xref: /openbmc/qemu/linux-user/syscall.c (revision ffe81d43)
1 /*
2  *  Linux syscalls
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
23 #include "qemu/memfd.h"
24 #include "qemu/queue.h"
25 #include <elf.h>
26 #include <endian.h>
27 #include <grp.h>
28 #include <sys/ipc.h>
29 #include <sys/msg.h>
30 #include <sys/wait.h>
31 #include <sys/mount.h>
32 #include <sys/file.h>
33 #include <sys/fsuid.h>
34 #include <sys/personality.h>
35 #include <sys/prctl.h>
36 #include <sys/resource.h>
37 #include <sys/swap.h>
38 #include <linux/capability.h>
39 #include <sched.h>
40 #include <sys/timex.h>
41 #include <sys/socket.h>
42 #include <linux/sockios.h>
43 #include <sys/un.h>
44 #include <sys/uio.h>
45 #include <poll.h>
46 #include <sys/times.h>
47 #include <sys/shm.h>
48 #include <sys/sem.h>
49 #include <sys/statfs.h>
50 #include <utime.h>
51 #include <sys/sysinfo.h>
52 #include <sys/signalfd.h>
53 //#include <sys/user.h>
54 #include <netinet/in.h>
55 #include <netinet/ip.h>
56 #include <netinet/tcp.h>
57 #include <netinet/udp.h>
58 #include <linux/wireless.h>
59 #include <linux/icmp.h>
60 #include <linux/icmpv6.h>
61 #include <linux/if_tun.h>
62 #include <linux/in6.h>
63 #include <linux/errqueue.h>
64 #include <linux/random.h>
65 #ifdef CONFIG_TIMERFD
66 #include <sys/timerfd.h>
67 #endif
68 #ifdef CONFIG_EVENTFD
69 #include <sys/eventfd.h>
70 #endif
71 #ifdef CONFIG_EPOLL
72 #include <sys/epoll.h>
73 #endif
74 #ifdef CONFIG_ATTR
75 #include "qemu/xattr.h"
76 #endif
77 #ifdef CONFIG_SENDFILE
78 #include <sys/sendfile.h>
79 #endif
80 #ifdef HAVE_SYS_KCOV_H
81 #include <sys/kcov.h>
82 #endif
83 
84 #define termios host_termios
85 #define winsize host_winsize
86 #define termio host_termio
87 #define sgttyb host_sgttyb /* same as target */
88 #define tchars host_tchars /* same as target */
89 #define ltchars host_ltchars /* same as target */
90 
91 #include <linux/termios.h>
92 #include <linux/unistd.h>
93 #include <linux/cdrom.h>
94 #include <linux/hdreg.h>
95 #include <linux/soundcard.h>
96 #include <linux/kd.h>
97 #include <linux/mtio.h>
98 #include <linux/fs.h>
99 #include <linux/fd.h>
100 #if defined(CONFIG_FIEMAP)
101 #include <linux/fiemap.h>
102 #endif
103 #include <linux/fb.h>
104 #if defined(CONFIG_USBFS)
105 #include <linux/usbdevice_fs.h>
106 #include <linux/usb/ch9.h>
107 #endif
108 #include <linux/vt.h>
109 #include <linux/dm-ioctl.h>
110 #include <linux/reboot.h>
111 #include <linux/route.h>
112 #include <linux/filter.h>
113 #include <linux/blkpg.h>
114 #include <netpacket/packet.h>
115 #include <linux/netlink.h>
116 #include <linux/if_alg.h>
117 #include <linux/rtc.h>
118 #include <sound/asound.h>
119 #ifdef HAVE_BTRFS_H
120 #include <linux/btrfs.h>
121 #endif
122 #ifdef HAVE_DRM_H
123 #include <libdrm/drm.h>
124 #include <libdrm/i915_drm.h>
125 #endif
126 #include "linux_loop.h"
127 #include "uname.h"
128 
129 #include "qemu.h"
130 #include "user-internals.h"
131 #include "strace.h"
132 #include "signal-common.h"
133 #include "loader.h"
134 #include "user-mmap.h"
135 #include "user/safe-syscall.h"
136 #include "qemu/guest-random.h"
137 #include "qemu/selfmap.h"
138 #include "user/syscall-trace.h"
139 #include "special-errno.h"
140 #include "qapi/error.h"
141 #include "fd-trans.h"
142 #include "tcg/tcg.h"
143 
144 #ifndef CLONE_IO
145 #define CLONE_IO                0x80000000      /* Clone io context */
146 #endif
147 
148 /* We can't directly call the host clone syscall, because this will
149  * badly confuse libc (breaking mutexes, for example). So we must
150  * divide clone flags into:
151  *  * flag combinations that look like pthread_create()
152  *  * flag combinations that look like fork()
153  *  * flags we can implement within QEMU itself
154  *  * flags we can't support and will return an error for
155  */
156 /* For thread creation, all these flags must be present; for
157  * fork, none must be present.
158  */
159 #define CLONE_THREAD_FLAGS                              \
160     (CLONE_VM | CLONE_FS | CLONE_FILES |                \
161      CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
162 
163 /* These flags are ignored:
164  * CLONE_DETACHED is now ignored by the kernel;
165  * CLONE_IO is just an optimisation hint to the I/O scheduler
166  */
167 #define CLONE_IGNORED_FLAGS                     \
168     (CLONE_DETACHED | CLONE_IO)
169 
170 /* Flags for fork which we can implement within QEMU itself */
171 #define CLONE_OPTIONAL_FORK_FLAGS               \
172     (CLONE_SETTLS | CLONE_PARENT_SETTID |       \
173      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
174 
175 /* Flags for thread creation which we can implement within QEMU itself */
176 #define CLONE_OPTIONAL_THREAD_FLAGS                             \
177     (CLONE_SETTLS | CLONE_PARENT_SETTID |                       \
178      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
179 
180 #define CLONE_INVALID_FORK_FLAGS                                        \
181     (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
182 
183 #define CLONE_INVALID_THREAD_FLAGS                                      \
184     (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS |     \
185        CLONE_IGNORED_FLAGS))
186 
187 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits
188  * have almost all been allocated. We cannot support any of
189  * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
190  * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
191  * The checks against the invalid thread masks above will catch these.
192  * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
193  */
194 
195 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
196  * once. This exercises the codepaths for restart.
197  */
198 //#define DEBUG_ERESTARTSYS
199 
200 //#include <linux/msdos_fs.h>
201 #define VFAT_IOCTL_READDIR_BOTH \
202     _IOC(_IOC_READ, 'r', 1, (sizeof(struct linux_dirent) + 256) * 2)
203 #define VFAT_IOCTL_READDIR_SHORT \
204     _IOC(_IOC_READ, 'r', 2, (sizeof(struct linux_dirent) + 256) * 2)
205 
206 #undef _syscall0
207 #undef _syscall1
208 #undef _syscall2
209 #undef _syscall3
210 #undef _syscall4
211 #undef _syscall5
212 #undef _syscall6
213 
214 #define _syscall0(type,name)		\
215 static type name (void)			\
216 {					\
217 	return syscall(__NR_##name);	\
218 }
219 
220 #define _syscall1(type,name,type1,arg1)		\
221 static type name (type1 arg1)			\
222 {						\
223 	return syscall(__NR_##name, arg1);	\
224 }
225 
226 #define _syscall2(type,name,type1,arg1,type2,arg2)	\
227 static type name (type1 arg1,type2 arg2)		\
228 {							\
229 	return syscall(__NR_##name, arg1, arg2);	\
230 }
231 
232 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3)	\
233 static type name (type1 arg1,type2 arg2,type3 arg3)		\
234 {								\
235 	return syscall(__NR_##name, arg1, arg2, arg3);		\
236 }
237 
238 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4)	\
239 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4)			\
240 {										\
241 	return syscall(__NR_##name, arg1, arg2, arg3, arg4);			\
242 }
243 
244 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
245 		  type5,arg5)							\
246 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5)	\
247 {										\
248 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5);		\
249 }
250 
251 
252 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
253 		  type5,arg5,type6,arg6)					\
254 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5,	\
255                   type6 arg6)							\
256 {										\
257 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6);	\
258 }
259 
260 
261 #define __NR_sys_uname __NR_uname
262 #define __NR_sys_getcwd1 __NR_getcwd
263 #define __NR_sys_getdents __NR_getdents
264 #define __NR_sys_getdents64 __NR_getdents64
265 #define __NR_sys_getpriority __NR_getpriority
266 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
267 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo
268 #define __NR_sys_syslog __NR_syslog
269 #if defined(__NR_futex)
270 # define __NR_sys_futex __NR_futex
271 #endif
272 #if defined(__NR_futex_time64)
273 # define __NR_sys_futex_time64 __NR_futex_time64
274 #endif
275 #define __NR_sys_inotify_init __NR_inotify_init
276 #define __NR_sys_inotify_add_watch __NR_inotify_add_watch
277 #define __NR_sys_inotify_rm_watch __NR_inotify_rm_watch
278 #define __NR_sys_statx __NR_statx
279 
280 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__)
281 #define __NR__llseek __NR_lseek
282 #endif
283 
284 /* Newer kernel ports have llseek() instead of _llseek() */
285 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
286 #define TARGET_NR__llseek TARGET_NR_llseek
287 #endif
288 
289 /* some platforms need to mask more bits than just TARGET_O_NONBLOCK */
290 #ifndef TARGET_O_NONBLOCK_MASK
291 #define TARGET_O_NONBLOCK_MASK TARGET_O_NONBLOCK
292 #endif
293 
294 #define __NR_sys_gettid __NR_gettid
295 _syscall0(int, sys_gettid)
296 
297 /* For the 64-bit guest on 32-bit host case we must emulate
298  * getdents using getdents64, because otherwise the host
299  * might hand us back more dirent records than we can fit
300  * into the guest buffer after structure format conversion.
301  * Otherwise we emulate getdents with getdents if the host has it.
302  */
303 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS
304 #define EMULATE_GETDENTS_WITH_GETDENTS
305 #endif
306 
307 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS)
308 _syscall3(int, sys_getdents, uint, fd, struct linux_dirent *, dirp, uint, count);
309 #endif
310 #if (defined(TARGET_NR_getdents) && \
311       !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \
312     (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
313 _syscall3(int, sys_getdents64, uint, fd, struct linux_dirent64 *, dirp, uint, count);
314 #endif
315 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
316 _syscall5(int, _llseek,  uint,  fd, ulong, hi, ulong, lo,
317           loff_t *, res, uint, wh);
318 #endif
319 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo)
320 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig,
321           siginfo_t *, uinfo)
322 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len)
323 #ifdef __NR_exit_group
324 _syscall1(int,exit_group,int,error_code)
325 #endif
326 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
327 _syscall1(int,set_tid_address,int *,tidptr)
328 #endif
329 #if defined(__NR_futex)
330 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val,
331           const struct timespec *,timeout,int *,uaddr2,int,val3)
332 #endif
333 #if defined(__NR_futex_time64)
334 _syscall6(int,sys_futex_time64,int *,uaddr,int,op,int,val,
335           const struct timespec *,timeout,int *,uaddr2,int,val3)
336 #endif
337 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
338 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len,
339           unsigned long *, user_mask_ptr);
340 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
341 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len,
342           unsigned long *, user_mask_ptr);
343 /* sched_attr is not defined in glibc */
344 struct sched_attr {
345     uint32_t size;
346     uint32_t sched_policy;
347     uint64_t sched_flags;
348     int32_t sched_nice;
349     uint32_t sched_priority;
350     uint64_t sched_runtime;
351     uint64_t sched_deadline;
352     uint64_t sched_period;
353     uint32_t sched_util_min;
354     uint32_t sched_util_max;
355 };
356 #define __NR_sys_sched_getattr __NR_sched_getattr
357 _syscall4(int, sys_sched_getattr, pid_t, pid, struct sched_attr *, attr,
358           unsigned int, size, unsigned int, flags);
359 #define __NR_sys_sched_setattr __NR_sched_setattr
360 _syscall3(int, sys_sched_setattr, pid_t, pid, struct sched_attr *, attr,
361           unsigned int, flags);
362 #define __NR_sys_sched_getscheduler __NR_sched_getscheduler
363 _syscall1(int, sys_sched_getscheduler, pid_t, pid);
364 #define __NR_sys_sched_setscheduler __NR_sched_setscheduler
365 _syscall3(int, sys_sched_setscheduler, pid_t, pid, int, policy,
366           const struct sched_param *, param);
367 #define __NR_sys_sched_getparam __NR_sched_getparam
368 _syscall2(int, sys_sched_getparam, pid_t, pid,
369           struct sched_param *, param);
370 #define __NR_sys_sched_setparam __NR_sched_setparam
371 _syscall2(int, sys_sched_setparam, pid_t, pid,
372           const struct sched_param *, param);
373 #define __NR_sys_getcpu __NR_getcpu
374 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache);
375 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd,
376           void *, arg);
377 _syscall2(int, capget, struct __user_cap_header_struct *, header,
378           struct __user_cap_data_struct *, data);
379 _syscall2(int, capset, struct __user_cap_header_struct *, header,
380           struct __user_cap_data_struct *, data);
381 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
382 _syscall2(int, ioprio_get, int, which, int, who)
383 #endif
384 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
385 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio)
386 #endif
387 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
388 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags)
389 #endif
390 
391 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
392 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type,
393           unsigned long, idx1, unsigned long, idx2)
394 #endif
395 
396 /*
397  * It is assumed that struct statx is architecture independent.
398  */
399 #if defined(TARGET_NR_statx) && defined(__NR_statx)
400 _syscall5(int, sys_statx, int, dirfd, const char *, pathname, int, flags,
401           unsigned int, mask, struct target_statx *, statxbuf)
402 #endif
403 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier)
404 _syscall2(int, membarrier, int, cmd, int, flags)
405 #endif
406 
407 static const bitmask_transtbl fcntl_flags_tbl[] = {
408   { TARGET_O_ACCMODE,   TARGET_O_WRONLY,    O_ACCMODE,   O_WRONLY,    },
409   { TARGET_O_ACCMODE,   TARGET_O_RDWR,      O_ACCMODE,   O_RDWR,      },
410   { TARGET_O_CREAT,     TARGET_O_CREAT,     O_CREAT,     O_CREAT,     },
411   { TARGET_O_EXCL,      TARGET_O_EXCL,      O_EXCL,      O_EXCL,      },
412   { TARGET_O_NOCTTY,    TARGET_O_NOCTTY,    O_NOCTTY,    O_NOCTTY,    },
413   { TARGET_O_TRUNC,     TARGET_O_TRUNC,     O_TRUNC,     O_TRUNC,     },
414   { TARGET_O_APPEND,    TARGET_O_APPEND,    O_APPEND,    O_APPEND,    },
415   { TARGET_O_NONBLOCK,  TARGET_O_NONBLOCK,  O_NONBLOCK,  O_NONBLOCK,  },
416   { TARGET_O_SYNC,      TARGET_O_DSYNC,     O_SYNC,      O_DSYNC,     },
417   { TARGET_O_SYNC,      TARGET_O_SYNC,      O_SYNC,      O_SYNC,      },
418   { TARGET_FASYNC,      TARGET_FASYNC,      FASYNC,      FASYNC,      },
419   { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, },
420   { TARGET_O_NOFOLLOW,  TARGET_O_NOFOLLOW,  O_NOFOLLOW,  O_NOFOLLOW,  },
421 #if defined(O_DIRECT)
422   { TARGET_O_DIRECT,    TARGET_O_DIRECT,    O_DIRECT,    O_DIRECT,    },
423 #endif
424 #if defined(O_NOATIME)
425   { TARGET_O_NOATIME,   TARGET_O_NOATIME,   O_NOATIME,   O_NOATIME    },
426 #endif
427 #if defined(O_CLOEXEC)
428   { TARGET_O_CLOEXEC,   TARGET_O_CLOEXEC,   O_CLOEXEC,   O_CLOEXEC    },
429 #endif
430 #if defined(O_PATH)
431   { TARGET_O_PATH,      TARGET_O_PATH,      O_PATH,      O_PATH       },
432 #endif
433 #if defined(O_TMPFILE)
434   { TARGET_O_TMPFILE,   TARGET_O_TMPFILE,   O_TMPFILE,   O_TMPFILE    },
435 #endif
436   /* Don't terminate the list prematurely on 64-bit host+guest.  */
437 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
438   { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, },
439 #endif
440   { 0, 0, 0, 0 }
441 };
442 
443 _syscall2(int, sys_getcwd1, char *, buf, size_t, size)
444 
445 #if defined(TARGET_NR_utimensat) || defined(TARGET_NR_utimensat_time64)
446 #if defined(__NR_utimensat)
447 #define __NR_sys_utimensat __NR_utimensat
448 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname,
449           const struct timespec *,tsp,int,flags)
450 #else
451 static int sys_utimensat(int dirfd, const char *pathname,
452                          const struct timespec times[2], int flags)
453 {
454     errno = ENOSYS;
455     return -1;
456 }
457 #endif
458 #endif /* TARGET_NR_utimensat */
459 
460 #ifdef TARGET_NR_renameat2
461 #if defined(__NR_renameat2)
462 #define __NR_sys_renameat2 __NR_renameat2
463 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd,
464           const char *, new, unsigned int, flags)
465 #else
466 static int sys_renameat2(int oldfd, const char *old,
467                          int newfd, const char *new, int flags)
468 {
469     if (flags == 0) {
470         return renameat(oldfd, old, newfd, new);
471     }
472     errno = ENOSYS;
473     return -1;
474 }
475 #endif
476 #endif /* TARGET_NR_renameat2 */
477 
478 #ifdef CONFIG_INOTIFY
479 #include <sys/inotify.h>
480 
481 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
482 static int sys_inotify_init(void)
483 {
484   return (inotify_init());
485 }
486 #endif
487 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
488 static int sys_inotify_add_watch(int fd,const char *pathname, int32_t mask)
489 {
490   return (inotify_add_watch(fd, pathname, mask));
491 }
492 #endif
493 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
494 static int sys_inotify_rm_watch(int fd, int32_t wd)
495 {
496   return (inotify_rm_watch(fd, wd));
497 }
498 #endif
499 #ifdef CONFIG_INOTIFY1
500 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
501 static int sys_inotify_init1(int flags)
502 {
503   return (inotify_init1(flags));
504 }
505 #endif
506 #endif
507 #else
508 /* Userspace can usually survive runtime without inotify */
509 #undef TARGET_NR_inotify_init
510 #undef TARGET_NR_inotify_init1
511 #undef TARGET_NR_inotify_add_watch
512 #undef TARGET_NR_inotify_rm_watch
513 #endif /* CONFIG_INOTIFY  */
514 
515 #if defined(TARGET_NR_prlimit64)
516 #ifndef __NR_prlimit64
517 # define __NR_prlimit64 -1
518 #endif
519 #define __NR_sys_prlimit64 __NR_prlimit64
520 /* The glibc rlimit structure may not be that used by the underlying syscall */
521 struct host_rlimit64 {
522     uint64_t rlim_cur;
523     uint64_t rlim_max;
524 };
525 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource,
526           const struct host_rlimit64 *, new_limit,
527           struct host_rlimit64 *, old_limit)
528 #endif
529 
530 
531 #if defined(TARGET_NR_timer_create)
532 /* Maximum of 32 active POSIX timers allowed at any one time. */
533 static timer_t g_posix_timers[32] = { 0, } ;
534 
535 static inline int next_free_host_timer(void)
536 {
537     int k ;
538     /* FIXME: Does finding the next free slot require a lock? */
539     for (k = 0; k < ARRAY_SIZE(g_posix_timers); k++) {
540         if (g_posix_timers[k] == 0) {
541             g_posix_timers[k] = (timer_t) 1;
542             return k;
543         }
544     }
545     return -1;
546 }
547 #endif
548 
549 static inline int host_to_target_errno(int host_errno)
550 {
551     switch (host_errno) {
552 #define E(X)  case X: return TARGET_##X;
553 #include "errnos.c.inc"
554 #undef E
555     default:
556         return host_errno;
557     }
558 }
559 
560 static inline int target_to_host_errno(int target_errno)
561 {
562     switch (target_errno) {
563 #define E(X)  case TARGET_##X: return X;
564 #include "errnos.c.inc"
565 #undef E
566     default:
567         return target_errno;
568     }
569 }
570 
571 static inline abi_long get_errno(abi_long ret)
572 {
573     if (ret == -1)
574         return -host_to_target_errno(errno);
575     else
576         return ret;
577 }
578 
579 const char *target_strerror(int err)
580 {
581     if (err == QEMU_ERESTARTSYS) {
582         return "To be restarted";
583     }
584     if (err == QEMU_ESIGRETURN) {
585         return "Successful exit from sigreturn";
586     }
587 
588     return strerror(target_to_host_errno(err));
589 }
590 
591 static int check_zeroed_user(abi_long addr, size_t ksize, size_t usize)
592 {
593     int i;
594     uint8_t b;
595     if (usize <= ksize) {
596         return 1;
597     }
598     for (i = ksize; i < usize; i++) {
599         if (get_user_u8(b, addr + i)) {
600             return -TARGET_EFAULT;
601         }
602         if (b != 0) {
603             return 0;
604         }
605     }
606     return 1;
607 }
608 
609 #define safe_syscall0(type, name) \
610 static type safe_##name(void) \
611 { \
612     return safe_syscall(__NR_##name); \
613 }
614 
615 #define safe_syscall1(type, name, type1, arg1) \
616 static type safe_##name(type1 arg1) \
617 { \
618     return safe_syscall(__NR_##name, arg1); \
619 }
620 
621 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
622 static type safe_##name(type1 arg1, type2 arg2) \
623 { \
624     return safe_syscall(__NR_##name, arg1, arg2); \
625 }
626 
627 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
628 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
629 { \
630     return safe_syscall(__NR_##name, arg1, arg2, arg3); \
631 }
632 
633 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
634     type4, arg4) \
635 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
636 { \
637     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
638 }
639 
640 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
641     type4, arg4, type5, arg5) \
642 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
643     type5 arg5) \
644 { \
645     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
646 }
647 
648 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
649     type4, arg4, type5, arg5, type6, arg6) \
650 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
651     type5 arg5, type6 arg6) \
652 { \
653     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
654 }
655 
656 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count)
657 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count)
658 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \
659               int, flags, mode_t, mode)
660 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid)
661 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \
662               struct rusage *, rusage)
663 #endif
664 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \
665               int, options, struct rusage *, rusage)
666 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp)
667 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
668     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
669 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \
670               fd_set *, exceptfds, struct timespec *, timeout, void *, sig)
671 #endif
672 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_ppoll_time64)
673 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds,
674               struct timespec *, tsp, const sigset_t *, sigmask,
675               size_t, sigsetsize)
676 #endif
677 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events,
678               int, maxevents, int, timeout, const sigset_t *, sigmask,
679               size_t, sigsetsize)
680 #if defined(__NR_futex)
681 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \
682               const struct timespec *,timeout,int *,uaddr2,int,val3)
683 #endif
684 #if defined(__NR_futex_time64)
685 safe_syscall6(int,futex_time64,int *,uaddr,int,op,int,val, \
686               const struct timespec *,timeout,int *,uaddr2,int,val3)
687 #endif
688 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize)
689 safe_syscall2(int, kill, pid_t, pid, int, sig)
690 safe_syscall2(int, tkill, int, tid, int, sig)
691 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig)
692 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt)
693 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt)
694 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt,
695               unsigned long, pos_l, unsigned long, pos_h)
696 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt,
697               unsigned long, pos_l, unsigned long, pos_h)
698 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr,
699               socklen_t, addrlen)
700 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len,
701               int, flags, const struct sockaddr *, addr, socklen_t, addrlen)
702 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len,
703               int, flags, struct sockaddr *, addr, socklen_t *, addrlen)
704 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags)
705 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags)
706 safe_syscall2(int, flock, int, fd, int, operation)
707 #if defined(TARGET_NR_rt_sigtimedwait) || defined(TARGET_NR_rt_sigtimedwait_time64)
708 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo,
709               const struct timespec *, uts, size_t, sigsetsize)
710 #endif
711 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len,
712               int, flags)
713 #if defined(TARGET_NR_nanosleep)
714 safe_syscall2(int, nanosleep, const struct timespec *, req,
715               struct timespec *, rem)
716 #endif
717 #if defined(TARGET_NR_clock_nanosleep) || \
718     defined(TARGET_NR_clock_nanosleep_time64)
719 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags,
720               const struct timespec *, req, struct timespec *, rem)
721 #endif
722 #ifdef __NR_ipc
723 #ifdef __s390x__
724 safe_syscall5(int, ipc, int, call, long, first, long, second, long, third,
725               void *, ptr)
726 #else
727 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third,
728               void *, ptr, long, fifth)
729 #endif
730 #endif
731 #ifdef __NR_msgsnd
732 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz,
733               int, flags)
734 #endif
735 #ifdef __NR_msgrcv
736 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz,
737               long, msgtype, int, flags)
738 #endif
739 #ifdef __NR_semtimedop
740 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops,
741               unsigned, nsops, const struct timespec *, timeout)
742 #endif
743 #if defined(TARGET_NR_mq_timedsend) || \
744     defined(TARGET_NR_mq_timedsend_time64)
745 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr,
746               size_t, len, unsigned, prio, const struct timespec *, timeout)
747 #endif
748 #if defined(TARGET_NR_mq_timedreceive) || \
749     defined(TARGET_NR_mq_timedreceive_time64)
750 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr,
751               size_t, len, unsigned *, prio, const struct timespec *, timeout)
752 #endif
753 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
754 safe_syscall6(ssize_t, copy_file_range, int, infd, loff_t *, pinoff,
755               int, outfd, loff_t *, poutoff, size_t, length,
756               unsigned int, flags)
757 #endif
758 
759 /* We do ioctl like this rather than via safe_syscall3 to preserve the
760  * "third argument might be integer or pointer or not present" behaviour of
761  * the libc function.
762  */
763 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
764 /* Similarly for fcntl. Note that callers must always:
765  *  pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
766  *  use the flock64 struct rather than unsuffixed flock
767  * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
768  */
769 #ifdef __NR_fcntl64
770 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
771 #else
772 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
773 #endif
774 
775 static inline int host_to_target_sock_type(int host_type)
776 {
777     int target_type;
778 
779     switch (host_type & 0xf /* SOCK_TYPE_MASK */) {
780     case SOCK_DGRAM:
781         target_type = TARGET_SOCK_DGRAM;
782         break;
783     case SOCK_STREAM:
784         target_type = TARGET_SOCK_STREAM;
785         break;
786     default:
787         target_type = host_type & 0xf /* SOCK_TYPE_MASK */;
788         break;
789     }
790 
791 #if defined(SOCK_CLOEXEC)
792     if (host_type & SOCK_CLOEXEC) {
793         target_type |= TARGET_SOCK_CLOEXEC;
794     }
795 #endif
796 
797 #if defined(SOCK_NONBLOCK)
798     if (host_type & SOCK_NONBLOCK) {
799         target_type |= TARGET_SOCK_NONBLOCK;
800     }
801 #endif
802 
803     return target_type;
804 }
805 
806 static abi_ulong target_brk;
807 static abi_ulong target_original_brk;
808 static abi_ulong brk_page;
809 
810 void target_set_brk(abi_ulong new_brk)
811 {
812     target_original_brk = target_brk = HOST_PAGE_ALIGN(new_brk);
813     brk_page = HOST_PAGE_ALIGN(target_brk);
814 }
815 
816 //#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0)
817 #define DEBUGF_BRK(message, args...)
818 
819 /* do_brk() must return target values and target errnos. */
820 abi_long do_brk(abi_ulong new_brk)
821 {
822     abi_long mapped_addr;
823     abi_ulong new_alloc_size;
824 
825     /* brk pointers are always untagged */
826 
827     DEBUGF_BRK("do_brk(" TARGET_ABI_FMT_lx ") -> ", new_brk);
828 
829     if (!new_brk) {
830         DEBUGF_BRK(TARGET_ABI_FMT_lx " (!new_brk)\n", target_brk);
831         return target_brk;
832     }
833     if (new_brk < target_original_brk) {
834         DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk < target_original_brk)\n",
835                    target_brk);
836         return target_brk;
837     }
838 
839     /* If the new brk is less than the highest page reserved to the
840      * target heap allocation, set it and we're almost done...  */
841     if (new_brk <= brk_page) {
842         /* Heap contents are initialized to zero, as for anonymous
843          * mapped pages.  */
844         if (new_brk > target_brk) {
845             memset(g2h_untagged(target_brk), 0, new_brk - target_brk);
846         }
847 	target_brk = new_brk;
848         DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk <= brk_page)\n", target_brk);
849 	return target_brk;
850     }
851 
852     /* We need to allocate more memory after the brk... Note that
853      * we don't use MAP_FIXED because that will map over the top of
854      * any existing mapping (like the one with the host libc or qemu
855      * itself); instead we treat "mapped but at wrong address" as
856      * a failure and unmap again.
857      */
858     new_alloc_size = HOST_PAGE_ALIGN(new_brk - brk_page);
859     mapped_addr = get_errno(target_mmap(brk_page, new_alloc_size,
860                                         PROT_READ|PROT_WRITE,
861                                         MAP_ANON|MAP_PRIVATE, 0, 0));
862 
863     if (mapped_addr == brk_page) {
864         /* Heap contents are initialized to zero, as for anonymous
865          * mapped pages.  Technically the new pages are already
866          * initialized to zero since they *are* anonymous mapped
867          * pages, however we have to take care with the contents that
868          * come from the remaining part of the previous page: it may
869          * contains garbage data due to a previous heap usage (grown
870          * then shrunken).  */
871         memset(g2h_untagged(target_brk), 0, brk_page - target_brk);
872 
873         target_brk = new_brk;
874         brk_page = HOST_PAGE_ALIGN(target_brk);
875         DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr == brk_page)\n",
876             target_brk);
877         return target_brk;
878     } else if (mapped_addr != -1) {
879         /* Mapped but at wrong address, meaning there wasn't actually
880          * enough space for this brk.
881          */
882         target_munmap(mapped_addr, new_alloc_size);
883         mapped_addr = -1;
884         DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr != -1)\n", target_brk);
885     }
886     else {
887         DEBUGF_BRK(TARGET_ABI_FMT_lx " (otherwise)\n", target_brk);
888     }
889 
890 #if defined(TARGET_ALPHA)
891     /* We (partially) emulate OSF/1 on Alpha, which requires we
892        return a proper errno, not an unchanged brk value.  */
893     return -TARGET_ENOMEM;
894 #endif
895     /* For everything else, return the previous break. */
896     return target_brk;
897 }
898 
899 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
900     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
901 static inline abi_long copy_from_user_fdset(fd_set *fds,
902                                             abi_ulong target_fds_addr,
903                                             int n)
904 {
905     int i, nw, j, k;
906     abi_ulong b, *target_fds;
907 
908     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
909     if (!(target_fds = lock_user(VERIFY_READ,
910                                  target_fds_addr,
911                                  sizeof(abi_ulong) * nw,
912                                  1)))
913         return -TARGET_EFAULT;
914 
915     FD_ZERO(fds);
916     k = 0;
917     for (i = 0; i < nw; i++) {
918         /* grab the abi_ulong */
919         __get_user(b, &target_fds[i]);
920         for (j = 0; j < TARGET_ABI_BITS; j++) {
921             /* check the bit inside the abi_ulong */
922             if ((b >> j) & 1)
923                 FD_SET(k, fds);
924             k++;
925         }
926     }
927 
928     unlock_user(target_fds, target_fds_addr, 0);
929 
930     return 0;
931 }
932 
933 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr,
934                                                  abi_ulong target_fds_addr,
935                                                  int n)
936 {
937     if (target_fds_addr) {
938         if (copy_from_user_fdset(fds, target_fds_addr, n))
939             return -TARGET_EFAULT;
940         *fds_ptr = fds;
941     } else {
942         *fds_ptr = NULL;
943     }
944     return 0;
945 }
946 
947 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr,
948                                           const fd_set *fds,
949                                           int n)
950 {
951     int i, nw, j, k;
952     abi_long v;
953     abi_ulong *target_fds;
954 
955     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
956     if (!(target_fds = lock_user(VERIFY_WRITE,
957                                  target_fds_addr,
958                                  sizeof(abi_ulong) * nw,
959                                  0)))
960         return -TARGET_EFAULT;
961 
962     k = 0;
963     for (i = 0; i < nw; i++) {
964         v = 0;
965         for (j = 0; j < TARGET_ABI_BITS; j++) {
966             v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j);
967             k++;
968         }
969         __put_user(v, &target_fds[i]);
970     }
971 
972     unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw);
973 
974     return 0;
975 }
976 #endif
977 
978 #if defined(__alpha__)
979 #define HOST_HZ 1024
980 #else
981 #define HOST_HZ 100
982 #endif
983 
984 static inline abi_long host_to_target_clock_t(long ticks)
985 {
986 #if HOST_HZ == TARGET_HZ
987     return ticks;
988 #else
989     return ((int64_t)ticks * TARGET_HZ) / HOST_HZ;
990 #endif
991 }
992 
993 static inline abi_long host_to_target_rusage(abi_ulong target_addr,
994                                              const struct rusage *rusage)
995 {
996     struct target_rusage *target_rusage;
997 
998     if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0))
999         return -TARGET_EFAULT;
1000     target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec);
1001     target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec);
1002     target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec);
1003     target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec);
1004     target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss);
1005     target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss);
1006     target_rusage->ru_idrss = tswapal(rusage->ru_idrss);
1007     target_rusage->ru_isrss = tswapal(rusage->ru_isrss);
1008     target_rusage->ru_minflt = tswapal(rusage->ru_minflt);
1009     target_rusage->ru_majflt = tswapal(rusage->ru_majflt);
1010     target_rusage->ru_nswap = tswapal(rusage->ru_nswap);
1011     target_rusage->ru_inblock = tswapal(rusage->ru_inblock);
1012     target_rusage->ru_oublock = tswapal(rusage->ru_oublock);
1013     target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd);
1014     target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv);
1015     target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals);
1016     target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw);
1017     target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw);
1018     unlock_user_struct(target_rusage, target_addr, 1);
1019 
1020     return 0;
1021 }
1022 
1023 #ifdef TARGET_NR_setrlimit
1024 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim)
1025 {
1026     abi_ulong target_rlim_swap;
1027     rlim_t result;
1028 
1029     target_rlim_swap = tswapal(target_rlim);
1030     if (target_rlim_swap == TARGET_RLIM_INFINITY)
1031         return RLIM_INFINITY;
1032 
1033     result = target_rlim_swap;
1034     if (target_rlim_swap != (rlim_t)result)
1035         return RLIM_INFINITY;
1036 
1037     return result;
1038 }
1039 #endif
1040 
1041 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit)
1042 static inline abi_ulong host_to_target_rlim(rlim_t rlim)
1043 {
1044     abi_ulong target_rlim_swap;
1045     abi_ulong result;
1046 
1047     if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim)
1048         target_rlim_swap = TARGET_RLIM_INFINITY;
1049     else
1050         target_rlim_swap = rlim;
1051     result = tswapal(target_rlim_swap);
1052 
1053     return result;
1054 }
1055 #endif
1056 
1057 static inline int target_to_host_resource(int code)
1058 {
1059     switch (code) {
1060     case TARGET_RLIMIT_AS:
1061         return RLIMIT_AS;
1062     case TARGET_RLIMIT_CORE:
1063         return RLIMIT_CORE;
1064     case TARGET_RLIMIT_CPU:
1065         return RLIMIT_CPU;
1066     case TARGET_RLIMIT_DATA:
1067         return RLIMIT_DATA;
1068     case TARGET_RLIMIT_FSIZE:
1069         return RLIMIT_FSIZE;
1070     case TARGET_RLIMIT_LOCKS:
1071         return RLIMIT_LOCKS;
1072     case TARGET_RLIMIT_MEMLOCK:
1073         return RLIMIT_MEMLOCK;
1074     case TARGET_RLIMIT_MSGQUEUE:
1075         return RLIMIT_MSGQUEUE;
1076     case TARGET_RLIMIT_NICE:
1077         return RLIMIT_NICE;
1078     case TARGET_RLIMIT_NOFILE:
1079         return RLIMIT_NOFILE;
1080     case TARGET_RLIMIT_NPROC:
1081         return RLIMIT_NPROC;
1082     case TARGET_RLIMIT_RSS:
1083         return RLIMIT_RSS;
1084     case TARGET_RLIMIT_RTPRIO:
1085         return RLIMIT_RTPRIO;
1086     case TARGET_RLIMIT_SIGPENDING:
1087         return RLIMIT_SIGPENDING;
1088     case TARGET_RLIMIT_STACK:
1089         return RLIMIT_STACK;
1090     default:
1091         return code;
1092     }
1093 }
1094 
1095 static inline abi_long copy_from_user_timeval(struct timeval *tv,
1096                                               abi_ulong target_tv_addr)
1097 {
1098     struct target_timeval *target_tv;
1099 
1100     if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1101         return -TARGET_EFAULT;
1102     }
1103 
1104     __get_user(tv->tv_sec, &target_tv->tv_sec);
1105     __get_user(tv->tv_usec, &target_tv->tv_usec);
1106 
1107     unlock_user_struct(target_tv, target_tv_addr, 0);
1108 
1109     return 0;
1110 }
1111 
1112 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr,
1113                                             const struct timeval *tv)
1114 {
1115     struct target_timeval *target_tv;
1116 
1117     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1118         return -TARGET_EFAULT;
1119     }
1120 
1121     __put_user(tv->tv_sec, &target_tv->tv_sec);
1122     __put_user(tv->tv_usec, &target_tv->tv_usec);
1123 
1124     unlock_user_struct(target_tv, target_tv_addr, 1);
1125 
1126     return 0;
1127 }
1128 
1129 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
1130 static inline abi_long copy_from_user_timeval64(struct timeval *tv,
1131                                                 abi_ulong target_tv_addr)
1132 {
1133     struct target__kernel_sock_timeval *target_tv;
1134 
1135     if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1136         return -TARGET_EFAULT;
1137     }
1138 
1139     __get_user(tv->tv_sec, &target_tv->tv_sec);
1140     __get_user(tv->tv_usec, &target_tv->tv_usec);
1141 
1142     unlock_user_struct(target_tv, target_tv_addr, 0);
1143 
1144     return 0;
1145 }
1146 #endif
1147 
1148 static inline abi_long copy_to_user_timeval64(abi_ulong target_tv_addr,
1149                                               const struct timeval *tv)
1150 {
1151     struct target__kernel_sock_timeval *target_tv;
1152 
1153     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1154         return -TARGET_EFAULT;
1155     }
1156 
1157     __put_user(tv->tv_sec, &target_tv->tv_sec);
1158     __put_user(tv->tv_usec, &target_tv->tv_usec);
1159 
1160     unlock_user_struct(target_tv, target_tv_addr, 1);
1161 
1162     return 0;
1163 }
1164 
1165 #if defined(TARGET_NR_futex) || \
1166     defined(TARGET_NR_rt_sigtimedwait) || \
1167     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \
1168     defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \
1169     defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \
1170     defined(TARGET_NR_mq_timedreceive) || defined(TARGET_NR_ipc) || \
1171     defined(TARGET_NR_semop) || defined(TARGET_NR_semtimedop) || \
1172     defined(TARGET_NR_timer_settime) || \
1173     (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
1174 static inline abi_long target_to_host_timespec(struct timespec *host_ts,
1175                                                abi_ulong target_addr)
1176 {
1177     struct target_timespec *target_ts;
1178 
1179     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1180         return -TARGET_EFAULT;
1181     }
1182     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1183     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1184     unlock_user_struct(target_ts, target_addr, 0);
1185     return 0;
1186 }
1187 #endif
1188 
1189 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64) || \
1190     defined(TARGET_NR_timer_settime64) || \
1191     defined(TARGET_NR_mq_timedsend_time64) || \
1192     defined(TARGET_NR_mq_timedreceive_time64) || \
1193     (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) || \
1194     defined(TARGET_NR_clock_nanosleep_time64) || \
1195     defined(TARGET_NR_rt_sigtimedwait_time64) || \
1196     defined(TARGET_NR_utimensat) || \
1197     defined(TARGET_NR_utimensat_time64) || \
1198     defined(TARGET_NR_semtimedop_time64) || \
1199     defined(TARGET_NR_pselect6_time64) || defined(TARGET_NR_ppoll_time64)
1200 static inline abi_long target_to_host_timespec64(struct timespec *host_ts,
1201                                                  abi_ulong target_addr)
1202 {
1203     struct target__kernel_timespec *target_ts;
1204 
1205     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1206         return -TARGET_EFAULT;
1207     }
1208     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1209     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1210     /* in 32bit mode, this drops the padding */
1211     host_ts->tv_nsec = (long)(abi_long)host_ts->tv_nsec;
1212     unlock_user_struct(target_ts, target_addr, 0);
1213     return 0;
1214 }
1215 #endif
1216 
1217 static inline abi_long host_to_target_timespec(abi_ulong target_addr,
1218                                                struct timespec *host_ts)
1219 {
1220     struct target_timespec *target_ts;
1221 
1222     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1223         return -TARGET_EFAULT;
1224     }
1225     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1226     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1227     unlock_user_struct(target_ts, target_addr, 1);
1228     return 0;
1229 }
1230 
1231 static inline abi_long host_to_target_timespec64(abi_ulong target_addr,
1232                                                  struct timespec *host_ts)
1233 {
1234     struct target__kernel_timespec *target_ts;
1235 
1236     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1237         return -TARGET_EFAULT;
1238     }
1239     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1240     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1241     unlock_user_struct(target_ts, target_addr, 1);
1242     return 0;
1243 }
1244 
1245 #if defined(TARGET_NR_gettimeofday)
1246 static inline abi_long copy_to_user_timezone(abi_ulong target_tz_addr,
1247                                              struct timezone *tz)
1248 {
1249     struct target_timezone *target_tz;
1250 
1251     if (!lock_user_struct(VERIFY_WRITE, target_tz, target_tz_addr, 1)) {
1252         return -TARGET_EFAULT;
1253     }
1254 
1255     __put_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1256     __put_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1257 
1258     unlock_user_struct(target_tz, target_tz_addr, 1);
1259 
1260     return 0;
1261 }
1262 #endif
1263 
1264 #if defined(TARGET_NR_settimeofday)
1265 static inline abi_long copy_from_user_timezone(struct timezone *tz,
1266                                                abi_ulong target_tz_addr)
1267 {
1268     struct target_timezone *target_tz;
1269 
1270     if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) {
1271         return -TARGET_EFAULT;
1272     }
1273 
1274     __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1275     __get_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1276 
1277     unlock_user_struct(target_tz, target_tz_addr, 0);
1278 
1279     return 0;
1280 }
1281 #endif
1282 
1283 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1284 #include <mqueue.h>
1285 
1286 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr,
1287                                               abi_ulong target_mq_attr_addr)
1288 {
1289     struct target_mq_attr *target_mq_attr;
1290 
1291     if (!lock_user_struct(VERIFY_READ, target_mq_attr,
1292                           target_mq_attr_addr, 1))
1293         return -TARGET_EFAULT;
1294 
1295     __get_user(attr->mq_flags, &target_mq_attr->mq_flags);
1296     __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1297     __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1298     __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1299 
1300     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0);
1301 
1302     return 0;
1303 }
1304 
1305 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr,
1306                                             const struct mq_attr *attr)
1307 {
1308     struct target_mq_attr *target_mq_attr;
1309 
1310     if (!lock_user_struct(VERIFY_WRITE, target_mq_attr,
1311                           target_mq_attr_addr, 0))
1312         return -TARGET_EFAULT;
1313 
1314     __put_user(attr->mq_flags, &target_mq_attr->mq_flags);
1315     __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1316     __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1317     __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1318 
1319     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1);
1320 
1321     return 0;
1322 }
1323 #endif
1324 
1325 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1326 /* do_select() must return target values and target errnos. */
1327 static abi_long do_select(int n,
1328                           abi_ulong rfd_addr, abi_ulong wfd_addr,
1329                           abi_ulong efd_addr, abi_ulong target_tv_addr)
1330 {
1331     fd_set rfds, wfds, efds;
1332     fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1333     struct timeval tv;
1334     struct timespec ts, *ts_ptr;
1335     abi_long ret;
1336 
1337     ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1338     if (ret) {
1339         return ret;
1340     }
1341     ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1342     if (ret) {
1343         return ret;
1344     }
1345     ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1346     if (ret) {
1347         return ret;
1348     }
1349 
1350     if (target_tv_addr) {
1351         if (copy_from_user_timeval(&tv, target_tv_addr))
1352             return -TARGET_EFAULT;
1353         ts.tv_sec = tv.tv_sec;
1354         ts.tv_nsec = tv.tv_usec * 1000;
1355         ts_ptr = &ts;
1356     } else {
1357         ts_ptr = NULL;
1358     }
1359 
1360     ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1361                                   ts_ptr, NULL));
1362 
1363     if (!is_error(ret)) {
1364         if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
1365             return -TARGET_EFAULT;
1366         if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
1367             return -TARGET_EFAULT;
1368         if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
1369             return -TARGET_EFAULT;
1370 
1371         if (target_tv_addr) {
1372             tv.tv_sec = ts.tv_sec;
1373             tv.tv_usec = ts.tv_nsec / 1000;
1374             if (copy_to_user_timeval(target_tv_addr, &tv)) {
1375                 return -TARGET_EFAULT;
1376             }
1377         }
1378     }
1379 
1380     return ret;
1381 }
1382 
1383 #if defined(TARGET_WANT_OLD_SYS_SELECT)
1384 static abi_long do_old_select(abi_ulong arg1)
1385 {
1386     struct target_sel_arg_struct *sel;
1387     abi_ulong inp, outp, exp, tvp;
1388     long nsel;
1389 
1390     if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) {
1391         return -TARGET_EFAULT;
1392     }
1393 
1394     nsel = tswapal(sel->n);
1395     inp = tswapal(sel->inp);
1396     outp = tswapal(sel->outp);
1397     exp = tswapal(sel->exp);
1398     tvp = tswapal(sel->tvp);
1399 
1400     unlock_user_struct(sel, arg1, 0);
1401 
1402     return do_select(nsel, inp, outp, exp, tvp);
1403 }
1404 #endif
1405 #endif
1406 
1407 #if defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
1408 static abi_long do_pselect6(abi_long arg1, abi_long arg2, abi_long arg3,
1409                             abi_long arg4, abi_long arg5, abi_long arg6,
1410                             bool time64)
1411 {
1412     abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr;
1413     fd_set rfds, wfds, efds;
1414     fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1415     struct timespec ts, *ts_ptr;
1416     abi_long ret;
1417 
1418     /*
1419      * The 6th arg is actually two args smashed together,
1420      * so we cannot use the C library.
1421      */
1422     sigset_t set;
1423     struct {
1424         sigset_t *set;
1425         size_t size;
1426     } sig, *sig_ptr;
1427 
1428     abi_ulong arg_sigset, arg_sigsize, *arg7;
1429     target_sigset_t *target_sigset;
1430 
1431     n = arg1;
1432     rfd_addr = arg2;
1433     wfd_addr = arg3;
1434     efd_addr = arg4;
1435     ts_addr = arg5;
1436 
1437     ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1438     if (ret) {
1439         return ret;
1440     }
1441     ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1442     if (ret) {
1443         return ret;
1444     }
1445     ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1446     if (ret) {
1447         return ret;
1448     }
1449 
1450     /*
1451      * This takes a timespec, and not a timeval, so we cannot
1452      * use the do_select() helper ...
1453      */
1454     if (ts_addr) {
1455         if (time64) {
1456             if (target_to_host_timespec64(&ts, ts_addr)) {
1457                 return -TARGET_EFAULT;
1458             }
1459         } else {
1460             if (target_to_host_timespec(&ts, ts_addr)) {
1461                 return -TARGET_EFAULT;
1462             }
1463         }
1464             ts_ptr = &ts;
1465     } else {
1466         ts_ptr = NULL;
1467     }
1468 
1469     /* Extract the two packed args for the sigset */
1470     if (arg6) {
1471         sig_ptr = &sig;
1472         sig.size = SIGSET_T_SIZE;
1473 
1474         arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1);
1475         if (!arg7) {
1476             return -TARGET_EFAULT;
1477         }
1478         arg_sigset = tswapal(arg7[0]);
1479         arg_sigsize = tswapal(arg7[1]);
1480         unlock_user(arg7, arg6, 0);
1481 
1482         if (arg_sigset) {
1483             sig.set = &set;
1484             if (arg_sigsize != sizeof(*target_sigset)) {
1485                 /* Like the kernel, we enforce correct size sigsets */
1486                 return -TARGET_EINVAL;
1487             }
1488             target_sigset = lock_user(VERIFY_READ, arg_sigset,
1489                                       sizeof(*target_sigset), 1);
1490             if (!target_sigset) {
1491                 return -TARGET_EFAULT;
1492             }
1493             target_to_host_sigset(&set, target_sigset);
1494             unlock_user(target_sigset, arg_sigset, 0);
1495         } else {
1496             sig.set = NULL;
1497         }
1498     } else {
1499         sig_ptr = NULL;
1500     }
1501 
1502     ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1503                                   ts_ptr, sig_ptr));
1504 
1505     if (!is_error(ret)) {
1506         if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) {
1507             return -TARGET_EFAULT;
1508         }
1509         if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) {
1510             return -TARGET_EFAULT;
1511         }
1512         if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) {
1513             return -TARGET_EFAULT;
1514         }
1515         if (time64) {
1516             if (ts_addr && host_to_target_timespec64(ts_addr, &ts)) {
1517                 return -TARGET_EFAULT;
1518             }
1519         } else {
1520             if (ts_addr && host_to_target_timespec(ts_addr, &ts)) {
1521                 return -TARGET_EFAULT;
1522             }
1523         }
1524     }
1525     return ret;
1526 }
1527 #endif
1528 
1529 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) || \
1530     defined(TARGET_NR_ppoll_time64)
1531 static abi_long do_ppoll(abi_long arg1, abi_long arg2, abi_long arg3,
1532                          abi_long arg4, abi_long arg5, bool ppoll, bool time64)
1533 {
1534     struct target_pollfd *target_pfd;
1535     unsigned int nfds = arg2;
1536     struct pollfd *pfd;
1537     unsigned int i;
1538     abi_long ret;
1539 
1540     pfd = NULL;
1541     target_pfd = NULL;
1542     if (nfds) {
1543         if (nfds > (INT_MAX / sizeof(struct target_pollfd))) {
1544             return -TARGET_EINVAL;
1545         }
1546         target_pfd = lock_user(VERIFY_WRITE, arg1,
1547                                sizeof(struct target_pollfd) * nfds, 1);
1548         if (!target_pfd) {
1549             return -TARGET_EFAULT;
1550         }
1551 
1552         pfd = alloca(sizeof(struct pollfd) * nfds);
1553         for (i = 0; i < nfds; i++) {
1554             pfd[i].fd = tswap32(target_pfd[i].fd);
1555             pfd[i].events = tswap16(target_pfd[i].events);
1556         }
1557     }
1558     if (ppoll) {
1559         struct timespec _timeout_ts, *timeout_ts = &_timeout_ts;
1560         target_sigset_t *target_set;
1561         sigset_t _set, *set = &_set;
1562 
1563         if (arg3) {
1564             if (time64) {
1565                 if (target_to_host_timespec64(timeout_ts, arg3)) {
1566                     unlock_user(target_pfd, arg1, 0);
1567                     return -TARGET_EFAULT;
1568                 }
1569             } else {
1570                 if (target_to_host_timespec(timeout_ts, arg3)) {
1571                     unlock_user(target_pfd, arg1, 0);
1572                     return -TARGET_EFAULT;
1573                 }
1574             }
1575         } else {
1576             timeout_ts = NULL;
1577         }
1578 
1579         if (arg4) {
1580             if (arg5 != sizeof(target_sigset_t)) {
1581                 unlock_user(target_pfd, arg1, 0);
1582                 return -TARGET_EINVAL;
1583             }
1584 
1585             target_set = lock_user(VERIFY_READ, arg4,
1586                                    sizeof(target_sigset_t), 1);
1587             if (!target_set) {
1588                 unlock_user(target_pfd, arg1, 0);
1589                 return -TARGET_EFAULT;
1590             }
1591             target_to_host_sigset(set, target_set);
1592         } else {
1593             set = NULL;
1594         }
1595 
1596         ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts,
1597                                    set, SIGSET_T_SIZE));
1598 
1599         if (!is_error(ret) && arg3) {
1600             if (time64) {
1601                 if (host_to_target_timespec64(arg3, timeout_ts)) {
1602                     return -TARGET_EFAULT;
1603                 }
1604             } else {
1605                 if (host_to_target_timespec(arg3, timeout_ts)) {
1606                     return -TARGET_EFAULT;
1607                 }
1608             }
1609         }
1610         if (arg4) {
1611             unlock_user(target_set, arg4, 0);
1612         }
1613     } else {
1614           struct timespec ts, *pts;
1615 
1616           if (arg3 >= 0) {
1617               /* Convert ms to secs, ns */
1618               ts.tv_sec = arg3 / 1000;
1619               ts.tv_nsec = (arg3 % 1000) * 1000000LL;
1620               pts = &ts;
1621           } else {
1622               /* -ve poll() timeout means "infinite" */
1623               pts = NULL;
1624           }
1625           ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0));
1626     }
1627 
1628     if (!is_error(ret)) {
1629         for (i = 0; i < nfds; i++) {
1630             target_pfd[i].revents = tswap16(pfd[i].revents);
1631         }
1632     }
1633     unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds);
1634     return ret;
1635 }
1636 #endif
1637 
1638 static abi_long do_pipe2(int host_pipe[], int flags)
1639 {
1640 #ifdef CONFIG_PIPE2
1641     return pipe2(host_pipe, flags);
1642 #else
1643     return -ENOSYS;
1644 #endif
1645 }
1646 
1647 static abi_long do_pipe(void *cpu_env, abi_ulong pipedes,
1648                         int flags, int is_pipe2)
1649 {
1650     int host_pipe[2];
1651     abi_long ret;
1652     ret = flags ? do_pipe2(host_pipe, flags) : pipe(host_pipe);
1653 
1654     if (is_error(ret))
1655         return get_errno(ret);
1656 
1657     /* Several targets have special calling conventions for the original
1658        pipe syscall, but didn't replicate this into the pipe2 syscall.  */
1659     if (!is_pipe2) {
1660 #if defined(TARGET_ALPHA)
1661         ((CPUAlphaState *)cpu_env)->ir[IR_A4] = host_pipe[1];
1662         return host_pipe[0];
1663 #elif defined(TARGET_MIPS)
1664         ((CPUMIPSState*)cpu_env)->active_tc.gpr[3] = host_pipe[1];
1665         return host_pipe[0];
1666 #elif defined(TARGET_SH4)
1667         ((CPUSH4State*)cpu_env)->gregs[1] = host_pipe[1];
1668         return host_pipe[0];
1669 #elif defined(TARGET_SPARC)
1670         ((CPUSPARCState*)cpu_env)->regwptr[1] = host_pipe[1];
1671         return host_pipe[0];
1672 #endif
1673     }
1674 
1675     if (put_user_s32(host_pipe[0], pipedes)
1676         || put_user_s32(host_pipe[1], pipedes + sizeof(host_pipe[0])))
1677         return -TARGET_EFAULT;
1678     return get_errno(ret);
1679 }
1680 
1681 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn,
1682                                               abi_ulong target_addr,
1683                                               socklen_t len)
1684 {
1685     struct target_ip_mreqn *target_smreqn;
1686 
1687     target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1);
1688     if (!target_smreqn)
1689         return -TARGET_EFAULT;
1690     mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr;
1691     mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr;
1692     if (len == sizeof(struct target_ip_mreqn))
1693         mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex);
1694     unlock_user(target_smreqn, target_addr, 0);
1695 
1696     return 0;
1697 }
1698 
1699 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr,
1700                                                abi_ulong target_addr,
1701                                                socklen_t len)
1702 {
1703     const socklen_t unix_maxlen = sizeof (struct sockaddr_un);
1704     sa_family_t sa_family;
1705     struct target_sockaddr *target_saddr;
1706 
1707     if (fd_trans_target_to_host_addr(fd)) {
1708         return fd_trans_target_to_host_addr(fd)(addr, target_addr, len);
1709     }
1710 
1711     target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
1712     if (!target_saddr)
1713         return -TARGET_EFAULT;
1714 
1715     sa_family = tswap16(target_saddr->sa_family);
1716 
1717     /* Oops. The caller might send a incomplete sun_path; sun_path
1718      * must be terminated by \0 (see the manual page), but
1719      * unfortunately it is quite common to specify sockaddr_un
1720      * length as "strlen(x->sun_path)" while it should be
1721      * "strlen(...) + 1". We'll fix that here if needed.
1722      * Linux kernel has a similar feature.
1723      */
1724 
1725     if (sa_family == AF_UNIX) {
1726         if (len < unix_maxlen && len > 0) {
1727             char *cp = (char*)target_saddr;
1728 
1729             if ( cp[len-1] && !cp[len] )
1730                 len++;
1731         }
1732         if (len > unix_maxlen)
1733             len = unix_maxlen;
1734     }
1735 
1736     memcpy(addr, target_saddr, len);
1737     addr->sa_family = sa_family;
1738     if (sa_family == AF_NETLINK) {
1739         struct sockaddr_nl *nladdr;
1740 
1741         nladdr = (struct sockaddr_nl *)addr;
1742         nladdr->nl_pid = tswap32(nladdr->nl_pid);
1743         nladdr->nl_groups = tswap32(nladdr->nl_groups);
1744     } else if (sa_family == AF_PACKET) {
1745 	struct target_sockaddr_ll *lladdr;
1746 
1747 	lladdr = (struct target_sockaddr_ll *)addr;
1748 	lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex);
1749 	lladdr->sll_hatype = tswap16(lladdr->sll_hatype);
1750     }
1751     unlock_user(target_saddr, target_addr, 0);
1752 
1753     return 0;
1754 }
1755 
1756 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr,
1757                                                struct sockaddr *addr,
1758                                                socklen_t len)
1759 {
1760     struct target_sockaddr *target_saddr;
1761 
1762     if (len == 0) {
1763         return 0;
1764     }
1765     assert(addr);
1766 
1767     target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0);
1768     if (!target_saddr)
1769         return -TARGET_EFAULT;
1770     memcpy(target_saddr, addr, len);
1771     if (len >= offsetof(struct target_sockaddr, sa_family) +
1772         sizeof(target_saddr->sa_family)) {
1773         target_saddr->sa_family = tswap16(addr->sa_family);
1774     }
1775     if (addr->sa_family == AF_NETLINK &&
1776         len >= sizeof(struct target_sockaddr_nl)) {
1777         struct target_sockaddr_nl *target_nl =
1778                (struct target_sockaddr_nl *)target_saddr;
1779         target_nl->nl_pid = tswap32(target_nl->nl_pid);
1780         target_nl->nl_groups = tswap32(target_nl->nl_groups);
1781     } else if (addr->sa_family == AF_PACKET) {
1782         struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr;
1783         target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex);
1784         target_ll->sll_hatype = tswap16(target_ll->sll_hatype);
1785     } else if (addr->sa_family == AF_INET6 &&
1786                len >= sizeof(struct target_sockaddr_in6)) {
1787         struct target_sockaddr_in6 *target_in6 =
1788                (struct target_sockaddr_in6 *)target_saddr;
1789         target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id);
1790     }
1791     unlock_user(target_saddr, target_addr, len);
1792 
1793     return 0;
1794 }
1795 
1796 static inline abi_long target_to_host_cmsg(struct msghdr *msgh,
1797                                            struct target_msghdr *target_msgh)
1798 {
1799     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1800     abi_long msg_controllen;
1801     abi_ulong target_cmsg_addr;
1802     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1803     socklen_t space = 0;
1804 
1805     msg_controllen = tswapal(target_msgh->msg_controllen);
1806     if (msg_controllen < sizeof (struct target_cmsghdr))
1807         goto the_end;
1808     target_cmsg_addr = tswapal(target_msgh->msg_control);
1809     target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1);
1810     target_cmsg_start = target_cmsg;
1811     if (!target_cmsg)
1812         return -TARGET_EFAULT;
1813 
1814     while (cmsg && target_cmsg) {
1815         void *data = CMSG_DATA(cmsg);
1816         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1817 
1818         int len = tswapal(target_cmsg->cmsg_len)
1819             - sizeof(struct target_cmsghdr);
1820 
1821         space += CMSG_SPACE(len);
1822         if (space > msgh->msg_controllen) {
1823             space -= CMSG_SPACE(len);
1824             /* This is a QEMU bug, since we allocated the payload
1825              * area ourselves (unlike overflow in host-to-target
1826              * conversion, which is just the guest giving us a buffer
1827              * that's too small). It can't happen for the payload types
1828              * we currently support; if it becomes an issue in future
1829              * we would need to improve our allocation strategy to
1830              * something more intelligent than "twice the size of the
1831              * target buffer we're reading from".
1832              */
1833             qemu_log_mask(LOG_UNIMP,
1834                           ("Unsupported ancillary data %d/%d: "
1835                            "unhandled msg size\n"),
1836                           tswap32(target_cmsg->cmsg_level),
1837                           tswap32(target_cmsg->cmsg_type));
1838             break;
1839         }
1840 
1841         if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) {
1842             cmsg->cmsg_level = SOL_SOCKET;
1843         } else {
1844             cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level);
1845         }
1846         cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type);
1847         cmsg->cmsg_len = CMSG_LEN(len);
1848 
1849         if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
1850             int *fd = (int *)data;
1851             int *target_fd = (int *)target_data;
1852             int i, numfds = len / sizeof(int);
1853 
1854             for (i = 0; i < numfds; i++) {
1855                 __get_user(fd[i], target_fd + i);
1856             }
1857         } else if (cmsg->cmsg_level == SOL_SOCKET
1858                &&  cmsg->cmsg_type == SCM_CREDENTIALS) {
1859             struct ucred *cred = (struct ucred *)data;
1860             struct target_ucred *target_cred =
1861                 (struct target_ucred *)target_data;
1862 
1863             __get_user(cred->pid, &target_cred->pid);
1864             __get_user(cred->uid, &target_cred->uid);
1865             __get_user(cred->gid, &target_cred->gid);
1866         } else {
1867             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
1868                           cmsg->cmsg_level, cmsg->cmsg_type);
1869             memcpy(data, target_data, len);
1870         }
1871 
1872         cmsg = CMSG_NXTHDR(msgh, cmsg);
1873         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1874                                          target_cmsg_start);
1875     }
1876     unlock_user(target_cmsg, target_cmsg_addr, 0);
1877  the_end:
1878     msgh->msg_controllen = space;
1879     return 0;
1880 }
1881 
1882 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh,
1883                                            struct msghdr *msgh)
1884 {
1885     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1886     abi_long msg_controllen;
1887     abi_ulong target_cmsg_addr;
1888     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1889     socklen_t space = 0;
1890 
1891     msg_controllen = tswapal(target_msgh->msg_controllen);
1892     if (msg_controllen < sizeof (struct target_cmsghdr))
1893         goto the_end;
1894     target_cmsg_addr = tswapal(target_msgh->msg_control);
1895     target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0);
1896     target_cmsg_start = target_cmsg;
1897     if (!target_cmsg)
1898         return -TARGET_EFAULT;
1899 
1900     while (cmsg && target_cmsg) {
1901         void *data = CMSG_DATA(cmsg);
1902         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1903 
1904         int len = cmsg->cmsg_len - sizeof(struct cmsghdr);
1905         int tgt_len, tgt_space;
1906 
1907         /* We never copy a half-header but may copy half-data;
1908          * this is Linux's behaviour in put_cmsg(). Note that
1909          * truncation here is a guest problem (which we report
1910          * to the guest via the CTRUNC bit), unlike truncation
1911          * in target_to_host_cmsg, which is a QEMU bug.
1912          */
1913         if (msg_controllen < sizeof(struct target_cmsghdr)) {
1914             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1915             break;
1916         }
1917 
1918         if (cmsg->cmsg_level == SOL_SOCKET) {
1919             target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET);
1920         } else {
1921             target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level);
1922         }
1923         target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type);
1924 
1925         /* Payload types which need a different size of payload on
1926          * the target must adjust tgt_len here.
1927          */
1928         tgt_len = len;
1929         switch (cmsg->cmsg_level) {
1930         case SOL_SOCKET:
1931             switch (cmsg->cmsg_type) {
1932             case SO_TIMESTAMP:
1933                 tgt_len = sizeof(struct target_timeval);
1934                 break;
1935             default:
1936                 break;
1937             }
1938             break;
1939         default:
1940             break;
1941         }
1942 
1943         if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) {
1944             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1945             tgt_len = msg_controllen - sizeof(struct target_cmsghdr);
1946         }
1947 
1948         /* We must now copy-and-convert len bytes of payload
1949          * into tgt_len bytes of destination space. Bear in mind
1950          * that in both source and destination we may be dealing
1951          * with a truncated value!
1952          */
1953         switch (cmsg->cmsg_level) {
1954         case SOL_SOCKET:
1955             switch (cmsg->cmsg_type) {
1956             case SCM_RIGHTS:
1957             {
1958                 int *fd = (int *)data;
1959                 int *target_fd = (int *)target_data;
1960                 int i, numfds = tgt_len / sizeof(int);
1961 
1962                 for (i = 0; i < numfds; i++) {
1963                     __put_user(fd[i], target_fd + i);
1964                 }
1965                 break;
1966             }
1967             case SO_TIMESTAMP:
1968             {
1969                 struct timeval *tv = (struct timeval *)data;
1970                 struct target_timeval *target_tv =
1971                     (struct target_timeval *)target_data;
1972 
1973                 if (len != sizeof(struct timeval) ||
1974                     tgt_len != sizeof(struct target_timeval)) {
1975                     goto unimplemented;
1976                 }
1977 
1978                 /* copy struct timeval to target */
1979                 __put_user(tv->tv_sec, &target_tv->tv_sec);
1980                 __put_user(tv->tv_usec, &target_tv->tv_usec);
1981                 break;
1982             }
1983             case SCM_CREDENTIALS:
1984             {
1985                 struct ucred *cred = (struct ucred *)data;
1986                 struct target_ucred *target_cred =
1987                     (struct target_ucred *)target_data;
1988 
1989                 __put_user(cred->pid, &target_cred->pid);
1990                 __put_user(cred->uid, &target_cred->uid);
1991                 __put_user(cred->gid, &target_cred->gid);
1992                 break;
1993             }
1994             default:
1995                 goto unimplemented;
1996             }
1997             break;
1998 
1999         case SOL_IP:
2000             switch (cmsg->cmsg_type) {
2001             case IP_TTL:
2002             {
2003                 uint32_t *v = (uint32_t *)data;
2004                 uint32_t *t_int = (uint32_t *)target_data;
2005 
2006                 if (len != sizeof(uint32_t) ||
2007                     tgt_len != sizeof(uint32_t)) {
2008                     goto unimplemented;
2009                 }
2010                 __put_user(*v, t_int);
2011                 break;
2012             }
2013             case IP_RECVERR:
2014             {
2015                 struct errhdr_t {
2016                    struct sock_extended_err ee;
2017                    struct sockaddr_in offender;
2018                 };
2019                 struct errhdr_t *errh = (struct errhdr_t *)data;
2020                 struct errhdr_t *target_errh =
2021                     (struct errhdr_t *)target_data;
2022 
2023                 if (len != sizeof(struct errhdr_t) ||
2024                     tgt_len != sizeof(struct errhdr_t)) {
2025                     goto unimplemented;
2026                 }
2027                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
2028                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
2029                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
2030                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
2031                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
2032                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
2033                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
2034                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
2035                     (void *) &errh->offender, sizeof(errh->offender));
2036                 break;
2037             }
2038             default:
2039                 goto unimplemented;
2040             }
2041             break;
2042 
2043         case SOL_IPV6:
2044             switch (cmsg->cmsg_type) {
2045             case IPV6_HOPLIMIT:
2046             {
2047                 uint32_t *v = (uint32_t *)data;
2048                 uint32_t *t_int = (uint32_t *)target_data;
2049 
2050                 if (len != sizeof(uint32_t) ||
2051                     tgt_len != sizeof(uint32_t)) {
2052                     goto unimplemented;
2053                 }
2054                 __put_user(*v, t_int);
2055                 break;
2056             }
2057             case IPV6_RECVERR:
2058             {
2059                 struct errhdr6_t {
2060                    struct sock_extended_err ee;
2061                    struct sockaddr_in6 offender;
2062                 };
2063                 struct errhdr6_t *errh = (struct errhdr6_t *)data;
2064                 struct errhdr6_t *target_errh =
2065                     (struct errhdr6_t *)target_data;
2066 
2067                 if (len != sizeof(struct errhdr6_t) ||
2068                     tgt_len != sizeof(struct errhdr6_t)) {
2069                     goto unimplemented;
2070                 }
2071                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
2072                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
2073                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
2074                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
2075                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
2076                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
2077                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
2078                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
2079                     (void *) &errh->offender, sizeof(errh->offender));
2080                 break;
2081             }
2082             default:
2083                 goto unimplemented;
2084             }
2085             break;
2086 
2087         default:
2088         unimplemented:
2089             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
2090                           cmsg->cmsg_level, cmsg->cmsg_type);
2091             memcpy(target_data, data, MIN(len, tgt_len));
2092             if (tgt_len > len) {
2093                 memset(target_data + len, 0, tgt_len - len);
2094             }
2095         }
2096 
2097         target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len));
2098         tgt_space = TARGET_CMSG_SPACE(tgt_len);
2099         if (msg_controllen < tgt_space) {
2100             tgt_space = msg_controllen;
2101         }
2102         msg_controllen -= tgt_space;
2103         space += tgt_space;
2104         cmsg = CMSG_NXTHDR(msgh, cmsg);
2105         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
2106                                          target_cmsg_start);
2107     }
2108     unlock_user(target_cmsg, target_cmsg_addr, space);
2109  the_end:
2110     target_msgh->msg_controllen = tswapal(space);
2111     return 0;
2112 }
2113 
2114 /* do_setsockopt() Must return target values and target errnos. */
2115 static abi_long do_setsockopt(int sockfd, int level, int optname,
2116                               abi_ulong optval_addr, socklen_t optlen)
2117 {
2118     abi_long ret;
2119     int val;
2120     struct ip_mreqn *ip_mreq;
2121     struct ip_mreq_source *ip_mreq_source;
2122 
2123     switch(level) {
2124     case SOL_TCP:
2125     case SOL_UDP:
2126         /* TCP and UDP options all take an 'int' value.  */
2127         if (optlen < sizeof(uint32_t))
2128             return -TARGET_EINVAL;
2129 
2130         if (get_user_u32(val, optval_addr))
2131             return -TARGET_EFAULT;
2132         ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2133         break;
2134     case SOL_IP:
2135         switch(optname) {
2136         case IP_TOS:
2137         case IP_TTL:
2138         case IP_HDRINCL:
2139         case IP_ROUTER_ALERT:
2140         case IP_RECVOPTS:
2141         case IP_RETOPTS:
2142         case IP_PKTINFO:
2143         case IP_MTU_DISCOVER:
2144         case IP_RECVERR:
2145         case IP_RECVTTL:
2146         case IP_RECVTOS:
2147 #ifdef IP_FREEBIND
2148         case IP_FREEBIND:
2149 #endif
2150         case IP_MULTICAST_TTL:
2151         case IP_MULTICAST_LOOP:
2152             val = 0;
2153             if (optlen >= sizeof(uint32_t)) {
2154                 if (get_user_u32(val, optval_addr))
2155                     return -TARGET_EFAULT;
2156             } else if (optlen >= 1) {
2157                 if (get_user_u8(val, optval_addr))
2158                     return -TARGET_EFAULT;
2159             }
2160             ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2161             break;
2162         case IP_ADD_MEMBERSHIP:
2163         case IP_DROP_MEMBERSHIP:
2164             if (optlen < sizeof (struct target_ip_mreq) ||
2165                 optlen > sizeof (struct target_ip_mreqn))
2166                 return -TARGET_EINVAL;
2167 
2168             ip_mreq = (struct ip_mreqn *) alloca(optlen);
2169             target_to_host_ip_mreq(ip_mreq, optval_addr, optlen);
2170             ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen));
2171             break;
2172 
2173         case IP_BLOCK_SOURCE:
2174         case IP_UNBLOCK_SOURCE:
2175         case IP_ADD_SOURCE_MEMBERSHIP:
2176         case IP_DROP_SOURCE_MEMBERSHIP:
2177             if (optlen != sizeof (struct target_ip_mreq_source))
2178                 return -TARGET_EINVAL;
2179 
2180             ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2181             if (!ip_mreq_source) {
2182                 return -TARGET_EFAULT;
2183             }
2184             ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen));
2185             unlock_user (ip_mreq_source, optval_addr, 0);
2186             break;
2187 
2188         default:
2189             goto unimplemented;
2190         }
2191         break;
2192     case SOL_IPV6:
2193         switch (optname) {
2194         case IPV6_MTU_DISCOVER:
2195         case IPV6_MTU:
2196         case IPV6_V6ONLY:
2197         case IPV6_RECVPKTINFO:
2198         case IPV6_UNICAST_HOPS:
2199         case IPV6_MULTICAST_HOPS:
2200         case IPV6_MULTICAST_LOOP:
2201         case IPV6_RECVERR:
2202         case IPV6_RECVHOPLIMIT:
2203         case IPV6_2292HOPLIMIT:
2204         case IPV6_CHECKSUM:
2205         case IPV6_ADDRFORM:
2206         case IPV6_2292PKTINFO:
2207         case IPV6_RECVTCLASS:
2208         case IPV6_RECVRTHDR:
2209         case IPV6_2292RTHDR:
2210         case IPV6_RECVHOPOPTS:
2211         case IPV6_2292HOPOPTS:
2212         case IPV6_RECVDSTOPTS:
2213         case IPV6_2292DSTOPTS:
2214         case IPV6_TCLASS:
2215         case IPV6_ADDR_PREFERENCES:
2216 #ifdef IPV6_RECVPATHMTU
2217         case IPV6_RECVPATHMTU:
2218 #endif
2219 #ifdef IPV6_TRANSPARENT
2220         case IPV6_TRANSPARENT:
2221 #endif
2222 #ifdef IPV6_FREEBIND
2223         case IPV6_FREEBIND:
2224 #endif
2225 #ifdef IPV6_RECVORIGDSTADDR
2226         case IPV6_RECVORIGDSTADDR:
2227 #endif
2228             val = 0;
2229             if (optlen < sizeof(uint32_t)) {
2230                 return -TARGET_EINVAL;
2231             }
2232             if (get_user_u32(val, optval_addr)) {
2233                 return -TARGET_EFAULT;
2234             }
2235             ret = get_errno(setsockopt(sockfd, level, optname,
2236                                        &val, sizeof(val)));
2237             break;
2238         case IPV6_PKTINFO:
2239         {
2240             struct in6_pktinfo pki;
2241 
2242             if (optlen < sizeof(pki)) {
2243                 return -TARGET_EINVAL;
2244             }
2245 
2246             if (copy_from_user(&pki, optval_addr, sizeof(pki))) {
2247                 return -TARGET_EFAULT;
2248             }
2249 
2250             pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex);
2251 
2252             ret = get_errno(setsockopt(sockfd, level, optname,
2253                                        &pki, sizeof(pki)));
2254             break;
2255         }
2256         case IPV6_ADD_MEMBERSHIP:
2257         case IPV6_DROP_MEMBERSHIP:
2258         {
2259             struct ipv6_mreq ipv6mreq;
2260 
2261             if (optlen < sizeof(ipv6mreq)) {
2262                 return -TARGET_EINVAL;
2263             }
2264 
2265             if (copy_from_user(&ipv6mreq, optval_addr, sizeof(ipv6mreq))) {
2266                 return -TARGET_EFAULT;
2267             }
2268 
2269             ipv6mreq.ipv6mr_interface = tswap32(ipv6mreq.ipv6mr_interface);
2270 
2271             ret = get_errno(setsockopt(sockfd, level, optname,
2272                                        &ipv6mreq, sizeof(ipv6mreq)));
2273             break;
2274         }
2275         default:
2276             goto unimplemented;
2277         }
2278         break;
2279     case SOL_ICMPV6:
2280         switch (optname) {
2281         case ICMPV6_FILTER:
2282         {
2283             struct icmp6_filter icmp6f;
2284 
2285             if (optlen > sizeof(icmp6f)) {
2286                 optlen = sizeof(icmp6f);
2287             }
2288 
2289             if (copy_from_user(&icmp6f, optval_addr, optlen)) {
2290                 return -TARGET_EFAULT;
2291             }
2292 
2293             for (val = 0; val < 8; val++) {
2294                 icmp6f.data[val] = tswap32(icmp6f.data[val]);
2295             }
2296 
2297             ret = get_errno(setsockopt(sockfd, level, optname,
2298                                        &icmp6f, optlen));
2299             break;
2300         }
2301         default:
2302             goto unimplemented;
2303         }
2304         break;
2305     case SOL_RAW:
2306         switch (optname) {
2307         case ICMP_FILTER:
2308         case IPV6_CHECKSUM:
2309             /* those take an u32 value */
2310             if (optlen < sizeof(uint32_t)) {
2311                 return -TARGET_EINVAL;
2312             }
2313 
2314             if (get_user_u32(val, optval_addr)) {
2315                 return -TARGET_EFAULT;
2316             }
2317             ret = get_errno(setsockopt(sockfd, level, optname,
2318                                        &val, sizeof(val)));
2319             break;
2320 
2321         default:
2322             goto unimplemented;
2323         }
2324         break;
2325 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE)
2326     case SOL_ALG:
2327         switch (optname) {
2328         case ALG_SET_KEY:
2329         {
2330             char *alg_key = g_malloc(optlen);
2331 
2332             if (!alg_key) {
2333                 return -TARGET_ENOMEM;
2334             }
2335             if (copy_from_user(alg_key, optval_addr, optlen)) {
2336                 g_free(alg_key);
2337                 return -TARGET_EFAULT;
2338             }
2339             ret = get_errno(setsockopt(sockfd, level, optname,
2340                                        alg_key, optlen));
2341             g_free(alg_key);
2342             break;
2343         }
2344         case ALG_SET_AEAD_AUTHSIZE:
2345         {
2346             ret = get_errno(setsockopt(sockfd, level, optname,
2347                                        NULL, optlen));
2348             break;
2349         }
2350         default:
2351             goto unimplemented;
2352         }
2353         break;
2354 #endif
2355     case TARGET_SOL_SOCKET:
2356         switch (optname) {
2357         case TARGET_SO_RCVTIMEO:
2358         {
2359                 struct timeval tv;
2360 
2361                 optname = SO_RCVTIMEO;
2362 
2363 set_timeout:
2364                 if (optlen != sizeof(struct target_timeval)) {
2365                     return -TARGET_EINVAL;
2366                 }
2367 
2368                 if (copy_from_user_timeval(&tv, optval_addr)) {
2369                     return -TARGET_EFAULT;
2370                 }
2371 
2372                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2373                                 &tv, sizeof(tv)));
2374                 return ret;
2375         }
2376         case TARGET_SO_SNDTIMEO:
2377                 optname = SO_SNDTIMEO;
2378                 goto set_timeout;
2379         case TARGET_SO_ATTACH_FILTER:
2380         {
2381                 struct target_sock_fprog *tfprog;
2382                 struct target_sock_filter *tfilter;
2383                 struct sock_fprog fprog;
2384                 struct sock_filter *filter;
2385                 int i;
2386 
2387                 if (optlen != sizeof(*tfprog)) {
2388                     return -TARGET_EINVAL;
2389                 }
2390                 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) {
2391                     return -TARGET_EFAULT;
2392                 }
2393                 if (!lock_user_struct(VERIFY_READ, tfilter,
2394                                       tswapal(tfprog->filter), 0)) {
2395                     unlock_user_struct(tfprog, optval_addr, 1);
2396                     return -TARGET_EFAULT;
2397                 }
2398 
2399                 fprog.len = tswap16(tfprog->len);
2400                 filter = g_try_new(struct sock_filter, fprog.len);
2401                 if (filter == NULL) {
2402                     unlock_user_struct(tfilter, tfprog->filter, 1);
2403                     unlock_user_struct(tfprog, optval_addr, 1);
2404                     return -TARGET_ENOMEM;
2405                 }
2406                 for (i = 0; i < fprog.len; i++) {
2407                     filter[i].code = tswap16(tfilter[i].code);
2408                     filter[i].jt = tfilter[i].jt;
2409                     filter[i].jf = tfilter[i].jf;
2410                     filter[i].k = tswap32(tfilter[i].k);
2411                 }
2412                 fprog.filter = filter;
2413 
2414                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
2415                                 SO_ATTACH_FILTER, &fprog, sizeof(fprog)));
2416                 g_free(filter);
2417 
2418                 unlock_user_struct(tfilter, tfprog->filter, 1);
2419                 unlock_user_struct(tfprog, optval_addr, 1);
2420                 return ret;
2421         }
2422 	case TARGET_SO_BINDTODEVICE:
2423 	{
2424 		char *dev_ifname, *addr_ifname;
2425 
2426 		if (optlen > IFNAMSIZ - 1) {
2427 		    optlen = IFNAMSIZ - 1;
2428 		}
2429 		dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2430 		if (!dev_ifname) {
2431 		    return -TARGET_EFAULT;
2432 		}
2433 		optname = SO_BINDTODEVICE;
2434 		addr_ifname = alloca(IFNAMSIZ);
2435 		memcpy(addr_ifname, dev_ifname, optlen);
2436 		addr_ifname[optlen] = 0;
2437 		ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2438                                            addr_ifname, optlen));
2439 		unlock_user (dev_ifname, optval_addr, 0);
2440 		return ret;
2441 	}
2442         case TARGET_SO_LINGER:
2443         {
2444                 struct linger lg;
2445                 struct target_linger *tlg;
2446 
2447                 if (optlen != sizeof(struct target_linger)) {
2448                     return -TARGET_EINVAL;
2449                 }
2450                 if (!lock_user_struct(VERIFY_READ, tlg, optval_addr, 1)) {
2451                     return -TARGET_EFAULT;
2452                 }
2453                 __get_user(lg.l_onoff, &tlg->l_onoff);
2454                 __get_user(lg.l_linger, &tlg->l_linger);
2455                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, SO_LINGER,
2456                                 &lg, sizeof(lg)));
2457                 unlock_user_struct(tlg, optval_addr, 0);
2458                 return ret;
2459         }
2460             /* Options with 'int' argument.  */
2461         case TARGET_SO_DEBUG:
2462 		optname = SO_DEBUG;
2463 		break;
2464         case TARGET_SO_REUSEADDR:
2465 		optname = SO_REUSEADDR;
2466 		break;
2467 #ifdef SO_REUSEPORT
2468         case TARGET_SO_REUSEPORT:
2469                 optname = SO_REUSEPORT;
2470                 break;
2471 #endif
2472         case TARGET_SO_TYPE:
2473 		optname = SO_TYPE;
2474 		break;
2475         case TARGET_SO_ERROR:
2476 		optname = SO_ERROR;
2477 		break;
2478         case TARGET_SO_DONTROUTE:
2479 		optname = SO_DONTROUTE;
2480 		break;
2481         case TARGET_SO_BROADCAST:
2482 		optname = SO_BROADCAST;
2483 		break;
2484         case TARGET_SO_SNDBUF:
2485 		optname = SO_SNDBUF;
2486 		break;
2487         case TARGET_SO_SNDBUFFORCE:
2488                 optname = SO_SNDBUFFORCE;
2489                 break;
2490         case TARGET_SO_RCVBUF:
2491 		optname = SO_RCVBUF;
2492 		break;
2493         case TARGET_SO_RCVBUFFORCE:
2494                 optname = SO_RCVBUFFORCE;
2495                 break;
2496         case TARGET_SO_KEEPALIVE:
2497 		optname = SO_KEEPALIVE;
2498 		break;
2499         case TARGET_SO_OOBINLINE:
2500 		optname = SO_OOBINLINE;
2501 		break;
2502         case TARGET_SO_NO_CHECK:
2503 		optname = SO_NO_CHECK;
2504 		break;
2505         case TARGET_SO_PRIORITY:
2506 		optname = SO_PRIORITY;
2507 		break;
2508 #ifdef SO_BSDCOMPAT
2509         case TARGET_SO_BSDCOMPAT:
2510 		optname = SO_BSDCOMPAT;
2511 		break;
2512 #endif
2513         case TARGET_SO_PASSCRED:
2514 		optname = SO_PASSCRED;
2515 		break;
2516         case TARGET_SO_PASSSEC:
2517                 optname = SO_PASSSEC;
2518                 break;
2519         case TARGET_SO_TIMESTAMP:
2520 		optname = SO_TIMESTAMP;
2521 		break;
2522         case TARGET_SO_RCVLOWAT:
2523 		optname = SO_RCVLOWAT;
2524 		break;
2525         default:
2526             goto unimplemented;
2527         }
2528 	if (optlen < sizeof(uint32_t))
2529             return -TARGET_EINVAL;
2530 
2531 	if (get_user_u32(val, optval_addr))
2532             return -TARGET_EFAULT;
2533 	ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val)));
2534         break;
2535 #ifdef SOL_NETLINK
2536     case SOL_NETLINK:
2537         switch (optname) {
2538         case NETLINK_PKTINFO:
2539         case NETLINK_ADD_MEMBERSHIP:
2540         case NETLINK_DROP_MEMBERSHIP:
2541         case NETLINK_BROADCAST_ERROR:
2542         case NETLINK_NO_ENOBUFS:
2543 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2544         case NETLINK_LISTEN_ALL_NSID:
2545         case NETLINK_CAP_ACK:
2546 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2547 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2548         case NETLINK_EXT_ACK:
2549 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2550 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2551         case NETLINK_GET_STRICT_CHK:
2552 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2553             break;
2554         default:
2555             goto unimplemented;
2556         }
2557         val = 0;
2558         if (optlen < sizeof(uint32_t)) {
2559             return -TARGET_EINVAL;
2560         }
2561         if (get_user_u32(val, optval_addr)) {
2562             return -TARGET_EFAULT;
2563         }
2564         ret = get_errno(setsockopt(sockfd, SOL_NETLINK, optname, &val,
2565                                    sizeof(val)));
2566         break;
2567 #endif /* SOL_NETLINK */
2568     default:
2569     unimplemented:
2570         qemu_log_mask(LOG_UNIMP, "Unsupported setsockopt level=%d optname=%d\n",
2571                       level, optname);
2572         ret = -TARGET_ENOPROTOOPT;
2573     }
2574     return ret;
2575 }
2576 
2577 /* do_getsockopt() Must return target values and target errnos. */
2578 static abi_long do_getsockopt(int sockfd, int level, int optname,
2579                               abi_ulong optval_addr, abi_ulong optlen)
2580 {
2581     abi_long ret;
2582     int len, val;
2583     socklen_t lv;
2584 
2585     switch(level) {
2586     case TARGET_SOL_SOCKET:
2587         level = SOL_SOCKET;
2588         switch (optname) {
2589         /* These don't just return a single integer */
2590         case TARGET_SO_PEERNAME:
2591             goto unimplemented;
2592         case TARGET_SO_RCVTIMEO: {
2593             struct timeval tv;
2594             socklen_t tvlen;
2595 
2596             optname = SO_RCVTIMEO;
2597 
2598 get_timeout:
2599             if (get_user_u32(len, optlen)) {
2600                 return -TARGET_EFAULT;
2601             }
2602             if (len < 0) {
2603                 return -TARGET_EINVAL;
2604             }
2605 
2606             tvlen = sizeof(tv);
2607             ret = get_errno(getsockopt(sockfd, level, optname,
2608                                        &tv, &tvlen));
2609             if (ret < 0) {
2610                 return ret;
2611             }
2612             if (len > sizeof(struct target_timeval)) {
2613                 len = sizeof(struct target_timeval);
2614             }
2615             if (copy_to_user_timeval(optval_addr, &tv)) {
2616                 return -TARGET_EFAULT;
2617             }
2618             if (put_user_u32(len, optlen)) {
2619                 return -TARGET_EFAULT;
2620             }
2621             break;
2622         }
2623         case TARGET_SO_SNDTIMEO:
2624             optname = SO_SNDTIMEO;
2625             goto get_timeout;
2626         case TARGET_SO_PEERCRED: {
2627             struct ucred cr;
2628             socklen_t crlen;
2629             struct target_ucred *tcr;
2630 
2631             if (get_user_u32(len, optlen)) {
2632                 return -TARGET_EFAULT;
2633             }
2634             if (len < 0) {
2635                 return -TARGET_EINVAL;
2636             }
2637 
2638             crlen = sizeof(cr);
2639             ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED,
2640                                        &cr, &crlen));
2641             if (ret < 0) {
2642                 return ret;
2643             }
2644             if (len > crlen) {
2645                 len = crlen;
2646             }
2647             if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) {
2648                 return -TARGET_EFAULT;
2649             }
2650             __put_user(cr.pid, &tcr->pid);
2651             __put_user(cr.uid, &tcr->uid);
2652             __put_user(cr.gid, &tcr->gid);
2653             unlock_user_struct(tcr, optval_addr, 1);
2654             if (put_user_u32(len, optlen)) {
2655                 return -TARGET_EFAULT;
2656             }
2657             break;
2658         }
2659         case TARGET_SO_PEERSEC: {
2660             char *name;
2661 
2662             if (get_user_u32(len, optlen)) {
2663                 return -TARGET_EFAULT;
2664             }
2665             if (len < 0) {
2666                 return -TARGET_EINVAL;
2667             }
2668             name = lock_user(VERIFY_WRITE, optval_addr, len, 0);
2669             if (!name) {
2670                 return -TARGET_EFAULT;
2671             }
2672             lv = len;
2673             ret = get_errno(getsockopt(sockfd, level, SO_PEERSEC,
2674                                        name, &lv));
2675             if (put_user_u32(lv, optlen)) {
2676                 ret = -TARGET_EFAULT;
2677             }
2678             unlock_user(name, optval_addr, lv);
2679             break;
2680         }
2681         case TARGET_SO_LINGER:
2682         {
2683             struct linger lg;
2684             socklen_t lglen;
2685             struct target_linger *tlg;
2686 
2687             if (get_user_u32(len, optlen)) {
2688                 return -TARGET_EFAULT;
2689             }
2690             if (len < 0) {
2691                 return -TARGET_EINVAL;
2692             }
2693 
2694             lglen = sizeof(lg);
2695             ret = get_errno(getsockopt(sockfd, level, SO_LINGER,
2696                                        &lg, &lglen));
2697             if (ret < 0) {
2698                 return ret;
2699             }
2700             if (len > lglen) {
2701                 len = lglen;
2702             }
2703             if (!lock_user_struct(VERIFY_WRITE, tlg, optval_addr, 0)) {
2704                 return -TARGET_EFAULT;
2705             }
2706             __put_user(lg.l_onoff, &tlg->l_onoff);
2707             __put_user(lg.l_linger, &tlg->l_linger);
2708             unlock_user_struct(tlg, optval_addr, 1);
2709             if (put_user_u32(len, optlen)) {
2710                 return -TARGET_EFAULT;
2711             }
2712             break;
2713         }
2714         /* Options with 'int' argument.  */
2715         case TARGET_SO_DEBUG:
2716             optname = SO_DEBUG;
2717             goto int_case;
2718         case TARGET_SO_REUSEADDR:
2719             optname = SO_REUSEADDR;
2720             goto int_case;
2721 #ifdef SO_REUSEPORT
2722         case TARGET_SO_REUSEPORT:
2723             optname = SO_REUSEPORT;
2724             goto int_case;
2725 #endif
2726         case TARGET_SO_TYPE:
2727             optname = SO_TYPE;
2728             goto int_case;
2729         case TARGET_SO_ERROR:
2730             optname = SO_ERROR;
2731             goto int_case;
2732         case TARGET_SO_DONTROUTE:
2733             optname = SO_DONTROUTE;
2734             goto int_case;
2735         case TARGET_SO_BROADCAST:
2736             optname = SO_BROADCAST;
2737             goto int_case;
2738         case TARGET_SO_SNDBUF:
2739             optname = SO_SNDBUF;
2740             goto int_case;
2741         case TARGET_SO_RCVBUF:
2742             optname = SO_RCVBUF;
2743             goto int_case;
2744         case TARGET_SO_KEEPALIVE:
2745             optname = SO_KEEPALIVE;
2746             goto int_case;
2747         case TARGET_SO_OOBINLINE:
2748             optname = SO_OOBINLINE;
2749             goto int_case;
2750         case TARGET_SO_NO_CHECK:
2751             optname = SO_NO_CHECK;
2752             goto int_case;
2753         case TARGET_SO_PRIORITY:
2754             optname = SO_PRIORITY;
2755             goto int_case;
2756 #ifdef SO_BSDCOMPAT
2757         case TARGET_SO_BSDCOMPAT:
2758             optname = SO_BSDCOMPAT;
2759             goto int_case;
2760 #endif
2761         case TARGET_SO_PASSCRED:
2762             optname = SO_PASSCRED;
2763             goto int_case;
2764         case TARGET_SO_TIMESTAMP:
2765             optname = SO_TIMESTAMP;
2766             goto int_case;
2767         case TARGET_SO_RCVLOWAT:
2768             optname = SO_RCVLOWAT;
2769             goto int_case;
2770         case TARGET_SO_ACCEPTCONN:
2771             optname = SO_ACCEPTCONN;
2772             goto int_case;
2773         case TARGET_SO_PROTOCOL:
2774             optname = SO_PROTOCOL;
2775             goto int_case;
2776         case TARGET_SO_DOMAIN:
2777             optname = SO_DOMAIN;
2778             goto int_case;
2779         default:
2780             goto int_case;
2781         }
2782         break;
2783     case SOL_TCP:
2784     case SOL_UDP:
2785         /* TCP and UDP options all take an 'int' value.  */
2786     int_case:
2787         if (get_user_u32(len, optlen))
2788             return -TARGET_EFAULT;
2789         if (len < 0)
2790             return -TARGET_EINVAL;
2791         lv = sizeof(lv);
2792         ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2793         if (ret < 0)
2794             return ret;
2795         if (optname == SO_TYPE) {
2796             val = host_to_target_sock_type(val);
2797         }
2798         if (len > lv)
2799             len = lv;
2800         if (len == 4) {
2801             if (put_user_u32(val, optval_addr))
2802                 return -TARGET_EFAULT;
2803         } else {
2804             if (put_user_u8(val, optval_addr))
2805                 return -TARGET_EFAULT;
2806         }
2807         if (put_user_u32(len, optlen))
2808             return -TARGET_EFAULT;
2809         break;
2810     case SOL_IP:
2811         switch(optname) {
2812         case IP_TOS:
2813         case IP_TTL:
2814         case IP_HDRINCL:
2815         case IP_ROUTER_ALERT:
2816         case IP_RECVOPTS:
2817         case IP_RETOPTS:
2818         case IP_PKTINFO:
2819         case IP_MTU_DISCOVER:
2820         case IP_RECVERR:
2821         case IP_RECVTOS:
2822 #ifdef IP_FREEBIND
2823         case IP_FREEBIND:
2824 #endif
2825         case IP_MULTICAST_TTL:
2826         case IP_MULTICAST_LOOP:
2827             if (get_user_u32(len, optlen))
2828                 return -TARGET_EFAULT;
2829             if (len < 0)
2830                 return -TARGET_EINVAL;
2831             lv = sizeof(lv);
2832             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2833             if (ret < 0)
2834                 return ret;
2835             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2836                 len = 1;
2837                 if (put_user_u32(len, optlen)
2838                     || put_user_u8(val, optval_addr))
2839                     return -TARGET_EFAULT;
2840             } else {
2841                 if (len > sizeof(int))
2842                     len = sizeof(int);
2843                 if (put_user_u32(len, optlen)
2844                     || put_user_u32(val, optval_addr))
2845                     return -TARGET_EFAULT;
2846             }
2847             break;
2848         default:
2849             ret = -TARGET_ENOPROTOOPT;
2850             break;
2851         }
2852         break;
2853     case SOL_IPV6:
2854         switch (optname) {
2855         case IPV6_MTU_DISCOVER:
2856         case IPV6_MTU:
2857         case IPV6_V6ONLY:
2858         case IPV6_RECVPKTINFO:
2859         case IPV6_UNICAST_HOPS:
2860         case IPV6_MULTICAST_HOPS:
2861         case IPV6_MULTICAST_LOOP:
2862         case IPV6_RECVERR:
2863         case IPV6_RECVHOPLIMIT:
2864         case IPV6_2292HOPLIMIT:
2865         case IPV6_CHECKSUM:
2866         case IPV6_ADDRFORM:
2867         case IPV6_2292PKTINFO:
2868         case IPV6_RECVTCLASS:
2869         case IPV6_RECVRTHDR:
2870         case IPV6_2292RTHDR:
2871         case IPV6_RECVHOPOPTS:
2872         case IPV6_2292HOPOPTS:
2873         case IPV6_RECVDSTOPTS:
2874         case IPV6_2292DSTOPTS:
2875         case IPV6_TCLASS:
2876         case IPV6_ADDR_PREFERENCES:
2877 #ifdef IPV6_RECVPATHMTU
2878         case IPV6_RECVPATHMTU:
2879 #endif
2880 #ifdef IPV6_TRANSPARENT
2881         case IPV6_TRANSPARENT:
2882 #endif
2883 #ifdef IPV6_FREEBIND
2884         case IPV6_FREEBIND:
2885 #endif
2886 #ifdef IPV6_RECVORIGDSTADDR
2887         case IPV6_RECVORIGDSTADDR:
2888 #endif
2889             if (get_user_u32(len, optlen))
2890                 return -TARGET_EFAULT;
2891             if (len < 0)
2892                 return -TARGET_EINVAL;
2893             lv = sizeof(lv);
2894             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2895             if (ret < 0)
2896                 return ret;
2897             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2898                 len = 1;
2899                 if (put_user_u32(len, optlen)
2900                     || put_user_u8(val, optval_addr))
2901                     return -TARGET_EFAULT;
2902             } else {
2903                 if (len > sizeof(int))
2904                     len = sizeof(int);
2905                 if (put_user_u32(len, optlen)
2906                     || put_user_u32(val, optval_addr))
2907                     return -TARGET_EFAULT;
2908             }
2909             break;
2910         default:
2911             ret = -TARGET_ENOPROTOOPT;
2912             break;
2913         }
2914         break;
2915 #ifdef SOL_NETLINK
2916     case SOL_NETLINK:
2917         switch (optname) {
2918         case NETLINK_PKTINFO:
2919         case NETLINK_BROADCAST_ERROR:
2920         case NETLINK_NO_ENOBUFS:
2921 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2922         case NETLINK_LISTEN_ALL_NSID:
2923         case NETLINK_CAP_ACK:
2924 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2925 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2926         case NETLINK_EXT_ACK:
2927 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2928 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2929         case NETLINK_GET_STRICT_CHK:
2930 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2931             if (get_user_u32(len, optlen)) {
2932                 return -TARGET_EFAULT;
2933             }
2934             if (len != sizeof(val)) {
2935                 return -TARGET_EINVAL;
2936             }
2937             lv = len;
2938             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2939             if (ret < 0) {
2940                 return ret;
2941             }
2942             if (put_user_u32(lv, optlen)
2943                 || put_user_u32(val, optval_addr)) {
2944                 return -TARGET_EFAULT;
2945             }
2946             break;
2947 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2948         case NETLINK_LIST_MEMBERSHIPS:
2949         {
2950             uint32_t *results;
2951             int i;
2952             if (get_user_u32(len, optlen)) {
2953                 return -TARGET_EFAULT;
2954             }
2955             if (len < 0) {
2956                 return -TARGET_EINVAL;
2957             }
2958             results = lock_user(VERIFY_WRITE, optval_addr, len, 1);
2959             if (!results && len > 0) {
2960                 return -TARGET_EFAULT;
2961             }
2962             lv = len;
2963             ret = get_errno(getsockopt(sockfd, level, optname, results, &lv));
2964             if (ret < 0) {
2965                 unlock_user(results, optval_addr, 0);
2966                 return ret;
2967             }
2968             /* swap host endianess to target endianess. */
2969             for (i = 0; i < (len / sizeof(uint32_t)); i++) {
2970                 results[i] = tswap32(results[i]);
2971             }
2972             if (put_user_u32(lv, optlen)) {
2973                 return -TARGET_EFAULT;
2974             }
2975             unlock_user(results, optval_addr, 0);
2976             break;
2977         }
2978 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2979         default:
2980             goto unimplemented;
2981         }
2982         break;
2983 #endif /* SOL_NETLINK */
2984     default:
2985     unimplemented:
2986         qemu_log_mask(LOG_UNIMP,
2987                       "getsockopt level=%d optname=%d not yet supported\n",
2988                       level, optname);
2989         ret = -TARGET_EOPNOTSUPP;
2990         break;
2991     }
2992     return ret;
2993 }
2994 
2995 /* Convert target low/high pair representing file offset into the host
2996  * low/high pair. This function doesn't handle offsets bigger than 64 bits
2997  * as the kernel doesn't handle them either.
2998  */
2999 static void target_to_host_low_high(abi_ulong tlow,
3000                                     abi_ulong thigh,
3001                                     unsigned long *hlow,
3002                                     unsigned long *hhigh)
3003 {
3004     uint64_t off = tlow |
3005         ((unsigned long long)thigh << TARGET_LONG_BITS / 2) <<
3006         TARGET_LONG_BITS / 2;
3007 
3008     *hlow = off;
3009     *hhigh = (off >> HOST_LONG_BITS / 2) >> HOST_LONG_BITS / 2;
3010 }
3011 
3012 static struct iovec *lock_iovec(int type, abi_ulong target_addr,
3013                                 abi_ulong count, int copy)
3014 {
3015     struct target_iovec *target_vec;
3016     struct iovec *vec;
3017     abi_ulong total_len, max_len;
3018     int i;
3019     int err = 0;
3020     bool bad_address = false;
3021 
3022     if (count == 0) {
3023         errno = 0;
3024         return NULL;
3025     }
3026     if (count > IOV_MAX) {
3027         errno = EINVAL;
3028         return NULL;
3029     }
3030 
3031     vec = g_try_new0(struct iovec, count);
3032     if (vec == NULL) {
3033         errno = ENOMEM;
3034         return NULL;
3035     }
3036 
3037     target_vec = lock_user(VERIFY_READ, target_addr,
3038                            count * sizeof(struct target_iovec), 1);
3039     if (target_vec == NULL) {
3040         err = EFAULT;
3041         goto fail2;
3042     }
3043 
3044     /* ??? If host page size > target page size, this will result in a
3045        value larger than what we can actually support.  */
3046     max_len = 0x7fffffff & TARGET_PAGE_MASK;
3047     total_len = 0;
3048 
3049     for (i = 0; i < count; i++) {
3050         abi_ulong base = tswapal(target_vec[i].iov_base);
3051         abi_long len = tswapal(target_vec[i].iov_len);
3052 
3053         if (len < 0) {
3054             err = EINVAL;
3055             goto fail;
3056         } else if (len == 0) {
3057             /* Zero length pointer is ignored.  */
3058             vec[i].iov_base = 0;
3059         } else {
3060             vec[i].iov_base = lock_user(type, base, len, copy);
3061             /* If the first buffer pointer is bad, this is a fault.  But
3062              * subsequent bad buffers will result in a partial write; this
3063              * is realized by filling the vector with null pointers and
3064              * zero lengths. */
3065             if (!vec[i].iov_base) {
3066                 if (i == 0) {
3067                     err = EFAULT;
3068                     goto fail;
3069                 } else {
3070                     bad_address = true;
3071                 }
3072             }
3073             if (bad_address) {
3074                 len = 0;
3075             }
3076             if (len > max_len - total_len) {
3077                 len = max_len - total_len;
3078             }
3079         }
3080         vec[i].iov_len = len;
3081         total_len += len;
3082     }
3083 
3084     unlock_user(target_vec, target_addr, 0);
3085     return vec;
3086 
3087  fail:
3088     while (--i >= 0) {
3089         if (tswapal(target_vec[i].iov_len) > 0) {
3090             unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0);
3091         }
3092     }
3093     unlock_user(target_vec, target_addr, 0);
3094  fail2:
3095     g_free(vec);
3096     errno = err;
3097     return NULL;
3098 }
3099 
3100 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr,
3101                          abi_ulong count, int copy)
3102 {
3103     struct target_iovec *target_vec;
3104     int i;
3105 
3106     target_vec = lock_user(VERIFY_READ, target_addr,
3107                            count * sizeof(struct target_iovec), 1);
3108     if (target_vec) {
3109         for (i = 0; i < count; i++) {
3110             abi_ulong base = tswapal(target_vec[i].iov_base);
3111             abi_long len = tswapal(target_vec[i].iov_len);
3112             if (len < 0) {
3113                 break;
3114             }
3115             unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0);
3116         }
3117         unlock_user(target_vec, target_addr, 0);
3118     }
3119 
3120     g_free(vec);
3121 }
3122 
3123 static inline int target_to_host_sock_type(int *type)
3124 {
3125     int host_type = 0;
3126     int target_type = *type;
3127 
3128     switch (target_type & TARGET_SOCK_TYPE_MASK) {
3129     case TARGET_SOCK_DGRAM:
3130         host_type = SOCK_DGRAM;
3131         break;
3132     case TARGET_SOCK_STREAM:
3133         host_type = SOCK_STREAM;
3134         break;
3135     default:
3136         host_type = target_type & TARGET_SOCK_TYPE_MASK;
3137         break;
3138     }
3139     if (target_type & TARGET_SOCK_CLOEXEC) {
3140 #if defined(SOCK_CLOEXEC)
3141         host_type |= SOCK_CLOEXEC;
3142 #else
3143         return -TARGET_EINVAL;
3144 #endif
3145     }
3146     if (target_type & TARGET_SOCK_NONBLOCK) {
3147 #if defined(SOCK_NONBLOCK)
3148         host_type |= SOCK_NONBLOCK;
3149 #elif !defined(O_NONBLOCK)
3150         return -TARGET_EINVAL;
3151 #endif
3152     }
3153     *type = host_type;
3154     return 0;
3155 }
3156 
3157 /* Try to emulate socket type flags after socket creation.  */
3158 static int sock_flags_fixup(int fd, int target_type)
3159 {
3160 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
3161     if (target_type & TARGET_SOCK_NONBLOCK) {
3162         int flags = fcntl(fd, F_GETFL);
3163         if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) {
3164             close(fd);
3165             return -TARGET_EINVAL;
3166         }
3167     }
3168 #endif
3169     return fd;
3170 }
3171 
3172 /* do_socket() Must return target values and target errnos. */
3173 static abi_long do_socket(int domain, int type, int protocol)
3174 {
3175     int target_type = type;
3176     int ret;
3177 
3178     ret = target_to_host_sock_type(&type);
3179     if (ret) {
3180         return ret;
3181     }
3182 
3183     if (domain == PF_NETLINK && !(
3184 #ifdef CONFIG_RTNETLINK
3185          protocol == NETLINK_ROUTE ||
3186 #endif
3187          protocol == NETLINK_KOBJECT_UEVENT ||
3188          protocol == NETLINK_AUDIT)) {
3189         return -TARGET_EPROTONOSUPPORT;
3190     }
3191 
3192     if (domain == AF_PACKET ||
3193         (domain == AF_INET && type == SOCK_PACKET)) {
3194         protocol = tswap16(protocol);
3195     }
3196 
3197     ret = get_errno(socket(domain, type, protocol));
3198     if (ret >= 0) {
3199         ret = sock_flags_fixup(ret, target_type);
3200         if (type == SOCK_PACKET) {
3201             /* Manage an obsolete case :
3202              * if socket type is SOCK_PACKET, bind by name
3203              */
3204             fd_trans_register(ret, &target_packet_trans);
3205         } else if (domain == PF_NETLINK) {
3206             switch (protocol) {
3207 #ifdef CONFIG_RTNETLINK
3208             case NETLINK_ROUTE:
3209                 fd_trans_register(ret, &target_netlink_route_trans);
3210                 break;
3211 #endif
3212             case NETLINK_KOBJECT_UEVENT:
3213                 /* nothing to do: messages are strings */
3214                 break;
3215             case NETLINK_AUDIT:
3216                 fd_trans_register(ret, &target_netlink_audit_trans);
3217                 break;
3218             default:
3219                 g_assert_not_reached();
3220             }
3221         }
3222     }
3223     return ret;
3224 }
3225 
3226 /* do_bind() Must return target values and target errnos. */
3227 static abi_long do_bind(int sockfd, abi_ulong target_addr,
3228                         socklen_t addrlen)
3229 {
3230     void *addr;
3231     abi_long ret;
3232 
3233     if ((int)addrlen < 0) {
3234         return -TARGET_EINVAL;
3235     }
3236 
3237     addr = alloca(addrlen+1);
3238 
3239     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3240     if (ret)
3241         return ret;
3242 
3243     return get_errno(bind(sockfd, addr, addrlen));
3244 }
3245 
3246 /* do_connect() Must return target values and target errnos. */
3247 static abi_long do_connect(int sockfd, abi_ulong target_addr,
3248                            socklen_t addrlen)
3249 {
3250     void *addr;
3251     abi_long ret;
3252 
3253     if ((int)addrlen < 0) {
3254         return -TARGET_EINVAL;
3255     }
3256 
3257     addr = alloca(addrlen+1);
3258 
3259     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3260     if (ret)
3261         return ret;
3262 
3263     return get_errno(safe_connect(sockfd, addr, addrlen));
3264 }
3265 
3266 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
3267 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp,
3268                                       int flags, int send)
3269 {
3270     abi_long ret, len;
3271     struct msghdr msg;
3272     abi_ulong count;
3273     struct iovec *vec;
3274     abi_ulong target_vec;
3275 
3276     if (msgp->msg_name) {
3277         msg.msg_namelen = tswap32(msgp->msg_namelen);
3278         msg.msg_name = alloca(msg.msg_namelen+1);
3279         ret = target_to_host_sockaddr(fd, msg.msg_name,
3280                                       tswapal(msgp->msg_name),
3281                                       msg.msg_namelen);
3282         if (ret == -TARGET_EFAULT) {
3283             /* For connected sockets msg_name and msg_namelen must
3284              * be ignored, so returning EFAULT immediately is wrong.
3285              * Instead, pass a bad msg_name to the host kernel, and
3286              * let it decide whether to return EFAULT or not.
3287              */
3288             msg.msg_name = (void *)-1;
3289         } else if (ret) {
3290             goto out2;
3291         }
3292     } else {
3293         msg.msg_name = NULL;
3294         msg.msg_namelen = 0;
3295     }
3296     msg.msg_controllen = 2 * tswapal(msgp->msg_controllen);
3297     msg.msg_control = alloca(msg.msg_controllen);
3298     memset(msg.msg_control, 0, msg.msg_controllen);
3299 
3300     msg.msg_flags = tswap32(msgp->msg_flags);
3301 
3302     count = tswapal(msgp->msg_iovlen);
3303     target_vec = tswapal(msgp->msg_iov);
3304 
3305     if (count > IOV_MAX) {
3306         /* sendrcvmsg returns a different errno for this condition than
3307          * readv/writev, so we must catch it here before lock_iovec() does.
3308          */
3309         ret = -TARGET_EMSGSIZE;
3310         goto out2;
3311     }
3312 
3313     vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE,
3314                      target_vec, count, send);
3315     if (vec == NULL) {
3316         ret = -host_to_target_errno(errno);
3317         goto out2;
3318     }
3319     msg.msg_iovlen = count;
3320     msg.msg_iov = vec;
3321 
3322     if (send) {
3323         if (fd_trans_target_to_host_data(fd)) {
3324             void *host_msg;
3325 
3326             host_msg = g_malloc(msg.msg_iov->iov_len);
3327             memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len);
3328             ret = fd_trans_target_to_host_data(fd)(host_msg,
3329                                                    msg.msg_iov->iov_len);
3330             if (ret >= 0) {
3331                 msg.msg_iov->iov_base = host_msg;
3332                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3333             }
3334             g_free(host_msg);
3335         } else {
3336             ret = target_to_host_cmsg(&msg, msgp);
3337             if (ret == 0) {
3338                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3339             }
3340         }
3341     } else {
3342         ret = get_errno(safe_recvmsg(fd, &msg, flags));
3343         if (!is_error(ret)) {
3344             len = ret;
3345             if (fd_trans_host_to_target_data(fd)) {
3346                 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base,
3347                                                MIN(msg.msg_iov->iov_len, len));
3348             } else {
3349                 ret = host_to_target_cmsg(msgp, &msg);
3350             }
3351             if (!is_error(ret)) {
3352                 msgp->msg_namelen = tswap32(msg.msg_namelen);
3353                 msgp->msg_flags = tswap32(msg.msg_flags);
3354                 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) {
3355                     ret = host_to_target_sockaddr(tswapal(msgp->msg_name),
3356                                     msg.msg_name, msg.msg_namelen);
3357                     if (ret) {
3358                         goto out;
3359                     }
3360                 }
3361 
3362                 ret = len;
3363             }
3364         }
3365     }
3366 
3367 out:
3368     unlock_iovec(vec, target_vec, count, !send);
3369 out2:
3370     return ret;
3371 }
3372 
3373 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg,
3374                                int flags, int send)
3375 {
3376     abi_long ret;
3377     struct target_msghdr *msgp;
3378 
3379     if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE,
3380                           msgp,
3381                           target_msg,
3382                           send ? 1 : 0)) {
3383         return -TARGET_EFAULT;
3384     }
3385     ret = do_sendrecvmsg_locked(fd, msgp, flags, send);
3386     unlock_user_struct(msgp, target_msg, send ? 0 : 1);
3387     return ret;
3388 }
3389 
3390 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
3391  * so it might not have this *mmsg-specific flag either.
3392  */
3393 #ifndef MSG_WAITFORONE
3394 #define MSG_WAITFORONE 0x10000
3395 #endif
3396 
3397 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec,
3398                                 unsigned int vlen, unsigned int flags,
3399                                 int send)
3400 {
3401     struct target_mmsghdr *mmsgp;
3402     abi_long ret = 0;
3403     int i;
3404 
3405     if (vlen > UIO_MAXIOV) {
3406         vlen = UIO_MAXIOV;
3407     }
3408 
3409     mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1);
3410     if (!mmsgp) {
3411         return -TARGET_EFAULT;
3412     }
3413 
3414     for (i = 0; i < vlen; i++) {
3415         ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send);
3416         if (is_error(ret)) {
3417             break;
3418         }
3419         mmsgp[i].msg_len = tswap32(ret);
3420         /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3421         if (flags & MSG_WAITFORONE) {
3422             flags |= MSG_DONTWAIT;
3423         }
3424     }
3425 
3426     unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i);
3427 
3428     /* Return number of datagrams sent if we sent any at all;
3429      * otherwise return the error.
3430      */
3431     if (i) {
3432         return i;
3433     }
3434     return ret;
3435 }
3436 
3437 /* do_accept4() Must return target values and target errnos. */
3438 static abi_long do_accept4(int fd, abi_ulong target_addr,
3439                            abi_ulong target_addrlen_addr, int flags)
3440 {
3441     socklen_t addrlen, ret_addrlen;
3442     void *addr;
3443     abi_long ret;
3444     int host_flags;
3445 
3446     host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
3447 
3448     if (target_addr == 0) {
3449         return get_errno(safe_accept4(fd, NULL, NULL, host_flags));
3450     }
3451 
3452     /* linux returns EFAULT if addrlen pointer is invalid */
3453     if (get_user_u32(addrlen, target_addrlen_addr))
3454         return -TARGET_EFAULT;
3455 
3456     if ((int)addrlen < 0) {
3457         return -TARGET_EINVAL;
3458     }
3459 
3460     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3461         return -TARGET_EFAULT;
3462     }
3463 
3464     addr = alloca(addrlen);
3465 
3466     ret_addrlen = addrlen;
3467     ret = get_errno(safe_accept4(fd, addr, &ret_addrlen, host_flags));
3468     if (!is_error(ret)) {
3469         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3470         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3471             ret = -TARGET_EFAULT;
3472         }
3473     }
3474     return ret;
3475 }
3476 
3477 /* do_getpeername() Must return target values and target errnos. */
3478 static abi_long do_getpeername(int fd, abi_ulong target_addr,
3479                                abi_ulong target_addrlen_addr)
3480 {
3481     socklen_t addrlen, ret_addrlen;
3482     void *addr;
3483     abi_long ret;
3484 
3485     if (get_user_u32(addrlen, target_addrlen_addr))
3486         return -TARGET_EFAULT;
3487 
3488     if ((int)addrlen < 0) {
3489         return -TARGET_EINVAL;
3490     }
3491 
3492     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3493         return -TARGET_EFAULT;
3494     }
3495 
3496     addr = alloca(addrlen);
3497 
3498     ret_addrlen = addrlen;
3499     ret = get_errno(getpeername(fd, addr, &ret_addrlen));
3500     if (!is_error(ret)) {
3501         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3502         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3503             ret = -TARGET_EFAULT;
3504         }
3505     }
3506     return ret;
3507 }
3508 
3509 /* do_getsockname() Must return target values and target errnos. */
3510 static abi_long do_getsockname(int fd, abi_ulong target_addr,
3511                                abi_ulong target_addrlen_addr)
3512 {
3513     socklen_t addrlen, ret_addrlen;
3514     void *addr;
3515     abi_long ret;
3516 
3517     if (get_user_u32(addrlen, target_addrlen_addr))
3518         return -TARGET_EFAULT;
3519 
3520     if ((int)addrlen < 0) {
3521         return -TARGET_EINVAL;
3522     }
3523 
3524     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3525         return -TARGET_EFAULT;
3526     }
3527 
3528     addr = alloca(addrlen);
3529 
3530     ret_addrlen = addrlen;
3531     ret = get_errno(getsockname(fd, addr, &ret_addrlen));
3532     if (!is_error(ret)) {
3533         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3534         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3535             ret = -TARGET_EFAULT;
3536         }
3537     }
3538     return ret;
3539 }
3540 
3541 /* do_socketpair() Must return target values and target errnos. */
3542 static abi_long do_socketpair(int domain, int type, int protocol,
3543                               abi_ulong target_tab_addr)
3544 {
3545     int tab[2];
3546     abi_long ret;
3547 
3548     target_to_host_sock_type(&type);
3549 
3550     ret = get_errno(socketpair(domain, type, protocol, tab));
3551     if (!is_error(ret)) {
3552         if (put_user_s32(tab[0], target_tab_addr)
3553             || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0])))
3554             ret = -TARGET_EFAULT;
3555     }
3556     return ret;
3557 }
3558 
3559 /* do_sendto() Must return target values and target errnos. */
3560 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags,
3561                           abi_ulong target_addr, socklen_t addrlen)
3562 {
3563     void *addr;
3564     void *host_msg;
3565     void *copy_msg = NULL;
3566     abi_long ret;
3567 
3568     if ((int)addrlen < 0) {
3569         return -TARGET_EINVAL;
3570     }
3571 
3572     host_msg = lock_user(VERIFY_READ, msg, len, 1);
3573     if (!host_msg)
3574         return -TARGET_EFAULT;
3575     if (fd_trans_target_to_host_data(fd)) {
3576         copy_msg = host_msg;
3577         host_msg = g_malloc(len);
3578         memcpy(host_msg, copy_msg, len);
3579         ret = fd_trans_target_to_host_data(fd)(host_msg, len);
3580         if (ret < 0) {
3581             goto fail;
3582         }
3583     }
3584     if (target_addr) {
3585         addr = alloca(addrlen+1);
3586         ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen);
3587         if (ret) {
3588             goto fail;
3589         }
3590         ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen));
3591     } else {
3592         ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0));
3593     }
3594 fail:
3595     if (copy_msg) {
3596         g_free(host_msg);
3597         host_msg = copy_msg;
3598     }
3599     unlock_user(host_msg, msg, 0);
3600     return ret;
3601 }
3602 
3603 /* do_recvfrom() Must return target values and target errnos. */
3604 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags,
3605                             abi_ulong target_addr,
3606                             abi_ulong target_addrlen)
3607 {
3608     socklen_t addrlen, ret_addrlen;
3609     void *addr;
3610     void *host_msg;
3611     abi_long ret;
3612 
3613     if (!msg) {
3614         host_msg = NULL;
3615     } else {
3616         host_msg = lock_user(VERIFY_WRITE, msg, len, 0);
3617         if (!host_msg) {
3618             return -TARGET_EFAULT;
3619         }
3620     }
3621     if (target_addr) {
3622         if (get_user_u32(addrlen, target_addrlen)) {
3623             ret = -TARGET_EFAULT;
3624             goto fail;
3625         }
3626         if ((int)addrlen < 0) {
3627             ret = -TARGET_EINVAL;
3628             goto fail;
3629         }
3630         addr = alloca(addrlen);
3631         ret_addrlen = addrlen;
3632         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags,
3633                                       addr, &ret_addrlen));
3634     } else {
3635         addr = NULL; /* To keep compiler quiet.  */
3636         addrlen = 0; /* To keep compiler quiet.  */
3637         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0));
3638     }
3639     if (!is_error(ret)) {
3640         if (fd_trans_host_to_target_data(fd)) {
3641             abi_long trans;
3642             trans = fd_trans_host_to_target_data(fd)(host_msg, MIN(ret, len));
3643             if (is_error(trans)) {
3644                 ret = trans;
3645                 goto fail;
3646             }
3647         }
3648         if (target_addr) {
3649             host_to_target_sockaddr(target_addr, addr,
3650                                     MIN(addrlen, ret_addrlen));
3651             if (put_user_u32(ret_addrlen, target_addrlen)) {
3652                 ret = -TARGET_EFAULT;
3653                 goto fail;
3654             }
3655         }
3656         unlock_user(host_msg, msg, len);
3657     } else {
3658 fail:
3659         unlock_user(host_msg, msg, 0);
3660     }
3661     return ret;
3662 }
3663 
3664 #ifdef TARGET_NR_socketcall
3665 /* do_socketcall() must return target values and target errnos. */
3666 static abi_long do_socketcall(int num, abi_ulong vptr)
3667 {
3668     static const unsigned nargs[] = { /* number of arguments per operation */
3669         [TARGET_SYS_SOCKET] = 3,      /* domain, type, protocol */
3670         [TARGET_SYS_BIND] = 3,        /* fd, addr, addrlen */
3671         [TARGET_SYS_CONNECT] = 3,     /* fd, addr, addrlen */
3672         [TARGET_SYS_LISTEN] = 2,      /* fd, backlog */
3673         [TARGET_SYS_ACCEPT] = 3,      /* fd, addr, addrlen */
3674         [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */
3675         [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */
3676         [TARGET_SYS_SOCKETPAIR] = 4,  /* domain, type, protocol, tab */
3677         [TARGET_SYS_SEND] = 4,        /* fd, msg, len, flags */
3678         [TARGET_SYS_RECV] = 4,        /* fd, msg, len, flags */
3679         [TARGET_SYS_SENDTO] = 6,      /* fd, msg, len, flags, addr, addrlen */
3680         [TARGET_SYS_RECVFROM] = 6,    /* fd, msg, len, flags, addr, addrlen */
3681         [TARGET_SYS_SHUTDOWN] = 2,    /* fd, how */
3682         [TARGET_SYS_SETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3683         [TARGET_SYS_GETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3684         [TARGET_SYS_SENDMSG] = 3,     /* fd, msg, flags */
3685         [TARGET_SYS_RECVMSG] = 3,     /* fd, msg, flags */
3686         [TARGET_SYS_ACCEPT4] = 4,     /* fd, addr, addrlen, flags */
3687         [TARGET_SYS_RECVMMSG] = 4,    /* fd, msgvec, vlen, flags */
3688         [TARGET_SYS_SENDMMSG] = 4,    /* fd, msgvec, vlen, flags */
3689     };
3690     abi_long a[6]; /* max 6 args */
3691     unsigned i;
3692 
3693     /* check the range of the first argument num */
3694     /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */
3695     if (num < 1 || num > TARGET_SYS_SENDMMSG) {
3696         return -TARGET_EINVAL;
3697     }
3698     /* ensure we have space for args */
3699     if (nargs[num] > ARRAY_SIZE(a)) {
3700         return -TARGET_EINVAL;
3701     }
3702     /* collect the arguments in a[] according to nargs[] */
3703     for (i = 0; i < nargs[num]; ++i) {
3704         if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) {
3705             return -TARGET_EFAULT;
3706         }
3707     }
3708     /* now when we have the args, invoke the appropriate underlying function */
3709     switch (num) {
3710     case TARGET_SYS_SOCKET: /* domain, type, protocol */
3711         return do_socket(a[0], a[1], a[2]);
3712     case TARGET_SYS_BIND: /* sockfd, addr, addrlen */
3713         return do_bind(a[0], a[1], a[2]);
3714     case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */
3715         return do_connect(a[0], a[1], a[2]);
3716     case TARGET_SYS_LISTEN: /* sockfd, backlog */
3717         return get_errno(listen(a[0], a[1]));
3718     case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */
3719         return do_accept4(a[0], a[1], a[2], 0);
3720     case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */
3721         return do_getsockname(a[0], a[1], a[2]);
3722     case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */
3723         return do_getpeername(a[0], a[1], a[2]);
3724     case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */
3725         return do_socketpair(a[0], a[1], a[2], a[3]);
3726     case TARGET_SYS_SEND: /* sockfd, msg, len, flags */
3727         return do_sendto(a[0], a[1], a[2], a[3], 0, 0);
3728     case TARGET_SYS_RECV: /* sockfd, msg, len, flags */
3729         return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0);
3730     case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */
3731         return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]);
3732     case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */
3733         return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]);
3734     case TARGET_SYS_SHUTDOWN: /* sockfd, how */
3735         return get_errno(shutdown(a[0], a[1]));
3736     case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3737         return do_setsockopt(a[0], a[1], a[2], a[3], a[4]);
3738     case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3739         return do_getsockopt(a[0], a[1], a[2], a[3], a[4]);
3740     case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */
3741         return do_sendrecvmsg(a[0], a[1], a[2], 1);
3742     case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */
3743         return do_sendrecvmsg(a[0], a[1], a[2], 0);
3744     case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */
3745         return do_accept4(a[0], a[1], a[2], a[3]);
3746     case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */
3747         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0);
3748     case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */
3749         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1);
3750     default:
3751         qemu_log_mask(LOG_UNIMP, "Unsupported socketcall: %d\n", num);
3752         return -TARGET_EINVAL;
3753     }
3754 }
3755 #endif
3756 
3757 #define N_SHM_REGIONS	32
3758 
3759 static struct shm_region {
3760     abi_ulong start;
3761     abi_ulong size;
3762     bool in_use;
3763 } shm_regions[N_SHM_REGIONS];
3764 
3765 #ifndef TARGET_SEMID64_DS
3766 /* asm-generic version of this struct */
3767 struct target_semid64_ds
3768 {
3769   struct target_ipc_perm sem_perm;
3770   abi_ulong sem_otime;
3771 #if TARGET_ABI_BITS == 32
3772   abi_ulong __unused1;
3773 #endif
3774   abi_ulong sem_ctime;
3775 #if TARGET_ABI_BITS == 32
3776   abi_ulong __unused2;
3777 #endif
3778   abi_ulong sem_nsems;
3779   abi_ulong __unused3;
3780   abi_ulong __unused4;
3781 };
3782 #endif
3783 
3784 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip,
3785                                                abi_ulong target_addr)
3786 {
3787     struct target_ipc_perm *target_ip;
3788     struct target_semid64_ds *target_sd;
3789 
3790     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3791         return -TARGET_EFAULT;
3792     target_ip = &(target_sd->sem_perm);
3793     host_ip->__key = tswap32(target_ip->__key);
3794     host_ip->uid = tswap32(target_ip->uid);
3795     host_ip->gid = tswap32(target_ip->gid);
3796     host_ip->cuid = tswap32(target_ip->cuid);
3797     host_ip->cgid = tswap32(target_ip->cgid);
3798 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3799     host_ip->mode = tswap32(target_ip->mode);
3800 #else
3801     host_ip->mode = tswap16(target_ip->mode);
3802 #endif
3803 #if defined(TARGET_PPC)
3804     host_ip->__seq = tswap32(target_ip->__seq);
3805 #else
3806     host_ip->__seq = tswap16(target_ip->__seq);
3807 #endif
3808     unlock_user_struct(target_sd, target_addr, 0);
3809     return 0;
3810 }
3811 
3812 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr,
3813                                                struct ipc_perm *host_ip)
3814 {
3815     struct target_ipc_perm *target_ip;
3816     struct target_semid64_ds *target_sd;
3817 
3818     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3819         return -TARGET_EFAULT;
3820     target_ip = &(target_sd->sem_perm);
3821     target_ip->__key = tswap32(host_ip->__key);
3822     target_ip->uid = tswap32(host_ip->uid);
3823     target_ip->gid = tswap32(host_ip->gid);
3824     target_ip->cuid = tswap32(host_ip->cuid);
3825     target_ip->cgid = tswap32(host_ip->cgid);
3826 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3827     target_ip->mode = tswap32(host_ip->mode);
3828 #else
3829     target_ip->mode = tswap16(host_ip->mode);
3830 #endif
3831 #if defined(TARGET_PPC)
3832     target_ip->__seq = tswap32(host_ip->__seq);
3833 #else
3834     target_ip->__seq = tswap16(host_ip->__seq);
3835 #endif
3836     unlock_user_struct(target_sd, target_addr, 1);
3837     return 0;
3838 }
3839 
3840 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd,
3841                                                abi_ulong target_addr)
3842 {
3843     struct target_semid64_ds *target_sd;
3844 
3845     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3846         return -TARGET_EFAULT;
3847     if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr))
3848         return -TARGET_EFAULT;
3849     host_sd->sem_nsems = tswapal(target_sd->sem_nsems);
3850     host_sd->sem_otime = tswapal(target_sd->sem_otime);
3851     host_sd->sem_ctime = tswapal(target_sd->sem_ctime);
3852     unlock_user_struct(target_sd, target_addr, 0);
3853     return 0;
3854 }
3855 
3856 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr,
3857                                                struct semid_ds *host_sd)
3858 {
3859     struct target_semid64_ds *target_sd;
3860 
3861     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3862         return -TARGET_EFAULT;
3863     if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm)))
3864         return -TARGET_EFAULT;
3865     target_sd->sem_nsems = tswapal(host_sd->sem_nsems);
3866     target_sd->sem_otime = tswapal(host_sd->sem_otime);
3867     target_sd->sem_ctime = tswapal(host_sd->sem_ctime);
3868     unlock_user_struct(target_sd, target_addr, 1);
3869     return 0;
3870 }
3871 
3872 struct target_seminfo {
3873     int semmap;
3874     int semmni;
3875     int semmns;
3876     int semmnu;
3877     int semmsl;
3878     int semopm;
3879     int semume;
3880     int semusz;
3881     int semvmx;
3882     int semaem;
3883 };
3884 
3885 static inline abi_long host_to_target_seminfo(abi_ulong target_addr,
3886                                               struct seminfo *host_seminfo)
3887 {
3888     struct target_seminfo *target_seminfo;
3889     if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0))
3890         return -TARGET_EFAULT;
3891     __put_user(host_seminfo->semmap, &target_seminfo->semmap);
3892     __put_user(host_seminfo->semmni, &target_seminfo->semmni);
3893     __put_user(host_seminfo->semmns, &target_seminfo->semmns);
3894     __put_user(host_seminfo->semmnu, &target_seminfo->semmnu);
3895     __put_user(host_seminfo->semmsl, &target_seminfo->semmsl);
3896     __put_user(host_seminfo->semopm, &target_seminfo->semopm);
3897     __put_user(host_seminfo->semume, &target_seminfo->semume);
3898     __put_user(host_seminfo->semusz, &target_seminfo->semusz);
3899     __put_user(host_seminfo->semvmx, &target_seminfo->semvmx);
3900     __put_user(host_seminfo->semaem, &target_seminfo->semaem);
3901     unlock_user_struct(target_seminfo, target_addr, 1);
3902     return 0;
3903 }
3904 
3905 union semun {
3906 	int val;
3907 	struct semid_ds *buf;
3908 	unsigned short *array;
3909 	struct seminfo *__buf;
3910 };
3911 
3912 union target_semun {
3913 	int val;
3914 	abi_ulong buf;
3915 	abi_ulong array;
3916 	abi_ulong __buf;
3917 };
3918 
3919 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array,
3920                                                abi_ulong target_addr)
3921 {
3922     int nsems;
3923     unsigned short *array;
3924     union semun semun;
3925     struct semid_ds semid_ds;
3926     int i, ret;
3927 
3928     semun.buf = &semid_ds;
3929 
3930     ret = semctl(semid, 0, IPC_STAT, semun);
3931     if (ret == -1)
3932         return get_errno(ret);
3933 
3934     nsems = semid_ds.sem_nsems;
3935 
3936     *host_array = g_try_new(unsigned short, nsems);
3937     if (!*host_array) {
3938         return -TARGET_ENOMEM;
3939     }
3940     array = lock_user(VERIFY_READ, target_addr,
3941                       nsems*sizeof(unsigned short), 1);
3942     if (!array) {
3943         g_free(*host_array);
3944         return -TARGET_EFAULT;
3945     }
3946 
3947     for(i=0; i<nsems; i++) {
3948         __get_user((*host_array)[i], &array[i]);
3949     }
3950     unlock_user(array, target_addr, 0);
3951 
3952     return 0;
3953 }
3954 
3955 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr,
3956                                                unsigned short **host_array)
3957 {
3958     int nsems;
3959     unsigned short *array;
3960     union semun semun;
3961     struct semid_ds semid_ds;
3962     int i, ret;
3963 
3964     semun.buf = &semid_ds;
3965 
3966     ret = semctl(semid, 0, IPC_STAT, semun);
3967     if (ret == -1)
3968         return get_errno(ret);
3969 
3970     nsems = semid_ds.sem_nsems;
3971 
3972     array = lock_user(VERIFY_WRITE, target_addr,
3973                       nsems*sizeof(unsigned short), 0);
3974     if (!array)
3975         return -TARGET_EFAULT;
3976 
3977     for(i=0; i<nsems; i++) {
3978         __put_user((*host_array)[i], &array[i]);
3979     }
3980     g_free(*host_array);
3981     unlock_user(array, target_addr, 1);
3982 
3983     return 0;
3984 }
3985 
3986 static inline abi_long do_semctl(int semid, int semnum, int cmd,
3987                                  abi_ulong target_arg)
3988 {
3989     union target_semun target_su = { .buf = target_arg };
3990     union semun arg;
3991     struct semid_ds dsarg;
3992     unsigned short *array = NULL;
3993     struct seminfo seminfo;
3994     abi_long ret = -TARGET_EINVAL;
3995     abi_long err;
3996     cmd &= 0xff;
3997 
3998     switch( cmd ) {
3999 	case GETVAL:
4000 	case SETVAL:
4001             /* In 64 bit cross-endian situations, we will erroneously pick up
4002              * the wrong half of the union for the "val" element.  To rectify
4003              * this, the entire 8-byte structure is byteswapped, followed by
4004 	     * a swap of the 4 byte val field. In other cases, the data is
4005 	     * already in proper host byte order. */
4006 	    if (sizeof(target_su.val) != (sizeof(target_su.buf))) {
4007 		target_su.buf = tswapal(target_su.buf);
4008 		arg.val = tswap32(target_su.val);
4009 	    } else {
4010 		arg.val = target_su.val;
4011 	    }
4012             ret = get_errno(semctl(semid, semnum, cmd, arg));
4013             break;
4014 	case GETALL:
4015 	case SETALL:
4016             err = target_to_host_semarray(semid, &array, target_su.array);
4017             if (err)
4018                 return err;
4019             arg.array = array;
4020             ret = get_errno(semctl(semid, semnum, cmd, arg));
4021             err = host_to_target_semarray(semid, target_su.array, &array);
4022             if (err)
4023                 return err;
4024             break;
4025 	case IPC_STAT:
4026 	case IPC_SET:
4027 	case SEM_STAT:
4028             err = target_to_host_semid_ds(&dsarg, target_su.buf);
4029             if (err)
4030                 return err;
4031             arg.buf = &dsarg;
4032             ret = get_errno(semctl(semid, semnum, cmd, arg));
4033             err = host_to_target_semid_ds(target_su.buf, &dsarg);
4034             if (err)
4035                 return err;
4036             break;
4037 	case IPC_INFO:
4038 	case SEM_INFO:
4039             arg.__buf = &seminfo;
4040             ret = get_errno(semctl(semid, semnum, cmd, arg));
4041             err = host_to_target_seminfo(target_su.__buf, &seminfo);
4042             if (err)
4043                 return err;
4044             break;
4045 	case IPC_RMID:
4046 	case GETPID:
4047 	case GETNCNT:
4048 	case GETZCNT:
4049             ret = get_errno(semctl(semid, semnum, cmd, NULL));
4050             break;
4051     }
4052 
4053     return ret;
4054 }
4055 
4056 struct target_sembuf {
4057     unsigned short sem_num;
4058     short sem_op;
4059     short sem_flg;
4060 };
4061 
4062 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf,
4063                                              abi_ulong target_addr,
4064                                              unsigned nsops)
4065 {
4066     struct target_sembuf *target_sembuf;
4067     int i;
4068 
4069     target_sembuf = lock_user(VERIFY_READ, target_addr,
4070                               nsops*sizeof(struct target_sembuf), 1);
4071     if (!target_sembuf)
4072         return -TARGET_EFAULT;
4073 
4074     for(i=0; i<nsops; i++) {
4075         __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num);
4076         __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op);
4077         __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg);
4078     }
4079 
4080     unlock_user(target_sembuf, target_addr, 0);
4081 
4082     return 0;
4083 }
4084 
4085 #if defined(TARGET_NR_ipc) || defined(TARGET_NR_semop) || \
4086     defined(TARGET_NR_semtimedop) || defined(TARGET_NR_semtimedop_time64)
4087 
4088 /*
4089  * This macro is required to handle the s390 variants, which passes the
4090  * arguments in a different order than default.
4091  */
4092 #ifdef __s390x__
4093 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4094   (__nsops), (__timeout), (__sops)
4095 #else
4096 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4097   (__nsops), 0, (__sops), (__timeout)
4098 #endif
4099 
4100 static inline abi_long do_semtimedop(int semid,
4101                                      abi_long ptr,
4102                                      unsigned nsops,
4103                                      abi_long timeout, bool time64)
4104 {
4105     struct sembuf *sops;
4106     struct timespec ts, *pts = NULL;
4107     abi_long ret;
4108 
4109     if (timeout) {
4110         pts = &ts;
4111         if (time64) {
4112             if (target_to_host_timespec64(pts, timeout)) {
4113                 return -TARGET_EFAULT;
4114             }
4115         } else {
4116             if (target_to_host_timespec(pts, timeout)) {
4117                 return -TARGET_EFAULT;
4118             }
4119         }
4120     }
4121 
4122     if (nsops > TARGET_SEMOPM) {
4123         return -TARGET_E2BIG;
4124     }
4125 
4126     sops = g_new(struct sembuf, nsops);
4127 
4128     if (target_to_host_sembuf(sops, ptr, nsops)) {
4129         g_free(sops);
4130         return -TARGET_EFAULT;
4131     }
4132 
4133     ret = -TARGET_ENOSYS;
4134 #ifdef __NR_semtimedop
4135     ret = get_errno(safe_semtimedop(semid, sops, nsops, pts));
4136 #endif
4137 #ifdef __NR_ipc
4138     if (ret == -TARGET_ENOSYS) {
4139         ret = get_errno(safe_ipc(IPCOP_semtimedop, semid,
4140                                  SEMTIMEDOP_IPC_ARGS(nsops, sops, (long)pts)));
4141     }
4142 #endif
4143     g_free(sops);
4144     return ret;
4145 }
4146 #endif
4147 
4148 struct target_msqid_ds
4149 {
4150     struct target_ipc_perm msg_perm;
4151     abi_ulong msg_stime;
4152 #if TARGET_ABI_BITS == 32
4153     abi_ulong __unused1;
4154 #endif
4155     abi_ulong msg_rtime;
4156 #if TARGET_ABI_BITS == 32
4157     abi_ulong __unused2;
4158 #endif
4159     abi_ulong msg_ctime;
4160 #if TARGET_ABI_BITS == 32
4161     abi_ulong __unused3;
4162 #endif
4163     abi_ulong __msg_cbytes;
4164     abi_ulong msg_qnum;
4165     abi_ulong msg_qbytes;
4166     abi_ulong msg_lspid;
4167     abi_ulong msg_lrpid;
4168     abi_ulong __unused4;
4169     abi_ulong __unused5;
4170 };
4171 
4172 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md,
4173                                                abi_ulong target_addr)
4174 {
4175     struct target_msqid_ds *target_md;
4176 
4177     if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1))
4178         return -TARGET_EFAULT;
4179     if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr))
4180         return -TARGET_EFAULT;
4181     host_md->msg_stime = tswapal(target_md->msg_stime);
4182     host_md->msg_rtime = tswapal(target_md->msg_rtime);
4183     host_md->msg_ctime = tswapal(target_md->msg_ctime);
4184     host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes);
4185     host_md->msg_qnum = tswapal(target_md->msg_qnum);
4186     host_md->msg_qbytes = tswapal(target_md->msg_qbytes);
4187     host_md->msg_lspid = tswapal(target_md->msg_lspid);
4188     host_md->msg_lrpid = tswapal(target_md->msg_lrpid);
4189     unlock_user_struct(target_md, target_addr, 0);
4190     return 0;
4191 }
4192 
4193 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr,
4194                                                struct msqid_ds *host_md)
4195 {
4196     struct target_msqid_ds *target_md;
4197 
4198     if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0))
4199         return -TARGET_EFAULT;
4200     if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm)))
4201         return -TARGET_EFAULT;
4202     target_md->msg_stime = tswapal(host_md->msg_stime);
4203     target_md->msg_rtime = tswapal(host_md->msg_rtime);
4204     target_md->msg_ctime = tswapal(host_md->msg_ctime);
4205     target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes);
4206     target_md->msg_qnum = tswapal(host_md->msg_qnum);
4207     target_md->msg_qbytes = tswapal(host_md->msg_qbytes);
4208     target_md->msg_lspid = tswapal(host_md->msg_lspid);
4209     target_md->msg_lrpid = tswapal(host_md->msg_lrpid);
4210     unlock_user_struct(target_md, target_addr, 1);
4211     return 0;
4212 }
4213 
4214 struct target_msginfo {
4215     int msgpool;
4216     int msgmap;
4217     int msgmax;
4218     int msgmnb;
4219     int msgmni;
4220     int msgssz;
4221     int msgtql;
4222     unsigned short int msgseg;
4223 };
4224 
4225 static inline abi_long host_to_target_msginfo(abi_ulong target_addr,
4226                                               struct msginfo *host_msginfo)
4227 {
4228     struct target_msginfo *target_msginfo;
4229     if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0))
4230         return -TARGET_EFAULT;
4231     __put_user(host_msginfo->msgpool, &target_msginfo->msgpool);
4232     __put_user(host_msginfo->msgmap, &target_msginfo->msgmap);
4233     __put_user(host_msginfo->msgmax, &target_msginfo->msgmax);
4234     __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb);
4235     __put_user(host_msginfo->msgmni, &target_msginfo->msgmni);
4236     __put_user(host_msginfo->msgssz, &target_msginfo->msgssz);
4237     __put_user(host_msginfo->msgtql, &target_msginfo->msgtql);
4238     __put_user(host_msginfo->msgseg, &target_msginfo->msgseg);
4239     unlock_user_struct(target_msginfo, target_addr, 1);
4240     return 0;
4241 }
4242 
4243 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr)
4244 {
4245     struct msqid_ds dsarg;
4246     struct msginfo msginfo;
4247     abi_long ret = -TARGET_EINVAL;
4248 
4249     cmd &= 0xff;
4250 
4251     switch (cmd) {
4252     case IPC_STAT:
4253     case IPC_SET:
4254     case MSG_STAT:
4255         if (target_to_host_msqid_ds(&dsarg,ptr))
4256             return -TARGET_EFAULT;
4257         ret = get_errno(msgctl(msgid, cmd, &dsarg));
4258         if (host_to_target_msqid_ds(ptr,&dsarg))
4259             return -TARGET_EFAULT;
4260         break;
4261     case IPC_RMID:
4262         ret = get_errno(msgctl(msgid, cmd, NULL));
4263         break;
4264     case IPC_INFO:
4265     case MSG_INFO:
4266         ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo));
4267         if (host_to_target_msginfo(ptr, &msginfo))
4268             return -TARGET_EFAULT;
4269         break;
4270     }
4271 
4272     return ret;
4273 }
4274 
4275 struct target_msgbuf {
4276     abi_long mtype;
4277     char	mtext[1];
4278 };
4279 
4280 static inline abi_long do_msgsnd(int msqid, abi_long msgp,
4281                                  ssize_t msgsz, int msgflg)
4282 {
4283     struct target_msgbuf *target_mb;
4284     struct msgbuf *host_mb;
4285     abi_long ret = 0;
4286 
4287     if (msgsz < 0) {
4288         return -TARGET_EINVAL;
4289     }
4290 
4291     if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0))
4292         return -TARGET_EFAULT;
4293     host_mb = g_try_malloc(msgsz + sizeof(long));
4294     if (!host_mb) {
4295         unlock_user_struct(target_mb, msgp, 0);
4296         return -TARGET_ENOMEM;
4297     }
4298     host_mb->mtype = (abi_long) tswapal(target_mb->mtype);
4299     memcpy(host_mb->mtext, target_mb->mtext, msgsz);
4300     ret = -TARGET_ENOSYS;
4301 #ifdef __NR_msgsnd
4302     ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg));
4303 #endif
4304 #ifdef __NR_ipc
4305     if (ret == -TARGET_ENOSYS) {
4306 #ifdef __s390x__
4307         ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4308                                  host_mb));
4309 #else
4310         ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4311                                  host_mb, 0));
4312 #endif
4313     }
4314 #endif
4315     g_free(host_mb);
4316     unlock_user_struct(target_mb, msgp, 0);
4317 
4318     return ret;
4319 }
4320 
4321 #ifdef __NR_ipc
4322 #if defined(__sparc__)
4323 /* SPARC for msgrcv it does not use the kludge on final 2 arguments.  */
4324 #define MSGRCV_ARGS(__msgp, __msgtyp) __msgp, __msgtyp
4325 #elif defined(__s390x__)
4326 /* The s390 sys_ipc variant has only five parameters.  */
4327 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4328     ((long int[]){(long int)__msgp, __msgtyp})
4329 #else
4330 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4331     ((long int[]){(long int)__msgp, __msgtyp}), 0
4332 #endif
4333 #endif
4334 
4335 static inline abi_long do_msgrcv(int msqid, abi_long msgp,
4336                                  ssize_t msgsz, abi_long msgtyp,
4337                                  int msgflg)
4338 {
4339     struct target_msgbuf *target_mb;
4340     char *target_mtext;
4341     struct msgbuf *host_mb;
4342     abi_long ret = 0;
4343 
4344     if (msgsz < 0) {
4345         return -TARGET_EINVAL;
4346     }
4347 
4348     if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0))
4349         return -TARGET_EFAULT;
4350 
4351     host_mb = g_try_malloc(msgsz + sizeof(long));
4352     if (!host_mb) {
4353         ret = -TARGET_ENOMEM;
4354         goto end;
4355     }
4356     ret = -TARGET_ENOSYS;
4357 #ifdef __NR_msgrcv
4358     ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg));
4359 #endif
4360 #ifdef __NR_ipc
4361     if (ret == -TARGET_ENOSYS) {
4362         ret = get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv), msqid, msgsz,
4363                         msgflg, MSGRCV_ARGS(host_mb, msgtyp)));
4364     }
4365 #endif
4366 
4367     if (ret > 0) {
4368         abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong);
4369         target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0);
4370         if (!target_mtext) {
4371             ret = -TARGET_EFAULT;
4372             goto end;
4373         }
4374         memcpy(target_mb->mtext, host_mb->mtext, ret);
4375         unlock_user(target_mtext, target_mtext_addr, ret);
4376     }
4377 
4378     target_mb->mtype = tswapal(host_mb->mtype);
4379 
4380 end:
4381     if (target_mb)
4382         unlock_user_struct(target_mb, msgp, 1);
4383     g_free(host_mb);
4384     return ret;
4385 }
4386 
4387 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd,
4388                                                abi_ulong target_addr)
4389 {
4390     struct target_shmid_ds *target_sd;
4391 
4392     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
4393         return -TARGET_EFAULT;
4394     if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr))
4395         return -TARGET_EFAULT;
4396     __get_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4397     __get_user(host_sd->shm_atime, &target_sd->shm_atime);
4398     __get_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4399     __get_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4400     __get_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4401     __get_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4402     __get_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4403     unlock_user_struct(target_sd, target_addr, 0);
4404     return 0;
4405 }
4406 
4407 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr,
4408                                                struct shmid_ds *host_sd)
4409 {
4410     struct target_shmid_ds *target_sd;
4411 
4412     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
4413         return -TARGET_EFAULT;
4414     if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm)))
4415         return -TARGET_EFAULT;
4416     __put_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4417     __put_user(host_sd->shm_atime, &target_sd->shm_atime);
4418     __put_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4419     __put_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4420     __put_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4421     __put_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4422     __put_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4423     unlock_user_struct(target_sd, target_addr, 1);
4424     return 0;
4425 }
4426 
4427 struct  target_shminfo {
4428     abi_ulong shmmax;
4429     abi_ulong shmmin;
4430     abi_ulong shmmni;
4431     abi_ulong shmseg;
4432     abi_ulong shmall;
4433 };
4434 
4435 static inline abi_long host_to_target_shminfo(abi_ulong target_addr,
4436                                               struct shminfo *host_shminfo)
4437 {
4438     struct target_shminfo *target_shminfo;
4439     if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0))
4440         return -TARGET_EFAULT;
4441     __put_user(host_shminfo->shmmax, &target_shminfo->shmmax);
4442     __put_user(host_shminfo->shmmin, &target_shminfo->shmmin);
4443     __put_user(host_shminfo->shmmni, &target_shminfo->shmmni);
4444     __put_user(host_shminfo->shmseg, &target_shminfo->shmseg);
4445     __put_user(host_shminfo->shmall, &target_shminfo->shmall);
4446     unlock_user_struct(target_shminfo, target_addr, 1);
4447     return 0;
4448 }
4449 
4450 struct target_shm_info {
4451     int used_ids;
4452     abi_ulong shm_tot;
4453     abi_ulong shm_rss;
4454     abi_ulong shm_swp;
4455     abi_ulong swap_attempts;
4456     abi_ulong swap_successes;
4457 };
4458 
4459 static inline abi_long host_to_target_shm_info(abi_ulong target_addr,
4460                                                struct shm_info *host_shm_info)
4461 {
4462     struct target_shm_info *target_shm_info;
4463     if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0))
4464         return -TARGET_EFAULT;
4465     __put_user(host_shm_info->used_ids, &target_shm_info->used_ids);
4466     __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot);
4467     __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss);
4468     __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp);
4469     __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts);
4470     __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes);
4471     unlock_user_struct(target_shm_info, target_addr, 1);
4472     return 0;
4473 }
4474 
4475 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf)
4476 {
4477     struct shmid_ds dsarg;
4478     struct shminfo shminfo;
4479     struct shm_info shm_info;
4480     abi_long ret = -TARGET_EINVAL;
4481 
4482     cmd &= 0xff;
4483 
4484     switch(cmd) {
4485     case IPC_STAT:
4486     case IPC_SET:
4487     case SHM_STAT:
4488         if (target_to_host_shmid_ds(&dsarg, buf))
4489             return -TARGET_EFAULT;
4490         ret = get_errno(shmctl(shmid, cmd, &dsarg));
4491         if (host_to_target_shmid_ds(buf, &dsarg))
4492             return -TARGET_EFAULT;
4493         break;
4494     case IPC_INFO:
4495         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo));
4496         if (host_to_target_shminfo(buf, &shminfo))
4497             return -TARGET_EFAULT;
4498         break;
4499     case SHM_INFO:
4500         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info));
4501         if (host_to_target_shm_info(buf, &shm_info))
4502             return -TARGET_EFAULT;
4503         break;
4504     case IPC_RMID:
4505     case SHM_LOCK:
4506     case SHM_UNLOCK:
4507         ret = get_errno(shmctl(shmid, cmd, NULL));
4508         break;
4509     }
4510 
4511     return ret;
4512 }
4513 
4514 #ifndef TARGET_FORCE_SHMLBA
4515 /* For most architectures, SHMLBA is the same as the page size;
4516  * some architectures have larger values, in which case they should
4517  * define TARGET_FORCE_SHMLBA and provide a target_shmlba() function.
4518  * This corresponds to the kernel arch code defining __ARCH_FORCE_SHMLBA
4519  * and defining its own value for SHMLBA.
4520  *
4521  * The kernel also permits SHMLBA to be set by the architecture to a
4522  * value larger than the page size without setting __ARCH_FORCE_SHMLBA;
4523  * this means that addresses are rounded to the large size if
4524  * SHM_RND is set but addresses not aligned to that size are not rejected
4525  * as long as they are at least page-aligned. Since the only architecture
4526  * which uses this is ia64 this code doesn't provide for that oddity.
4527  */
4528 static inline abi_ulong target_shmlba(CPUArchState *cpu_env)
4529 {
4530     return TARGET_PAGE_SIZE;
4531 }
4532 #endif
4533 
4534 static inline abi_ulong do_shmat(CPUArchState *cpu_env,
4535                                  int shmid, abi_ulong shmaddr, int shmflg)
4536 {
4537     CPUState *cpu = env_cpu(cpu_env);
4538     abi_long raddr;
4539     void *host_raddr;
4540     struct shmid_ds shm_info;
4541     int i,ret;
4542     abi_ulong shmlba;
4543 
4544     /* shmat pointers are always untagged */
4545 
4546     /* find out the length of the shared memory segment */
4547     ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info));
4548     if (is_error(ret)) {
4549         /* can't get length, bail out */
4550         return ret;
4551     }
4552 
4553     shmlba = target_shmlba(cpu_env);
4554 
4555     if (shmaddr & (shmlba - 1)) {
4556         if (shmflg & SHM_RND) {
4557             shmaddr &= ~(shmlba - 1);
4558         } else {
4559             return -TARGET_EINVAL;
4560         }
4561     }
4562     if (!guest_range_valid_untagged(shmaddr, shm_info.shm_segsz)) {
4563         return -TARGET_EINVAL;
4564     }
4565 
4566     mmap_lock();
4567 
4568     /*
4569      * We're mapping shared memory, so ensure we generate code for parallel
4570      * execution and flush old translations.  This will work up to the level
4571      * supported by the host -- anything that requires EXCP_ATOMIC will not
4572      * be atomic with respect to an external process.
4573      */
4574     if (!(cpu->tcg_cflags & CF_PARALLEL)) {
4575         cpu->tcg_cflags |= CF_PARALLEL;
4576         tb_flush(cpu);
4577     }
4578 
4579     if (shmaddr)
4580         host_raddr = shmat(shmid, (void *)g2h_untagged(shmaddr), shmflg);
4581     else {
4582         abi_ulong mmap_start;
4583 
4584         /* In order to use the host shmat, we need to honor host SHMLBA.  */
4585         mmap_start = mmap_find_vma(0, shm_info.shm_segsz, MAX(SHMLBA, shmlba));
4586 
4587         if (mmap_start == -1) {
4588             errno = ENOMEM;
4589             host_raddr = (void *)-1;
4590         } else
4591             host_raddr = shmat(shmid, g2h_untagged(mmap_start),
4592                                shmflg | SHM_REMAP);
4593     }
4594 
4595     if (host_raddr == (void *)-1) {
4596         mmap_unlock();
4597         return get_errno((long)host_raddr);
4598     }
4599     raddr=h2g((unsigned long)host_raddr);
4600 
4601     page_set_flags(raddr, raddr + shm_info.shm_segsz,
4602                    PAGE_VALID | PAGE_RESET | PAGE_READ |
4603                    (shmflg & SHM_RDONLY ? 0 : PAGE_WRITE));
4604 
4605     for (i = 0; i < N_SHM_REGIONS; i++) {
4606         if (!shm_regions[i].in_use) {
4607             shm_regions[i].in_use = true;
4608             shm_regions[i].start = raddr;
4609             shm_regions[i].size = shm_info.shm_segsz;
4610             break;
4611         }
4612     }
4613 
4614     mmap_unlock();
4615     return raddr;
4616 
4617 }
4618 
4619 static inline abi_long do_shmdt(abi_ulong shmaddr)
4620 {
4621     int i;
4622     abi_long rv;
4623 
4624     /* shmdt pointers are always untagged */
4625 
4626     mmap_lock();
4627 
4628     for (i = 0; i < N_SHM_REGIONS; ++i) {
4629         if (shm_regions[i].in_use && shm_regions[i].start == shmaddr) {
4630             shm_regions[i].in_use = false;
4631             page_set_flags(shmaddr, shmaddr + shm_regions[i].size, 0);
4632             break;
4633         }
4634     }
4635     rv = get_errno(shmdt(g2h_untagged(shmaddr)));
4636 
4637     mmap_unlock();
4638 
4639     return rv;
4640 }
4641 
4642 #ifdef TARGET_NR_ipc
4643 /* ??? This only works with linear mappings.  */
4644 /* do_ipc() must return target values and target errnos. */
4645 static abi_long do_ipc(CPUArchState *cpu_env,
4646                        unsigned int call, abi_long first,
4647                        abi_long second, abi_long third,
4648                        abi_long ptr, abi_long fifth)
4649 {
4650     int version;
4651     abi_long ret = 0;
4652 
4653     version = call >> 16;
4654     call &= 0xffff;
4655 
4656     switch (call) {
4657     case IPCOP_semop:
4658         ret = do_semtimedop(first, ptr, second, 0, false);
4659         break;
4660     case IPCOP_semtimedop:
4661     /*
4662      * The s390 sys_ipc variant has only five parameters instead of six
4663      * (as for default variant) and the only difference is the handling of
4664      * SEMTIMEDOP where on s390 the third parameter is used as a pointer
4665      * to a struct timespec where the generic variant uses fifth parameter.
4666      */
4667 #if defined(TARGET_S390X)
4668         ret = do_semtimedop(first, ptr, second, third, TARGET_ABI_BITS == 64);
4669 #else
4670         ret = do_semtimedop(first, ptr, second, fifth, TARGET_ABI_BITS == 64);
4671 #endif
4672         break;
4673 
4674     case IPCOP_semget:
4675         ret = get_errno(semget(first, second, third));
4676         break;
4677 
4678     case IPCOP_semctl: {
4679         /* The semun argument to semctl is passed by value, so dereference the
4680          * ptr argument. */
4681         abi_ulong atptr;
4682         get_user_ual(atptr, ptr);
4683         ret = do_semctl(first, second, third, atptr);
4684         break;
4685     }
4686 
4687     case IPCOP_msgget:
4688         ret = get_errno(msgget(first, second));
4689         break;
4690 
4691     case IPCOP_msgsnd:
4692         ret = do_msgsnd(first, ptr, second, third);
4693         break;
4694 
4695     case IPCOP_msgctl:
4696         ret = do_msgctl(first, second, ptr);
4697         break;
4698 
4699     case IPCOP_msgrcv:
4700         switch (version) {
4701         case 0:
4702             {
4703                 struct target_ipc_kludge {
4704                     abi_long msgp;
4705                     abi_long msgtyp;
4706                 } *tmp;
4707 
4708                 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) {
4709                     ret = -TARGET_EFAULT;
4710                     break;
4711                 }
4712 
4713                 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third);
4714 
4715                 unlock_user_struct(tmp, ptr, 0);
4716                 break;
4717             }
4718         default:
4719             ret = do_msgrcv(first, ptr, second, fifth, third);
4720         }
4721         break;
4722 
4723     case IPCOP_shmat:
4724         switch (version) {
4725         default:
4726         {
4727             abi_ulong raddr;
4728             raddr = do_shmat(cpu_env, first, ptr, second);
4729             if (is_error(raddr))
4730                 return get_errno(raddr);
4731             if (put_user_ual(raddr, third))
4732                 return -TARGET_EFAULT;
4733             break;
4734         }
4735         case 1:
4736             ret = -TARGET_EINVAL;
4737             break;
4738         }
4739 	break;
4740     case IPCOP_shmdt:
4741         ret = do_shmdt(ptr);
4742 	break;
4743 
4744     case IPCOP_shmget:
4745 	/* IPC_* flag values are the same on all linux platforms */
4746 	ret = get_errno(shmget(first, second, third));
4747 	break;
4748 
4749 	/* IPC_* and SHM_* command values are the same on all linux platforms */
4750     case IPCOP_shmctl:
4751         ret = do_shmctl(first, second, ptr);
4752         break;
4753     default:
4754         qemu_log_mask(LOG_UNIMP, "Unsupported ipc call: %d (version %d)\n",
4755                       call, version);
4756 	ret = -TARGET_ENOSYS;
4757 	break;
4758     }
4759     return ret;
4760 }
4761 #endif
4762 
4763 /* kernel structure types definitions */
4764 
4765 #define STRUCT(name, ...) STRUCT_ ## name,
4766 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
4767 enum {
4768 #include "syscall_types.h"
4769 STRUCT_MAX
4770 };
4771 #undef STRUCT
4772 #undef STRUCT_SPECIAL
4773 
4774 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = {  __VA_ARGS__, TYPE_NULL };
4775 #define STRUCT_SPECIAL(name)
4776 #include "syscall_types.h"
4777 #undef STRUCT
4778 #undef STRUCT_SPECIAL
4779 
4780 #define MAX_STRUCT_SIZE 4096
4781 
4782 #ifdef CONFIG_FIEMAP
4783 /* So fiemap access checks don't overflow on 32 bit systems.
4784  * This is very slightly smaller than the limit imposed by
4785  * the underlying kernel.
4786  */
4787 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap))  \
4788                             / sizeof(struct fiemap_extent))
4789 
4790 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp,
4791                                        int fd, int cmd, abi_long arg)
4792 {
4793     /* The parameter for this ioctl is a struct fiemap followed
4794      * by an array of struct fiemap_extent whose size is set
4795      * in fiemap->fm_extent_count. The array is filled in by the
4796      * ioctl.
4797      */
4798     int target_size_in, target_size_out;
4799     struct fiemap *fm;
4800     const argtype *arg_type = ie->arg_type;
4801     const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) };
4802     void *argptr, *p;
4803     abi_long ret;
4804     int i, extent_size = thunk_type_size(extent_arg_type, 0);
4805     uint32_t outbufsz;
4806     int free_fm = 0;
4807 
4808     assert(arg_type[0] == TYPE_PTR);
4809     assert(ie->access == IOC_RW);
4810     arg_type++;
4811     target_size_in = thunk_type_size(arg_type, 0);
4812     argptr = lock_user(VERIFY_READ, arg, target_size_in, 1);
4813     if (!argptr) {
4814         return -TARGET_EFAULT;
4815     }
4816     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4817     unlock_user(argptr, arg, 0);
4818     fm = (struct fiemap *)buf_temp;
4819     if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) {
4820         return -TARGET_EINVAL;
4821     }
4822 
4823     outbufsz = sizeof (*fm) +
4824         (sizeof(struct fiemap_extent) * fm->fm_extent_count);
4825 
4826     if (outbufsz > MAX_STRUCT_SIZE) {
4827         /* We can't fit all the extents into the fixed size buffer.
4828          * Allocate one that is large enough and use it instead.
4829          */
4830         fm = g_try_malloc(outbufsz);
4831         if (!fm) {
4832             return -TARGET_ENOMEM;
4833         }
4834         memcpy(fm, buf_temp, sizeof(struct fiemap));
4835         free_fm = 1;
4836     }
4837     ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm));
4838     if (!is_error(ret)) {
4839         target_size_out = target_size_in;
4840         /* An extent_count of 0 means we were only counting the extents
4841          * so there are no structs to copy
4842          */
4843         if (fm->fm_extent_count != 0) {
4844             target_size_out += fm->fm_mapped_extents * extent_size;
4845         }
4846         argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0);
4847         if (!argptr) {
4848             ret = -TARGET_EFAULT;
4849         } else {
4850             /* Convert the struct fiemap */
4851             thunk_convert(argptr, fm, arg_type, THUNK_TARGET);
4852             if (fm->fm_extent_count != 0) {
4853                 p = argptr + target_size_in;
4854                 /* ...and then all the struct fiemap_extents */
4855                 for (i = 0; i < fm->fm_mapped_extents; i++) {
4856                     thunk_convert(p, &fm->fm_extents[i], extent_arg_type,
4857                                   THUNK_TARGET);
4858                     p += extent_size;
4859                 }
4860             }
4861             unlock_user(argptr, arg, target_size_out);
4862         }
4863     }
4864     if (free_fm) {
4865         g_free(fm);
4866     }
4867     return ret;
4868 }
4869 #endif
4870 
4871 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp,
4872                                 int fd, int cmd, abi_long arg)
4873 {
4874     const argtype *arg_type = ie->arg_type;
4875     int target_size;
4876     void *argptr;
4877     int ret;
4878     struct ifconf *host_ifconf;
4879     uint32_t outbufsz;
4880     const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) };
4881     const argtype ifreq_max_type[] = { MK_STRUCT(STRUCT_ifmap_ifreq) };
4882     int target_ifreq_size;
4883     int nb_ifreq;
4884     int free_buf = 0;
4885     int i;
4886     int target_ifc_len;
4887     abi_long target_ifc_buf;
4888     int host_ifc_len;
4889     char *host_ifc_buf;
4890 
4891     assert(arg_type[0] == TYPE_PTR);
4892     assert(ie->access == IOC_RW);
4893 
4894     arg_type++;
4895     target_size = thunk_type_size(arg_type, 0);
4896 
4897     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4898     if (!argptr)
4899         return -TARGET_EFAULT;
4900     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4901     unlock_user(argptr, arg, 0);
4902 
4903     host_ifconf = (struct ifconf *)(unsigned long)buf_temp;
4904     target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf;
4905     target_ifreq_size = thunk_type_size(ifreq_max_type, 0);
4906 
4907     if (target_ifc_buf != 0) {
4908         target_ifc_len = host_ifconf->ifc_len;
4909         nb_ifreq = target_ifc_len / target_ifreq_size;
4910         host_ifc_len = nb_ifreq * sizeof(struct ifreq);
4911 
4912         outbufsz = sizeof(*host_ifconf) + host_ifc_len;
4913         if (outbufsz > MAX_STRUCT_SIZE) {
4914             /*
4915              * We can't fit all the extents into the fixed size buffer.
4916              * Allocate one that is large enough and use it instead.
4917              */
4918             host_ifconf = g_try_malloc(outbufsz);
4919             if (!host_ifconf) {
4920                 return -TARGET_ENOMEM;
4921             }
4922             memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf));
4923             free_buf = 1;
4924         }
4925         host_ifc_buf = (char *)host_ifconf + sizeof(*host_ifconf);
4926 
4927         host_ifconf->ifc_len = host_ifc_len;
4928     } else {
4929       host_ifc_buf = NULL;
4930     }
4931     host_ifconf->ifc_buf = host_ifc_buf;
4932 
4933     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf));
4934     if (!is_error(ret)) {
4935 	/* convert host ifc_len to target ifc_len */
4936 
4937         nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq);
4938         target_ifc_len = nb_ifreq * target_ifreq_size;
4939         host_ifconf->ifc_len = target_ifc_len;
4940 
4941 	/* restore target ifc_buf */
4942 
4943         host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf;
4944 
4945 	/* copy struct ifconf to target user */
4946 
4947         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4948         if (!argptr)
4949             return -TARGET_EFAULT;
4950         thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET);
4951         unlock_user(argptr, arg, target_size);
4952 
4953         if (target_ifc_buf != 0) {
4954             /* copy ifreq[] to target user */
4955             argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0);
4956             for (i = 0; i < nb_ifreq ; i++) {
4957                 thunk_convert(argptr + i * target_ifreq_size,
4958                               host_ifc_buf + i * sizeof(struct ifreq),
4959                               ifreq_arg_type, THUNK_TARGET);
4960             }
4961             unlock_user(argptr, target_ifc_buf, target_ifc_len);
4962         }
4963     }
4964 
4965     if (free_buf) {
4966         g_free(host_ifconf);
4967     }
4968 
4969     return ret;
4970 }
4971 
4972 #if defined(CONFIG_USBFS)
4973 #if HOST_LONG_BITS > 64
4974 #error USBDEVFS thunks do not support >64 bit hosts yet.
4975 #endif
4976 struct live_urb {
4977     uint64_t target_urb_adr;
4978     uint64_t target_buf_adr;
4979     char *target_buf_ptr;
4980     struct usbdevfs_urb host_urb;
4981 };
4982 
4983 static GHashTable *usbdevfs_urb_hashtable(void)
4984 {
4985     static GHashTable *urb_hashtable;
4986 
4987     if (!urb_hashtable) {
4988         urb_hashtable = g_hash_table_new(g_int64_hash, g_int64_equal);
4989     }
4990     return urb_hashtable;
4991 }
4992 
4993 static void urb_hashtable_insert(struct live_urb *urb)
4994 {
4995     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4996     g_hash_table_insert(urb_hashtable, urb, urb);
4997 }
4998 
4999 static struct live_urb *urb_hashtable_lookup(uint64_t target_urb_adr)
5000 {
5001     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
5002     return g_hash_table_lookup(urb_hashtable, &target_urb_adr);
5003 }
5004 
5005 static void urb_hashtable_remove(struct live_urb *urb)
5006 {
5007     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
5008     g_hash_table_remove(urb_hashtable, urb);
5009 }
5010 
5011 static abi_long
5012 do_ioctl_usbdevfs_reapurb(const IOCTLEntry *ie, uint8_t *buf_temp,
5013                           int fd, int cmd, abi_long arg)
5014 {
5015     const argtype usbfsurb_arg_type[] = { MK_STRUCT(STRUCT_usbdevfs_urb) };
5016     const argtype ptrvoid_arg_type[] = { TYPE_PTRVOID, 0, 0 };
5017     struct live_urb *lurb;
5018     void *argptr;
5019     uint64_t hurb;
5020     int target_size;
5021     uintptr_t target_urb_adr;
5022     abi_long ret;
5023 
5024     target_size = thunk_type_size(usbfsurb_arg_type, THUNK_TARGET);
5025 
5026     memset(buf_temp, 0, sizeof(uint64_t));
5027     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5028     if (is_error(ret)) {
5029         return ret;
5030     }
5031 
5032     memcpy(&hurb, buf_temp, sizeof(uint64_t));
5033     lurb = (void *)((uintptr_t)hurb - offsetof(struct live_urb, host_urb));
5034     if (!lurb->target_urb_adr) {
5035         return -TARGET_EFAULT;
5036     }
5037     urb_hashtable_remove(lurb);
5038     unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr,
5039         lurb->host_urb.buffer_length);
5040     lurb->target_buf_ptr = NULL;
5041 
5042     /* restore the guest buffer pointer */
5043     lurb->host_urb.buffer = (void *)(uintptr_t)lurb->target_buf_adr;
5044 
5045     /* update the guest urb struct */
5046     argptr = lock_user(VERIFY_WRITE, lurb->target_urb_adr, target_size, 0);
5047     if (!argptr) {
5048         g_free(lurb);
5049         return -TARGET_EFAULT;
5050     }
5051     thunk_convert(argptr, &lurb->host_urb, usbfsurb_arg_type, THUNK_TARGET);
5052     unlock_user(argptr, lurb->target_urb_adr, target_size);
5053 
5054     target_size = thunk_type_size(ptrvoid_arg_type, THUNK_TARGET);
5055     /* write back the urb handle */
5056     argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5057     if (!argptr) {
5058         g_free(lurb);
5059         return -TARGET_EFAULT;
5060     }
5061 
5062     /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */
5063     target_urb_adr = lurb->target_urb_adr;
5064     thunk_convert(argptr, &target_urb_adr, ptrvoid_arg_type, THUNK_TARGET);
5065     unlock_user(argptr, arg, target_size);
5066 
5067     g_free(lurb);
5068     return ret;
5069 }
5070 
5071 static abi_long
5072 do_ioctl_usbdevfs_discardurb(const IOCTLEntry *ie,
5073                              uint8_t *buf_temp __attribute__((unused)),
5074                              int fd, int cmd, abi_long arg)
5075 {
5076     struct live_urb *lurb;
5077 
5078     /* map target address back to host URB with metadata. */
5079     lurb = urb_hashtable_lookup(arg);
5080     if (!lurb) {
5081         return -TARGET_EFAULT;
5082     }
5083     return get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
5084 }
5085 
5086 static abi_long
5087 do_ioctl_usbdevfs_submiturb(const IOCTLEntry *ie, uint8_t *buf_temp,
5088                             int fd, int cmd, abi_long arg)
5089 {
5090     const argtype *arg_type = ie->arg_type;
5091     int target_size;
5092     abi_long ret;
5093     void *argptr;
5094     int rw_dir;
5095     struct live_urb *lurb;
5096 
5097     /*
5098      * each submitted URB needs to map to a unique ID for the
5099      * kernel, and that unique ID needs to be a pointer to
5100      * host memory.  hence, we need to malloc for each URB.
5101      * isochronous transfers have a variable length struct.
5102      */
5103     arg_type++;
5104     target_size = thunk_type_size(arg_type, THUNK_TARGET);
5105 
5106     /* construct host copy of urb and metadata */
5107     lurb = g_try_malloc0(sizeof(struct live_urb));
5108     if (!lurb) {
5109         return -TARGET_ENOMEM;
5110     }
5111 
5112     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5113     if (!argptr) {
5114         g_free(lurb);
5115         return -TARGET_EFAULT;
5116     }
5117     thunk_convert(&lurb->host_urb, argptr, arg_type, THUNK_HOST);
5118     unlock_user(argptr, arg, 0);
5119 
5120     lurb->target_urb_adr = arg;
5121     lurb->target_buf_adr = (uintptr_t)lurb->host_urb.buffer;
5122 
5123     /* buffer space used depends on endpoint type so lock the entire buffer */
5124     /* control type urbs should check the buffer contents for true direction */
5125     rw_dir = lurb->host_urb.endpoint & USB_DIR_IN ? VERIFY_WRITE : VERIFY_READ;
5126     lurb->target_buf_ptr = lock_user(rw_dir, lurb->target_buf_adr,
5127         lurb->host_urb.buffer_length, 1);
5128     if (lurb->target_buf_ptr == NULL) {
5129         g_free(lurb);
5130         return -TARGET_EFAULT;
5131     }
5132 
5133     /* update buffer pointer in host copy */
5134     lurb->host_urb.buffer = lurb->target_buf_ptr;
5135 
5136     ret = get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
5137     if (is_error(ret)) {
5138         unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 0);
5139         g_free(lurb);
5140     } else {
5141         urb_hashtable_insert(lurb);
5142     }
5143 
5144     return ret;
5145 }
5146 #endif /* CONFIG_USBFS */
5147 
5148 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5149                             int cmd, abi_long arg)
5150 {
5151     void *argptr;
5152     struct dm_ioctl *host_dm;
5153     abi_long guest_data;
5154     uint32_t guest_data_size;
5155     int target_size;
5156     const argtype *arg_type = ie->arg_type;
5157     abi_long ret;
5158     void *big_buf = NULL;
5159     char *host_data;
5160 
5161     arg_type++;
5162     target_size = thunk_type_size(arg_type, 0);
5163     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5164     if (!argptr) {
5165         ret = -TARGET_EFAULT;
5166         goto out;
5167     }
5168     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5169     unlock_user(argptr, arg, 0);
5170 
5171     /* buf_temp is too small, so fetch things into a bigger buffer */
5172     big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2);
5173     memcpy(big_buf, buf_temp, target_size);
5174     buf_temp = big_buf;
5175     host_dm = big_buf;
5176 
5177     guest_data = arg + host_dm->data_start;
5178     if ((guest_data - arg) < 0) {
5179         ret = -TARGET_EINVAL;
5180         goto out;
5181     }
5182     guest_data_size = host_dm->data_size - host_dm->data_start;
5183     host_data = (char*)host_dm + host_dm->data_start;
5184 
5185     argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1);
5186     if (!argptr) {
5187         ret = -TARGET_EFAULT;
5188         goto out;
5189     }
5190 
5191     switch (ie->host_cmd) {
5192     case DM_REMOVE_ALL:
5193     case DM_LIST_DEVICES:
5194     case DM_DEV_CREATE:
5195     case DM_DEV_REMOVE:
5196     case DM_DEV_SUSPEND:
5197     case DM_DEV_STATUS:
5198     case DM_DEV_WAIT:
5199     case DM_TABLE_STATUS:
5200     case DM_TABLE_CLEAR:
5201     case DM_TABLE_DEPS:
5202     case DM_LIST_VERSIONS:
5203         /* no input data */
5204         break;
5205     case DM_DEV_RENAME:
5206     case DM_DEV_SET_GEOMETRY:
5207         /* data contains only strings */
5208         memcpy(host_data, argptr, guest_data_size);
5209         break;
5210     case DM_TARGET_MSG:
5211         memcpy(host_data, argptr, guest_data_size);
5212         *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr);
5213         break;
5214     case DM_TABLE_LOAD:
5215     {
5216         void *gspec = argptr;
5217         void *cur_data = host_data;
5218         const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5219         int spec_size = thunk_type_size(arg_type, 0);
5220         int i;
5221 
5222         for (i = 0; i < host_dm->target_count; i++) {
5223             struct dm_target_spec *spec = cur_data;
5224             uint32_t next;
5225             int slen;
5226 
5227             thunk_convert(spec, gspec, arg_type, THUNK_HOST);
5228             slen = strlen((char*)gspec + spec_size) + 1;
5229             next = spec->next;
5230             spec->next = sizeof(*spec) + slen;
5231             strcpy((char*)&spec[1], gspec + spec_size);
5232             gspec += next;
5233             cur_data += spec->next;
5234         }
5235         break;
5236     }
5237     default:
5238         ret = -TARGET_EINVAL;
5239         unlock_user(argptr, guest_data, 0);
5240         goto out;
5241     }
5242     unlock_user(argptr, guest_data, 0);
5243 
5244     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5245     if (!is_error(ret)) {
5246         guest_data = arg + host_dm->data_start;
5247         guest_data_size = host_dm->data_size - host_dm->data_start;
5248         argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0);
5249         switch (ie->host_cmd) {
5250         case DM_REMOVE_ALL:
5251         case DM_DEV_CREATE:
5252         case DM_DEV_REMOVE:
5253         case DM_DEV_RENAME:
5254         case DM_DEV_SUSPEND:
5255         case DM_DEV_STATUS:
5256         case DM_TABLE_LOAD:
5257         case DM_TABLE_CLEAR:
5258         case DM_TARGET_MSG:
5259         case DM_DEV_SET_GEOMETRY:
5260             /* no return data */
5261             break;
5262         case DM_LIST_DEVICES:
5263         {
5264             struct dm_name_list *nl = (void*)host_dm + host_dm->data_start;
5265             uint32_t remaining_data = guest_data_size;
5266             void *cur_data = argptr;
5267             const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) };
5268             int nl_size = 12; /* can't use thunk_size due to alignment */
5269 
5270             while (1) {
5271                 uint32_t next = nl->next;
5272                 if (next) {
5273                     nl->next = nl_size + (strlen(nl->name) + 1);
5274                 }
5275                 if (remaining_data < nl->next) {
5276                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5277                     break;
5278                 }
5279                 thunk_convert(cur_data, nl, arg_type, THUNK_TARGET);
5280                 strcpy(cur_data + nl_size, nl->name);
5281                 cur_data += nl->next;
5282                 remaining_data -= nl->next;
5283                 if (!next) {
5284                     break;
5285                 }
5286                 nl = (void*)nl + next;
5287             }
5288             break;
5289         }
5290         case DM_DEV_WAIT:
5291         case DM_TABLE_STATUS:
5292         {
5293             struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start;
5294             void *cur_data = argptr;
5295             const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5296             int spec_size = thunk_type_size(arg_type, 0);
5297             int i;
5298 
5299             for (i = 0; i < host_dm->target_count; i++) {
5300                 uint32_t next = spec->next;
5301                 int slen = strlen((char*)&spec[1]) + 1;
5302                 spec->next = (cur_data - argptr) + spec_size + slen;
5303                 if (guest_data_size < spec->next) {
5304                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5305                     break;
5306                 }
5307                 thunk_convert(cur_data, spec, arg_type, THUNK_TARGET);
5308                 strcpy(cur_data + spec_size, (char*)&spec[1]);
5309                 cur_data = argptr + spec->next;
5310                 spec = (void*)host_dm + host_dm->data_start + next;
5311             }
5312             break;
5313         }
5314         case DM_TABLE_DEPS:
5315         {
5316             void *hdata = (void*)host_dm + host_dm->data_start;
5317             int count = *(uint32_t*)hdata;
5318             uint64_t *hdev = hdata + 8;
5319             uint64_t *gdev = argptr + 8;
5320             int i;
5321 
5322             *(uint32_t*)argptr = tswap32(count);
5323             for (i = 0; i < count; i++) {
5324                 *gdev = tswap64(*hdev);
5325                 gdev++;
5326                 hdev++;
5327             }
5328             break;
5329         }
5330         case DM_LIST_VERSIONS:
5331         {
5332             struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start;
5333             uint32_t remaining_data = guest_data_size;
5334             void *cur_data = argptr;
5335             const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) };
5336             int vers_size = thunk_type_size(arg_type, 0);
5337 
5338             while (1) {
5339                 uint32_t next = vers->next;
5340                 if (next) {
5341                     vers->next = vers_size + (strlen(vers->name) + 1);
5342                 }
5343                 if (remaining_data < vers->next) {
5344                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5345                     break;
5346                 }
5347                 thunk_convert(cur_data, vers, arg_type, THUNK_TARGET);
5348                 strcpy(cur_data + vers_size, vers->name);
5349                 cur_data += vers->next;
5350                 remaining_data -= vers->next;
5351                 if (!next) {
5352                     break;
5353                 }
5354                 vers = (void*)vers + next;
5355             }
5356             break;
5357         }
5358         default:
5359             unlock_user(argptr, guest_data, 0);
5360             ret = -TARGET_EINVAL;
5361             goto out;
5362         }
5363         unlock_user(argptr, guest_data, guest_data_size);
5364 
5365         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5366         if (!argptr) {
5367             ret = -TARGET_EFAULT;
5368             goto out;
5369         }
5370         thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5371         unlock_user(argptr, arg, target_size);
5372     }
5373 out:
5374     g_free(big_buf);
5375     return ret;
5376 }
5377 
5378 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5379                                int cmd, abi_long arg)
5380 {
5381     void *argptr;
5382     int target_size;
5383     const argtype *arg_type = ie->arg_type;
5384     const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) };
5385     abi_long ret;
5386 
5387     struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp;
5388     struct blkpg_partition host_part;
5389 
5390     /* Read and convert blkpg */
5391     arg_type++;
5392     target_size = thunk_type_size(arg_type, 0);
5393     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5394     if (!argptr) {
5395         ret = -TARGET_EFAULT;
5396         goto out;
5397     }
5398     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5399     unlock_user(argptr, arg, 0);
5400 
5401     switch (host_blkpg->op) {
5402     case BLKPG_ADD_PARTITION:
5403     case BLKPG_DEL_PARTITION:
5404         /* payload is struct blkpg_partition */
5405         break;
5406     default:
5407         /* Unknown opcode */
5408         ret = -TARGET_EINVAL;
5409         goto out;
5410     }
5411 
5412     /* Read and convert blkpg->data */
5413     arg = (abi_long)(uintptr_t)host_blkpg->data;
5414     target_size = thunk_type_size(part_arg_type, 0);
5415     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5416     if (!argptr) {
5417         ret = -TARGET_EFAULT;
5418         goto out;
5419     }
5420     thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST);
5421     unlock_user(argptr, arg, 0);
5422 
5423     /* Swizzle the data pointer to our local copy and call! */
5424     host_blkpg->data = &host_part;
5425     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg));
5426 
5427 out:
5428     return ret;
5429 }
5430 
5431 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp,
5432                                 int fd, int cmd, abi_long arg)
5433 {
5434     const argtype *arg_type = ie->arg_type;
5435     const StructEntry *se;
5436     const argtype *field_types;
5437     const int *dst_offsets, *src_offsets;
5438     int target_size;
5439     void *argptr;
5440     abi_ulong *target_rt_dev_ptr = NULL;
5441     unsigned long *host_rt_dev_ptr = NULL;
5442     abi_long ret;
5443     int i;
5444 
5445     assert(ie->access == IOC_W);
5446     assert(*arg_type == TYPE_PTR);
5447     arg_type++;
5448     assert(*arg_type == TYPE_STRUCT);
5449     target_size = thunk_type_size(arg_type, 0);
5450     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5451     if (!argptr) {
5452         return -TARGET_EFAULT;
5453     }
5454     arg_type++;
5455     assert(*arg_type == (int)STRUCT_rtentry);
5456     se = struct_entries + *arg_type++;
5457     assert(se->convert[0] == NULL);
5458     /* convert struct here to be able to catch rt_dev string */
5459     field_types = se->field_types;
5460     dst_offsets = se->field_offsets[THUNK_HOST];
5461     src_offsets = se->field_offsets[THUNK_TARGET];
5462     for (i = 0; i < se->nb_fields; i++) {
5463         if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) {
5464             assert(*field_types == TYPE_PTRVOID);
5465             target_rt_dev_ptr = (abi_ulong *)(argptr + src_offsets[i]);
5466             host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]);
5467             if (*target_rt_dev_ptr != 0) {
5468                 *host_rt_dev_ptr = (unsigned long)lock_user_string(
5469                                                   tswapal(*target_rt_dev_ptr));
5470                 if (!*host_rt_dev_ptr) {
5471                     unlock_user(argptr, arg, 0);
5472                     return -TARGET_EFAULT;
5473                 }
5474             } else {
5475                 *host_rt_dev_ptr = 0;
5476             }
5477             field_types++;
5478             continue;
5479         }
5480         field_types = thunk_convert(buf_temp + dst_offsets[i],
5481                                     argptr + src_offsets[i],
5482                                     field_types, THUNK_HOST);
5483     }
5484     unlock_user(argptr, arg, 0);
5485 
5486     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5487 
5488     assert(host_rt_dev_ptr != NULL);
5489     assert(target_rt_dev_ptr != NULL);
5490     if (*host_rt_dev_ptr != 0) {
5491         unlock_user((void *)*host_rt_dev_ptr,
5492                     *target_rt_dev_ptr, 0);
5493     }
5494     return ret;
5495 }
5496 
5497 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp,
5498                                      int fd, int cmd, abi_long arg)
5499 {
5500     int sig = target_to_host_signal(arg);
5501     return get_errno(safe_ioctl(fd, ie->host_cmd, sig));
5502 }
5503 
5504 static abi_long do_ioctl_SIOCGSTAMP(const IOCTLEntry *ie, uint8_t *buf_temp,
5505                                     int fd, int cmd, abi_long arg)
5506 {
5507     struct timeval tv;
5508     abi_long ret;
5509 
5510     ret = get_errno(safe_ioctl(fd, SIOCGSTAMP, &tv));
5511     if (is_error(ret)) {
5512         return ret;
5513     }
5514 
5515     if (cmd == (int)TARGET_SIOCGSTAMP_OLD) {
5516         if (copy_to_user_timeval(arg, &tv)) {
5517             return -TARGET_EFAULT;
5518         }
5519     } else {
5520         if (copy_to_user_timeval64(arg, &tv)) {
5521             return -TARGET_EFAULT;
5522         }
5523     }
5524 
5525     return ret;
5526 }
5527 
5528 static abi_long do_ioctl_SIOCGSTAMPNS(const IOCTLEntry *ie, uint8_t *buf_temp,
5529                                       int fd, int cmd, abi_long arg)
5530 {
5531     struct timespec ts;
5532     abi_long ret;
5533 
5534     ret = get_errno(safe_ioctl(fd, SIOCGSTAMPNS, &ts));
5535     if (is_error(ret)) {
5536         return ret;
5537     }
5538 
5539     if (cmd == (int)TARGET_SIOCGSTAMPNS_OLD) {
5540         if (host_to_target_timespec(arg, &ts)) {
5541             return -TARGET_EFAULT;
5542         }
5543     } else{
5544         if (host_to_target_timespec64(arg, &ts)) {
5545             return -TARGET_EFAULT;
5546         }
5547     }
5548 
5549     return ret;
5550 }
5551 
5552 #ifdef TIOCGPTPEER
5553 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp,
5554                                      int fd, int cmd, abi_long arg)
5555 {
5556     int flags = target_to_host_bitmask(arg, fcntl_flags_tbl);
5557     return get_errno(safe_ioctl(fd, ie->host_cmd, flags));
5558 }
5559 #endif
5560 
5561 #ifdef HAVE_DRM_H
5562 
5563 static void unlock_drm_version(struct drm_version *host_ver,
5564                                struct target_drm_version *target_ver,
5565                                bool copy)
5566 {
5567     unlock_user(host_ver->name, target_ver->name,
5568                                 copy ? host_ver->name_len : 0);
5569     unlock_user(host_ver->date, target_ver->date,
5570                                 copy ? host_ver->date_len : 0);
5571     unlock_user(host_ver->desc, target_ver->desc,
5572                                 copy ? host_ver->desc_len : 0);
5573 }
5574 
5575 static inline abi_long target_to_host_drmversion(struct drm_version *host_ver,
5576                                           struct target_drm_version *target_ver)
5577 {
5578     memset(host_ver, 0, sizeof(*host_ver));
5579 
5580     __get_user(host_ver->name_len, &target_ver->name_len);
5581     if (host_ver->name_len) {
5582         host_ver->name = lock_user(VERIFY_WRITE, target_ver->name,
5583                                    target_ver->name_len, 0);
5584         if (!host_ver->name) {
5585             return -EFAULT;
5586         }
5587     }
5588 
5589     __get_user(host_ver->date_len, &target_ver->date_len);
5590     if (host_ver->date_len) {
5591         host_ver->date = lock_user(VERIFY_WRITE, target_ver->date,
5592                                    target_ver->date_len, 0);
5593         if (!host_ver->date) {
5594             goto err;
5595         }
5596     }
5597 
5598     __get_user(host_ver->desc_len, &target_ver->desc_len);
5599     if (host_ver->desc_len) {
5600         host_ver->desc = lock_user(VERIFY_WRITE, target_ver->desc,
5601                                    target_ver->desc_len, 0);
5602         if (!host_ver->desc) {
5603             goto err;
5604         }
5605     }
5606 
5607     return 0;
5608 err:
5609     unlock_drm_version(host_ver, target_ver, false);
5610     return -EFAULT;
5611 }
5612 
5613 static inline void host_to_target_drmversion(
5614                                           struct target_drm_version *target_ver,
5615                                           struct drm_version *host_ver)
5616 {
5617     __put_user(host_ver->version_major, &target_ver->version_major);
5618     __put_user(host_ver->version_minor, &target_ver->version_minor);
5619     __put_user(host_ver->version_patchlevel, &target_ver->version_patchlevel);
5620     __put_user(host_ver->name_len, &target_ver->name_len);
5621     __put_user(host_ver->date_len, &target_ver->date_len);
5622     __put_user(host_ver->desc_len, &target_ver->desc_len);
5623     unlock_drm_version(host_ver, target_ver, true);
5624 }
5625 
5626 static abi_long do_ioctl_drm(const IOCTLEntry *ie, uint8_t *buf_temp,
5627                              int fd, int cmd, abi_long arg)
5628 {
5629     struct drm_version *ver;
5630     struct target_drm_version *target_ver;
5631     abi_long ret;
5632 
5633     switch (ie->host_cmd) {
5634     case DRM_IOCTL_VERSION:
5635         if (!lock_user_struct(VERIFY_WRITE, target_ver, arg, 0)) {
5636             return -TARGET_EFAULT;
5637         }
5638         ver = (struct drm_version *)buf_temp;
5639         ret = target_to_host_drmversion(ver, target_ver);
5640         if (!is_error(ret)) {
5641             ret = get_errno(safe_ioctl(fd, ie->host_cmd, ver));
5642             if (is_error(ret)) {
5643                 unlock_drm_version(ver, target_ver, false);
5644             } else {
5645                 host_to_target_drmversion(target_ver, ver);
5646             }
5647         }
5648         unlock_user_struct(target_ver, arg, 0);
5649         return ret;
5650     }
5651     return -TARGET_ENOSYS;
5652 }
5653 
5654 static abi_long do_ioctl_drm_i915_getparam(const IOCTLEntry *ie,
5655                                            struct drm_i915_getparam *gparam,
5656                                            int fd, abi_long arg)
5657 {
5658     abi_long ret;
5659     int value;
5660     struct target_drm_i915_getparam *target_gparam;
5661 
5662     if (!lock_user_struct(VERIFY_READ, target_gparam, arg, 0)) {
5663         return -TARGET_EFAULT;
5664     }
5665 
5666     __get_user(gparam->param, &target_gparam->param);
5667     gparam->value = &value;
5668     ret = get_errno(safe_ioctl(fd, ie->host_cmd, gparam));
5669     put_user_s32(value, target_gparam->value);
5670 
5671     unlock_user_struct(target_gparam, arg, 0);
5672     return ret;
5673 }
5674 
5675 static abi_long do_ioctl_drm_i915(const IOCTLEntry *ie, uint8_t *buf_temp,
5676                                   int fd, int cmd, abi_long arg)
5677 {
5678     switch (ie->host_cmd) {
5679     case DRM_IOCTL_I915_GETPARAM:
5680         return do_ioctl_drm_i915_getparam(ie,
5681                                           (struct drm_i915_getparam *)buf_temp,
5682                                           fd, arg);
5683     default:
5684         return -TARGET_ENOSYS;
5685     }
5686 }
5687 
5688 #endif
5689 
5690 static abi_long do_ioctl_TUNSETTXFILTER(const IOCTLEntry *ie, uint8_t *buf_temp,
5691                                         int fd, int cmd, abi_long arg)
5692 {
5693     struct tun_filter *filter = (struct tun_filter *)buf_temp;
5694     struct tun_filter *target_filter;
5695     char *target_addr;
5696 
5697     assert(ie->access == IOC_W);
5698 
5699     target_filter = lock_user(VERIFY_READ, arg, sizeof(*target_filter), 1);
5700     if (!target_filter) {
5701         return -TARGET_EFAULT;
5702     }
5703     filter->flags = tswap16(target_filter->flags);
5704     filter->count = tswap16(target_filter->count);
5705     unlock_user(target_filter, arg, 0);
5706 
5707     if (filter->count) {
5708         if (offsetof(struct tun_filter, addr) + filter->count * ETH_ALEN >
5709             MAX_STRUCT_SIZE) {
5710             return -TARGET_EFAULT;
5711         }
5712 
5713         target_addr = lock_user(VERIFY_READ,
5714                                 arg + offsetof(struct tun_filter, addr),
5715                                 filter->count * ETH_ALEN, 1);
5716         if (!target_addr) {
5717             return -TARGET_EFAULT;
5718         }
5719         memcpy(filter->addr, target_addr, filter->count * ETH_ALEN);
5720         unlock_user(target_addr, arg + offsetof(struct tun_filter, addr), 0);
5721     }
5722 
5723     return get_errno(safe_ioctl(fd, ie->host_cmd, filter));
5724 }
5725 
5726 IOCTLEntry ioctl_entries[] = {
5727 #define IOCTL(cmd, access, ...) \
5728     { TARGET_ ## cmd, cmd, #cmd, access, 0, {  __VA_ARGS__ } },
5729 #define IOCTL_SPECIAL(cmd, access, dofn, ...)                      \
5730     { TARGET_ ## cmd, cmd, #cmd, access, dofn, {  __VA_ARGS__ } },
5731 #define IOCTL_IGNORE(cmd) \
5732     { TARGET_ ## cmd, 0, #cmd },
5733 #include "ioctls.h"
5734     { 0, 0, },
5735 };
5736 
5737 /* ??? Implement proper locking for ioctls.  */
5738 /* do_ioctl() Must return target values and target errnos. */
5739 static abi_long do_ioctl(int fd, int cmd, abi_long arg)
5740 {
5741     const IOCTLEntry *ie;
5742     const argtype *arg_type;
5743     abi_long ret;
5744     uint8_t buf_temp[MAX_STRUCT_SIZE];
5745     int target_size;
5746     void *argptr;
5747 
5748     ie = ioctl_entries;
5749     for(;;) {
5750         if (ie->target_cmd == 0) {
5751             qemu_log_mask(
5752                 LOG_UNIMP, "Unsupported ioctl: cmd=0x%04lx\n", (long)cmd);
5753             return -TARGET_ENOSYS;
5754         }
5755         if (ie->target_cmd == cmd)
5756             break;
5757         ie++;
5758     }
5759     arg_type = ie->arg_type;
5760     if (ie->do_ioctl) {
5761         return ie->do_ioctl(ie, buf_temp, fd, cmd, arg);
5762     } else if (!ie->host_cmd) {
5763         /* Some architectures define BSD ioctls in their headers
5764            that are not implemented in Linux.  */
5765         return -TARGET_ENOSYS;
5766     }
5767 
5768     switch(arg_type[0]) {
5769     case TYPE_NULL:
5770         /* no argument */
5771         ret = get_errno(safe_ioctl(fd, ie->host_cmd));
5772         break;
5773     case TYPE_PTRVOID:
5774     case TYPE_INT:
5775     case TYPE_LONG:
5776     case TYPE_ULONG:
5777         ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg));
5778         break;
5779     case TYPE_PTR:
5780         arg_type++;
5781         target_size = thunk_type_size(arg_type, 0);
5782         switch(ie->access) {
5783         case IOC_R:
5784             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5785             if (!is_error(ret)) {
5786                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5787                 if (!argptr)
5788                     return -TARGET_EFAULT;
5789                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5790                 unlock_user(argptr, arg, target_size);
5791             }
5792             break;
5793         case IOC_W:
5794             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5795             if (!argptr)
5796                 return -TARGET_EFAULT;
5797             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5798             unlock_user(argptr, arg, 0);
5799             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5800             break;
5801         default:
5802         case IOC_RW:
5803             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5804             if (!argptr)
5805                 return -TARGET_EFAULT;
5806             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5807             unlock_user(argptr, arg, 0);
5808             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5809             if (!is_error(ret)) {
5810                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5811                 if (!argptr)
5812                     return -TARGET_EFAULT;
5813                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5814                 unlock_user(argptr, arg, target_size);
5815             }
5816             break;
5817         }
5818         break;
5819     default:
5820         qemu_log_mask(LOG_UNIMP,
5821                       "Unsupported ioctl type: cmd=0x%04lx type=%d\n",
5822                       (long)cmd, arg_type[0]);
5823         ret = -TARGET_ENOSYS;
5824         break;
5825     }
5826     return ret;
5827 }
5828 
5829 static const bitmask_transtbl iflag_tbl[] = {
5830         { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK },
5831         { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT },
5832         { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR },
5833         { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK },
5834         { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK },
5835         { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP },
5836         { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR },
5837         { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR },
5838         { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL },
5839         { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC },
5840         { TARGET_IXON, TARGET_IXON, IXON, IXON },
5841         { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY },
5842         { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF },
5843         { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL },
5844         { TARGET_IUTF8, TARGET_IUTF8, IUTF8, IUTF8},
5845         { 0, 0, 0, 0 }
5846 };
5847 
5848 static const bitmask_transtbl oflag_tbl[] = {
5849 	{ TARGET_OPOST, TARGET_OPOST, OPOST, OPOST },
5850 	{ TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC },
5851 	{ TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR },
5852 	{ TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL },
5853 	{ TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR },
5854 	{ TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET },
5855 	{ TARGET_OFILL, TARGET_OFILL, OFILL, OFILL },
5856 	{ TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL },
5857 	{ TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 },
5858 	{ TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 },
5859 	{ TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 },
5860 	{ TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 },
5861 	{ TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 },
5862 	{ TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 },
5863 	{ TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 },
5864 	{ TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 },
5865 	{ TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 },
5866 	{ TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 },
5867 	{ TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 },
5868 	{ TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 },
5869 	{ TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 },
5870 	{ TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 },
5871 	{ TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 },
5872 	{ TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 },
5873 	{ 0, 0, 0, 0 }
5874 };
5875 
5876 static const bitmask_transtbl cflag_tbl[] = {
5877 	{ TARGET_CBAUD, TARGET_B0, CBAUD, B0 },
5878 	{ TARGET_CBAUD, TARGET_B50, CBAUD, B50 },
5879 	{ TARGET_CBAUD, TARGET_B75, CBAUD, B75 },
5880 	{ TARGET_CBAUD, TARGET_B110, CBAUD, B110 },
5881 	{ TARGET_CBAUD, TARGET_B134, CBAUD, B134 },
5882 	{ TARGET_CBAUD, TARGET_B150, CBAUD, B150 },
5883 	{ TARGET_CBAUD, TARGET_B200, CBAUD, B200 },
5884 	{ TARGET_CBAUD, TARGET_B300, CBAUD, B300 },
5885 	{ TARGET_CBAUD, TARGET_B600, CBAUD, B600 },
5886 	{ TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 },
5887 	{ TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 },
5888 	{ TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 },
5889 	{ TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 },
5890 	{ TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 },
5891 	{ TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 },
5892 	{ TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 },
5893 	{ TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 },
5894 	{ TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 },
5895 	{ TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 },
5896 	{ TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 },
5897 	{ TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 },
5898 	{ TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 },
5899 	{ TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 },
5900 	{ TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 },
5901 	{ TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB },
5902 	{ TARGET_CREAD, TARGET_CREAD, CREAD, CREAD },
5903 	{ TARGET_PARENB, TARGET_PARENB, PARENB, PARENB },
5904 	{ TARGET_PARODD, TARGET_PARODD, PARODD, PARODD },
5905 	{ TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL },
5906 	{ TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL },
5907 	{ TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS },
5908 	{ 0, 0, 0, 0 }
5909 };
5910 
5911 static const bitmask_transtbl lflag_tbl[] = {
5912   { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG },
5913   { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON },
5914   { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE },
5915   { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO },
5916   { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE },
5917   { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK },
5918   { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL },
5919   { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH },
5920   { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP },
5921   { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL },
5922   { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT },
5923   { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE },
5924   { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO },
5925   { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN },
5926   { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN },
5927   { TARGET_EXTPROC, TARGET_EXTPROC, EXTPROC, EXTPROC},
5928   { 0, 0, 0, 0 }
5929 };
5930 
5931 static void target_to_host_termios (void *dst, const void *src)
5932 {
5933     struct host_termios *host = dst;
5934     const struct target_termios *target = src;
5935 
5936     host->c_iflag =
5937         target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl);
5938     host->c_oflag =
5939         target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl);
5940     host->c_cflag =
5941         target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl);
5942     host->c_lflag =
5943         target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl);
5944     host->c_line = target->c_line;
5945 
5946     memset(host->c_cc, 0, sizeof(host->c_cc));
5947     host->c_cc[VINTR] = target->c_cc[TARGET_VINTR];
5948     host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT];
5949     host->c_cc[VERASE] = target->c_cc[TARGET_VERASE];
5950     host->c_cc[VKILL] = target->c_cc[TARGET_VKILL];
5951     host->c_cc[VEOF] = target->c_cc[TARGET_VEOF];
5952     host->c_cc[VTIME] = target->c_cc[TARGET_VTIME];
5953     host->c_cc[VMIN] = target->c_cc[TARGET_VMIN];
5954     host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC];
5955     host->c_cc[VSTART] = target->c_cc[TARGET_VSTART];
5956     host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP];
5957     host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP];
5958     host->c_cc[VEOL] = target->c_cc[TARGET_VEOL];
5959     host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT];
5960     host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD];
5961     host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE];
5962     host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT];
5963     host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2];
5964 }
5965 
5966 static void host_to_target_termios (void *dst, const void *src)
5967 {
5968     struct target_termios *target = dst;
5969     const struct host_termios *host = src;
5970 
5971     target->c_iflag =
5972         tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl));
5973     target->c_oflag =
5974         tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl));
5975     target->c_cflag =
5976         tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl));
5977     target->c_lflag =
5978         tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl));
5979     target->c_line = host->c_line;
5980 
5981     memset(target->c_cc, 0, sizeof(target->c_cc));
5982     target->c_cc[TARGET_VINTR] = host->c_cc[VINTR];
5983     target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT];
5984     target->c_cc[TARGET_VERASE] = host->c_cc[VERASE];
5985     target->c_cc[TARGET_VKILL] = host->c_cc[VKILL];
5986     target->c_cc[TARGET_VEOF] = host->c_cc[VEOF];
5987     target->c_cc[TARGET_VTIME] = host->c_cc[VTIME];
5988     target->c_cc[TARGET_VMIN] = host->c_cc[VMIN];
5989     target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC];
5990     target->c_cc[TARGET_VSTART] = host->c_cc[VSTART];
5991     target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP];
5992     target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP];
5993     target->c_cc[TARGET_VEOL] = host->c_cc[VEOL];
5994     target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT];
5995     target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD];
5996     target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE];
5997     target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT];
5998     target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2];
5999 }
6000 
6001 static const StructEntry struct_termios_def = {
6002     .convert = { host_to_target_termios, target_to_host_termios },
6003     .size = { sizeof(struct target_termios), sizeof(struct host_termios) },
6004     .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) },
6005     .print = print_termios,
6006 };
6007 
6008 static const bitmask_transtbl mmap_flags_tbl[] = {
6009     { TARGET_MAP_SHARED, TARGET_MAP_SHARED, MAP_SHARED, MAP_SHARED },
6010     { TARGET_MAP_PRIVATE, TARGET_MAP_PRIVATE, MAP_PRIVATE, MAP_PRIVATE },
6011     { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED },
6012     { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS,
6013       MAP_ANONYMOUS, MAP_ANONYMOUS },
6014     { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN,
6015       MAP_GROWSDOWN, MAP_GROWSDOWN },
6016     { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE,
6017       MAP_DENYWRITE, MAP_DENYWRITE },
6018     { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE,
6019       MAP_EXECUTABLE, MAP_EXECUTABLE },
6020     { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED },
6021     { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE,
6022       MAP_NORESERVE, MAP_NORESERVE },
6023     { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB },
6024     /* MAP_STACK had been ignored by the kernel for quite some time.
6025        Recognize it for the target insofar as we do not want to pass
6026        it through to the host.  */
6027     { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 },
6028     { 0, 0, 0, 0 }
6029 };
6030 
6031 /*
6032  * NOTE: TARGET_ABI32 is defined for TARGET_I386 (but not for TARGET_X86_64)
6033  *       TARGET_I386 is defined if TARGET_X86_64 is defined
6034  */
6035 #if defined(TARGET_I386)
6036 
6037 /* NOTE: there is really one LDT for all the threads */
6038 static uint8_t *ldt_table;
6039 
6040 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount)
6041 {
6042     int size;
6043     void *p;
6044 
6045     if (!ldt_table)
6046         return 0;
6047     size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE;
6048     if (size > bytecount)
6049         size = bytecount;
6050     p = lock_user(VERIFY_WRITE, ptr, size, 0);
6051     if (!p)
6052         return -TARGET_EFAULT;
6053     /* ??? Should this by byteswapped?  */
6054     memcpy(p, ldt_table, size);
6055     unlock_user(p, ptr, size);
6056     return size;
6057 }
6058 
6059 /* XXX: add locking support */
6060 static abi_long write_ldt(CPUX86State *env,
6061                           abi_ulong ptr, unsigned long bytecount, int oldmode)
6062 {
6063     struct target_modify_ldt_ldt_s ldt_info;
6064     struct target_modify_ldt_ldt_s *target_ldt_info;
6065     int seg_32bit, contents, read_exec_only, limit_in_pages;
6066     int seg_not_present, useable, lm;
6067     uint32_t *lp, entry_1, entry_2;
6068 
6069     if (bytecount != sizeof(ldt_info))
6070         return -TARGET_EINVAL;
6071     if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1))
6072         return -TARGET_EFAULT;
6073     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
6074     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
6075     ldt_info.limit = tswap32(target_ldt_info->limit);
6076     ldt_info.flags = tswap32(target_ldt_info->flags);
6077     unlock_user_struct(target_ldt_info, ptr, 0);
6078 
6079     if (ldt_info.entry_number >= TARGET_LDT_ENTRIES)
6080         return -TARGET_EINVAL;
6081     seg_32bit = ldt_info.flags & 1;
6082     contents = (ldt_info.flags >> 1) & 3;
6083     read_exec_only = (ldt_info.flags >> 3) & 1;
6084     limit_in_pages = (ldt_info.flags >> 4) & 1;
6085     seg_not_present = (ldt_info.flags >> 5) & 1;
6086     useable = (ldt_info.flags >> 6) & 1;
6087 #ifdef TARGET_ABI32
6088     lm = 0;
6089 #else
6090     lm = (ldt_info.flags >> 7) & 1;
6091 #endif
6092     if (contents == 3) {
6093         if (oldmode)
6094             return -TARGET_EINVAL;
6095         if (seg_not_present == 0)
6096             return -TARGET_EINVAL;
6097     }
6098     /* allocate the LDT */
6099     if (!ldt_table) {
6100         env->ldt.base = target_mmap(0,
6101                                     TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE,
6102                                     PROT_READ|PROT_WRITE,
6103                                     MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
6104         if (env->ldt.base == -1)
6105             return -TARGET_ENOMEM;
6106         memset(g2h_untagged(env->ldt.base), 0,
6107                TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE);
6108         env->ldt.limit = 0xffff;
6109         ldt_table = g2h_untagged(env->ldt.base);
6110     }
6111 
6112     /* NOTE: same code as Linux kernel */
6113     /* Allow LDTs to be cleared by the user. */
6114     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6115         if (oldmode ||
6116             (contents == 0		&&
6117              read_exec_only == 1	&&
6118              seg_32bit == 0		&&
6119              limit_in_pages == 0	&&
6120              seg_not_present == 1	&&
6121              useable == 0 )) {
6122             entry_1 = 0;
6123             entry_2 = 0;
6124             goto install;
6125         }
6126     }
6127 
6128     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6129         (ldt_info.limit & 0x0ffff);
6130     entry_2 = (ldt_info.base_addr & 0xff000000) |
6131         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6132         (ldt_info.limit & 0xf0000) |
6133         ((read_exec_only ^ 1) << 9) |
6134         (contents << 10) |
6135         ((seg_not_present ^ 1) << 15) |
6136         (seg_32bit << 22) |
6137         (limit_in_pages << 23) |
6138         (lm << 21) |
6139         0x7000;
6140     if (!oldmode)
6141         entry_2 |= (useable << 20);
6142 
6143     /* Install the new entry ...  */
6144 install:
6145     lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3));
6146     lp[0] = tswap32(entry_1);
6147     lp[1] = tswap32(entry_2);
6148     return 0;
6149 }
6150 
6151 /* specific and weird i386 syscalls */
6152 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr,
6153                               unsigned long bytecount)
6154 {
6155     abi_long ret;
6156 
6157     switch (func) {
6158     case 0:
6159         ret = read_ldt(ptr, bytecount);
6160         break;
6161     case 1:
6162         ret = write_ldt(env, ptr, bytecount, 1);
6163         break;
6164     case 0x11:
6165         ret = write_ldt(env, ptr, bytecount, 0);
6166         break;
6167     default:
6168         ret = -TARGET_ENOSYS;
6169         break;
6170     }
6171     return ret;
6172 }
6173 
6174 #if defined(TARGET_ABI32)
6175 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr)
6176 {
6177     uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6178     struct target_modify_ldt_ldt_s ldt_info;
6179     struct target_modify_ldt_ldt_s *target_ldt_info;
6180     int seg_32bit, contents, read_exec_only, limit_in_pages;
6181     int seg_not_present, useable, lm;
6182     uint32_t *lp, entry_1, entry_2;
6183     int i;
6184 
6185     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6186     if (!target_ldt_info)
6187         return -TARGET_EFAULT;
6188     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
6189     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
6190     ldt_info.limit = tswap32(target_ldt_info->limit);
6191     ldt_info.flags = tswap32(target_ldt_info->flags);
6192     if (ldt_info.entry_number == -1) {
6193         for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) {
6194             if (gdt_table[i] == 0) {
6195                 ldt_info.entry_number = i;
6196                 target_ldt_info->entry_number = tswap32(i);
6197                 break;
6198             }
6199         }
6200     }
6201     unlock_user_struct(target_ldt_info, ptr, 1);
6202 
6203     if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN ||
6204         ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX)
6205            return -TARGET_EINVAL;
6206     seg_32bit = ldt_info.flags & 1;
6207     contents = (ldt_info.flags >> 1) & 3;
6208     read_exec_only = (ldt_info.flags >> 3) & 1;
6209     limit_in_pages = (ldt_info.flags >> 4) & 1;
6210     seg_not_present = (ldt_info.flags >> 5) & 1;
6211     useable = (ldt_info.flags >> 6) & 1;
6212 #ifdef TARGET_ABI32
6213     lm = 0;
6214 #else
6215     lm = (ldt_info.flags >> 7) & 1;
6216 #endif
6217 
6218     if (contents == 3) {
6219         if (seg_not_present == 0)
6220             return -TARGET_EINVAL;
6221     }
6222 
6223     /* NOTE: same code as Linux kernel */
6224     /* Allow LDTs to be cleared by the user. */
6225     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6226         if ((contents == 0             &&
6227              read_exec_only == 1       &&
6228              seg_32bit == 0            &&
6229              limit_in_pages == 0       &&
6230              seg_not_present == 1      &&
6231              useable == 0 )) {
6232             entry_1 = 0;
6233             entry_2 = 0;
6234             goto install;
6235         }
6236     }
6237 
6238     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6239         (ldt_info.limit & 0x0ffff);
6240     entry_2 = (ldt_info.base_addr & 0xff000000) |
6241         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6242         (ldt_info.limit & 0xf0000) |
6243         ((read_exec_only ^ 1) << 9) |
6244         (contents << 10) |
6245         ((seg_not_present ^ 1) << 15) |
6246         (seg_32bit << 22) |
6247         (limit_in_pages << 23) |
6248         (useable << 20) |
6249         (lm << 21) |
6250         0x7000;
6251 
6252     /* Install the new entry ...  */
6253 install:
6254     lp = (uint32_t *)(gdt_table + ldt_info.entry_number);
6255     lp[0] = tswap32(entry_1);
6256     lp[1] = tswap32(entry_2);
6257     return 0;
6258 }
6259 
6260 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr)
6261 {
6262     struct target_modify_ldt_ldt_s *target_ldt_info;
6263     uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6264     uint32_t base_addr, limit, flags;
6265     int seg_32bit, contents, read_exec_only, limit_in_pages, idx;
6266     int seg_not_present, useable, lm;
6267     uint32_t *lp, entry_1, entry_2;
6268 
6269     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6270     if (!target_ldt_info)
6271         return -TARGET_EFAULT;
6272     idx = tswap32(target_ldt_info->entry_number);
6273     if (idx < TARGET_GDT_ENTRY_TLS_MIN ||
6274         idx > TARGET_GDT_ENTRY_TLS_MAX) {
6275         unlock_user_struct(target_ldt_info, ptr, 1);
6276         return -TARGET_EINVAL;
6277     }
6278     lp = (uint32_t *)(gdt_table + idx);
6279     entry_1 = tswap32(lp[0]);
6280     entry_2 = tswap32(lp[1]);
6281 
6282     read_exec_only = ((entry_2 >> 9) & 1) ^ 1;
6283     contents = (entry_2 >> 10) & 3;
6284     seg_not_present = ((entry_2 >> 15) & 1) ^ 1;
6285     seg_32bit = (entry_2 >> 22) & 1;
6286     limit_in_pages = (entry_2 >> 23) & 1;
6287     useable = (entry_2 >> 20) & 1;
6288 #ifdef TARGET_ABI32
6289     lm = 0;
6290 #else
6291     lm = (entry_2 >> 21) & 1;
6292 #endif
6293     flags = (seg_32bit << 0) | (contents << 1) |
6294         (read_exec_only << 3) | (limit_in_pages << 4) |
6295         (seg_not_present << 5) | (useable << 6) | (lm << 7);
6296     limit = (entry_1 & 0xffff) | (entry_2  & 0xf0000);
6297     base_addr = (entry_1 >> 16) |
6298         (entry_2 & 0xff000000) |
6299         ((entry_2 & 0xff) << 16);
6300     target_ldt_info->base_addr = tswapal(base_addr);
6301     target_ldt_info->limit = tswap32(limit);
6302     target_ldt_info->flags = tswap32(flags);
6303     unlock_user_struct(target_ldt_info, ptr, 1);
6304     return 0;
6305 }
6306 
6307 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6308 {
6309     return -TARGET_ENOSYS;
6310 }
6311 #else
6312 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6313 {
6314     abi_long ret = 0;
6315     abi_ulong val;
6316     int idx;
6317 
6318     switch(code) {
6319     case TARGET_ARCH_SET_GS:
6320     case TARGET_ARCH_SET_FS:
6321         if (code == TARGET_ARCH_SET_GS)
6322             idx = R_GS;
6323         else
6324             idx = R_FS;
6325         cpu_x86_load_seg(env, idx, 0);
6326         env->segs[idx].base = addr;
6327         break;
6328     case TARGET_ARCH_GET_GS:
6329     case TARGET_ARCH_GET_FS:
6330         if (code == TARGET_ARCH_GET_GS)
6331             idx = R_GS;
6332         else
6333             idx = R_FS;
6334         val = env->segs[idx].base;
6335         if (put_user(val, addr, abi_ulong))
6336             ret = -TARGET_EFAULT;
6337         break;
6338     default:
6339         ret = -TARGET_EINVAL;
6340         break;
6341     }
6342     return ret;
6343 }
6344 #endif /* defined(TARGET_ABI32 */
6345 #endif /* defined(TARGET_I386) */
6346 
6347 /*
6348  * These constants are generic.  Supply any that are missing from the host.
6349  */
6350 #ifndef PR_SET_NAME
6351 # define PR_SET_NAME    15
6352 # define PR_GET_NAME    16
6353 #endif
6354 #ifndef PR_SET_FP_MODE
6355 # define PR_SET_FP_MODE 45
6356 # define PR_GET_FP_MODE 46
6357 # define PR_FP_MODE_FR   (1 << 0)
6358 # define PR_FP_MODE_FRE  (1 << 1)
6359 #endif
6360 #ifndef PR_SVE_SET_VL
6361 # define PR_SVE_SET_VL  50
6362 # define PR_SVE_GET_VL  51
6363 # define PR_SVE_VL_LEN_MASK  0xffff
6364 # define PR_SVE_VL_INHERIT   (1 << 17)
6365 #endif
6366 #ifndef PR_PAC_RESET_KEYS
6367 # define PR_PAC_RESET_KEYS  54
6368 # define PR_PAC_APIAKEY   (1 << 0)
6369 # define PR_PAC_APIBKEY   (1 << 1)
6370 # define PR_PAC_APDAKEY   (1 << 2)
6371 # define PR_PAC_APDBKEY   (1 << 3)
6372 # define PR_PAC_APGAKEY   (1 << 4)
6373 #endif
6374 #ifndef PR_SET_TAGGED_ADDR_CTRL
6375 # define PR_SET_TAGGED_ADDR_CTRL 55
6376 # define PR_GET_TAGGED_ADDR_CTRL 56
6377 # define PR_TAGGED_ADDR_ENABLE  (1UL << 0)
6378 #endif
6379 #ifndef PR_MTE_TCF_SHIFT
6380 # define PR_MTE_TCF_SHIFT       1
6381 # define PR_MTE_TCF_NONE        (0UL << PR_MTE_TCF_SHIFT)
6382 # define PR_MTE_TCF_SYNC        (1UL << PR_MTE_TCF_SHIFT)
6383 # define PR_MTE_TCF_ASYNC       (2UL << PR_MTE_TCF_SHIFT)
6384 # define PR_MTE_TCF_MASK        (3UL << PR_MTE_TCF_SHIFT)
6385 # define PR_MTE_TAG_SHIFT       3
6386 # define PR_MTE_TAG_MASK        (0xffffUL << PR_MTE_TAG_SHIFT)
6387 #endif
6388 #ifndef PR_SET_IO_FLUSHER
6389 # define PR_SET_IO_FLUSHER 57
6390 # define PR_GET_IO_FLUSHER 58
6391 #endif
6392 #ifndef PR_SET_SYSCALL_USER_DISPATCH
6393 # define PR_SET_SYSCALL_USER_DISPATCH 59
6394 #endif
6395 
6396 #include "target_prctl.h"
6397 
6398 static abi_long do_prctl_inval0(CPUArchState *env)
6399 {
6400     return -TARGET_EINVAL;
6401 }
6402 
6403 static abi_long do_prctl_inval1(CPUArchState *env, abi_long arg2)
6404 {
6405     return -TARGET_EINVAL;
6406 }
6407 
6408 #ifndef do_prctl_get_fp_mode
6409 #define do_prctl_get_fp_mode do_prctl_inval0
6410 #endif
6411 #ifndef do_prctl_set_fp_mode
6412 #define do_prctl_set_fp_mode do_prctl_inval1
6413 #endif
6414 #ifndef do_prctl_get_vl
6415 #define do_prctl_get_vl do_prctl_inval0
6416 #endif
6417 #ifndef do_prctl_set_vl
6418 #define do_prctl_set_vl do_prctl_inval1
6419 #endif
6420 #ifndef do_prctl_reset_keys
6421 #define do_prctl_reset_keys do_prctl_inval1
6422 #endif
6423 #ifndef do_prctl_set_tagged_addr_ctrl
6424 #define do_prctl_set_tagged_addr_ctrl do_prctl_inval1
6425 #endif
6426 #ifndef do_prctl_get_tagged_addr_ctrl
6427 #define do_prctl_get_tagged_addr_ctrl do_prctl_inval0
6428 #endif
6429 #ifndef do_prctl_get_unalign
6430 #define do_prctl_get_unalign do_prctl_inval1
6431 #endif
6432 #ifndef do_prctl_set_unalign
6433 #define do_prctl_set_unalign do_prctl_inval1
6434 #endif
6435 
6436 static abi_long do_prctl(CPUArchState *env, abi_long option, abi_long arg2,
6437                          abi_long arg3, abi_long arg4, abi_long arg5)
6438 {
6439     abi_long ret;
6440 
6441     switch (option) {
6442     case PR_GET_PDEATHSIG:
6443         {
6444             int deathsig;
6445             ret = get_errno(prctl(PR_GET_PDEATHSIG, &deathsig,
6446                                   arg3, arg4, arg5));
6447             if (!is_error(ret) && arg2 && put_user_s32(deathsig, arg2)) {
6448                 return -TARGET_EFAULT;
6449             }
6450             return ret;
6451         }
6452     case PR_GET_NAME:
6453         {
6454             void *name = lock_user(VERIFY_WRITE, arg2, 16, 1);
6455             if (!name) {
6456                 return -TARGET_EFAULT;
6457             }
6458             ret = get_errno(prctl(PR_GET_NAME, (uintptr_t)name,
6459                                   arg3, arg4, arg5));
6460             unlock_user(name, arg2, 16);
6461             return ret;
6462         }
6463     case PR_SET_NAME:
6464         {
6465             void *name = lock_user(VERIFY_READ, arg2, 16, 1);
6466             if (!name) {
6467                 return -TARGET_EFAULT;
6468             }
6469             ret = get_errno(prctl(PR_SET_NAME, (uintptr_t)name,
6470                                   arg3, arg4, arg5));
6471             unlock_user(name, arg2, 0);
6472             return ret;
6473         }
6474     case PR_GET_FP_MODE:
6475         return do_prctl_get_fp_mode(env);
6476     case PR_SET_FP_MODE:
6477         return do_prctl_set_fp_mode(env, arg2);
6478     case PR_SVE_GET_VL:
6479         return do_prctl_get_vl(env);
6480     case PR_SVE_SET_VL:
6481         return do_prctl_set_vl(env, arg2);
6482     case PR_PAC_RESET_KEYS:
6483         if (arg3 || arg4 || arg5) {
6484             return -TARGET_EINVAL;
6485         }
6486         return do_prctl_reset_keys(env, arg2);
6487     case PR_SET_TAGGED_ADDR_CTRL:
6488         if (arg3 || arg4 || arg5) {
6489             return -TARGET_EINVAL;
6490         }
6491         return do_prctl_set_tagged_addr_ctrl(env, arg2);
6492     case PR_GET_TAGGED_ADDR_CTRL:
6493         if (arg2 || arg3 || arg4 || arg5) {
6494             return -TARGET_EINVAL;
6495         }
6496         return do_prctl_get_tagged_addr_ctrl(env);
6497 
6498     case PR_GET_UNALIGN:
6499         return do_prctl_get_unalign(env, arg2);
6500     case PR_SET_UNALIGN:
6501         return do_prctl_set_unalign(env, arg2);
6502 
6503     case PR_GET_DUMPABLE:
6504     case PR_SET_DUMPABLE:
6505     case PR_GET_KEEPCAPS:
6506     case PR_SET_KEEPCAPS:
6507     case PR_GET_TIMING:
6508     case PR_SET_TIMING:
6509     case PR_GET_TIMERSLACK:
6510     case PR_SET_TIMERSLACK:
6511     case PR_MCE_KILL:
6512     case PR_MCE_KILL_GET:
6513     case PR_GET_NO_NEW_PRIVS:
6514     case PR_SET_NO_NEW_PRIVS:
6515     case PR_GET_IO_FLUSHER:
6516     case PR_SET_IO_FLUSHER:
6517         /* Some prctl options have no pointer arguments and we can pass on. */
6518         return get_errno(prctl(option, arg2, arg3, arg4, arg5));
6519 
6520     case PR_GET_CHILD_SUBREAPER:
6521     case PR_SET_CHILD_SUBREAPER:
6522     case PR_GET_SPECULATION_CTRL:
6523     case PR_SET_SPECULATION_CTRL:
6524     case PR_GET_TID_ADDRESS:
6525         /* TODO */
6526         return -TARGET_EINVAL;
6527 
6528     case PR_GET_FPEXC:
6529     case PR_SET_FPEXC:
6530         /* Was used for SPE on PowerPC. */
6531         return -TARGET_EINVAL;
6532 
6533     case PR_GET_ENDIAN:
6534     case PR_SET_ENDIAN:
6535     case PR_GET_FPEMU:
6536     case PR_SET_FPEMU:
6537     case PR_SET_MM:
6538     case PR_GET_SECCOMP:
6539     case PR_SET_SECCOMP:
6540     case PR_SET_SYSCALL_USER_DISPATCH:
6541     case PR_GET_THP_DISABLE:
6542     case PR_SET_THP_DISABLE:
6543     case PR_GET_TSC:
6544     case PR_SET_TSC:
6545         /* Disable to prevent the target disabling stuff we need. */
6546         return -TARGET_EINVAL;
6547 
6548     default:
6549         qemu_log_mask(LOG_UNIMP, "Unsupported prctl: " TARGET_ABI_FMT_ld "\n",
6550                       option);
6551         return -TARGET_EINVAL;
6552     }
6553 }
6554 
6555 #define NEW_STACK_SIZE 0x40000
6556 
6557 
6558 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER;
6559 typedef struct {
6560     CPUArchState *env;
6561     pthread_mutex_t mutex;
6562     pthread_cond_t cond;
6563     pthread_t thread;
6564     uint32_t tid;
6565     abi_ulong child_tidptr;
6566     abi_ulong parent_tidptr;
6567     sigset_t sigmask;
6568 } new_thread_info;
6569 
6570 static void *clone_func(void *arg)
6571 {
6572     new_thread_info *info = arg;
6573     CPUArchState *env;
6574     CPUState *cpu;
6575     TaskState *ts;
6576 
6577     rcu_register_thread();
6578     tcg_register_thread();
6579     env = info->env;
6580     cpu = env_cpu(env);
6581     thread_cpu = cpu;
6582     ts = (TaskState *)cpu->opaque;
6583     info->tid = sys_gettid();
6584     task_settid(ts);
6585     if (info->child_tidptr)
6586         put_user_u32(info->tid, info->child_tidptr);
6587     if (info->parent_tidptr)
6588         put_user_u32(info->tid, info->parent_tidptr);
6589     qemu_guest_random_seed_thread_part2(cpu->random_seed);
6590     /* Enable signals.  */
6591     sigprocmask(SIG_SETMASK, &info->sigmask, NULL);
6592     /* Signal to the parent that we're ready.  */
6593     pthread_mutex_lock(&info->mutex);
6594     pthread_cond_broadcast(&info->cond);
6595     pthread_mutex_unlock(&info->mutex);
6596     /* Wait until the parent has finished initializing the tls state.  */
6597     pthread_mutex_lock(&clone_lock);
6598     pthread_mutex_unlock(&clone_lock);
6599     cpu_loop(env);
6600     /* never exits */
6601     return NULL;
6602 }
6603 
6604 /* do_fork() Must return host values and target errnos (unlike most
6605    do_*() functions). */
6606 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp,
6607                    abi_ulong parent_tidptr, target_ulong newtls,
6608                    abi_ulong child_tidptr)
6609 {
6610     CPUState *cpu = env_cpu(env);
6611     int ret;
6612     TaskState *ts;
6613     CPUState *new_cpu;
6614     CPUArchState *new_env;
6615     sigset_t sigmask;
6616 
6617     flags &= ~CLONE_IGNORED_FLAGS;
6618 
6619     /* Emulate vfork() with fork() */
6620     if (flags & CLONE_VFORK)
6621         flags &= ~(CLONE_VFORK | CLONE_VM);
6622 
6623     if (flags & CLONE_VM) {
6624         TaskState *parent_ts = (TaskState *)cpu->opaque;
6625         new_thread_info info;
6626         pthread_attr_t attr;
6627 
6628         if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) ||
6629             (flags & CLONE_INVALID_THREAD_FLAGS)) {
6630             return -TARGET_EINVAL;
6631         }
6632 
6633         ts = g_new0(TaskState, 1);
6634         init_task_state(ts);
6635 
6636         /* Grab a mutex so that thread setup appears atomic.  */
6637         pthread_mutex_lock(&clone_lock);
6638 
6639         /*
6640          * If this is our first additional thread, we need to ensure we
6641          * generate code for parallel execution and flush old translations.
6642          * Do this now so that the copy gets CF_PARALLEL too.
6643          */
6644         if (!(cpu->tcg_cflags & CF_PARALLEL)) {
6645             cpu->tcg_cflags |= CF_PARALLEL;
6646             tb_flush(cpu);
6647         }
6648 
6649         /* we create a new CPU instance. */
6650         new_env = cpu_copy(env);
6651         /* Init regs that differ from the parent.  */
6652         cpu_clone_regs_child(new_env, newsp, flags);
6653         cpu_clone_regs_parent(env, flags);
6654         new_cpu = env_cpu(new_env);
6655         new_cpu->opaque = ts;
6656         ts->bprm = parent_ts->bprm;
6657         ts->info = parent_ts->info;
6658         ts->signal_mask = parent_ts->signal_mask;
6659 
6660         if (flags & CLONE_CHILD_CLEARTID) {
6661             ts->child_tidptr = child_tidptr;
6662         }
6663 
6664         if (flags & CLONE_SETTLS) {
6665             cpu_set_tls (new_env, newtls);
6666         }
6667 
6668         memset(&info, 0, sizeof(info));
6669         pthread_mutex_init(&info.mutex, NULL);
6670         pthread_mutex_lock(&info.mutex);
6671         pthread_cond_init(&info.cond, NULL);
6672         info.env = new_env;
6673         if (flags & CLONE_CHILD_SETTID) {
6674             info.child_tidptr = child_tidptr;
6675         }
6676         if (flags & CLONE_PARENT_SETTID) {
6677             info.parent_tidptr = parent_tidptr;
6678         }
6679 
6680         ret = pthread_attr_init(&attr);
6681         ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE);
6682         ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
6683         /* It is not safe to deliver signals until the child has finished
6684            initializing, so temporarily block all signals.  */
6685         sigfillset(&sigmask);
6686         sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask);
6687         cpu->random_seed = qemu_guest_random_seed_thread_part1();
6688 
6689         ret = pthread_create(&info.thread, &attr, clone_func, &info);
6690         /* TODO: Free new CPU state if thread creation failed.  */
6691 
6692         sigprocmask(SIG_SETMASK, &info.sigmask, NULL);
6693         pthread_attr_destroy(&attr);
6694         if (ret == 0) {
6695             /* Wait for the child to initialize.  */
6696             pthread_cond_wait(&info.cond, &info.mutex);
6697             ret = info.tid;
6698         } else {
6699             ret = -1;
6700         }
6701         pthread_mutex_unlock(&info.mutex);
6702         pthread_cond_destroy(&info.cond);
6703         pthread_mutex_destroy(&info.mutex);
6704         pthread_mutex_unlock(&clone_lock);
6705     } else {
6706         /* if no CLONE_VM, we consider it is a fork */
6707         if (flags & CLONE_INVALID_FORK_FLAGS) {
6708             return -TARGET_EINVAL;
6709         }
6710 
6711         /* We can't support custom termination signals */
6712         if ((flags & CSIGNAL) != TARGET_SIGCHLD) {
6713             return -TARGET_EINVAL;
6714         }
6715 
6716         if (block_signals()) {
6717             return -QEMU_ERESTARTSYS;
6718         }
6719 
6720         fork_start();
6721         ret = fork();
6722         if (ret == 0) {
6723             /* Child Process.  */
6724             cpu_clone_regs_child(env, newsp, flags);
6725             fork_end(1);
6726             /* There is a race condition here.  The parent process could
6727                theoretically read the TID in the child process before the child
6728                tid is set.  This would require using either ptrace
6729                (not implemented) or having *_tidptr to point at a shared memory
6730                mapping.  We can't repeat the spinlock hack used above because
6731                the child process gets its own copy of the lock.  */
6732             if (flags & CLONE_CHILD_SETTID)
6733                 put_user_u32(sys_gettid(), child_tidptr);
6734             if (flags & CLONE_PARENT_SETTID)
6735                 put_user_u32(sys_gettid(), parent_tidptr);
6736             ts = (TaskState *)cpu->opaque;
6737             if (flags & CLONE_SETTLS)
6738                 cpu_set_tls (env, newtls);
6739             if (flags & CLONE_CHILD_CLEARTID)
6740                 ts->child_tidptr = child_tidptr;
6741         } else {
6742             cpu_clone_regs_parent(env, flags);
6743             fork_end(0);
6744         }
6745     }
6746     return ret;
6747 }
6748 
6749 /* warning : doesn't handle linux specific flags... */
6750 static int target_to_host_fcntl_cmd(int cmd)
6751 {
6752     int ret;
6753 
6754     switch(cmd) {
6755     case TARGET_F_DUPFD:
6756     case TARGET_F_GETFD:
6757     case TARGET_F_SETFD:
6758     case TARGET_F_GETFL:
6759     case TARGET_F_SETFL:
6760     case TARGET_F_OFD_GETLK:
6761     case TARGET_F_OFD_SETLK:
6762     case TARGET_F_OFD_SETLKW:
6763         ret = cmd;
6764         break;
6765     case TARGET_F_GETLK:
6766         ret = F_GETLK64;
6767         break;
6768     case TARGET_F_SETLK:
6769         ret = F_SETLK64;
6770         break;
6771     case TARGET_F_SETLKW:
6772         ret = F_SETLKW64;
6773         break;
6774     case TARGET_F_GETOWN:
6775         ret = F_GETOWN;
6776         break;
6777     case TARGET_F_SETOWN:
6778         ret = F_SETOWN;
6779         break;
6780     case TARGET_F_GETSIG:
6781         ret = F_GETSIG;
6782         break;
6783     case TARGET_F_SETSIG:
6784         ret = F_SETSIG;
6785         break;
6786 #if TARGET_ABI_BITS == 32
6787     case TARGET_F_GETLK64:
6788         ret = F_GETLK64;
6789         break;
6790     case TARGET_F_SETLK64:
6791         ret = F_SETLK64;
6792         break;
6793     case TARGET_F_SETLKW64:
6794         ret = F_SETLKW64;
6795         break;
6796 #endif
6797     case TARGET_F_SETLEASE:
6798         ret = F_SETLEASE;
6799         break;
6800     case TARGET_F_GETLEASE:
6801         ret = F_GETLEASE;
6802         break;
6803 #ifdef F_DUPFD_CLOEXEC
6804     case TARGET_F_DUPFD_CLOEXEC:
6805         ret = F_DUPFD_CLOEXEC;
6806         break;
6807 #endif
6808     case TARGET_F_NOTIFY:
6809         ret = F_NOTIFY;
6810         break;
6811 #ifdef F_GETOWN_EX
6812     case TARGET_F_GETOWN_EX:
6813         ret = F_GETOWN_EX;
6814         break;
6815 #endif
6816 #ifdef F_SETOWN_EX
6817     case TARGET_F_SETOWN_EX:
6818         ret = F_SETOWN_EX;
6819         break;
6820 #endif
6821 #ifdef F_SETPIPE_SZ
6822     case TARGET_F_SETPIPE_SZ:
6823         ret = F_SETPIPE_SZ;
6824         break;
6825     case TARGET_F_GETPIPE_SZ:
6826         ret = F_GETPIPE_SZ;
6827         break;
6828 #endif
6829 #ifdef F_ADD_SEALS
6830     case TARGET_F_ADD_SEALS:
6831         ret = F_ADD_SEALS;
6832         break;
6833     case TARGET_F_GET_SEALS:
6834         ret = F_GET_SEALS;
6835         break;
6836 #endif
6837     default:
6838         ret = -TARGET_EINVAL;
6839         break;
6840     }
6841 
6842 #if defined(__powerpc64__)
6843     /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and
6844      * is not supported by kernel. The glibc fcntl call actually adjusts
6845      * them to 5, 6 and 7 before making the syscall(). Since we make the
6846      * syscall directly, adjust to what is supported by the kernel.
6847      */
6848     if (ret >= F_GETLK64 && ret <= F_SETLKW64) {
6849         ret -= F_GETLK64 - 5;
6850     }
6851 #endif
6852 
6853     return ret;
6854 }
6855 
6856 #define FLOCK_TRANSTBL \
6857     switch (type) { \
6858     TRANSTBL_CONVERT(F_RDLCK); \
6859     TRANSTBL_CONVERT(F_WRLCK); \
6860     TRANSTBL_CONVERT(F_UNLCK); \
6861     }
6862 
6863 static int target_to_host_flock(int type)
6864 {
6865 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a
6866     FLOCK_TRANSTBL
6867 #undef  TRANSTBL_CONVERT
6868     return -TARGET_EINVAL;
6869 }
6870 
6871 static int host_to_target_flock(int type)
6872 {
6873 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a
6874     FLOCK_TRANSTBL
6875 #undef  TRANSTBL_CONVERT
6876     /* if we don't know how to convert the value coming
6877      * from the host we copy to the target field as-is
6878      */
6879     return type;
6880 }
6881 
6882 static inline abi_long copy_from_user_flock(struct flock64 *fl,
6883                                             abi_ulong target_flock_addr)
6884 {
6885     struct target_flock *target_fl;
6886     int l_type;
6887 
6888     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6889         return -TARGET_EFAULT;
6890     }
6891 
6892     __get_user(l_type, &target_fl->l_type);
6893     l_type = target_to_host_flock(l_type);
6894     if (l_type < 0) {
6895         return l_type;
6896     }
6897     fl->l_type = l_type;
6898     __get_user(fl->l_whence, &target_fl->l_whence);
6899     __get_user(fl->l_start, &target_fl->l_start);
6900     __get_user(fl->l_len, &target_fl->l_len);
6901     __get_user(fl->l_pid, &target_fl->l_pid);
6902     unlock_user_struct(target_fl, target_flock_addr, 0);
6903     return 0;
6904 }
6905 
6906 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr,
6907                                           const struct flock64 *fl)
6908 {
6909     struct target_flock *target_fl;
6910     short l_type;
6911 
6912     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6913         return -TARGET_EFAULT;
6914     }
6915 
6916     l_type = host_to_target_flock(fl->l_type);
6917     __put_user(l_type, &target_fl->l_type);
6918     __put_user(fl->l_whence, &target_fl->l_whence);
6919     __put_user(fl->l_start, &target_fl->l_start);
6920     __put_user(fl->l_len, &target_fl->l_len);
6921     __put_user(fl->l_pid, &target_fl->l_pid);
6922     unlock_user_struct(target_fl, target_flock_addr, 1);
6923     return 0;
6924 }
6925 
6926 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr);
6927 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl);
6928 
6929 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
6930 struct target_oabi_flock64 {
6931     abi_short l_type;
6932     abi_short l_whence;
6933     abi_llong l_start;
6934     abi_llong l_len;
6935     abi_int   l_pid;
6936 } QEMU_PACKED;
6937 
6938 static inline abi_long copy_from_user_oabi_flock64(struct flock64 *fl,
6939                                                    abi_ulong target_flock_addr)
6940 {
6941     struct target_oabi_flock64 *target_fl;
6942     int l_type;
6943 
6944     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6945         return -TARGET_EFAULT;
6946     }
6947 
6948     __get_user(l_type, &target_fl->l_type);
6949     l_type = target_to_host_flock(l_type);
6950     if (l_type < 0) {
6951         return l_type;
6952     }
6953     fl->l_type = l_type;
6954     __get_user(fl->l_whence, &target_fl->l_whence);
6955     __get_user(fl->l_start, &target_fl->l_start);
6956     __get_user(fl->l_len, &target_fl->l_len);
6957     __get_user(fl->l_pid, &target_fl->l_pid);
6958     unlock_user_struct(target_fl, target_flock_addr, 0);
6959     return 0;
6960 }
6961 
6962 static inline abi_long copy_to_user_oabi_flock64(abi_ulong target_flock_addr,
6963                                                  const struct flock64 *fl)
6964 {
6965     struct target_oabi_flock64 *target_fl;
6966     short l_type;
6967 
6968     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6969         return -TARGET_EFAULT;
6970     }
6971 
6972     l_type = host_to_target_flock(fl->l_type);
6973     __put_user(l_type, &target_fl->l_type);
6974     __put_user(fl->l_whence, &target_fl->l_whence);
6975     __put_user(fl->l_start, &target_fl->l_start);
6976     __put_user(fl->l_len, &target_fl->l_len);
6977     __put_user(fl->l_pid, &target_fl->l_pid);
6978     unlock_user_struct(target_fl, target_flock_addr, 1);
6979     return 0;
6980 }
6981 #endif
6982 
6983 static inline abi_long copy_from_user_flock64(struct flock64 *fl,
6984                                               abi_ulong target_flock_addr)
6985 {
6986     struct target_flock64 *target_fl;
6987     int l_type;
6988 
6989     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6990         return -TARGET_EFAULT;
6991     }
6992 
6993     __get_user(l_type, &target_fl->l_type);
6994     l_type = target_to_host_flock(l_type);
6995     if (l_type < 0) {
6996         return l_type;
6997     }
6998     fl->l_type = l_type;
6999     __get_user(fl->l_whence, &target_fl->l_whence);
7000     __get_user(fl->l_start, &target_fl->l_start);
7001     __get_user(fl->l_len, &target_fl->l_len);
7002     __get_user(fl->l_pid, &target_fl->l_pid);
7003     unlock_user_struct(target_fl, target_flock_addr, 0);
7004     return 0;
7005 }
7006 
7007 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr,
7008                                             const struct flock64 *fl)
7009 {
7010     struct target_flock64 *target_fl;
7011     short l_type;
7012 
7013     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
7014         return -TARGET_EFAULT;
7015     }
7016 
7017     l_type = host_to_target_flock(fl->l_type);
7018     __put_user(l_type, &target_fl->l_type);
7019     __put_user(fl->l_whence, &target_fl->l_whence);
7020     __put_user(fl->l_start, &target_fl->l_start);
7021     __put_user(fl->l_len, &target_fl->l_len);
7022     __put_user(fl->l_pid, &target_fl->l_pid);
7023     unlock_user_struct(target_fl, target_flock_addr, 1);
7024     return 0;
7025 }
7026 
7027 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg)
7028 {
7029     struct flock64 fl64;
7030 #ifdef F_GETOWN_EX
7031     struct f_owner_ex fox;
7032     struct target_f_owner_ex *target_fox;
7033 #endif
7034     abi_long ret;
7035     int host_cmd = target_to_host_fcntl_cmd(cmd);
7036 
7037     if (host_cmd == -TARGET_EINVAL)
7038 	    return host_cmd;
7039 
7040     switch(cmd) {
7041     case TARGET_F_GETLK:
7042         ret = copy_from_user_flock(&fl64, arg);
7043         if (ret) {
7044             return ret;
7045         }
7046         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7047         if (ret == 0) {
7048             ret = copy_to_user_flock(arg, &fl64);
7049         }
7050         break;
7051 
7052     case TARGET_F_SETLK:
7053     case TARGET_F_SETLKW:
7054         ret = copy_from_user_flock(&fl64, arg);
7055         if (ret) {
7056             return ret;
7057         }
7058         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7059         break;
7060 
7061     case TARGET_F_GETLK64:
7062     case TARGET_F_OFD_GETLK:
7063         ret = copy_from_user_flock64(&fl64, arg);
7064         if (ret) {
7065             return ret;
7066         }
7067         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7068         if (ret == 0) {
7069             ret = copy_to_user_flock64(arg, &fl64);
7070         }
7071         break;
7072     case TARGET_F_SETLK64:
7073     case TARGET_F_SETLKW64:
7074     case TARGET_F_OFD_SETLK:
7075     case TARGET_F_OFD_SETLKW:
7076         ret = copy_from_user_flock64(&fl64, arg);
7077         if (ret) {
7078             return ret;
7079         }
7080         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7081         break;
7082 
7083     case TARGET_F_GETFL:
7084         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7085         if (ret >= 0) {
7086             ret = host_to_target_bitmask(ret, fcntl_flags_tbl);
7087         }
7088         break;
7089 
7090     case TARGET_F_SETFL:
7091         ret = get_errno(safe_fcntl(fd, host_cmd,
7092                                    target_to_host_bitmask(arg,
7093                                                           fcntl_flags_tbl)));
7094         break;
7095 
7096 #ifdef F_GETOWN_EX
7097     case TARGET_F_GETOWN_EX:
7098         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7099         if (ret >= 0) {
7100             if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0))
7101                 return -TARGET_EFAULT;
7102             target_fox->type = tswap32(fox.type);
7103             target_fox->pid = tswap32(fox.pid);
7104             unlock_user_struct(target_fox, arg, 1);
7105         }
7106         break;
7107 #endif
7108 
7109 #ifdef F_SETOWN_EX
7110     case TARGET_F_SETOWN_EX:
7111         if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1))
7112             return -TARGET_EFAULT;
7113         fox.type = tswap32(target_fox->type);
7114         fox.pid = tswap32(target_fox->pid);
7115         unlock_user_struct(target_fox, arg, 0);
7116         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7117         break;
7118 #endif
7119 
7120     case TARGET_F_SETSIG:
7121         ret = get_errno(safe_fcntl(fd, host_cmd, target_to_host_signal(arg)));
7122         break;
7123 
7124     case TARGET_F_GETSIG:
7125         ret = host_to_target_signal(get_errno(safe_fcntl(fd, host_cmd, arg)));
7126         break;
7127 
7128     case TARGET_F_SETOWN:
7129     case TARGET_F_GETOWN:
7130     case TARGET_F_SETLEASE:
7131     case TARGET_F_GETLEASE:
7132     case TARGET_F_SETPIPE_SZ:
7133     case TARGET_F_GETPIPE_SZ:
7134     case TARGET_F_ADD_SEALS:
7135     case TARGET_F_GET_SEALS:
7136         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7137         break;
7138 
7139     default:
7140         ret = get_errno(safe_fcntl(fd, cmd, arg));
7141         break;
7142     }
7143     return ret;
7144 }
7145 
7146 #ifdef USE_UID16
7147 
7148 static inline int high2lowuid(int uid)
7149 {
7150     if (uid > 65535)
7151         return 65534;
7152     else
7153         return uid;
7154 }
7155 
7156 static inline int high2lowgid(int gid)
7157 {
7158     if (gid > 65535)
7159         return 65534;
7160     else
7161         return gid;
7162 }
7163 
7164 static inline int low2highuid(int uid)
7165 {
7166     if ((int16_t)uid == -1)
7167         return -1;
7168     else
7169         return uid;
7170 }
7171 
7172 static inline int low2highgid(int gid)
7173 {
7174     if ((int16_t)gid == -1)
7175         return -1;
7176     else
7177         return gid;
7178 }
7179 static inline int tswapid(int id)
7180 {
7181     return tswap16(id);
7182 }
7183 
7184 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
7185 
7186 #else /* !USE_UID16 */
7187 static inline int high2lowuid(int uid)
7188 {
7189     return uid;
7190 }
7191 static inline int high2lowgid(int gid)
7192 {
7193     return gid;
7194 }
7195 static inline int low2highuid(int uid)
7196 {
7197     return uid;
7198 }
7199 static inline int low2highgid(int gid)
7200 {
7201     return gid;
7202 }
7203 static inline int tswapid(int id)
7204 {
7205     return tswap32(id);
7206 }
7207 
7208 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
7209 
7210 #endif /* USE_UID16 */
7211 
7212 /* We must do direct syscalls for setting UID/GID, because we want to
7213  * implement the Linux system call semantics of "change only for this thread",
7214  * not the libc/POSIX semantics of "change for all threads in process".
7215  * (See http://ewontfix.com/17/ for more details.)
7216  * We use the 32-bit version of the syscalls if present; if it is not
7217  * then either the host architecture supports 32-bit UIDs natively with
7218  * the standard syscall, or the 16-bit UID is the best we can do.
7219  */
7220 #ifdef __NR_setuid32
7221 #define __NR_sys_setuid __NR_setuid32
7222 #else
7223 #define __NR_sys_setuid __NR_setuid
7224 #endif
7225 #ifdef __NR_setgid32
7226 #define __NR_sys_setgid __NR_setgid32
7227 #else
7228 #define __NR_sys_setgid __NR_setgid
7229 #endif
7230 #ifdef __NR_setresuid32
7231 #define __NR_sys_setresuid __NR_setresuid32
7232 #else
7233 #define __NR_sys_setresuid __NR_setresuid
7234 #endif
7235 #ifdef __NR_setresgid32
7236 #define __NR_sys_setresgid __NR_setresgid32
7237 #else
7238 #define __NR_sys_setresgid __NR_setresgid
7239 #endif
7240 
7241 _syscall1(int, sys_setuid, uid_t, uid)
7242 _syscall1(int, sys_setgid, gid_t, gid)
7243 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
7244 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
7245 
7246 void syscall_init(void)
7247 {
7248     IOCTLEntry *ie;
7249     const argtype *arg_type;
7250     int size;
7251 
7252     thunk_init(STRUCT_MAX);
7253 
7254 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
7255 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
7256 #include "syscall_types.h"
7257 #undef STRUCT
7258 #undef STRUCT_SPECIAL
7259 
7260     /* we patch the ioctl size if necessary. We rely on the fact that
7261        no ioctl has all the bits at '1' in the size field */
7262     ie = ioctl_entries;
7263     while (ie->target_cmd != 0) {
7264         if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) ==
7265             TARGET_IOC_SIZEMASK) {
7266             arg_type = ie->arg_type;
7267             if (arg_type[0] != TYPE_PTR) {
7268                 fprintf(stderr, "cannot patch size for ioctl 0x%x\n",
7269                         ie->target_cmd);
7270                 exit(1);
7271             }
7272             arg_type++;
7273             size = thunk_type_size(arg_type, 0);
7274             ie->target_cmd = (ie->target_cmd &
7275                               ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) |
7276                 (size << TARGET_IOC_SIZESHIFT);
7277         }
7278 
7279         /* automatic consistency check if same arch */
7280 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
7281     (defined(__x86_64__) && defined(TARGET_X86_64))
7282         if (unlikely(ie->target_cmd != ie->host_cmd)) {
7283             fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
7284                     ie->name, ie->target_cmd, ie->host_cmd);
7285         }
7286 #endif
7287         ie++;
7288     }
7289 }
7290 
7291 #ifdef TARGET_NR_truncate64
7292 static inline abi_long target_truncate64(void *cpu_env, const char *arg1,
7293                                          abi_long arg2,
7294                                          abi_long arg3,
7295                                          abi_long arg4)
7296 {
7297     if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) {
7298         arg2 = arg3;
7299         arg3 = arg4;
7300     }
7301     return get_errno(truncate64(arg1, target_offset64(arg2, arg3)));
7302 }
7303 #endif
7304 
7305 #ifdef TARGET_NR_ftruncate64
7306 static inline abi_long target_ftruncate64(void *cpu_env, abi_long arg1,
7307                                           abi_long arg2,
7308                                           abi_long arg3,
7309                                           abi_long arg4)
7310 {
7311     if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) {
7312         arg2 = arg3;
7313         arg3 = arg4;
7314     }
7315     return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3)));
7316 }
7317 #endif
7318 
7319 #if defined(TARGET_NR_timer_settime) || \
7320     (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
7321 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_its,
7322                                                  abi_ulong target_addr)
7323 {
7324     if (target_to_host_timespec(&host_its->it_interval, target_addr +
7325                                 offsetof(struct target_itimerspec,
7326                                          it_interval)) ||
7327         target_to_host_timespec(&host_its->it_value, target_addr +
7328                                 offsetof(struct target_itimerspec,
7329                                          it_value))) {
7330         return -TARGET_EFAULT;
7331     }
7332 
7333     return 0;
7334 }
7335 #endif
7336 
7337 #if defined(TARGET_NR_timer_settime64) || \
7338     (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD))
7339 static inline abi_long target_to_host_itimerspec64(struct itimerspec *host_its,
7340                                                    abi_ulong target_addr)
7341 {
7342     if (target_to_host_timespec64(&host_its->it_interval, target_addr +
7343                                   offsetof(struct target__kernel_itimerspec,
7344                                            it_interval)) ||
7345         target_to_host_timespec64(&host_its->it_value, target_addr +
7346                                   offsetof(struct target__kernel_itimerspec,
7347                                            it_value))) {
7348         return -TARGET_EFAULT;
7349     }
7350 
7351     return 0;
7352 }
7353 #endif
7354 
7355 #if ((defined(TARGET_NR_timerfd_gettime) || \
7356       defined(TARGET_NR_timerfd_settime)) && defined(CONFIG_TIMERFD)) || \
7357       defined(TARGET_NR_timer_gettime) || defined(TARGET_NR_timer_settime)
7358 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr,
7359                                                  struct itimerspec *host_its)
7360 {
7361     if (host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7362                                                        it_interval),
7363                                 &host_its->it_interval) ||
7364         host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7365                                                        it_value),
7366                                 &host_its->it_value)) {
7367         return -TARGET_EFAULT;
7368     }
7369     return 0;
7370 }
7371 #endif
7372 
7373 #if ((defined(TARGET_NR_timerfd_gettime64) || \
7374       defined(TARGET_NR_timerfd_settime64)) && defined(CONFIG_TIMERFD)) || \
7375       defined(TARGET_NR_timer_gettime64) || defined(TARGET_NR_timer_settime64)
7376 static inline abi_long host_to_target_itimerspec64(abi_ulong target_addr,
7377                                                    struct itimerspec *host_its)
7378 {
7379     if (host_to_target_timespec64(target_addr +
7380                                   offsetof(struct target__kernel_itimerspec,
7381                                            it_interval),
7382                                   &host_its->it_interval) ||
7383         host_to_target_timespec64(target_addr +
7384                                   offsetof(struct target__kernel_itimerspec,
7385                                            it_value),
7386                                   &host_its->it_value)) {
7387         return -TARGET_EFAULT;
7388     }
7389     return 0;
7390 }
7391 #endif
7392 
7393 #if defined(TARGET_NR_adjtimex) || \
7394     (defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME))
7395 static inline abi_long target_to_host_timex(struct timex *host_tx,
7396                                             abi_long target_addr)
7397 {
7398     struct target_timex *target_tx;
7399 
7400     if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7401         return -TARGET_EFAULT;
7402     }
7403 
7404     __get_user(host_tx->modes, &target_tx->modes);
7405     __get_user(host_tx->offset, &target_tx->offset);
7406     __get_user(host_tx->freq, &target_tx->freq);
7407     __get_user(host_tx->maxerror, &target_tx->maxerror);
7408     __get_user(host_tx->esterror, &target_tx->esterror);
7409     __get_user(host_tx->status, &target_tx->status);
7410     __get_user(host_tx->constant, &target_tx->constant);
7411     __get_user(host_tx->precision, &target_tx->precision);
7412     __get_user(host_tx->tolerance, &target_tx->tolerance);
7413     __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7414     __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7415     __get_user(host_tx->tick, &target_tx->tick);
7416     __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7417     __get_user(host_tx->jitter, &target_tx->jitter);
7418     __get_user(host_tx->shift, &target_tx->shift);
7419     __get_user(host_tx->stabil, &target_tx->stabil);
7420     __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7421     __get_user(host_tx->calcnt, &target_tx->calcnt);
7422     __get_user(host_tx->errcnt, &target_tx->errcnt);
7423     __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7424     __get_user(host_tx->tai, &target_tx->tai);
7425 
7426     unlock_user_struct(target_tx, target_addr, 0);
7427     return 0;
7428 }
7429 
7430 static inline abi_long host_to_target_timex(abi_long target_addr,
7431                                             struct timex *host_tx)
7432 {
7433     struct target_timex *target_tx;
7434 
7435     if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7436         return -TARGET_EFAULT;
7437     }
7438 
7439     __put_user(host_tx->modes, &target_tx->modes);
7440     __put_user(host_tx->offset, &target_tx->offset);
7441     __put_user(host_tx->freq, &target_tx->freq);
7442     __put_user(host_tx->maxerror, &target_tx->maxerror);
7443     __put_user(host_tx->esterror, &target_tx->esterror);
7444     __put_user(host_tx->status, &target_tx->status);
7445     __put_user(host_tx->constant, &target_tx->constant);
7446     __put_user(host_tx->precision, &target_tx->precision);
7447     __put_user(host_tx->tolerance, &target_tx->tolerance);
7448     __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7449     __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7450     __put_user(host_tx->tick, &target_tx->tick);
7451     __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7452     __put_user(host_tx->jitter, &target_tx->jitter);
7453     __put_user(host_tx->shift, &target_tx->shift);
7454     __put_user(host_tx->stabil, &target_tx->stabil);
7455     __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7456     __put_user(host_tx->calcnt, &target_tx->calcnt);
7457     __put_user(host_tx->errcnt, &target_tx->errcnt);
7458     __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7459     __put_user(host_tx->tai, &target_tx->tai);
7460 
7461     unlock_user_struct(target_tx, target_addr, 1);
7462     return 0;
7463 }
7464 #endif
7465 
7466 
7467 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
7468 static inline abi_long target_to_host_timex64(struct timex *host_tx,
7469                                               abi_long target_addr)
7470 {
7471     struct target__kernel_timex *target_tx;
7472 
7473     if (copy_from_user_timeval64(&host_tx->time, target_addr +
7474                                  offsetof(struct target__kernel_timex,
7475                                           time))) {
7476         return -TARGET_EFAULT;
7477     }
7478 
7479     if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7480         return -TARGET_EFAULT;
7481     }
7482 
7483     __get_user(host_tx->modes, &target_tx->modes);
7484     __get_user(host_tx->offset, &target_tx->offset);
7485     __get_user(host_tx->freq, &target_tx->freq);
7486     __get_user(host_tx->maxerror, &target_tx->maxerror);
7487     __get_user(host_tx->esterror, &target_tx->esterror);
7488     __get_user(host_tx->status, &target_tx->status);
7489     __get_user(host_tx->constant, &target_tx->constant);
7490     __get_user(host_tx->precision, &target_tx->precision);
7491     __get_user(host_tx->tolerance, &target_tx->tolerance);
7492     __get_user(host_tx->tick, &target_tx->tick);
7493     __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7494     __get_user(host_tx->jitter, &target_tx->jitter);
7495     __get_user(host_tx->shift, &target_tx->shift);
7496     __get_user(host_tx->stabil, &target_tx->stabil);
7497     __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7498     __get_user(host_tx->calcnt, &target_tx->calcnt);
7499     __get_user(host_tx->errcnt, &target_tx->errcnt);
7500     __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7501     __get_user(host_tx->tai, &target_tx->tai);
7502 
7503     unlock_user_struct(target_tx, target_addr, 0);
7504     return 0;
7505 }
7506 
7507 static inline abi_long host_to_target_timex64(abi_long target_addr,
7508                                               struct timex *host_tx)
7509 {
7510     struct target__kernel_timex *target_tx;
7511 
7512    if (copy_to_user_timeval64(target_addr +
7513                               offsetof(struct target__kernel_timex, time),
7514                               &host_tx->time)) {
7515         return -TARGET_EFAULT;
7516     }
7517 
7518     if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7519         return -TARGET_EFAULT;
7520     }
7521 
7522     __put_user(host_tx->modes, &target_tx->modes);
7523     __put_user(host_tx->offset, &target_tx->offset);
7524     __put_user(host_tx->freq, &target_tx->freq);
7525     __put_user(host_tx->maxerror, &target_tx->maxerror);
7526     __put_user(host_tx->esterror, &target_tx->esterror);
7527     __put_user(host_tx->status, &target_tx->status);
7528     __put_user(host_tx->constant, &target_tx->constant);
7529     __put_user(host_tx->precision, &target_tx->precision);
7530     __put_user(host_tx->tolerance, &target_tx->tolerance);
7531     __put_user(host_tx->tick, &target_tx->tick);
7532     __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7533     __put_user(host_tx->jitter, &target_tx->jitter);
7534     __put_user(host_tx->shift, &target_tx->shift);
7535     __put_user(host_tx->stabil, &target_tx->stabil);
7536     __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7537     __put_user(host_tx->calcnt, &target_tx->calcnt);
7538     __put_user(host_tx->errcnt, &target_tx->errcnt);
7539     __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7540     __put_user(host_tx->tai, &target_tx->tai);
7541 
7542     unlock_user_struct(target_tx, target_addr, 1);
7543     return 0;
7544 }
7545 #endif
7546 
7547 #ifndef HAVE_SIGEV_NOTIFY_THREAD_ID
7548 #define sigev_notify_thread_id _sigev_un._tid
7549 #endif
7550 
7551 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp,
7552                                                abi_ulong target_addr)
7553 {
7554     struct target_sigevent *target_sevp;
7555 
7556     if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) {
7557         return -TARGET_EFAULT;
7558     }
7559 
7560     /* This union is awkward on 64 bit systems because it has a 32 bit
7561      * integer and a pointer in it; we follow the conversion approach
7562      * used for handling sigval types in signal.c so the guest should get
7563      * the correct value back even if we did a 64 bit byteswap and it's
7564      * using the 32 bit integer.
7565      */
7566     host_sevp->sigev_value.sival_ptr =
7567         (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr);
7568     host_sevp->sigev_signo =
7569         target_to_host_signal(tswap32(target_sevp->sigev_signo));
7570     host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify);
7571     host_sevp->sigev_notify_thread_id = tswap32(target_sevp->_sigev_un._tid);
7572 
7573     unlock_user_struct(target_sevp, target_addr, 1);
7574     return 0;
7575 }
7576 
7577 #if defined(TARGET_NR_mlockall)
7578 static inline int target_to_host_mlockall_arg(int arg)
7579 {
7580     int result = 0;
7581 
7582     if (arg & TARGET_MCL_CURRENT) {
7583         result |= MCL_CURRENT;
7584     }
7585     if (arg & TARGET_MCL_FUTURE) {
7586         result |= MCL_FUTURE;
7587     }
7588 #ifdef MCL_ONFAULT
7589     if (arg & TARGET_MCL_ONFAULT) {
7590         result |= MCL_ONFAULT;
7591     }
7592 #endif
7593 
7594     return result;
7595 }
7596 #endif
7597 
7598 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) ||     \
7599      defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) ||  \
7600      defined(TARGET_NR_newfstatat))
7601 static inline abi_long host_to_target_stat64(void *cpu_env,
7602                                              abi_ulong target_addr,
7603                                              struct stat *host_st)
7604 {
7605 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
7606     if (((CPUARMState *)cpu_env)->eabi) {
7607         struct target_eabi_stat64 *target_st;
7608 
7609         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7610             return -TARGET_EFAULT;
7611         memset(target_st, 0, sizeof(struct target_eabi_stat64));
7612         __put_user(host_st->st_dev, &target_st->st_dev);
7613         __put_user(host_st->st_ino, &target_st->st_ino);
7614 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7615         __put_user(host_st->st_ino, &target_st->__st_ino);
7616 #endif
7617         __put_user(host_st->st_mode, &target_st->st_mode);
7618         __put_user(host_st->st_nlink, &target_st->st_nlink);
7619         __put_user(host_st->st_uid, &target_st->st_uid);
7620         __put_user(host_st->st_gid, &target_st->st_gid);
7621         __put_user(host_st->st_rdev, &target_st->st_rdev);
7622         __put_user(host_st->st_size, &target_st->st_size);
7623         __put_user(host_st->st_blksize, &target_st->st_blksize);
7624         __put_user(host_st->st_blocks, &target_st->st_blocks);
7625         __put_user(host_st->st_atime, &target_st->target_st_atime);
7626         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7627         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7628 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7629         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7630         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7631         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7632 #endif
7633         unlock_user_struct(target_st, target_addr, 1);
7634     } else
7635 #endif
7636     {
7637 #if defined(TARGET_HAS_STRUCT_STAT64)
7638         struct target_stat64 *target_st;
7639 #else
7640         struct target_stat *target_st;
7641 #endif
7642 
7643         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7644             return -TARGET_EFAULT;
7645         memset(target_st, 0, sizeof(*target_st));
7646         __put_user(host_st->st_dev, &target_st->st_dev);
7647         __put_user(host_st->st_ino, &target_st->st_ino);
7648 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7649         __put_user(host_st->st_ino, &target_st->__st_ino);
7650 #endif
7651         __put_user(host_st->st_mode, &target_st->st_mode);
7652         __put_user(host_st->st_nlink, &target_st->st_nlink);
7653         __put_user(host_st->st_uid, &target_st->st_uid);
7654         __put_user(host_st->st_gid, &target_st->st_gid);
7655         __put_user(host_st->st_rdev, &target_st->st_rdev);
7656         /* XXX: better use of kernel struct */
7657         __put_user(host_st->st_size, &target_st->st_size);
7658         __put_user(host_st->st_blksize, &target_st->st_blksize);
7659         __put_user(host_st->st_blocks, &target_st->st_blocks);
7660         __put_user(host_st->st_atime, &target_st->target_st_atime);
7661         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7662         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7663 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7664         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7665         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7666         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7667 #endif
7668         unlock_user_struct(target_st, target_addr, 1);
7669     }
7670 
7671     return 0;
7672 }
7673 #endif
7674 
7675 #if defined(TARGET_NR_statx) && defined(__NR_statx)
7676 static inline abi_long host_to_target_statx(struct target_statx *host_stx,
7677                                             abi_ulong target_addr)
7678 {
7679     struct target_statx *target_stx;
7680 
7681     if (!lock_user_struct(VERIFY_WRITE, target_stx, target_addr,  0)) {
7682         return -TARGET_EFAULT;
7683     }
7684     memset(target_stx, 0, sizeof(*target_stx));
7685 
7686     __put_user(host_stx->stx_mask, &target_stx->stx_mask);
7687     __put_user(host_stx->stx_blksize, &target_stx->stx_blksize);
7688     __put_user(host_stx->stx_attributes, &target_stx->stx_attributes);
7689     __put_user(host_stx->stx_nlink, &target_stx->stx_nlink);
7690     __put_user(host_stx->stx_uid, &target_stx->stx_uid);
7691     __put_user(host_stx->stx_gid, &target_stx->stx_gid);
7692     __put_user(host_stx->stx_mode, &target_stx->stx_mode);
7693     __put_user(host_stx->stx_ino, &target_stx->stx_ino);
7694     __put_user(host_stx->stx_size, &target_stx->stx_size);
7695     __put_user(host_stx->stx_blocks, &target_stx->stx_blocks);
7696     __put_user(host_stx->stx_attributes_mask, &target_stx->stx_attributes_mask);
7697     __put_user(host_stx->stx_atime.tv_sec, &target_stx->stx_atime.tv_sec);
7698     __put_user(host_stx->stx_atime.tv_nsec, &target_stx->stx_atime.tv_nsec);
7699     __put_user(host_stx->stx_btime.tv_sec, &target_stx->stx_btime.tv_sec);
7700     __put_user(host_stx->stx_btime.tv_nsec, &target_stx->stx_btime.tv_nsec);
7701     __put_user(host_stx->stx_ctime.tv_sec, &target_stx->stx_ctime.tv_sec);
7702     __put_user(host_stx->stx_ctime.tv_nsec, &target_stx->stx_ctime.tv_nsec);
7703     __put_user(host_stx->stx_mtime.tv_sec, &target_stx->stx_mtime.tv_sec);
7704     __put_user(host_stx->stx_mtime.tv_nsec, &target_stx->stx_mtime.tv_nsec);
7705     __put_user(host_stx->stx_rdev_major, &target_stx->stx_rdev_major);
7706     __put_user(host_stx->stx_rdev_minor, &target_stx->stx_rdev_minor);
7707     __put_user(host_stx->stx_dev_major, &target_stx->stx_dev_major);
7708     __put_user(host_stx->stx_dev_minor, &target_stx->stx_dev_minor);
7709 
7710     unlock_user_struct(target_stx, target_addr, 1);
7711 
7712     return 0;
7713 }
7714 #endif
7715 
7716 static int do_sys_futex(int *uaddr, int op, int val,
7717                          const struct timespec *timeout, int *uaddr2,
7718                          int val3)
7719 {
7720 #if HOST_LONG_BITS == 64
7721 #if defined(__NR_futex)
7722     /* always a 64-bit time_t, it doesn't define _time64 version  */
7723     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7724 
7725 #endif
7726 #else /* HOST_LONG_BITS == 64 */
7727 #if defined(__NR_futex_time64)
7728     if (sizeof(timeout->tv_sec) == 8) {
7729         /* _time64 function on 32bit arch */
7730         return sys_futex_time64(uaddr, op, val, timeout, uaddr2, val3);
7731     }
7732 #endif
7733 #if defined(__NR_futex)
7734     /* old function on 32bit arch */
7735     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7736 #endif
7737 #endif /* HOST_LONG_BITS == 64 */
7738     g_assert_not_reached();
7739 }
7740 
7741 static int do_safe_futex(int *uaddr, int op, int val,
7742                          const struct timespec *timeout, int *uaddr2,
7743                          int val3)
7744 {
7745 #if HOST_LONG_BITS == 64
7746 #if defined(__NR_futex)
7747     /* always a 64-bit time_t, it doesn't define _time64 version  */
7748     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7749 #endif
7750 #else /* HOST_LONG_BITS == 64 */
7751 #if defined(__NR_futex_time64)
7752     if (sizeof(timeout->tv_sec) == 8) {
7753         /* _time64 function on 32bit arch */
7754         return get_errno(safe_futex_time64(uaddr, op, val, timeout, uaddr2,
7755                                            val3));
7756     }
7757 #endif
7758 #if defined(__NR_futex)
7759     /* old function on 32bit arch */
7760     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7761 #endif
7762 #endif /* HOST_LONG_BITS == 64 */
7763     return -TARGET_ENOSYS;
7764 }
7765 
7766 /* ??? Using host futex calls even when target atomic operations
7767    are not really atomic probably breaks things.  However implementing
7768    futexes locally would make futexes shared between multiple processes
7769    tricky.  However they're probably useless because guest atomic
7770    operations won't work either.  */
7771 #if defined(TARGET_NR_futex)
7772 static int do_futex(CPUState *cpu, target_ulong uaddr, int op, int val,
7773                     target_ulong timeout, target_ulong uaddr2, int val3)
7774 {
7775     struct timespec ts, *pts;
7776     int base_op;
7777 
7778     /* ??? We assume FUTEX_* constants are the same on both host
7779        and target.  */
7780 #ifdef FUTEX_CMD_MASK
7781     base_op = op & FUTEX_CMD_MASK;
7782 #else
7783     base_op = op;
7784 #endif
7785     switch (base_op) {
7786     case FUTEX_WAIT:
7787     case FUTEX_WAIT_BITSET:
7788         if (timeout) {
7789             pts = &ts;
7790             target_to_host_timespec(pts, timeout);
7791         } else {
7792             pts = NULL;
7793         }
7794         return do_safe_futex(g2h(cpu, uaddr),
7795                              op, tswap32(val), pts, NULL, val3);
7796     case FUTEX_WAKE:
7797         return do_safe_futex(g2h(cpu, uaddr),
7798                              op, val, NULL, NULL, 0);
7799     case FUTEX_FD:
7800         return do_safe_futex(g2h(cpu, uaddr),
7801                              op, val, NULL, NULL, 0);
7802     case FUTEX_REQUEUE:
7803     case FUTEX_CMP_REQUEUE:
7804     case FUTEX_WAKE_OP:
7805         /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the
7806            TIMEOUT parameter is interpreted as a uint32_t by the kernel.
7807            But the prototype takes a `struct timespec *'; insert casts
7808            to satisfy the compiler.  We do not need to tswap TIMEOUT
7809            since it's not compared to guest memory.  */
7810         pts = (struct timespec *)(uintptr_t) timeout;
7811         return do_safe_futex(g2h(cpu, uaddr), op, val, pts, g2h(cpu, uaddr2),
7812                              (base_op == FUTEX_CMP_REQUEUE
7813                               ? tswap32(val3) : val3));
7814     default:
7815         return -TARGET_ENOSYS;
7816     }
7817 }
7818 #endif
7819 
7820 #if defined(TARGET_NR_futex_time64)
7821 static int do_futex_time64(CPUState *cpu, target_ulong uaddr, int op,
7822                            int val, target_ulong timeout,
7823                            target_ulong uaddr2, int val3)
7824 {
7825     struct timespec ts, *pts;
7826     int base_op;
7827 
7828     /* ??? We assume FUTEX_* constants are the same on both host
7829        and target.  */
7830 #ifdef FUTEX_CMD_MASK
7831     base_op = op & FUTEX_CMD_MASK;
7832 #else
7833     base_op = op;
7834 #endif
7835     switch (base_op) {
7836     case FUTEX_WAIT:
7837     case FUTEX_WAIT_BITSET:
7838         if (timeout) {
7839             pts = &ts;
7840             if (target_to_host_timespec64(pts, timeout)) {
7841                 return -TARGET_EFAULT;
7842             }
7843         } else {
7844             pts = NULL;
7845         }
7846         return do_safe_futex(g2h(cpu, uaddr), op,
7847                              tswap32(val), pts, NULL, val3);
7848     case FUTEX_WAKE:
7849         return do_safe_futex(g2h(cpu, uaddr), op, val, NULL, NULL, 0);
7850     case FUTEX_FD:
7851         return do_safe_futex(g2h(cpu, uaddr), op, val, NULL, NULL, 0);
7852     case FUTEX_REQUEUE:
7853     case FUTEX_CMP_REQUEUE:
7854     case FUTEX_WAKE_OP:
7855         /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the
7856            TIMEOUT parameter is interpreted as a uint32_t by the kernel.
7857            But the prototype takes a `struct timespec *'; insert casts
7858            to satisfy the compiler.  We do not need to tswap TIMEOUT
7859            since it's not compared to guest memory.  */
7860         pts = (struct timespec *)(uintptr_t) timeout;
7861         return do_safe_futex(g2h(cpu, uaddr), op, val, pts, g2h(cpu, uaddr2),
7862                              (base_op == FUTEX_CMP_REQUEUE
7863                               ? tswap32(val3) : val3));
7864     default:
7865         return -TARGET_ENOSYS;
7866     }
7867 }
7868 #endif
7869 
7870 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7871 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname,
7872                                      abi_long handle, abi_long mount_id,
7873                                      abi_long flags)
7874 {
7875     struct file_handle *target_fh;
7876     struct file_handle *fh;
7877     int mid = 0;
7878     abi_long ret;
7879     char *name;
7880     unsigned int size, total_size;
7881 
7882     if (get_user_s32(size, handle)) {
7883         return -TARGET_EFAULT;
7884     }
7885 
7886     name = lock_user_string(pathname);
7887     if (!name) {
7888         return -TARGET_EFAULT;
7889     }
7890 
7891     total_size = sizeof(struct file_handle) + size;
7892     target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0);
7893     if (!target_fh) {
7894         unlock_user(name, pathname, 0);
7895         return -TARGET_EFAULT;
7896     }
7897 
7898     fh = g_malloc0(total_size);
7899     fh->handle_bytes = size;
7900 
7901     ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags));
7902     unlock_user(name, pathname, 0);
7903 
7904     /* man name_to_handle_at(2):
7905      * Other than the use of the handle_bytes field, the caller should treat
7906      * the file_handle structure as an opaque data type
7907      */
7908 
7909     memcpy(target_fh, fh, total_size);
7910     target_fh->handle_bytes = tswap32(fh->handle_bytes);
7911     target_fh->handle_type = tswap32(fh->handle_type);
7912     g_free(fh);
7913     unlock_user(target_fh, handle, total_size);
7914 
7915     if (put_user_s32(mid, mount_id)) {
7916         return -TARGET_EFAULT;
7917     }
7918 
7919     return ret;
7920 
7921 }
7922 #endif
7923 
7924 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7925 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle,
7926                                      abi_long flags)
7927 {
7928     struct file_handle *target_fh;
7929     struct file_handle *fh;
7930     unsigned int size, total_size;
7931     abi_long ret;
7932 
7933     if (get_user_s32(size, handle)) {
7934         return -TARGET_EFAULT;
7935     }
7936 
7937     total_size = sizeof(struct file_handle) + size;
7938     target_fh = lock_user(VERIFY_READ, handle, total_size, 1);
7939     if (!target_fh) {
7940         return -TARGET_EFAULT;
7941     }
7942 
7943     fh = g_memdup(target_fh, total_size);
7944     fh->handle_bytes = size;
7945     fh->handle_type = tswap32(target_fh->handle_type);
7946 
7947     ret = get_errno(open_by_handle_at(mount_fd, fh,
7948                     target_to_host_bitmask(flags, fcntl_flags_tbl)));
7949 
7950     g_free(fh);
7951 
7952     unlock_user(target_fh, handle, total_size);
7953 
7954     return ret;
7955 }
7956 #endif
7957 
7958 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
7959 
7960 static abi_long do_signalfd4(int fd, abi_long mask, int flags)
7961 {
7962     int host_flags;
7963     target_sigset_t *target_mask;
7964     sigset_t host_mask;
7965     abi_long ret;
7966 
7967     if (flags & ~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC)) {
7968         return -TARGET_EINVAL;
7969     }
7970     if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) {
7971         return -TARGET_EFAULT;
7972     }
7973 
7974     target_to_host_sigset(&host_mask, target_mask);
7975 
7976     host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
7977 
7978     ret = get_errno(signalfd(fd, &host_mask, host_flags));
7979     if (ret >= 0) {
7980         fd_trans_register(ret, &target_signalfd_trans);
7981     }
7982 
7983     unlock_user_struct(target_mask, mask, 0);
7984 
7985     return ret;
7986 }
7987 #endif
7988 
7989 /* Map host to target signal numbers for the wait family of syscalls.
7990    Assume all other status bits are the same.  */
7991 int host_to_target_waitstatus(int status)
7992 {
7993     if (WIFSIGNALED(status)) {
7994         return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f);
7995     }
7996     if (WIFSTOPPED(status)) {
7997         return (host_to_target_signal(WSTOPSIG(status)) << 8)
7998                | (status & 0xff);
7999     }
8000     return status;
8001 }
8002 
8003 static int open_self_cmdline(void *cpu_env, int fd)
8004 {
8005     CPUState *cpu = env_cpu((CPUArchState *)cpu_env);
8006     struct linux_binprm *bprm = ((TaskState *)cpu->opaque)->bprm;
8007     int i;
8008 
8009     for (i = 0; i < bprm->argc; i++) {
8010         size_t len = strlen(bprm->argv[i]) + 1;
8011 
8012         if (write(fd, bprm->argv[i], len) != len) {
8013             return -1;
8014         }
8015     }
8016 
8017     return 0;
8018 }
8019 
8020 static int open_self_maps(void *cpu_env, int fd)
8021 {
8022     CPUState *cpu = env_cpu((CPUArchState *)cpu_env);
8023     TaskState *ts = cpu->opaque;
8024     GSList *map_info = read_self_maps();
8025     GSList *s;
8026     int count;
8027 
8028     for (s = map_info; s; s = g_slist_next(s)) {
8029         MapInfo *e = (MapInfo *) s->data;
8030 
8031         if (h2g_valid(e->start)) {
8032             unsigned long min = e->start;
8033             unsigned long max = e->end;
8034             int flags = page_get_flags(h2g(min));
8035             const char *path;
8036 
8037             max = h2g_valid(max - 1) ?
8038                 max : (uintptr_t) g2h_untagged(GUEST_ADDR_MAX) + 1;
8039 
8040             if (page_check_range(h2g(min), max - min, flags) == -1) {
8041                 continue;
8042             }
8043 
8044             if (h2g(min) == ts->info->stack_limit) {
8045                 path = "[stack]";
8046             } else {
8047                 path = e->path;
8048             }
8049 
8050             count = dprintf(fd, TARGET_ABI_FMT_ptr "-" TARGET_ABI_FMT_ptr
8051                             " %c%c%c%c %08" PRIx64 " %s %"PRId64,
8052                             h2g(min), h2g(max - 1) + 1,
8053                             (flags & PAGE_READ) ? 'r' : '-',
8054                             (flags & PAGE_WRITE_ORG) ? 'w' : '-',
8055                             (flags & PAGE_EXEC) ? 'x' : '-',
8056                             e->is_priv ? 'p' : 's',
8057                             (uint64_t) e->offset, e->dev, e->inode);
8058             if (path) {
8059                 dprintf(fd, "%*s%s\n", 73 - count, "", path);
8060             } else {
8061                 dprintf(fd, "\n");
8062             }
8063         }
8064     }
8065 
8066     free_self_maps(map_info);
8067 
8068 #ifdef TARGET_VSYSCALL_PAGE
8069     /*
8070      * We only support execution from the vsyscall page.
8071      * This is as if CONFIG_LEGACY_VSYSCALL_XONLY=y from v5.3.
8072      */
8073     count = dprintf(fd, TARGET_FMT_lx "-" TARGET_FMT_lx
8074                     " --xp 00000000 00:00 0",
8075                     TARGET_VSYSCALL_PAGE, TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE);
8076     dprintf(fd, "%*s%s\n", 73 - count, "",  "[vsyscall]");
8077 #endif
8078 
8079     return 0;
8080 }
8081 
8082 static int open_self_stat(void *cpu_env, int fd)
8083 {
8084     CPUState *cpu = env_cpu((CPUArchState *)cpu_env);
8085     TaskState *ts = cpu->opaque;
8086     g_autoptr(GString) buf = g_string_new(NULL);
8087     int i;
8088 
8089     for (i = 0; i < 44; i++) {
8090         if (i == 0) {
8091             /* pid */
8092             g_string_printf(buf, FMT_pid " ", getpid());
8093         } else if (i == 1) {
8094             /* app name */
8095             gchar *bin = g_strrstr(ts->bprm->argv[0], "/");
8096             bin = bin ? bin + 1 : ts->bprm->argv[0];
8097             g_string_printf(buf, "(%.15s) ", bin);
8098         } else if (i == 3) {
8099             /* ppid */
8100             g_string_printf(buf, FMT_pid " ", getppid());
8101         } else if (i == 27) {
8102             /* stack bottom */
8103             g_string_printf(buf, TARGET_ABI_FMT_ld " ", ts->info->start_stack);
8104         } else {
8105             /* for the rest, there is MasterCard */
8106             g_string_printf(buf, "0%c", i == 43 ? '\n' : ' ');
8107         }
8108 
8109         if (write(fd, buf->str, buf->len) != buf->len) {
8110             return -1;
8111         }
8112     }
8113 
8114     return 0;
8115 }
8116 
8117 static int open_self_auxv(void *cpu_env, int fd)
8118 {
8119     CPUState *cpu = env_cpu((CPUArchState *)cpu_env);
8120     TaskState *ts = cpu->opaque;
8121     abi_ulong auxv = ts->info->saved_auxv;
8122     abi_ulong len = ts->info->auxv_len;
8123     char *ptr;
8124 
8125     /*
8126      * Auxiliary vector is stored in target process stack.
8127      * read in whole auxv vector and copy it to file
8128      */
8129     ptr = lock_user(VERIFY_READ, auxv, len, 0);
8130     if (ptr != NULL) {
8131         while (len > 0) {
8132             ssize_t r;
8133             r = write(fd, ptr, len);
8134             if (r <= 0) {
8135                 break;
8136             }
8137             len -= r;
8138             ptr += r;
8139         }
8140         lseek(fd, 0, SEEK_SET);
8141         unlock_user(ptr, auxv, len);
8142     }
8143 
8144     return 0;
8145 }
8146 
8147 static int is_proc_myself(const char *filename, const char *entry)
8148 {
8149     if (!strncmp(filename, "/proc/", strlen("/proc/"))) {
8150         filename += strlen("/proc/");
8151         if (!strncmp(filename, "self/", strlen("self/"))) {
8152             filename += strlen("self/");
8153         } else if (*filename >= '1' && *filename <= '9') {
8154             char myself[80];
8155             snprintf(myself, sizeof(myself), "%d/", getpid());
8156             if (!strncmp(filename, myself, strlen(myself))) {
8157                 filename += strlen(myself);
8158             } else {
8159                 return 0;
8160             }
8161         } else {
8162             return 0;
8163         }
8164         if (!strcmp(filename, entry)) {
8165             return 1;
8166         }
8167     }
8168     return 0;
8169 }
8170 
8171 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) || \
8172     defined(TARGET_SPARC) || defined(TARGET_M68K) || defined(TARGET_HPPA)
8173 static int is_proc(const char *filename, const char *entry)
8174 {
8175     return strcmp(filename, entry) == 0;
8176 }
8177 #endif
8178 
8179 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
8180 static int open_net_route(void *cpu_env, int fd)
8181 {
8182     FILE *fp;
8183     char *line = NULL;
8184     size_t len = 0;
8185     ssize_t read;
8186 
8187     fp = fopen("/proc/net/route", "r");
8188     if (fp == NULL) {
8189         return -1;
8190     }
8191 
8192     /* read header */
8193 
8194     read = getline(&line, &len, fp);
8195     dprintf(fd, "%s", line);
8196 
8197     /* read routes */
8198 
8199     while ((read = getline(&line, &len, fp)) != -1) {
8200         char iface[16];
8201         uint32_t dest, gw, mask;
8202         unsigned int flags, refcnt, use, metric, mtu, window, irtt;
8203         int fields;
8204 
8205         fields = sscanf(line,
8206                         "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8207                         iface, &dest, &gw, &flags, &refcnt, &use, &metric,
8208                         &mask, &mtu, &window, &irtt);
8209         if (fields != 11) {
8210             continue;
8211         }
8212         dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8213                 iface, tswap32(dest), tswap32(gw), flags, refcnt, use,
8214                 metric, tswap32(mask), mtu, window, irtt);
8215     }
8216 
8217     free(line);
8218     fclose(fp);
8219 
8220     return 0;
8221 }
8222 #endif
8223 
8224 #if defined(TARGET_SPARC)
8225 static int open_cpuinfo(void *cpu_env, int fd)
8226 {
8227     dprintf(fd, "type\t\t: sun4u\n");
8228     return 0;
8229 }
8230 #endif
8231 
8232 #if defined(TARGET_HPPA)
8233 static int open_cpuinfo(void *cpu_env, int fd)
8234 {
8235     dprintf(fd, "cpu family\t: PA-RISC 1.1e\n");
8236     dprintf(fd, "cpu\t\t: PA7300LC (PCX-L2)\n");
8237     dprintf(fd, "capabilities\t: os32\n");
8238     dprintf(fd, "model\t\t: 9000/778/B160L\n");
8239     dprintf(fd, "model name\t: Merlin L2 160 QEMU (9000/778/B160L)\n");
8240     return 0;
8241 }
8242 #endif
8243 
8244 #if defined(TARGET_M68K)
8245 static int open_hardware(void *cpu_env, int fd)
8246 {
8247     dprintf(fd, "Model:\t\tqemu-m68k\n");
8248     return 0;
8249 }
8250 #endif
8251 
8252 static int do_openat(void *cpu_env, int dirfd, const char *pathname, int flags, mode_t mode)
8253 {
8254     struct fake_open {
8255         const char *filename;
8256         int (*fill)(void *cpu_env, int fd);
8257         int (*cmp)(const char *s1, const char *s2);
8258     };
8259     const struct fake_open *fake_open;
8260     static const struct fake_open fakes[] = {
8261         { "maps", open_self_maps, is_proc_myself },
8262         { "stat", open_self_stat, is_proc_myself },
8263         { "auxv", open_self_auxv, is_proc_myself },
8264         { "cmdline", open_self_cmdline, is_proc_myself },
8265 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
8266         { "/proc/net/route", open_net_route, is_proc },
8267 #endif
8268 #if defined(TARGET_SPARC) || defined(TARGET_HPPA)
8269         { "/proc/cpuinfo", open_cpuinfo, is_proc },
8270 #endif
8271 #if defined(TARGET_M68K)
8272         { "/proc/hardware", open_hardware, is_proc },
8273 #endif
8274         { NULL, NULL, NULL }
8275     };
8276 
8277     if (is_proc_myself(pathname, "exe")) {
8278         int execfd = qemu_getauxval(AT_EXECFD);
8279         return execfd ? execfd : safe_openat(dirfd, exec_path, flags, mode);
8280     }
8281 
8282     for (fake_open = fakes; fake_open->filename; fake_open++) {
8283         if (fake_open->cmp(pathname, fake_open->filename)) {
8284             break;
8285         }
8286     }
8287 
8288     if (fake_open->filename) {
8289         const char *tmpdir;
8290         char filename[PATH_MAX];
8291         int fd, r;
8292 
8293         /* create temporary file to map stat to */
8294         tmpdir = getenv("TMPDIR");
8295         if (!tmpdir)
8296             tmpdir = "/tmp";
8297         snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir);
8298         fd = mkstemp(filename);
8299         if (fd < 0) {
8300             return fd;
8301         }
8302         unlink(filename);
8303 
8304         if ((r = fake_open->fill(cpu_env, fd))) {
8305             int e = errno;
8306             close(fd);
8307             errno = e;
8308             return r;
8309         }
8310         lseek(fd, 0, SEEK_SET);
8311 
8312         return fd;
8313     }
8314 
8315     return safe_openat(dirfd, path(pathname), flags, mode);
8316 }
8317 
8318 #define TIMER_MAGIC 0x0caf0000
8319 #define TIMER_MAGIC_MASK 0xffff0000
8320 
8321 /* Convert QEMU provided timer ID back to internal 16bit index format */
8322 static target_timer_t get_timer_id(abi_long arg)
8323 {
8324     target_timer_t timerid = arg;
8325 
8326     if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) {
8327         return -TARGET_EINVAL;
8328     }
8329 
8330     timerid &= 0xffff;
8331 
8332     if (timerid >= ARRAY_SIZE(g_posix_timers)) {
8333         return -TARGET_EINVAL;
8334     }
8335 
8336     return timerid;
8337 }
8338 
8339 static int target_to_host_cpu_mask(unsigned long *host_mask,
8340                                    size_t host_size,
8341                                    abi_ulong target_addr,
8342                                    size_t target_size)
8343 {
8344     unsigned target_bits = sizeof(abi_ulong) * 8;
8345     unsigned host_bits = sizeof(*host_mask) * 8;
8346     abi_ulong *target_mask;
8347     unsigned i, j;
8348 
8349     assert(host_size >= target_size);
8350 
8351     target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1);
8352     if (!target_mask) {
8353         return -TARGET_EFAULT;
8354     }
8355     memset(host_mask, 0, host_size);
8356 
8357     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8358         unsigned bit = i * target_bits;
8359         abi_ulong val;
8360 
8361         __get_user(val, &target_mask[i]);
8362         for (j = 0; j < target_bits; j++, bit++) {
8363             if (val & (1UL << j)) {
8364                 host_mask[bit / host_bits] |= 1UL << (bit % host_bits);
8365             }
8366         }
8367     }
8368 
8369     unlock_user(target_mask, target_addr, 0);
8370     return 0;
8371 }
8372 
8373 static int host_to_target_cpu_mask(const unsigned long *host_mask,
8374                                    size_t host_size,
8375                                    abi_ulong target_addr,
8376                                    size_t target_size)
8377 {
8378     unsigned target_bits = sizeof(abi_ulong) * 8;
8379     unsigned host_bits = sizeof(*host_mask) * 8;
8380     abi_ulong *target_mask;
8381     unsigned i, j;
8382 
8383     assert(host_size >= target_size);
8384 
8385     target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0);
8386     if (!target_mask) {
8387         return -TARGET_EFAULT;
8388     }
8389 
8390     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8391         unsigned bit = i * target_bits;
8392         abi_ulong val = 0;
8393 
8394         for (j = 0; j < target_bits; j++, bit++) {
8395             if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) {
8396                 val |= 1UL << j;
8397             }
8398         }
8399         __put_user(val, &target_mask[i]);
8400     }
8401 
8402     unlock_user(target_mask, target_addr, target_size);
8403     return 0;
8404 }
8405 
8406 #ifdef TARGET_NR_getdents
8407 static int do_getdents(abi_long dirfd, abi_long arg2, abi_long count)
8408 {
8409     g_autofree void *hdirp = NULL;
8410     void *tdirp;
8411     int hlen, hoff, toff;
8412     int hreclen, treclen;
8413     off64_t prev_diroff = 0;
8414 
8415     hdirp = g_try_malloc(count);
8416     if (!hdirp) {
8417         return -TARGET_ENOMEM;
8418     }
8419 
8420 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8421     hlen = sys_getdents(dirfd, hdirp, count);
8422 #else
8423     hlen = sys_getdents64(dirfd, hdirp, count);
8424 #endif
8425 
8426     hlen = get_errno(hlen);
8427     if (is_error(hlen)) {
8428         return hlen;
8429     }
8430 
8431     tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8432     if (!tdirp) {
8433         return -TARGET_EFAULT;
8434     }
8435 
8436     for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8437 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8438         struct linux_dirent *hde = hdirp + hoff;
8439 #else
8440         struct linux_dirent64 *hde = hdirp + hoff;
8441 #endif
8442         struct target_dirent *tde = tdirp + toff;
8443         int namelen;
8444         uint8_t type;
8445 
8446         namelen = strlen(hde->d_name);
8447         hreclen = hde->d_reclen;
8448         treclen = offsetof(struct target_dirent, d_name) + namelen + 2;
8449         treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent));
8450 
8451         if (toff + treclen > count) {
8452             /*
8453              * If the host struct is smaller than the target struct, or
8454              * requires less alignment and thus packs into less space,
8455              * then the host can return more entries than we can pass
8456              * on to the guest.
8457              */
8458             if (toff == 0) {
8459                 toff = -TARGET_EINVAL; /* result buffer is too small */
8460                 break;
8461             }
8462             /*
8463              * Return what we have, resetting the file pointer to the
8464              * location of the first record not returned.
8465              */
8466             lseek64(dirfd, prev_diroff, SEEK_SET);
8467             break;
8468         }
8469 
8470         prev_diroff = hde->d_off;
8471         tde->d_ino = tswapal(hde->d_ino);
8472         tde->d_off = tswapal(hde->d_off);
8473         tde->d_reclen = tswap16(treclen);
8474         memcpy(tde->d_name, hde->d_name, namelen + 1);
8475 
8476         /*
8477          * The getdents type is in what was formerly a padding byte at the
8478          * end of the structure.
8479          */
8480 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8481         type = *((uint8_t *)hde + hreclen - 1);
8482 #else
8483         type = hde->d_type;
8484 #endif
8485         *((uint8_t *)tde + treclen - 1) = type;
8486     }
8487 
8488     unlock_user(tdirp, arg2, toff);
8489     return toff;
8490 }
8491 #endif /* TARGET_NR_getdents */
8492 
8493 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
8494 static int do_getdents64(abi_long dirfd, abi_long arg2, abi_long count)
8495 {
8496     g_autofree void *hdirp = NULL;
8497     void *tdirp;
8498     int hlen, hoff, toff;
8499     int hreclen, treclen;
8500     off64_t prev_diroff = 0;
8501 
8502     hdirp = g_try_malloc(count);
8503     if (!hdirp) {
8504         return -TARGET_ENOMEM;
8505     }
8506 
8507     hlen = get_errno(sys_getdents64(dirfd, hdirp, count));
8508     if (is_error(hlen)) {
8509         return hlen;
8510     }
8511 
8512     tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8513     if (!tdirp) {
8514         return -TARGET_EFAULT;
8515     }
8516 
8517     for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8518         struct linux_dirent64 *hde = hdirp + hoff;
8519         struct target_dirent64 *tde = tdirp + toff;
8520         int namelen;
8521 
8522         namelen = strlen(hde->d_name) + 1;
8523         hreclen = hde->d_reclen;
8524         treclen = offsetof(struct target_dirent64, d_name) + namelen;
8525         treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent64));
8526 
8527         if (toff + treclen > count) {
8528             /*
8529              * If the host struct is smaller than the target struct, or
8530              * requires less alignment and thus packs into less space,
8531              * then the host can return more entries than we can pass
8532              * on to the guest.
8533              */
8534             if (toff == 0) {
8535                 toff = -TARGET_EINVAL; /* result buffer is too small */
8536                 break;
8537             }
8538             /*
8539              * Return what we have, resetting the file pointer to the
8540              * location of the first record not returned.
8541              */
8542             lseek64(dirfd, prev_diroff, SEEK_SET);
8543             break;
8544         }
8545 
8546         prev_diroff = hde->d_off;
8547         tde->d_ino = tswap64(hde->d_ino);
8548         tde->d_off = tswap64(hde->d_off);
8549         tde->d_reclen = tswap16(treclen);
8550         tde->d_type = hde->d_type;
8551         memcpy(tde->d_name, hde->d_name, namelen);
8552     }
8553 
8554     unlock_user(tdirp, arg2, toff);
8555     return toff;
8556 }
8557 #endif /* TARGET_NR_getdents64 */
8558 
8559 #if defined(TARGET_NR_pivot_root) && defined(__NR_pivot_root)
8560 _syscall2(int, pivot_root, const char *, new_root, const char *, put_old)
8561 #endif
8562 
8563 /* This is an internal helper for do_syscall so that it is easier
8564  * to have a single return point, so that actions, such as logging
8565  * of syscall results, can be performed.
8566  * All errnos that do_syscall() returns must be -TARGET_<errcode>.
8567  */
8568 static abi_long do_syscall1(void *cpu_env, int num, abi_long arg1,
8569                             abi_long arg2, abi_long arg3, abi_long arg4,
8570                             abi_long arg5, abi_long arg6, abi_long arg7,
8571                             abi_long arg8)
8572 {
8573     CPUState *cpu = env_cpu(cpu_env);
8574     abi_long ret;
8575 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \
8576     || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \
8577     || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \
8578     || defined(TARGET_NR_statx)
8579     struct stat st;
8580 #endif
8581 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \
8582     || defined(TARGET_NR_fstatfs)
8583     struct statfs stfs;
8584 #endif
8585     void *p;
8586 
8587     switch(num) {
8588     case TARGET_NR_exit:
8589         /* In old applications this may be used to implement _exit(2).
8590            However in threaded applications it is used for thread termination,
8591            and _exit_group is used for application termination.
8592            Do thread termination if we have more then one thread.  */
8593 
8594         if (block_signals()) {
8595             return -QEMU_ERESTARTSYS;
8596         }
8597 
8598         pthread_mutex_lock(&clone_lock);
8599 
8600         if (CPU_NEXT(first_cpu)) {
8601             TaskState *ts = cpu->opaque;
8602 
8603             object_property_set_bool(OBJECT(cpu), "realized", false, NULL);
8604             object_unref(OBJECT(cpu));
8605             /*
8606              * At this point the CPU should be unrealized and removed
8607              * from cpu lists. We can clean-up the rest of the thread
8608              * data without the lock held.
8609              */
8610 
8611             pthread_mutex_unlock(&clone_lock);
8612 
8613             if (ts->child_tidptr) {
8614                 put_user_u32(0, ts->child_tidptr);
8615                 do_sys_futex(g2h(cpu, ts->child_tidptr),
8616                              FUTEX_WAKE, INT_MAX, NULL, NULL, 0);
8617             }
8618             thread_cpu = NULL;
8619             g_free(ts);
8620             rcu_unregister_thread();
8621             pthread_exit(NULL);
8622         }
8623 
8624         pthread_mutex_unlock(&clone_lock);
8625         preexit_cleanup(cpu_env, arg1);
8626         _exit(arg1);
8627         return 0; /* avoid warning */
8628     case TARGET_NR_read:
8629         if (arg2 == 0 && arg3 == 0) {
8630             return get_errno(safe_read(arg1, 0, 0));
8631         } else {
8632             if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
8633                 return -TARGET_EFAULT;
8634             ret = get_errno(safe_read(arg1, p, arg3));
8635             if (ret >= 0 &&
8636                 fd_trans_host_to_target_data(arg1)) {
8637                 ret = fd_trans_host_to_target_data(arg1)(p, ret);
8638             }
8639             unlock_user(p, arg2, ret);
8640         }
8641         return ret;
8642     case TARGET_NR_write:
8643         if (arg2 == 0 && arg3 == 0) {
8644             return get_errno(safe_write(arg1, 0, 0));
8645         }
8646         if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
8647             return -TARGET_EFAULT;
8648         if (fd_trans_target_to_host_data(arg1)) {
8649             void *copy = g_malloc(arg3);
8650             memcpy(copy, p, arg3);
8651             ret = fd_trans_target_to_host_data(arg1)(copy, arg3);
8652             if (ret >= 0) {
8653                 ret = get_errno(safe_write(arg1, copy, ret));
8654             }
8655             g_free(copy);
8656         } else {
8657             ret = get_errno(safe_write(arg1, p, arg3));
8658         }
8659         unlock_user(p, arg2, 0);
8660         return ret;
8661 
8662 #ifdef TARGET_NR_open
8663     case TARGET_NR_open:
8664         if (!(p = lock_user_string(arg1)))
8665             return -TARGET_EFAULT;
8666         ret = get_errno(do_openat(cpu_env, AT_FDCWD, p,
8667                                   target_to_host_bitmask(arg2, fcntl_flags_tbl),
8668                                   arg3));
8669         fd_trans_unregister(ret);
8670         unlock_user(p, arg1, 0);
8671         return ret;
8672 #endif
8673     case TARGET_NR_openat:
8674         if (!(p = lock_user_string(arg2)))
8675             return -TARGET_EFAULT;
8676         ret = get_errno(do_openat(cpu_env, arg1, p,
8677                                   target_to_host_bitmask(arg3, fcntl_flags_tbl),
8678                                   arg4));
8679         fd_trans_unregister(ret);
8680         unlock_user(p, arg2, 0);
8681         return ret;
8682 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
8683     case TARGET_NR_name_to_handle_at:
8684         ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5);
8685         return ret;
8686 #endif
8687 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
8688     case TARGET_NR_open_by_handle_at:
8689         ret = do_open_by_handle_at(arg1, arg2, arg3);
8690         fd_trans_unregister(ret);
8691         return ret;
8692 #endif
8693     case TARGET_NR_close:
8694         fd_trans_unregister(arg1);
8695         return get_errno(close(arg1));
8696 
8697     case TARGET_NR_brk:
8698         return do_brk(arg1);
8699 #ifdef TARGET_NR_fork
8700     case TARGET_NR_fork:
8701         return get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0));
8702 #endif
8703 #ifdef TARGET_NR_waitpid
8704     case TARGET_NR_waitpid:
8705         {
8706             int status;
8707             ret = get_errno(safe_wait4(arg1, &status, arg3, 0));
8708             if (!is_error(ret) && arg2 && ret
8709                 && put_user_s32(host_to_target_waitstatus(status), arg2))
8710                 return -TARGET_EFAULT;
8711         }
8712         return ret;
8713 #endif
8714 #ifdef TARGET_NR_waitid
8715     case TARGET_NR_waitid:
8716         {
8717             siginfo_t info;
8718             info.si_pid = 0;
8719             ret = get_errno(safe_waitid(arg1, arg2, &info, arg4, NULL));
8720             if (!is_error(ret) && arg3 && info.si_pid != 0) {
8721                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0)))
8722                     return -TARGET_EFAULT;
8723                 host_to_target_siginfo(p, &info);
8724                 unlock_user(p, arg3, sizeof(target_siginfo_t));
8725             }
8726         }
8727         return ret;
8728 #endif
8729 #ifdef TARGET_NR_creat /* not on alpha */
8730     case TARGET_NR_creat:
8731         if (!(p = lock_user_string(arg1)))
8732             return -TARGET_EFAULT;
8733         ret = get_errno(creat(p, arg2));
8734         fd_trans_unregister(ret);
8735         unlock_user(p, arg1, 0);
8736         return ret;
8737 #endif
8738 #ifdef TARGET_NR_link
8739     case TARGET_NR_link:
8740         {
8741             void * p2;
8742             p = lock_user_string(arg1);
8743             p2 = lock_user_string(arg2);
8744             if (!p || !p2)
8745                 ret = -TARGET_EFAULT;
8746             else
8747                 ret = get_errno(link(p, p2));
8748             unlock_user(p2, arg2, 0);
8749             unlock_user(p, arg1, 0);
8750         }
8751         return ret;
8752 #endif
8753 #if defined(TARGET_NR_linkat)
8754     case TARGET_NR_linkat:
8755         {
8756             void * p2 = NULL;
8757             if (!arg2 || !arg4)
8758                 return -TARGET_EFAULT;
8759             p  = lock_user_string(arg2);
8760             p2 = lock_user_string(arg4);
8761             if (!p || !p2)
8762                 ret = -TARGET_EFAULT;
8763             else
8764                 ret = get_errno(linkat(arg1, p, arg3, p2, arg5));
8765             unlock_user(p, arg2, 0);
8766             unlock_user(p2, arg4, 0);
8767         }
8768         return ret;
8769 #endif
8770 #ifdef TARGET_NR_unlink
8771     case TARGET_NR_unlink:
8772         if (!(p = lock_user_string(arg1)))
8773             return -TARGET_EFAULT;
8774         ret = get_errno(unlink(p));
8775         unlock_user(p, arg1, 0);
8776         return ret;
8777 #endif
8778 #if defined(TARGET_NR_unlinkat)
8779     case TARGET_NR_unlinkat:
8780         if (!(p = lock_user_string(arg2)))
8781             return -TARGET_EFAULT;
8782         ret = get_errno(unlinkat(arg1, p, arg3));
8783         unlock_user(p, arg2, 0);
8784         return ret;
8785 #endif
8786     case TARGET_NR_execve:
8787         {
8788             char **argp, **envp;
8789             int argc, envc;
8790             abi_ulong gp;
8791             abi_ulong guest_argp;
8792             abi_ulong guest_envp;
8793             abi_ulong addr;
8794             char **q;
8795 
8796             argc = 0;
8797             guest_argp = arg2;
8798             for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) {
8799                 if (get_user_ual(addr, gp))
8800                     return -TARGET_EFAULT;
8801                 if (!addr)
8802                     break;
8803                 argc++;
8804             }
8805             envc = 0;
8806             guest_envp = arg3;
8807             for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) {
8808                 if (get_user_ual(addr, gp))
8809                     return -TARGET_EFAULT;
8810                 if (!addr)
8811                     break;
8812                 envc++;
8813             }
8814 
8815             argp = g_new0(char *, argc + 1);
8816             envp = g_new0(char *, envc + 1);
8817 
8818             for (gp = guest_argp, q = argp; gp;
8819                   gp += sizeof(abi_ulong), q++) {
8820                 if (get_user_ual(addr, gp))
8821                     goto execve_efault;
8822                 if (!addr)
8823                     break;
8824                 if (!(*q = lock_user_string(addr)))
8825                     goto execve_efault;
8826             }
8827             *q = NULL;
8828 
8829             for (gp = guest_envp, q = envp; gp;
8830                   gp += sizeof(abi_ulong), q++) {
8831                 if (get_user_ual(addr, gp))
8832                     goto execve_efault;
8833                 if (!addr)
8834                     break;
8835                 if (!(*q = lock_user_string(addr)))
8836                     goto execve_efault;
8837             }
8838             *q = NULL;
8839 
8840             if (!(p = lock_user_string(arg1)))
8841                 goto execve_efault;
8842             /* Although execve() is not an interruptible syscall it is
8843              * a special case where we must use the safe_syscall wrapper:
8844              * if we allow a signal to happen before we make the host
8845              * syscall then we will 'lose' it, because at the point of
8846              * execve the process leaves QEMU's control. So we use the
8847              * safe syscall wrapper to ensure that we either take the
8848              * signal as a guest signal, or else it does not happen
8849              * before the execve completes and makes it the other
8850              * program's problem.
8851              */
8852             ret = get_errno(safe_execve(p, argp, envp));
8853             unlock_user(p, arg1, 0);
8854 
8855             goto execve_end;
8856 
8857         execve_efault:
8858             ret = -TARGET_EFAULT;
8859 
8860         execve_end:
8861             for (gp = guest_argp, q = argp; *q;
8862                   gp += sizeof(abi_ulong), q++) {
8863                 if (get_user_ual(addr, gp)
8864                     || !addr)
8865                     break;
8866                 unlock_user(*q, addr, 0);
8867             }
8868             for (gp = guest_envp, q = envp; *q;
8869                   gp += sizeof(abi_ulong), q++) {
8870                 if (get_user_ual(addr, gp)
8871                     || !addr)
8872                     break;
8873                 unlock_user(*q, addr, 0);
8874             }
8875 
8876             g_free(argp);
8877             g_free(envp);
8878         }
8879         return ret;
8880     case TARGET_NR_chdir:
8881         if (!(p = lock_user_string(arg1)))
8882             return -TARGET_EFAULT;
8883         ret = get_errno(chdir(p));
8884         unlock_user(p, arg1, 0);
8885         return ret;
8886 #ifdef TARGET_NR_time
8887     case TARGET_NR_time:
8888         {
8889             time_t host_time;
8890             ret = get_errno(time(&host_time));
8891             if (!is_error(ret)
8892                 && arg1
8893                 && put_user_sal(host_time, arg1))
8894                 return -TARGET_EFAULT;
8895         }
8896         return ret;
8897 #endif
8898 #ifdef TARGET_NR_mknod
8899     case TARGET_NR_mknod:
8900         if (!(p = lock_user_string(arg1)))
8901             return -TARGET_EFAULT;
8902         ret = get_errno(mknod(p, arg2, arg3));
8903         unlock_user(p, arg1, 0);
8904         return ret;
8905 #endif
8906 #if defined(TARGET_NR_mknodat)
8907     case TARGET_NR_mknodat:
8908         if (!(p = lock_user_string(arg2)))
8909             return -TARGET_EFAULT;
8910         ret = get_errno(mknodat(arg1, p, arg3, arg4));
8911         unlock_user(p, arg2, 0);
8912         return ret;
8913 #endif
8914 #ifdef TARGET_NR_chmod
8915     case TARGET_NR_chmod:
8916         if (!(p = lock_user_string(arg1)))
8917             return -TARGET_EFAULT;
8918         ret = get_errno(chmod(p, arg2));
8919         unlock_user(p, arg1, 0);
8920         return ret;
8921 #endif
8922 #ifdef TARGET_NR_lseek
8923     case TARGET_NR_lseek:
8924         return get_errno(lseek(arg1, arg2, arg3));
8925 #endif
8926 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
8927     /* Alpha specific */
8928     case TARGET_NR_getxpid:
8929         ((CPUAlphaState *)cpu_env)->ir[IR_A4] = getppid();
8930         return get_errno(getpid());
8931 #endif
8932 #ifdef TARGET_NR_getpid
8933     case TARGET_NR_getpid:
8934         return get_errno(getpid());
8935 #endif
8936     case TARGET_NR_mount:
8937         {
8938             /* need to look at the data field */
8939             void *p2, *p3;
8940 
8941             if (arg1) {
8942                 p = lock_user_string(arg1);
8943                 if (!p) {
8944                     return -TARGET_EFAULT;
8945                 }
8946             } else {
8947                 p = NULL;
8948             }
8949 
8950             p2 = lock_user_string(arg2);
8951             if (!p2) {
8952                 if (arg1) {
8953                     unlock_user(p, arg1, 0);
8954                 }
8955                 return -TARGET_EFAULT;
8956             }
8957 
8958             if (arg3) {
8959                 p3 = lock_user_string(arg3);
8960                 if (!p3) {
8961                     if (arg1) {
8962                         unlock_user(p, arg1, 0);
8963                     }
8964                     unlock_user(p2, arg2, 0);
8965                     return -TARGET_EFAULT;
8966                 }
8967             } else {
8968                 p3 = NULL;
8969             }
8970 
8971             /* FIXME - arg5 should be locked, but it isn't clear how to
8972              * do that since it's not guaranteed to be a NULL-terminated
8973              * string.
8974              */
8975             if (!arg5) {
8976                 ret = mount(p, p2, p3, (unsigned long)arg4, NULL);
8977             } else {
8978                 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(cpu, arg5));
8979             }
8980             ret = get_errno(ret);
8981 
8982             if (arg1) {
8983                 unlock_user(p, arg1, 0);
8984             }
8985             unlock_user(p2, arg2, 0);
8986             if (arg3) {
8987                 unlock_user(p3, arg3, 0);
8988             }
8989         }
8990         return ret;
8991 #if defined(TARGET_NR_umount) || defined(TARGET_NR_oldumount)
8992 #if defined(TARGET_NR_umount)
8993     case TARGET_NR_umount:
8994 #endif
8995 #if defined(TARGET_NR_oldumount)
8996     case TARGET_NR_oldumount:
8997 #endif
8998         if (!(p = lock_user_string(arg1)))
8999             return -TARGET_EFAULT;
9000         ret = get_errno(umount(p));
9001         unlock_user(p, arg1, 0);
9002         return ret;
9003 #endif
9004 #ifdef TARGET_NR_stime /* not on alpha */
9005     case TARGET_NR_stime:
9006         {
9007             struct timespec ts;
9008             ts.tv_nsec = 0;
9009             if (get_user_sal(ts.tv_sec, arg1)) {
9010                 return -TARGET_EFAULT;
9011             }
9012             return get_errno(clock_settime(CLOCK_REALTIME, &ts));
9013         }
9014 #endif
9015 #ifdef TARGET_NR_alarm /* not on alpha */
9016     case TARGET_NR_alarm:
9017         return alarm(arg1);
9018 #endif
9019 #ifdef TARGET_NR_pause /* not on alpha */
9020     case TARGET_NR_pause:
9021         if (!block_signals()) {
9022             sigsuspend(&((TaskState *)cpu->opaque)->signal_mask);
9023         }
9024         return -TARGET_EINTR;
9025 #endif
9026 #ifdef TARGET_NR_utime
9027     case TARGET_NR_utime:
9028         {
9029             struct utimbuf tbuf, *host_tbuf;
9030             struct target_utimbuf *target_tbuf;
9031             if (arg2) {
9032                 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1))
9033                     return -TARGET_EFAULT;
9034                 tbuf.actime = tswapal(target_tbuf->actime);
9035                 tbuf.modtime = tswapal(target_tbuf->modtime);
9036                 unlock_user_struct(target_tbuf, arg2, 0);
9037                 host_tbuf = &tbuf;
9038             } else {
9039                 host_tbuf = NULL;
9040             }
9041             if (!(p = lock_user_string(arg1)))
9042                 return -TARGET_EFAULT;
9043             ret = get_errno(utime(p, host_tbuf));
9044             unlock_user(p, arg1, 0);
9045         }
9046         return ret;
9047 #endif
9048 #ifdef TARGET_NR_utimes
9049     case TARGET_NR_utimes:
9050         {
9051             struct timeval *tvp, tv[2];
9052             if (arg2) {
9053                 if (copy_from_user_timeval(&tv[0], arg2)
9054                     || copy_from_user_timeval(&tv[1],
9055                                               arg2 + sizeof(struct target_timeval)))
9056                     return -TARGET_EFAULT;
9057                 tvp = tv;
9058             } else {
9059                 tvp = NULL;
9060             }
9061             if (!(p = lock_user_string(arg1)))
9062                 return -TARGET_EFAULT;
9063             ret = get_errno(utimes(p, tvp));
9064             unlock_user(p, arg1, 0);
9065         }
9066         return ret;
9067 #endif
9068 #if defined(TARGET_NR_futimesat)
9069     case TARGET_NR_futimesat:
9070         {
9071             struct timeval *tvp, tv[2];
9072             if (arg3) {
9073                 if (copy_from_user_timeval(&tv[0], arg3)
9074                     || copy_from_user_timeval(&tv[1],
9075                                               arg3 + sizeof(struct target_timeval)))
9076                     return -TARGET_EFAULT;
9077                 tvp = tv;
9078             } else {
9079                 tvp = NULL;
9080             }
9081             if (!(p = lock_user_string(arg2))) {
9082                 return -TARGET_EFAULT;
9083             }
9084             ret = get_errno(futimesat(arg1, path(p), tvp));
9085             unlock_user(p, arg2, 0);
9086         }
9087         return ret;
9088 #endif
9089 #ifdef TARGET_NR_access
9090     case TARGET_NR_access:
9091         if (!(p = lock_user_string(arg1))) {
9092             return -TARGET_EFAULT;
9093         }
9094         ret = get_errno(access(path(p), arg2));
9095         unlock_user(p, arg1, 0);
9096         return ret;
9097 #endif
9098 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
9099     case TARGET_NR_faccessat:
9100         if (!(p = lock_user_string(arg2))) {
9101             return -TARGET_EFAULT;
9102         }
9103         ret = get_errno(faccessat(arg1, p, arg3, 0));
9104         unlock_user(p, arg2, 0);
9105         return ret;
9106 #endif
9107 #ifdef TARGET_NR_nice /* not on alpha */
9108     case TARGET_NR_nice:
9109         return get_errno(nice(arg1));
9110 #endif
9111     case TARGET_NR_sync:
9112         sync();
9113         return 0;
9114 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS)
9115     case TARGET_NR_syncfs:
9116         return get_errno(syncfs(arg1));
9117 #endif
9118     case TARGET_NR_kill:
9119         return get_errno(safe_kill(arg1, target_to_host_signal(arg2)));
9120 #ifdef TARGET_NR_rename
9121     case TARGET_NR_rename:
9122         {
9123             void *p2;
9124             p = lock_user_string(arg1);
9125             p2 = lock_user_string(arg2);
9126             if (!p || !p2)
9127                 ret = -TARGET_EFAULT;
9128             else
9129                 ret = get_errno(rename(p, p2));
9130             unlock_user(p2, arg2, 0);
9131             unlock_user(p, arg1, 0);
9132         }
9133         return ret;
9134 #endif
9135 #if defined(TARGET_NR_renameat)
9136     case TARGET_NR_renameat:
9137         {
9138             void *p2;
9139             p  = lock_user_string(arg2);
9140             p2 = lock_user_string(arg4);
9141             if (!p || !p2)
9142                 ret = -TARGET_EFAULT;
9143             else
9144                 ret = get_errno(renameat(arg1, p, arg3, p2));
9145             unlock_user(p2, arg4, 0);
9146             unlock_user(p, arg2, 0);
9147         }
9148         return ret;
9149 #endif
9150 #if defined(TARGET_NR_renameat2)
9151     case TARGET_NR_renameat2:
9152         {
9153             void *p2;
9154             p  = lock_user_string(arg2);
9155             p2 = lock_user_string(arg4);
9156             if (!p || !p2) {
9157                 ret = -TARGET_EFAULT;
9158             } else {
9159                 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5));
9160             }
9161             unlock_user(p2, arg4, 0);
9162             unlock_user(p, arg2, 0);
9163         }
9164         return ret;
9165 #endif
9166 #ifdef TARGET_NR_mkdir
9167     case TARGET_NR_mkdir:
9168         if (!(p = lock_user_string(arg1)))
9169             return -TARGET_EFAULT;
9170         ret = get_errno(mkdir(p, arg2));
9171         unlock_user(p, arg1, 0);
9172         return ret;
9173 #endif
9174 #if defined(TARGET_NR_mkdirat)
9175     case TARGET_NR_mkdirat:
9176         if (!(p = lock_user_string(arg2)))
9177             return -TARGET_EFAULT;
9178         ret = get_errno(mkdirat(arg1, p, arg3));
9179         unlock_user(p, arg2, 0);
9180         return ret;
9181 #endif
9182 #ifdef TARGET_NR_rmdir
9183     case TARGET_NR_rmdir:
9184         if (!(p = lock_user_string(arg1)))
9185             return -TARGET_EFAULT;
9186         ret = get_errno(rmdir(p));
9187         unlock_user(p, arg1, 0);
9188         return ret;
9189 #endif
9190     case TARGET_NR_dup:
9191         ret = get_errno(dup(arg1));
9192         if (ret >= 0) {
9193             fd_trans_dup(arg1, ret);
9194         }
9195         return ret;
9196 #ifdef TARGET_NR_pipe
9197     case TARGET_NR_pipe:
9198         return do_pipe(cpu_env, arg1, 0, 0);
9199 #endif
9200 #ifdef TARGET_NR_pipe2
9201     case TARGET_NR_pipe2:
9202         return do_pipe(cpu_env, arg1,
9203                        target_to_host_bitmask(arg2, fcntl_flags_tbl), 1);
9204 #endif
9205     case TARGET_NR_times:
9206         {
9207             struct target_tms *tmsp;
9208             struct tms tms;
9209             ret = get_errno(times(&tms));
9210             if (arg1) {
9211                 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0);
9212                 if (!tmsp)
9213                     return -TARGET_EFAULT;
9214                 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime));
9215                 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime));
9216                 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime));
9217                 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime));
9218             }
9219             if (!is_error(ret))
9220                 ret = host_to_target_clock_t(ret);
9221         }
9222         return ret;
9223     case TARGET_NR_acct:
9224         if (arg1 == 0) {
9225             ret = get_errno(acct(NULL));
9226         } else {
9227             if (!(p = lock_user_string(arg1))) {
9228                 return -TARGET_EFAULT;
9229             }
9230             ret = get_errno(acct(path(p)));
9231             unlock_user(p, arg1, 0);
9232         }
9233         return ret;
9234 #ifdef TARGET_NR_umount2
9235     case TARGET_NR_umount2:
9236         if (!(p = lock_user_string(arg1)))
9237             return -TARGET_EFAULT;
9238         ret = get_errno(umount2(p, arg2));
9239         unlock_user(p, arg1, 0);
9240         return ret;
9241 #endif
9242     case TARGET_NR_ioctl:
9243         return do_ioctl(arg1, arg2, arg3);
9244 #ifdef TARGET_NR_fcntl
9245     case TARGET_NR_fcntl:
9246         return do_fcntl(arg1, arg2, arg3);
9247 #endif
9248     case TARGET_NR_setpgid:
9249         return get_errno(setpgid(arg1, arg2));
9250     case TARGET_NR_umask:
9251         return get_errno(umask(arg1));
9252     case TARGET_NR_chroot:
9253         if (!(p = lock_user_string(arg1)))
9254             return -TARGET_EFAULT;
9255         ret = get_errno(chroot(p));
9256         unlock_user(p, arg1, 0);
9257         return ret;
9258 #ifdef TARGET_NR_dup2
9259     case TARGET_NR_dup2:
9260         ret = get_errno(dup2(arg1, arg2));
9261         if (ret >= 0) {
9262             fd_trans_dup(arg1, arg2);
9263         }
9264         return ret;
9265 #endif
9266 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
9267     case TARGET_NR_dup3:
9268     {
9269         int host_flags;
9270 
9271         if ((arg3 & ~TARGET_O_CLOEXEC) != 0) {
9272             return -EINVAL;
9273         }
9274         host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl);
9275         ret = get_errno(dup3(arg1, arg2, host_flags));
9276         if (ret >= 0) {
9277             fd_trans_dup(arg1, arg2);
9278         }
9279         return ret;
9280     }
9281 #endif
9282 #ifdef TARGET_NR_getppid /* not on alpha */
9283     case TARGET_NR_getppid:
9284         return get_errno(getppid());
9285 #endif
9286 #ifdef TARGET_NR_getpgrp
9287     case TARGET_NR_getpgrp:
9288         return get_errno(getpgrp());
9289 #endif
9290     case TARGET_NR_setsid:
9291         return get_errno(setsid());
9292 #ifdef TARGET_NR_sigaction
9293     case TARGET_NR_sigaction:
9294         {
9295 #if defined(TARGET_MIPS)
9296 	    struct target_sigaction act, oact, *pact, *old_act;
9297 
9298 	    if (arg2) {
9299                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9300                     return -TARGET_EFAULT;
9301 		act._sa_handler = old_act->_sa_handler;
9302 		target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]);
9303 		act.sa_flags = old_act->sa_flags;
9304 		unlock_user_struct(old_act, arg2, 0);
9305 		pact = &act;
9306 	    } else {
9307 		pact = NULL;
9308 	    }
9309 
9310         ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9311 
9312 	    if (!is_error(ret) && arg3) {
9313                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9314                     return -TARGET_EFAULT;
9315 		old_act->_sa_handler = oact._sa_handler;
9316 		old_act->sa_flags = oact.sa_flags;
9317 		old_act->sa_mask.sig[0] = oact.sa_mask.sig[0];
9318 		old_act->sa_mask.sig[1] = 0;
9319 		old_act->sa_mask.sig[2] = 0;
9320 		old_act->sa_mask.sig[3] = 0;
9321 		unlock_user_struct(old_act, arg3, 1);
9322 	    }
9323 #else
9324             struct target_old_sigaction *old_act;
9325             struct target_sigaction act, oact, *pact;
9326             if (arg2) {
9327                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9328                     return -TARGET_EFAULT;
9329                 act._sa_handler = old_act->_sa_handler;
9330                 target_siginitset(&act.sa_mask, old_act->sa_mask);
9331                 act.sa_flags = old_act->sa_flags;
9332 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9333                 act.sa_restorer = old_act->sa_restorer;
9334 #endif
9335                 unlock_user_struct(old_act, arg2, 0);
9336                 pact = &act;
9337             } else {
9338                 pact = NULL;
9339             }
9340             ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9341             if (!is_error(ret) && arg3) {
9342                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9343                     return -TARGET_EFAULT;
9344                 old_act->_sa_handler = oact._sa_handler;
9345                 old_act->sa_mask = oact.sa_mask.sig[0];
9346                 old_act->sa_flags = oact.sa_flags;
9347 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9348                 old_act->sa_restorer = oact.sa_restorer;
9349 #endif
9350                 unlock_user_struct(old_act, arg3, 1);
9351             }
9352 #endif
9353         }
9354         return ret;
9355 #endif
9356     case TARGET_NR_rt_sigaction:
9357         {
9358             /*
9359              * For Alpha and SPARC this is a 5 argument syscall, with
9360              * a 'restorer' parameter which must be copied into the
9361              * sa_restorer field of the sigaction struct.
9362              * For Alpha that 'restorer' is arg5; for SPARC it is arg4,
9363              * and arg5 is the sigsetsize.
9364              */
9365 #if defined(TARGET_ALPHA)
9366             target_ulong sigsetsize = arg4;
9367             target_ulong restorer = arg5;
9368 #elif defined(TARGET_SPARC)
9369             target_ulong restorer = arg4;
9370             target_ulong sigsetsize = arg5;
9371 #else
9372             target_ulong sigsetsize = arg4;
9373             target_ulong restorer = 0;
9374 #endif
9375             struct target_sigaction *act = NULL;
9376             struct target_sigaction *oact = NULL;
9377 
9378             if (sigsetsize != sizeof(target_sigset_t)) {
9379                 return -TARGET_EINVAL;
9380             }
9381             if (arg2 && !lock_user_struct(VERIFY_READ, act, arg2, 1)) {
9382                 return -TARGET_EFAULT;
9383             }
9384             if (arg3 && !lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) {
9385                 ret = -TARGET_EFAULT;
9386             } else {
9387                 ret = get_errno(do_sigaction(arg1, act, oact, restorer));
9388                 if (oact) {
9389                     unlock_user_struct(oact, arg3, 1);
9390                 }
9391             }
9392             if (act) {
9393                 unlock_user_struct(act, arg2, 0);
9394             }
9395         }
9396         return ret;
9397 #ifdef TARGET_NR_sgetmask /* not on alpha */
9398     case TARGET_NR_sgetmask:
9399         {
9400             sigset_t cur_set;
9401             abi_ulong target_set;
9402             ret = do_sigprocmask(0, NULL, &cur_set);
9403             if (!ret) {
9404                 host_to_target_old_sigset(&target_set, &cur_set);
9405                 ret = target_set;
9406             }
9407         }
9408         return ret;
9409 #endif
9410 #ifdef TARGET_NR_ssetmask /* not on alpha */
9411     case TARGET_NR_ssetmask:
9412         {
9413             sigset_t set, oset;
9414             abi_ulong target_set = arg1;
9415             target_to_host_old_sigset(&set, &target_set);
9416             ret = do_sigprocmask(SIG_SETMASK, &set, &oset);
9417             if (!ret) {
9418                 host_to_target_old_sigset(&target_set, &oset);
9419                 ret = target_set;
9420             }
9421         }
9422         return ret;
9423 #endif
9424 #ifdef TARGET_NR_sigprocmask
9425     case TARGET_NR_sigprocmask:
9426         {
9427 #if defined(TARGET_ALPHA)
9428             sigset_t set, oldset;
9429             abi_ulong mask;
9430             int how;
9431 
9432             switch (arg1) {
9433             case TARGET_SIG_BLOCK:
9434                 how = SIG_BLOCK;
9435                 break;
9436             case TARGET_SIG_UNBLOCK:
9437                 how = SIG_UNBLOCK;
9438                 break;
9439             case TARGET_SIG_SETMASK:
9440                 how = SIG_SETMASK;
9441                 break;
9442             default:
9443                 return -TARGET_EINVAL;
9444             }
9445             mask = arg2;
9446             target_to_host_old_sigset(&set, &mask);
9447 
9448             ret = do_sigprocmask(how, &set, &oldset);
9449             if (!is_error(ret)) {
9450                 host_to_target_old_sigset(&mask, &oldset);
9451                 ret = mask;
9452                 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; /* force no error */
9453             }
9454 #else
9455             sigset_t set, oldset, *set_ptr;
9456             int how;
9457 
9458             if (arg2) {
9459                 switch (arg1) {
9460                 case TARGET_SIG_BLOCK:
9461                     how = SIG_BLOCK;
9462                     break;
9463                 case TARGET_SIG_UNBLOCK:
9464                     how = SIG_UNBLOCK;
9465                     break;
9466                 case TARGET_SIG_SETMASK:
9467                     how = SIG_SETMASK;
9468                     break;
9469                 default:
9470                     return -TARGET_EINVAL;
9471                 }
9472                 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1)))
9473                     return -TARGET_EFAULT;
9474                 target_to_host_old_sigset(&set, p);
9475                 unlock_user(p, arg2, 0);
9476                 set_ptr = &set;
9477             } else {
9478                 how = 0;
9479                 set_ptr = NULL;
9480             }
9481             ret = do_sigprocmask(how, set_ptr, &oldset);
9482             if (!is_error(ret) && arg3) {
9483                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
9484                     return -TARGET_EFAULT;
9485                 host_to_target_old_sigset(p, &oldset);
9486                 unlock_user(p, arg3, sizeof(target_sigset_t));
9487             }
9488 #endif
9489         }
9490         return ret;
9491 #endif
9492     case TARGET_NR_rt_sigprocmask:
9493         {
9494             int how = arg1;
9495             sigset_t set, oldset, *set_ptr;
9496 
9497             if (arg4 != sizeof(target_sigset_t)) {
9498                 return -TARGET_EINVAL;
9499             }
9500 
9501             if (arg2) {
9502                 switch(how) {
9503                 case TARGET_SIG_BLOCK:
9504                     how = SIG_BLOCK;
9505                     break;
9506                 case TARGET_SIG_UNBLOCK:
9507                     how = SIG_UNBLOCK;
9508                     break;
9509                 case TARGET_SIG_SETMASK:
9510                     how = SIG_SETMASK;
9511                     break;
9512                 default:
9513                     return -TARGET_EINVAL;
9514                 }
9515                 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1)))
9516                     return -TARGET_EFAULT;
9517                 target_to_host_sigset(&set, p);
9518                 unlock_user(p, arg2, 0);
9519                 set_ptr = &set;
9520             } else {
9521                 how = 0;
9522                 set_ptr = NULL;
9523             }
9524             ret = do_sigprocmask(how, set_ptr, &oldset);
9525             if (!is_error(ret) && arg3) {
9526                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
9527                     return -TARGET_EFAULT;
9528                 host_to_target_sigset(p, &oldset);
9529                 unlock_user(p, arg3, sizeof(target_sigset_t));
9530             }
9531         }
9532         return ret;
9533 #ifdef TARGET_NR_sigpending
9534     case TARGET_NR_sigpending:
9535         {
9536             sigset_t set;
9537             ret = get_errno(sigpending(&set));
9538             if (!is_error(ret)) {
9539                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
9540                     return -TARGET_EFAULT;
9541                 host_to_target_old_sigset(p, &set);
9542                 unlock_user(p, arg1, sizeof(target_sigset_t));
9543             }
9544         }
9545         return ret;
9546 #endif
9547     case TARGET_NR_rt_sigpending:
9548         {
9549             sigset_t set;
9550 
9551             /* Yes, this check is >, not != like most. We follow the kernel's
9552              * logic and it does it like this because it implements
9553              * NR_sigpending through the same code path, and in that case
9554              * the old_sigset_t is smaller in size.
9555              */
9556             if (arg2 > sizeof(target_sigset_t)) {
9557                 return -TARGET_EINVAL;
9558             }
9559 
9560             ret = get_errno(sigpending(&set));
9561             if (!is_error(ret)) {
9562                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
9563                     return -TARGET_EFAULT;
9564                 host_to_target_sigset(p, &set);
9565                 unlock_user(p, arg1, sizeof(target_sigset_t));
9566             }
9567         }
9568         return ret;
9569 #ifdef TARGET_NR_sigsuspend
9570     case TARGET_NR_sigsuspend:
9571         {
9572             TaskState *ts = cpu->opaque;
9573 #if defined(TARGET_ALPHA)
9574             abi_ulong mask = arg1;
9575             target_to_host_old_sigset(&ts->sigsuspend_mask, &mask);
9576 #else
9577             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
9578                 return -TARGET_EFAULT;
9579             target_to_host_old_sigset(&ts->sigsuspend_mask, p);
9580             unlock_user(p, arg1, 0);
9581 #endif
9582             ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask,
9583                                                SIGSET_T_SIZE));
9584             if (ret != -QEMU_ERESTARTSYS) {
9585                 ts->in_sigsuspend = 1;
9586             }
9587         }
9588         return ret;
9589 #endif
9590     case TARGET_NR_rt_sigsuspend:
9591         {
9592             TaskState *ts = cpu->opaque;
9593 
9594             if (arg2 != sizeof(target_sigset_t)) {
9595                 return -TARGET_EINVAL;
9596             }
9597             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
9598                 return -TARGET_EFAULT;
9599             target_to_host_sigset(&ts->sigsuspend_mask, p);
9600             unlock_user(p, arg1, 0);
9601             ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask,
9602                                                SIGSET_T_SIZE));
9603             if (ret != -QEMU_ERESTARTSYS) {
9604                 ts->in_sigsuspend = 1;
9605             }
9606         }
9607         return ret;
9608 #ifdef TARGET_NR_rt_sigtimedwait
9609     case TARGET_NR_rt_sigtimedwait:
9610         {
9611             sigset_t set;
9612             struct timespec uts, *puts;
9613             siginfo_t uinfo;
9614 
9615             if (arg4 != sizeof(target_sigset_t)) {
9616                 return -TARGET_EINVAL;
9617             }
9618 
9619             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
9620                 return -TARGET_EFAULT;
9621             target_to_host_sigset(&set, p);
9622             unlock_user(p, arg1, 0);
9623             if (arg3) {
9624                 puts = &uts;
9625                 if (target_to_host_timespec(puts, arg3)) {
9626                     return -TARGET_EFAULT;
9627                 }
9628             } else {
9629                 puts = NULL;
9630             }
9631             ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
9632                                                  SIGSET_T_SIZE));
9633             if (!is_error(ret)) {
9634                 if (arg2) {
9635                     p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t),
9636                                   0);
9637                     if (!p) {
9638                         return -TARGET_EFAULT;
9639                     }
9640                     host_to_target_siginfo(p, &uinfo);
9641                     unlock_user(p, arg2, sizeof(target_siginfo_t));
9642                 }
9643                 ret = host_to_target_signal(ret);
9644             }
9645         }
9646         return ret;
9647 #endif
9648 #ifdef TARGET_NR_rt_sigtimedwait_time64
9649     case TARGET_NR_rt_sigtimedwait_time64:
9650         {
9651             sigset_t set;
9652             struct timespec uts, *puts;
9653             siginfo_t uinfo;
9654 
9655             if (arg4 != sizeof(target_sigset_t)) {
9656                 return -TARGET_EINVAL;
9657             }
9658 
9659             p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1);
9660             if (!p) {
9661                 return -TARGET_EFAULT;
9662             }
9663             target_to_host_sigset(&set, p);
9664             unlock_user(p, arg1, 0);
9665             if (arg3) {
9666                 puts = &uts;
9667                 if (target_to_host_timespec64(puts, arg3)) {
9668                     return -TARGET_EFAULT;
9669                 }
9670             } else {
9671                 puts = NULL;
9672             }
9673             ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
9674                                                  SIGSET_T_SIZE));
9675             if (!is_error(ret)) {
9676                 if (arg2) {
9677                     p = lock_user(VERIFY_WRITE, arg2,
9678                                   sizeof(target_siginfo_t), 0);
9679                     if (!p) {
9680                         return -TARGET_EFAULT;
9681                     }
9682                     host_to_target_siginfo(p, &uinfo);
9683                     unlock_user(p, arg2, sizeof(target_siginfo_t));
9684                 }
9685                 ret = host_to_target_signal(ret);
9686             }
9687         }
9688         return ret;
9689 #endif
9690     case TARGET_NR_rt_sigqueueinfo:
9691         {
9692             siginfo_t uinfo;
9693 
9694             p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
9695             if (!p) {
9696                 return -TARGET_EFAULT;
9697             }
9698             target_to_host_siginfo(&uinfo, p);
9699             unlock_user(p, arg3, 0);
9700             ret = get_errno(sys_rt_sigqueueinfo(arg1, arg2, &uinfo));
9701         }
9702         return ret;
9703     case TARGET_NR_rt_tgsigqueueinfo:
9704         {
9705             siginfo_t uinfo;
9706 
9707             p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1);
9708             if (!p) {
9709                 return -TARGET_EFAULT;
9710             }
9711             target_to_host_siginfo(&uinfo, p);
9712             unlock_user(p, arg4, 0);
9713             ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, arg3, &uinfo));
9714         }
9715         return ret;
9716 #ifdef TARGET_NR_sigreturn
9717     case TARGET_NR_sigreturn:
9718         if (block_signals()) {
9719             return -QEMU_ERESTARTSYS;
9720         }
9721         return do_sigreturn(cpu_env);
9722 #endif
9723     case TARGET_NR_rt_sigreturn:
9724         if (block_signals()) {
9725             return -QEMU_ERESTARTSYS;
9726         }
9727         return do_rt_sigreturn(cpu_env);
9728     case TARGET_NR_sethostname:
9729         if (!(p = lock_user_string(arg1)))
9730             return -TARGET_EFAULT;
9731         ret = get_errno(sethostname(p, arg2));
9732         unlock_user(p, arg1, 0);
9733         return ret;
9734 #ifdef TARGET_NR_setrlimit
9735     case TARGET_NR_setrlimit:
9736         {
9737             int resource = target_to_host_resource(arg1);
9738             struct target_rlimit *target_rlim;
9739             struct rlimit rlim;
9740             if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1))
9741                 return -TARGET_EFAULT;
9742             rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur);
9743             rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max);
9744             unlock_user_struct(target_rlim, arg2, 0);
9745             /*
9746              * If we just passed through resource limit settings for memory then
9747              * they would also apply to QEMU's own allocations, and QEMU will
9748              * crash or hang or die if its allocations fail. Ideally we would
9749              * track the guest allocations in QEMU and apply the limits ourselves.
9750              * For now, just tell the guest the call succeeded but don't actually
9751              * limit anything.
9752              */
9753             if (resource != RLIMIT_AS &&
9754                 resource != RLIMIT_DATA &&
9755                 resource != RLIMIT_STACK) {
9756                 return get_errno(setrlimit(resource, &rlim));
9757             } else {
9758                 return 0;
9759             }
9760         }
9761 #endif
9762 #ifdef TARGET_NR_getrlimit
9763     case TARGET_NR_getrlimit:
9764         {
9765             int resource = target_to_host_resource(arg1);
9766             struct target_rlimit *target_rlim;
9767             struct rlimit rlim;
9768 
9769             ret = get_errno(getrlimit(resource, &rlim));
9770             if (!is_error(ret)) {
9771                 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
9772                     return -TARGET_EFAULT;
9773                 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
9774                 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
9775                 unlock_user_struct(target_rlim, arg2, 1);
9776             }
9777         }
9778         return ret;
9779 #endif
9780     case TARGET_NR_getrusage:
9781         {
9782             struct rusage rusage;
9783             ret = get_errno(getrusage(arg1, &rusage));
9784             if (!is_error(ret)) {
9785                 ret = host_to_target_rusage(arg2, &rusage);
9786             }
9787         }
9788         return ret;
9789 #if defined(TARGET_NR_gettimeofday)
9790     case TARGET_NR_gettimeofday:
9791         {
9792             struct timeval tv;
9793             struct timezone tz;
9794 
9795             ret = get_errno(gettimeofday(&tv, &tz));
9796             if (!is_error(ret)) {
9797                 if (arg1 && copy_to_user_timeval(arg1, &tv)) {
9798                     return -TARGET_EFAULT;
9799                 }
9800                 if (arg2 && copy_to_user_timezone(arg2, &tz)) {
9801                     return -TARGET_EFAULT;
9802                 }
9803             }
9804         }
9805         return ret;
9806 #endif
9807 #if defined(TARGET_NR_settimeofday)
9808     case TARGET_NR_settimeofday:
9809         {
9810             struct timeval tv, *ptv = NULL;
9811             struct timezone tz, *ptz = NULL;
9812 
9813             if (arg1) {
9814                 if (copy_from_user_timeval(&tv, arg1)) {
9815                     return -TARGET_EFAULT;
9816                 }
9817                 ptv = &tv;
9818             }
9819 
9820             if (arg2) {
9821                 if (copy_from_user_timezone(&tz, arg2)) {
9822                     return -TARGET_EFAULT;
9823                 }
9824                 ptz = &tz;
9825             }
9826 
9827             return get_errno(settimeofday(ptv, ptz));
9828         }
9829 #endif
9830 #if defined(TARGET_NR_select)
9831     case TARGET_NR_select:
9832 #if defined(TARGET_WANT_NI_OLD_SELECT)
9833         /* some architectures used to have old_select here
9834          * but now ENOSYS it.
9835          */
9836         ret = -TARGET_ENOSYS;
9837 #elif defined(TARGET_WANT_OLD_SYS_SELECT)
9838         ret = do_old_select(arg1);
9839 #else
9840         ret = do_select(arg1, arg2, arg3, arg4, arg5);
9841 #endif
9842         return ret;
9843 #endif
9844 #ifdef TARGET_NR_pselect6
9845     case TARGET_NR_pselect6:
9846         return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, false);
9847 #endif
9848 #ifdef TARGET_NR_pselect6_time64
9849     case TARGET_NR_pselect6_time64:
9850         return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, true);
9851 #endif
9852 #ifdef TARGET_NR_symlink
9853     case TARGET_NR_symlink:
9854         {
9855             void *p2;
9856             p = lock_user_string(arg1);
9857             p2 = lock_user_string(arg2);
9858             if (!p || !p2)
9859                 ret = -TARGET_EFAULT;
9860             else
9861                 ret = get_errno(symlink(p, p2));
9862             unlock_user(p2, arg2, 0);
9863             unlock_user(p, arg1, 0);
9864         }
9865         return ret;
9866 #endif
9867 #if defined(TARGET_NR_symlinkat)
9868     case TARGET_NR_symlinkat:
9869         {
9870             void *p2;
9871             p  = lock_user_string(arg1);
9872             p2 = lock_user_string(arg3);
9873             if (!p || !p2)
9874                 ret = -TARGET_EFAULT;
9875             else
9876                 ret = get_errno(symlinkat(p, arg2, p2));
9877             unlock_user(p2, arg3, 0);
9878             unlock_user(p, arg1, 0);
9879         }
9880         return ret;
9881 #endif
9882 #ifdef TARGET_NR_readlink
9883     case TARGET_NR_readlink:
9884         {
9885             void *p2;
9886             p = lock_user_string(arg1);
9887             p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0);
9888             if (!p || !p2) {
9889                 ret = -TARGET_EFAULT;
9890             } else if (!arg3) {
9891                 /* Short circuit this for the magic exe check. */
9892                 ret = -TARGET_EINVAL;
9893             } else if (is_proc_myself((const char *)p, "exe")) {
9894                 char real[PATH_MAX], *temp;
9895                 temp = realpath(exec_path, real);
9896                 /* Return value is # of bytes that we wrote to the buffer. */
9897                 if (temp == NULL) {
9898                     ret = get_errno(-1);
9899                 } else {
9900                     /* Don't worry about sign mismatch as earlier mapping
9901                      * logic would have thrown a bad address error. */
9902                     ret = MIN(strlen(real), arg3);
9903                     /* We cannot NUL terminate the string. */
9904                     memcpy(p2, real, ret);
9905                 }
9906             } else {
9907                 ret = get_errno(readlink(path(p), p2, arg3));
9908             }
9909             unlock_user(p2, arg2, ret);
9910             unlock_user(p, arg1, 0);
9911         }
9912         return ret;
9913 #endif
9914 #if defined(TARGET_NR_readlinkat)
9915     case TARGET_NR_readlinkat:
9916         {
9917             void *p2;
9918             p  = lock_user_string(arg2);
9919             p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0);
9920             if (!p || !p2) {
9921                 ret = -TARGET_EFAULT;
9922             } else if (is_proc_myself((const char *)p, "exe")) {
9923                 char real[PATH_MAX], *temp;
9924                 temp = realpath(exec_path, real);
9925                 ret = temp == NULL ? get_errno(-1) : strlen(real) ;
9926                 snprintf((char *)p2, arg4, "%s", real);
9927             } else {
9928                 ret = get_errno(readlinkat(arg1, path(p), p2, arg4));
9929             }
9930             unlock_user(p2, arg3, ret);
9931             unlock_user(p, arg2, 0);
9932         }
9933         return ret;
9934 #endif
9935 #ifdef TARGET_NR_swapon
9936     case TARGET_NR_swapon:
9937         if (!(p = lock_user_string(arg1)))
9938             return -TARGET_EFAULT;
9939         ret = get_errno(swapon(p, arg2));
9940         unlock_user(p, arg1, 0);
9941         return ret;
9942 #endif
9943     case TARGET_NR_reboot:
9944         if (arg3 == LINUX_REBOOT_CMD_RESTART2) {
9945            /* arg4 must be ignored in all other cases */
9946            p = lock_user_string(arg4);
9947            if (!p) {
9948                return -TARGET_EFAULT;
9949            }
9950            ret = get_errno(reboot(arg1, arg2, arg3, p));
9951            unlock_user(p, arg4, 0);
9952         } else {
9953            ret = get_errno(reboot(arg1, arg2, arg3, NULL));
9954         }
9955         return ret;
9956 #ifdef TARGET_NR_mmap
9957     case TARGET_NR_mmap:
9958 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
9959     (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
9960     defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
9961     || defined(TARGET_S390X)
9962         {
9963             abi_ulong *v;
9964             abi_ulong v1, v2, v3, v4, v5, v6;
9965             if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1)))
9966                 return -TARGET_EFAULT;
9967             v1 = tswapal(v[0]);
9968             v2 = tswapal(v[1]);
9969             v3 = tswapal(v[2]);
9970             v4 = tswapal(v[3]);
9971             v5 = tswapal(v[4]);
9972             v6 = tswapal(v[5]);
9973             unlock_user(v, arg1, 0);
9974             ret = get_errno(target_mmap(v1, v2, v3,
9975                                         target_to_host_bitmask(v4, mmap_flags_tbl),
9976                                         v5, v6));
9977         }
9978 #else
9979         /* mmap pointers are always untagged */
9980         ret = get_errno(target_mmap(arg1, arg2, arg3,
9981                                     target_to_host_bitmask(arg4, mmap_flags_tbl),
9982                                     arg5,
9983                                     arg6));
9984 #endif
9985         return ret;
9986 #endif
9987 #ifdef TARGET_NR_mmap2
9988     case TARGET_NR_mmap2:
9989 #ifndef MMAP_SHIFT
9990 #define MMAP_SHIFT 12
9991 #endif
9992         ret = target_mmap(arg1, arg2, arg3,
9993                           target_to_host_bitmask(arg4, mmap_flags_tbl),
9994                           arg5, arg6 << MMAP_SHIFT);
9995         return get_errno(ret);
9996 #endif
9997     case TARGET_NR_munmap:
9998         arg1 = cpu_untagged_addr(cpu, arg1);
9999         return get_errno(target_munmap(arg1, arg2));
10000     case TARGET_NR_mprotect:
10001         arg1 = cpu_untagged_addr(cpu, arg1);
10002         {
10003             TaskState *ts = cpu->opaque;
10004             /* Special hack to detect libc making the stack executable.  */
10005             if ((arg3 & PROT_GROWSDOWN)
10006                 && arg1 >= ts->info->stack_limit
10007                 && arg1 <= ts->info->start_stack) {
10008                 arg3 &= ~PROT_GROWSDOWN;
10009                 arg2 = arg2 + arg1 - ts->info->stack_limit;
10010                 arg1 = ts->info->stack_limit;
10011             }
10012         }
10013         return get_errno(target_mprotect(arg1, arg2, arg3));
10014 #ifdef TARGET_NR_mremap
10015     case TARGET_NR_mremap:
10016         arg1 = cpu_untagged_addr(cpu, arg1);
10017         /* mremap new_addr (arg5) is always untagged */
10018         return get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5));
10019 #endif
10020         /* ??? msync/mlock/munlock are broken for softmmu.  */
10021 #ifdef TARGET_NR_msync
10022     case TARGET_NR_msync:
10023         return get_errno(msync(g2h(cpu, arg1), arg2, arg3));
10024 #endif
10025 #ifdef TARGET_NR_mlock
10026     case TARGET_NR_mlock:
10027         return get_errno(mlock(g2h(cpu, arg1), arg2));
10028 #endif
10029 #ifdef TARGET_NR_munlock
10030     case TARGET_NR_munlock:
10031         return get_errno(munlock(g2h(cpu, arg1), arg2));
10032 #endif
10033 #ifdef TARGET_NR_mlockall
10034     case TARGET_NR_mlockall:
10035         return get_errno(mlockall(target_to_host_mlockall_arg(arg1)));
10036 #endif
10037 #ifdef TARGET_NR_munlockall
10038     case TARGET_NR_munlockall:
10039         return get_errno(munlockall());
10040 #endif
10041 #ifdef TARGET_NR_truncate
10042     case TARGET_NR_truncate:
10043         if (!(p = lock_user_string(arg1)))
10044             return -TARGET_EFAULT;
10045         ret = get_errno(truncate(p, arg2));
10046         unlock_user(p, arg1, 0);
10047         return ret;
10048 #endif
10049 #ifdef TARGET_NR_ftruncate
10050     case TARGET_NR_ftruncate:
10051         return get_errno(ftruncate(arg1, arg2));
10052 #endif
10053     case TARGET_NR_fchmod:
10054         return get_errno(fchmod(arg1, arg2));
10055 #if defined(TARGET_NR_fchmodat)
10056     case TARGET_NR_fchmodat:
10057         if (!(p = lock_user_string(arg2)))
10058             return -TARGET_EFAULT;
10059         ret = get_errno(fchmodat(arg1, p, arg3, 0));
10060         unlock_user(p, arg2, 0);
10061         return ret;
10062 #endif
10063     case TARGET_NR_getpriority:
10064         /* Note that negative values are valid for getpriority, so we must
10065            differentiate based on errno settings.  */
10066         errno = 0;
10067         ret = getpriority(arg1, arg2);
10068         if (ret == -1 && errno != 0) {
10069             return -host_to_target_errno(errno);
10070         }
10071 #ifdef TARGET_ALPHA
10072         /* Return value is the unbiased priority.  Signal no error.  */
10073         ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0;
10074 #else
10075         /* Return value is a biased priority to avoid negative numbers.  */
10076         ret = 20 - ret;
10077 #endif
10078         return ret;
10079     case TARGET_NR_setpriority:
10080         return get_errno(setpriority(arg1, arg2, arg3));
10081 #ifdef TARGET_NR_statfs
10082     case TARGET_NR_statfs:
10083         if (!(p = lock_user_string(arg1))) {
10084             return -TARGET_EFAULT;
10085         }
10086         ret = get_errno(statfs(path(p), &stfs));
10087         unlock_user(p, arg1, 0);
10088     convert_statfs:
10089         if (!is_error(ret)) {
10090             struct target_statfs *target_stfs;
10091 
10092             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0))
10093                 return -TARGET_EFAULT;
10094             __put_user(stfs.f_type, &target_stfs->f_type);
10095             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10096             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10097             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10098             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10099             __put_user(stfs.f_files, &target_stfs->f_files);
10100             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10101             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10102             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10103             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10104             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10105 #ifdef _STATFS_F_FLAGS
10106             __put_user(stfs.f_flags, &target_stfs->f_flags);
10107 #else
10108             __put_user(0, &target_stfs->f_flags);
10109 #endif
10110             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10111             unlock_user_struct(target_stfs, arg2, 1);
10112         }
10113         return ret;
10114 #endif
10115 #ifdef TARGET_NR_fstatfs
10116     case TARGET_NR_fstatfs:
10117         ret = get_errno(fstatfs(arg1, &stfs));
10118         goto convert_statfs;
10119 #endif
10120 #ifdef TARGET_NR_statfs64
10121     case TARGET_NR_statfs64:
10122         if (!(p = lock_user_string(arg1))) {
10123             return -TARGET_EFAULT;
10124         }
10125         ret = get_errno(statfs(path(p), &stfs));
10126         unlock_user(p, arg1, 0);
10127     convert_statfs64:
10128         if (!is_error(ret)) {
10129             struct target_statfs64 *target_stfs;
10130 
10131             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0))
10132                 return -TARGET_EFAULT;
10133             __put_user(stfs.f_type, &target_stfs->f_type);
10134             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10135             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10136             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10137             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10138             __put_user(stfs.f_files, &target_stfs->f_files);
10139             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10140             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10141             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10142             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10143             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10144 #ifdef _STATFS_F_FLAGS
10145             __put_user(stfs.f_flags, &target_stfs->f_flags);
10146 #else
10147             __put_user(0, &target_stfs->f_flags);
10148 #endif
10149             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10150             unlock_user_struct(target_stfs, arg3, 1);
10151         }
10152         return ret;
10153     case TARGET_NR_fstatfs64:
10154         ret = get_errno(fstatfs(arg1, &stfs));
10155         goto convert_statfs64;
10156 #endif
10157 #ifdef TARGET_NR_socketcall
10158     case TARGET_NR_socketcall:
10159         return do_socketcall(arg1, arg2);
10160 #endif
10161 #ifdef TARGET_NR_accept
10162     case TARGET_NR_accept:
10163         return do_accept4(arg1, arg2, arg3, 0);
10164 #endif
10165 #ifdef TARGET_NR_accept4
10166     case TARGET_NR_accept4:
10167         return do_accept4(arg1, arg2, arg3, arg4);
10168 #endif
10169 #ifdef TARGET_NR_bind
10170     case TARGET_NR_bind:
10171         return do_bind(arg1, arg2, arg3);
10172 #endif
10173 #ifdef TARGET_NR_connect
10174     case TARGET_NR_connect:
10175         return do_connect(arg1, arg2, arg3);
10176 #endif
10177 #ifdef TARGET_NR_getpeername
10178     case TARGET_NR_getpeername:
10179         return do_getpeername(arg1, arg2, arg3);
10180 #endif
10181 #ifdef TARGET_NR_getsockname
10182     case TARGET_NR_getsockname:
10183         return do_getsockname(arg1, arg2, arg3);
10184 #endif
10185 #ifdef TARGET_NR_getsockopt
10186     case TARGET_NR_getsockopt:
10187         return do_getsockopt(arg1, arg2, arg3, arg4, arg5);
10188 #endif
10189 #ifdef TARGET_NR_listen
10190     case TARGET_NR_listen:
10191         return get_errno(listen(arg1, arg2));
10192 #endif
10193 #ifdef TARGET_NR_recv
10194     case TARGET_NR_recv:
10195         return do_recvfrom(arg1, arg2, arg3, arg4, 0, 0);
10196 #endif
10197 #ifdef TARGET_NR_recvfrom
10198     case TARGET_NR_recvfrom:
10199         return do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6);
10200 #endif
10201 #ifdef TARGET_NR_recvmsg
10202     case TARGET_NR_recvmsg:
10203         return do_sendrecvmsg(arg1, arg2, arg3, 0);
10204 #endif
10205 #ifdef TARGET_NR_send
10206     case TARGET_NR_send:
10207         return do_sendto(arg1, arg2, arg3, arg4, 0, 0);
10208 #endif
10209 #ifdef TARGET_NR_sendmsg
10210     case TARGET_NR_sendmsg:
10211         return do_sendrecvmsg(arg1, arg2, arg3, 1);
10212 #endif
10213 #ifdef TARGET_NR_sendmmsg
10214     case TARGET_NR_sendmmsg:
10215         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1);
10216 #endif
10217 #ifdef TARGET_NR_recvmmsg
10218     case TARGET_NR_recvmmsg:
10219         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0);
10220 #endif
10221 #ifdef TARGET_NR_sendto
10222     case TARGET_NR_sendto:
10223         return do_sendto(arg1, arg2, arg3, arg4, arg5, arg6);
10224 #endif
10225 #ifdef TARGET_NR_shutdown
10226     case TARGET_NR_shutdown:
10227         return get_errno(shutdown(arg1, arg2));
10228 #endif
10229 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
10230     case TARGET_NR_getrandom:
10231         p = lock_user(VERIFY_WRITE, arg1, arg2, 0);
10232         if (!p) {
10233             return -TARGET_EFAULT;
10234         }
10235         ret = get_errno(getrandom(p, arg2, arg3));
10236         unlock_user(p, arg1, ret);
10237         return ret;
10238 #endif
10239 #ifdef TARGET_NR_socket
10240     case TARGET_NR_socket:
10241         return do_socket(arg1, arg2, arg3);
10242 #endif
10243 #ifdef TARGET_NR_socketpair
10244     case TARGET_NR_socketpair:
10245         return do_socketpair(arg1, arg2, arg3, arg4);
10246 #endif
10247 #ifdef TARGET_NR_setsockopt
10248     case TARGET_NR_setsockopt:
10249         return do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5);
10250 #endif
10251 #if defined(TARGET_NR_syslog)
10252     case TARGET_NR_syslog:
10253         {
10254             int len = arg2;
10255 
10256             switch (arg1) {
10257             case TARGET_SYSLOG_ACTION_CLOSE:         /* Close log */
10258             case TARGET_SYSLOG_ACTION_OPEN:          /* Open log */
10259             case TARGET_SYSLOG_ACTION_CLEAR:         /* Clear ring buffer */
10260             case TARGET_SYSLOG_ACTION_CONSOLE_OFF:   /* Disable logging */
10261             case TARGET_SYSLOG_ACTION_CONSOLE_ON:    /* Enable logging */
10262             case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */
10263             case TARGET_SYSLOG_ACTION_SIZE_UNREAD:   /* Number of chars */
10264             case TARGET_SYSLOG_ACTION_SIZE_BUFFER:   /* Size of the buffer */
10265                 return get_errno(sys_syslog((int)arg1, NULL, (int)arg3));
10266             case TARGET_SYSLOG_ACTION_READ:          /* Read from log */
10267             case TARGET_SYSLOG_ACTION_READ_CLEAR:    /* Read/clear msgs */
10268             case TARGET_SYSLOG_ACTION_READ_ALL:      /* Read last messages */
10269                 {
10270                     if (len < 0) {
10271                         return -TARGET_EINVAL;
10272                     }
10273                     if (len == 0) {
10274                         return 0;
10275                     }
10276                     p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10277                     if (!p) {
10278                         return -TARGET_EFAULT;
10279                     }
10280                     ret = get_errno(sys_syslog((int)arg1, p, (int)arg3));
10281                     unlock_user(p, arg2, arg3);
10282                 }
10283                 return ret;
10284             default:
10285                 return -TARGET_EINVAL;
10286             }
10287         }
10288         break;
10289 #endif
10290     case TARGET_NR_setitimer:
10291         {
10292             struct itimerval value, ovalue, *pvalue;
10293 
10294             if (arg2) {
10295                 pvalue = &value;
10296                 if (copy_from_user_timeval(&pvalue->it_interval, arg2)
10297                     || copy_from_user_timeval(&pvalue->it_value,
10298                                               arg2 + sizeof(struct target_timeval)))
10299                     return -TARGET_EFAULT;
10300             } else {
10301                 pvalue = NULL;
10302             }
10303             ret = get_errno(setitimer(arg1, pvalue, &ovalue));
10304             if (!is_error(ret) && arg3) {
10305                 if (copy_to_user_timeval(arg3,
10306                                          &ovalue.it_interval)
10307                     || copy_to_user_timeval(arg3 + sizeof(struct target_timeval),
10308                                             &ovalue.it_value))
10309                     return -TARGET_EFAULT;
10310             }
10311         }
10312         return ret;
10313     case TARGET_NR_getitimer:
10314         {
10315             struct itimerval value;
10316 
10317             ret = get_errno(getitimer(arg1, &value));
10318             if (!is_error(ret) && arg2) {
10319                 if (copy_to_user_timeval(arg2,
10320                                          &value.it_interval)
10321                     || copy_to_user_timeval(arg2 + sizeof(struct target_timeval),
10322                                             &value.it_value))
10323                     return -TARGET_EFAULT;
10324             }
10325         }
10326         return ret;
10327 #ifdef TARGET_NR_stat
10328     case TARGET_NR_stat:
10329         if (!(p = lock_user_string(arg1))) {
10330             return -TARGET_EFAULT;
10331         }
10332         ret = get_errno(stat(path(p), &st));
10333         unlock_user(p, arg1, 0);
10334         goto do_stat;
10335 #endif
10336 #ifdef TARGET_NR_lstat
10337     case TARGET_NR_lstat:
10338         if (!(p = lock_user_string(arg1))) {
10339             return -TARGET_EFAULT;
10340         }
10341         ret = get_errno(lstat(path(p), &st));
10342         unlock_user(p, arg1, 0);
10343         goto do_stat;
10344 #endif
10345 #ifdef TARGET_NR_fstat
10346     case TARGET_NR_fstat:
10347         {
10348             ret = get_errno(fstat(arg1, &st));
10349 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
10350         do_stat:
10351 #endif
10352             if (!is_error(ret)) {
10353                 struct target_stat *target_st;
10354 
10355                 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0))
10356                     return -TARGET_EFAULT;
10357                 memset(target_st, 0, sizeof(*target_st));
10358                 __put_user(st.st_dev, &target_st->st_dev);
10359                 __put_user(st.st_ino, &target_st->st_ino);
10360                 __put_user(st.st_mode, &target_st->st_mode);
10361                 __put_user(st.st_uid, &target_st->st_uid);
10362                 __put_user(st.st_gid, &target_st->st_gid);
10363                 __put_user(st.st_nlink, &target_st->st_nlink);
10364                 __put_user(st.st_rdev, &target_st->st_rdev);
10365                 __put_user(st.st_size, &target_st->st_size);
10366                 __put_user(st.st_blksize, &target_st->st_blksize);
10367                 __put_user(st.st_blocks, &target_st->st_blocks);
10368                 __put_user(st.st_atime, &target_st->target_st_atime);
10369                 __put_user(st.st_mtime, &target_st->target_st_mtime);
10370                 __put_user(st.st_ctime, &target_st->target_st_ctime);
10371 #if defined(HAVE_STRUCT_STAT_ST_ATIM) && defined(TARGET_STAT_HAVE_NSEC)
10372                 __put_user(st.st_atim.tv_nsec,
10373                            &target_st->target_st_atime_nsec);
10374                 __put_user(st.st_mtim.tv_nsec,
10375                            &target_st->target_st_mtime_nsec);
10376                 __put_user(st.st_ctim.tv_nsec,
10377                            &target_st->target_st_ctime_nsec);
10378 #endif
10379                 unlock_user_struct(target_st, arg2, 1);
10380             }
10381         }
10382         return ret;
10383 #endif
10384     case TARGET_NR_vhangup:
10385         return get_errno(vhangup());
10386 #ifdef TARGET_NR_syscall
10387     case TARGET_NR_syscall:
10388         return do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5,
10389                           arg6, arg7, arg8, 0);
10390 #endif
10391 #if defined(TARGET_NR_wait4)
10392     case TARGET_NR_wait4:
10393         {
10394             int status;
10395             abi_long status_ptr = arg2;
10396             struct rusage rusage, *rusage_ptr;
10397             abi_ulong target_rusage = arg4;
10398             abi_long rusage_err;
10399             if (target_rusage)
10400                 rusage_ptr = &rusage;
10401             else
10402                 rusage_ptr = NULL;
10403             ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr));
10404             if (!is_error(ret)) {
10405                 if (status_ptr && ret) {
10406                     status = host_to_target_waitstatus(status);
10407                     if (put_user_s32(status, status_ptr))
10408                         return -TARGET_EFAULT;
10409                 }
10410                 if (target_rusage) {
10411                     rusage_err = host_to_target_rusage(target_rusage, &rusage);
10412                     if (rusage_err) {
10413                         ret = rusage_err;
10414                     }
10415                 }
10416             }
10417         }
10418         return ret;
10419 #endif
10420 #ifdef TARGET_NR_swapoff
10421     case TARGET_NR_swapoff:
10422         if (!(p = lock_user_string(arg1)))
10423             return -TARGET_EFAULT;
10424         ret = get_errno(swapoff(p));
10425         unlock_user(p, arg1, 0);
10426         return ret;
10427 #endif
10428     case TARGET_NR_sysinfo:
10429         {
10430             struct target_sysinfo *target_value;
10431             struct sysinfo value;
10432             ret = get_errno(sysinfo(&value));
10433             if (!is_error(ret) && arg1)
10434             {
10435                 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0))
10436                     return -TARGET_EFAULT;
10437                 __put_user(value.uptime, &target_value->uptime);
10438                 __put_user(value.loads[0], &target_value->loads[0]);
10439                 __put_user(value.loads[1], &target_value->loads[1]);
10440                 __put_user(value.loads[2], &target_value->loads[2]);
10441                 __put_user(value.totalram, &target_value->totalram);
10442                 __put_user(value.freeram, &target_value->freeram);
10443                 __put_user(value.sharedram, &target_value->sharedram);
10444                 __put_user(value.bufferram, &target_value->bufferram);
10445                 __put_user(value.totalswap, &target_value->totalswap);
10446                 __put_user(value.freeswap, &target_value->freeswap);
10447                 __put_user(value.procs, &target_value->procs);
10448                 __put_user(value.totalhigh, &target_value->totalhigh);
10449                 __put_user(value.freehigh, &target_value->freehigh);
10450                 __put_user(value.mem_unit, &target_value->mem_unit);
10451                 unlock_user_struct(target_value, arg1, 1);
10452             }
10453         }
10454         return ret;
10455 #ifdef TARGET_NR_ipc
10456     case TARGET_NR_ipc:
10457         return do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6);
10458 #endif
10459 #ifdef TARGET_NR_semget
10460     case TARGET_NR_semget:
10461         return get_errno(semget(arg1, arg2, arg3));
10462 #endif
10463 #ifdef TARGET_NR_semop
10464     case TARGET_NR_semop:
10465         return do_semtimedop(arg1, arg2, arg3, 0, false);
10466 #endif
10467 #ifdef TARGET_NR_semtimedop
10468     case TARGET_NR_semtimedop:
10469         return do_semtimedop(arg1, arg2, arg3, arg4, false);
10470 #endif
10471 #ifdef TARGET_NR_semtimedop_time64
10472     case TARGET_NR_semtimedop_time64:
10473         return do_semtimedop(arg1, arg2, arg3, arg4, true);
10474 #endif
10475 #ifdef TARGET_NR_semctl
10476     case TARGET_NR_semctl:
10477         return do_semctl(arg1, arg2, arg3, arg4);
10478 #endif
10479 #ifdef TARGET_NR_msgctl
10480     case TARGET_NR_msgctl:
10481         return do_msgctl(arg1, arg2, arg3);
10482 #endif
10483 #ifdef TARGET_NR_msgget
10484     case TARGET_NR_msgget:
10485         return get_errno(msgget(arg1, arg2));
10486 #endif
10487 #ifdef TARGET_NR_msgrcv
10488     case TARGET_NR_msgrcv:
10489         return do_msgrcv(arg1, arg2, arg3, arg4, arg5);
10490 #endif
10491 #ifdef TARGET_NR_msgsnd
10492     case TARGET_NR_msgsnd:
10493         return do_msgsnd(arg1, arg2, arg3, arg4);
10494 #endif
10495 #ifdef TARGET_NR_shmget
10496     case TARGET_NR_shmget:
10497         return get_errno(shmget(arg1, arg2, arg3));
10498 #endif
10499 #ifdef TARGET_NR_shmctl
10500     case TARGET_NR_shmctl:
10501         return do_shmctl(arg1, arg2, arg3);
10502 #endif
10503 #ifdef TARGET_NR_shmat
10504     case TARGET_NR_shmat:
10505         return do_shmat(cpu_env, arg1, arg2, arg3);
10506 #endif
10507 #ifdef TARGET_NR_shmdt
10508     case TARGET_NR_shmdt:
10509         return do_shmdt(arg1);
10510 #endif
10511     case TARGET_NR_fsync:
10512         return get_errno(fsync(arg1));
10513     case TARGET_NR_clone:
10514         /* Linux manages to have three different orderings for its
10515          * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
10516          * match the kernel's CONFIG_CLONE_* settings.
10517          * Microblaze is further special in that it uses a sixth
10518          * implicit argument to clone for the TLS pointer.
10519          */
10520 #if defined(TARGET_MICROBLAZE)
10521         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5));
10522 #elif defined(TARGET_CLONE_BACKWARDS)
10523         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5));
10524 #elif defined(TARGET_CLONE_BACKWARDS2)
10525         ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4));
10526 #else
10527         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4));
10528 #endif
10529         return ret;
10530 #ifdef __NR_exit_group
10531         /* new thread calls */
10532     case TARGET_NR_exit_group:
10533         preexit_cleanup(cpu_env, arg1);
10534         return get_errno(exit_group(arg1));
10535 #endif
10536     case TARGET_NR_setdomainname:
10537         if (!(p = lock_user_string(arg1)))
10538             return -TARGET_EFAULT;
10539         ret = get_errno(setdomainname(p, arg2));
10540         unlock_user(p, arg1, 0);
10541         return ret;
10542     case TARGET_NR_uname:
10543         /* no need to transcode because we use the linux syscall */
10544         {
10545             struct new_utsname * buf;
10546 
10547             if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0))
10548                 return -TARGET_EFAULT;
10549             ret = get_errno(sys_uname(buf));
10550             if (!is_error(ret)) {
10551                 /* Overwrite the native machine name with whatever is being
10552                    emulated. */
10553                 g_strlcpy(buf->machine, cpu_to_uname_machine(cpu_env),
10554                           sizeof(buf->machine));
10555                 /* Allow the user to override the reported release.  */
10556                 if (qemu_uname_release && *qemu_uname_release) {
10557                     g_strlcpy(buf->release, qemu_uname_release,
10558                               sizeof(buf->release));
10559                 }
10560             }
10561             unlock_user_struct(buf, arg1, 1);
10562         }
10563         return ret;
10564 #ifdef TARGET_I386
10565     case TARGET_NR_modify_ldt:
10566         return do_modify_ldt(cpu_env, arg1, arg2, arg3);
10567 #if !defined(TARGET_X86_64)
10568     case TARGET_NR_vm86:
10569         return do_vm86(cpu_env, arg1, arg2);
10570 #endif
10571 #endif
10572 #if defined(TARGET_NR_adjtimex)
10573     case TARGET_NR_adjtimex:
10574         {
10575             struct timex host_buf;
10576 
10577             if (target_to_host_timex(&host_buf, arg1) != 0) {
10578                 return -TARGET_EFAULT;
10579             }
10580             ret = get_errno(adjtimex(&host_buf));
10581             if (!is_error(ret)) {
10582                 if (host_to_target_timex(arg1, &host_buf) != 0) {
10583                     return -TARGET_EFAULT;
10584                 }
10585             }
10586         }
10587         return ret;
10588 #endif
10589 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)
10590     case TARGET_NR_clock_adjtime:
10591         {
10592             struct timex htx, *phtx = &htx;
10593 
10594             if (target_to_host_timex(phtx, arg2) != 0) {
10595                 return -TARGET_EFAULT;
10596             }
10597             ret = get_errno(clock_adjtime(arg1, phtx));
10598             if (!is_error(ret) && phtx) {
10599                 if (host_to_target_timex(arg2, phtx) != 0) {
10600                     return -TARGET_EFAULT;
10601                 }
10602             }
10603         }
10604         return ret;
10605 #endif
10606 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
10607     case TARGET_NR_clock_adjtime64:
10608         {
10609             struct timex htx;
10610 
10611             if (target_to_host_timex64(&htx, arg2) != 0) {
10612                 return -TARGET_EFAULT;
10613             }
10614             ret = get_errno(clock_adjtime(arg1, &htx));
10615             if (!is_error(ret) && host_to_target_timex64(arg2, &htx)) {
10616                     return -TARGET_EFAULT;
10617             }
10618         }
10619         return ret;
10620 #endif
10621     case TARGET_NR_getpgid:
10622         return get_errno(getpgid(arg1));
10623     case TARGET_NR_fchdir:
10624         return get_errno(fchdir(arg1));
10625     case TARGET_NR_personality:
10626         return get_errno(personality(arg1));
10627 #ifdef TARGET_NR__llseek /* Not on alpha */
10628     case TARGET_NR__llseek:
10629         {
10630             int64_t res;
10631 #if !defined(__NR_llseek)
10632             res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5);
10633             if (res == -1) {
10634                 ret = get_errno(res);
10635             } else {
10636                 ret = 0;
10637             }
10638 #else
10639             ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5));
10640 #endif
10641             if ((ret == 0) && put_user_s64(res, arg4)) {
10642                 return -TARGET_EFAULT;
10643             }
10644         }
10645         return ret;
10646 #endif
10647 #ifdef TARGET_NR_getdents
10648     case TARGET_NR_getdents:
10649         return do_getdents(arg1, arg2, arg3);
10650 #endif /* TARGET_NR_getdents */
10651 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
10652     case TARGET_NR_getdents64:
10653         return do_getdents64(arg1, arg2, arg3);
10654 #endif /* TARGET_NR_getdents64 */
10655 #if defined(TARGET_NR__newselect)
10656     case TARGET_NR__newselect:
10657         return do_select(arg1, arg2, arg3, arg4, arg5);
10658 #endif
10659 #ifdef TARGET_NR_poll
10660     case TARGET_NR_poll:
10661         return do_ppoll(arg1, arg2, arg3, arg4, arg5, false, false);
10662 #endif
10663 #ifdef TARGET_NR_ppoll
10664     case TARGET_NR_ppoll:
10665         return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, false);
10666 #endif
10667 #ifdef TARGET_NR_ppoll_time64
10668     case TARGET_NR_ppoll_time64:
10669         return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, true);
10670 #endif
10671     case TARGET_NR_flock:
10672         /* NOTE: the flock constant seems to be the same for every
10673            Linux platform */
10674         return get_errno(safe_flock(arg1, arg2));
10675     case TARGET_NR_readv:
10676         {
10677             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
10678             if (vec != NULL) {
10679                 ret = get_errno(safe_readv(arg1, vec, arg3));
10680                 unlock_iovec(vec, arg2, arg3, 1);
10681             } else {
10682                 ret = -host_to_target_errno(errno);
10683             }
10684         }
10685         return ret;
10686     case TARGET_NR_writev:
10687         {
10688             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
10689             if (vec != NULL) {
10690                 ret = get_errno(safe_writev(arg1, vec, arg3));
10691                 unlock_iovec(vec, arg2, arg3, 0);
10692             } else {
10693                 ret = -host_to_target_errno(errno);
10694             }
10695         }
10696         return ret;
10697 #if defined(TARGET_NR_preadv)
10698     case TARGET_NR_preadv:
10699         {
10700             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
10701             if (vec != NULL) {
10702                 unsigned long low, high;
10703 
10704                 target_to_host_low_high(arg4, arg5, &low, &high);
10705                 ret = get_errno(safe_preadv(arg1, vec, arg3, low, high));
10706                 unlock_iovec(vec, arg2, arg3, 1);
10707             } else {
10708                 ret = -host_to_target_errno(errno);
10709            }
10710         }
10711         return ret;
10712 #endif
10713 #if defined(TARGET_NR_pwritev)
10714     case TARGET_NR_pwritev:
10715         {
10716             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
10717             if (vec != NULL) {
10718                 unsigned long low, high;
10719 
10720                 target_to_host_low_high(arg4, arg5, &low, &high);
10721                 ret = get_errno(safe_pwritev(arg1, vec, arg3, low, high));
10722                 unlock_iovec(vec, arg2, arg3, 0);
10723             } else {
10724                 ret = -host_to_target_errno(errno);
10725            }
10726         }
10727         return ret;
10728 #endif
10729     case TARGET_NR_getsid:
10730         return get_errno(getsid(arg1));
10731 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
10732     case TARGET_NR_fdatasync:
10733         return get_errno(fdatasync(arg1));
10734 #endif
10735     case TARGET_NR_sched_getaffinity:
10736         {
10737             unsigned int mask_size;
10738             unsigned long *mask;
10739 
10740             /*
10741              * sched_getaffinity needs multiples of ulong, so need to take
10742              * care of mismatches between target ulong and host ulong sizes.
10743              */
10744             if (arg2 & (sizeof(abi_ulong) - 1)) {
10745                 return -TARGET_EINVAL;
10746             }
10747             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
10748 
10749             mask = alloca(mask_size);
10750             memset(mask, 0, mask_size);
10751             ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask));
10752 
10753             if (!is_error(ret)) {
10754                 if (ret > arg2) {
10755                     /* More data returned than the caller's buffer will fit.
10756                      * This only happens if sizeof(abi_long) < sizeof(long)
10757                      * and the caller passed us a buffer holding an odd number
10758                      * of abi_longs. If the host kernel is actually using the
10759                      * extra 4 bytes then fail EINVAL; otherwise we can just
10760                      * ignore them and only copy the interesting part.
10761                      */
10762                     int numcpus = sysconf(_SC_NPROCESSORS_CONF);
10763                     if (numcpus > arg2 * 8) {
10764                         return -TARGET_EINVAL;
10765                     }
10766                     ret = arg2;
10767                 }
10768 
10769                 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) {
10770                     return -TARGET_EFAULT;
10771                 }
10772             }
10773         }
10774         return ret;
10775     case TARGET_NR_sched_setaffinity:
10776         {
10777             unsigned int mask_size;
10778             unsigned long *mask;
10779 
10780             /*
10781              * sched_setaffinity needs multiples of ulong, so need to take
10782              * care of mismatches between target ulong and host ulong sizes.
10783              */
10784             if (arg2 & (sizeof(abi_ulong) - 1)) {
10785                 return -TARGET_EINVAL;
10786             }
10787             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
10788             mask = alloca(mask_size);
10789 
10790             ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2);
10791             if (ret) {
10792                 return ret;
10793             }
10794 
10795             return get_errno(sys_sched_setaffinity(arg1, mask_size, mask));
10796         }
10797     case TARGET_NR_getcpu:
10798         {
10799             unsigned cpu, node;
10800             ret = get_errno(sys_getcpu(arg1 ? &cpu : NULL,
10801                                        arg2 ? &node : NULL,
10802                                        NULL));
10803             if (is_error(ret)) {
10804                 return ret;
10805             }
10806             if (arg1 && put_user_u32(cpu, arg1)) {
10807                 return -TARGET_EFAULT;
10808             }
10809             if (arg2 && put_user_u32(node, arg2)) {
10810                 return -TARGET_EFAULT;
10811             }
10812         }
10813         return ret;
10814     case TARGET_NR_sched_setparam:
10815         {
10816             struct target_sched_param *target_schp;
10817             struct sched_param schp;
10818 
10819             if (arg2 == 0) {
10820                 return -TARGET_EINVAL;
10821             }
10822             if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1)) {
10823                 return -TARGET_EFAULT;
10824             }
10825             schp.sched_priority = tswap32(target_schp->sched_priority);
10826             unlock_user_struct(target_schp, arg2, 0);
10827             return get_errno(sys_sched_setparam(arg1, &schp));
10828         }
10829     case TARGET_NR_sched_getparam:
10830         {
10831             struct target_sched_param *target_schp;
10832             struct sched_param schp;
10833 
10834             if (arg2 == 0) {
10835                 return -TARGET_EINVAL;
10836             }
10837             ret = get_errno(sys_sched_getparam(arg1, &schp));
10838             if (!is_error(ret)) {
10839                 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0)) {
10840                     return -TARGET_EFAULT;
10841                 }
10842                 target_schp->sched_priority = tswap32(schp.sched_priority);
10843                 unlock_user_struct(target_schp, arg2, 1);
10844             }
10845         }
10846         return ret;
10847     case TARGET_NR_sched_setscheduler:
10848         {
10849             struct target_sched_param *target_schp;
10850             struct sched_param schp;
10851             if (arg3 == 0) {
10852                 return -TARGET_EINVAL;
10853             }
10854             if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1)) {
10855                 return -TARGET_EFAULT;
10856             }
10857             schp.sched_priority = tswap32(target_schp->sched_priority);
10858             unlock_user_struct(target_schp, arg3, 0);
10859             return get_errno(sys_sched_setscheduler(arg1, arg2, &schp));
10860         }
10861     case TARGET_NR_sched_getscheduler:
10862         return get_errno(sys_sched_getscheduler(arg1));
10863     case TARGET_NR_sched_getattr:
10864         {
10865             struct target_sched_attr *target_scha;
10866             struct sched_attr scha;
10867             if (arg2 == 0) {
10868                 return -TARGET_EINVAL;
10869             }
10870             if (arg3 > sizeof(scha)) {
10871                 arg3 = sizeof(scha);
10872             }
10873             ret = get_errno(sys_sched_getattr(arg1, &scha, arg3, arg4));
10874             if (!is_error(ret)) {
10875                 target_scha = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10876                 if (!target_scha) {
10877                     return -TARGET_EFAULT;
10878                 }
10879                 target_scha->size = tswap32(scha.size);
10880                 target_scha->sched_policy = tswap32(scha.sched_policy);
10881                 target_scha->sched_flags = tswap64(scha.sched_flags);
10882                 target_scha->sched_nice = tswap32(scha.sched_nice);
10883                 target_scha->sched_priority = tswap32(scha.sched_priority);
10884                 target_scha->sched_runtime = tswap64(scha.sched_runtime);
10885                 target_scha->sched_deadline = tswap64(scha.sched_deadline);
10886                 target_scha->sched_period = tswap64(scha.sched_period);
10887                 if (scha.size > offsetof(struct sched_attr, sched_util_min)) {
10888                     target_scha->sched_util_min = tswap32(scha.sched_util_min);
10889                     target_scha->sched_util_max = tswap32(scha.sched_util_max);
10890                 }
10891                 unlock_user(target_scha, arg2, arg3);
10892             }
10893             return ret;
10894         }
10895     case TARGET_NR_sched_setattr:
10896         {
10897             struct target_sched_attr *target_scha;
10898             struct sched_attr scha;
10899             uint32_t size;
10900             int zeroed;
10901             if (arg2 == 0) {
10902                 return -TARGET_EINVAL;
10903             }
10904             if (get_user_u32(size, arg2)) {
10905                 return -TARGET_EFAULT;
10906             }
10907             if (!size) {
10908                 size = offsetof(struct target_sched_attr, sched_util_min);
10909             }
10910             if (size < offsetof(struct target_sched_attr, sched_util_min)) {
10911                 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
10912                     return -TARGET_EFAULT;
10913                 }
10914                 return -TARGET_E2BIG;
10915             }
10916 
10917             zeroed = check_zeroed_user(arg2, sizeof(struct target_sched_attr), size);
10918             if (zeroed < 0) {
10919                 return zeroed;
10920             } else if (zeroed == 0) {
10921                 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
10922                     return -TARGET_EFAULT;
10923                 }
10924                 return -TARGET_E2BIG;
10925             }
10926             if (size > sizeof(struct target_sched_attr)) {
10927                 size = sizeof(struct target_sched_attr);
10928             }
10929 
10930             target_scha = lock_user(VERIFY_READ, arg2, size, 1);
10931             if (!target_scha) {
10932                 return -TARGET_EFAULT;
10933             }
10934             scha.size = size;
10935             scha.sched_policy = tswap32(target_scha->sched_policy);
10936             scha.sched_flags = tswap64(target_scha->sched_flags);
10937             scha.sched_nice = tswap32(target_scha->sched_nice);
10938             scha.sched_priority = tswap32(target_scha->sched_priority);
10939             scha.sched_runtime = tswap64(target_scha->sched_runtime);
10940             scha.sched_deadline = tswap64(target_scha->sched_deadline);
10941             scha.sched_period = tswap64(target_scha->sched_period);
10942             if (size > offsetof(struct target_sched_attr, sched_util_min)) {
10943                 scha.sched_util_min = tswap32(target_scha->sched_util_min);
10944                 scha.sched_util_max = tswap32(target_scha->sched_util_max);
10945             }
10946             unlock_user(target_scha, arg2, 0);
10947             return get_errno(sys_sched_setattr(arg1, &scha, arg3));
10948         }
10949     case TARGET_NR_sched_yield:
10950         return get_errno(sched_yield());
10951     case TARGET_NR_sched_get_priority_max:
10952         return get_errno(sched_get_priority_max(arg1));
10953     case TARGET_NR_sched_get_priority_min:
10954         return get_errno(sched_get_priority_min(arg1));
10955 #ifdef TARGET_NR_sched_rr_get_interval
10956     case TARGET_NR_sched_rr_get_interval:
10957         {
10958             struct timespec ts;
10959             ret = get_errno(sched_rr_get_interval(arg1, &ts));
10960             if (!is_error(ret)) {
10961                 ret = host_to_target_timespec(arg2, &ts);
10962             }
10963         }
10964         return ret;
10965 #endif
10966 #ifdef TARGET_NR_sched_rr_get_interval_time64
10967     case TARGET_NR_sched_rr_get_interval_time64:
10968         {
10969             struct timespec ts;
10970             ret = get_errno(sched_rr_get_interval(arg1, &ts));
10971             if (!is_error(ret)) {
10972                 ret = host_to_target_timespec64(arg2, &ts);
10973             }
10974         }
10975         return ret;
10976 #endif
10977 #if defined(TARGET_NR_nanosleep)
10978     case TARGET_NR_nanosleep:
10979         {
10980             struct timespec req, rem;
10981             target_to_host_timespec(&req, arg1);
10982             ret = get_errno(safe_nanosleep(&req, &rem));
10983             if (is_error(ret) && arg2) {
10984                 host_to_target_timespec(arg2, &rem);
10985             }
10986         }
10987         return ret;
10988 #endif
10989     case TARGET_NR_prctl:
10990         return do_prctl(cpu_env, arg1, arg2, arg3, arg4, arg5);
10991         break;
10992 #ifdef TARGET_NR_arch_prctl
10993     case TARGET_NR_arch_prctl:
10994         return do_arch_prctl(cpu_env, arg1, arg2);
10995 #endif
10996 #ifdef TARGET_NR_pread64
10997     case TARGET_NR_pread64:
10998         if (regpairs_aligned(cpu_env, num)) {
10999             arg4 = arg5;
11000             arg5 = arg6;
11001         }
11002         if (arg2 == 0 && arg3 == 0) {
11003             /* Special-case NULL buffer and zero length, which should succeed */
11004             p = 0;
11005         } else {
11006             p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11007             if (!p) {
11008                 return -TARGET_EFAULT;
11009             }
11010         }
11011         ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5)));
11012         unlock_user(p, arg2, ret);
11013         return ret;
11014     case TARGET_NR_pwrite64:
11015         if (regpairs_aligned(cpu_env, num)) {
11016             arg4 = arg5;
11017             arg5 = arg6;
11018         }
11019         if (arg2 == 0 && arg3 == 0) {
11020             /* Special-case NULL buffer and zero length, which should succeed */
11021             p = 0;
11022         } else {
11023             p = lock_user(VERIFY_READ, arg2, arg3, 1);
11024             if (!p) {
11025                 return -TARGET_EFAULT;
11026             }
11027         }
11028         ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5)));
11029         unlock_user(p, arg2, 0);
11030         return ret;
11031 #endif
11032     case TARGET_NR_getcwd:
11033         if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0)))
11034             return -TARGET_EFAULT;
11035         ret = get_errno(sys_getcwd1(p, arg2));
11036         unlock_user(p, arg1, ret);
11037         return ret;
11038     case TARGET_NR_capget:
11039     case TARGET_NR_capset:
11040     {
11041         struct target_user_cap_header *target_header;
11042         struct target_user_cap_data *target_data = NULL;
11043         struct __user_cap_header_struct header;
11044         struct __user_cap_data_struct data[2];
11045         struct __user_cap_data_struct *dataptr = NULL;
11046         int i, target_datalen;
11047         int data_items = 1;
11048 
11049         if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) {
11050             return -TARGET_EFAULT;
11051         }
11052         header.version = tswap32(target_header->version);
11053         header.pid = tswap32(target_header->pid);
11054 
11055         if (header.version != _LINUX_CAPABILITY_VERSION) {
11056             /* Version 2 and up takes pointer to two user_data structs */
11057             data_items = 2;
11058         }
11059 
11060         target_datalen = sizeof(*target_data) * data_items;
11061 
11062         if (arg2) {
11063             if (num == TARGET_NR_capget) {
11064                 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0);
11065             } else {
11066                 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1);
11067             }
11068             if (!target_data) {
11069                 unlock_user_struct(target_header, arg1, 0);
11070                 return -TARGET_EFAULT;
11071             }
11072 
11073             if (num == TARGET_NR_capset) {
11074                 for (i = 0; i < data_items; i++) {
11075                     data[i].effective = tswap32(target_data[i].effective);
11076                     data[i].permitted = tswap32(target_data[i].permitted);
11077                     data[i].inheritable = tswap32(target_data[i].inheritable);
11078                 }
11079             }
11080 
11081             dataptr = data;
11082         }
11083 
11084         if (num == TARGET_NR_capget) {
11085             ret = get_errno(capget(&header, dataptr));
11086         } else {
11087             ret = get_errno(capset(&header, dataptr));
11088         }
11089 
11090         /* The kernel always updates version for both capget and capset */
11091         target_header->version = tswap32(header.version);
11092         unlock_user_struct(target_header, arg1, 1);
11093 
11094         if (arg2) {
11095             if (num == TARGET_NR_capget) {
11096                 for (i = 0; i < data_items; i++) {
11097                     target_data[i].effective = tswap32(data[i].effective);
11098                     target_data[i].permitted = tswap32(data[i].permitted);
11099                     target_data[i].inheritable = tswap32(data[i].inheritable);
11100                 }
11101                 unlock_user(target_data, arg2, target_datalen);
11102             } else {
11103                 unlock_user(target_data, arg2, 0);
11104             }
11105         }
11106         return ret;
11107     }
11108     case TARGET_NR_sigaltstack:
11109         return do_sigaltstack(arg1, arg2, cpu_env);
11110 
11111 #ifdef CONFIG_SENDFILE
11112 #ifdef TARGET_NR_sendfile
11113     case TARGET_NR_sendfile:
11114     {
11115         off_t *offp = NULL;
11116         off_t off;
11117         if (arg3) {
11118             ret = get_user_sal(off, arg3);
11119             if (is_error(ret)) {
11120                 return ret;
11121             }
11122             offp = &off;
11123         }
11124         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11125         if (!is_error(ret) && arg3) {
11126             abi_long ret2 = put_user_sal(off, arg3);
11127             if (is_error(ret2)) {
11128                 ret = ret2;
11129             }
11130         }
11131         return ret;
11132     }
11133 #endif
11134 #ifdef TARGET_NR_sendfile64
11135     case TARGET_NR_sendfile64:
11136     {
11137         off_t *offp = NULL;
11138         off_t off;
11139         if (arg3) {
11140             ret = get_user_s64(off, arg3);
11141             if (is_error(ret)) {
11142                 return ret;
11143             }
11144             offp = &off;
11145         }
11146         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11147         if (!is_error(ret) && arg3) {
11148             abi_long ret2 = put_user_s64(off, arg3);
11149             if (is_error(ret2)) {
11150                 ret = ret2;
11151             }
11152         }
11153         return ret;
11154     }
11155 #endif
11156 #endif
11157 #ifdef TARGET_NR_vfork
11158     case TARGET_NR_vfork:
11159         return get_errno(do_fork(cpu_env,
11160                          CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD,
11161                          0, 0, 0, 0));
11162 #endif
11163 #ifdef TARGET_NR_ugetrlimit
11164     case TARGET_NR_ugetrlimit:
11165     {
11166 	struct rlimit rlim;
11167 	int resource = target_to_host_resource(arg1);
11168 	ret = get_errno(getrlimit(resource, &rlim));
11169 	if (!is_error(ret)) {
11170 	    struct target_rlimit *target_rlim;
11171             if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
11172                 return -TARGET_EFAULT;
11173 	    target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
11174 	    target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
11175             unlock_user_struct(target_rlim, arg2, 1);
11176 	}
11177         return ret;
11178     }
11179 #endif
11180 #ifdef TARGET_NR_truncate64
11181     case TARGET_NR_truncate64:
11182         if (!(p = lock_user_string(arg1)))
11183             return -TARGET_EFAULT;
11184 	ret = target_truncate64(cpu_env, p, arg2, arg3, arg4);
11185         unlock_user(p, arg1, 0);
11186         return ret;
11187 #endif
11188 #ifdef TARGET_NR_ftruncate64
11189     case TARGET_NR_ftruncate64:
11190         return target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4);
11191 #endif
11192 #ifdef TARGET_NR_stat64
11193     case TARGET_NR_stat64:
11194         if (!(p = lock_user_string(arg1))) {
11195             return -TARGET_EFAULT;
11196         }
11197         ret = get_errno(stat(path(p), &st));
11198         unlock_user(p, arg1, 0);
11199         if (!is_error(ret))
11200             ret = host_to_target_stat64(cpu_env, arg2, &st);
11201         return ret;
11202 #endif
11203 #ifdef TARGET_NR_lstat64
11204     case TARGET_NR_lstat64:
11205         if (!(p = lock_user_string(arg1))) {
11206             return -TARGET_EFAULT;
11207         }
11208         ret = get_errno(lstat(path(p), &st));
11209         unlock_user(p, arg1, 0);
11210         if (!is_error(ret))
11211             ret = host_to_target_stat64(cpu_env, arg2, &st);
11212         return ret;
11213 #endif
11214 #ifdef TARGET_NR_fstat64
11215     case TARGET_NR_fstat64:
11216         ret = get_errno(fstat(arg1, &st));
11217         if (!is_error(ret))
11218             ret = host_to_target_stat64(cpu_env, arg2, &st);
11219         return ret;
11220 #endif
11221 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
11222 #ifdef TARGET_NR_fstatat64
11223     case TARGET_NR_fstatat64:
11224 #endif
11225 #ifdef TARGET_NR_newfstatat
11226     case TARGET_NR_newfstatat:
11227 #endif
11228         if (!(p = lock_user_string(arg2))) {
11229             return -TARGET_EFAULT;
11230         }
11231         ret = get_errno(fstatat(arg1, path(p), &st, arg4));
11232         unlock_user(p, arg2, 0);
11233         if (!is_error(ret))
11234             ret = host_to_target_stat64(cpu_env, arg3, &st);
11235         return ret;
11236 #endif
11237 #if defined(TARGET_NR_statx)
11238     case TARGET_NR_statx:
11239         {
11240             struct target_statx *target_stx;
11241             int dirfd = arg1;
11242             int flags = arg3;
11243 
11244             p = lock_user_string(arg2);
11245             if (p == NULL) {
11246                 return -TARGET_EFAULT;
11247             }
11248 #if defined(__NR_statx)
11249             {
11250                 /*
11251                  * It is assumed that struct statx is architecture independent.
11252                  */
11253                 struct target_statx host_stx;
11254                 int mask = arg4;
11255 
11256                 ret = get_errno(sys_statx(dirfd, p, flags, mask, &host_stx));
11257                 if (!is_error(ret)) {
11258                     if (host_to_target_statx(&host_stx, arg5) != 0) {
11259                         unlock_user(p, arg2, 0);
11260                         return -TARGET_EFAULT;
11261                     }
11262                 }
11263 
11264                 if (ret != -TARGET_ENOSYS) {
11265                     unlock_user(p, arg2, 0);
11266                     return ret;
11267                 }
11268             }
11269 #endif
11270             ret = get_errno(fstatat(dirfd, path(p), &st, flags));
11271             unlock_user(p, arg2, 0);
11272 
11273             if (!is_error(ret)) {
11274                 if (!lock_user_struct(VERIFY_WRITE, target_stx, arg5, 0)) {
11275                     return -TARGET_EFAULT;
11276                 }
11277                 memset(target_stx, 0, sizeof(*target_stx));
11278                 __put_user(major(st.st_dev), &target_stx->stx_dev_major);
11279                 __put_user(minor(st.st_dev), &target_stx->stx_dev_minor);
11280                 __put_user(st.st_ino, &target_stx->stx_ino);
11281                 __put_user(st.st_mode, &target_stx->stx_mode);
11282                 __put_user(st.st_uid, &target_stx->stx_uid);
11283                 __put_user(st.st_gid, &target_stx->stx_gid);
11284                 __put_user(st.st_nlink, &target_stx->stx_nlink);
11285                 __put_user(major(st.st_rdev), &target_stx->stx_rdev_major);
11286                 __put_user(minor(st.st_rdev), &target_stx->stx_rdev_minor);
11287                 __put_user(st.st_size, &target_stx->stx_size);
11288                 __put_user(st.st_blksize, &target_stx->stx_blksize);
11289                 __put_user(st.st_blocks, &target_stx->stx_blocks);
11290                 __put_user(st.st_atime, &target_stx->stx_atime.tv_sec);
11291                 __put_user(st.st_mtime, &target_stx->stx_mtime.tv_sec);
11292                 __put_user(st.st_ctime, &target_stx->stx_ctime.tv_sec);
11293                 unlock_user_struct(target_stx, arg5, 1);
11294             }
11295         }
11296         return ret;
11297 #endif
11298 #ifdef TARGET_NR_lchown
11299     case TARGET_NR_lchown:
11300         if (!(p = lock_user_string(arg1)))
11301             return -TARGET_EFAULT;
11302         ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3)));
11303         unlock_user(p, arg1, 0);
11304         return ret;
11305 #endif
11306 #ifdef TARGET_NR_getuid
11307     case TARGET_NR_getuid:
11308         return get_errno(high2lowuid(getuid()));
11309 #endif
11310 #ifdef TARGET_NR_getgid
11311     case TARGET_NR_getgid:
11312         return get_errno(high2lowgid(getgid()));
11313 #endif
11314 #ifdef TARGET_NR_geteuid
11315     case TARGET_NR_geteuid:
11316         return get_errno(high2lowuid(geteuid()));
11317 #endif
11318 #ifdef TARGET_NR_getegid
11319     case TARGET_NR_getegid:
11320         return get_errno(high2lowgid(getegid()));
11321 #endif
11322     case TARGET_NR_setreuid:
11323         return get_errno(setreuid(low2highuid(arg1), low2highuid(arg2)));
11324     case TARGET_NR_setregid:
11325         return get_errno(setregid(low2highgid(arg1), low2highgid(arg2)));
11326     case TARGET_NR_getgroups:
11327         {
11328             int gidsetsize = arg1;
11329             target_id *target_grouplist;
11330             gid_t *grouplist;
11331             int i;
11332 
11333             grouplist = alloca(gidsetsize * sizeof(gid_t));
11334             ret = get_errno(getgroups(gidsetsize, grouplist));
11335             if (gidsetsize == 0)
11336                 return ret;
11337             if (!is_error(ret)) {
11338                 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * sizeof(target_id), 0);
11339                 if (!target_grouplist)
11340                     return -TARGET_EFAULT;
11341                 for(i = 0;i < ret; i++)
11342                     target_grouplist[i] = tswapid(high2lowgid(grouplist[i]));
11343                 unlock_user(target_grouplist, arg2, gidsetsize * sizeof(target_id));
11344             }
11345         }
11346         return ret;
11347     case TARGET_NR_setgroups:
11348         {
11349             int gidsetsize = arg1;
11350             target_id *target_grouplist;
11351             gid_t *grouplist = NULL;
11352             int i;
11353             if (gidsetsize) {
11354                 grouplist = alloca(gidsetsize * sizeof(gid_t));
11355                 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * sizeof(target_id), 1);
11356                 if (!target_grouplist) {
11357                     return -TARGET_EFAULT;
11358                 }
11359                 for (i = 0; i < gidsetsize; i++) {
11360                     grouplist[i] = low2highgid(tswapid(target_grouplist[i]));
11361                 }
11362                 unlock_user(target_grouplist, arg2, 0);
11363             }
11364             return get_errno(setgroups(gidsetsize, grouplist));
11365         }
11366     case TARGET_NR_fchown:
11367         return get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3)));
11368 #if defined(TARGET_NR_fchownat)
11369     case TARGET_NR_fchownat:
11370         if (!(p = lock_user_string(arg2)))
11371             return -TARGET_EFAULT;
11372         ret = get_errno(fchownat(arg1, p, low2highuid(arg3),
11373                                  low2highgid(arg4), arg5));
11374         unlock_user(p, arg2, 0);
11375         return ret;
11376 #endif
11377 #ifdef TARGET_NR_setresuid
11378     case TARGET_NR_setresuid:
11379         return get_errno(sys_setresuid(low2highuid(arg1),
11380                                        low2highuid(arg2),
11381                                        low2highuid(arg3)));
11382 #endif
11383 #ifdef TARGET_NR_getresuid
11384     case TARGET_NR_getresuid:
11385         {
11386             uid_t ruid, euid, suid;
11387             ret = get_errno(getresuid(&ruid, &euid, &suid));
11388             if (!is_error(ret)) {
11389                 if (put_user_id(high2lowuid(ruid), arg1)
11390                     || put_user_id(high2lowuid(euid), arg2)
11391                     || put_user_id(high2lowuid(suid), arg3))
11392                     return -TARGET_EFAULT;
11393             }
11394         }
11395         return ret;
11396 #endif
11397 #ifdef TARGET_NR_getresgid
11398     case TARGET_NR_setresgid:
11399         return get_errno(sys_setresgid(low2highgid(arg1),
11400                                        low2highgid(arg2),
11401                                        low2highgid(arg3)));
11402 #endif
11403 #ifdef TARGET_NR_getresgid
11404     case TARGET_NR_getresgid:
11405         {
11406             gid_t rgid, egid, sgid;
11407             ret = get_errno(getresgid(&rgid, &egid, &sgid));
11408             if (!is_error(ret)) {
11409                 if (put_user_id(high2lowgid(rgid), arg1)
11410                     || put_user_id(high2lowgid(egid), arg2)
11411                     || put_user_id(high2lowgid(sgid), arg3))
11412                     return -TARGET_EFAULT;
11413             }
11414         }
11415         return ret;
11416 #endif
11417 #ifdef TARGET_NR_chown
11418     case TARGET_NR_chown:
11419         if (!(p = lock_user_string(arg1)))
11420             return -TARGET_EFAULT;
11421         ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3)));
11422         unlock_user(p, arg1, 0);
11423         return ret;
11424 #endif
11425     case TARGET_NR_setuid:
11426         return get_errno(sys_setuid(low2highuid(arg1)));
11427     case TARGET_NR_setgid:
11428         return get_errno(sys_setgid(low2highgid(arg1)));
11429     case TARGET_NR_setfsuid:
11430         return get_errno(setfsuid(arg1));
11431     case TARGET_NR_setfsgid:
11432         return get_errno(setfsgid(arg1));
11433 
11434 #ifdef TARGET_NR_lchown32
11435     case TARGET_NR_lchown32:
11436         if (!(p = lock_user_string(arg1)))
11437             return -TARGET_EFAULT;
11438         ret = get_errno(lchown(p, arg2, arg3));
11439         unlock_user(p, arg1, 0);
11440         return ret;
11441 #endif
11442 #ifdef TARGET_NR_getuid32
11443     case TARGET_NR_getuid32:
11444         return get_errno(getuid());
11445 #endif
11446 
11447 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
11448    /* Alpha specific */
11449     case TARGET_NR_getxuid:
11450          {
11451             uid_t euid;
11452             euid=geteuid();
11453             ((CPUAlphaState *)cpu_env)->ir[IR_A4]=euid;
11454          }
11455         return get_errno(getuid());
11456 #endif
11457 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
11458    /* Alpha specific */
11459     case TARGET_NR_getxgid:
11460          {
11461             uid_t egid;
11462             egid=getegid();
11463             ((CPUAlphaState *)cpu_env)->ir[IR_A4]=egid;
11464          }
11465         return get_errno(getgid());
11466 #endif
11467 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
11468     /* Alpha specific */
11469     case TARGET_NR_osf_getsysinfo:
11470         ret = -TARGET_EOPNOTSUPP;
11471         switch (arg1) {
11472           case TARGET_GSI_IEEE_FP_CONTROL:
11473             {
11474                 uint64_t fpcr = cpu_alpha_load_fpcr(cpu_env);
11475                 uint64_t swcr = ((CPUAlphaState *)cpu_env)->swcr;
11476 
11477                 swcr &= ~SWCR_STATUS_MASK;
11478                 swcr |= (fpcr >> 35) & SWCR_STATUS_MASK;
11479 
11480                 if (put_user_u64 (swcr, arg2))
11481                         return -TARGET_EFAULT;
11482                 ret = 0;
11483             }
11484             break;
11485 
11486           /* case GSI_IEEE_STATE_AT_SIGNAL:
11487              -- Not implemented in linux kernel.
11488              case GSI_UACPROC:
11489              -- Retrieves current unaligned access state; not much used.
11490              case GSI_PROC_TYPE:
11491              -- Retrieves implver information; surely not used.
11492              case GSI_GET_HWRPB:
11493              -- Grabs a copy of the HWRPB; surely not used.
11494           */
11495         }
11496         return ret;
11497 #endif
11498 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
11499     /* Alpha specific */
11500     case TARGET_NR_osf_setsysinfo:
11501         ret = -TARGET_EOPNOTSUPP;
11502         switch (arg1) {
11503           case TARGET_SSI_IEEE_FP_CONTROL:
11504             {
11505                 uint64_t swcr, fpcr;
11506 
11507                 if (get_user_u64 (swcr, arg2)) {
11508                     return -TARGET_EFAULT;
11509                 }
11510 
11511                 /*
11512                  * The kernel calls swcr_update_status to update the
11513                  * status bits from the fpcr at every point that it
11514                  * could be queried.  Therefore, we store the status
11515                  * bits only in FPCR.
11516                  */
11517                 ((CPUAlphaState *)cpu_env)->swcr
11518                     = swcr & (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK);
11519 
11520                 fpcr = cpu_alpha_load_fpcr(cpu_env);
11521                 fpcr &= ((uint64_t)FPCR_DYN_MASK << 32);
11522                 fpcr |= alpha_ieee_swcr_to_fpcr(swcr);
11523                 cpu_alpha_store_fpcr(cpu_env, fpcr);
11524                 ret = 0;
11525             }
11526             break;
11527 
11528           case TARGET_SSI_IEEE_RAISE_EXCEPTION:
11529             {
11530                 uint64_t exc, fpcr, fex;
11531 
11532                 if (get_user_u64(exc, arg2)) {
11533                     return -TARGET_EFAULT;
11534                 }
11535                 exc &= SWCR_STATUS_MASK;
11536                 fpcr = cpu_alpha_load_fpcr(cpu_env);
11537 
11538                 /* Old exceptions are not signaled.  */
11539                 fex = alpha_ieee_fpcr_to_swcr(fpcr);
11540                 fex = exc & ~fex;
11541                 fex >>= SWCR_STATUS_TO_EXCSUM_SHIFT;
11542                 fex &= ((CPUArchState *)cpu_env)->swcr;
11543 
11544                 /* Update the hardware fpcr.  */
11545                 fpcr |= alpha_ieee_swcr_to_fpcr(exc);
11546                 cpu_alpha_store_fpcr(cpu_env, fpcr);
11547 
11548                 if (fex) {
11549                     int si_code = TARGET_FPE_FLTUNK;
11550                     target_siginfo_t info;
11551 
11552                     if (fex & SWCR_TRAP_ENABLE_DNO) {
11553                         si_code = TARGET_FPE_FLTUND;
11554                     }
11555                     if (fex & SWCR_TRAP_ENABLE_INE) {
11556                         si_code = TARGET_FPE_FLTRES;
11557                     }
11558                     if (fex & SWCR_TRAP_ENABLE_UNF) {
11559                         si_code = TARGET_FPE_FLTUND;
11560                     }
11561                     if (fex & SWCR_TRAP_ENABLE_OVF) {
11562                         si_code = TARGET_FPE_FLTOVF;
11563                     }
11564                     if (fex & SWCR_TRAP_ENABLE_DZE) {
11565                         si_code = TARGET_FPE_FLTDIV;
11566                     }
11567                     if (fex & SWCR_TRAP_ENABLE_INV) {
11568                         si_code = TARGET_FPE_FLTINV;
11569                     }
11570 
11571                     info.si_signo = SIGFPE;
11572                     info.si_errno = 0;
11573                     info.si_code = si_code;
11574                     info._sifields._sigfault._addr
11575                         = ((CPUArchState *)cpu_env)->pc;
11576                     queue_signal((CPUArchState *)cpu_env, info.si_signo,
11577                                  QEMU_SI_FAULT, &info);
11578                 }
11579                 ret = 0;
11580             }
11581             break;
11582 
11583           /* case SSI_NVPAIRS:
11584              -- Used with SSIN_UACPROC to enable unaligned accesses.
11585              case SSI_IEEE_STATE_AT_SIGNAL:
11586              case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
11587              -- Not implemented in linux kernel
11588           */
11589         }
11590         return ret;
11591 #endif
11592 #ifdef TARGET_NR_osf_sigprocmask
11593     /* Alpha specific.  */
11594     case TARGET_NR_osf_sigprocmask:
11595         {
11596             abi_ulong mask;
11597             int how;
11598             sigset_t set, oldset;
11599 
11600             switch(arg1) {
11601             case TARGET_SIG_BLOCK:
11602                 how = SIG_BLOCK;
11603                 break;
11604             case TARGET_SIG_UNBLOCK:
11605                 how = SIG_UNBLOCK;
11606                 break;
11607             case TARGET_SIG_SETMASK:
11608                 how = SIG_SETMASK;
11609                 break;
11610             default:
11611                 return -TARGET_EINVAL;
11612             }
11613             mask = arg2;
11614             target_to_host_old_sigset(&set, &mask);
11615             ret = do_sigprocmask(how, &set, &oldset);
11616             if (!ret) {
11617                 host_to_target_old_sigset(&mask, &oldset);
11618                 ret = mask;
11619             }
11620         }
11621         return ret;
11622 #endif
11623 
11624 #ifdef TARGET_NR_getgid32
11625     case TARGET_NR_getgid32:
11626         return get_errno(getgid());
11627 #endif
11628 #ifdef TARGET_NR_geteuid32
11629     case TARGET_NR_geteuid32:
11630         return get_errno(geteuid());
11631 #endif
11632 #ifdef TARGET_NR_getegid32
11633     case TARGET_NR_getegid32:
11634         return get_errno(getegid());
11635 #endif
11636 #ifdef TARGET_NR_setreuid32
11637     case TARGET_NR_setreuid32:
11638         return get_errno(setreuid(arg1, arg2));
11639 #endif
11640 #ifdef TARGET_NR_setregid32
11641     case TARGET_NR_setregid32:
11642         return get_errno(setregid(arg1, arg2));
11643 #endif
11644 #ifdef TARGET_NR_getgroups32
11645     case TARGET_NR_getgroups32:
11646         {
11647             int gidsetsize = arg1;
11648             uint32_t *target_grouplist;
11649             gid_t *grouplist;
11650             int i;
11651 
11652             grouplist = alloca(gidsetsize * sizeof(gid_t));
11653             ret = get_errno(getgroups(gidsetsize, grouplist));
11654             if (gidsetsize == 0)
11655                 return ret;
11656             if (!is_error(ret)) {
11657                 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * 4, 0);
11658                 if (!target_grouplist) {
11659                     return -TARGET_EFAULT;
11660                 }
11661                 for(i = 0;i < ret; i++)
11662                     target_grouplist[i] = tswap32(grouplist[i]);
11663                 unlock_user(target_grouplist, arg2, gidsetsize * 4);
11664             }
11665         }
11666         return ret;
11667 #endif
11668 #ifdef TARGET_NR_setgroups32
11669     case TARGET_NR_setgroups32:
11670         {
11671             int gidsetsize = arg1;
11672             uint32_t *target_grouplist;
11673             gid_t *grouplist;
11674             int i;
11675 
11676             grouplist = alloca(gidsetsize * sizeof(gid_t));
11677             target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * 4, 1);
11678             if (!target_grouplist) {
11679                 return -TARGET_EFAULT;
11680             }
11681             for(i = 0;i < gidsetsize; i++)
11682                 grouplist[i] = tswap32(target_grouplist[i]);
11683             unlock_user(target_grouplist, arg2, 0);
11684             return get_errno(setgroups(gidsetsize, grouplist));
11685         }
11686 #endif
11687 #ifdef TARGET_NR_fchown32
11688     case TARGET_NR_fchown32:
11689         return get_errno(fchown(arg1, arg2, arg3));
11690 #endif
11691 #ifdef TARGET_NR_setresuid32
11692     case TARGET_NR_setresuid32:
11693         return get_errno(sys_setresuid(arg1, arg2, arg3));
11694 #endif
11695 #ifdef TARGET_NR_getresuid32
11696     case TARGET_NR_getresuid32:
11697         {
11698             uid_t ruid, euid, suid;
11699             ret = get_errno(getresuid(&ruid, &euid, &suid));
11700             if (!is_error(ret)) {
11701                 if (put_user_u32(ruid, arg1)
11702                     || put_user_u32(euid, arg2)
11703                     || put_user_u32(suid, arg3))
11704                     return -TARGET_EFAULT;
11705             }
11706         }
11707         return ret;
11708 #endif
11709 #ifdef TARGET_NR_setresgid32
11710     case TARGET_NR_setresgid32:
11711         return get_errno(sys_setresgid(arg1, arg2, arg3));
11712 #endif
11713 #ifdef TARGET_NR_getresgid32
11714     case TARGET_NR_getresgid32:
11715         {
11716             gid_t rgid, egid, sgid;
11717             ret = get_errno(getresgid(&rgid, &egid, &sgid));
11718             if (!is_error(ret)) {
11719                 if (put_user_u32(rgid, arg1)
11720                     || put_user_u32(egid, arg2)
11721                     || put_user_u32(sgid, arg3))
11722                     return -TARGET_EFAULT;
11723             }
11724         }
11725         return ret;
11726 #endif
11727 #ifdef TARGET_NR_chown32
11728     case TARGET_NR_chown32:
11729         if (!(p = lock_user_string(arg1)))
11730             return -TARGET_EFAULT;
11731         ret = get_errno(chown(p, arg2, arg3));
11732         unlock_user(p, arg1, 0);
11733         return ret;
11734 #endif
11735 #ifdef TARGET_NR_setuid32
11736     case TARGET_NR_setuid32:
11737         return get_errno(sys_setuid(arg1));
11738 #endif
11739 #ifdef TARGET_NR_setgid32
11740     case TARGET_NR_setgid32:
11741         return get_errno(sys_setgid(arg1));
11742 #endif
11743 #ifdef TARGET_NR_setfsuid32
11744     case TARGET_NR_setfsuid32:
11745         return get_errno(setfsuid(arg1));
11746 #endif
11747 #ifdef TARGET_NR_setfsgid32
11748     case TARGET_NR_setfsgid32:
11749         return get_errno(setfsgid(arg1));
11750 #endif
11751 #ifdef TARGET_NR_mincore
11752     case TARGET_NR_mincore:
11753         {
11754             void *a = lock_user(VERIFY_READ, arg1, arg2, 0);
11755             if (!a) {
11756                 return -TARGET_ENOMEM;
11757             }
11758             p = lock_user_string(arg3);
11759             if (!p) {
11760                 ret = -TARGET_EFAULT;
11761             } else {
11762                 ret = get_errno(mincore(a, arg2, p));
11763                 unlock_user(p, arg3, ret);
11764             }
11765             unlock_user(a, arg1, 0);
11766         }
11767         return ret;
11768 #endif
11769 #ifdef TARGET_NR_arm_fadvise64_64
11770     case TARGET_NR_arm_fadvise64_64:
11771         /* arm_fadvise64_64 looks like fadvise64_64 but
11772          * with different argument order: fd, advice, offset, len
11773          * rather than the usual fd, offset, len, advice.
11774          * Note that offset and len are both 64-bit so appear as
11775          * pairs of 32-bit registers.
11776          */
11777         ret = posix_fadvise(arg1, target_offset64(arg3, arg4),
11778                             target_offset64(arg5, arg6), arg2);
11779         return -host_to_target_errno(ret);
11780 #endif
11781 
11782 #if TARGET_ABI_BITS == 32
11783 
11784 #ifdef TARGET_NR_fadvise64_64
11785     case TARGET_NR_fadvise64_64:
11786 #if defined(TARGET_PPC) || defined(TARGET_XTENSA)
11787         /* 6 args: fd, advice, offset (high, low), len (high, low) */
11788         ret = arg2;
11789         arg2 = arg3;
11790         arg3 = arg4;
11791         arg4 = arg5;
11792         arg5 = arg6;
11793         arg6 = ret;
11794 #else
11795         /* 6 args: fd, offset (high, low), len (high, low), advice */
11796         if (regpairs_aligned(cpu_env, num)) {
11797             /* offset is in (3,4), len in (5,6) and advice in 7 */
11798             arg2 = arg3;
11799             arg3 = arg4;
11800             arg4 = arg5;
11801             arg5 = arg6;
11802             arg6 = arg7;
11803         }
11804 #endif
11805         ret = posix_fadvise(arg1, target_offset64(arg2, arg3),
11806                             target_offset64(arg4, arg5), arg6);
11807         return -host_to_target_errno(ret);
11808 #endif
11809 
11810 #ifdef TARGET_NR_fadvise64
11811     case TARGET_NR_fadvise64:
11812         /* 5 args: fd, offset (high, low), len, advice */
11813         if (regpairs_aligned(cpu_env, num)) {
11814             /* offset is in (3,4), len in 5 and advice in 6 */
11815             arg2 = arg3;
11816             arg3 = arg4;
11817             arg4 = arg5;
11818             arg5 = arg6;
11819         }
11820         ret = posix_fadvise(arg1, target_offset64(arg2, arg3), arg4, arg5);
11821         return -host_to_target_errno(ret);
11822 #endif
11823 
11824 #else /* not a 32-bit ABI */
11825 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
11826 #ifdef TARGET_NR_fadvise64_64
11827     case TARGET_NR_fadvise64_64:
11828 #endif
11829 #ifdef TARGET_NR_fadvise64
11830     case TARGET_NR_fadvise64:
11831 #endif
11832 #ifdef TARGET_S390X
11833         switch (arg4) {
11834         case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */
11835         case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */
11836         case 6: arg4 = POSIX_FADV_DONTNEED; break;
11837         case 7: arg4 = POSIX_FADV_NOREUSE; break;
11838         default: break;
11839         }
11840 #endif
11841         return -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4));
11842 #endif
11843 #endif /* end of 64-bit ABI fadvise handling */
11844 
11845 #ifdef TARGET_NR_madvise
11846     case TARGET_NR_madvise:
11847         /* A straight passthrough may not be safe because qemu sometimes
11848            turns private file-backed mappings into anonymous mappings.
11849            This will break MADV_DONTNEED.
11850            This is a hint, so ignoring and returning success is ok.  */
11851         return 0;
11852 #endif
11853 #ifdef TARGET_NR_fcntl64
11854     case TARGET_NR_fcntl64:
11855     {
11856         int cmd;
11857         struct flock64 fl;
11858         from_flock64_fn *copyfrom = copy_from_user_flock64;
11859         to_flock64_fn *copyto = copy_to_user_flock64;
11860 
11861 #ifdef TARGET_ARM
11862         if (!((CPUARMState *)cpu_env)->eabi) {
11863             copyfrom = copy_from_user_oabi_flock64;
11864             copyto = copy_to_user_oabi_flock64;
11865         }
11866 #endif
11867 
11868         cmd = target_to_host_fcntl_cmd(arg2);
11869         if (cmd == -TARGET_EINVAL) {
11870             return cmd;
11871         }
11872 
11873         switch(arg2) {
11874         case TARGET_F_GETLK64:
11875             ret = copyfrom(&fl, arg3);
11876             if (ret) {
11877                 break;
11878             }
11879             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
11880             if (ret == 0) {
11881                 ret = copyto(arg3, &fl);
11882             }
11883 	    break;
11884 
11885         case TARGET_F_SETLK64:
11886         case TARGET_F_SETLKW64:
11887             ret = copyfrom(&fl, arg3);
11888             if (ret) {
11889                 break;
11890             }
11891             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
11892 	    break;
11893         default:
11894             ret = do_fcntl(arg1, arg2, arg3);
11895             break;
11896         }
11897         return ret;
11898     }
11899 #endif
11900 #ifdef TARGET_NR_cacheflush
11901     case TARGET_NR_cacheflush:
11902         /* self-modifying code is handled automatically, so nothing needed */
11903         return 0;
11904 #endif
11905 #ifdef TARGET_NR_getpagesize
11906     case TARGET_NR_getpagesize:
11907         return TARGET_PAGE_SIZE;
11908 #endif
11909     case TARGET_NR_gettid:
11910         return get_errno(sys_gettid());
11911 #ifdef TARGET_NR_readahead
11912     case TARGET_NR_readahead:
11913 #if TARGET_ABI_BITS == 32
11914         if (regpairs_aligned(cpu_env, num)) {
11915             arg2 = arg3;
11916             arg3 = arg4;
11917             arg4 = arg5;
11918         }
11919         ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4));
11920 #else
11921         ret = get_errno(readahead(arg1, arg2, arg3));
11922 #endif
11923         return ret;
11924 #endif
11925 #ifdef CONFIG_ATTR
11926 #ifdef TARGET_NR_setxattr
11927     case TARGET_NR_listxattr:
11928     case TARGET_NR_llistxattr:
11929     {
11930         void *p, *b = 0;
11931         if (arg2) {
11932             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11933             if (!b) {
11934                 return -TARGET_EFAULT;
11935             }
11936         }
11937         p = lock_user_string(arg1);
11938         if (p) {
11939             if (num == TARGET_NR_listxattr) {
11940                 ret = get_errno(listxattr(p, b, arg3));
11941             } else {
11942                 ret = get_errno(llistxattr(p, b, arg3));
11943             }
11944         } else {
11945             ret = -TARGET_EFAULT;
11946         }
11947         unlock_user(p, arg1, 0);
11948         unlock_user(b, arg2, arg3);
11949         return ret;
11950     }
11951     case TARGET_NR_flistxattr:
11952     {
11953         void *b = 0;
11954         if (arg2) {
11955             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11956             if (!b) {
11957                 return -TARGET_EFAULT;
11958             }
11959         }
11960         ret = get_errno(flistxattr(arg1, b, arg3));
11961         unlock_user(b, arg2, arg3);
11962         return ret;
11963     }
11964     case TARGET_NR_setxattr:
11965     case TARGET_NR_lsetxattr:
11966         {
11967             void *p, *n, *v = 0;
11968             if (arg3) {
11969                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
11970                 if (!v) {
11971                     return -TARGET_EFAULT;
11972                 }
11973             }
11974             p = lock_user_string(arg1);
11975             n = lock_user_string(arg2);
11976             if (p && n) {
11977                 if (num == TARGET_NR_setxattr) {
11978                     ret = get_errno(setxattr(p, n, v, arg4, arg5));
11979                 } else {
11980                     ret = get_errno(lsetxattr(p, n, v, arg4, arg5));
11981                 }
11982             } else {
11983                 ret = -TARGET_EFAULT;
11984             }
11985             unlock_user(p, arg1, 0);
11986             unlock_user(n, arg2, 0);
11987             unlock_user(v, arg3, 0);
11988         }
11989         return ret;
11990     case TARGET_NR_fsetxattr:
11991         {
11992             void *n, *v = 0;
11993             if (arg3) {
11994                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
11995                 if (!v) {
11996                     return -TARGET_EFAULT;
11997                 }
11998             }
11999             n = lock_user_string(arg2);
12000             if (n) {
12001                 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5));
12002             } else {
12003                 ret = -TARGET_EFAULT;
12004             }
12005             unlock_user(n, arg2, 0);
12006             unlock_user(v, arg3, 0);
12007         }
12008         return ret;
12009     case TARGET_NR_getxattr:
12010     case TARGET_NR_lgetxattr:
12011         {
12012             void *p, *n, *v = 0;
12013             if (arg3) {
12014                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12015                 if (!v) {
12016                     return -TARGET_EFAULT;
12017                 }
12018             }
12019             p = lock_user_string(arg1);
12020             n = lock_user_string(arg2);
12021             if (p && n) {
12022                 if (num == TARGET_NR_getxattr) {
12023                     ret = get_errno(getxattr(p, n, v, arg4));
12024                 } else {
12025                     ret = get_errno(lgetxattr(p, n, v, arg4));
12026                 }
12027             } else {
12028                 ret = -TARGET_EFAULT;
12029             }
12030             unlock_user(p, arg1, 0);
12031             unlock_user(n, arg2, 0);
12032             unlock_user(v, arg3, arg4);
12033         }
12034         return ret;
12035     case TARGET_NR_fgetxattr:
12036         {
12037             void *n, *v = 0;
12038             if (arg3) {
12039                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12040                 if (!v) {
12041                     return -TARGET_EFAULT;
12042                 }
12043             }
12044             n = lock_user_string(arg2);
12045             if (n) {
12046                 ret = get_errno(fgetxattr(arg1, n, v, arg4));
12047             } else {
12048                 ret = -TARGET_EFAULT;
12049             }
12050             unlock_user(n, arg2, 0);
12051             unlock_user(v, arg3, arg4);
12052         }
12053         return ret;
12054     case TARGET_NR_removexattr:
12055     case TARGET_NR_lremovexattr:
12056         {
12057             void *p, *n;
12058             p = lock_user_string(arg1);
12059             n = lock_user_string(arg2);
12060             if (p && n) {
12061                 if (num == TARGET_NR_removexattr) {
12062                     ret = get_errno(removexattr(p, n));
12063                 } else {
12064                     ret = get_errno(lremovexattr(p, n));
12065                 }
12066             } else {
12067                 ret = -TARGET_EFAULT;
12068             }
12069             unlock_user(p, arg1, 0);
12070             unlock_user(n, arg2, 0);
12071         }
12072         return ret;
12073     case TARGET_NR_fremovexattr:
12074         {
12075             void *n;
12076             n = lock_user_string(arg2);
12077             if (n) {
12078                 ret = get_errno(fremovexattr(arg1, n));
12079             } else {
12080                 ret = -TARGET_EFAULT;
12081             }
12082             unlock_user(n, arg2, 0);
12083         }
12084         return ret;
12085 #endif
12086 #endif /* CONFIG_ATTR */
12087 #ifdef TARGET_NR_set_thread_area
12088     case TARGET_NR_set_thread_area:
12089 #if defined(TARGET_MIPS)
12090       ((CPUMIPSState *) cpu_env)->active_tc.CP0_UserLocal = arg1;
12091       return 0;
12092 #elif defined(TARGET_CRIS)
12093       if (arg1 & 0xff)
12094           ret = -TARGET_EINVAL;
12095       else {
12096           ((CPUCRISState *) cpu_env)->pregs[PR_PID] = arg1;
12097           ret = 0;
12098       }
12099       return ret;
12100 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
12101       return do_set_thread_area(cpu_env, arg1);
12102 #elif defined(TARGET_M68K)
12103       {
12104           TaskState *ts = cpu->opaque;
12105           ts->tp_value = arg1;
12106           return 0;
12107       }
12108 #else
12109       return -TARGET_ENOSYS;
12110 #endif
12111 #endif
12112 #ifdef TARGET_NR_get_thread_area
12113     case TARGET_NR_get_thread_area:
12114 #if defined(TARGET_I386) && defined(TARGET_ABI32)
12115         return do_get_thread_area(cpu_env, arg1);
12116 #elif defined(TARGET_M68K)
12117         {
12118             TaskState *ts = cpu->opaque;
12119             return ts->tp_value;
12120         }
12121 #else
12122         return -TARGET_ENOSYS;
12123 #endif
12124 #endif
12125 #ifdef TARGET_NR_getdomainname
12126     case TARGET_NR_getdomainname:
12127         return -TARGET_ENOSYS;
12128 #endif
12129 
12130 #ifdef TARGET_NR_clock_settime
12131     case TARGET_NR_clock_settime:
12132     {
12133         struct timespec ts;
12134 
12135         ret = target_to_host_timespec(&ts, arg2);
12136         if (!is_error(ret)) {
12137             ret = get_errno(clock_settime(arg1, &ts));
12138         }
12139         return ret;
12140     }
12141 #endif
12142 #ifdef TARGET_NR_clock_settime64
12143     case TARGET_NR_clock_settime64:
12144     {
12145         struct timespec ts;
12146 
12147         ret = target_to_host_timespec64(&ts, arg2);
12148         if (!is_error(ret)) {
12149             ret = get_errno(clock_settime(arg1, &ts));
12150         }
12151         return ret;
12152     }
12153 #endif
12154 #ifdef TARGET_NR_clock_gettime
12155     case TARGET_NR_clock_gettime:
12156     {
12157         struct timespec ts;
12158         ret = get_errno(clock_gettime(arg1, &ts));
12159         if (!is_error(ret)) {
12160             ret = host_to_target_timespec(arg2, &ts);
12161         }
12162         return ret;
12163     }
12164 #endif
12165 #ifdef TARGET_NR_clock_gettime64
12166     case TARGET_NR_clock_gettime64:
12167     {
12168         struct timespec ts;
12169         ret = get_errno(clock_gettime(arg1, &ts));
12170         if (!is_error(ret)) {
12171             ret = host_to_target_timespec64(arg2, &ts);
12172         }
12173         return ret;
12174     }
12175 #endif
12176 #ifdef TARGET_NR_clock_getres
12177     case TARGET_NR_clock_getres:
12178     {
12179         struct timespec ts;
12180         ret = get_errno(clock_getres(arg1, &ts));
12181         if (!is_error(ret)) {
12182             host_to_target_timespec(arg2, &ts);
12183         }
12184         return ret;
12185     }
12186 #endif
12187 #ifdef TARGET_NR_clock_getres_time64
12188     case TARGET_NR_clock_getres_time64:
12189     {
12190         struct timespec ts;
12191         ret = get_errno(clock_getres(arg1, &ts));
12192         if (!is_error(ret)) {
12193             host_to_target_timespec64(arg2, &ts);
12194         }
12195         return ret;
12196     }
12197 #endif
12198 #ifdef TARGET_NR_clock_nanosleep
12199     case TARGET_NR_clock_nanosleep:
12200     {
12201         struct timespec ts;
12202         if (target_to_host_timespec(&ts, arg3)) {
12203             return -TARGET_EFAULT;
12204         }
12205         ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12206                                              &ts, arg4 ? &ts : NULL));
12207         /*
12208          * if the call is interrupted by a signal handler, it fails
12209          * with error -TARGET_EINTR and if arg4 is not NULL and arg2 is not
12210          * TIMER_ABSTIME, it returns the remaining unslept time in arg4.
12211          */
12212         if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12213             host_to_target_timespec(arg4, &ts)) {
12214               return -TARGET_EFAULT;
12215         }
12216 
12217         return ret;
12218     }
12219 #endif
12220 #ifdef TARGET_NR_clock_nanosleep_time64
12221     case TARGET_NR_clock_nanosleep_time64:
12222     {
12223         struct timespec ts;
12224 
12225         if (target_to_host_timespec64(&ts, arg3)) {
12226             return -TARGET_EFAULT;
12227         }
12228 
12229         ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12230                                              &ts, arg4 ? &ts : NULL));
12231 
12232         if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12233             host_to_target_timespec64(arg4, &ts)) {
12234             return -TARGET_EFAULT;
12235         }
12236         return ret;
12237     }
12238 #endif
12239 
12240 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
12241     case TARGET_NR_set_tid_address:
12242         return get_errno(set_tid_address((int *)g2h(cpu, arg1)));
12243 #endif
12244 
12245     case TARGET_NR_tkill:
12246         return get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2)));
12247 
12248     case TARGET_NR_tgkill:
12249         return get_errno(safe_tgkill((int)arg1, (int)arg2,
12250                          target_to_host_signal(arg3)));
12251 
12252 #ifdef TARGET_NR_set_robust_list
12253     case TARGET_NR_set_robust_list:
12254     case TARGET_NR_get_robust_list:
12255         /* The ABI for supporting robust futexes has userspace pass
12256          * the kernel a pointer to a linked list which is updated by
12257          * userspace after the syscall; the list is walked by the kernel
12258          * when the thread exits. Since the linked list in QEMU guest
12259          * memory isn't a valid linked list for the host and we have
12260          * no way to reliably intercept the thread-death event, we can't
12261          * support these. Silently return ENOSYS so that guest userspace
12262          * falls back to a non-robust futex implementation (which should
12263          * be OK except in the corner case of the guest crashing while
12264          * holding a mutex that is shared with another process via
12265          * shared memory).
12266          */
12267         return -TARGET_ENOSYS;
12268 #endif
12269 
12270 #if defined(TARGET_NR_utimensat)
12271     case TARGET_NR_utimensat:
12272         {
12273             struct timespec *tsp, ts[2];
12274             if (!arg3) {
12275                 tsp = NULL;
12276             } else {
12277                 if (target_to_host_timespec(ts, arg3)) {
12278                     return -TARGET_EFAULT;
12279                 }
12280                 if (target_to_host_timespec(ts + 1, arg3 +
12281                                             sizeof(struct target_timespec))) {
12282                     return -TARGET_EFAULT;
12283                 }
12284                 tsp = ts;
12285             }
12286             if (!arg2)
12287                 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12288             else {
12289                 if (!(p = lock_user_string(arg2))) {
12290                     return -TARGET_EFAULT;
12291                 }
12292                 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12293                 unlock_user(p, arg2, 0);
12294             }
12295         }
12296         return ret;
12297 #endif
12298 #ifdef TARGET_NR_utimensat_time64
12299     case TARGET_NR_utimensat_time64:
12300         {
12301             struct timespec *tsp, ts[2];
12302             if (!arg3) {
12303                 tsp = NULL;
12304             } else {
12305                 if (target_to_host_timespec64(ts, arg3)) {
12306                     return -TARGET_EFAULT;
12307                 }
12308                 if (target_to_host_timespec64(ts + 1, arg3 +
12309                                      sizeof(struct target__kernel_timespec))) {
12310                     return -TARGET_EFAULT;
12311                 }
12312                 tsp = ts;
12313             }
12314             if (!arg2)
12315                 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12316             else {
12317                 p = lock_user_string(arg2);
12318                 if (!p) {
12319                     return -TARGET_EFAULT;
12320                 }
12321                 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12322                 unlock_user(p, arg2, 0);
12323             }
12324         }
12325         return ret;
12326 #endif
12327 #ifdef TARGET_NR_futex
12328     case TARGET_NR_futex:
12329         return do_futex(cpu, arg1, arg2, arg3, arg4, arg5, arg6);
12330 #endif
12331 #ifdef TARGET_NR_futex_time64
12332     case TARGET_NR_futex_time64:
12333         return do_futex_time64(cpu, arg1, arg2, arg3, arg4, arg5, arg6);
12334 #endif
12335 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
12336     case TARGET_NR_inotify_init:
12337         ret = get_errno(sys_inotify_init());
12338         if (ret >= 0) {
12339             fd_trans_register(ret, &target_inotify_trans);
12340         }
12341         return ret;
12342 #endif
12343 #ifdef CONFIG_INOTIFY1
12344 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
12345     case TARGET_NR_inotify_init1:
12346         ret = get_errno(sys_inotify_init1(target_to_host_bitmask(arg1,
12347                                           fcntl_flags_tbl)));
12348         if (ret >= 0) {
12349             fd_trans_register(ret, &target_inotify_trans);
12350         }
12351         return ret;
12352 #endif
12353 #endif
12354 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
12355     case TARGET_NR_inotify_add_watch:
12356         p = lock_user_string(arg2);
12357         ret = get_errno(sys_inotify_add_watch(arg1, path(p), arg3));
12358         unlock_user(p, arg2, 0);
12359         return ret;
12360 #endif
12361 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
12362     case TARGET_NR_inotify_rm_watch:
12363         return get_errno(sys_inotify_rm_watch(arg1, arg2));
12364 #endif
12365 
12366 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
12367     case TARGET_NR_mq_open:
12368         {
12369             struct mq_attr posix_mq_attr;
12370             struct mq_attr *pposix_mq_attr;
12371             int host_flags;
12372 
12373             host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl);
12374             pposix_mq_attr = NULL;
12375             if (arg4) {
12376                 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) {
12377                     return -TARGET_EFAULT;
12378                 }
12379                 pposix_mq_attr = &posix_mq_attr;
12380             }
12381             p = lock_user_string(arg1 - 1);
12382             if (!p) {
12383                 return -TARGET_EFAULT;
12384             }
12385             ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr));
12386             unlock_user (p, arg1, 0);
12387         }
12388         return ret;
12389 
12390     case TARGET_NR_mq_unlink:
12391         p = lock_user_string(arg1 - 1);
12392         if (!p) {
12393             return -TARGET_EFAULT;
12394         }
12395         ret = get_errno(mq_unlink(p));
12396         unlock_user (p, arg1, 0);
12397         return ret;
12398 
12399 #ifdef TARGET_NR_mq_timedsend
12400     case TARGET_NR_mq_timedsend:
12401         {
12402             struct timespec ts;
12403 
12404             p = lock_user (VERIFY_READ, arg2, arg3, 1);
12405             if (arg5 != 0) {
12406                 if (target_to_host_timespec(&ts, arg5)) {
12407                     return -TARGET_EFAULT;
12408                 }
12409                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12410                 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
12411                     return -TARGET_EFAULT;
12412                 }
12413             } else {
12414                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12415             }
12416             unlock_user (p, arg2, arg3);
12417         }
12418         return ret;
12419 #endif
12420 #ifdef TARGET_NR_mq_timedsend_time64
12421     case TARGET_NR_mq_timedsend_time64:
12422         {
12423             struct timespec ts;
12424 
12425             p = lock_user(VERIFY_READ, arg2, arg3, 1);
12426             if (arg5 != 0) {
12427                 if (target_to_host_timespec64(&ts, arg5)) {
12428                     return -TARGET_EFAULT;
12429                 }
12430                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12431                 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
12432                     return -TARGET_EFAULT;
12433                 }
12434             } else {
12435                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12436             }
12437             unlock_user(p, arg2, arg3);
12438         }
12439         return ret;
12440 #endif
12441 
12442 #ifdef TARGET_NR_mq_timedreceive
12443     case TARGET_NR_mq_timedreceive:
12444         {
12445             struct timespec ts;
12446             unsigned int prio;
12447 
12448             p = lock_user (VERIFY_READ, arg2, arg3, 1);
12449             if (arg5 != 0) {
12450                 if (target_to_host_timespec(&ts, arg5)) {
12451                     return -TARGET_EFAULT;
12452                 }
12453                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12454                                                      &prio, &ts));
12455                 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
12456                     return -TARGET_EFAULT;
12457                 }
12458             } else {
12459                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12460                                                      &prio, NULL));
12461             }
12462             unlock_user (p, arg2, arg3);
12463             if (arg4 != 0)
12464                 put_user_u32(prio, arg4);
12465         }
12466         return ret;
12467 #endif
12468 #ifdef TARGET_NR_mq_timedreceive_time64
12469     case TARGET_NR_mq_timedreceive_time64:
12470         {
12471             struct timespec ts;
12472             unsigned int prio;
12473 
12474             p = lock_user(VERIFY_READ, arg2, arg3, 1);
12475             if (arg5 != 0) {
12476                 if (target_to_host_timespec64(&ts, arg5)) {
12477                     return -TARGET_EFAULT;
12478                 }
12479                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12480                                                      &prio, &ts));
12481                 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
12482                     return -TARGET_EFAULT;
12483                 }
12484             } else {
12485                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12486                                                      &prio, NULL));
12487             }
12488             unlock_user(p, arg2, arg3);
12489             if (arg4 != 0) {
12490                 put_user_u32(prio, arg4);
12491             }
12492         }
12493         return ret;
12494 #endif
12495 
12496     /* Not implemented for now... */
12497 /*     case TARGET_NR_mq_notify: */
12498 /*         break; */
12499 
12500     case TARGET_NR_mq_getsetattr:
12501         {
12502             struct mq_attr posix_mq_attr_in, posix_mq_attr_out;
12503             ret = 0;
12504             if (arg2 != 0) {
12505                 copy_from_user_mq_attr(&posix_mq_attr_in, arg2);
12506                 ret = get_errno(mq_setattr(arg1, &posix_mq_attr_in,
12507                                            &posix_mq_attr_out));
12508             } else if (arg3 != 0) {
12509                 ret = get_errno(mq_getattr(arg1, &posix_mq_attr_out));
12510             }
12511             if (ret == 0 && arg3 != 0) {
12512                 copy_to_user_mq_attr(arg3, &posix_mq_attr_out);
12513             }
12514         }
12515         return ret;
12516 #endif
12517 
12518 #ifdef CONFIG_SPLICE
12519 #ifdef TARGET_NR_tee
12520     case TARGET_NR_tee:
12521         {
12522             ret = get_errno(tee(arg1,arg2,arg3,arg4));
12523         }
12524         return ret;
12525 #endif
12526 #ifdef TARGET_NR_splice
12527     case TARGET_NR_splice:
12528         {
12529             loff_t loff_in, loff_out;
12530             loff_t *ploff_in = NULL, *ploff_out = NULL;
12531             if (arg2) {
12532                 if (get_user_u64(loff_in, arg2)) {
12533                     return -TARGET_EFAULT;
12534                 }
12535                 ploff_in = &loff_in;
12536             }
12537             if (arg4) {
12538                 if (get_user_u64(loff_out, arg4)) {
12539                     return -TARGET_EFAULT;
12540                 }
12541                 ploff_out = &loff_out;
12542             }
12543             ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6));
12544             if (arg2) {
12545                 if (put_user_u64(loff_in, arg2)) {
12546                     return -TARGET_EFAULT;
12547                 }
12548             }
12549             if (arg4) {
12550                 if (put_user_u64(loff_out, arg4)) {
12551                     return -TARGET_EFAULT;
12552                 }
12553             }
12554         }
12555         return ret;
12556 #endif
12557 #ifdef TARGET_NR_vmsplice
12558 	case TARGET_NR_vmsplice:
12559         {
12560             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
12561             if (vec != NULL) {
12562                 ret = get_errno(vmsplice(arg1, vec, arg3, arg4));
12563                 unlock_iovec(vec, arg2, arg3, 0);
12564             } else {
12565                 ret = -host_to_target_errno(errno);
12566             }
12567         }
12568         return ret;
12569 #endif
12570 #endif /* CONFIG_SPLICE */
12571 #ifdef CONFIG_EVENTFD
12572 #if defined(TARGET_NR_eventfd)
12573     case TARGET_NR_eventfd:
12574         ret = get_errno(eventfd(arg1, 0));
12575         if (ret >= 0) {
12576             fd_trans_register(ret, &target_eventfd_trans);
12577         }
12578         return ret;
12579 #endif
12580 #if defined(TARGET_NR_eventfd2)
12581     case TARGET_NR_eventfd2:
12582     {
12583         int host_flags = arg2 & (~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC));
12584         if (arg2 & TARGET_O_NONBLOCK) {
12585             host_flags |= O_NONBLOCK;
12586         }
12587         if (arg2 & TARGET_O_CLOEXEC) {
12588             host_flags |= O_CLOEXEC;
12589         }
12590         ret = get_errno(eventfd(arg1, host_flags));
12591         if (ret >= 0) {
12592             fd_trans_register(ret, &target_eventfd_trans);
12593         }
12594         return ret;
12595     }
12596 #endif
12597 #endif /* CONFIG_EVENTFD  */
12598 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
12599     case TARGET_NR_fallocate:
12600 #if TARGET_ABI_BITS == 32
12601         ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4),
12602                                   target_offset64(arg5, arg6)));
12603 #else
12604         ret = get_errno(fallocate(arg1, arg2, arg3, arg4));
12605 #endif
12606         return ret;
12607 #endif
12608 #if defined(CONFIG_SYNC_FILE_RANGE)
12609 #if defined(TARGET_NR_sync_file_range)
12610     case TARGET_NR_sync_file_range:
12611 #if TARGET_ABI_BITS == 32
12612 #if defined(TARGET_MIPS)
12613         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
12614                                         target_offset64(arg5, arg6), arg7));
12615 #else
12616         ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3),
12617                                         target_offset64(arg4, arg5), arg6));
12618 #endif /* !TARGET_MIPS */
12619 #else
12620         ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4));
12621 #endif
12622         return ret;
12623 #endif
12624 #if defined(TARGET_NR_sync_file_range2) || \
12625     defined(TARGET_NR_arm_sync_file_range)
12626 #if defined(TARGET_NR_sync_file_range2)
12627     case TARGET_NR_sync_file_range2:
12628 #endif
12629 #if defined(TARGET_NR_arm_sync_file_range)
12630     case TARGET_NR_arm_sync_file_range:
12631 #endif
12632         /* This is like sync_file_range but the arguments are reordered */
12633 #if TARGET_ABI_BITS == 32
12634         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
12635                                         target_offset64(arg5, arg6), arg2));
12636 #else
12637         ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2));
12638 #endif
12639         return ret;
12640 #endif
12641 #endif
12642 #if defined(TARGET_NR_signalfd4)
12643     case TARGET_NR_signalfd4:
12644         return do_signalfd4(arg1, arg2, arg4);
12645 #endif
12646 #if defined(TARGET_NR_signalfd)
12647     case TARGET_NR_signalfd:
12648         return do_signalfd4(arg1, arg2, 0);
12649 #endif
12650 #if defined(CONFIG_EPOLL)
12651 #if defined(TARGET_NR_epoll_create)
12652     case TARGET_NR_epoll_create:
12653         return get_errno(epoll_create(arg1));
12654 #endif
12655 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
12656     case TARGET_NR_epoll_create1:
12657         return get_errno(epoll_create1(target_to_host_bitmask(arg1, fcntl_flags_tbl)));
12658 #endif
12659 #if defined(TARGET_NR_epoll_ctl)
12660     case TARGET_NR_epoll_ctl:
12661     {
12662         struct epoll_event ep;
12663         struct epoll_event *epp = 0;
12664         if (arg4) {
12665             if (arg2 != EPOLL_CTL_DEL) {
12666                 struct target_epoll_event *target_ep;
12667                 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) {
12668                     return -TARGET_EFAULT;
12669                 }
12670                 ep.events = tswap32(target_ep->events);
12671                 /*
12672                  * The epoll_data_t union is just opaque data to the kernel,
12673                  * so we transfer all 64 bits across and need not worry what
12674                  * actual data type it is.
12675                  */
12676                 ep.data.u64 = tswap64(target_ep->data.u64);
12677                 unlock_user_struct(target_ep, arg4, 0);
12678             }
12679             /*
12680              * before kernel 2.6.9, EPOLL_CTL_DEL operation required a
12681              * non-null pointer, even though this argument is ignored.
12682              *
12683              */
12684             epp = &ep;
12685         }
12686         return get_errno(epoll_ctl(arg1, arg2, arg3, epp));
12687     }
12688 #endif
12689 
12690 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
12691 #if defined(TARGET_NR_epoll_wait)
12692     case TARGET_NR_epoll_wait:
12693 #endif
12694 #if defined(TARGET_NR_epoll_pwait)
12695     case TARGET_NR_epoll_pwait:
12696 #endif
12697     {
12698         struct target_epoll_event *target_ep;
12699         struct epoll_event *ep;
12700         int epfd = arg1;
12701         int maxevents = arg3;
12702         int timeout = arg4;
12703 
12704         if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) {
12705             return -TARGET_EINVAL;
12706         }
12707 
12708         target_ep = lock_user(VERIFY_WRITE, arg2,
12709                               maxevents * sizeof(struct target_epoll_event), 1);
12710         if (!target_ep) {
12711             return -TARGET_EFAULT;
12712         }
12713 
12714         ep = g_try_new(struct epoll_event, maxevents);
12715         if (!ep) {
12716             unlock_user(target_ep, arg2, 0);
12717             return -TARGET_ENOMEM;
12718         }
12719 
12720         switch (num) {
12721 #if defined(TARGET_NR_epoll_pwait)
12722         case TARGET_NR_epoll_pwait:
12723         {
12724             target_sigset_t *target_set;
12725             sigset_t _set, *set = &_set;
12726 
12727             if (arg5) {
12728                 if (arg6 != sizeof(target_sigset_t)) {
12729                     ret = -TARGET_EINVAL;
12730                     break;
12731                 }
12732 
12733                 target_set = lock_user(VERIFY_READ, arg5,
12734                                        sizeof(target_sigset_t), 1);
12735                 if (!target_set) {
12736                     ret = -TARGET_EFAULT;
12737                     break;
12738                 }
12739                 target_to_host_sigset(set, target_set);
12740                 unlock_user(target_set, arg5, 0);
12741             } else {
12742                 set = NULL;
12743             }
12744 
12745             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
12746                                              set, SIGSET_T_SIZE));
12747             break;
12748         }
12749 #endif
12750 #if defined(TARGET_NR_epoll_wait)
12751         case TARGET_NR_epoll_wait:
12752             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
12753                                              NULL, 0));
12754             break;
12755 #endif
12756         default:
12757             ret = -TARGET_ENOSYS;
12758         }
12759         if (!is_error(ret)) {
12760             int i;
12761             for (i = 0; i < ret; i++) {
12762                 target_ep[i].events = tswap32(ep[i].events);
12763                 target_ep[i].data.u64 = tswap64(ep[i].data.u64);
12764             }
12765             unlock_user(target_ep, arg2,
12766                         ret * sizeof(struct target_epoll_event));
12767         } else {
12768             unlock_user(target_ep, arg2, 0);
12769         }
12770         g_free(ep);
12771         return ret;
12772     }
12773 #endif
12774 #endif
12775 #ifdef TARGET_NR_prlimit64
12776     case TARGET_NR_prlimit64:
12777     {
12778         /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
12779         struct target_rlimit64 *target_rnew, *target_rold;
12780         struct host_rlimit64 rnew, rold, *rnewp = 0;
12781         int resource = target_to_host_resource(arg2);
12782 
12783         if (arg3 && (resource != RLIMIT_AS &&
12784                      resource != RLIMIT_DATA &&
12785                      resource != RLIMIT_STACK)) {
12786             if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) {
12787                 return -TARGET_EFAULT;
12788             }
12789             rnew.rlim_cur = tswap64(target_rnew->rlim_cur);
12790             rnew.rlim_max = tswap64(target_rnew->rlim_max);
12791             unlock_user_struct(target_rnew, arg3, 0);
12792             rnewp = &rnew;
12793         }
12794 
12795         ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0));
12796         if (!is_error(ret) && arg4) {
12797             if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) {
12798                 return -TARGET_EFAULT;
12799             }
12800             target_rold->rlim_cur = tswap64(rold.rlim_cur);
12801             target_rold->rlim_max = tswap64(rold.rlim_max);
12802             unlock_user_struct(target_rold, arg4, 1);
12803         }
12804         return ret;
12805     }
12806 #endif
12807 #ifdef TARGET_NR_gethostname
12808     case TARGET_NR_gethostname:
12809     {
12810         char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0);
12811         if (name) {
12812             ret = get_errno(gethostname(name, arg2));
12813             unlock_user(name, arg1, arg2);
12814         } else {
12815             ret = -TARGET_EFAULT;
12816         }
12817         return ret;
12818     }
12819 #endif
12820 #ifdef TARGET_NR_atomic_cmpxchg_32
12821     case TARGET_NR_atomic_cmpxchg_32:
12822     {
12823         /* should use start_exclusive from main.c */
12824         abi_ulong mem_value;
12825         if (get_user_u32(mem_value, arg6)) {
12826             target_siginfo_t info;
12827             info.si_signo = SIGSEGV;
12828             info.si_errno = 0;
12829             info.si_code = TARGET_SEGV_MAPERR;
12830             info._sifields._sigfault._addr = arg6;
12831             queue_signal((CPUArchState *)cpu_env, info.si_signo,
12832                          QEMU_SI_FAULT, &info);
12833             ret = 0xdeadbeef;
12834 
12835         }
12836         if (mem_value == arg2)
12837             put_user_u32(arg1, arg6);
12838         return mem_value;
12839     }
12840 #endif
12841 #ifdef TARGET_NR_atomic_barrier
12842     case TARGET_NR_atomic_barrier:
12843         /* Like the kernel implementation and the
12844            qemu arm barrier, no-op this? */
12845         return 0;
12846 #endif
12847 
12848 #ifdef TARGET_NR_timer_create
12849     case TARGET_NR_timer_create:
12850     {
12851         /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
12852 
12853         struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL;
12854 
12855         int clkid = arg1;
12856         int timer_index = next_free_host_timer();
12857 
12858         if (timer_index < 0) {
12859             ret = -TARGET_EAGAIN;
12860         } else {
12861             timer_t *phtimer = g_posix_timers  + timer_index;
12862 
12863             if (arg2) {
12864                 phost_sevp = &host_sevp;
12865                 ret = target_to_host_sigevent(phost_sevp, arg2);
12866                 if (ret != 0) {
12867                     return ret;
12868                 }
12869             }
12870 
12871             ret = get_errno(timer_create(clkid, phost_sevp, phtimer));
12872             if (ret) {
12873                 phtimer = NULL;
12874             } else {
12875                 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) {
12876                     return -TARGET_EFAULT;
12877                 }
12878             }
12879         }
12880         return ret;
12881     }
12882 #endif
12883 
12884 #ifdef TARGET_NR_timer_settime
12885     case TARGET_NR_timer_settime:
12886     {
12887         /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
12888          * struct itimerspec * old_value */
12889         target_timer_t timerid = get_timer_id(arg1);
12890 
12891         if (timerid < 0) {
12892             ret = timerid;
12893         } else if (arg3 == 0) {
12894             ret = -TARGET_EINVAL;
12895         } else {
12896             timer_t htimer = g_posix_timers[timerid];
12897             struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
12898 
12899             if (target_to_host_itimerspec(&hspec_new, arg3)) {
12900                 return -TARGET_EFAULT;
12901             }
12902             ret = get_errno(
12903                           timer_settime(htimer, arg2, &hspec_new, &hspec_old));
12904             if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) {
12905                 return -TARGET_EFAULT;
12906             }
12907         }
12908         return ret;
12909     }
12910 #endif
12911 
12912 #ifdef TARGET_NR_timer_settime64
12913     case TARGET_NR_timer_settime64:
12914     {
12915         target_timer_t timerid = get_timer_id(arg1);
12916 
12917         if (timerid < 0) {
12918             ret = timerid;
12919         } else if (arg3 == 0) {
12920             ret = -TARGET_EINVAL;
12921         } else {
12922             timer_t htimer = g_posix_timers[timerid];
12923             struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
12924 
12925             if (target_to_host_itimerspec64(&hspec_new, arg3)) {
12926                 return -TARGET_EFAULT;
12927             }
12928             ret = get_errno(
12929                           timer_settime(htimer, arg2, &hspec_new, &hspec_old));
12930             if (arg4 && host_to_target_itimerspec64(arg4, &hspec_old)) {
12931                 return -TARGET_EFAULT;
12932             }
12933         }
12934         return ret;
12935     }
12936 #endif
12937 
12938 #ifdef TARGET_NR_timer_gettime
12939     case TARGET_NR_timer_gettime:
12940     {
12941         /* args: timer_t timerid, struct itimerspec *curr_value */
12942         target_timer_t timerid = get_timer_id(arg1);
12943 
12944         if (timerid < 0) {
12945             ret = timerid;
12946         } else if (!arg2) {
12947             ret = -TARGET_EFAULT;
12948         } else {
12949             timer_t htimer = g_posix_timers[timerid];
12950             struct itimerspec hspec;
12951             ret = get_errno(timer_gettime(htimer, &hspec));
12952 
12953             if (host_to_target_itimerspec(arg2, &hspec)) {
12954                 ret = -TARGET_EFAULT;
12955             }
12956         }
12957         return ret;
12958     }
12959 #endif
12960 
12961 #ifdef TARGET_NR_timer_gettime64
12962     case TARGET_NR_timer_gettime64:
12963     {
12964         /* args: timer_t timerid, struct itimerspec64 *curr_value */
12965         target_timer_t timerid = get_timer_id(arg1);
12966 
12967         if (timerid < 0) {
12968             ret = timerid;
12969         } else if (!arg2) {
12970             ret = -TARGET_EFAULT;
12971         } else {
12972             timer_t htimer = g_posix_timers[timerid];
12973             struct itimerspec hspec;
12974             ret = get_errno(timer_gettime(htimer, &hspec));
12975 
12976             if (host_to_target_itimerspec64(arg2, &hspec)) {
12977                 ret = -TARGET_EFAULT;
12978             }
12979         }
12980         return ret;
12981     }
12982 #endif
12983 
12984 #ifdef TARGET_NR_timer_getoverrun
12985     case TARGET_NR_timer_getoverrun:
12986     {
12987         /* args: timer_t timerid */
12988         target_timer_t timerid = get_timer_id(arg1);
12989 
12990         if (timerid < 0) {
12991             ret = timerid;
12992         } else {
12993             timer_t htimer = g_posix_timers[timerid];
12994             ret = get_errno(timer_getoverrun(htimer));
12995         }
12996         return ret;
12997     }
12998 #endif
12999 
13000 #ifdef TARGET_NR_timer_delete
13001     case TARGET_NR_timer_delete:
13002     {
13003         /* args: timer_t timerid */
13004         target_timer_t timerid = get_timer_id(arg1);
13005 
13006         if (timerid < 0) {
13007             ret = timerid;
13008         } else {
13009             timer_t htimer = g_posix_timers[timerid];
13010             ret = get_errno(timer_delete(htimer));
13011             g_posix_timers[timerid] = 0;
13012         }
13013         return ret;
13014     }
13015 #endif
13016 
13017 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
13018     case TARGET_NR_timerfd_create:
13019         return get_errno(timerfd_create(arg1,
13020                           target_to_host_bitmask(arg2, fcntl_flags_tbl)));
13021 #endif
13022 
13023 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
13024     case TARGET_NR_timerfd_gettime:
13025         {
13026             struct itimerspec its_curr;
13027 
13028             ret = get_errno(timerfd_gettime(arg1, &its_curr));
13029 
13030             if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) {
13031                 return -TARGET_EFAULT;
13032             }
13033         }
13034         return ret;
13035 #endif
13036 
13037 #if defined(TARGET_NR_timerfd_gettime64) && defined(CONFIG_TIMERFD)
13038     case TARGET_NR_timerfd_gettime64:
13039         {
13040             struct itimerspec its_curr;
13041 
13042             ret = get_errno(timerfd_gettime(arg1, &its_curr));
13043 
13044             if (arg2 && host_to_target_itimerspec64(arg2, &its_curr)) {
13045                 return -TARGET_EFAULT;
13046             }
13047         }
13048         return ret;
13049 #endif
13050 
13051 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
13052     case TARGET_NR_timerfd_settime:
13053         {
13054             struct itimerspec its_new, its_old, *p_new;
13055 
13056             if (arg3) {
13057                 if (target_to_host_itimerspec(&its_new, arg3)) {
13058                     return -TARGET_EFAULT;
13059                 }
13060                 p_new = &its_new;
13061             } else {
13062                 p_new = NULL;
13063             }
13064 
13065             ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13066 
13067             if (arg4 && host_to_target_itimerspec(arg4, &its_old)) {
13068                 return -TARGET_EFAULT;
13069             }
13070         }
13071         return ret;
13072 #endif
13073 
13074 #if defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)
13075     case TARGET_NR_timerfd_settime64:
13076         {
13077             struct itimerspec its_new, its_old, *p_new;
13078 
13079             if (arg3) {
13080                 if (target_to_host_itimerspec64(&its_new, arg3)) {
13081                     return -TARGET_EFAULT;
13082                 }
13083                 p_new = &its_new;
13084             } else {
13085                 p_new = NULL;
13086             }
13087 
13088             ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13089 
13090             if (arg4 && host_to_target_itimerspec64(arg4, &its_old)) {
13091                 return -TARGET_EFAULT;
13092             }
13093         }
13094         return ret;
13095 #endif
13096 
13097 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
13098     case TARGET_NR_ioprio_get:
13099         return get_errno(ioprio_get(arg1, arg2));
13100 #endif
13101 
13102 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
13103     case TARGET_NR_ioprio_set:
13104         return get_errno(ioprio_set(arg1, arg2, arg3));
13105 #endif
13106 
13107 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
13108     case TARGET_NR_setns:
13109         return get_errno(setns(arg1, arg2));
13110 #endif
13111 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
13112     case TARGET_NR_unshare:
13113         return get_errno(unshare(arg1));
13114 #endif
13115 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
13116     case TARGET_NR_kcmp:
13117         return get_errno(kcmp(arg1, arg2, arg3, arg4, arg5));
13118 #endif
13119 #ifdef TARGET_NR_swapcontext
13120     case TARGET_NR_swapcontext:
13121         /* PowerPC specific.  */
13122         return do_swapcontext(cpu_env, arg1, arg2, arg3);
13123 #endif
13124 #ifdef TARGET_NR_memfd_create
13125     case TARGET_NR_memfd_create:
13126         p = lock_user_string(arg1);
13127         if (!p) {
13128             return -TARGET_EFAULT;
13129         }
13130         ret = get_errno(memfd_create(p, arg2));
13131         fd_trans_unregister(ret);
13132         unlock_user(p, arg1, 0);
13133         return ret;
13134 #endif
13135 #if defined TARGET_NR_membarrier && defined __NR_membarrier
13136     case TARGET_NR_membarrier:
13137         return get_errno(membarrier(arg1, arg2));
13138 #endif
13139 
13140 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
13141     case TARGET_NR_copy_file_range:
13142         {
13143             loff_t inoff, outoff;
13144             loff_t *pinoff = NULL, *poutoff = NULL;
13145 
13146             if (arg2) {
13147                 if (get_user_u64(inoff, arg2)) {
13148                     return -TARGET_EFAULT;
13149                 }
13150                 pinoff = &inoff;
13151             }
13152             if (arg4) {
13153                 if (get_user_u64(outoff, arg4)) {
13154                     return -TARGET_EFAULT;
13155                 }
13156                 poutoff = &outoff;
13157             }
13158             /* Do not sign-extend the count parameter. */
13159             ret = get_errno(safe_copy_file_range(arg1, pinoff, arg3, poutoff,
13160                                                  (abi_ulong)arg5, arg6));
13161             if (!is_error(ret) && ret > 0) {
13162                 if (arg2) {
13163                     if (put_user_u64(inoff, arg2)) {
13164                         return -TARGET_EFAULT;
13165                     }
13166                 }
13167                 if (arg4) {
13168                     if (put_user_u64(outoff, arg4)) {
13169                         return -TARGET_EFAULT;
13170                     }
13171                 }
13172             }
13173         }
13174         return ret;
13175 #endif
13176 
13177 #if defined(TARGET_NR_pivot_root)
13178     case TARGET_NR_pivot_root:
13179         {
13180             void *p2;
13181             p = lock_user_string(arg1); /* new_root */
13182             p2 = lock_user_string(arg2); /* put_old */
13183             if (!p || !p2) {
13184                 ret = -TARGET_EFAULT;
13185             } else {
13186                 ret = get_errno(pivot_root(p, p2));
13187             }
13188             unlock_user(p2, arg2, 0);
13189             unlock_user(p, arg1, 0);
13190         }
13191         return ret;
13192 #endif
13193 
13194     default:
13195         qemu_log_mask(LOG_UNIMP, "Unsupported syscall: %d\n", num);
13196         return -TARGET_ENOSYS;
13197     }
13198     return ret;
13199 }
13200 
13201 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
13202                     abi_long arg2, abi_long arg3, abi_long arg4,
13203                     abi_long arg5, abi_long arg6, abi_long arg7,
13204                     abi_long arg8)
13205 {
13206     CPUState *cpu = env_cpu(cpu_env);
13207     abi_long ret;
13208 
13209 #ifdef DEBUG_ERESTARTSYS
13210     /* Debug-only code for exercising the syscall-restart code paths
13211      * in the per-architecture cpu main loops: restart every syscall
13212      * the guest makes once before letting it through.
13213      */
13214     {
13215         static bool flag;
13216         flag = !flag;
13217         if (flag) {
13218             return -QEMU_ERESTARTSYS;
13219         }
13220     }
13221 #endif
13222 
13223     record_syscall_start(cpu, num, arg1,
13224                          arg2, arg3, arg4, arg5, arg6, arg7, arg8);
13225 
13226     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13227         print_syscall(cpu_env, num, arg1, arg2, arg3, arg4, arg5, arg6);
13228     }
13229 
13230     ret = do_syscall1(cpu_env, num, arg1, arg2, arg3, arg4,
13231                       arg5, arg6, arg7, arg8);
13232 
13233     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13234         print_syscall_ret(cpu_env, num, ret, arg1, arg2,
13235                           arg3, arg4, arg5, arg6);
13236     }
13237 
13238     record_syscall_return(cpu, num, ret);
13239     return ret;
13240 }
13241