) 13117 case TARGET_NR_timerfd_create: 13118 return get_errno(timerfd_create(arg1, 13119 target_to_host_bitmask(arg2, fcntl_flags_tbl))); 13120 #endif 13121 13122 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD) 13123 case TARGET_NR_timerfd_gettime: 13124 { 13125 struct itimerspec its_curr; 13126 13127 ret = get_errno(timerfd_gettime(arg1, &its_curr)); 13128 13129 if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) { 13130 return -TARGET_EFAULT; 13131 } 13132 } 13133 return ret; 13134 #endif 13135 13136 #if defined(TARGET_NR_timerfd_gettime64) && defined(CONFIG_TIMERFD) 13137 case TARGET_NR_timerfd_gettime64: 13138 { 13139 struct itimerspec its_curr; 13140 13141 ret = get_errno(timerfd_gettime(arg1, &its_curr)); 13142 13143 if (arg2 && host_to_target_itimerspec64(arg2, &its_curr)) { 13144 return -TARGET_EFAULT; 13145 } 13146 } 13147 return ret; 13148 #endif 13149 13150 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD) 13151 case TARGET_NR_timerfd_settime: 13152 { 13153 struct itimerspec its_new, its_old, *p_new; 13154 13155 if (arg3) { 13156 if (target_to_host_itimerspec(&its_new, arg3)) { 13157 return -TARGET_EFAULT; 13158 } 13159 p_new = &its_new; 13160 } else { 13161 p_new = NULL; 13162 } 13163 13164 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old)); 13165 13166 if (arg4 && host_to_target_itimerspec(arg4, &its_old)) { 13167 return -TARGET_EFAULT; 13168 } 13169 } 13170 return ret; 13171 #endif 13172 13173 #if defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD) 13174 case TARGET_NR_timerfd_settime64: 13175 { 13176 struct itimerspec its_new, its_old, *p_new; 13177 13178 if (arg3) { 13179 if (target_to_host_itimerspec64(&its_new, arg3)) { 13180 return -TARGET_EFAULT; 13181 } 13182 p_new = &its_new; 13183 } else { 13184 p_new = NULL; 13185 } 13186 13187 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old)); 13188 13189 if (arg4 && host_to_target_itimerspec64(arg4, &its_old)) { 13190 return -TARGET_EFAULT; 13191 } 13192 } 13193 return ret; 13194 #endif 13195 13196 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get) 13197 case TARGET_NR_ioprio_get: 13198 return get_errno(ioprio_get(arg1, arg2)); 13199 #endif 13200 13201 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set) 13202 case TARGET_NR_ioprio_set: 13203 return get_errno(ioprio_set(arg1, arg2, arg3)); 13204 #endif 13205 13206 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS) 13207 case TARGET_NR_setns: 13208 return get_errno(setns(arg1, arg2)); 13209 #endif 13210 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS) 13211 case TARGET_NR_unshare: 13212 return get_errno(unshare(arg1)); 13213 #endif 13214 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp) 13215 case TARGET_NR_kcmp: 13216 return get_errno(kcmp(arg1, arg2, arg3, arg4, arg5)); 13217 #endif 13218 #ifdef TARGET_NR_swapcontext 13219 case TARGET_NR_swapcontext: 13220 /* PowerPC specific. */ 13221 return do_swapcontext(cpu_env, arg1, arg2, arg3); 13222 #endif 13223 #ifdef TARGET_NR_memfd_create 13224 case TARGET_NR_memfd_create: 13225 p = lock_user_string(arg1); 13226 if (!p) { 13227 return -TARGET_EFAULT; 13228 } 13229 ret = get_errno(memfd_create(p, arg2)); 13230 fd_trans_unregister(ret); 13231 unlock_user(p, arg1, 0); 13232 return ret; 13233 #endif 13234 #if defined TARGET_NR_membarrier && defined __NR_membarrier 13235 case TARGET_NR_membarrier: 13236 return get_errno(membarrier(arg1, arg2)); 13237 #endif 13238 13239 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range) 13240 case TARGET_NR_copy_file_range: 13241 { 13242 loff_t inoff, outoff; 13243 loff_t *pinoff = NULL, *poutoff = NULL; 13244 13245 if (arg2) { 13246 if (get_user_u64(inoff, arg2)) { 13247 return -TARGET_EFAULT; 13248 } 13249 pinoff = &inoff; 13250 } 13251 if (arg4) { 13252 if (get_user_u64(outoff, arg4)) { 13253 return -TARGET_EFAULT; 13254 } 13255 poutoff = &outoff; 13256 } 13257 /* Do not sign-extend the count parameter. */ 13258 ret = get_errno(safe_copy_file_range(arg1, pinoff, arg3, poutoff, 13259 (abi_ulong)arg5, arg6)); 13260 if (!is_error(ret) && ret > 0) { 13261 if (arg2) { 13262 if (put_user_u64(inoff, arg2)) { 13263 return -TARGET_EFAULT; 13264 } 13265 } 13266 if (arg4) { 13267 if (put_user_u64(outoff, arg4)) { 13268 return -TARGET_EFAULT; 13269 } 13270 } 13271 } 13272 } 13273 return ret; 13274 #endif 13275 13276 #if defined(TARGET_NR_pivot_root) 13277 case TARGET_NR_pivot_root: 13278 { 13279 void *p2; 13280 p = lock_user_string(arg1); /* new_root */ 13281 p2 = lock_user_string(arg2); /* put_old */ 13282 if (!p || !p2) { 13283 ret = -TARGET_EFAULT; 13284 } else { 13285 ret = get_errno(pivot_root(p, p2)); 13286 } 13287 unlock_user(p2, arg2, 0); 13288 unlock_user(p, arg1, 0); 13289 } 13290 return ret; 13291 #endif 13292 13293 default: 13294 qemu_log_mask(LOG_UNIMP, "Unsupported syscall: %d\n", num); 13295 return -TARGET_ENOSYS; 13296 } 13297 return ret; 13298 } 13299 13300 abi_long do_syscall(CPUArchState *cpu_env, int num, abi_long arg1, 13301 abi_long arg2, abi_long arg3, abi_long arg4, 13302 abi_long arg5, abi_long arg6, abi_long arg7, 13303 abi_long arg8) 13304 { 13305 CPUState *cpu = env_cpu(cpu_env); 13306 abi_long ret; 13307 13308 #ifdef DEBUG_ERESTARTSYS 13309 /* Debug-only code for exercising the syscall-restart code paths 13310 * in the per-architecture cpu main loops: restart every syscall 13311 * the guest makes once before letting it through. 13312 */ 13313 { 13314 static bool flag; 13315 flag = !flag; 13316 if (flag) { 13317 return -QEMU_ERESTARTSYS; 13318 } 13319 } 13320 #endif 13321 13322 record_syscall_start(cpu, num, arg1, 13323 arg2, arg3, arg4, arg5, arg6, arg7, arg8); 13324 13325 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) { 13326 print_syscall(cpu_env, num, arg1, arg2, arg3, arg4, arg5, arg6); 13327 } 13328 13329 ret = do_syscall1(cpu_env, num, arg1, arg2, arg3, arg4, 13330 arg5, arg6, arg7, arg8); 13331 13332 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) { 13333 print_syscall_ret(cpu_env, num, ret, arg1, arg2, 13334 arg3, arg4, arg5, arg6); 13335 } 13336 13337 record_syscall_return(cpu, num, ret); 13338 return ret; 13339 } 13340