1 /* 2 * Linux syscalls 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #define _ATFILE_SOURCE 20 #include "qemu/osdep.h" 21 #include "qemu/cutils.h" 22 #include "qemu/path.h" 23 #include "qemu/memfd.h" 24 #include "qemu/queue.h" 25 #include <elf.h> 26 #include <endian.h> 27 #include <grp.h> 28 #include <sys/ipc.h> 29 #include <sys/msg.h> 30 #include <sys/wait.h> 31 #include <sys/mount.h> 32 #include <sys/file.h> 33 #include <sys/fsuid.h> 34 #include <sys/personality.h> 35 #include <sys/prctl.h> 36 #include <sys/resource.h> 37 #include <sys/swap.h> 38 #include <linux/capability.h> 39 #include <sched.h> 40 #include <sys/timex.h> 41 #include <sys/socket.h> 42 #include <linux/sockios.h> 43 #include <sys/un.h> 44 #include <sys/uio.h> 45 #include <poll.h> 46 #include <sys/times.h> 47 #include <sys/shm.h> 48 #include <sys/sem.h> 49 #include <sys/statfs.h> 50 #include <utime.h> 51 #include <sys/sysinfo.h> 52 #include <sys/signalfd.h> 53 //#include <sys/user.h> 54 #include <netinet/in.h> 55 #include <netinet/ip.h> 56 #include <netinet/tcp.h> 57 #include <netinet/udp.h> 58 #include <linux/wireless.h> 59 #include <linux/icmp.h> 60 #include <linux/icmpv6.h> 61 #include <linux/if_tun.h> 62 #include <linux/in6.h> 63 #include <linux/errqueue.h> 64 #include <linux/random.h> 65 #ifdef CONFIG_TIMERFD 66 #include <sys/timerfd.h> 67 #endif 68 #ifdef CONFIG_EVENTFD 69 #include <sys/eventfd.h> 70 #endif 71 #ifdef CONFIG_EPOLL 72 #include <sys/epoll.h> 73 #endif 74 #ifdef CONFIG_ATTR 75 #include "qemu/xattr.h" 76 #endif 77 #ifdef CONFIG_SENDFILE 78 #include <sys/sendfile.h> 79 #endif 80 #ifdef HAVE_SYS_KCOV_H 81 #include <sys/kcov.h> 82 #endif 83 84 #define termios host_termios 85 #define winsize host_winsize 86 #define termio host_termio 87 #define sgttyb host_sgttyb /* same as target */ 88 #define tchars host_tchars /* same as target */ 89 #define ltchars host_ltchars /* same as target */ 90 91 #include <linux/termios.h> 92 #include <linux/unistd.h> 93 #include <linux/cdrom.h> 94 #include <linux/hdreg.h> 95 #include <linux/soundcard.h> 96 #include <linux/kd.h> 97 #include <linux/mtio.h> 98 #include <linux/fs.h> 99 #include <linux/fd.h> 100 #if defined(CONFIG_FIEMAP) 101 #include <linux/fiemap.h> 102 #endif 103 #include <linux/fb.h> 104 #if defined(CONFIG_USBFS) 105 #include <linux/usbdevice_fs.h> 106 #include <linux/usb/ch9.h> 107 #endif 108 #include <linux/vt.h> 109 #include <linux/dm-ioctl.h> 110 #include <linux/reboot.h> 111 #include <linux/route.h> 112 #include <linux/filter.h> 113 #include <linux/blkpg.h> 114 #include <netpacket/packet.h> 115 #include <linux/netlink.h> 116 #include <linux/if_alg.h> 117 #include <linux/rtc.h> 118 #include <sound/asound.h> 119 #ifdef HAVE_BTRFS_H 120 #include <linux/btrfs.h> 121 #endif 122 #ifdef HAVE_DRM_H 123 #include <libdrm/drm.h> 124 #include <libdrm/i915_drm.h> 125 #endif 126 #include "linux_loop.h" 127 #include "uname.h" 128 129 #include "qemu.h" 130 #include "qemu/guest-random.h" 131 #include "qemu/selfmap.h" 132 #include "user/syscall-trace.h" 133 #include "qapi/error.h" 134 #include "fd-trans.h" 135 #include "tcg/tcg.h" 136 137 #ifndef CLONE_IO 138 #define CLONE_IO 0x80000000 /* Clone io context */ 139 #endif 140 141 /* We can't directly call the host clone syscall, because this will 142 * badly confuse libc (breaking mutexes, for example). So we must 143 * divide clone flags into: 144 * * flag combinations that look like pthread_create() 145 * * flag combinations that look like fork() 146 * * flags we can implement within QEMU itself 147 * * flags we can't support and will return an error for 148 */ 149 /* For thread creation, all these flags must be present; for 150 * fork, none must be present. 151 */ 152 #define CLONE_THREAD_FLAGS \ 153 (CLONE_VM | CLONE_FS | CLONE_FILES | \ 154 CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM) 155 156 /* These flags are ignored: 157 * CLONE_DETACHED is now ignored by the kernel; 158 * CLONE_IO is just an optimisation hint to the I/O scheduler 159 */ 160 #define CLONE_IGNORED_FLAGS \ 161 (CLONE_DETACHED | CLONE_IO) 162 163 /* Flags for fork which we can implement within QEMU itself */ 164 #define CLONE_OPTIONAL_FORK_FLAGS \ 165 (CLONE_SETTLS | CLONE_PARENT_SETTID | \ 166 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID) 167 168 /* Flags for thread creation which we can implement within QEMU itself */ 169 #define CLONE_OPTIONAL_THREAD_FLAGS \ 170 (CLONE_SETTLS | CLONE_PARENT_SETTID | \ 171 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT) 172 173 #define CLONE_INVALID_FORK_FLAGS \ 174 (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS)) 175 176 #define CLONE_INVALID_THREAD_FLAGS \ 177 (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS | \ 178 CLONE_IGNORED_FLAGS)) 179 180 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits 181 * have almost all been allocated. We cannot support any of 182 * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC, 183 * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED. 184 * The checks against the invalid thread masks above will catch these. 185 * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.) 186 */ 187 188 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted 189 * once. This exercises the codepaths for restart. 190 */ 191 //#define DEBUG_ERESTARTSYS 192 193 //#include <linux/msdos_fs.h> 194 #define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct linux_dirent [2]) 195 #define VFAT_IOCTL_READDIR_SHORT _IOR('r', 2, struct linux_dirent [2]) 196 197 #undef _syscall0 198 #undef _syscall1 199 #undef _syscall2 200 #undef _syscall3 201 #undef _syscall4 202 #undef _syscall5 203 #undef _syscall6 204 205 #define _syscall0(type,name) \ 206 static type name (void) \ 207 { \ 208 return syscall(__NR_##name); \ 209 } 210 211 #define _syscall1(type,name,type1,arg1) \ 212 static type name (type1 arg1) \ 213 { \ 214 return syscall(__NR_##name, arg1); \ 215 } 216 217 #define _syscall2(type,name,type1,arg1,type2,arg2) \ 218 static type name (type1 arg1,type2 arg2) \ 219 { \ 220 return syscall(__NR_##name, arg1, arg2); \ 221 } 222 223 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \ 224 static type name (type1 arg1,type2 arg2,type3 arg3) \ 225 { \ 226 return syscall(__NR_##name, arg1, arg2, arg3); \ 227 } 228 229 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \ 230 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \ 231 { \ 232 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \ 233 } 234 235 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \ 236 type5,arg5) \ 237 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \ 238 { \ 239 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \ 240 } 241 242 243 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \ 244 type5,arg5,type6,arg6) \ 245 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \ 246 type6 arg6) \ 247 { \ 248 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \ 249 } 250 251 252 #define __NR_sys_uname __NR_uname 253 #define __NR_sys_getcwd1 __NR_getcwd 254 #define __NR_sys_getdents __NR_getdents 255 #define __NR_sys_getdents64 __NR_getdents64 256 #define __NR_sys_getpriority __NR_getpriority 257 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo 258 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo 259 #define __NR_sys_syslog __NR_syslog 260 #if defined(__NR_futex) 261 # define __NR_sys_futex __NR_futex 262 #endif 263 #if defined(__NR_futex_time64) 264 # define __NR_sys_futex_time64 __NR_futex_time64 265 #endif 266 #define __NR_sys_inotify_init __NR_inotify_init 267 #define __NR_sys_inotify_add_watch __NR_inotify_add_watch 268 #define __NR_sys_inotify_rm_watch __NR_inotify_rm_watch 269 #define __NR_sys_statx __NR_statx 270 271 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__) 272 #define __NR__llseek __NR_lseek 273 #endif 274 275 /* Newer kernel ports have llseek() instead of _llseek() */ 276 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek) 277 #define TARGET_NR__llseek TARGET_NR_llseek 278 #endif 279 280 /* some platforms need to mask more bits than just TARGET_O_NONBLOCK */ 281 #ifndef TARGET_O_NONBLOCK_MASK 282 #define TARGET_O_NONBLOCK_MASK TARGET_O_NONBLOCK 283 #endif 284 285 #define __NR_sys_gettid __NR_gettid 286 _syscall0(int, sys_gettid) 287 288 /* For the 64-bit guest on 32-bit host case we must emulate 289 * getdents using getdents64, because otherwise the host 290 * might hand us back more dirent records than we can fit 291 * into the guest buffer after structure format conversion. 292 * Otherwise we emulate getdents with getdents if the host has it. 293 */ 294 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS 295 #define EMULATE_GETDENTS_WITH_GETDENTS 296 #endif 297 298 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS) 299 _syscall3(int, sys_getdents, uint, fd, struct linux_dirent *, dirp, uint, count); 300 #endif 301 #if (defined(TARGET_NR_getdents) && \ 302 !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \ 303 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64)) 304 _syscall3(int, sys_getdents64, uint, fd, struct linux_dirent64 *, dirp, uint, count); 305 #endif 306 #if defined(TARGET_NR__llseek) && defined(__NR_llseek) 307 _syscall5(int, _llseek, uint, fd, ulong, hi, ulong, lo, 308 loff_t *, res, uint, wh); 309 #endif 310 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo) 311 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig, 312 siginfo_t *, uinfo) 313 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len) 314 #ifdef __NR_exit_group 315 _syscall1(int,exit_group,int,error_code) 316 #endif 317 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address) 318 _syscall1(int,set_tid_address,int *,tidptr) 319 #endif 320 #if defined(__NR_futex) 321 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val, 322 const struct timespec *,timeout,int *,uaddr2,int,val3) 323 #endif 324 #if defined(__NR_futex_time64) 325 _syscall6(int,sys_futex_time64,int *,uaddr,int,op,int,val, 326 const struct timespec *,timeout,int *,uaddr2,int,val3) 327 #endif 328 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity 329 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len, 330 unsigned long *, user_mask_ptr); 331 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity 332 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len, 333 unsigned long *, user_mask_ptr); 334 #define __NR_sys_getcpu __NR_getcpu 335 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache); 336 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd, 337 void *, arg); 338 _syscall2(int, capget, struct __user_cap_header_struct *, header, 339 struct __user_cap_data_struct *, data); 340 _syscall2(int, capset, struct __user_cap_header_struct *, header, 341 struct __user_cap_data_struct *, data); 342 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get) 343 _syscall2(int, ioprio_get, int, which, int, who) 344 #endif 345 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set) 346 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio) 347 #endif 348 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom) 349 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags) 350 #endif 351 352 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp) 353 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type, 354 unsigned long, idx1, unsigned long, idx2) 355 #endif 356 357 /* 358 * It is assumed that struct statx is architecture independent. 359 */ 360 #if defined(TARGET_NR_statx) && defined(__NR_statx) 361 _syscall5(int, sys_statx, int, dirfd, const char *, pathname, int, flags, 362 unsigned int, mask, struct target_statx *, statxbuf) 363 #endif 364 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier) 365 _syscall2(int, membarrier, int, cmd, int, flags) 366 #endif 367 368 static const bitmask_transtbl fcntl_flags_tbl[] = { 369 { TARGET_O_ACCMODE, TARGET_O_WRONLY, O_ACCMODE, O_WRONLY, }, 370 { TARGET_O_ACCMODE, TARGET_O_RDWR, O_ACCMODE, O_RDWR, }, 371 { TARGET_O_CREAT, TARGET_O_CREAT, O_CREAT, O_CREAT, }, 372 { TARGET_O_EXCL, TARGET_O_EXCL, O_EXCL, O_EXCL, }, 373 { TARGET_O_NOCTTY, TARGET_O_NOCTTY, O_NOCTTY, O_NOCTTY, }, 374 { TARGET_O_TRUNC, TARGET_O_TRUNC, O_TRUNC, O_TRUNC, }, 375 { TARGET_O_APPEND, TARGET_O_APPEND, O_APPEND, O_APPEND, }, 376 { TARGET_O_NONBLOCK, TARGET_O_NONBLOCK, O_NONBLOCK, O_NONBLOCK, }, 377 { TARGET_O_SYNC, TARGET_O_DSYNC, O_SYNC, O_DSYNC, }, 378 { TARGET_O_SYNC, TARGET_O_SYNC, O_SYNC, O_SYNC, }, 379 { TARGET_FASYNC, TARGET_FASYNC, FASYNC, FASYNC, }, 380 { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, }, 381 { TARGET_O_NOFOLLOW, TARGET_O_NOFOLLOW, O_NOFOLLOW, O_NOFOLLOW, }, 382 #if defined(O_DIRECT) 383 { TARGET_O_DIRECT, TARGET_O_DIRECT, O_DIRECT, O_DIRECT, }, 384 #endif 385 #if defined(O_NOATIME) 386 { TARGET_O_NOATIME, TARGET_O_NOATIME, O_NOATIME, O_NOATIME }, 387 #endif 388 #if defined(O_CLOEXEC) 389 { TARGET_O_CLOEXEC, TARGET_O_CLOEXEC, O_CLOEXEC, O_CLOEXEC }, 390 #endif 391 #if defined(O_PATH) 392 { TARGET_O_PATH, TARGET_O_PATH, O_PATH, O_PATH }, 393 #endif 394 #if defined(O_TMPFILE) 395 { TARGET_O_TMPFILE, TARGET_O_TMPFILE, O_TMPFILE, O_TMPFILE }, 396 #endif 397 /* Don't terminate the list prematurely on 64-bit host+guest. */ 398 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0 399 { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, }, 400 #endif 401 { 0, 0, 0, 0 } 402 }; 403 404 _syscall2(int, sys_getcwd1, char *, buf, size_t, size) 405 406 #if defined(TARGET_NR_utimensat) || defined(TARGET_NR_utimensat_time64) 407 #if defined(__NR_utimensat) 408 #define __NR_sys_utimensat __NR_utimensat 409 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname, 410 const struct timespec *,tsp,int,flags) 411 #else 412 static int sys_utimensat(int dirfd, const char *pathname, 413 const struct timespec times[2], int flags) 414 { 415 errno = ENOSYS; 416 return -1; 417 } 418 #endif 419 #endif /* TARGET_NR_utimensat */ 420 421 #ifdef TARGET_NR_renameat2 422 #if defined(__NR_renameat2) 423 #define __NR_sys_renameat2 __NR_renameat2 424 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd, 425 const char *, new, unsigned int, flags) 426 #else 427 static int sys_renameat2(int oldfd, const char *old, 428 int newfd, const char *new, int flags) 429 { 430 if (flags == 0) { 431 return renameat(oldfd, old, newfd, new); 432 } 433 errno = ENOSYS; 434 return -1; 435 } 436 #endif 437 #endif /* TARGET_NR_renameat2 */ 438 439 #ifdef CONFIG_INOTIFY 440 #include <sys/inotify.h> 441 442 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init) 443 static int sys_inotify_init(void) 444 { 445 return (inotify_init()); 446 } 447 #endif 448 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch) 449 static int sys_inotify_add_watch(int fd,const char *pathname, int32_t mask) 450 { 451 return (inotify_add_watch(fd, pathname, mask)); 452 } 453 #endif 454 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch) 455 static int sys_inotify_rm_watch(int fd, int32_t wd) 456 { 457 return (inotify_rm_watch(fd, wd)); 458 } 459 #endif 460 #ifdef CONFIG_INOTIFY1 461 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1) 462 static int sys_inotify_init1(int flags) 463 { 464 return (inotify_init1(flags)); 465 } 466 #endif 467 #endif 468 #else 469 /* Userspace can usually survive runtime without inotify */ 470 #undef TARGET_NR_inotify_init 471 #undef TARGET_NR_inotify_init1 472 #undef TARGET_NR_inotify_add_watch 473 #undef TARGET_NR_inotify_rm_watch 474 #endif /* CONFIG_INOTIFY */ 475 476 #if defined(TARGET_NR_prlimit64) 477 #ifndef __NR_prlimit64 478 # define __NR_prlimit64 -1 479 #endif 480 #define __NR_sys_prlimit64 __NR_prlimit64 481 /* The glibc rlimit structure may not be that used by the underlying syscall */ 482 struct host_rlimit64 { 483 uint64_t rlim_cur; 484 uint64_t rlim_max; 485 }; 486 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource, 487 const struct host_rlimit64 *, new_limit, 488 struct host_rlimit64 *, old_limit) 489 #endif 490 491 492 #if defined(TARGET_NR_timer_create) 493 /* Maximum of 32 active POSIX timers allowed at any one time. */ 494 static timer_t g_posix_timers[32] = { 0, } ; 495 496 static inline int next_free_host_timer(void) 497 { 498 int k ; 499 /* FIXME: Does finding the next free slot require a lock? */ 500 for (k = 0; k < ARRAY_SIZE(g_posix_timers); k++) { 501 if (g_posix_timers[k] == 0) { 502 g_posix_timers[k] = (timer_t) 1; 503 return k; 504 } 505 } 506 return -1; 507 } 508 #endif 509 510 #define ERRNO_TABLE_SIZE 1200 511 512 /* target_to_host_errno_table[] is initialized from 513 * host_to_target_errno_table[] in syscall_init(). */ 514 static uint16_t target_to_host_errno_table[ERRNO_TABLE_SIZE] = { 515 }; 516 517 /* 518 * This list is the union of errno values overridden in asm-<arch>/errno.h 519 * minus the errnos that are not actually generic to all archs. 520 */ 521 static uint16_t host_to_target_errno_table[ERRNO_TABLE_SIZE] = { 522 [EAGAIN] = TARGET_EAGAIN, 523 [EIDRM] = TARGET_EIDRM, 524 [ECHRNG] = TARGET_ECHRNG, 525 [EL2NSYNC] = TARGET_EL2NSYNC, 526 [EL3HLT] = TARGET_EL3HLT, 527 [EL3RST] = TARGET_EL3RST, 528 [ELNRNG] = TARGET_ELNRNG, 529 [EUNATCH] = TARGET_EUNATCH, 530 [ENOCSI] = TARGET_ENOCSI, 531 [EL2HLT] = TARGET_EL2HLT, 532 [EDEADLK] = TARGET_EDEADLK, 533 [ENOLCK] = TARGET_ENOLCK, 534 [EBADE] = TARGET_EBADE, 535 [EBADR] = TARGET_EBADR, 536 [EXFULL] = TARGET_EXFULL, 537 [ENOANO] = TARGET_ENOANO, 538 [EBADRQC] = TARGET_EBADRQC, 539 [EBADSLT] = TARGET_EBADSLT, 540 [EBFONT] = TARGET_EBFONT, 541 [ENOSTR] = TARGET_ENOSTR, 542 [ENODATA] = TARGET_ENODATA, 543 [ETIME] = TARGET_ETIME, 544 [ENOSR] = TARGET_ENOSR, 545 [ENONET] = TARGET_ENONET, 546 [ENOPKG] = TARGET_ENOPKG, 547 [EREMOTE] = TARGET_EREMOTE, 548 [ENOLINK] = TARGET_ENOLINK, 549 [EADV] = TARGET_EADV, 550 [ESRMNT] = TARGET_ESRMNT, 551 [ECOMM] = TARGET_ECOMM, 552 [EPROTO] = TARGET_EPROTO, 553 [EDOTDOT] = TARGET_EDOTDOT, 554 [EMULTIHOP] = TARGET_EMULTIHOP, 555 [EBADMSG] = TARGET_EBADMSG, 556 [ENAMETOOLONG] = TARGET_ENAMETOOLONG, 557 [EOVERFLOW] = TARGET_EOVERFLOW, 558 [ENOTUNIQ] = TARGET_ENOTUNIQ, 559 [EBADFD] = TARGET_EBADFD, 560 [EREMCHG] = TARGET_EREMCHG, 561 [ELIBACC] = TARGET_ELIBACC, 562 [ELIBBAD] = TARGET_ELIBBAD, 563 [ELIBSCN] = TARGET_ELIBSCN, 564 [ELIBMAX] = TARGET_ELIBMAX, 565 [ELIBEXEC] = TARGET_ELIBEXEC, 566 [EILSEQ] = TARGET_EILSEQ, 567 [ENOSYS] = TARGET_ENOSYS, 568 [ELOOP] = TARGET_ELOOP, 569 [ERESTART] = TARGET_ERESTART, 570 [ESTRPIPE] = TARGET_ESTRPIPE, 571 [ENOTEMPTY] = TARGET_ENOTEMPTY, 572 [EUSERS] = TARGET_EUSERS, 573 [ENOTSOCK] = TARGET_ENOTSOCK, 574 [EDESTADDRREQ] = TARGET_EDESTADDRREQ, 575 [EMSGSIZE] = TARGET_EMSGSIZE, 576 [EPROTOTYPE] = TARGET_EPROTOTYPE, 577 [ENOPROTOOPT] = TARGET_ENOPROTOOPT, 578 [EPROTONOSUPPORT] = TARGET_EPROTONOSUPPORT, 579 [ESOCKTNOSUPPORT] = TARGET_ESOCKTNOSUPPORT, 580 [EOPNOTSUPP] = TARGET_EOPNOTSUPP, 581 [EPFNOSUPPORT] = TARGET_EPFNOSUPPORT, 582 [EAFNOSUPPORT] = TARGET_EAFNOSUPPORT, 583 [EADDRINUSE] = TARGET_EADDRINUSE, 584 [EADDRNOTAVAIL] = TARGET_EADDRNOTAVAIL, 585 [ENETDOWN] = TARGET_ENETDOWN, 586 [ENETUNREACH] = TARGET_ENETUNREACH, 587 [ENETRESET] = TARGET_ENETRESET, 588 [ECONNABORTED] = TARGET_ECONNABORTED, 589 [ECONNRESET] = TARGET_ECONNRESET, 590 [ENOBUFS] = TARGET_ENOBUFS, 591 [EISCONN] = TARGET_EISCONN, 592 [ENOTCONN] = TARGET_ENOTCONN, 593 [EUCLEAN] = TARGET_EUCLEAN, 594 [ENOTNAM] = TARGET_ENOTNAM, 595 [ENAVAIL] = TARGET_ENAVAIL, 596 [EISNAM] = TARGET_EISNAM, 597 [EREMOTEIO] = TARGET_EREMOTEIO, 598 [EDQUOT] = TARGET_EDQUOT, 599 [ESHUTDOWN] = TARGET_ESHUTDOWN, 600 [ETOOMANYREFS] = TARGET_ETOOMANYREFS, 601 [ETIMEDOUT] = TARGET_ETIMEDOUT, 602 [ECONNREFUSED] = TARGET_ECONNREFUSED, 603 [EHOSTDOWN] = TARGET_EHOSTDOWN, 604 [EHOSTUNREACH] = TARGET_EHOSTUNREACH, 605 [EALREADY] = TARGET_EALREADY, 606 [EINPROGRESS] = TARGET_EINPROGRESS, 607 [ESTALE] = TARGET_ESTALE, 608 [ECANCELED] = TARGET_ECANCELED, 609 [ENOMEDIUM] = TARGET_ENOMEDIUM, 610 [EMEDIUMTYPE] = TARGET_EMEDIUMTYPE, 611 #ifdef ENOKEY 612 [ENOKEY] = TARGET_ENOKEY, 613 #endif 614 #ifdef EKEYEXPIRED 615 [EKEYEXPIRED] = TARGET_EKEYEXPIRED, 616 #endif 617 #ifdef EKEYREVOKED 618 [EKEYREVOKED] = TARGET_EKEYREVOKED, 619 #endif 620 #ifdef EKEYREJECTED 621 [EKEYREJECTED] = TARGET_EKEYREJECTED, 622 #endif 623 #ifdef EOWNERDEAD 624 [EOWNERDEAD] = TARGET_EOWNERDEAD, 625 #endif 626 #ifdef ENOTRECOVERABLE 627 [ENOTRECOVERABLE] = TARGET_ENOTRECOVERABLE, 628 #endif 629 #ifdef ENOMSG 630 [ENOMSG] = TARGET_ENOMSG, 631 #endif 632 #ifdef ERKFILL 633 [ERFKILL] = TARGET_ERFKILL, 634 #endif 635 #ifdef EHWPOISON 636 [EHWPOISON] = TARGET_EHWPOISON, 637 #endif 638 }; 639 640 static inline int host_to_target_errno(int err) 641 { 642 if (err >= 0 && err < ERRNO_TABLE_SIZE && 643 host_to_target_errno_table[err]) { 644 return host_to_target_errno_table[err]; 645 } 646 return err; 647 } 648 649 static inline int target_to_host_errno(int err) 650 { 651 if (err >= 0 && err < ERRNO_TABLE_SIZE && 652 target_to_host_errno_table[err]) { 653 return target_to_host_errno_table[err]; 654 } 655 return err; 656 } 657 658 static inline abi_long get_errno(abi_long ret) 659 { 660 if (ret == -1) 661 return -host_to_target_errno(errno); 662 else 663 return ret; 664 } 665 666 const char *target_strerror(int err) 667 { 668 if (err == TARGET_ERESTARTSYS) { 669 return "To be restarted"; 670 } 671 if (err == TARGET_QEMU_ESIGRETURN) { 672 return "Successful exit from sigreturn"; 673 } 674 675 if ((err >= ERRNO_TABLE_SIZE) || (err < 0)) { 676 return NULL; 677 } 678 return strerror(target_to_host_errno(err)); 679 } 680 681 #define safe_syscall0(type, name) \ 682 static type safe_##name(void) \ 683 { \ 684 return safe_syscall(__NR_##name); \ 685 } 686 687 #define safe_syscall1(type, name, type1, arg1) \ 688 static type safe_##name(type1 arg1) \ 689 { \ 690 return safe_syscall(__NR_##name, arg1); \ 691 } 692 693 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \ 694 static type safe_##name(type1 arg1, type2 arg2) \ 695 { \ 696 return safe_syscall(__NR_##name, arg1, arg2); \ 697 } 698 699 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \ 700 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \ 701 { \ 702 return safe_syscall(__NR_##name, arg1, arg2, arg3); \ 703 } 704 705 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \ 706 type4, arg4) \ 707 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \ 708 { \ 709 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \ 710 } 711 712 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \ 713 type4, arg4, type5, arg5) \ 714 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \ 715 type5 arg5) \ 716 { \ 717 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \ 718 } 719 720 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \ 721 type4, arg4, type5, arg5, type6, arg6) \ 722 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \ 723 type5 arg5, type6 arg6) \ 724 { \ 725 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \ 726 } 727 728 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count) 729 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count) 730 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \ 731 int, flags, mode_t, mode) 732 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid) 733 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \ 734 struct rusage *, rusage) 735 #endif 736 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \ 737 int, options, struct rusage *, rusage) 738 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp) 739 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \ 740 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64) 741 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \ 742 fd_set *, exceptfds, struct timespec *, timeout, void *, sig) 743 #endif 744 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_ppoll_time64) 745 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds, 746 struct timespec *, tsp, const sigset_t *, sigmask, 747 size_t, sigsetsize) 748 #endif 749 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events, 750 int, maxevents, int, timeout, const sigset_t *, sigmask, 751 size_t, sigsetsize) 752 #if defined(__NR_futex) 753 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \ 754 const struct timespec *,timeout,int *,uaddr2,int,val3) 755 #endif 756 #if defined(__NR_futex_time64) 757 safe_syscall6(int,futex_time64,int *,uaddr,int,op,int,val, \ 758 const struct timespec *,timeout,int *,uaddr2,int,val3) 759 #endif 760 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize) 761 safe_syscall2(int, kill, pid_t, pid, int, sig) 762 safe_syscall2(int, tkill, int, tid, int, sig) 763 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig) 764 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt) 765 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt) 766 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt, 767 unsigned long, pos_l, unsigned long, pos_h) 768 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt, 769 unsigned long, pos_l, unsigned long, pos_h) 770 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr, 771 socklen_t, addrlen) 772 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len, 773 int, flags, const struct sockaddr *, addr, socklen_t, addrlen) 774 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len, 775 int, flags, struct sockaddr *, addr, socklen_t *, addrlen) 776 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags) 777 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags) 778 safe_syscall2(int, flock, int, fd, int, operation) 779 #if defined(TARGET_NR_rt_sigtimedwait) || defined(TARGET_NR_rt_sigtimedwait_time64) 780 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo, 781 const struct timespec *, uts, size_t, sigsetsize) 782 #endif 783 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len, 784 int, flags) 785 #if defined(TARGET_NR_nanosleep) 786 safe_syscall2(int, nanosleep, const struct timespec *, req, 787 struct timespec *, rem) 788 #endif 789 #if defined(TARGET_NR_clock_nanosleep) || \ 790 defined(TARGET_NR_clock_nanosleep_time64) 791 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags, 792 const struct timespec *, req, struct timespec *, rem) 793 #endif 794 #ifdef __NR_ipc 795 #ifdef __s390x__ 796 safe_syscall5(int, ipc, int, call, long, first, long, second, long, third, 797 void *, ptr) 798 #else 799 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third, 800 void *, ptr, long, fifth) 801 #endif 802 #endif 803 #ifdef __NR_msgsnd 804 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz, 805 int, flags) 806 #endif 807 #ifdef __NR_msgrcv 808 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz, 809 long, msgtype, int, flags) 810 #endif 811 #ifdef __NR_semtimedop 812 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops, 813 unsigned, nsops, const struct timespec *, timeout) 814 #endif 815 #if defined(TARGET_NR_mq_timedsend) || \ 816 defined(TARGET_NR_mq_timedsend_time64) 817 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr, 818 size_t, len, unsigned, prio, const struct timespec *, timeout) 819 #endif 820 #if defined(TARGET_NR_mq_timedreceive) || \ 821 defined(TARGET_NR_mq_timedreceive_time64) 822 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr, 823 size_t, len, unsigned *, prio, const struct timespec *, timeout) 824 #endif 825 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range) 826 safe_syscall6(ssize_t, copy_file_range, int, infd, loff_t *, pinoff, 827 int, outfd, loff_t *, poutoff, size_t, length, 828 unsigned int, flags) 829 #endif 830 831 /* We do ioctl like this rather than via safe_syscall3 to preserve the 832 * "third argument might be integer or pointer or not present" behaviour of 833 * the libc function. 834 */ 835 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__) 836 /* Similarly for fcntl. Note that callers must always: 837 * pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK 838 * use the flock64 struct rather than unsuffixed flock 839 * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts. 840 */ 841 #ifdef __NR_fcntl64 842 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__) 843 #else 844 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__) 845 #endif 846 847 static inline int host_to_target_sock_type(int host_type) 848 { 849 int target_type; 850 851 switch (host_type & 0xf /* SOCK_TYPE_MASK */) { 852 case SOCK_DGRAM: 853 target_type = TARGET_SOCK_DGRAM; 854 break; 855 case SOCK_STREAM: 856 target_type = TARGET_SOCK_STREAM; 857 break; 858 default: 859 target_type = host_type & 0xf /* SOCK_TYPE_MASK */; 860 break; 861 } 862 863 #if defined(SOCK_CLOEXEC) 864 if (host_type & SOCK_CLOEXEC) { 865 target_type |= TARGET_SOCK_CLOEXEC; 866 } 867 #endif 868 869 #if defined(SOCK_NONBLOCK) 870 if (host_type & SOCK_NONBLOCK) { 871 target_type |= TARGET_SOCK_NONBLOCK; 872 } 873 #endif 874 875 return target_type; 876 } 877 878 static abi_ulong target_brk; 879 static abi_ulong target_original_brk; 880 static abi_ulong brk_page; 881 882 void target_set_brk(abi_ulong new_brk) 883 { 884 target_original_brk = target_brk = HOST_PAGE_ALIGN(new_brk); 885 brk_page = HOST_PAGE_ALIGN(target_brk); 886 } 887 888 //#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0) 889 #define DEBUGF_BRK(message, args...) 890 891 /* do_brk() must return target values and target errnos. */ 892 abi_long do_brk(abi_ulong new_brk) 893 { 894 abi_long mapped_addr; 895 abi_ulong new_alloc_size; 896 897 /* brk pointers are always untagged */ 898 899 DEBUGF_BRK("do_brk(" TARGET_ABI_FMT_lx ") -> ", new_brk); 900 901 if (!new_brk) { 902 DEBUGF_BRK(TARGET_ABI_FMT_lx " (!new_brk)\n", target_brk); 903 return target_brk; 904 } 905 if (new_brk < target_original_brk) { 906 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk < target_original_brk)\n", 907 target_brk); 908 return target_brk; 909 } 910 911 /* If the new brk is less than the highest page reserved to the 912 * target heap allocation, set it and we're almost done... */ 913 if (new_brk <= brk_page) { 914 /* Heap contents are initialized to zero, as for anonymous 915 * mapped pages. */ 916 if (new_brk > target_brk) { 917 memset(g2h_untagged(target_brk), 0, new_brk - target_brk); 918 } 919 target_brk = new_brk; 920 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk <= brk_page)\n", target_brk); 921 return target_brk; 922 } 923 924 /* We need to allocate more memory after the brk... Note that 925 * we don't use MAP_FIXED because that will map over the top of 926 * any existing mapping (like the one with the host libc or qemu 927 * itself); instead we treat "mapped but at wrong address" as 928 * a failure and unmap again. 929 */ 930 new_alloc_size = HOST_PAGE_ALIGN(new_brk - brk_page); 931 mapped_addr = get_errno(target_mmap(brk_page, new_alloc_size, 932 PROT_READ|PROT_WRITE, 933 MAP_ANON|MAP_PRIVATE, 0, 0)); 934 935 if (mapped_addr == brk_page) { 936 /* Heap contents are initialized to zero, as for anonymous 937 * mapped pages. Technically the new pages are already 938 * initialized to zero since they *are* anonymous mapped 939 * pages, however we have to take care with the contents that 940 * come from the remaining part of the previous page: it may 941 * contains garbage data due to a previous heap usage (grown 942 * then shrunken). */ 943 memset(g2h_untagged(target_brk), 0, brk_page - target_brk); 944 945 target_brk = new_brk; 946 brk_page = HOST_PAGE_ALIGN(target_brk); 947 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr == brk_page)\n", 948 target_brk); 949 return target_brk; 950 } else if (mapped_addr != -1) { 951 /* Mapped but at wrong address, meaning there wasn't actually 952 * enough space for this brk. 953 */ 954 target_munmap(mapped_addr, new_alloc_size); 955 mapped_addr = -1; 956 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr != -1)\n", target_brk); 957 } 958 else { 959 DEBUGF_BRK(TARGET_ABI_FMT_lx " (otherwise)\n", target_brk); 960 } 961 962 #if defined(TARGET_ALPHA) 963 /* We (partially) emulate OSF/1 on Alpha, which requires we 964 return a proper errno, not an unchanged brk value. */ 965 return -TARGET_ENOMEM; 966 #endif 967 /* For everything else, return the previous break. */ 968 return target_brk; 969 } 970 971 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \ 972 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64) 973 static inline abi_long copy_from_user_fdset(fd_set *fds, 974 abi_ulong target_fds_addr, 975 int n) 976 { 977 int i, nw, j, k; 978 abi_ulong b, *target_fds; 979 980 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS); 981 if (!(target_fds = lock_user(VERIFY_READ, 982 target_fds_addr, 983 sizeof(abi_ulong) * nw, 984 1))) 985 return -TARGET_EFAULT; 986 987 FD_ZERO(fds); 988 k = 0; 989 for (i = 0; i < nw; i++) { 990 /* grab the abi_ulong */ 991 __get_user(b, &target_fds[i]); 992 for (j = 0; j < TARGET_ABI_BITS; j++) { 993 /* check the bit inside the abi_ulong */ 994 if ((b >> j) & 1) 995 FD_SET(k, fds); 996 k++; 997 } 998 } 999 1000 unlock_user(target_fds, target_fds_addr, 0); 1001 1002 return 0; 1003 } 1004 1005 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr, 1006 abi_ulong target_fds_addr, 1007 int n) 1008 { 1009 if (target_fds_addr) { 1010 if (copy_from_user_fdset(fds, target_fds_addr, n)) 1011 return -TARGET_EFAULT; 1012 *fds_ptr = fds; 1013 } else { 1014 *fds_ptr = NULL; 1015 } 1016 return 0; 1017 } 1018 1019 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr, 1020 const fd_set *fds, 1021 int n) 1022 { 1023 int i, nw, j, k; 1024 abi_long v; 1025 abi_ulong *target_fds; 1026 1027 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS); 1028 if (!(target_fds = lock_user(VERIFY_WRITE, 1029 target_fds_addr, 1030 sizeof(abi_ulong) * nw, 1031 0))) 1032 return -TARGET_EFAULT; 1033 1034 k = 0; 1035 for (i = 0; i < nw; i++) { 1036 v = 0; 1037 for (j = 0; j < TARGET_ABI_BITS; j++) { 1038 v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j); 1039 k++; 1040 } 1041 __put_user(v, &target_fds[i]); 1042 } 1043 1044 unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw); 1045 1046 return 0; 1047 } 1048 #endif 1049 1050 #if defined(__alpha__) 1051 #define HOST_HZ 1024 1052 #else 1053 #define HOST_HZ 100 1054 #endif 1055 1056 static inline abi_long host_to_target_clock_t(long ticks) 1057 { 1058 #if HOST_HZ == TARGET_HZ 1059 return ticks; 1060 #else 1061 return ((int64_t)ticks * TARGET_HZ) / HOST_HZ; 1062 #endif 1063 } 1064 1065 static inline abi_long host_to_target_rusage(abi_ulong target_addr, 1066 const struct rusage *rusage) 1067 { 1068 struct target_rusage *target_rusage; 1069 1070 if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0)) 1071 return -TARGET_EFAULT; 1072 target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec); 1073 target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec); 1074 target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec); 1075 target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec); 1076 target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss); 1077 target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss); 1078 target_rusage->ru_idrss = tswapal(rusage->ru_idrss); 1079 target_rusage->ru_isrss = tswapal(rusage->ru_isrss); 1080 target_rusage->ru_minflt = tswapal(rusage->ru_minflt); 1081 target_rusage->ru_majflt = tswapal(rusage->ru_majflt); 1082 target_rusage->ru_nswap = tswapal(rusage->ru_nswap); 1083 target_rusage->ru_inblock = tswapal(rusage->ru_inblock); 1084 target_rusage->ru_oublock = tswapal(rusage->ru_oublock); 1085 target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd); 1086 target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv); 1087 target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals); 1088 target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw); 1089 target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw); 1090 unlock_user_struct(target_rusage, target_addr, 1); 1091 1092 return 0; 1093 } 1094 1095 #ifdef TARGET_NR_setrlimit 1096 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim) 1097 { 1098 abi_ulong target_rlim_swap; 1099 rlim_t result; 1100 1101 target_rlim_swap = tswapal(target_rlim); 1102 if (target_rlim_swap == TARGET_RLIM_INFINITY) 1103 return RLIM_INFINITY; 1104 1105 result = target_rlim_swap; 1106 if (target_rlim_swap != (rlim_t)result) 1107 return RLIM_INFINITY; 1108 1109 return result; 1110 } 1111 #endif 1112 1113 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit) 1114 static inline abi_ulong host_to_target_rlim(rlim_t rlim) 1115 { 1116 abi_ulong target_rlim_swap; 1117 abi_ulong result; 1118 1119 if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim) 1120 target_rlim_swap = TARGET_RLIM_INFINITY; 1121 else 1122 target_rlim_swap = rlim; 1123 result = tswapal(target_rlim_swap); 1124 1125 return result; 1126 } 1127 #endif 1128 1129 static inline int target_to_host_resource(int code) 1130 { 1131 switch (code) { 1132 case TARGET_RLIMIT_AS: 1133 return RLIMIT_AS; 1134 case TARGET_RLIMIT_CORE: 1135 return RLIMIT_CORE; 1136 case TARGET_RLIMIT_CPU: 1137 return RLIMIT_CPU; 1138 case TARGET_RLIMIT_DATA: 1139 return RLIMIT_DATA; 1140 case TARGET_RLIMIT_FSIZE: 1141 return RLIMIT_FSIZE; 1142 case TARGET_RLIMIT_LOCKS: 1143 return RLIMIT_LOCKS; 1144 case TARGET_RLIMIT_MEMLOCK: 1145 return RLIMIT_MEMLOCK; 1146 case TARGET_RLIMIT_MSGQUEUE: 1147 return RLIMIT_MSGQUEUE; 1148 case TARGET_RLIMIT_NICE: 1149 return RLIMIT_NICE; 1150 case TARGET_RLIMIT_NOFILE: 1151 return RLIMIT_NOFILE; 1152 case TARGET_RLIMIT_NPROC: 1153 return RLIMIT_NPROC; 1154 case TARGET_RLIMIT_RSS: 1155 return RLIMIT_RSS; 1156 case TARGET_RLIMIT_RTPRIO: 1157 return RLIMIT_RTPRIO; 1158 case TARGET_RLIMIT_SIGPENDING: 1159 return RLIMIT_SIGPENDING; 1160 case TARGET_RLIMIT_STACK: 1161 return RLIMIT_STACK; 1162 default: 1163 return code; 1164 } 1165 } 1166 1167 static inline abi_long copy_from_user_timeval(struct timeval *tv, 1168 abi_ulong target_tv_addr) 1169 { 1170 struct target_timeval *target_tv; 1171 1172 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) { 1173 return -TARGET_EFAULT; 1174 } 1175 1176 __get_user(tv->tv_sec, &target_tv->tv_sec); 1177 __get_user(tv->tv_usec, &target_tv->tv_usec); 1178 1179 unlock_user_struct(target_tv, target_tv_addr, 0); 1180 1181 return 0; 1182 } 1183 1184 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr, 1185 const struct timeval *tv) 1186 { 1187 struct target_timeval *target_tv; 1188 1189 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) { 1190 return -TARGET_EFAULT; 1191 } 1192 1193 __put_user(tv->tv_sec, &target_tv->tv_sec); 1194 __put_user(tv->tv_usec, &target_tv->tv_usec); 1195 1196 unlock_user_struct(target_tv, target_tv_addr, 1); 1197 1198 return 0; 1199 } 1200 1201 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME) 1202 static inline abi_long copy_from_user_timeval64(struct timeval *tv, 1203 abi_ulong target_tv_addr) 1204 { 1205 struct target__kernel_sock_timeval *target_tv; 1206 1207 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) { 1208 return -TARGET_EFAULT; 1209 } 1210 1211 __get_user(tv->tv_sec, &target_tv->tv_sec); 1212 __get_user(tv->tv_usec, &target_tv->tv_usec); 1213 1214 unlock_user_struct(target_tv, target_tv_addr, 0); 1215 1216 return 0; 1217 } 1218 #endif 1219 1220 static inline abi_long copy_to_user_timeval64(abi_ulong target_tv_addr, 1221 const struct timeval *tv) 1222 { 1223 struct target__kernel_sock_timeval *target_tv; 1224 1225 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) { 1226 return -TARGET_EFAULT; 1227 } 1228 1229 __put_user(tv->tv_sec, &target_tv->tv_sec); 1230 __put_user(tv->tv_usec, &target_tv->tv_usec); 1231 1232 unlock_user_struct(target_tv, target_tv_addr, 1); 1233 1234 return 0; 1235 } 1236 1237 #if defined(TARGET_NR_futex) || \ 1238 defined(TARGET_NR_rt_sigtimedwait) || \ 1239 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \ 1240 defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \ 1241 defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \ 1242 defined(TARGET_NR_mq_timedreceive) || defined(TARGET_NR_ipc) || \ 1243 defined(TARGET_NR_semop) || defined(TARGET_NR_semtimedop) || \ 1244 defined(TARGET_NR_timer_settime) || \ 1245 (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)) 1246 static inline abi_long target_to_host_timespec(struct timespec *host_ts, 1247 abi_ulong target_addr) 1248 { 1249 struct target_timespec *target_ts; 1250 1251 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) { 1252 return -TARGET_EFAULT; 1253 } 1254 __get_user(host_ts->tv_sec, &target_ts->tv_sec); 1255 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec); 1256 unlock_user_struct(target_ts, target_addr, 0); 1257 return 0; 1258 } 1259 #endif 1260 1261 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64) || \ 1262 defined(TARGET_NR_timer_settime64) || \ 1263 defined(TARGET_NR_mq_timedsend_time64) || \ 1264 defined(TARGET_NR_mq_timedreceive_time64) || \ 1265 (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) || \ 1266 defined(TARGET_NR_clock_nanosleep_time64) || \ 1267 defined(TARGET_NR_rt_sigtimedwait_time64) || \ 1268 defined(TARGET_NR_utimensat) || \ 1269 defined(TARGET_NR_utimensat_time64) || \ 1270 defined(TARGET_NR_semtimedop_time64) || \ 1271 defined(TARGET_NR_pselect6_time64) || defined(TARGET_NR_ppoll_time64) 1272 static inline abi_long target_to_host_timespec64(struct timespec *host_ts, 1273 abi_ulong target_addr) 1274 { 1275 struct target__kernel_timespec *target_ts; 1276 1277 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) { 1278 return -TARGET_EFAULT; 1279 } 1280 __get_user(host_ts->tv_sec, &target_ts->tv_sec); 1281 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec); 1282 /* in 32bit mode, this drops the padding */ 1283 host_ts->tv_nsec = (long)(abi_long)host_ts->tv_nsec; 1284 unlock_user_struct(target_ts, target_addr, 0); 1285 return 0; 1286 } 1287 #endif 1288 1289 static inline abi_long host_to_target_timespec(abi_ulong target_addr, 1290 struct timespec *host_ts) 1291 { 1292 struct target_timespec *target_ts; 1293 1294 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) { 1295 return -TARGET_EFAULT; 1296 } 1297 __put_user(host_ts->tv_sec, &target_ts->tv_sec); 1298 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec); 1299 unlock_user_struct(target_ts, target_addr, 1); 1300 return 0; 1301 } 1302 1303 static inline abi_long host_to_target_timespec64(abi_ulong target_addr, 1304 struct timespec *host_ts) 1305 { 1306 struct target__kernel_timespec *target_ts; 1307 1308 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) { 1309 return -TARGET_EFAULT; 1310 } 1311 __put_user(host_ts->tv_sec, &target_ts->tv_sec); 1312 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec); 1313 unlock_user_struct(target_ts, target_addr, 1); 1314 return 0; 1315 } 1316 1317 #if defined(TARGET_NR_gettimeofday) 1318 static inline abi_long copy_to_user_timezone(abi_ulong target_tz_addr, 1319 struct timezone *tz) 1320 { 1321 struct target_timezone *target_tz; 1322 1323 if (!lock_user_struct(VERIFY_WRITE, target_tz, target_tz_addr, 1)) { 1324 return -TARGET_EFAULT; 1325 } 1326 1327 __put_user(tz->tz_minuteswest, &target_tz->tz_minuteswest); 1328 __put_user(tz->tz_dsttime, &target_tz->tz_dsttime); 1329 1330 unlock_user_struct(target_tz, target_tz_addr, 1); 1331 1332 return 0; 1333 } 1334 #endif 1335 1336 #if defined(TARGET_NR_settimeofday) 1337 static inline abi_long copy_from_user_timezone(struct timezone *tz, 1338 abi_ulong target_tz_addr) 1339 { 1340 struct target_timezone *target_tz; 1341 1342 if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) { 1343 return -TARGET_EFAULT; 1344 } 1345 1346 __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest); 1347 __get_user(tz->tz_dsttime, &target_tz->tz_dsttime); 1348 1349 unlock_user_struct(target_tz, target_tz_addr, 0); 1350 1351 return 0; 1352 } 1353 #endif 1354 1355 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 1356 #include <mqueue.h> 1357 1358 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr, 1359 abi_ulong target_mq_attr_addr) 1360 { 1361 struct target_mq_attr *target_mq_attr; 1362 1363 if (!lock_user_struct(VERIFY_READ, target_mq_attr, 1364 target_mq_attr_addr, 1)) 1365 return -TARGET_EFAULT; 1366 1367 __get_user(attr->mq_flags, &target_mq_attr->mq_flags); 1368 __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg); 1369 __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize); 1370 __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs); 1371 1372 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0); 1373 1374 return 0; 1375 } 1376 1377 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr, 1378 const struct mq_attr *attr) 1379 { 1380 struct target_mq_attr *target_mq_attr; 1381 1382 if (!lock_user_struct(VERIFY_WRITE, target_mq_attr, 1383 target_mq_attr_addr, 0)) 1384 return -TARGET_EFAULT; 1385 1386 __put_user(attr->mq_flags, &target_mq_attr->mq_flags); 1387 __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg); 1388 __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize); 1389 __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs); 1390 1391 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1); 1392 1393 return 0; 1394 } 1395 #endif 1396 1397 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) 1398 /* do_select() must return target values and target errnos. */ 1399 static abi_long do_select(int n, 1400 abi_ulong rfd_addr, abi_ulong wfd_addr, 1401 abi_ulong efd_addr, abi_ulong target_tv_addr) 1402 { 1403 fd_set rfds, wfds, efds; 1404 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr; 1405 struct timeval tv; 1406 struct timespec ts, *ts_ptr; 1407 abi_long ret; 1408 1409 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n); 1410 if (ret) { 1411 return ret; 1412 } 1413 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n); 1414 if (ret) { 1415 return ret; 1416 } 1417 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n); 1418 if (ret) { 1419 return ret; 1420 } 1421 1422 if (target_tv_addr) { 1423 if (copy_from_user_timeval(&tv, target_tv_addr)) 1424 return -TARGET_EFAULT; 1425 ts.tv_sec = tv.tv_sec; 1426 ts.tv_nsec = tv.tv_usec * 1000; 1427 ts_ptr = &ts; 1428 } else { 1429 ts_ptr = NULL; 1430 } 1431 1432 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr, 1433 ts_ptr, NULL)); 1434 1435 if (!is_error(ret)) { 1436 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) 1437 return -TARGET_EFAULT; 1438 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) 1439 return -TARGET_EFAULT; 1440 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) 1441 return -TARGET_EFAULT; 1442 1443 if (target_tv_addr) { 1444 tv.tv_sec = ts.tv_sec; 1445 tv.tv_usec = ts.tv_nsec / 1000; 1446 if (copy_to_user_timeval(target_tv_addr, &tv)) { 1447 return -TARGET_EFAULT; 1448 } 1449 } 1450 } 1451 1452 return ret; 1453 } 1454 1455 #if defined(TARGET_WANT_OLD_SYS_SELECT) 1456 static abi_long do_old_select(abi_ulong arg1) 1457 { 1458 struct target_sel_arg_struct *sel; 1459 abi_ulong inp, outp, exp, tvp; 1460 long nsel; 1461 1462 if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) { 1463 return -TARGET_EFAULT; 1464 } 1465 1466 nsel = tswapal(sel->n); 1467 inp = tswapal(sel->inp); 1468 outp = tswapal(sel->outp); 1469 exp = tswapal(sel->exp); 1470 tvp = tswapal(sel->tvp); 1471 1472 unlock_user_struct(sel, arg1, 0); 1473 1474 return do_select(nsel, inp, outp, exp, tvp); 1475 } 1476 #endif 1477 #endif 1478 1479 #if defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64) 1480 static abi_long do_pselect6(abi_long arg1, abi_long arg2, abi_long arg3, 1481 abi_long arg4, abi_long arg5, abi_long arg6, 1482 bool time64) 1483 { 1484 abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr; 1485 fd_set rfds, wfds, efds; 1486 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr; 1487 struct timespec ts, *ts_ptr; 1488 abi_long ret; 1489 1490 /* 1491 * The 6th arg is actually two args smashed together, 1492 * so we cannot use the C library. 1493 */ 1494 sigset_t set; 1495 struct { 1496 sigset_t *set; 1497 size_t size; 1498 } sig, *sig_ptr; 1499 1500 abi_ulong arg_sigset, arg_sigsize, *arg7; 1501 target_sigset_t *target_sigset; 1502 1503 n = arg1; 1504 rfd_addr = arg2; 1505 wfd_addr = arg3; 1506 efd_addr = arg4; 1507 ts_addr = arg5; 1508 1509 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n); 1510 if (ret) { 1511 return ret; 1512 } 1513 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n); 1514 if (ret) { 1515 return ret; 1516 } 1517 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n); 1518 if (ret) { 1519 return ret; 1520 } 1521 1522 /* 1523 * This takes a timespec, and not a timeval, so we cannot 1524 * use the do_select() helper ... 1525 */ 1526 if (ts_addr) { 1527 if (time64) { 1528 if (target_to_host_timespec64(&ts, ts_addr)) { 1529 return -TARGET_EFAULT; 1530 } 1531 } else { 1532 if (target_to_host_timespec(&ts, ts_addr)) { 1533 return -TARGET_EFAULT; 1534 } 1535 } 1536 ts_ptr = &ts; 1537 } else { 1538 ts_ptr = NULL; 1539 } 1540 1541 /* Extract the two packed args for the sigset */ 1542 if (arg6) { 1543 sig_ptr = &sig; 1544 sig.size = SIGSET_T_SIZE; 1545 1546 arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1); 1547 if (!arg7) { 1548 return -TARGET_EFAULT; 1549 } 1550 arg_sigset = tswapal(arg7[0]); 1551 arg_sigsize = tswapal(arg7[1]); 1552 unlock_user(arg7, arg6, 0); 1553 1554 if (arg_sigset) { 1555 sig.set = &set; 1556 if (arg_sigsize != sizeof(*target_sigset)) { 1557 /* Like the kernel, we enforce correct size sigsets */ 1558 return -TARGET_EINVAL; 1559 } 1560 target_sigset = lock_user(VERIFY_READ, arg_sigset, 1561 sizeof(*target_sigset), 1); 1562 if (!target_sigset) { 1563 return -TARGET_EFAULT; 1564 } 1565 target_to_host_sigset(&set, target_sigset); 1566 unlock_user(target_sigset, arg_sigset, 0); 1567 } else { 1568 sig.set = NULL; 1569 } 1570 } else { 1571 sig_ptr = NULL; 1572 } 1573 1574 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr, 1575 ts_ptr, sig_ptr)); 1576 1577 if (!is_error(ret)) { 1578 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) { 1579 return -TARGET_EFAULT; 1580 } 1581 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) { 1582 return -TARGET_EFAULT; 1583 } 1584 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) { 1585 return -TARGET_EFAULT; 1586 } 1587 if (time64) { 1588 if (ts_addr && host_to_target_timespec64(ts_addr, &ts)) { 1589 return -TARGET_EFAULT; 1590 } 1591 } else { 1592 if (ts_addr && host_to_target_timespec(ts_addr, &ts)) { 1593 return -TARGET_EFAULT; 1594 } 1595 } 1596 } 1597 return ret; 1598 } 1599 #endif 1600 1601 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) || \ 1602 defined(TARGET_NR_ppoll_time64) 1603 static abi_long do_ppoll(abi_long arg1, abi_long arg2, abi_long arg3, 1604 abi_long arg4, abi_long arg5, bool ppoll, bool time64) 1605 { 1606 struct target_pollfd *target_pfd; 1607 unsigned int nfds = arg2; 1608 struct pollfd *pfd; 1609 unsigned int i; 1610 abi_long ret; 1611 1612 pfd = NULL; 1613 target_pfd = NULL; 1614 if (nfds) { 1615 if (nfds > (INT_MAX / sizeof(struct target_pollfd))) { 1616 return -TARGET_EINVAL; 1617 } 1618 target_pfd = lock_user(VERIFY_WRITE, arg1, 1619 sizeof(struct target_pollfd) * nfds, 1); 1620 if (!target_pfd) { 1621 return -TARGET_EFAULT; 1622 } 1623 1624 pfd = alloca(sizeof(struct pollfd) * nfds); 1625 for (i = 0; i < nfds; i++) { 1626 pfd[i].fd = tswap32(target_pfd[i].fd); 1627 pfd[i].events = tswap16(target_pfd[i].events); 1628 } 1629 } 1630 if (ppoll) { 1631 struct timespec _timeout_ts, *timeout_ts = &_timeout_ts; 1632 target_sigset_t *target_set; 1633 sigset_t _set, *set = &_set; 1634 1635 if (arg3) { 1636 if (time64) { 1637 if (target_to_host_timespec64(timeout_ts, arg3)) { 1638 unlock_user(target_pfd, arg1, 0); 1639 return -TARGET_EFAULT; 1640 } 1641 } else { 1642 if (target_to_host_timespec(timeout_ts, arg3)) { 1643 unlock_user(target_pfd, arg1, 0); 1644 return -TARGET_EFAULT; 1645 } 1646 } 1647 } else { 1648 timeout_ts = NULL; 1649 } 1650 1651 if (arg4) { 1652 if (arg5 != sizeof(target_sigset_t)) { 1653 unlock_user(target_pfd, arg1, 0); 1654 return -TARGET_EINVAL; 1655 } 1656 1657 target_set = lock_user(VERIFY_READ, arg4, 1658 sizeof(target_sigset_t), 1); 1659 if (!target_set) { 1660 unlock_user(target_pfd, arg1, 0); 1661 return -TARGET_EFAULT; 1662 } 1663 target_to_host_sigset(set, target_set); 1664 } else { 1665 set = NULL; 1666 } 1667 1668 ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts, 1669 set, SIGSET_T_SIZE)); 1670 1671 if (!is_error(ret) && arg3) { 1672 if (time64) { 1673 if (host_to_target_timespec64(arg3, timeout_ts)) { 1674 return -TARGET_EFAULT; 1675 } 1676 } else { 1677 if (host_to_target_timespec(arg3, timeout_ts)) { 1678 return -TARGET_EFAULT; 1679 } 1680 } 1681 } 1682 if (arg4) { 1683 unlock_user(target_set, arg4, 0); 1684 } 1685 } else { 1686 struct timespec ts, *pts; 1687 1688 if (arg3 >= 0) { 1689 /* Convert ms to secs, ns */ 1690 ts.tv_sec = arg3 / 1000; 1691 ts.tv_nsec = (arg3 % 1000) * 1000000LL; 1692 pts = &ts; 1693 } else { 1694 /* -ve poll() timeout means "infinite" */ 1695 pts = NULL; 1696 } 1697 ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0)); 1698 } 1699 1700 if (!is_error(ret)) { 1701 for (i = 0; i < nfds; i++) { 1702 target_pfd[i].revents = tswap16(pfd[i].revents); 1703 } 1704 } 1705 unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds); 1706 return ret; 1707 } 1708 #endif 1709 1710 static abi_long do_pipe2(int host_pipe[], int flags) 1711 { 1712 #ifdef CONFIG_PIPE2 1713 return pipe2(host_pipe, flags); 1714 #else 1715 return -ENOSYS; 1716 #endif 1717 } 1718 1719 static abi_long do_pipe(void *cpu_env, abi_ulong pipedes, 1720 int flags, int is_pipe2) 1721 { 1722 int host_pipe[2]; 1723 abi_long ret; 1724 ret = flags ? do_pipe2(host_pipe, flags) : pipe(host_pipe); 1725 1726 if (is_error(ret)) 1727 return get_errno(ret); 1728 1729 /* Several targets have special calling conventions for the original 1730 pipe syscall, but didn't replicate this into the pipe2 syscall. */ 1731 if (!is_pipe2) { 1732 #if defined(TARGET_ALPHA) 1733 ((CPUAlphaState *)cpu_env)->ir[IR_A4] = host_pipe[1]; 1734 return host_pipe[0]; 1735 #elif defined(TARGET_MIPS) 1736 ((CPUMIPSState*)cpu_env)->active_tc.gpr[3] = host_pipe[1]; 1737 return host_pipe[0]; 1738 #elif defined(TARGET_SH4) 1739 ((CPUSH4State*)cpu_env)->gregs[1] = host_pipe[1]; 1740 return host_pipe[0]; 1741 #elif defined(TARGET_SPARC) 1742 ((CPUSPARCState*)cpu_env)->regwptr[1] = host_pipe[1]; 1743 return host_pipe[0]; 1744 #endif 1745 } 1746 1747 if (put_user_s32(host_pipe[0], pipedes) 1748 || put_user_s32(host_pipe[1], pipedes + sizeof(host_pipe[0]))) 1749 return -TARGET_EFAULT; 1750 return get_errno(ret); 1751 } 1752 1753 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn, 1754 abi_ulong target_addr, 1755 socklen_t len) 1756 { 1757 struct target_ip_mreqn *target_smreqn; 1758 1759 target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1); 1760 if (!target_smreqn) 1761 return -TARGET_EFAULT; 1762 mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr; 1763 mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr; 1764 if (len == sizeof(struct target_ip_mreqn)) 1765 mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex); 1766 unlock_user(target_smreqn, target_addr, 0); 1767 1768 return 0; 1769 } 1770 1771 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr, 1772 abi_ulong target_addr, 1773 socklen_t len) 1774 { 1775 const socklen_t unix_maxlen = sizeof (struct sockaddr_un); 1776 sa_family_t sa_family; 1777 struct target_sockaddr *target_saddr; 1778 1779 if (fd_trans_target_to_host_addr(fd)) { 1780 return fd_trans_target_to_host_addr(fd)(addr, target_addr, len); 1781 } 1782 1783 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1); 1784 if (!target_saddr) 1785 return -TARGET_EFAULT; 1786 1787 sa_family = tswap16(target_saddr->sa_family); 1788 1789 /* Oops. The caller might send a incomplete sun_path; sun_path 1790 * must be terminated by \0 (see the manual page), but 1791 * unfortunately it is quite common to specify sockaddr_un 1792 * length as "strlen(x->sun_path)" while it should be 1793 * "strlen(...) + 1". We'll fix that here if needed. 1794 * Linux kernel has a similar feature. 1795 */ 1796 1797 if (sa_family == AF_UNIX) { 1798 if (len < unix_maxlen && len > 0) { 1799 char *cp = (char*)target_saddr; 1800 1801 if ( cp[len-1] && !cp[len] ) 1802 len++; 1803 } 1804 if (len > unix_maxlen) 1805 len = unix_maxlen; 1806 } 1807 1808 memcpy(addr, target_saddr, len); 1809 addr->sa_family = sa_family; 1810 if (sa_family == AF_NETLINK) { 1811 struct sockaddr_nl *nladdr; 1812 1813 nladdr = (struct sockaddr_nl *)addr; 1814 nladdr->nl_pid = tswap32(nladdr->nl_pid); 1815 nladdr->nl_groups = tswap32(nladdr->nl_groups); 1816 } else if (sa_family == AF_PACKET) { 1817 struct target_sockaddr_ll *lladdr; 1818 1819 lladdr = (struct target_sockaddr_ll *)addr; 1820 lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex); 1821 lladdr->sll_hatype = tswap16(lladdr->sll_hatype); 1822 } 1823 unlock_user(target_saddr, target_addr, 0); 1824 1825 return 0; 1826 } 1827 1828 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr, 1829 struct sockaddr *addr, 1830 socklen_t len) 1831 { 1832 struct target_sockaddr *target_saddr; 1833 1834 if (len == 0) { 1835 return 0; 1836 } 1837 assert(addr); 1838 1839 target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0); 1840 if (!target_saddr) 1841 return -TARGET_EFAULT; 1842 memcpy(target_saddr, addr, len); 1843 if (len >= offsetof(struct target_sockaddr, sa_family) + 1844 sizeof(target_saddr->sa_family)) { 1845 target_saddr->sa_family = tswap16(addr->sa_family); 1846 } 1847 if (addr->sa_family == AF_NETLINK && 1848 len >= sizeof(struct target_sockaddr_nl)) { 1849 struct target_sockaddr_nl *target_nl = 1850 (struct target_sockaddr_nl *)target_saddr; 1851 target_nl->nl_pid = tswap32(target_nl->nl_pid); 1852 target_nl->nl_groups = tswap32(target_nl->nl_groups); 1853 } else if (addr->sa_family == AF_PACKET) { 1854 struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr; 1855 target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex); 1856 target_ll->sll_hatype = tswap16(target_ll->sll_hatype); 1857 } else if (addr->sa_family == AF_INET6 && 1858 len >= sizeof(struct target_sockaddr_in6)) { 1859 struct target_sockaddr_in6 *target_in6 = 1860 (struct target_sockaddr_in6 *)target_saddr; 1861 target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id); 1862 } 1863 unlock_user(target_saddr, target_addr, len); 1864 1865 return 0; 1866 } 1867 1868 static inline abi_long target_to_host_cmsg(struct msghdr *msgh, 1869 struct target_msghdr *target_msgh) 1870 { 1871 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh); 1872 abi_long msg_controllen; 1873 abi_ulong target_cmsg_addr; 1874 struct target_cmsghdr *target_cmsg, *target_cmsg_start; 1875 socklen_t space = 0; 1876 1877 msg_controllen = tswapal(target_msgh->msg_controllen); 1878 if (msg_controllen < sizeof (struct target_cmsghdr)) 1879 goto the_end; 1880 target_cmsg_addr = tswapal(target_msgh->msg_control); 1881 target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1); 1882 target_cmsg_start = target_cmsg; 1883 if (!target_cmsg) 1884 return -TARGET_EFAULT; 1885 1886 while (cmsg && target_cmsg) { 1887 void *data = CMSG_DATA(cmsg); 1888 void *target_data = TARGET_CMSG_DATA(target_cmsg); 1889 1890 int len = tswapal(target_cmsg->cmsg_len) 1891 - sizeof(struct target_cmsghdr); 1892 1893 space += CMSG_SPACE(len); 1894 if (space > msgh->msg_controllen) { 1895 space -= CMSG_SPACE(len); 1896 /* This is a QEMU bug, since we allocated the payload 1897 * area ourselves (unlike overflow in host-to-target 1898 * conversion, which is just the guest giving us a buffer 1899 * that's too small). It can't happen for the payload types 1900 * we currently support; if it becomes an issue in future 1901 * we would need to improve our allocation strategy to 1902 * something more intelligent than "twice the size of the 1903 * target buffer we're reading from". 1904 */ 1905 qemu_log_mask(LOG_UNIMP, 1906 ("Unsupported ancillary data %d/%d: " 1907 "unhandled msg size\n"), 1908 tswap32(target_cmsg->cmsg_level), 1909 tswap32(target_cmsg->cmsg_type)); 1910 break; 1911 } 1912 1913 if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) { 1914 cmsg->cmsg_level = SOL_SOCKET; 1915 } else { 1916 cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level); 1917 } 1918 cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type); 1919 cmsg->cmsg_len = CMSG_LEN(len); 1920 1921 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) { 1922 int *fd = (int *)data; 1923 int *target_fd = (int *)target_data; 1924 int i, numfds = len / sizeof(int); 1925 1926 for (i = 0; i < numfds; i++) { 1927 __get_user(fd[i], target_fd + i); 1928 } 1929 } else if (cmsg->cmsg_level == SOL_SOCKET 1930 && cmsg->cmsg_type == SCM_CREDENTIALS) { 1931 struct ucred *cred = (struct ucred *)data; 1932 struct target_ucred *target_cred = 1933 (struct target_ucred *)target_data; 1934 1935 __get_user(cred->pid, &target_cred->pid); 1936 __get_user(cred->uid, &target_cred->uid); 1937 __get_user(cred->gid, &target_cred->gid); 1938 } else { 1939 qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n", 1940 cmsg->cmsg_level, cmsg->cmsg_type); 1941 memcpy(data, target_data, len); 1942 } 1943 1944 cmsg = CMSG_NXTHDR(msgh, cmsg); 1945 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg, 1946 target_cmsg_start); 1947 } 1948 unlock_user(target_cmsg, target_cmsg_addr, 0); 1949 the_end: 1950 msgh->msg_controllen = space; 1951 return 0; 1952 } 1953 1954 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh, 1955 struct msghdr *msgh) 1956 { 1957 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh); 1958 abi_long msg_controllen; 1959 abi_ulong target_cmsg_addr; 1960 struct target_cmsghdr *target_cmsg, *target_cmsg_start; 1961 socklen_t space = 0; 1962 1963 msg_controllen = tswapal(target_msgh->msg_controllen); 1964 if (msg_controllen < sizeof (struct target_cmsghdr)) 1965 goto the_end; 1966 target_cmsg_addr = tswapal(target_msgh->msg_control); 1967 target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0); 1968 target_cmsg_start = target_cmsg; 1969 if (!target_cmsg) 1970 return -TARGET_EFAULT; 1971 1972 while (cmsg && target_cmsg) { 1973 void *data = CMSG_DATA(cmsg); 1974 void *target_data = TARGET_CMSG_DATA(target_cmsg); 1975 1976 int len = cmsg->cmsg_len - sizeof(struct cmsghdr); 1977 int tgt_len, tgt_space; 1978 1979 /* We never copy a half-header but may copy half-data; 1980 * this is Linux's behaviour in put_cmsg(). Note that 1981 * truncation here is a guest problem (which we report 1982 * to the guest via the CTRUNC bit), unlike truncation 1983 * in target_to_host_cmsg, which is a QEMU bug. 1984 */ 1985 if (msg_controllen < sizeof(struct target_cmsghdr)) { 1986 target_msgh->msg_flags |= tswap32(MSG_CTRUNC); 1987 break; 1988 } 1989 1990 if (cmsg->cmsg_level == SOL_SOCKET) { 1991 target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET); 1992 } else { 1993 target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level); 1994 } 1995 target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type); 1996 1997 /* Payload types which need a different size of payload on 1998 * the target must adjust tgt_len here. 1999 */ 2000 tgt_len = len; 2001 switch (cmsg->cmsg_level) { 2002 case SOL_SOCKET: 2003 switch (cmsg->cmsg_type) { 2004 case SO_TIMESTAMP: 2005 tgt_len = sizeof(struct target_timeval); 2006 break; 2007 default: 2008 break; 2009 } 2010 break; 2011 default: 2012 break; 2013 } 2014 2015 if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) { 2016 target_msgh->msg_flags |= tswap32(MSG_CTRUNC); 2017 tgt_len = msg_controllen - sizeof(struct target_cmsghdr); 2018 } 2019 2020 /* We must now copy-and-convert len bytes of payload 2021 * into tgt_len bytes of destination space. Bear in mind 2022 * that in both source and destination we may be dealing 2023 * with a truncated value! 2024 */ 2025 switch (cmsg->cmsg_level) { 2026 case SOL_SOCKET: 2027 switch (cmsg->cmsg_type) { 2028 case SCM_RIGHTS: 2029 { 2030 int *fd = (int *)data; 2031 int *target_fd = (int *)target_data; 2032 int i, numfds = tgt_len / sizeof(int); 2033 2034 for (i = 0; i < numfds; i++) { 2035 __put_user(fd[i], target_fd + i); 2036 } 2037 break; 2038 } 2039 case SO_TIMESTAMP: 2040 { 2041 struct timeval *tv = (struct timeval *)data; 2042 struct target_timeval *target_tv = 2043 (struct target_timeval *)target_data; 2044 2045 if (len != sizeof(struct timeval) || 2046 tgt_len != sizeof(struct target_timeval)) { 2047 goto unimplemented; 2048 } 2049 2050 /* copy struct timeval to target */ 2051 __put_user(tv->tv_sec, &target_tv->tv_sec); 2052 __put_user(tv->tv_usec, &target_tv->tv_usec); 2053 break; 2054 } 2055 case SCM_CREDENTIALS: 2056 { 2057 struct ucred *cred = (struct ucred *)data; 2058 struct target_ucred *target_cred = 2059 (struct target_ucred *)target_data; 2060 2061 __put_user(cred->pid, &target_cred->pid); 2062 __put_user(cred->uid, &target_cred->uid); 2063 __put_user(cred->gid, &target_cred->gid); 2064 break; 2065 } 2066 default: 2067 goto unimplemented; 2068 } 2069 break; 2070 2071 case SOL_IP: 2072 switch (cmsg->cmsg_type) { 2073 case IP_TTL: 2074 { 2075 uint32_t *v = (uint32_t *)data; 2076 uint32_t *t_int = (uint32_t *)target_data; 2077 2078 if (len != sizeof(uint32_t) || 2079 tgt_len != sizeof(uint32_t)) { 2080 goto unimplemented; 2081 } 2082 __put_user(*v, t_int); 2083 break; 2084 } 2085 case IP_RECVERR: 2086 { 2087 struct errhdr_t { 2088 struct sock_extended_err ee; 2089 struct sockaddr_in offender; 2090 }; 2091 struct errhdr_t *errh = (struct errhdr_t *)data; 2092 struct errhdr_t *target_errh = 2093 (struct errhdr_t *)target_data; 2094 2095 if (len != sizeof(struct errhdr_t) || 2096 tgt_len != sizeof(struct errhdr_t)) { 2097 goto unimplemented; 2098 } 2099 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno); 2100 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin); 2101 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type); 2102 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code); 2103 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad); 2104 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info); 2105 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data); 2106 host_to_target_sockaddr((unsigned long) &target_errh->offender, 2107 (void *) &errh->offender, sizeof(errh->offender)); 2108 break; 2109 } 2110 default: 2111 goto unimplemented; 2112 } 2113 break; 2114 2115 case SOL_IPV6: 2116 switch (cmsg->cmsg_type) { 2117 case IPV6_HOPLIMIT: 2118 { 2119 uint32_t *v = (uint32_t *)data; 2120 uint32_t *t_int = (uint32_t *)target_data; 2121 2122 if (len != sizeof(uint32_t) || 2123 tgt_len != sizeof(uint32_t)) { 2124 goto unimplemented; 2125 } 2126 __put_user(*v, t_int); 2127 break; 2128 } 2129 case IPV6_RECVERR: 2130 { 2131 struct errhdr6_t { 2132 struct sock_extended_err ee; 2133 struct sockaddr_in6 offender; 2134 }; 2135 struct errhdr6_t *errh = (struct errhdr6_t *)data; 2136 struct errhdr6_t *target_errh = 2137 (struct errhdr6_t *)target_data; 2138 2139 if (len != sizeof(struct errhdr6_t) || 2140 tgt_len != sizeof(struct errhdr6_t)) { 2141 goto unimplemented; 2142 } 2143 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno); 2144 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin); 2145 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type); 2146 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code); 2147 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad); 2148 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info); 2149 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data); 2150 host_to_target_sockaddr((unsigned long) &target_errh->offender, 2151 (void *) &errh->offender, sizeof(errh->offender)); 2152 break; 2153 } 2154 default: 2155 goto unimplemented; 2156 } 2157 break; 2158 2159 default: 2160 unimplemented: 2161 qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n", 2162 cmsg->cmsg_level, cmsg->cmsg_type); 2163 memcpy(target_data, data, MIN(len, tgt_len)); 2164 if (tgt_len > len) { 2165 memset(target_data + len, 0, tgt_len - len); 2166 } 2167 } 2168 2169 target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len)); 2170 tgt_space = TARGET_CMSG_SPACE(tgt_len); 2171 if (msg_controllen < tgt_space) { 2172 tgt_space = msg_controllen; 2173 } 2174 msg_controllen -= tgt_space; 2175 space += tgt_space; 2176 cmsg = CMSG_NXTHDR(msgh, cmsg); 2177 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg, 2178 target_cmsg_start); 2179 } 2180 unlock_user(target_cmsg, target_cmsg_addr, space); 2181 the_end: 2182 target_msgh->msg_controllen = tswapal(space); 2183 return 0; 2184 } 2185 2186 /* do_setsockopt() Must return target values and target errnos. */ 2187 static abi_long do_setsockopt(int sockfd, int level, int optname, 2188 abi_ulong optval_addr, socklen_t optlen) 2189 { 2190 abi_long ret; 2191 int val; 2192 struct ip_mreqn *ip_mreq; 2193 struct ip_mreq_source *ip_mreq_source; 2194 2195 switch(level) { 2196 case SOL_TCP: 2197 case SOL_UDP: 2198 /* TCP and UDP options all take an 'int' value. */ 2199 if (optlen < sizeof(uint32_t)) 2200 return -TARGET_EINVAL; 2201 2202 if (get_user_u32(val, optval_addr)) 2203 return -TARGET_EFAULT; 2204 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val))); 2205 break; 2206 case SOL_IP: 2207 switch(optname) { 2208 case IP_TOS: 2209 case IP_TTL: 2210 case IP_HDRINCL: 2211 case IP_ROUTER_ALERT: 2212 case IP_RECVOPTS: 2213 case IP_RETOPTS: 2214 case IP_PKTINFO: 2215 case IP_MTU_DISCOVER: 2216 case IP_RECVERR: 2217 case IP_RECVTTL: 2218 case IP_RECVTOS: 2219 #ifdef IP_FREEBIND 2220 case IP_FREEBIND: 2221 #endif 2222 case IP_MULTICAST_TTL: 2223 case IP_MULTICAST_LOOP: 2224 val = 0; 2225 if (optlen >= sizeof(uint32_t)) { 2226 if (get_user_u32(val, optval_addr)) 2227 return -TARGET_EFAULT; 2228 } else if (optlen >= 1) { 2229 if (get_user_u8(val, optval_addr)) 2230 return -TARGET_EFAULT; 2231 } 2232 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val))); 2233 break; 2234 case IP_ADD_MEMBERSHIP: 2235 case IP_DROP_MEMBERSHIP: 2236 if (optlen < sizeof (struct target_ip_mreq) || 2237 optlen > sizeof (struct target_ip_mreqn)) 2238 return -TARGET_EINVAL; 2239 2240 ip_mreq = (struct ip_mreqn *) alloca(optlen); 2241 target_to_host_ip_mreq(ip_mreq, optval_addr, optlen); 2242 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen)); 2243 break; 2244 2245 case IP_BLOCK_SOURCE: 2246 case IP_UNBLOCK_SOURCE: 2247 case IP_ADD_SOURCE_MEMBERSHIP: 2248 case IP_DROP_SOURCE_MEMBERSHIP: 2249 if (optlen != sizeof (struct target_ip_mreq_source)) 2250 return -TARGET_EINVAL; 2251 2252 ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1); 2253 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen)); 2254 unlock_user (ip_mreq_source, optval_addr, 0); 2255 break; 2256 2257 default: 2258 goto unimplemented; 2259 } 2260 break; 2261 case SOL_IPV6: 2262 switch (optname) { 2263 case IPV6_MTU_DISCOVER: 2264 case IPV6_MTU: 2265 case IPV6_V6ONLY: 2266 case IPV6_RECVPKTINFO: 2267 case IPV6_UNICAST_HOPS: 2268 case IPV6_MULTICAST_HOPS: 2269 case IPV6_MULTICAST_LOOP: 2270 case IPV6_RECVERR: 2271 case IPV6_RECVHOPLIMIT: 2272 case IPV6_2292HOPLIMIT: 2273 case IPV6_CHECKSUM: 2274 case IPV6_ADDRFORM: 2275 case IPV6_2292PKTINFO: 2276 case IPV6_RECVTCLASS: 2277 case IPV6_RECVRTHDR: 2278 case IPV6_2292RTHDR: 2279 case IPV6_RECVHOPOPTS: 2280 case IPV6_2292HOPOPTS: 2281 case IPV6_RECVDSTOPTS: 2282 case IPV6_2292DSTOPTS: 2283 case IPV6_TCLASS: 2284 case IPV6_ADDR_PREFERENCES: 2285 #ifdef IPV6_RECVPATHMTU 2286 case IPV6_RECVPATHMTU: 2287 #endif 2288 #ifdef IPV6_TRANSPARENT 2289 case IPV6_TRANSPARENT: 2290 #endif 2291 #ifdef IPV6_FREEBIND 2292 case IPV6_FREEBIND: 2293 #endif 2294 #ifdef IPV6_RECVORIGDSTADDR 2295 case IPV6_RECVORIGDSTADDR: 2296 #endif 2297 val = 0; 2298 if (optlen < sizeof(uint32_t)) { 2299 return -TARGET_EINVAL; 2300 } 2301 if (get_user_u32(val, optval_addr)) { 2302 return -TARGET_EFAULT; 2303 } 2304 ret = get_errno(setsockopt(sockfd, level, optname, 2305 &val, sizeof(val))); 2306 break; 2307 case IPV6_PKTINFO: 2308 { 2309 struct in6_pktinfo pki; 2310 2311 if (optlen < sizeof(pki)) { 2312 return -TARGET_EINVAL; 2313 } 2314 2315 if (copy_from_user(&pki, optval_addr, sizeof(pki))) { 2316 return -TARGET_EFAULT; 2317 } 2318 2319 pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex); 2320 2321 ret = get_errno(setsockopt(sockfd, level, optname, 2322 &pki, sizeof(pki))); 2323 break; 2324 } 2325 case IPV6_ADD_MEMBERSHIP: 2326 case IPV6_DROP_MEMBERSHIP: 2327 { 2328 struct ipv6_mreq ipv6mreq; 2329 2330 if (optlen < sizeof(ipv6mreq)) { 2331 return -TARGET_EINVAL; 2332 } 2333 2334 if (copy_from_user(&ipv6mreq, optval_addr, sizeof(ipv6mreq))) { 2335 return -TARGET_EFAULT; 2336 } 2337 2338 ipv6mreq.ipv6mr_interface = tswap32(ipv6mreq.ipv6mr_interface); 2339 2340 ret = get_errno(setsockopt(sockfd, level, optname, 2341 &ipv6mreq, sizeof(ipv6mreq))); 2342 break; 2343 } 2344 default: 2345 goto unimplemented; 2346 } 2347 break; 2348 case SOL_ICMPV6: 2349 switch (optname) { 2350 case ICMPV6_FILTER: 2351 { 2352 struct icmp6_filter icmp6f; 2353 2354 if (optlen > sizeof(icmp6f)) { 2355 optlen = sizeof(icmp6f); 2356 } 2357 2358 if (copy_from_user(&icmp6f, optval_addr, optlen)) { 2359 return -TARGET_EFAULT; 2360 } 2361 2362 for (val = 0; val < 8; val++) { 2363 icmp6f.data[val] = tswap32(icmp6f.data[val]); 2364 } 2365 2366 ret = get_errno(setsockopt(sockfd, level, optname, 2367 &icmp6f, optlen)); 2368 break; 2369 } 2370 default: 2371 goto unimplemented; 2372 } 2373 break; 2374 case SOL_RAW: 2375 switch (optname) { 2376 case ICMP_FILTER: 2377 case IPV6_CHECKSUM: 2378 /* those take an u32 value */ 2379 if (optlen < sizeof(uint32_t)) { 2380 return -TARGET_EINVAL; 2381 } 2382 2383 if (get_user_u32(val, optval_addr)) { 2384 return -TARGET_EFAULT; 2385 } 2386 ret = get_errno(setsockopt(sockfd, level, optname, 2387 &val, sizeof(val))); 2388 break; 2389 2390 default: 2391 goto unimplemented; 2392 } 2393 break; 2394 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE) 2395 case SOL_ALG: 2396 switch (optname) { 2397 case ALG_SET_KEY: 2398 { 2399 char *alg_key = g_malloc(optlen); 2400 2401 if (!alg_key) { 2402 return -TARGET_ENOMEM; 2403 } 2404 if (copy_from_user(alg_key, optval_addr, optlen)) { 2405 g_free(alg_key); 2406 return -TARGET_EFAULT; 2407 } 2408 ret = get_errno(setsockopt(sockfd, level, optname, 2409 alg_key, optlen)); 2410 g_free(alg_key); 2411 break; 2412 } 2413 case ALG_SET_AEAD_AUTHSIZE: 2414 { 2415 ret = get_errno(setsockopt(sockfd, level, optname, 2416 NULL, optlen)); 2417 break; 2418 } 2419 default: 2420 goto unimplemented; 2421 } 2422 break; 2423 #endif 2424 case TARGET_SOL_SOCKET: 2425 switch (optname) { 2426 case TARGET_SO_RCVTIMEO: 2427 { 2428 struct timeval tv; 2429 2430 optname = SO_RCVTIMEO; 2431 2432 set_timeout: 2433 if (optlen != sizeof(struct target_timeval)) { 2434 return -TARGET_EINVAL; 2435 } 2436 2437 if (copy_from_user_timeval(&tv, optval_addr)) { 2438 return -TARGET_EFAULT; 2439 } 2440 2441 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, 2442 &tv, sizeof(tv))); 2443 return ret; 2444 } 2445 case TARGET_SO_SNDTIMEO: 2446 optname = SO_SNDTIMEO; 2447 goto set_timeout; 2448 case TARGET_SO_ATTACH_FILTER: 2449 { 2450 struct target_sock_fprog *tfprog; 2451 struct target_sock_filter *tfilter; 2452 struct sock_fprog fprog; 2453 struct sock_filter *filter; 2454 int i; 2455 2456 if (optlen != sizeof(*tfprog)) { 2457 return -TARGET_EINVAL; 2458 } 2459 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) { 2460 return -TARGET_EFAULT; 2461 } 2462 if (!lock_user_struct(VERIFY_READ, tfilter, 2463 tswapal(tfprog->filter), 0)) { 2464 unlock_user_struct(tfprog, optval_addr, 1); 2465 return -TARGET_EFAULT; 2466 } 2467 2468 fprog.len = tswap16(tfprog->len); 2469 filter = g_try_new(struct sock_filter, fprog.len); 2470 if (filter == NULL) { 2471 unlock_user_struct(tfilter, tfprog->filter, 1); 2472 unlock_user_struct(tfprog, optval_addr, 1); 2473 return -TARGET_ENOMEM; 2474 } 2475 for (i = 0; i < fprog.len; i++) { 2476 filter[i].code = tswap16(tfilter[i].code); 2477 filter[i].jt = tfilter[i].jt; 2478 filter[i].jf = tfilter[i].jf; 2479 filter[i].k = tswap32(tfilter[i].k); 2480 } 2481 fprog.filter = filter; 2482 2483 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, 2484 SO_ATTACH_FILTER, &fprog, sizeof(fprog))); 2485 g_free(filter); 2486 2487 unlock_user_struct(tfilter, tfprog->filter, 1); 2488 unlock_user_struct(tfprog, optval_addr, 1); 2489 return ret; 2490 } 2491 case TARGET_SO_BINDTODEVICE: 2492 { 2493 char *dev_ifname, *addr_ifname; 2494 2495 if (optlen > IFNAMSIZ - 1) { 2496 optlen = IFNAMSIZ - 1; 2497 } 2498 dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1); 2499 if (!dev_ifname) { 2500 return -TARGET_EFAULT; 2501 } 2502 optname = SO_BINDTODEVICE; 2503 addr_ifname = alloca(IFNAMSIZ); 2504 memcpy(addr_ifname, dev_ifname, optlen); 2505 addr_ifname[optlen] = 0; 2506 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, 2507 addr_ifname, optlen)); 2508 unlock_user (dev_ifname, optval_addr, 0); 2509 return ret; 2510 } 2511 case TARGET_SO_LINGER: 2512 { 2513 struct linger lg; 2514 struct target_linger *tlg; 2515 2516 if (optlen != sizeof(struct target_linger)) { 2517 return -TARGET_EINVAL; 2518 } 2519 if (!lock_user_struct(VERIFY_READ, tlg, optval_addr, 1)) { 2520 return -TARGET_EFAULT; 2521 } 2522 __get_user(lg.l_onoff, &tlg->l_onoff); 2523 __get_user(lg.l_linger, &tlg->l_linger); 2524 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, SO_LINGER, 2525 &lg, sizeof(lg))); 2526 unlock_user_struct(tlg, optval_addr, 0); 2527 return ret; 2528 } 2529 /* Options with 'int' argument. */ 2530 case TARGET_SO_DEBUG: 2531 optname = SO_DEBUG; 2532 break; 2533 case TARGET_SO_REUSEADDR: 2534 optname = SO_REUSEADDR; 2535 break; 2536 #ifdef SO_REUSEPORT 2537 case TARGET_SO_REUSEPORT: 2538 optname = SO_REUSEPORT; 2539 break; 2540 #endif 2541 case TARGET_SO_TYPE: 2542 optname = SO_TYPE; 2543 break; 2544 case TARGET_SO_ERROR: 2545 optname = SO_ERROR; 2546 break; 2547 case TARGET_SO_DONTROUTE: 2548 optname = SO_DONTROUTE; 2549 break; 2550 case TARGET_SO_BROADCAST: 2551 optname = SO_BROADCAST; 2552 break; 2553 case TARGET_SO_SNDBUF: 2554 optname = SO_SNDBUF; 2555 break; 2556 case TARGET_SO_SNDBUFFORCE: 2557 optname = SO_SNDBUFFORCE; 2558 break; 2559 case TARGET_SO_RCVBUF: 2560 optname = SO_RCVBUF; 2561 break; 2562 case TARGET_SO_RCVBUFFORCE: 2563 optname = SO_RCVBUFFORCE; 2564 break; 2565 case TARGET_SO_KEEPALIVE: 2566 optname = SO_KEEPALIVE; 2567 break; 2568 case TARGET_SO_OOBINLINE: 2569 optname = SO_OOBINLINE; 2570 break; 2571 case TARGET_SO_NO_CHECK: 2572 optname = SO_NO_CHECK; 2573 break; 2574 case TARGET_SO_PRIORITY: 2575 optname = SO_PRIORITY; 2576 break; 2577 #ifdef SO_BSDCOMPAT 2578 case TARGET_SO_BSDCOMPAT: 2579 optname = SO_BSDCOMPAT; 2580 break; 2581 #endif 2582 case TARGET_SO_PASSCRED: 2583 optname = SO_PASSCRED; 2584 break; 2585 case TARGET_SO_PASSSEC: 2586 optname = SO_PASSSEC; 2587 break; 2588 case TARGET_SO_TIMESTAMP: 2589 optname = SO_TIMESTAMP; 2590 break; 2591 case TARGET_SO_RCVLOWAT: 2592 optname = SO_RCVLOWAT; 2593 break; 2594 default: 2595 goto unimplemented; 2596 } 2597 if (optlen < sizeof(uint32_t)) 2598 return -TARGET_EINVAL; 2599 2600 if (get_user_u32(val, optval_addr)) 2601 return -TARGET_EFAULT; 2602 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val))); 2603 break; 2604 #ifdef SOL_NETLINK 2605 case SOL_NETLINK: 2606 switch (optname) { 2607 case NETLINK_PKTINFO: 2608 case NETLINK_ADD_MEMBERSHIP: 2609 case NETLINK_DROP_MEMBERSHIP: 2610 case NETLINK_BROADCAST_ERROR: 2611 case NETLINK_NO_ENOBUFS: 2612 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) 2613 case NETLINK_LISTEN_ALL_NSID: 2614 case NETLINK_CAP_ACK: 2615 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */ 2616 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) 2617 case NETLINK_EXT_ACK: 2618 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */ 2619 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0) 2620 case NETLINK_GET_STRICT_CHK: 2621 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */ 2622 break; 2623 default: 2624 goto unimplemented; 2625 } 2626 val = 0; 2627 if (optlen < sizeof(uint32_t)) { 2628 return -TARGET_EINVAL; 2629 } 2630 if (get_user_u32(val, optval_addr)) { 2631 return -TARGET_EFAULT; 2632 } 2633 ret = get_errno(setsockopt(sockfd, SOL_NETLINK, optname, &val, 2634 sizeof(val))); 2635 break; 2636 #endif /* SOL_NETLINK */ 2637 default: 2638 unimplemented: 2639 qemu_log_mask(LOG_UNIMP, "Unsupported setsockopt level=%d optname=%d\n", 2640 level, optname); 2641 ret = -TARGET_ENOPROTOOPT; 2642 } 2643 return ret; 2644 } 2645 2646 /* do_getsockopt() Must return target values and target errnos. */ 2647 static abi_long do_getsockopt(int sockfd, int level, int optname, 2648 abi_ulong optval_addr, abi_ulong optlen) 2649 { 2650 abi_long ret; 2651 int len, val; 2652 socklen_t lv; 2653 2654 switch(level) { 2655 case TARGET_SOL_SOCKET: 2656 level = SOL_SOCKET; 2657 switch (optname) { 2658 /* These don't just return a single integer */ 2659 case TARGET_SO_PEERNAME: 2660 goto unimplemented; 2661 case TARGET_SO_RCVTIMEO: { 2662 struct timeval tv; 2663 socklen_t tvlen; 2664 2665 optname = SO_RCVTIMEO; 2666 2667 get_timeout: 2668 if (get_user_u32(len, optlen)) { 2669 return -TARGET_EFAULT; 2670 } 2671 if (len < 0) { 2672 return -TARGET_EINVAL; 2673 } 2674 2675 tvlen = sizeof(tv); 2676 ret = get_errno(getsockopt(sockfd, level, optname, 2677 &tv, &tvlen)); 2678 if (ret < 0) { 2679 return ret; 2680 } 2681 if (len > sizeof(struct target_timeval)) { 2682 len = sizeof(struct target_timeval); 2683 } 2684 if (copy_to_user_timeval(optval_addr, &tv)) { 2685 return -TARGET_EFAULT; 2686 } 2687 if (put_user_u32(len, optlen)) { 2688 return -TARGET_EFAULT; 2689 } 2690 break; 2691 } 2692 case TARGET_SO_SNDTIMEO: 2693 optname = SO_SNDTIMEO; 2694 goto get_timeout; 2695 case TARGET_SO_PEERCRED: { 2696 struct ucred cr; 2697 socklen_t crlen; 2698 struct target_ucred *tcr; 2699 2700 if (get_user_u32(len, optlen)) { 2701 return -TARGET_EFAULT; 2702 } 2703 if (len < 0) { 2704 return -TARGET_EINVAL; 2705 } 2706 2707 crlen = sizeof(cr); 2708 ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED, 2709 &cr, &crlen)); 2710 if (ret < 0) { 2711 return ret; 2712 } 2713 if (len > crlen) { 2714 len = crlen; 2715 } 2716 if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) { 2717 return -TARGET_EFAULT; 2718 } 2719 __put_user(cr.pid, &tcr->pid); 2720 __put_user(cr.uid, &tcr->uid); 2721 __put_user(cr.gid, &tcr->gid); 2722 unlock_user_struct(tcr, optval_addr, 1); 2723 if (put_user_u32(len, optlen)) { 2724 return -TARGET_EFAULT; 2725 } 2726 break; 2727 } 2728 case TARGET_SO_PEERSEC: { 2729 char *name; 2730 2731 if (get_user_u32(len, optlen)) { 2732 return -TARGET_EFAULT; 2733 } 2734 if (len < 0) { 2735 return -TARGET_EINVAL; 2736 } 2737 name = lock_user(VERIFY_WRITE, optval_addr, len, 0); 2738 if (!name) { 2739 return -TARGET_EFAULT; 2740 } 2741 lv = len; 2742 ret = get_errno(getsockopt(sockfd, level, SO_PEERSEC, 2743 name, &lv)); 2744 if (put_user_u32(lv, optlen)) { 2745 ret = -TARGET_EFAULT; 2746 } 2747 unlock_user(name, optval_addr, lv); 2748 break; 2749 } 2750 case TARGET_SO_LINGER: 2751 { 2752 struct linger lg; 2753 socklen_t lglen; 2754 struct target_linger *tlg; 2755 2756 if (get_user_u32(len, optlen)) { 2757 return -TARGET_EFAULT; 2758 } 2759 if (len < 0) { 2760 return -TARGET_EINVAL; 2761 } 2762 2763 lglen = sizeof(lg); 2764 ret = get_errno(getsockopt(sockfd, level, SO_LINGER, 2765 &lg, &lglen)); 2766 if (ret < 0) { 2767 return ret; 2768 } 2769 if (len > lglen) { 2770 len = lglen; 2771 } 2772 if (!lock_user_struct(VERIFY_WRITE, tlg, optval_addr, 0)) { 2773 return -TARGET_EFAULT; 2774 } 2775 __put_user(lg.l_onoff, &tlg->l_onoff); 2776 __put_user(lg.l_linger, &tlg->l_linger); 2777 unlock_user_struct(tlg, optval_addr, 1); 2778 if (put_user_u32(len, optlen)) { 2779 return -TARGET_EFAULT; 2780 } 2781 break; 2782 } 2783 /* Options with 'int' argument. */ 2784 case TARGET_SO_DEBUG: 2785 optname = SO_DEBUG; 2786 goto int_case; 2787 case TARGET_SO_REUSEADDR: 2788 optname = SO_REUSEADDR; 2789 goto int_case; 2790 #ifdef SO_REUSEPORT 2791 case TARGET_SO_REUSEPORT: 2792 optname = SO_REUSEPORT; 2793 goto int_case; 2794 #endif 2795 case TARGET_SO_TYPE: 2796 optname = SO_TYPE; 2797 goto int_case; 2798 case TARGET_SO_ERROR: 2799 optname = SO_ERROR; 2800 goto int_case; 2801 case TARGET_SO_DONTROUTE: 2802 optname = SO_DONTROUTE; 2803 goto int_case; 2804 case TARGET_SO_BROADCAST: 2805 optname = SO_BROADCAST; 2806 goto int_case; 2807 case TARGET_SO_SNDBUF: 2808 optname = SO_SNDBUF; 2809 goto int_case; 2810 case TARGET_SO_RCVBUF: 2811 optname = SO_RCVBUF; 2812 goto int_case; 2813 case TARGET_SO_KEEPALIVE: 2814 optname = SO_KEEPALIVE; 2815 goto int_case; 2816 case TARGET_SO_OOBINLINE: 2817 optname = SO_OOBINLINE; 2818 goto int_case; 2819 case TARGET_SO_NO_CHECK: 2820 optname = SO_NO_CHECK; 2821 goto int_case; 2822 case TARGET_SO_PRIORITY: 2823 optname = SO_PRIORITY; 2824 goto int_case; 2825 #ifdef SO_BSDCOMPAT 2826 case TARGET_SO_BSDCOMPAT: 2827 optname = SO_BSDCOMPAT; 2828 goto int_case; 2829 #endif 2830 case TARGET_SO_PASSCRED: 2831 optname = SO_PASSCRED; 2832 goto int_case; 2833 case TARGET_SO_TIMESTAMP: 2834 optname = SO_TIMESTAMP; 2835 goto int_case; 2836 case TARGET_SO_RCVLOWAT: 2837 optname = SO_RCVLOWAT; 2838 goto int_case; 2839 case TARGET_SO_ACCEPTCONN: 2840 optname = SO_ACCEPTCONN; 2841 goto int_case; 2842 case TARGET_SO_PROTOCOL: 2843 optname = SO_PROTOCOL; 2844 goto int_case; 2845 case TARGET_SO_DOMAIN: 2846 optname = SO_DOMAIN; 2847 goto int_case; 2848 default: 2849 goto int_case; 2850 } 2851 break; 2852 case SOL_TCP: 2853 case SOL_UDP: 2854 /* TCP and UDP options all take an 'int' value. */ 2855 int_case: 2856 if (get_user_u32(len, optlen)) 2857 return -TARGET_EFAULT; 2858 if (len < 0) 2859 return -TARGET_EINVAL; 2860 lv = sizeof(lv); 2861 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 2862 if (ret < 0) 2863 return ret; 2864 if (optname == SO_TYPE) { 2865 val = host_to_target_sock_type(val); 2866 } 2867 if (len > lv) 2868 len = lv; 2869 if (len == 4) { 2870 if (put_user_u32(val, optval_addr)) 2871 return -TARGET_EFAULT; 2872 } else { 2873 if (put_user_u8(val, optval_addr)) 2874 return -TARGET_EFAULT; 2875 } 2876 if (put_user_u32(len, optlen)) 2877 return -TARGET_EFAULT; 2878 break; 2879 case SOL_IP: 2880 switch(optname) { 2881 case IP_TOS: 2882 case IP_TTL: 2883 case IP_HDRINCL: 2884 case IP_ROUTER_ALERT: 2885 case IP_RECVOPTS: 2886 case IP_RETOPTS: 2887 case IP_PKTINFO: 2888 case IP_MTU_DISCOVER: 2889 case IP_RECVERR: 2890 case IP_RECVTOS: 2891 #ifdef IP_FREEBIND 2892 case IP_FREEBIND: 2893 #endif 2894 case IP_MULTICAST_TTL: 2895 case IP_MULTICAST_LOOP: 2896 if (get_user_u32(len, optlen)) 2897 return -TARGET_EFAULT; 2898 if (len < 0) 2899 return -TARGET_EINVAL; 2900 lv = sizeof(lv); 2901 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 2902 if (ret < 0) 2903 return ret; 2904 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) { 2905 len = 1; 2906 if (put_user_u32(len, optlen) 2907 || put_user_u8(val, optval_addr)) 2908 return -TARGET_EFAULT; 2909 } else { 2910 if (len > sizeof(int)) 2911 len = sizeof(int); 2912 if (put_user_u32(len, optlen) 2913 || put_user_u32(val, optval_addr)) 2914 return -TARGET_EFAULT; 2915 } 2916 break; 2917 default: 2918 ret = -TARGET_ENOPROTOOPT; 2919 break; 2920 } 2921 break; 2922 case SOL_IPV6: 2923 switch (optname) { 2924 case IPV6_MTU_DISCOVER: 2925 case IPV6_MTU: 2926 case IPV6_V6ONLY: 2927 case IPV6_RECVPKTINFO: 2928 case IPV6_UNICAST_HOPS: 2929 case IPV6_MULTICAST_HOPS: 2930 case IPV6_MULTICAST_LOOP: 2931 case IPV6_RECVERR: 2932 case IPV6_RECVHOPLIMIT: 2933 case IPV6_2292HOPLIMIT: 2934 case IPV6_CHECKSUM: 2935 case IPV6_ADDRFORM: 2936 case IPV6_2292PKTINFO: 2937 case IPV6_RECVTCLASS: 2938 case IPV6_RECVRTHDR: 2939 case IPV6_2292RTHDR: 2940 case IPV6_RECVHOPOPTS: 2941 case IPV6_2292HOPOPTS: 2942 case IPV6_RECVDSTOPTS: 2943 case IPV6_2292DSTOPTS: 2944 case IPV6_TCLASS: 2945 case IPV6_ADDR_PREFERENCES: 2946 #ifdef IPV6_RECVPATHMTU 2947 case IPV6_RECVPATHMTU: 2948 #endif 2949 #ifdef IPV6_TRANSPARENT 2950 case IPV6_TRANSPARENT: 2951 #endif 2952 #ifdef IPV6_FREEBIND 2953 case IPV6_FREEBIND: 2954 #endif 2955 #ifdef IPV6_RECVORIGDSTADDR 2956 case IPV6_RECVORIGDSTADDR: 2957 #endif 2958 if (get_user_u32(len, optlen)) 2959 return -TARGET_EFAULT; 2960 if (len < 0) 2961 return -TARGET_EINVAL; 2962 lv = sizeof(lv); 2963 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 2964 if (ret < 0) 2965 return ret; 2966 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) { 2967 len = 1; 2968 if (put_user_u32(len, optlen) 2969 || put_user_u8(val, optval_addr)) 2970 return -TARGET_EFAULT; 2971 } else { 2972 if (len > sizeof(int)) 2973 len = sizeof(int); 2974 if (put_user_u32(len, optlen) 2975 || put_user_u32(val, optval_addr)) 2976 return -TARGET_EFAULT; 2977 } 2978 break; 2979 default: 2980 ret = -TARGET_ENOPROTOOPT; 2981 break; 2982 } 2983 break; 2984 #ifdef SOL_NETLINK 2985 case SOL_NETLINK: 2986 switch (optname) { 2987 case NETLINK_PKTINFO: 2988 case NETLINK_BROADCAST_ERROR: 2989 case NETLINK_NO_ENOBUFS: 2990 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) 2991 case NETLINK_LISTEN_ALL_NSID: 2992 case NETLINK_CAP_ACK: 2993 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */ 2994 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) 2995 case NETLINK_EXT_ACK: 2996 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */ 2997 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0) 2998 case NETLINK_GET_STRICT_CHK: 2999 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */ 3000 if (get_user_u32(len, optlen)) { 3001 return -TARGET_EFAULT; 3002 } 3003 if (len != sizeof(val)) { 3004 return -TARGET_EINVAL; 3005 } 3006 lv = len; 3007 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 3008 if (ret < 0) { 3009 return ret; 3010 } 3011 if (put_user_u32(lv, optlen) 3012 || put_user_u32(val, optval_addr)) { 3013 return -TARGET_EFAULT; 3014 } 3015 break; 3016 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) 3017 case NETLINK_LIST_MEMBERSHIPS: 3018 { 3019 uint32_t *results; 3020 int i; 3021 if (get_user_u32(len, optlen)) { 3022 return -TARGET_EFAULT; 3023 } 3024 if (len < 0) { 3025 return -TARGET_EINVAL; 3026 } 3027 results = lock_user(VERIFY_WRITE, optval_addr, len, 1); 3028 if (!results && len > 0) { 3029 return -TARGET_EFAULT; 3030 } 3031 lv = len; 3032 ret = get_errno(getsockopt(sockfd, level, optname, results, &lv)); 3033 if (ret < 0) { 3034 unlock_user(results, optval_addr, 0); 3035 return ret; 3036 } 3037 /* swap host endianess to target endianess. */ 3038 for (i = 0; i < (len / sizeof(uint32_t)); i++) { 3039 results[i] = tswap32(results[i]); 3040 } 3041 if (put_user_u32(lv, optlen)) { 3042 return -TARGET_EFAULT; 3043 } 3044 unlock_user(results, optval_addr, 0); 3045 break; 3046 } 3047 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */ 3048 default: 3049 goto unimplemented; 3050 } 3051 break; 3052 #endif /* SOL_NETLINK */ 3053 default: 3054 unimplemented: 3055 qemu_log_mask(LOG_UNIMP, 3056 "getsockopt level=%d optname=%d not yet supported\n", 3057 level, optname); 3058 ret = -TARGET_EOPNOTSUPP; 3059 break; 3060 } 3061 return ret; 3062 } 3063 3064 /* Convert target low/high pair representing file offset into the host 3065 * low/high pair. This function doesn't handle offsets bigger than 64 bits 3066 * as the kernel doesn't handle them either. 3067 */ 3068 static void target_to_host_low_high(abi_ulong tlow, 3069 abi_ulong thigh, 3070 unsigned long *hlow, 3071 unsigned long *hhigh) 3072 { 3073 uint64_t off = tlow | 3074 ((unsigned long long)thigh << TARGET_LONG_BITS / 2) << 3075 TARGET_LONG_BITS / 2; 3076 3077 *hlow = off; 3078 *hhigh = (off >> HOST_LONG_BITS / 2) >> HOST_LONG_BITS / 2; 3079 } 3080 3081 static struct iovec *lock_iovec(int type, abi_ulong target_addr, 3082 abi_ulong count, int copy) 3083 { 3084 struct target_iovec *target_vec; 3085 struct iovec *vec; 3086 abi_ulong total_len, max_len; 3087 int i; 3088 int err = 0; 3089 bool bad_address = false; 3090 3091 if (count == 0) { 3092 errno = 0; 3093 return NULL; 3094 } 3095 if (count > IOV_MAX) { 3096 errno = EINVAL; 3097 return NULL; 3098 } 3099 3100 vec = g_try_new0(struct iovec, count); 3101 if (vec == NULL) { 3102 errno = ENOMEM; 3103 return NULL; 3104 } 3105 3106 target_vec = lock_user(VERIFY_READ, target_addr, 3107 count * sizeof(struct target_iovec), 1); 3108 if (target_vec == NULL) { 3109 err = EFAULT; 3110 goto fail2; 3111 } 3112 3113 /* ??? If host page size > target page size, this will result in a 3114 value larger than what we can actually support. */ 3115 max_len = 0x7fffffff & TARGET_PAGE_MASK; 3116 total_len = 0; 3117 3118 for (i = 0; i < count; i++) { 3119 abi_ulong base = tswapal(target_vec[i].iov_base); 3120 abi_long len = tswapal(target_vec[i].iov_len); 3121 3122 if (len < 0) { 3123 err = EINVAL; 3124 goto fail; 3125 } else if (len == 0) { 3126 /* Zero length pointer is ignored. */ 3127 vec[i].iov_base = 0; 3128 } else { 3129 vec[i].iov_base = lock_user(type, base, len, copy); 3130 /* If the first buffer pointer is bad, this is a fault. But 3131 * subsequent bad buffers will result in a partial write; this 3132 * is realized by filling the vector with null pointers and 3133 * zero lengths. */ 3134 if (!vec[i].iov_base) { 3135 if (i == 0) { 3136 err = EFAULT; 3137 goto fail; 3138 } else { 3139 bad_address = true; 3140 } 3141 } 3142 if (bad_address) { 3143 len = 0; 3144 } 3145 if (len > max_len - total_len) { 3146 len = max_len - total_len; 3147 } 3148 } 3149 vec[i].iov_len = len; 3150 total_len += len; 3151 } 3152 3153 unlock_user(target_vec, target_addr, 0); 3154 return vec; 3155 3156 fail: 3157 while (--i >= 0) { 3158 if (tswapal(target_vec[i].iov_len) > 0) { 3159 unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0); 3160 } 3161 } 3162 unlock_user(target_vec, target_addr, 0); 3163 fail2: 3164 g_free(vec); 3165 errno = err; 3166 return NULL; 3167 } 3168 3169 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr, 3170 abi_ulong count, int copy) 3171 { 3172 struct target_iovec *target_vec; 3173 int i; 3174 3175 target_vec = lock_user(VERIFY_READ, target_addr, 3176 count * sizeof(struct target_iovec), 1); 3177 if (target_vec) { 3178 for (i = 0; i < count; i++) { 3179 abi_ulong base = tswapal(target_vec[i].iov_base); 3180 abi_long len = tswapal(target_vec[i].iov_len); 3181 if (len < 0) { 3182 break; 3183 } 3184 unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0); 3185 } 3186 unlock_user(target_vec, target_addr, 0); 3187 } 3188 3189 g_free(vec); 3190 } 3191 3192 static inline int target_to_host_sock_type(int *type) 3193 { 3194 int host_type = 0; 3195 int target_type = *type; 3196 3197 switch (target_type & TARGET_SOCK_TYPE_MASK) { 3198 case TARGET_SOCK_DGRAM: 3199 host_type = SOCK_DGRAM; 3200 break; 3201 case TARGET_SOCK_STREAM: 3202 host_type = SOCK_STREAM; 3203 break; 3204 default: 3205 host_type = target_type & TARGET_SOCK_TYPE_MASK; 3206 break; 3207 } 3208 if (target_type & TARGET_SOCK_CLOEXEC) { 3209 #if defined(SOCK_CLOEXEC) 3210 host_type |= SOCK_CLOEXEC; 3211 #else 3212 return -TARGET_EINVAL; 3213 #endif 3214 } 3215 if (target_type & TARGET_SOCK_NONBLOCK) { 3216 #if defined(SOCK_NONBLOCK) 3217 host_type |= SOCK_NONBLOCK; 3218 #elif !defined(O_NONBLOCK) 3219 return -TARGET_EINVAL; 3220 #endif 3221 } 3222 *type = host_type; 3223 return 0; 3224 } 3225 3226 /* Try to emulate socket type flags after socket creation. */ 3227 static int sock_flags_fixup(int fd, int target_type) 3228 { 3229 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK) 3230 if (target_type & TARGET_SOCK_NONBLOCK) { 3231 int flags = fcntl(fd, F_GETFL); 3232 if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) { 3233 close(fd); 3234 return -TARGET_EINVAL; 3235 } 3236 } 3237 #endif 3238 return fd; 3239 } 3240 3241 /* do_socket() Must return target values and target errnos. */ 3242 static abi_long do_socket(int domain, int type, int protocol) 3243 { 3244 int target_type = type; 3245 int ret; 3246 3247 ret = target_to_host_sock_type(&type); 3248 if (ret) { 3249 return ret; 3250 } 3251 3252 if (domain == PF_NETLINK && !( 3253 #ifdef CONFIG_RTNETLINK 3254 protocol == NETLINK_ROUTE || 3255 #endif 3256 protocol == NETLINK_KOBJECT_UEVENT || 3257 protocol == NETLINK_AUDIT)) { 3258 return -TARGET_EPROTONOSUPPORT; 3259 } 3260 3261 if (domain == AF_PACKET || 3262 (domain == AF_INET && type == SOCK_PACKET)) { 3263 protocol = tswap16(protocol); 3264 } 3265 3266 ret = get_errno(socket(domain, type, protocol)); 3267 if (ret >= 0) { 3268 ret = sock_flags_fixup(ret, target_type); 3269 if (type == SOCK_PACKET) { 3270 /* Manage an obsolete case : 3271 * if socket type is SOCK_PACKET, bind by name 3272 */ 3273 fd_trans_register(ret, &target_packet_trans); 3274 } else if (domain == PF_NETLINK) { 3275 switch (protocol) { 3276 #ifdef CONFIG_RTNETLINK 3277 case NETLINK_ROUTE: 3278 fd_trans_register(ret, &target_netlink_route_trans); 3279 break; 3280 #endif 3281 case NETLINK_KOBJECT_UEVENT: 3282 /* nothing to do: messages are strings */ 3283 break; 3284 case NETLINK_AUDIT: 3285 fd_trans_register(ret, &target_netlink_audit_trans); 3286 break; 3287 default: 3288 g_assert_not_reached(); 3289 } 3290 } 3291 } 3292 return ret; 3293 } 3294 3295 /* do_bind() Must return target values and target errnos. */ 3296 static abi_long do_bind(int sockfd, abi_ulong target_addr, 3297 socklen_t addrlen) 3298 { 3299 void *addr; 3300 abi_long ret; 3301 3302 if ((int)addrlen < 0) { 3303 return -TARGET_EINVAL; 3304 } 3305 3306 addr = alloca(addrlen+1); 3307 3308 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen); 3309 if (ret) 3310 return ret; 3311 3312 return get_errno(bind(sockfd, addr, addrlen)); 3313 } 3314 3315 /* do_connect() Must return target values and target errnos. */ 3316 static abi_long do_connect(int sockfd, abi_ulong target_addr, 3317 socklen_t addrlen) 3318 { 3319 void *addr; 3320 abi_long ret; 3321 3322 if ((int)addrlen < 0) { 3323 return -TARGET_EINVAL; 3324 } 3325 3326 addr = alloca(addrlen+1); 3327 3328 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen); 3329 if (ret) 3330 return ret; 3331 3332 return get_errno(safe_connect(sockfd, addr, addrlen)); 3333 } 3334 3335 /* do_sendrecvmsg_locked() Must return target values and target errnos. */ 3336 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp, 3337 int flags, int send) 3338 { 3339 abi_long ret, len; 3340 struct msghdr msg; 3341 abi_ulong count; 3342 struct iovec *vec; 3343 abi_ulong target_vec; 3344 3345 if (msgp->msg_name) { 3346 msg.msg_namelen = tswap32(msgp->msg_namelen); 3347 msg.msg_name = alloca(msg.msg_namelen+1); 3348 ret = target_to_host_sockaddr(fd, msg.msg_name, 3349 tswapal(msgp->msg_name), 3350 msg.msg_namelen); 3351 if (ret == -TARGET_EFAULT) { 3352 /* For connected sockets msg_name and msg_namelen must 3353 * be ignored, so returning EFAULT immediately is wrong. 3354 * Instead, pass a bad msg_name to the host kernel, and 3355 * let it decide whether to return EFAULT or not. 3356 */ 3357 msg.msg_name = (void *)-1; 3358 } else if (ret) { 3359 goto out2; 3360 } 3361 } else { 3362 msg.msg_name = NULL; 3363 msg.msg_namelen = 0; 3364 } 3365 msg.msg_controllen = 2 * tswapal(msgp->msg_controllen); 3366 msg.msg_control = alloca(msg.msg_controllen); 3367 memset(msg.msg_control, 0, msg.msg_controllen); 3368 3369 msg.msg_flags = tswap32(msgp->msg_flags); 3370 3371 count = tswapal(msgp->msg_iovlen); 3372 target_vec = tswapal(msgp->msg_iov); 3373 3374 if (count > IOV_MAX) { 3375 /* sendrcvmsg returns a different errno for this condition than 3376 * readv/writev, so we must catch it here before lock_iovec() does. 3377 */ 3378 ret = -TARGET_EMSGSIZE; 3379 goto out2; 3380 } 3381 3382 vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE, 3383 target_vec, count, send); 3384 if (vec == NULL) { 3385 ret = -host_to_target_errno(errno); 3386 goto out2; 3387 } 3388 msg.msg_iovlen = count; 3389 msg.msg_iov = vec; 3390 3391 if (send) { 3392 if (fd_trans_target_to_host_data(fd)) { 3393 void *host_msg; 3394 3395 host_msg = g_malloc(msg.msg_iov->iov_len); 3396 memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len); 3397 ret = fd_trans_target_to_host_data(fd)(host_msg, 3398 msg.msg_iov->iov_len); 3399 if (ret >= 0) { 3400 msg.msg_iov->iov_base = host_msg; 3401 ret = get_errno(safe_sendmsg(fd, &msg, flags)); 3402 } 3403 g_free(host_msg); 3404 } else { 3405 ret = target_to_host_cmsg(&msg, msgp); 3406 if (ret == 0) { 3407 ret = get_errno(safe_sendmsg(fd, &msg, flags)); 3408 } 3409 } 3410 } else { 3411 ret = get_errno(safe_recvmsg(fd, &msg, flags)); 3412 if (!is_error(ret)) { 3413 len = ret; 3414 if (fd_trans_host_to_target_data(fd)) { 3415 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base, 3416 MIN(msg.msg_iov->iov_len, len)); 3417 } else { 3418 ret = host_to_target_cmsg(msgp, &msg); 3419 } 3420 if (!is_error(ret)) { 3421 msgp->msg_namelen = tswap32(msg.msg_namelen); 3422 msgp->msg_flags = tswap32(msg.msg_flags); 3423 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) { 3424 ret = host_to_target_sockaddr(tswapal(msgp->msg_name), 3425 msg.msg_name, msg.msg_namelen); 3426 if (ret) { 3427 goto out; 3428 } 3429 } 3430 3431 ret = len; 3432 } 3433 } 3434 } 3435 3436 out: 3437 unlock_iovec(vec, target_vec, count, !send); 3438 out2: 3439 return ret; 3440 } 3441 3442 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg, 3443 int flags, int send) 3444 { 3445 abi_long ret; 3446 struct target_msghdr *msgp; 3447 3448 if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE, 3449 msgp, 3450 target_msg, 3451 send ? 1 : 0)) { 3452 return -TARGET_EFAULT; 3453 } 3454 ret = do_sendrecvmsg_locked(fd, msgp, flags, send); 3455 unlock_user_struct(msgp, target_msg, send ? 0 : 1); 3456 return ret; 3457 } 3458 3459 /* We don't rely on the C library to have sendmmsg/recvmmsg support, 3460 * so it might not have this *mmsg-specific flag either. 3461 */ 3462 #ifndef MSG_WAITFORONE 3463 #define MSG_WAITFORONE 0x10000 3464 #endif 3465 3466 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec, 3467 unsigned int vlen, unsigned int flags, 3468 int send) 3469 { 3470 struct target_mmsghdr *mmsgp; 3471 abi_long ret = 0; 3472 int i; 3473 3474 if (vlen > UIO_MAXIOV) { 3475 vlen = UIO_MAXIOV; 3476 } 3477 3478 mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1); 3479 if (!mmsgp) { 3480 return -TARGET_EFAULT; 3481 } 3482 3483 for (i = 0; i < vlen; i++) { 3484 ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send); 3485 if (is_error(ret)) { 3486 break; 3487 } 3488 mmsgp[i].msg_len = tswap32(ret); 3489 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 3490 if (flags & MSG_WAITFORONE) { 3491 flags |= MSG_DONTWAIT; 3492 } 3493 } 3494 3495 unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i); 3496 3497 /* Return number of datagrams sent if we sent any at all; 3498 * otherwise return the error. 3499 */ 3500 if (i) { 3501 return i; 3502 } 3503 return ret; 3504 } 3505 3506 /* do_accept4() Must return target values and target errnos. */ 3507 static abi_long do_accept4(int fd, abi_ulong target_addr, 3508 abi_ulong target_addrlen_addr, int flags) 3509 { 3510 socklen_t addrlen, ret_addrlen; 3511 void *addr; 3512 abi_long ret; 3513 int host_flags; 3514 3515 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl); 3516 3517 if (target_addr == 0) { 3518 return get_errno(safe_accept4(fd, NULL, NULL, host_flags)); 3519 } 3520 3521 /* linux returns EFAULT if addrlen pointer is invalid */ 3522 if (get_user_u32(addrlen, target_addrlen_addr)) 3523 return -TARGET_EFAULT; 3524 3525 if ((int)addrlen < 0) { 3526 return -TARGET_EINVAL; 3527 } 3528 3529 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) { 3530 return -TARGET_EFAULT; 3531 } 3532 3533 addr = alloca(addrlen); 3534 3535 ret_addrlen = addrlen; 3536 ret = get_errno(safe_accept4(fd, addr, &ret_addrlen, host_flags)); 3537 if (!is_error(ret)) { 3538 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen)); 3539 if (put_user_u32(ret_addrlen, target_addrlen_addr)) { 3540 ret = -TARGET_EFAULT; 3541 } 3542 } 3543 return ret; 3544 } 3545 3546 /* do_getpeername() Must return target values and target errnos. */ 3547 static abi_long do_getpeername(int fd, abi_ulong target_addr, 3548 abi_ulong target_addrlen_addr) 3549 { 3550 socklen_t addrlen, ret_addrlen; 3551 void *addr; 3552 abi_long ret; 3553 3554 if (get_user_u32(addrlen, target_addrlen_addr)) 3555 return -TARGET_EFAULT; 3556 3557 if ((int)addrlen < 0) { 3558 return -TARGET_EINVAL; 3559 } 3560 3561 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) { 3562 return -TARGET_EFAULT; 3563 } 3564 3565 addr = alloca(addrlen); 3566 3567 ret_addrlen = addrlen; 3568 ret = get_errno(getpeername(fd, addr, &ret_addrlen)); 3569 if (!is_error(ret)) { 3570 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen)); 3571 if (put_user_u32(ret_addrlen, target_addrlen_addr)) { 3572 ret = -TARGET_EFAULT; 3573 } 3574 } 3575 return ret; 3576 } 3577 3578 /* do_getsockname() Must return target values and target errnos. */ 3579 static abi_long do_getsockname(int fd, abi_ulong target_addr, 3580 abi_ulong target_addrlen_addr) 3581 { 3582 socklen_t addrlen, ret_addrlen; 3583 void *addr; 3584 abi_long ret; 3585 3586 if (get_user_u32(addrlen, target_addrlen_addr)) 3587 return -TARGET_EFAULT; 3588 3589 if ((int)addrlen < 0) { 3590 return -TARGET_EINVAL; 3591 } 3592 3593 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) { 3594 return -TARGET_EFAULT; 3595 } 3596 3597 addr = alloca(addrlen); 3598 3599 ret_addrlen = addrlen; 3600 ret = get_errno(getsockname(fd, addr, &ret_addrlen)); 3601 if (!is_error(ret)) { 3602 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen)); 3603 if (put_user_u32(ret_addrlen, target_addrlen_addr)) { 3604 ret = -TARGET_EFAULT; 3605 } 3606 } 3607 return ret; 3608 } 3609 3610 /* do_socketpair() Must return target values and target errnos. */ 3611 static abi_long do_socketpair(int domain, int type, int protocol, 3612 abi_ulong target_tab_addr) 3613 { 3614 int tab[2]; 3615 abi_long ret; 3616 3617 target_to_host_sock_type(&type); 3618 3619 ret = get_errno(socketpair(domain, type, protocol, tab)); 3620 if (!is_error(ret)) { 3621 if (put_user_s32(tab[0], target_tab_addr) 3622 || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0]))) 3623 ret = -TARGET_EFAULT; 3624 } 3625 return ret; 3626 } 3627 3628 /* do_sendto() Must return target values and target errnos. */ 3629 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags, 3630 abi_ulong target_addr, socklen_t addrlen) 3631 { 3632 void *addr; 3633 void *host_msg; 3634 void *copy_msg = NULL; 3635 abi_long ret; 3636 3637 if ((int)addrlen < 0) { 3638 return -TARGET_EINVAL; 3639 } 3640 3641 host_msg = lock_user(VERIFY_READ, msg, len, 1); 3642 if (!host_msg) 3643 return -TARGET_EFAULT; 3644 if (fd_trans_target_to_host_data(fd)) { 3645 copy_msg = host_msg; 3646 host_msg = g_malloc(len); 3647 memcpy(host_msg, copy_msg, len); 3648 ret = fd_trans_target_to_host_data(fd)(host_msg, len); 3649 if (ret < 0) { 3650 goto fail; 3651 } 3652 } 3653 if (target_addr) { 3654 addr = alloca(addrlen+1); 3655 ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen); 3656 if (ret) { 3657 goto fail; 3658 } 3659 ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen)); 3660 } else { 3661 ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0)); 3662 } 3663 fail: 3664 if (copy_msg) { 3665 g_free(host_msg); 3666 host_msg = copy_msg; 3667 } 3668 unlock_user(host_msg, msg, 0); 3669 return ret; 3670 } 3671 3672 /* do_recvfrom() Must return target values and target errnos. */ 3673 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags, 3674 abi_ulong target_addr, 3675 abi_ulong target_addrlen) 3676 { 3677 socklen_t addrlen, ret_addrlen; 3678 void *addr; 3679 void *host_msg; 3680 abi_long ret; 3681 3682 if (!msg) { 3683 host_msg = NULL; 3684 } else { 3685 host_msg = lock_user(VERIFY_WRITE, msg, len, 0); 3686 if (!host_msg) { 3687 return -TARGET_EFAULT; 3688 } 3689 } 3690 if (target_addr) { 3691 if (get_user_u32(addrlen, target_addrlen)) { 3692 ret = -TARGET_EFAULT; 3693 goto fail; 3694 } 3695 if ((int)addrlen < 0) { 3696 ret = -TARGET_EINVAL; 3697 goto fail; 3698 } 3699 addr = alloca(addrlen); 3700 ret_addrlen = addrlen; 3701 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, 3702 addr, &ret_addrlen)); 3703 } else { 3704 addr = NULL; /* To keep compiler quiet. */ 3705 addrlen = 0; /* To keep compiler quiet. */ 3706 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0)); 3707 } 3708 if (!is_error(ret)) { 3709 if (fd_trans_host_to_target_data(fd)) { 3710 abi_long trans; 3711 trans = fd_trans_host_to_target_data(fd)(host_msg, MIN(ret, len)); 3712 if (is_error(trans)) { 3713 ret = trans; 3714 goto fail; 3715 } 3716 } 3717 if (target_addr) { 3718 host_to_target_sockaddr(target_addr, addr, 3719 MIN(addrlen, ret_addrlen)); 3720 if (put_user_u32(ret_addrlen, target_addrlen)) { 3721 ret = -TARGET_EFAULT; 3722 goto fail; 3723 } 3724 } 3725 unlock_user(host_msg, msg, len); 3726 } else { 3727 fail: 3728 unlock_user(host_msg, msg, 0); 3729 } 3730 return ret; 3731 } 3732 3733 #ifdef TARGET_NR_socketcall 3734 /* do_socketcall() must return target values and target errnos. */ 3735 static abi_long do_socketcall(int num, abi_ulong vptr) 3736 { 3737 static const unsigned nargs[] = { /* number of arguments per operation */ 3738 [TARGET_SYS_SOCKET] = 3, /* domain, type, protocol */ 3739 [TARGET_SYS_BIND] = 3, /* fd, addr, addrlen */ 3740 [TARGET_SYS_CONNECT] = 3, /* fd, addr, addrlen */ 3741 [TARGET_SYS_LISTEN] = 2, /* fd, backlog */ 3742 [TARGET_SYS_ACCEPT] = 3, /* fd, addr, addrlen */ 3743 [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */ 3744 [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */ 3745 [TARGET_SYS_SOCKETPAIR] = 4, /* domain, type, protocol, tab */ 3746 [TARGET_SYS_SEND] = 4, /* fd, msg, len, flags */ 3747 [TARGET_SYS_RECV] = 4, /* fd, msg, len, flags */ 3748 [TARGET_SYS_SENDTO] = 6, /* fd, msg, len, flags, addr, addrlen */ 3749 [TARGET_SYS_RECVFROM] = 6, /* fd, msg, len, flags, addr, addrlen */ 3750 [TARGET_SYS_SHUTDOWN] = 2, /* fd, how */ 3751 [TARGET_SYS_SETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */ 3752 [TARGET_SYS_GETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */ 3753 [TARGET_SYS_SENDMSG] = 3, /* fd, msg, flags */ 3754 [TARGET_SYS_RECVMSG] = 3, /* fd, msg, flags */ 3755 [TARGET_SYS_ACCEPT4] = 4, /* fd, addr, addrlen, flags */ 3756 [TARGET_SYS_RECVMMSG] = 4, /* fd, msgvec, vlen, flags */ 3757 [TARGET_SYS_SENDMMSG] = 4, /* fd, msgvec, vlen, flags */ 3758 }; 3759 abi_long a[6]; /* max 6 args */ 3760 unsigned i; 3761 3762 /* check the range of the first argument num */ 3763 /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */ 3764 if (num < 1 || num > TARGET_SYS_SENDMMSG) { 3765 return -TARGET_EINVAL; 3766 } 3767 /* ensure we have space for args */ 3768 if (nargs[num] > ARRAY_SIZE(a)) { 3769 return -TARGET_EINVAL; 3770 } 3771 /* collect the arguments in a[] according to nargs[] */ 3772 for (i = 0; i < nargs[num]; ++i) { 3773 if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) { 3774 return -TARGET_EFAULT; 3775 } 3776 } 3777 /* now when we have the args, invoke the appropriate underlying function */ 3778 switch (num) { 3779 case TARGET_SYS_SOCKET: /* domain, type, protocol */ 3780 return do_socket(a[0], a[1], a[2]); 3781 case TARGET_SYS_BIND: /* sockfd, addr, addrlen */ 3782 return do_bind(a[0], a[1], a[2]); 3783 case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */ 3784 return do_connect(a[0], a[1], a[2]); 3785 case TARGET_SYS_LISTEN: /* sockfd, backlog */ 3786 return get_errno(listen(a[0], a[1])); 3787 case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */ 3788 return do_accept4(a[0], a[1], a[2], 0); 3789 case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */ 3790 return do_getsockname(a[0], a[1], a[2]); 3791 case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */ 3792 return do_getpeername(a[0], a[1], a[2]); 3793 case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */ 3794 return do_socketpair(a[0], a[1], a[2], a[3]); 3795 case TARGET_SYS_SEND: /* sockfd, msg, len, flags */ 3796 return do_sendto(a[0], a[1], a[2], a[3], 0, 0); 3797 case TARGET_SYS_RECV: /* sockfd, msg, len, flags */ 3798 return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0); 3799 case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */ 3800 return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]); 3801 case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */ 3802 return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]); 3803 case TARGET_SYS_SHUTDOWN: /* sockfd, how */ 3804 return get_errno(shutdown(a[0], a[1])); 3805 case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */ 3806 return do_setsockopt(a[0], a[1], a[2], a[3], a[4]); 3807 case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */ 3808 return do_getsockopt(a[0], a[1], a[2], a[3], a[4]); 3809 case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */ 3810 return do_sendrecvmsg(a[0], a[1], a[2], 1); 3811 case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */ 3812 return do_sendrecvmsg(a[0], a[1], a[2], 0); 3813 case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */ 3814 return do_accept4(a[0], a[1], a[2], a[3]); 3815 case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */ 3816 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0); 3817 case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */ 3818 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1); 3819 default: 3820 qemu_log_mask(LOG_UNIMP, "Unsupported socketcall: %d\n", num); 3821 return -TARGET_EINVAL; 3822 } 3823 } 3824 #endif 3825 3826 #define N_SHM_REGIONS 32 3827 3828 static struct shm_region { 3829 abi_ulong start; 3830 abi_ulong size; 3831 bool in_use; 3832 } shm_regions[N_SHM_REGIONS]; 3833 3834 #ifndef TARGET_SEMID64_DS 3835 /* asm-generic version of this struct */ 3836 struct target_semid64_ds 3837 { 3838 struct target_ipc_perm sem_perm; 3839 abi_ulong sem_otime; 3840 #if TARGET_ABI_BITS == 32 3841 abi_ulong __unused1; 3842 #endif 3843 abi_ulong sem_ctime; 3844 #if TARGET_ABI_BITS == 32 3845 abi_ulong __unused2; 3846 #endif 3847 abi_ulong sem_nsems; 3848 abi_ulong __unused3; 3849 abi_ulong __unused4; 3850 }; 3851 #endif 3852 3853 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip, 3854 abi_ulong target_addr) 3855 { 3856 struct target_ipc_perm *target_ip; 3857 struct target_semid64_ds *target_sd; 3858 3859 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 3860 return -TARGET_EFAULT; 3861 target_ip = &(target_sd->sem_perm); 3862 host_ip->__key = tswap32(target_ip->__key); 3863 host_ip->uid = tswap32(target_ip->uid); 3864 host_ip->gid = tswap32(target_ip->gid); 3865 host_ip->cuid = tswap32(target_ip->cuid); 3866 host_ip->cgid = tswap32(target_ip->cgid); 3867 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC) 3868 host_ip->mode = tswap32(target_ip->mode); 3869 #else 3870 host_ip->mode = tswap16(target_ip->mode); 3871 #endif 3872 #if defined(TARGET_PPC) 3873 host_ip->__seq = tswap32(target_ip->__seq); 3874 #else 3875 host_ip->__seq = tswap16(target_ip->__seq); 3876 #endif 3877 unlock_user_struct(target_sd, target_addr, 0); 3878 return 0; 3879 } 3880 3881 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr, 3882 struct ipc_perm *host_ip) 3883 { 3884 struct target_ipc_perm *target_ip; 3885 struct target_semid64_ds *target_sd; 3886 3887 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 3888 return -TARGET_EFAULT; 3889 target_ip = &(target_sd->sem_perm); 3890 target_ip->__key = tswap32(host_ip->__key); 3891 target_ip->uid = tswap32(host_ip->uid); 3892 target_ip->gid = tswap32(host_ip->gid); 3893 target_ip->cuid = tswap32(host_ip->cuid); 3894 target_ip->cgid = tswap32(host_ip->cgid); 3895 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC) 3896 target_ip->mode = tswap32(host_ip->mode); 3897 #else 3898 target_ip->mode = tswap16(host_ip->mode); 3899 #endif 3900 #if defined(TARGET_PPC) 3901 target_ip->__seq = tswap32(host_ip->__seq); 3902 #else 3903 target_ip->__seq = tswap16(host_ip->__seq); 3904 #endif 3905 unlock_user_struct(target_sd, target_addr, 1); 3906 return 0; 3907 } 3908 3909 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd, 3910 abi_ulong target_addr) 3911 { 3912 struct target_semid64_ds *target_sd; 3913 3914 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 3915 return -TARGET_EFAULT; 3916 if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr)) 3917 return -TARGET_EFAULT; 3918 host_sd->sem_nsems = tswapal(target_sd->sem_nsems); 3919 host_sd->sem_otime = tswapal(target_sd->sem_otime); 3920 host_sd->sem_ctime = tswapal(target_sd->sem_ctime); 3921 unlock_user_struct(target_sd, target_addr, 0); 3922 return 0; 3923 } 3924 3925 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr, 3926 struct semid_ds *host_sd) 3927 { 3928 struct target_semid64_ds *target_sd; 3929 3930 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 3931 return -TARGET_EFAULT; 3932 if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm))) 3933 return -TARGET_EFAULT; 3934 target_sd->sem_nsems = tswapal(host_sd->sem_nsems); 3935 target_sd->sem_otime = tswapal(host_sd->sem_otime); 3936 target_sd->sem_ctime = tswapal(host_sd->sem_ctime); 3937 unlock_user_struct(target_sd, target_addr, 1); 3938 return 0; 3939 } 3940 3941 struct target_seminfo { 3942 int semmap; 3943 int semmni; 3944 int semmns; 3945 int semmnu; 3946 int semmsl; 3947 int semopm; 3948 int semume; 3949 int semusz; 3950 int semvmx; 3951 int semaem; 3952 }; 3953 3954 static inline abi_long host_to_target_seminfo(abi_ulong target_addr, 3955 struct seminfo *host_seminfo) 3956 { 3957 struct target_seminfo *target_seminfo; 3958 if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0)) 3959 return -TARGET_EFAULT; 3960 __put_user(host_seminfo->semmap, &target_seminfo->semmap); 3961 __put_user(host_seminfo->semmni, &target_seminfo->semmni); 3962 __put_user(host_seminfo->semmns, &target_seminfo->semmns); 3963 __put_user(host_seminfo->semmnu, &target_seminfo->semmnu); 3964 __put_user(host_seminfo->semmsl, &target_seminfo->semmsl); 3965 __put_user(host_seminfo->semopm, &target_seminfo->semopm); 3966 __put_user(host_seminfo->semume, &target_seminfo->semume); 3967 __put_user(host_seminfo->semusz, &target_seminfo->semusz); 3968 __put_user(host_seminfo->semvmx, &target_seminfo->semvmx); 3969 __put_user(host_seminfo->semaem, &target_seminfo->semaem); 3970 unlock_user_struct(target_seminfo, target_addr, 1); 3971 return 0; 3972 } 3973 3974 union semun { 3975 int val; 3976 struct semid_ds *buf; 3977 unsigned short *array; 3978 struct seminfo *__buf; 3979 }; 3980 3981 union target_semun { 3982 int val; 3983 abi_ulong buf; 3984 abi_ulong array; 3985 abi_ulong __buf; 3986 }; 3987 3988 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array, 3989 abi_ulong target_addr) 3990 { 3991 int nsems; 3992 unsigned short *array; 3993 union semun semun; 3994 struct semid_ds semid_ds; 3995 int i, ret; 3996 3997 semun.buf = &semid_ds; 3998 3999 ret = semctl(semid, 0, IPC_STAT, semun); 4000 if (ret == -1) 4001 return get_errno(ret); 4002 4003 nsems = semid_ds.sem_nsems; 4004 4005 *host_array = g_try_new(unsigned short, nsems); 4006 if (!*host_array) { 4007 return -TARGET_ENOMEM; 4008 } 4009 array = lock_user(VERIFY_READ, target_addr, 4010 nsems*sizeof(unsigned short), 1); 4011 if (!array) { 4012 g_free(*host_array); 4013 return -TARGET_EFAULT; 4014 } 4015 4016 for(i=0; i<nsems; i++) { 4017 __get_user((*host_array)[i], &array[i]); 4018 } 4019 unlock_user(array, target_addr, 0); 4020 4021 return 0; 4022 } 4023 4024 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr, 4025 unsigned short **host_array) 4026 { 4027 int nsems; 4028 unsigned short *array; 4029 union semun semun; 4030 struct semid_ds semid_ds; 4031 int i, ret; 4032 4033 semun.buf = &semid_ds; 4034 4035 ret = semctl(semid, 0, IPC_STAT, semun); 4036 if (ret == -1) 4037 return get_errno(ret); 4038 4039 nsems = semid_ds.sem_nsems; 4040 4041 array = lock_user(VERIFY_WRITE, target_addr, 4042 nsems*sizeof(unsigned short), 0); 4043 if (!array) 4044 return -TARGET_EFAULT; 4045 4046 for(i=0; i<nsems; i++) { 4047 __put_user((*host_array)[i], &array[i]); 4048 } 4049 g_free(*host_array); 4050 unlock_user(array, target_addr, 1); 4051 4052 return 0; 4053 } 4054 4055 static inline abi_long do_semctl(int semid, int semnum, int cmd, 4056 abi_ulong target_arg) 4057 { 4058 union target_semun target_su = { .buf = target_arg }; 4059 union semun arg; 4060 struct semid_ds dsarg; 4061 unsigned short *array = NULL; 4062 struct seminfo seminfo; 4063 abi_long ret = -TARGET_EINVAL; 4064 abi_long err; 4065 cmd &= 0xff; 4066 4067 switch( cmd ) { 4068 case GETVAL: 4069 case SETVAL: 4070 /* In 64 bit cross-endian situations, we will erroneously pick up 4071 * the wrong half of the union for the "val" element. To rectify 4072 * this, the entire 8-byte structure is byteswapped, followed by 4073 * a swap of the 4 byte val field. In other cases, the data is 4074 * already in proper host byte order. */ 4075 if (sizeof(target_su.val) != (sizeof(target_su.buf))) { 4076 target_su.buf = tswapal(target_su.buf); 4077 arg.val = tswap32(target_su.val); 4078 } else { 4079 arg.val = target_su.val; 4080 } 4081 ret = get_errno(semctl(semid, semnum, cmd, arg)); 4082 break; 4083 case GETALL: 4084 case SETALL: 4085 err = target_to_host_semarray(semid, &array, target_su.array); 4086 if (err) 4087 return err; 4088 arg.array = array; 4089 ret = get_errno(semctl(semid, semnum, cmd, arg)); 4090 err = host_to_target_semarray(semid, target_su.array, &array); 4091 if (err) 4092 return err; 4093 break; 4094 case IPC_STAT: 4095 case IPC_SET: 4096 case SEM_STAT: 4097 err = target_to_host_semid_ds(&dsarg, target_su.buf); 4098 if (err) 4099 return err; 4100 arg.buf = &dsarg; 4101 ret = get_errno(semctl(semid, semnum, cmd, arg)); 4102 err = host_to_target_semid_ds(target_su.buf, &dsarg); 4103 if (err) 4104 return err; 4105 break; 4106 case IPC_INFO: 4107 case SEM_INFO: 4108 arg.__buf = &seminfo; 4109 ret = get_errno(semctl(semid, semnum, cmd, arg)); 4110 err = host_to_target_seminfo(target_su.__buf, &seminfo); 4111 if (err) 4112 return err; 4113 break; 4114 case IPC_RMID: 4115 case GETPID: 4116 case GETNCNT: 4117 case GETZCNT: 4118 ret = get_errno(semctl(semid, semnum, cmd, NULL)); 4119 break; 4120 } 4121 4122 return ret; 4123 } 4124 4125 struct target_sembuf { 4126 unsigned short sem_num; 4127 short sem_op; 4128 short sem_flg; 4129 }; 4130 4131 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf, 4132 abi_ulong target_addr, 4133 unsigned nsops) 4134 { 4135 struct target_sembuf *target_sembuf; 4136 int i; 4137 4138 target_sembuf = lock_user(VERIFY_READ, target_addr, 4139 nsops*sizeof(struct target_sembuf), 1); 4140 if (!target_sembuf) 4141 return -TARGET_EFAULT; 4142 4143 for(i=0; i<nsops; i++) { 4144 __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num); 4145 __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op); 4146 __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg); 4147 } 4148 4149 unlock_user(target_sembuf, target_addr, 0); 4150 4151 return 0; 4152 } 4153 4154 #if defined(TARGET_NR_ipc) || defined(TARGET_NR_semop) || \ 4155 defined(TARGET_NR_semtimedop) || defined(TARGET_NR_semtimedop_time64) 4156 4157 /* 4158 * This macro is required to handle the s390 variants, which passes the 4159 * arguments in a different order than default. 4160 */ 4161 #ifdef __s390x__ 4162 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \ 4163 (__nsops), (__timeout), (__sops) 4164 #else 4165 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \ 4166 (__nsops), 0, (__sops), (__timeout) 4167 #endif 4168 4169 static inline abi_long do_semtimedop(int semid, 4170 abi_long ptr, 4171 unsigned nsops, 4172 abi_long timeout, bool time64) 4173 { 4174 struct sembuf *sops; 4175 struct timespec ts, *pts = NULL; 4176 abi_long ret; 4177 4178 if (timeout) { 4179 pts = &ts; 4180 if (time64) { 4181 if (target_to_host_timespec64(pts, timeout)) { 4182 return -TARGET_EFAULT; 4183 } 4184 } else { 4185 if (target_to_host_timespec(pts, timeout)) { 4186 return -TARGET_EFAULT; 4187 } 4188 } 4189 } 4190 4191 if (nsops > TARGET_SEMOPM) { 4192 return -TARGET_E2BIG; 4193 } 4194 4195 sops = g_new(struct sembuf, nsops); 4196 4197 if (target_to_host_sembuf(sops, ptr, nsops)) { 4198 g_free(sops); 4199 return -TARGET_EFAULT; 4200 } 4201 4202 ret = -TARGET_ENOSYS; 4203 #ifdef __NR_semtimedop 4204 ret = get_errno(safe_semtimedop(semid, sops, nsops, pts)); 4205 #endif 4206 #ifdef __NR_ipc 4207 if (ret == -TARGET_ENOSYS) { 4208 ret = get_errno(safe_ipc(IPCOP_semtimedop, semid, 4209 SEMTIMEDOP_IPC_ARGS(nsops, sops, (long)pts))); 4210 } 4211 #endif 4212 g_free(sops); 4213 return ret; 4214 } 4215 #endif 4216 4217 struct target_msqid_ds 4218 { 4219 struct target_ipc_perm msg_perm; 4220 abi_ulong msg_stime; 4221 #if TARGET_ABI_BITS == 32 4222 abi_ulong __unused1; 4223 #endif 4224 abi_ulong msg_rtime; 4225 #if TARGET_ABI_BITS == 32 4226 abi_ulong __unused2; 4227 #endif 4228 abi_ulong msg_ctime; 4229 #if TARGET_ABI_BITS == 32 4230 abi_ulong __unused3; 4231 #endif 4232 abi_ulong __msg_cbytes; 4233 abi_ulong msg_qnum; 4234 abi_ulong msg_qbytes; 4235 abi_ulong msg_lspid; 4236 abi_ulong msg_lrpid; 4237 abi_ulong __unused4; 4238 abi_ulong __unused5; 4239 }; 4240 4241 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md, 4242 abi_ulong target_addr) 4243 { 4244 struct target_msqid_ds *target_md; 4245 4246 if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1)) 4247 return -TARGET_EFAULT; 4248 if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr)) 4249 return -TARGET_EFAULT; 4250 host_md->msg_stime = tswapal(target_md->msg_stime); 4251 host_md->msg_rtime = tswapal(target_md->msg_rtime); 4252 host_md->msg_ctime = tswapal(target_md->msg_ctime); 4253 host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes); 4254 host_md->msg_qnum = tswapal(target_md->msg_qnum); 4255 host_md->msg_qbytes = tswapal(target_md->msg_qbytes); 4256 host_md->msg_lspid = tswapal(target_md->msg_lspid); 4257 host_md->msg_lrpid = tswapal(target_md->msg_lrpid); 4258 unlock_user_struct(target_md, target_addr, 0); 4259 return 0; 4260 } 4261 4262 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr, 4263 struct msqid_ds *host_md) 4264 { 4265 struct target_msqid_ds *target_md; 4266 4267 if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0)) 4268 return -TARGET_EFAULT; 4269 if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm))) 4270 return -TARGET_EFAULT; 4271 target_md->msg_stime = tswapal(host_md->msg_stime); 4272 target_md->msg_rtime = tswapal(host_md->msg_rtime); 4273 target_md->msg_ctime = tswapal(host_md->msg_ctime); 4274 target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes); 4275 target_md->msg_qnum = tswapal(host_md->msg_qnum); 4276 target_md->msg_qbytes = tswapal(host_md->msg_qbytes); 4277 target_md->msg_lspid = tswapal(host_md->msg_lspid); 4278 target_md->msg_lrpid = tswapal(host_md->msg_lrpid); 4279 unlock_user_struct(target_md, target_addr, 1); 4280 return 0; 4281 } 4282 4283 struct target_msginfo { 4284 int msgpool; 4285 int msgmap; 4286 int msgmax; 4287 int msgmnb; 4288 int msgmni; 4289 int msgssz; 4290 int msgtql; 4291 unsigned short int msgseg; 4292 }; 4293 4294 static inline abi_long host_to_target_msginfo(abi_ulong target_addr, 4295 struct msginfo *host_msginfo) 4296 { 4297 struct target_msginfo *target_msginfo; 4298 if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0)) 4299 return -TARGET_EFAULT; 4300 __put_user(host_msginfo->msgpool, &target_msginfo->msgpool); 4301 __put_user(host_msginfo->msgmap, &target_msginfo->msgmap); 4302 __put_user(host_msginfo->msgmax, &target_msginfo->msgmax); 4303 __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb); 4304 __put_user(host_msginfo->msgmni, &target_msginfo->msgmni); 4305 __put_user(host_msginfo->msgssz, &target_msginfo->msgssz); 4306 __put_user(host_msginfo->msgtql, &target_msginfo->msgtql); 4307 __put_user(host_msginfo->msgseg, &target_msginfo->msgseg); 4308 unlock_user_struct(target_msginfo, target_addr, 1); 4309 return 0; 4310 } 4311 4312 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr) 4313 { 4314 struct msqid_ds dsarg; 4315 struct msginfo msginfo; 4316 abi_long ret = -TARGET_EINVAL; 4317 4318 cmd &= 0xff; 4319 4320 switch (cmd) { 4321 case IPC_STAT: 4322 case IPC_SET: 4323 case MSG_STAT: 4324 if (target_to_host_msqid_ds(&dsarg,ptr)) 4325 return -TARGET_EFAULT; 4326 ret = get_errno(msgctl(msgid, cmd, &dsarg)); 4327 if (host_to_target_msqid_ds(ptr,&dsarg)) 4328 return -TARGET_EFAULT; 4329 break; 4330 case IPC_RMID: 4331 ret = get_errno(msgctl(msgid, cmd, NULL)); 4332 break; 4333 case IPC_INFO: 4334 case MSG_INFO: 4335 ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo)); 4336 if (host_to_target_msginfo(ptr, &msginfo)) 4337 return -TARGET_EFAULT; 4338 break; 4339 } 4340 4341 return ret; 4342 } 4343 4344 struct target_msgbuf { 4345 abi_long mtype; 4346 char mtext[1]; 4347 }; 4348 4349 static inline abi_long do_msgsnd(int msqid, abi_long msgp, 4350 ssize_t msgsz, int msgflg) 4351 { 4352 struct target_msgbuf *target_mb; 4353 struct msgbuf *host_mb; 4354 abi_long ret = 0; 4355 4356 if (msgsz < 0) { 4357 return -TARGET_EINVAL; 4358 } 4359 4360 if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0)) 4361 return -TARGET_EFAULT; 4362 host_mb = g_try_malloc(msgsz + sizeof(long)); 4363 if (!host_mb) { 4364 unlock_user_struct(target_mb, msgp, 0); 4365 return -TARGET_ENOMEM; 4366 } 4367 host_mb->mtype = (abi_long) tswapal(target_mb->mtype); 4368 memcpy(host_mb->mtext, target_mb->mtext, msgsz); 4369 ret = -TARGET_ENOSYS; 4370 #ifdef __NR_msgsnd 4371 ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg)); 4372 #endif 4373 #ifdef __NR_ipc 4374 if (ret == -TARGET_ENOSYS) { 4375 #ifdef __s390x__ 4376 ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg, 4377 host_mb)); 4378 #else 4379 ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg, 4380 host_mb, 0)); 4381 #endif 4382 } 4383 #endif 4384 g_free(host_mb); 4385 unlock_user_struct(target_mb, msgp, 0); 4386 4387 return ret; 4388 } 4389 4390 #ifdef __NR_ipc 4391 #if defined(__sparc__) 4392 /* SPARC for msgrcv it does not use the kludge on final 2 arguments. */ 4393 #define MSGRCV_ARGS(__msgp, __msgtyp) __msgp, __msgtyp 4394 #elif defined(__s390x__) 4395 /* The s390 sys_ipc variant has only five parameters. */ 4396 #define MSGRCV_ARGS(__msgp, __msgtyp) \ 4397 ((long int[]){(long int)__msgp, __msgtyp}) 4398 #else 4399 #define MSGRCV_ARGS(__msgp, __msgtyp) \ 4400 ((long int[]){(long int)__msgp, __msgtyp}), 0 4401 #endif 4402 #endif 4403 4404 static inline abi_long do_msgrcv(int msqid, abi_long msgp, 4405 ssize_t msgsz, abi_long msgtyp, 4406 int msgflg) 4407 { 4408 struct target_msgbuf *target_mb; 4409 char *target_mtext; 4410 struct msgbuf *host_mb; 4411 abi_long ret = 0; 4412 4413 if (msgsz < 0) { 4414 return -TARGET_EINVAL; 4415 } 4416 4417 if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0)) 4418 return -TARGET_EFAULT; 4419 4420 host_mb = g_try_malloc(msgsz + sizeof(long)); 4421 if (!host_mb) { 4422 ret = -TARGET_ENOMEM; 4423 goto end; 4424 } 4425 ret = -TARGET_ENOSYS; 4426 #ifdef __NR_msgrcv 4427 ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg)); 4428 #endif 4429 #ifdef __NR_ipc 4430 if (ret == -TARGET_ENOSYS) { 4431 ret = get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv), msqid, msgsz, 4432 msgflg, MSGRCV_ARGS(host_mb, msgtyp))); 4433 } 4434 #endif 4435 4436 if (ret > 0) { 4437 abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong); 4438 target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0); 4439 if (!target_mtext) { 4440 ret = -TARGET_EFAULT; 4441 goto end; 4442 } 4443 memcpy(target_mb->mtext, host_mb->mtext, ret); 4444 unlock_user(target_mtext, target_mtext_addr, ret); 4445 } 4446 4447 target_mb->mtype = tswapal(host_mb->mtype); 4448 4449 end: 4450 if (target_mb) 4451 unlock_user_struct(target_mb, msgp, 1); 4452 g_free(host_mb); 4453 return ret; 4454 } 4455 4456 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd, 4457 abi_ulong target_addr) 4458 { 4459 struct target_shmid_ds *target_sd; 4460 4461 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 4462 return -TARGET_EFAULT; 4463 if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr)) 4464 return -TARGET_EFAULT; 4465 __get_user(host_sd->shm_segsz, &target_sd->shm_segsz); 4466 __get_user(host_sd->shm_atime, &target_sd->shm_atime); 4467 __get_user(host_sd->shm_dtime, &target_sd->shm_dtime); 4468 __get_user(host_sd->shm_ctime, &target_sd->shm_ctime); 4469 __get_user(host_sd->shm_cpid, &target_sd->shm_cpid); 4470 __get_user(host_sd->shm_lpid, &target_sd->shm_lpid); 4471 __get_user(host_sd->shm_nattch, &target_sd->shm_nattch); 4472 unlock_user_struct(target_sd, target_addr, 0); 4473 return 0; 4474 } 4475 4476 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr, 4477 struct shmid_ds *host_sd) 4478 { 4479 struct target_shmid_ds *target_sd; 4480 4481 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 4482 return -TARGET_EFAULT; 4483 if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm))) 4484 return -TARGET_EFAULT; 4485 __put_user(host_sd->shm_segsz, &target_sd->shm_segsz); 4486 __put_user(host_sd->shm_atime, &target_sd->shm_atime); 4487 __put_user(host_sd->shm_dtime, &target_sd->shm_dtime); 4488 __put_user(host_sd->shm_ctime, &target_sd->shm_ctime); 4489 __put_user(host_sd->shm_cpid, &target_sd->shm_cpid); 4490 __put_user(host_sd->shm_lpid, &target_sd->shm_lpid); 4491 __put_user(host_sd->shm_nattch, &target_sd->shm_nattch); 4492 unlock_user_struct(target_sd, target_addr, 1); 4493 return 0; 4494 } 4495 4496 struct target_shminfo { 4497 abi_ulong shmmax; 4498 abi_ulong shmmin; 4499 abi_ulong shmmni; 4500 abi_ulong shmseg; 4501 abi_ulong shmall; 4502 }; 4503 4504 static inline abi_long host_to_target_shminfo(abi_ulong target_addr, 4505 struct shminfo *host_shminfo) 4506 { 4507 struct target_shminfo *target_shminfo; 4508 if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0)) 4509 return -TARGET_EFAULT; 4510 __put_user(host_shminfo->shmmax, &target_shminfo->shmmax); 4511 __put_user(host_shminfo->shmmin, &target_shminfo->shmmin); 4512 __put_user(host_shminfo->shmmni, &target_shminfo->shmmni); 4513 __put_user(host_shminfo->shmseg, &target_shminfo->shmseg); 4514 __put_user(host_shminfo->shmall, &target_shminfo->shmall); 4515 unlock_user_struct(target_shminfo, target_addr, 1); 4516 return 0; 4517 } 4518 4519 struct target_shm_info { 4520 int used_ids; 4521 abi_ulong shm_tot; 4522 abi_ulong shm_rss; 4523 abi_ulong shm_swp; 4524 abi_ulong swap_attempts; 4525 abi_ulong swap_successes; 4526 }; 4527 4528 static inline abi_long host_to_target_shm_info(abi_ulong target_addr, 4529 struct shm_info *host_shm_info) 4530 { 4531 struct target_shm_info *target_shm_info; 4532 if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0)) 4533 return -TARGET_EFAULT; 4534 __put_user(host_shm_info->used_ids, &target_shm_info->used_ids); 4535 __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot); 4536 __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss); 4537 __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp); 4538 __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts); 4539 __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes); 4540 unlock_user_struct(target_shm_info, target_addr, 1); 4541 return 0; 4542 } 4543 4544 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf) 4545 { 4546 struct shmid_ds dsarg; 4547 struct shminfo shminfo; 4548 struct shm_info shm_info; 4549 abi_long ret = -TARGET_EINVAL; 4550 4551 cmd &= 0xff; 4552 4553 switch(cmd) { 4554 case IPC_STAT: 4555 case IPC_SET: 4556 case SHM_STAT: 4557 if (target_to_host_shmid_ds(&dsarg, buf)) 4558 return -TARGET_EFAULT; 4559 ret = get_errno(shmctl(shmid, cmd, &dsarg)); 4560 if (host_to_target_shmid_ds(buf, &dsarg)) 4561 return -TARGET_EFAULT; 4562 break; 4563 case IPC_INFO: 4564 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo)); 4565 if (host_to_target_shminfo(buf, &shminfo)) 4566 return -TARGET_EFAULT; 4567 break; 4568 case SHM_INFO: 4569 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info)); 4570 if (host_to_target_shm_info(buf, &shm_info)) 4571 return -TARGET_EFAULT; 4572 break; 4573 case IPC_RMID: 4574 case SHM_LOCK: 4575 case SHM_UNLOCK: 4576 ret = get_errno(shmctl(shmid, cmd, NULL)); 4577 break; 4578 } 4579 4580 return ret; 4581 } 4582 4583 #ifndef TARGET_FORCE_SHMLBA 4584 /* For most architectures, SHMLBA is the same as the page size; 4585 * some architectures have larger values, in which case they should 4586 * define TARGET_FORCE_SHMLBA and provide a target_shmlba() function. 4587 * This corresponds to the kernel arch code defining __ARCH_FORCE_SHMLBA 4588 * and defining its own value for SHMLBA. 4589 * 4590 * The kernel also permits SHMLBA to be set by the architecture to a 4591 * value larger than the page size without setting __ARCH_FORCE_SHMLBA; 4592 * this means that addresses are rounded to the large size if 4593 * SHM_RND is set but addresses not aligned to that size are not rejected 4594 * as long as they are at least page-aligned. Since the only architecture 4595 * which uses this is ia64 this code doesn't provide for that oddity. 4596 */ 4597 static inline abi_ulong target_shmlba(CPUArchState *cpu_env) 4598 { 4599 return TARGET_PAGE_SIZE; 4600 } 4601 #endif 4602 4603 static inline abi_ulong do_shmat(CPUArchState *cpu_env, 4604 int shmid, abi_ulong shmaddr, int shmflg) 4605 { 4606 CPUState *cpu = env_cpu(cpu_env); 4607 abi_long raddr; 4608 void *host_raddr; 4609 struct shmid_ds shm_info; 4610 int i,ret; 4611 abi_ulong shmlba; 4612 4613 /* shmat pointers are always untagged */ 4614 4615 /* find out the length of the shared memory segment */ 4616 ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info)); 4617 if (is_error(ret)) { 4618 /* can't get length, bail out */ 4619 return ret; 4620 } 4621 4622 shmlba = target_shmlba(cpu_env); 4623 4624 if (shmaddr & (shmlba - 1)) { 4625 if (shmflg & SHM_RND) { 4626 shmaddr &= ~(shmlba - 1); 4627 } else { 4628 return -TARGET_EINVAL; 4629 } 4630 } 4631 if (!guest_range_valid_untagged(shmaddr, shm_info.shm_segsz)) { 4632 return -TARGET_EINVAL; 4633 } 4634 4635 mmap_lock(); 4636 4637 /* 4638 * We're mapping shared memory, so ensure we generate code for parallel 4639 * execution and flush old translations. This will work up to the level 4640 * supported by the host -- anything that requires EXCP_ATOMIC will not 4641 * be atomic with respect to an external process. 4642 */ 4643 if (!(cpu->tcg_cflags & CF_PARALLEL)) { 4644 cpu->tcg_cflags |= CF_PARALLEL; 4645 tb_flush(cpu); 4646 } 4647 4648 if (shmaddr) 4649 host_raddr = shmat(shmid, (void *)g2h_untagged(shmaddr), shmflg); 4650 else { 4651 abi_ulong mmap_start; 4652 4653 /* In order to use the host shmat, we need to honor host SHMLBA. */ 4654 mmap_start = mmap_find_vma(0, shm_info.shm_segsz, MAX(SHMLBA, shmlba)); 4655 4656 if (mmap_start == -1) { 4657 errno = ENOMEM; 4658 host_raddr = (void *)-1; 4659 } else 4660 host_raddr = shmat(shmid, g2h_untagged(mmap_start), 4661 shmflg | SHM_REMAP); 4662 } 4663 4664 if (host_raddr == (void *)-1) { 4665 mmap_unlock(); 4666 return get_errno((long)host_raddr); 4667 } 4668 raddr=h2g((unsigned long)host_raddr); 4669 4670 page_set_flags(raddr, raddr + shm_info.shm_segsz, 4671 PAGE_VALID | PAGE_RESET | PAGE_READ | 4672 (shmflg & SHM_RDONLY ? 0 : PAGE_WRITE)); 4673 4674 for (i = 0; i < N_SHM_REGIONS; i++) { 4675 if (!shm_regions[i].in_use) { 4676 shm_regions[i].in_use = true; 4677 shm_regions[i].start = raddr; 4678 shm_regions[i].size = shm_info.shm_segsz; 4679 break; 4680 } 4681 } 4682 4683 mmap_unlock(); 4684 return raddr; 4685 4686 } 4687 4688 static inline abi_long do_shmdt(abi_ulong shmaddr) 4689 { 4690 int i; 4691 abi_long rv; 4692 4693 /* shmdt pointers are always untagged */ 4694 4695 mmap_lock(); 4696 4697 for (i = 0; i < N_SHM_REGIONS; ++i) { 4698 if (shm_regions[i].in_use && shm_regions[i].start == shmaddr) { 4699 shm_regions[i].in_use = false; 4700 page_set_flags(shmaddr, shmaddr + shm_regions[i].size, 0); 4701 break; 4702 } 4703 } 4704 rv = get_errno(shmdt(g2h_untagged(shmaddr))); 4705 4706 mmap_unlock(); 4707 4708 return rv; 4709 } 4710 4711 #ifdef TARGET_NR_ipc 4712 /* ??? This only works with linear mappings. */ 4713 /* do_ipc() must return target values and target errnos. */ 4714 static abi_long do_ipc(CPUArchState *cpu_env, 4715 unsigned int call, abi_long first, 4716 abi_long second, abi_long third, 4717 abi_long ptr, abi_long fifth) 4718 { 4719 int version; 4720 abi_long ret = 0; 4721 4722 version = call >> 16; 4723 call &= 0xffff; 4724 4725 switch (call) { 4726 case IPCOP_semop: 4727 ret = do_semtimedop(first, ptr, second, 0, false); 4728 break; 4729 case IPCOP_semtimedop: 4730 /* 4731 * The s390 sys_ipc variant has only five parameters instead of six 4732 * (as for default variant) and the only difference is the handling of 4733 * SEMTIMEDOP where on s390 the third parameter is used as a pointer 4734 * to a struct timespec where the generic variant uses fifth parameter. 4735 */ 4736 #if defined(TARGET_S390X) 4737 ret = do_semtimedop(first, ptr, second, third, TARGET_ABI_BITS == 64); 4738 #else 4739 ret = do_semtimedop(first, ptr, second, fifth, TARGET_ABI_BITS == 64); 4740 #endif 4741 break; 4742 4743 case IPCOP_semget: 4744 ret = get_errno(semget(first, second, third)); 4745 break; 4746 4747 case IPCOP_semctl: { 4748 /* The semun argument to semctl is passed by value, so dereference the 4749 * ptr argument. */ 4750 abi_ulong atptr; 4751 get_user_ual(atptr, ptr); 4752 ret = do_semctl(first, second, third, atptr); 4753 break; 4754 } 4755 4756 case IPCOP_msgget: 4757 ret = get_errno(msgget(first, second)); 4758 break; 4759 4760 case IPCOP_msgsnd: 4761 ret = do_msgsnd(first, ptr, second, third); 4762 break; 4763 4764 case IPCOP_msgctl: 4765 ret = do_msgctl(first, second, ptr); 4766 break; 4767 4768 case IPCOP_msgrcv: 4769 switch (version) { 4770 case 0: 4771 { 4772 struct target_ipc_kludge { 4773 abi_long msgp; 4774 abi_long msgtyp; 4775 } *tmp; 4776 4777 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) { 4778 ret = -TARGET_EFAULT; 4779 break; 4780 } 4781 4782 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third); 4783 4784 unlock_user_struct(tmp, ptr, 0); 4785 break; 4786 } 4787 default: 4788 ret = do_msgrcv(first, ptr, second, fifth, third); 4789 } 4790 break; 4791 4792 case IPCOP_shmat: 4793 switch (version) { 4794 default: 4795 { 4796 abi_ulong raddr; 4797 raddr = do_shmat(cpu_env, first, ptr, second); 4798 if (is_error(raddr)) 4799 return get_errno(raddr); 4800 if (put_user_ual(raddr, third)) 4801 return -TARGET_EFAULT; 4802 break; 4803 } 4804 case 1: 4805 ret = -TARGET_EINVAL; 4806 break; 4807 } 4808 break; 4809 case IPCOP_shmdt: 4810 ret = do_shmdt(ptr); 4811 break; 4812 4813 case IPCOP_shmget: 4814 /* IPC_* flag values are the same on all linux platforms */ 4815 ret = get_errno(shmget(first, second, third)); 4816 break; 4817 4818 /* IPC_* and SHM_* command values are the same on all linux platforms */ 4819 case IPCOP_shmctl: 4820 ret = do_shmctl(first, second, ptr); 4821 break; 4822 default: 4823 qemu_log_mask(LOG_UNIMP, "Unsupported ipc call: %d (version %d)\n", 4824 call, version); 4825 ret = -TARGET_ENOSYS; 4826 break; 4827 } 4828 return ret; 4829 } 4830 #endif 4831 4832 /* kernel structure types definitions */ 4833 4834 #define STRUCT(name, ...) STRUCT_ ## name, 4835 #define STRUCT_SPECIAL(name) STRUCT_ ## name, 4836 enum { 4837 #include "syscall_types.h" 4838 STRUCT_MAX 4839 }; 4840 #undef STRUCT 4841 #undef STRUCT_SPECIAL 4842 4843 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL }; 4844 #define STRUCT_SPECIAL(name) 4845 #include "syscall_types.h" 4846 #undef STRUCT 4847 #undef STRUCT_SPECIAL 4848 4849 #define MAX_STRUCT_SIZE 4096 4850 4851 #ifdef CONFIG_FIEMAP 4852 /* So fiemap access checks don't overflow on 32 bit systems. 4853 * This is very slightly smaller than the limit imposed by 4854 * the underlying kernel. 4855 */ 4856 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \ 4857 / sizeof(struct fiemap_extent)) 4858 4859 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp, 4860 int fd, int cmd, abi_long arg) 4861 { 4862 /* The parameter for this ioctl is a struct fiemap followed 4863 * by an array of struct fiemap_extent whose size is set 4864 * in fiemap->fm_extent_count. The array is filled in by the 4865 * ioctl. 4866 */ 4867 int target_size_in, target_size_out; 4868 struct fiemap *fm; 4869 const argtype *arg_type = ie->arg_type; 4870 const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) }; 4871 void *argptr, *p; 4872 abi_long ret; 4873 int i, extent_size = thunk_type_size(extent_arg_type, 0); 4874 uint32_t outbufsz; 4875 int free_fm = 0; 4876 4877 assert(arg_type[0] == TYPE_PTR); 4878 assert(ie->access == IOC_RW); 4879 arg_type++; 4880 target_size_in = thunk_type_size(arg_type, 0); 4881 argptr = lock_user(VERIFY_READ, arg, target_size_in, 1); 4882 if (!argptr) { 4883 return -TARGET_EFAULT; 4884 } 4885 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 4886 unlock_user(argptr, arg, 0); 4887 fm = (struct fiemap *)buf_temp; 4888 if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) { 4889 return -TARGET_EINVAL; 4890 } 4891 4892 outbufsz = sizeof (*fm) + 4893 (sizeof(struct fiemap_extent) * fm->fm_extent_count); 4894 4895 if (outbufsz > MAX_STRUCT_SIZE) { 4896 /* We can't fit all the extents into the fixed size buffer. 4897 * Allocate one that is large enough and use it instead. 4898 */ 4899 fm = g_try_malloc(outbufsz); 4900 if (!fm) { 4901 return -TARGET_ENOMEM; 4902 } 4903 memcpy(fm, buf_temp, sizeof(struct fiemap)); 4904 free_fm = 1; 4905 } 4906 ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm)); 4907 if (!is_error(ret)) { 4908 target_size_out = target_size_in; 4909 /* An extent_count of 0 means we were only counting the extents 4910 * so there are no structs to copy 4911 */ 4912 if (fm->fm_extent_count != 0) { 4913 target_size_out += fm->fm_mapped_extents * extent_size; 4914 } 4915 argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0); 4916 if (!argptr) { 4917 ret = -TARGET_EFAULT; 4918 } else { 4919 /* Convert the struct fiemap */ 4920 thunk_convert(argptr, fm, arg_type, THUNK_TARGET); 4921 if (fm->fm_extent_count != 0) { 4922 p = argptr + target_size_in; 4923 /* ...and then all the struct fiemap_extents */ 4924 for (i = 0; i < fm->fm_mapped_extents; i++) { 4925 thunk_convert(p, &fm->fm_extents[i], extent_arg_type, 4926 THUNK_TARGET); 4927 p += extent_size; 4928 } 4929 } 4930 unlock_user(argptr, arg, target_size_out); 4931 } 4932 } 4933 if (free_fm) { 4934 g_free(fm); 4935 } 4936 return ret; 4937 } 4938 #endif 4939 4940 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp, 4941 int fd, int cmd, abi_long arg) 4942 { 4943 const argtype *arg_type = ie->arg_type; 4944 int target_size; 4945 void *argptr; 4946 int ret; 4947 struct ifconf *host_ifconf; 4948 uint32_t outbufsz; 4949 const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) }; 4950 const argtype ifreq_max_type[] = { MK_STRUCT(STRUCT_ifmap_ifreq) }; 4951 int target_ifreq_size; 4952 int nb_ifreq; 4953 int free_buf = 0; 4954 int i; 4955 int target_ifc_len; 4956 abi_long target_ifc_buf; 4957 int host_ifc_len; 4958 char *host_ifc_buf; 4959 4960 assert(arg_type[0] == TYPE_PTR); 4961 assert(ie->access == IOC_RW); 4962 4963 arg_type++; 4964 target_size = thunk_type_size(arg_type, 0); 4965 4966 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 4967 if (!argptr) 4968 return -TARGET_EFAULT; 4969 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 4970 unlock_user(argptr, arg, 0); 4971 4972 host_ifconf = (struct ifconf *)(unsigned long)buf_temp; 4973 target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf; 4974 target_ifreq_size = thunk_type_size(ifreq_max_type, 0); 4975 4976 if (target_ifc_buf != 0) { 4977 target_ifc_len = host_ifconf->ifc_len; 4978 nb_ifreq = target_ifc_len / target_ifreq_size; 4979 host_ifc_len = nb_ifreq * sizeof(struct ifreq); 4980 4981 outbufsz = sizeof(*host_ifconf) + host_ifc_len; 4982 if (outbufsz > MAX_STRUCT_SIZE) { 4983 /* 4984 * We can't fit all the extents into the fixed size buffer. 4985 * Allocate one that is large enough and use it instead. 4986 */ 4987 host_ifconf = malloc(outbufsz); 4988 if (!host_ifconf) { 4989 return -TARGET_ENOMEM; 4990 } 4991 memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf)); 4992 free_buf = 1; 4993 } 4994 host_ifc_buf = (char *)host_ifconf + sizeof(*host_ifconf); 4995 4996 host_ifconf->ifc_len = host_ifc_len; 4997 } else { 4998 host_ifc_buf = NULL; 4999 } 5000 host_ifconf->ifc_buf = host_ifc_buf; 5001 5002 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf)); 5003 if (!is_error(ret)) { 5004 /* convert host ifc_len to target ifc_len */ 5005 5006 nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq); 5007 target_ifc_len = nb_ifreq * target_ifreq_size; 5008 host_ifconf->ifc_len = target_ifc_len; 5009 5010 /* restore target ifc_buf */ 5011 5012 host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf; 5013 5014 /* copy struct ifconf to target user */ 5015 5016 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5017 if (!argptr) 5018 return -TARGET_EFAULT; 5019 thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET); 5020 unlock_user(argptr, arg, target_size); 5021 5022 if (target_ifc_buf != 0) { 5023 /* copy ifreq[] to target user */ 5024 argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0); 5025 for (i = 0; i < nb_ifreq ; i++) { 5026 thunk_convert(argptr + i * target_ifreq_size, 5027 host_ifc_buf + i * sizeof(struct ifreq), 5028 ifreq_arg_type, THUNK_TARGET); 5029 } 5030 unlock_user(argptr, target_ifc_buf, target_ifc_len); 5031 } 5032 } 5033 5034 if (free_buf) { 5035 free(host_ifconf); 5036 } 5037 5038 return ret; 5039 } 5040 5041 #if defined(CONFIG_USBFS) 5042 #if HOST_LONG_BITS > 64 5043 #error USBDEVFS thunks do not support >64 bit hosts yet. 5044 #endif 5045 struct live_urb { 5046 uint64_t target_urb_adr; 5047 uint64_t target_buf_adr; 5048 char *target_buf_ptr; 5049 struct usbdevfs_urb host_urb; 5050 }; 5051 5052 static GHashTable *usbdevfs_urb_hashtable(void) 5053 { 5054 static GHashTable *urb_hashtable; 5055 5056 if (!urb_hashtable) { 5057 urb_hashtable = g_hash_table_new(g_int64_hash, g_int64_equal); 5058 } 5059 return urb_hashtable; 5060 } 5061 5062 static void urb_hashtable_insert(struct live_urb *urb) 5063 { 5064 GHashTable *urb_hashtable = usbdevfs_urb_hashtable(); 5065 g_hash_table_insert(urb_hashtable, urb, urb); 5066 } 5067 5068 static struct live_urb *urb_hashtable_lookup(uint64_t target_urb_adr) 5069 { 5070 GHashTable *urb_hashtable = usbdevfs_urb_hashtable(); 5071 return g_hash_table_lookup(urb_hashtable, &target_urb_adr); 5072 } 5073 5074 static void urb_hashtable_remove(struct live_urb *urb) 5075 { 5076 GHashTable *urb_hashtable = usbdevfs_urb_hashtable(); 5077 g_hash_table_remove(urb_hashtable, urb); 5078 } 5079 5080 static abi_long 5081 do_ioctl_usbdevfs_reapurb(const IOCTLEntry *ie, uint8_t *buf_temp, 5082 int fd, int cmd, abi_long arg) 5083 { 5084 const argtype usbfsurb_arg_type[] = { MK_STRUCT(STRUCT_usbdevfs_urb) }; 5085 const argtype ptrvoid_arg_type[] = { TYPE_PTRVOID, 0, 0 }; 5086 struct live_urb *lurb; 5087 void *argptr; 5088 uint64_t hurb; 5089 int target_size; 5090 uintptr_t target_urb_adr; 5091 abi_long ret; 5092 5093 target_size = thunk_type_size(usbfsurb_arg_type, THUNK_TARGET); 5094 5095 memset(buf_temp, 0, sizeof(uint64_t)); 5096 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5097 if (is_error(ret)) { 5098 return ret; 5099 } 5100 5101 memcpy(&hurb, buf_temp, sizeof(uint64_t)); 5102 lurb = (void *)((uintptr_t)hurb - offsetof(struct live_urb, host_urb)); 5103 if (!lurb->target_urb_adr) { 5104 return -TARGET_EFAULT; 5105 } 5106 urb_hashtable_remove(lurb); 5107 unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 5108 lurb->host_urb.buffer_length); 5109 lurb->target_buf_ptr = NULL; 5110 5111 /* restore the guest buffer pointer */ 5112 lurb->host_urb.buffer = (void *)(uintptr_t)lurb->target_buf_adr; 5113 5114 /* update the guest urb struct */ 5115 argptr = lock_user(VERIFY_WRITE, lurb->target_urb_adr, target_size, 0); 5116 if (!argptr) { 5117 g_free(lurb); 5118 return -TARGET_EFAULT; 5119 } 5120 thunk_convert(argptr, &lurb->host_urb, usbfsurb_arg_type, THUNK_TARGET); 5121 unlock_user(argptr, lurb->target_urb_adr, target_size); 5122 5123 target_size = thunk_type_size(ptrvoid_arg_type, THUNK_TARGET); 5124 /* write back the urb handle */ 5125 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5126 if (!argptr) { 5127 g_free(lurb); 5128 return -TARGET_EFAULT; 5129 } 5130 5131 /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */ 5132 target_urb_adr = lurb->target_urb_adr; 5133 thunk_convert(argptr, &target_urb_adr, ptrvoid_arg_type, THUNK_TARGET); 5134 unlock_user(argptr, arg, target_size); 5135 5136 g_free(lurb); 5137 return ret; 5138 } 5139 5140 static abi_long 5141 do_ioctl_usbdevfs_discardurb(const IOCTLEntry *ie, 5142 uint8_t *buf_temp __attribute__((unused)), 5143 int fd, int cmd, abi_long arg) 5144 { 5145 struct live_urb *lurb; 5146 5147 /* map target address back to host URB with metadata. */ 5148 lurb = urb_hashtable_lookup(arg); 5149 if (!lurb) { 5150 return -TARGET_EFAULT; 5151 } 5152 return get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb)); 5153 } 5154 5155 static abi_long 5156 do_ioctl_usbdevfs_submiturb(const IOCTLEntry *ie, uint8_t *buf_temp, 5157 int fd, int cmd, abi_long arg) 5158 { 5159 const argtype *arg_type = ie->arg_type; 5160 int target_size; 5161 abi_long ret; 5162 void *argptr; 5163 int rw_dir; 5164 struct live_urb *lurb; 5165 5166 /* 5167 * each submitted URB needs to map to a unique ID for the 5168 * kernel, and that unique ID needs to be a pointer to 5169 * host memory. hence, we need to malloc for each URB. 5170 * isochronous transfers have a variable length struct. 5171 */ 5172 arg_type++; 5173 target_size = thunk_type_size(arg_type, THUNK_TARGET); 5174 5175 /* construct host copy of urb and metadata */ 5176 lurb = g_try_malloc0(sizeof(struct live_urb)); 5177 if (!lurb) { 5178 return -TARGET_ENOMEM; 5179 } 5180 5181 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5182 if (!argptr) { 5183 g_free(lurb); 5184 return -TARGET_EFAULT; 5185 } 5186 thunk_convert(&lurb->host_urb, argptr, arg_type, THUNK_HOST); 5187 unlock_user(argptr, arg, 0); 5188 5189 lurb->target_urb_adr = arg; 5190 lurb->target_buf_adr = (uintptr_t)lurb->host_urb.buffer; 5191 5192 /* buffer space used depends on endpoint type so lock the entire buffer */ 5193 /* control type urbs should check the buffer contents for true direction */ 5194 rw_dir = lurb->host_urb.endpoint & USB_DIR_IN ? VERIFY_WRITE : VERIFY_READ; 5195 lurb->target_buf_ptr = lock_user(rw_dir, lurb->target_buf_adr, 5196 lurb->host_urb.buffer_length, 1); 5197 if (lurb->target_buf_ptr == NULL) { 5198 g_free(lurb); 5199 return -TARGET_EFAULT; 5200 } 5201 5202 /* update buffer pointer in host copy */ 5203 lurb->host_urb.buffer = lurb->target_buf_ptr; 5204 5205 ret = get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb)); 5206 if (is_error(ret)) { 5207 unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 0); 5208 g_free(lurb); 5209 } else { 5210 urb_hashtable_insert(lurb); 5211 } 5212 5213 return ret; 5214 } 5215 #endif /* CONFIG_USBFS */ 5216 5217 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd, 5218 int cmd, abi_long arg) 5219 { 5220 void *argptr; 5221 struct dm_ioctl *host_dm; 5222 abi_long guest_data; 5223 uint32_t guest_data_size; 5224 int target_size; 5225 const argtype *arg_type = ie->arg_type; 5226 abi_long ret; 5227 void *big_buf = NULL; 5228 char *host_data; 5229 5230 arg_type++; 5231 target_size = thunk_type_size(arg_type, 0); 5232 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5233 if (!argptr) { 5234 ret = -TARGET_EFAULT; 5235 goto out; 5236 } 5237 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5238 unlock_user(argptr, arg, 0); 5239 5240 /* buf_temp is too small, so fetch things into a bigger buffer */ 5241 big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2); 5242 memcpy(big_buf, buf_temp, target_size); 5243 buf_temp = big_buf; 5244 host_dm = big_buf; 5245 5246 guest_data = arg + host_dm->data_start; 5247 if ((guest_data - arg) < 0) { 5248 ret = -TARGET_EINVAL; 5249 goto out; 5250 } 5251 guest_data_size = host_dm->data_size - host_dm->data_start; 5252 host_data = (char*)host_dm + host_dm->data_start; 5253 5254 argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1); 5255 if (!argptr) { 5256 ret = -TARGET_EFAULT; 5257 goto out; 5258 } 5259 5260 switch (ie->host_cmd) { 5261 case DM_REMOVE_ALL: 5262 case DM_LIST_DEVICES: 5263 case DM_DEV_CREATE: 5264 case DM_DEV_REMOVE: 5265 case DM_DEV_SUSPEND: 5266 case DM_DEV_STATUS: 5267 case DM_DEV_WAIT: 5268 case DM_TABLE_STATUS: 5269 case DM_TABLE_CLEAR: 5270 case DM_TABLE_DEPS: 5271 case DM_LIST_VERSIONS: 5272 /* no input data */ 5273 break; 5274 case DM_DEV_RENAME: 5275 case DM_DEV_SET_GEOMETRY: 5276 /* data contains only strings */ 5277 memcpy(host_data, argptr, guest_data_size); 5278 break; 5279 case DM_TARGET_MSG: 5280 memcpy(host_data, argptr, guest_data_size); 5281 *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr); 5282 break; 5283 case DM_TABLE_LOAD: 5284 { 5285 void *gspec = argptr; 5286 void *cur_data = host_data; 5287 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) }; 5288 int spec_size = thunk_type_size(arg_type, 0); 5289 int i; 5290 5291 for (i = 0; i < host_dm->target_count; i++) { 5292 struct dm_target_spec *spec = cur_data; 5293 uint32_t next; 5294 int slen; 5295 5296 thunk_convert(spec, gspec, arg_type, THUNK_HOST); 5297 slen = strlen((char*)gspec + spec_size) + 1; 5298 next = spec->next; 5299 spec->next = sizeof(*spec) + slen; 5300 strcpy((char*)&spec[1], gspec + spec_size); 5301 gspec += next; 5302 cur_data += spec->next; 5303 } 5304 break; 5305 } 5306 default: 5307 ret = -TARGET_EINVAL; 5308 unlock_user(argptr, guest_data, 0); 5309 goto out; 5310 } 5311 unlock_user(argptr, guest_data, 0); 5312 5313 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5314 if (!is_error(ret)) { 5315 guest_data = arg + host_dm->data_start; 5316 guest_data_size = host_dm->data_size - host_dm->data_start; 5317 argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0); 5318 switch (ie->host_cmd) { 5319 case DM_REMOVE_ALL: 5320 case DM_DEV_CREATE: 5321 case DM_DEV_REMOVE: 5322 case DM_DEV_RENAME: 5323 case DM_DEV_SUSPEND: 5324 case DM_DEV_STATUS: 5325 case DM_TABLE_LOAD: 5326 case DM_TABLE_CLEAR: 5327 case DM_TARGET_MSG: 5328 case DM_DEV_SET_GEOMETRY: 5329 /* no return data */ 5330 break; 5331 case DM_LIST_DEVICES: 5332 { 5333 struct dm_name_list *nl = (void*)host_dm + host_dm->data_start; 5334 uint32_t remaining_data = guest_data_size; 5335 void *cur_data = argptr; 5336 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) }; 5337 int nl_size = 12; /* can't use thunk_size due to alignment */ 5338 5339 while (1) { 5340 uint32_t next = nl->next; 5341 if (next) { 5342 nl->next = nl_size + (strlen(nl->name) + 1); 5343 } 5344 if (remaining_data < nl->next) { 5345 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5346 break; 5347 } 5348 thunk_convert(cur_data, nl, arg_type, THUNK_TARGET); 5349 strcpy(cur_data + nl_size, nl->name); 5350 cur_data += nl->next; 5351 remaining_data -= nl->next; 5352 if (!next) { 5353 break; 5354 } 5355 nl = (void*)nl + next; 5356 } 5357 break; 5358 } 5359 case DM_DEV_WAIT: 5360 case DM_TABLE_STATUS: 5361 { 5362 struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start; 5363 void *cur_data = argptr; 5364 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) }; 5365 int spec_size = thunk_type_size(arg_type, 0); 5366 int i; 5367 5368 for (i = 0; i < host_dm->target_count; i++) { 5369 uint32_t next = spec->next; 5370 int slen = strlen((char*)&spec[1]) + 1; 5371 spec->next = (cur_data - argptr) + spec_size + slen; 5372 if (guest_data_size < spec->next) { 5373 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5374 break; 5375 } 5376 thunk_convert(cur_data, spec, arg_type, THUNK_TARGET); 5377 strcpy(cur_data + spec_size, (char*)&spec[1]); 5378 cur_data = argptr + spec->next; 5379 spec = (void*)host_dm + host_dm->data_start + next; 5380 } 5381 break; 5382 } 5383 case DM_TABLE_DEPS: 5384 { 5385 void *hdata = (void*)host_dm + host_dm->data_start; 5386 int count = *(uint32_t*)hdata; 5387 uint64_t *hdev = hdata + 8; 5388 uint64_t *gdev = argptr + 8; 5389 int i; 5390 5391 *(uint32_t*)argptr = tswap32(count); 5392 for (i = 0; i < count; i++) { 5393 *gdev = tswap64(*hdev); 5394 gdev++; 5395 hdev++; 5396 } 5397 break; 5398 } 5399 case DM_LIST_VERSIONS: 5400 { 5401 struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start; 5402 uint32_t remaining_data = guest_data_size; 5403 void *cur_data = argptr; 5404 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) }; 5405 int vers_size = thunk_type_size(arg_type, 0); 5406 5407 while (1) { 5408 uint32_t next = vers->next; 5409 if (next) { 5410 vers->next = vers_size + (strlen(vers->name) + 1); 5411 } 5412 if (remaining_data < vers->next) { 5413 host_dm->flags |= DM_BUFFER_FULL_FLAG; 5414 break; 5415 } 5416 thunk_convert(cur_data, vers, arg_type, THUNK_TARGET); 5417 strcpy(cur_data + vers_size, vers->name); 5418 cur_data += vers->next; 5419 remaining_data -= vers->next; 5420 if (!next) { 5421 break; 5422 } 5423 vers = (void*)vers + next; 5424 } 5425 break; 5426 } 5427 default: 5428 unlock_user(argptr, guest_data, 0); 5429 ret = -TARGET_EINVAL; 5430 goto out; 5431 } 5432 unlock_user(argptr, guest_data, guest_data_size); 5433 5434 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5435 if (!argptr) { 5436 ret = -TARGET_EFAULT; 5437 goto out; 5438 } 5439 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5440 unlock_user(argptr, arg, target_size); 5441 } 5442 out: 5443 g_free(big_buf); 5444 return ret; 5445 } 5446 5447 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd, 5448 int cmd, abi_long arg) 5449 { 5450 void *argptr; 5451 int target_size; 5452 const argtype *arg_type = ie->arg_type; 5453 const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) }; 5454 abi_long ret; 5455 5456 struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp; 5457 struct blkpg_partition host_part; 5458 5459 /* Read and convert blkpg */ 5460 arg_type++; 5461 target_size = thunk_type_size(arg_type, 0); 5462 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5463 if (!argptr) { 5464 ret = -TARGET_EFAULT; 5465 goto out; 5466 } 5467 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5468 unlock_user(argptr, arg, 0); 5469 5470 switch (host_blkpg->op) { 5471 case BLKPG_ADD_PARTITION: 5472 case BLKPG_DEL_PARTITION: 5473 /* payload is struct blkpg_partition */ 5474 break; 5475 default: 5476 /* Unknown opcode */ 5477 ret = -TARGET_EINVAL; 5478 goto out; 5479 } 5480 5481 /* Read and convert blkpg->data */ 5482 arg = (abi_long)(uintptr_t)host_blkpg->data; 5483 target_size = thunk_type_size(part_arg_type, 0); 5484 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5485 if (!argptr) { 5486 ret = -TARGET_EFAULT; 5487 goto out; 5488 } 5489 thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST); 5490 unlock_user(argptr, arg, 0); 5491 5492 /* Swizzle the data pointer to our local copy and call! */ 5493 host_blkpg->data = &host_part; 5494 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg)); 5495 5496 out: 5497 return ret; 5498 } 5499 5500 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp, 5501 int fd, int cmd, abi_long arg) 5502 { 5503 const argtype *arg_type = ie->arg_type; 5504 const StructEntry *se; 5505 const argtype *field_types; 5506 const int *dst_offsets, *src_offsets; 5507 int target_size; 5508 void *argptr; 5509 abi_ulong *target_rt_dev_ptr = NULL; 5510 unsigned long *host_rt_dev_ptr = NULL; 5511 abi_long ret; 5512 int i; 5513 5514 assert(ie->access == IOC_W); 5515 assert(*arg_type == TYPE_PTR); 5516 arg_type++; 5517 assert(*arg_type == TYPE_STRUCT); 5518 target_size = thunk_type_size(arg_type, 0); 5519 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5520 if (!argptr) { 5521 return -TARGET_EFAULT; 5522 } 5523 arg_type++; 5524 assert(*arg_type == (int)STRUCT_rtentry); 5525 se = struct_entries + *arg_type++; 5526 assert(se->convert[0] == NULL); 5527 /* convert struct here to be able to catch rt_dev string */ 5528 field_types = se->field_types; 5529 dst_offsets = se->field_offsets[THUNK_HOST]; 5530 src_offsets = se->field_offsets[THUNK_TARGET]; 5531 for (i = 0; i < se->nb_fields; i++) { 5532 if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) { 5533 assert(*field_types == TYPE_PTRVOID); 5534 target_rt_dev_ptr = (abi_ulong *)(argptr + src_offsets[i]); 5535 host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]); 5536 if (*target_rt_dev_ptr != 0) { 5537 *host_rt_dev_ptr = (unsigned long)lock_user_string( 5538 tswapal(*target_rt_dev_ptr)); 5539 if (!*host_rt_dev_ptr) { 5540 unlock_user(argptr, arg, 0); 5541 return -TARGET_EFAULT; 5542 } 5543 } else { 5544 *host_rt_dev_ptr = 0; 5545 } 5546 field_types++; 5547 continue; 5548 } 5549 field_types = thunk_convert(buf_temp + dst_offsets[i], 5550 argptr + src_offsets[i], 5551 field_types, THUNK_HOST); 5552 } 5553 unlock_user(argptr, arg, 0); 5554 5555 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5556 5557 assert(host_rt_dev_ptr != NULL); 5558 assert(target_rt_dev_ptr != NULL); 5559 if (*host_rt_dev_ptr != 0) { 5560 unlock_user((void *)*host_rt_dev_ptr, 5561 *target_rt_dev_ptr, 0); 5562 } 5563 return ret; 5564 } 5565 5566 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp, 5567 int fd, int cmd, abi_long arg) 5568 { 5569 int sig = target_to_host_signal(arg); 5570 return get_errno(safe_ioctl(fd, ie->host_cmd, sig)); 5571 } 5572 5573 static abi_long do_ioctl_SIOCGSTAMP(const IOCTLEntry *ie, uint8_t *buf_temp, 5574 int fd, int cmd, abi_long arg) 5575 { 5576 struct timeval tv; 5577 abi_long ret; 5578 5579 ret = get_errno(safe_ioctl(fd, SIOCGSTAMP, &tv)); 5580 if (is_error(ret)) { 5581 return ret; 5582 } 5583 5584 if (cmd == (int)TARGET_SIOCGSTAMP_OLD) { 5585 if (copy_to_user_timeval(arg, &tv)) { 5586 return -TARGET_EFAULT; 5587 } 5588 } else { 5589 if (copy_to_user_timeval64(arg, &tv)) { 5590 return -TARGET_EFAULT; 5591 } 5592 } 5593 5594 return ret; 5595 } 5596 5597 static abi_long do_ioctl_SIOCGSTAMPNS(const IOCTLEntry *ie, uint8_t *buf_temp, 5598 int fd, int cmd, abi_long arg) 5599 { 5600 struct timespec ts; 5601 abi_long ret; 5602 5603 ret = get_errno(safe_ioctl(fd, SIOCGSTAMPNS, &ts)); 5604 if (is_error(ret)) { 5605 return ret; 5606 } 5607 5608 if (cmd == (int)TARGET_SIOCGSTAMPNS_OLD) { 5609 if (host_to_target_timespec(arg, &ts)) { 5610 return -TARGET_EFAULT; 5611 } 5612 } else{ 5613 if (host_to_target_timespec64(arg, &ts)) { 5614 return -TARGET_EFAULT; 5615 } 5616 } 5617 5618 return ret; 5619 } 5620 5621 #ifdef TIOCGPTPEER 5622 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp, 5623 int fd, int cmd, abi_long arg) 5624 { 5625 int flags = target_to_host_bitmask(arg, fcntl_flags_tbl); 5626 return get_errno(safe_ioctl(fd, ie->host_cmd, flags)); 5627 } 5628 #endif 5629 5630 #ifdef HAVE_DRM_H 5631 5632 static void unlock_drm_version(struct drm_version *host_ver, 5633 struct target_drm_version *target_ver, 5634 bool copy) 5635 { 5636 unlock_user(host_ver->name, target_ver->name, 5637 copy ? host_ver->name_len : 0); 5638 unlock_user(host_ver->date, target_ver->date, 5639 copy ? host_ver->date_len : 0); 5640 unlock_user(host_ver->desc, target_ver->desc, 5641 copy ? host_ver->desc_len : 0); 5642 } 5643 5644 static inline abi_long target_to_host_drmversion(struct drm_version *host_ver, 5645 struct target_drm_version *target_ver) 5646 { 5647 memset(host_ver, 0, sizeof(*host_ver)); 5648 5649 __get_user(host_ver->name_len, &target_ver->name_len); 5650 if (host_ver->name_len) { 5651 host_ver->name = lock_user(VERIFY_WRITE, target_ver->name, 5652 target_ver->name_len, 0); 5653 if (!host_ver->name) { 5654 return -EFAULT; 5655 } 5656 } 5657 5658 __get_user(host_ver->date_len, &target_ver->date_len); 5659 if (host_ver->date_len) { 5660 host_ver->date = lock_user(VERIFY_WRITE, target_ver->date, 5661 target_ver->date_len, 0); 5662 if (!host_ver->date) { 5663 goto err; 5664 } 5665 } 5666 5667 __get_user(host_ver->desc_len, &target_ver->desc_len); 5668 if (host_ver->desc_len) { 5669 host_ver->desc = lock_user(VERIFY_WRITE, target_ver->desc, 5670 target_ver->desc_len, 0); 5671 if (!host_ver->desc) { 5672 goto err; 5673 } 5674 } 5675 5676 return 0; 5677 err: 5678 unlock_drm_version(host_ver, target_ver, false); 5679 return -EFAULT; 5680 } 5681 5682 static inline void host_to_target_drmversion( 5683 struct target_drm_version *target_ver, 5684 struct drm_version *host_ver) 5685 { 5686 __put_user(host_ver->version_major, &target_ver->version_major); 5687 __put_user(host_ver->version_minor, &target_ver->version_minor); 5688 __put_user(host_ver->version_patchlevel, &target_ver->version_patchlevel); 5689 __put_user(host_ver->name_len, &target_ver->name_len); 5690 __put_user(host_ver->date_len, &target_ver->date_len); 5691 __put_user(host_ver->desc_len, &target_ver->desc_len); 5692 unlock_drm_version(host_ver, target_ver, true); 5693 } 5694 5695 static abi_long do_ioctl_drm(const IOCTLEntry *ie, uint8_t *buf_temp, 5696 int fd, int cmd, abi_long arg) 5697 { 5698 struct drm_version *ver; 5699 struct target_drm_version *target_ver; 5700 abi_long ret; 5701 5702 switch (ie->host_cmd) { 5703 case DRM_IOCTL_VERSION: 5704 if (!lock_user_struct(VERIFY_WRITE, target_ver, arg, 0)) { 5705 return -TARGET_EFAULT; 5706 } 5707 ver = (struct drm_version *)buf_temp; 5708 ret = target_to_host_drmversion(ver, target_ver); 5709 if (!is_error(ret)) { 5710 ret = get_errno(safe_ioctl(fd, ie->host_cmd, ver)); 5711 if (is_error(ret)) { 5712 unlock_drm_version(ver, target_ver, false); 5713 } else { 5714 host_to_target_drmversion(target_ver, ver); 5715 } 5716 } 5717 unlock_user_struct(target_ver, arg, 0); 5718 return ret; 5719 } 5720 return -TARGET_ENOSYS; 5721 } 5722 5723 static abi_long do_ioctl_drm_i915_getparam(const IOCTLEntry *ie, 5724 struct drm_i915_getparam *gparam, 5725 int fd, abi_long arg) 5726 { 5727 abi_long ret; 5728 int value; 5729 struct target_drm_i915_getparam *target_gparam; 5730 5731 if (!lock_user_struct(VERIFY_READ, target_gparam, arg, 0)) { 5732 return -TARGET_EFAULT; 5733 } 5734 5735 __get_user(gparam->param, &target_gparam->param); 5736 gparam->value = &value; 5737 ret = get_errno(safe_ioctl(fd, ie->host_cmd, gparam)); 5738 put_user_s32(value, target_gparam->value); 5739 5740 unlock_user_struct(target_gparam, arg, 0); 5741 return ret; 5742 } 5743 5744 static abi_long do_ioctl_drm_i915(const IOCTLEntry *ie, uint8_t *buf_temp, 5745 int fd, int cmd, abi_long arg) 5746 { 5747 switch (ie->host_cmd) { 5748 case DRM_IOCTL_I915_GETPARAM: 5749 return do_ioctl_drm_i915_getparam(ie, 5750 (struct drm_i915_getparam *)buf_temp, 5751 fd, arg); 5752 default: 5753 return -TARGET_ENOSYS; 5754 } 5755 } 5756 5757 #endif 5758 5759 static abi_long do_ioctl_TUNSETTXFILTER(const IOCTLEntry *ie, uint8_t *buf_temp, 5760 int fd, int cmd, abi_long arg) 5761 { 5762 struct tun_filter *filter = (struct tun_filter *)buf_temp; 5763 struct tun_filter *target_filter; 5764 char *target_addr; 5765 5766 assert(ie->access == IOC_W); 5767 5768 target_filter = lock_user(VERIFY_READ, arg, sizeof(*target_filter), 1); 5769 if (!target_filter) { 5770 return -TARGET_EFAULT; 5771 } 5772 filter->flags = tswap16(target_filter->flags); 5773 filter->count = tswap16(target_filter->count); 5774 unlock_user(target_filter, arg, 0); 5775 5776 if (filter->count) { 5777 if (offsetof(struct tun_filter, addr) + filter->count * ETH_ALEN > 5778 MAX_STRUCT_SIZE) { 5779 return -TARGET_EFAULT; 5780 } 5781 5782 target_addr = lock_user(VERIFY_READ, 5783 arg + offsetof(struct tun_filter, addr), 5784 filter->count * ETH_ALEN, 1); 5785 if (!target_addr) { 5786 return -TARGET_EFAULT; 5787 } 5788 memcpy(filter->addr, target_addr, filter->count * ETH_ALEN); 5789 unlock_user(target_addr, arg + offsetof(struct tun_filter, addr), 0); 5790 } 5791 5792 return get_errno(safe_ioctl(fd, ie->host_cmd, filter)); 5793 } 5794 5795 IOCTLEntry ioctl_entries[] = { 5796 #define IOCTL(cmd, access, ...) \ 5797 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } }, 5798 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \ 5799 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } }, 5800 #define IOCTL_IGNORE(cmd) \ 5801 { TARGET_ ## cmd, 0, #cmd }, 5802 #include "ioctls.h" 5803 { 0, 0, }, 5804 }; 5805 5806 /* ??? Implement proper locking for ioctls. */ 5807 /* do_ioctl() Must return target values and target errnos. */ 5808 static abi_long do_ioctl(int fd, int cmd, abi_long arg) 5809 { 5810 const IOCTLEntry *ie; 5811 const argtype *arg_type; 5812 abi_long ret; 5813 uint8_t buf_temp[MAX_STRUCT_SIZE]; 5814 int target_size; 5815 void *argptr; 5816 5817 ie = ioctl_entries; 5818 for(;;) { 5819 if (ie->target_cmd == 0) { 5820 qemu_log_mask( 5821 LOG_UNIMP, "Unsupported ioctl: cmd=0x%04lx\n", (long)cmd); 5822 return -TARGET_ENOSYS; 5823 } 5824 if (ie->target_cmd == cmd) 5825 break; 5826 ie++; 5827 } 5828 arg_type = ie->arg_type; 5829 if (ie->do_ioctl) { 5830 return ie->do_ioctl(ie, buf_temp, fd, cmd, arg); 5831 } else if (!ie->host_cmd) { 5832 /* Some architectures define BSD ioctls in their headers 5833 that are not implemented in Linux. */ 5834 return -TARGET_ENOSYS; 5835 } 5836 5837 switch(arg_type[0]) { 5838 case TYPE_NULL: 5839 /* no argument */ 5840 ret = get_errno(safe_ioctl(fd, ie->host_cmd)); 5841 break; 5842 case TYPE_PTRVOID: 5843 case TYPE_INT: 5844 case TYPE_LONG: 5845 case TYPE_ULONG: 5846 ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg)); 5847 break; 5848 case TYPE_PTR: 5849 arg_type++; 5850 target_size = thunk_type_size(arg_type, 0); 5851 switch(ie->access) { 5852 case IOC_R: 5853 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5854 if (!is_error(ret)) { 5855 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5856 if (!argptr) 5857 return -TARGET_EFAULT; 5858 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5859 unlock_user(argptr, arg, target_size); 5860 } 5861 break; 5862 case IOC_W: 5863 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5864 if (!argptr) 5865 return -TARGET_EFAULT; 5866 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5867 unlock_user(argptr, arg, 0); 5868 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5869 break; 5870 default: 5871 case IOC_RW: 5872 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 5873 if (!argptr) 5874 return -TARGET_EFAULT; 5875 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 5876 unlock_user(argptr, arg, 0); 5877 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp)); 5878 if (!is_error(ret)) { 5879 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 5880 if (!argptr) 5881 return -TARGET_EFAULT; 5882 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 5883 unlock_user(argptr, arg, target_size); 5884 } 5885 break; 5886 } 5887 break; 5888 default: 5889 qemu_log_mask(LOG_UNIMP, 5890 "Unsupported ioctl type: cmd=0x%04lx type=%d\n", 5891 (long)cmd, arg_type[0]); 5892 ret = -TARGET_ENOSYS; 5893 break; 5894 } 5895 return ret; 5896 } 5897 5898 static const bitmask_transtbl iflag_tbl[] = { 5899 { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK }, 5900 { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT }, 5901 { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR }, 5902 { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK }, 5903 { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK }, 5904 { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP }, 5905 { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR }, 5906 { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR }, 5907 { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL }, 5908 { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC }, 5909 { TARGET_IXON, TARGET_IXON, IXON, IXON }, 5910 { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY }, 5911 { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF }, 5912 { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL }, 5913 { TARGET_IUTF8, TARGET_IUTF8, IUTF8, IUTF8}, 5914 { 0, 0, 0, 0 } 5915 }; 5916 5917 static const bitmask_transtbl oflag_tbl[] = { 5918 { TARGET_OPOST, TARGET_OPOST, OPOST, OPOST }, 5919 { TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC }, 5920 { TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR }, 5921 { TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL }, 5922 { TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR }, 5923 { TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET }, 5924 { TARGET_OFILL, TARGET_OFILL, OFILL, OFILL }, 5925 { TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL }, 5926 { TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 }, 5927 { TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 }, 5928 { TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 }, 5929 { TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 }, 5930 { TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 }, 5931 { TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 }, 5932 { TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 }, 5933 { TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 }, 5934 { TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 }, 5935 { TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 }, 5936 { TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 }, 5937 { TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 }, 5938 { TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 }, 5939 { TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 }, 5940 { TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 }, 5941 { TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 }, 5942 { 0, 0, 0, 0 } 5943 }; 5944 5945 static const bitmask_transtbl cflag_tbl[] = { 5946 { TARGET_CBAUD, TARGET_B0, CBAUD, B0 }, 5947 { TARGET_CBAUD, TARGET_B50, CBAUD, B50 }, 5948 { TARGET_CBAUD, TARGET_B75, CBAUD, B75 }, 5949 { TARGET_CBAUD, TARGET_B110, CBAUD, B110 }, 5950 { TARGET_CBAUD, TARGET_B134, CBAUD, B134 }, 5951 { TARGET_CBAUD, TARGET_B150, CBAUD, B150 }, 5952 { TARGET_CBAUD, TARGET_B200, CBAUD, B200 }, 5953 { TARGET_CBAUD, TARGET_B300, CBAUD, B300 }, 5954 { TARGET_CBAUD, TARGET_B600, CBAUD, B600 }, 5955 { TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 }, 5956 { TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 }, 5957 { TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 }, 5958 { TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 }, 5959 { TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 }, 5960 { TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 }, 5961 { TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 }, 5962 { TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 }, 5963 { TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 }, 5964 { TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 }, 5965 { TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 }, 5966 { TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 }, 5967 { TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 }, 5968 { TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 }, 5969 { TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 }, 5970 { TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB }, 5971 { TARGET_CREAD, TARGET_CREAD, CREAD, CREAD }, 5972 { TARGET_PARENB, TARGET_PARENB, PARENB, PARENB }, 5973 { TARGET_PARODD, TARGET_PARODD, PARODD, PARODD }, 5974 { TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL }, 5975 { TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL }, 5976 { TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS }, 5977 { 0, 0, 0, 0 } 5978 }; 5979 5980 static const bitmask_transtbl lflag_tbl[] = { 5981 { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG }, 5982 { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON }, 5983 { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE }, 5984 { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO }, 5985 { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE }, 5986 { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK }, 5987 { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL }, 5988 { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH }, 5989 { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP }, 5990 { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL }, 5991 { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT }, 5992 { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE }, 5993 { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO }, 5994 { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN }, 5995 { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN }, 5996 { TARGET_EXTPROC, TARGET_EXTPROC, EXTPROC, EXTPROC}, 5997 { 0, 0, 0, 0 } 5998 }; 5999 6000 static void target_to_host_termios (void *dst, const void *src) 6001 { 6002 struct host_termios *host = dst; 6003 const struct target_termios *target = src; 6004 6005 host->c_iflag = 6006 target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl); 6007 host->c_oflag = 6008 target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl); 6009 host->c_cflag = 6010 target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl); 6011 host->c_lflag = 6012 target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl); 6013 host->c_line = target->c_line; 6014 6015 memset(host->c_cc, 0, sizeof(host->c_cc)); 6016 host->c_cc[VINTR] = target->c_cc[TARGET_VINTR]; 6017 host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT]; 6018 host->c_cc[VERASE] = target->c_cc[TARGET_VERASE]; 6019 host->c_cc[VKILL] = target->c_cc[TARGET_VKILL]; 6020 host->c_cc[VEOF] = target->c_cc[TARGET_VEOF]; 6021 host->c_cc[VTIME] = target->c_cc[TARGET_VTIME]; 6022 host->c_cc[VMIN] = target->c_cc[TARGET_VMIN]; 6023 host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC]; 6024 host->c_cc[VSTART] = target->c_cc[TARGET_VSTART]; 6025 host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP]; 6026 host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP]; 6027 host->c_cc[VEOL] = target->c_cc[TARGET_VEOL]; 6028 host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT]; 6029 host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD]; 6030 host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE]; 6031 host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT]; 6032 host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2]; 6033 } 6034 6035 static void host_to_target_termios (void *dst, const void *src) 6036 { 6037 struct target_termios *target = dst; 6038 const struct host_termios *host = src; 6039 6040 target->c_iflag = 6041 tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl)); 6042 target->c_oflag = 6043 tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl)); 6044 target->c_cflag = 6045 tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl)); 6046 target->c_lflag = 6047 tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl)); 6048 target->c_line = host->c_line; 6049 6050 memset(target->c_cc, 0, sizeof(target->c_cc)); 6051 target->c_cc[TARGET_VINTR] = host->c_cc[VINTR]; 6052 target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT]; 6053 target->c_cc[TARGET_VERASE] = host->c_cc[VERASE]; 6054 target->c_cc[TARGET_VKILL] = host->c_cc[VKILL]; 6055 target->c_cc[TARGET_VEOF] = host->c_cc[VEOF]; 6056 target->c_cc[TARGET_VTIME] = host->c_cc[VTIME]; 6057 target->c_cc[TARGET_VMIN] = host->c_cc[VMIN]; 6058 target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC]; 6059 target->c_cc[TARGET_VSTART] = host->c_cc[VSTART]; 6060 target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP]; 6061 target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP]; 6062 target->c_cc[TARGET_VEOL] = host->c_cc[VEOL]; 6063 target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT]; 6064 target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD]; 6065 target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE]; 6066 target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT]; 6067 target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2]; 6068 } 6069 6070 static const StructEntry struct_termios_def = { 6071 .convert = { host_to_target_termios, target_to_host_termios }, 6072 .size = { sizeof(struct target_termios), sizeof(struct host_termios) }, 6073 .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) }, 6074 .print = print_termios, 6075 }; 6076 6077 static const bitmask_transtbl mmap_flags_tbl[] = { 6078 { TARGET_MAP_SHARED, TARGET_MAP_SHARED, MAP_SHARED, MAP_SHARED }, 6079 { TARGET_MAP_PRIVATE, TARGET_MAP_PRIVATE, MAP_PRIVATE, MAP_PRIVATE }, 6080 { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED }, 6081 { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS, 6082 MAP_ANONYMOUS, MAP_ANONYMOUS }, 6083 { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN, 6084 MAP_GROWSDOWN, MAP_GROWSDOWN }, 6085 { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE, 6086 MAP_DENYWRITE, MAP_DENYWRITE }, 6087 { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE, 6088 MAP_EXECUTABLE, MAP_EXECUTABLE }, 6089 { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED }, 6090 { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE, 6091 MAP_NORESERVE, MAP_NORESERVE }, 6092 { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB }, 6093 /* MAP_STACK had been ignored by the kernel for quite some time. 6094 Recognize it for the target insofar as we do not want to pass 6095 it through to the host. */ 6096 { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 }, 6097 { 0, 0, 0, 0 } 6098 }; 6099 6100 /* 6101 * NOTE: TARGET_ABI32 is defined for TARGET_I386 (but not for TARGET_X86_64) 6102 * TARGET_I386 is defined if TARGET_X86_64 is defined 6103 */ 6104 #if defined(TARGET_I386) 6105 6106 /* NOTE: there is really one LDT for all the threads */ 6107 static uint8_t *ldt_table; 6108 6109 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount) 6110 { 6111 int size; 6112 void *p; 6113 6114 if (!ldt_table) 6115 return 0; 6116 size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE; 6117 if (size > bytecount) 6118 size = bytecount; 6119 p = lock_user(VERIFY_WRITE, ptr, size, 0); 6120 if (!p) 6121 return -TARGET_EFAULT; 6122 /* ??? Should this by byteswapped? */ 6123 memcpy(p, ldt_table, size); 6124 unlock_user(p, ptr, size); 6125 return size; 6126 } 6127 6128 /* XXX: add locking support */ 6129 static abi_long write_ldt(CPUX86State *env, 6130 abi_ulong ptr, unsigned long bytecount, int oldmode) 6131 { 6132 struct target_modify_ldt_ldt_s ldt_info; 6133 struct target_modify_ldt_ldt_s *target_ldt_info; 6134 int seg_32bit, contents, read_exec_only, limit_in_pages; 6135 int seg_not_present, useable, lm; 6136 uint32_t *lp, entry_1, entry_2; 6137 6138 if (bytecount != sizeof(ldt_info)) 6139 return -TARGET_EINVAL; 6140 if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1)) 6141 return -TARGET_EFAULT; 6142 ldt_info.entry_number = tswap32(target_ldt_info->entry_number); 6143 ldt_info.base_addr = tswapal(target_ldt_info->base_addr); 6144 ldt_info.limit = tswap32(target_ldt_info->limit); 6145 ldt_info.flags = tswap32(target_ldt_info->flags); 6146 unlock_user_struct(target_ldt_info, ptr, 0); 6147 6148 if (ldt_info.entry_number >= TARGET_LDT_ENTRIES) 6149 return -TARGET_EINVAL; 6150 seg_32bit = ldt_info.flags & 1; 6151 contents = (ldt_info.flags >> 1) & 3; 6152 read_exec_only = (ldt_info.flags >> 3) & 1; 6153 limit_in_pages = (ldt_info.flags >> 4) & 1; 6154 seg_not_present = (ldt_info.flags >> 5) & 1; 6155 useable = (ldt_info.flags >> 6) & 1; 6156 #ifdef TARGET_ABI32 6157 lm = 0; 6158 #else 6159 lm = (ldt_info.flags >> 7) & 1; 6160 #endif 6161 if (contents == 3) { 6162 if (oldmode) 6163 return -TARGET_EINVAL; 6164 if (seg_not_present == 0) 6165 return -TARGET_EINVAL; 6166 } 6167 /* allocate the LDT */ 6168 if (!ldt_table) { 6169 env->ldt.base = target_mmap(0, 6170 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE, 6171 PROT_READ|PROT_WRITE, 6172 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 6173 if (env->ldt.base == -1) 6174 return -TARGET_ENOMEM; 6175 memset(g2h_untagged(env->ldt.base), 0, 6176 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE); 6177 env->ldt.limit = 0xffff; 6178 ldt_table = g2h_untagged(env->ldt.base); 6179 } 6180 6181 /* NOTE: same code as Linux kernel */ 6182 /* Allow LDTs to be cleared by the user. */ 6183 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) { 6184 if (oldmode || 6185 (contents == 0 && 6186 read_exec_only == 1 && 6187 seg_32bit == 0 && 6188 limit_in_pages == 0 && 6189 seg_not_present == 1 && 6190 useable == 0 )) { 6191 entry_1 = 0; 6192 entry_2 = 0; 6193 goto install; 6194 } 6195 } 6196 6197 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) | 6198 (ldt_info.limit & 0x0ffff); 6199 entry_2 = (ldt_info.base_addr & 0xff000000) | 6200 ((ldt_info.base_addr & 0x00ff0000) >> 16) | 6201 (ldt_info.limit & 0xf0000) | 6202 ((read_exec_only ^ 1) << 9) | 6203 (contents << 10) | 6204 ((seg_not_present ^ 1) << 15) | 6205 (seg_32bit << 22) | 6206 (limit_in_pages << 23) | 6207 (lm << 21) | 6208 0x7000; 6209 if (!oldmode) 6210 entry_2 |= (useable << 20); 6211 6212 /* Install the new entry ... */ 6213 install: 6214 lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3)); 6215 lp[0] = tswap32(entry_1); 6216 lp[1] = tswap32(entry_2); 6217 return 0; 6218 } 6219 6220 /* specific and weird i386 syscalls */ 6221 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr, 6222 unsigned long bytecount) 6223 { 6224 abi_long ret; 6225 6226 switch (func) { 6227 case 0: 6228 ret = read_ldt(ptr, bytecount); 6229 break; 6230 case 1: 6231 ret = write_ldt(env, ptr, bytecount, 1); 6232 break; 6233 case 0x11: 6234 ret = write_ldt(env, ptr, bytecount, 0); 6235 break; 6236 default: 6237 ret = -TARGET_ENOSYS; 6238 break; 6239 } 6240 return ret; 6241 } 6242 6243 #if defined(TARGET_ABI32) 6244 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr) 6245 { 6246 uint64_t *gdt_table = g2h_untagged(env->gdt.base); 6247 struct target_modify_ldt_ldt_s ldt_info; 6248 struct target_modify_ldt_ldt_s *target_ldt_info; 6249 int seg_32bit, contents, read_exec_only, limit_in_pages; 6250 int seg_not_present, useable, lm; 6251 uint32_t *lp, entry_1, entry_2; 6252 int i; 6253 6254 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1); 6255 if (!target_ldt_info) 6256 return -TARGET_EFAULT; 6257 ldt_info.entry_number = tswap32(target_ldt_info->entry_number); 6258 ldt_info.base_addr = tswapal(target_ldt_info->base_addr); 6259 ldt_info.limit = tswap32(target_ldt_info->limit); 6260 ldt_info.flags = tswap32(target_ldt_info->flags); 6261 if (ldt_info.entry_number == -1) { 6262 for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) { 6263 if (gdt_table[i] == 0) { 6264 ldt_info.entry_number = i; 6265 target_ldt_info->entry_number = tswap32(i); 6266 break; 6267 } 6268 } 6269 } 6270 unlock_user_struct(target_ldt_info, ptr, 1); 6271 6272 if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN || 6273 ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX) 6274 return -TARGET_EINVAL; 6275 seg_32bit = ldt_info.flags & 1; 6276 contents = (ldt_info.flags >> 1) & 3; 6277 read_exec_only = (ldt_info.flags >> 3) & 1; 6278 limit_in_pages = (ldt_info.flags >> 4) & 1; 6279 seg_not_present = (ldt_info.flags >> 5) & 1; 6280 useable = (ldt_info.flags >> 6) & 1; 6281 #ifdef TARGET_ABI32 6282 lm = 0; 6283 #else 6284 lm = (ldt_info.flags >> 7) & 1; 6285 #endif 6286 6287 if (contents == 3) { 6288 if (seg_not_present == 0) 6289 return -TARGET_EINVAL; 6290 } 6291 6292 /* NOTE: same code as Linux kernel */ 6293 /* Allow LDTs to be cleared by the user. */ 6294 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) { 6295 if ((contents == 0 && 6296 read_exec_only == 1 && 6297 seg_32bit == 0 && 6298 limit_in_pages == 0 && 6299 seg_not_present == 1 && 6300 useable == 0 )) { 6301 entry_1 = 0; 6302 entry_2 = 0; 6303 goto install; 6304 } 6305 } 6306 6307 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) | 6308 (ldt_info.limit & 0x0ffff); 6309 entry_2 = (ldt_info.base_addr & 0xff000000) | 6310 ((ldt_info.base_addr & 0x00ff0000) >> 16) | 6311 (ldt_info.limit & 0xf0000) | 6312 ((read_exec_only ^ 1) << 9) | 6313 (contents << 10) | 6314 ((seg_not_present ^ 1) << 15) | 6315 (seg_32bit << 22) | 6316 (limit_in_pages << 23) | 6317 (useable << 20) | 6318 (lm << 21) | 6319 0x7000; 6320 6321 /* Install the new entry ... */ 6322 install: 6323 lp = (uint32_t *)(gdt_table + ldt_info.entry_number); 6324 lp[0] = tswap32(entry_1); 6325 lp[1] = tswap32(entry_2); 6326 return 0; 6327 } 6328 6329 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr) 6330 { 6331 struct target_modify_ldt_ldt_s *target_ldt_info; 6332 uint64_t *gdt_table = g2h_untagged(env->gdt.base); 6333 uint32_t base_addr, limit, flags; 6334 int seg_32bit, contents, read_exec_only, limit_in_pages, idx; 6335 int seg_not_present, useable, lm; 6336 uint32_t *lp, entry_1, entry_2; 6337 6338 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1); 6339 if (!target_ldt_info) 6340 return -TARGET_EFAULT; 6341 idx = tswap32(target_ldt_info->entry_number); 6342 if (idx < TARGET_GDT_ENTRY_TLS_MIN || 6343 idx > TARGET_GDT_ENTRY_TLS_MAX) { 6344 unlock_user_struct(target_ldt_info, ptr, 1); 6345 return -TARGET_EINVAL; 6346 } 6347 lp = (uint32_t *)(gdt_table + idx); 6348 entry_1 = tswap32(lp[0]); 6349 entry_2 = tswap32(lp[1]); 6350 6351 read_exec_only = ((entry_2 >> 9) & 1) ^ 1; 6352 contents = (entry_2 >> 10) & 3; 6353 seg_not_present = ((entry_2 >> 15) & 1) ^ 1; 6354 seg_32bit = (entry_2 >> 22) & 1; 6355 limit_in_pages = (entry_2 >> 23) & 1; 6356 useable = (entry_2 >> 20) & 1; 6357 #ifdef TARGET_ABI32 6358 lm = 0; 6359 #else 6360 lm = (entry_2 >> 21) & 1; 6361 #endif 6362 flags = (seg_32bit << 0) | (contents << 1) | 6363 (read_exec_only << 3) | (limit_in_pages << 4) | 6364 (seg_not_present << 5) | (useable << 6) | (lm << 7); 6365 limit = (entry_1 & 0xffff) | (entry_2 & 0xf0000); 6366 base_addr = (entry_1 >> 16) | 6367 (entry_2 & 0xff000000) | 6368 ((entry_2 & 0xff) << 16); 6369 target_ldt_info->base_addr = tswapal(base_addr); 6370 target_ldt_info->limit = tswap32(limit); 6371 target_ldt_info->flags = tswap32(flags); 6372 unlock_user_struct(target_ldt_info, ptr, 1); 6373 return 0; 6374 } 6375 6376 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr) 6377 { 6378 return -TARGET_ENOSYS; 6379 } 6380 #else 6381 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr) 6382 { 6383 abi_long ret = 0; 6384 abi_ulong val; 6385 int idx; 6386 6387 switch(code) { 6388 case TARGET_ARCH_SET_GS: 6389 case TARGET_ARCH_SET_FS: 6390 if (code == TARGET_ARCH_SET_GS) 6391 idx = R_GS; 6392 else 6393 idx = R_FS; 6394 cpu_x86_load_seg(env, idx, 0); 6395 env->segs[idx].base = addr; 6396 break; 6397 case TARGET_ARCH_GET_GS: 6398 case TARGET_ARCH_GET_FS: 6399 if (code == TARGET_ARCH_GET_GS) 6400 idx = R_GS; 6401 else 6402 idx = R_FS; 6403 val = env->segs[idx].base; 6404 if (put_user(val, addr, abi_ulong)) 6405 ret = -TARGET_EFAULT; 6406 break; 6407 default: 6408 ret = -TARGET_EINVAL; 6409 break; 6410 } 6411 return ret; 6412 } 6413 #endif /* defined(TARGET_ABI32 */ 6414 6415 #endif /* defined(TARGET_I386) */ 6416 6417 #define NEW_STACK_SIZE 0x40000 6418 6419 6420 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER; 6421 typedef struct { 6422 CPUArchState *env; 6423 pthread_mutex_t mutex; 6424 pthread_cond_t cond; 6425 pthread_t thread; 6426 uint32_t tid; 6427 abi_ulong child_tidptr; 6428 abi_ulong parent_tidptr; 6429 sigset_t sigmask; 6430 } new_thread_info; 6431 6432 static void *clone_func(void *arg) 6433 { 6434 new_thread_info *info = arg; 6435 CPUArchState *env; 6436 CPUState *cpu; 6437 TaskState *ts; 6438 6439 rcu_register_thread(); 6440 tcg_register_thread(); 6441 env = info->env; 6442 cpu = env_cpu(env); 6443 thread_cpu = cpu; 6444 ts = (TaskState *)cpu->opaque; 6445 info->tid = sys_gettid(); 6446 task_settid(ts); 6447 if (info->child_tidptr) 6448 put_user_u32(info->tid, info->child_tidptr); 6449 if (info->parent_tidptr) 6450 put_user_u32(info->tid, info->parent_tidptr); 6451 qemu_guest_random_seed_thread_part2(cpu->random_seed); 6452 /* Enable signals. */ 6453 sigprocmask(SIG_SETMASK, &info->sigmask, NULL); 6454 /* Signal to the parent that we're ready. */ 6455 pthread_mutex_lock(&info->mutex); 6456 pthread_cond_broadcast(&info->cond); 6457 pthread_mutex_unlock(&info->mutex); 6458 /* Wait until the parent has finished initializing the tls state. */ 6459 pthread_mutex_lock(&clone_lock); 6460 pthread_mutex_unlock(&clone_lock); 6461 cpu_loop(env); 6462 /* never exits */ 6463 return NULL; 6464 } 6465 6466 /* do_fork() Must return host values and target errnos (unlike most 6467 do_*() functions). */ 6468 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp, 6469 abi_ulong parent_tidptr, target_ulong newtls, 6470 abi_ulong child_tidptr) 6471 { 6472 CPUState *cpu = env_cpu(env); 6473 int ret; 6474 TaskState *ts; 6475 CPUState *new_cpu; 6476 CPUArchState *new_env; 6477 sigset_t sigmask; 6478 6479 flags &= ~CLONE_IGNORED_FLAGS; 6480 6481 /* Emulate vfork() with fork() */ 6482 if (flags & CLONE_VFORK) 6483 flags &= ~(CLONE_VFORK | CLONE_VM); 6484 6485 if (flags & CLONE_VM) { 6486 TaskState *parent_ts = (TaskState *)cpu->opaque; 6487 new_thread_info info; 6488 pthread_attr_t attr; 6489 6490 if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) || 6491 (flags & CLONE_INVALID_THREAD_FLAGS)) { 6492 return -TARGET_EINVAL; 6493 } 6494 6495 ts = g_new0(TaskState, 1); 6496 init_task_state(ts); 6497 6498 /* Grab a mutex so that thread setup appears atomic. */ 6499 pthread_mutex_lock(&clone_lock); 6500 6501 /* 6502 * If this is our first additional thread, we need to ensure we 6503 * generate code for parallel execution and flush old translations. 6504 * Do this now so that the copy gets CF_PARALLEL too. 6505 */ 6506 if (!(cpu->tcg_cflags & CF_PARALLEL)) { 6507 cpu->tcg_cflags |= CF_PARALLEL; 6508 tb_flush(cpu); 6509 } 6510 6511 /* we create a new CPU instance. */ 6512 new_env = cpu_copy(env); 6513 /* Init regs that differ from the parent. */ 6514 cpu_clone_regs_child(new_env, newsp, flags); 6515 cpu_clone_regs_parent(env, flags); 6516 new_cpu = env_cpu(new_env); 6517 new_cpu->opaque = ts; 6518 ts->bprm = parent_ts->bprm; 6519 ts->info = parent_ts->info; 6520 ts->signal_mask = parent_ts->signal_mask; 6521 6522 if (flags & CLONE_CHILD_CLEARTID) { 6523 ts->child_tidptr = child_tidptr; 6524 } 6525 6526 if (flags & CLONE_SETTLS) { 6527 cpu_set_tls (new_env, newtls); 6528 } 6529 6530 memset(&info, 0, sizeof(info)); 6531 pthread_mutex_init(&info.mutex, NULL); 6532 pthread_mutex_lock(&info.mutex); 6533 pthread_cond_init(&info.cond, NULL); 6534 info.env = new_env; 6535 if (flags & CLONE_CHILD_SETTID) { 6536 info.child_tidptr = child_tidptr; 6537 } 6538 if (flags & CLONE_PARENT_SETTID) { 6539 info.parent_tidptr = parent_tidptr; 6540 } 6541 6542 ret = pthread_attr_init(&attr); 6543 ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE); 6544 ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); 6545 /* It is not safe to deliver signals until the child has finished 6546 initializing, so temporarily block all signals. */ 6547 sigfillset(&sigmask); 6548 sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask); 6549 cpu->random_seed = qemu_guest_random_seed_thread_part1(); 6550 6551 ret = pthread_create(&info.thread, &attr, clone_func, &info); 6552 /* TODO: Free new CPU state if thread creation failed. */ 6553 6554 sigprocmask(SIG_SETMASK, &info.sigmask, NULL); 6555 pthread_attr_destroy(&attr); 6556 if (ret == 0) { 6557 /* Wait for the child to initialize. */ 6558 pthread_cond_wait(&info.cond, &info.mutex); 6559 ret = info.tid; 6560 } else { 6561 ret = -1; 6562 } 6563 pthread_mutex_unlock(&info.mutex); 6564 pthread_cond_destroy(&info.cond); 6565 pthread_mutex_destroy(&info.mutex); 6566 pthread_mutex_unlock(&clone_lock); 6567 } else { 6568 /* if no CLONE_VM, we consider it is a fork */ 6569 if (flags & CLONE_INVALID_FORK_FLAGS) { 6570 return -TARGET_EINVAL; 6571 } 6572 6573 /* We can't support custom termination signals */ 6574 if ((flags & CSIGNAL) != TARGET_SIGCHLD) { 6575 return -TARGET_EINVAL; 6576 } 6577 6578 if (block_signals()) { 6579 return -TARGET_ERESTARTSYS; 6580 } 6581 6582 fork_start(); 6583 ret = fork(); 6584 if (ret == 0) { 6585 /* Child Process. */ 6586 cpu_clone_regs_child(env, newsp, flags); 6587 fork_end(1); 6588 /* There is a race condition here. The parent process could 6589 theoretically read the TID in the child process before the child 6590 tid is set. This would require using either ptrace 6591 (not implemented) or having *_tidptr to point at a shared memory 6592 mapping. We can't repeat the spinlock hack used above because 6593 the child process gets its own copy of the lock. */ 6594 if (flags & CLONE_CHILD_SETTID) 6595 put_user_u32(sys_gettid(), child_tidptr); 6596 if (flags & CLONE_PARENT_SETTID) 6597 put_user_u32(sys_gettid(), parent_tidptr); 6598 ts = (TaskState *)cpu->opaque; 6599 if (flags & CLONE_SETTLS) 6600 cpu_set_tls (env, newtls); 6601 if (flags & CLONE_CHILD_CLEARTID) 6602 ts->child_tidptr = child_tidptr; 6603 } else { 6604 cpu_clone_regs_parent(env, flags); 6605 fork_end(0); 6606 } 6607 } 6608 return ret; 6609 } 6610 6611 /* warning : doesn't handle linux specific flags... */ 6612 static int target_to_host_fcntl_cmd(int cmd) 6613 { 6614 int ret; 6615 6616 switch(cmd) { 6617 case TARGET_F_DUPFD: 6618 case TARGET_F_GETFD: 6619 case TARGET_F_SETFD: 6620 case TARGET_F_GETFL: 6621 case TARGET_F_SETFL: 6622 case TARGET_F_OFD_GETLK: 6623 case TARGET_F_OFD_SETLK: 6624 case TARGET_F_OFD_SETLKW: 6625 ret = cmd; 6626 break; 6627 case TARGET_F_GETLK: 6628 ret = F_GETLK64; 6629 break; 6630 case TARGET_F_SETLK: 6631 ret = F_SETLK64; 6632 break; 6633 case TARGET_F_SETLKW: 6634 ret = F_SETLKW64; 6635 break; 6636 case TARGET_F_GETOWN: 6637 ret = F_GETOWN; 6638 break; 6639 case TARGET_F_SETOWN: 6640 ret = F_SETOWN; 6641 break; 6642 case TARGET_F_GETSIG: 6643 ret = F_GETSIG; 6644 break; 6645 case TARGET_F_SETSIG: 6646 ret = F_SETSIG; 6647 break; 6648 #if TARGET_ABI_BITS == 32 6649 case TARGET_F_GETLK64: 6650 ret = F_GETLK64; 6651 break; 6652 case TARGET_F_SETLK64: 6653 ret = F_SETLK64; 6654 break; 6655 case TARGET_F_SETLKW64: 6656 ret = F_SETLKW64; 6657 break; 6658 #endif 6659 case TARGET_F_SETLEASE: 6660 ret = F_SETLEASE; 6661 break; 6662 case TARGET_F_GETLEASE: 6663 ret = F_GETLEASE; 6664 break; 6665 #ifdef F_DUPFD_CLOEXEC 6666 case TARGET_F_DUPFD_CLOEXEC: 6667 ret = F_DUPFD_CLOEXEC; 6668 break; 6669 #endif 6670 case TARGET_F_NOTIFY: 6671 ret = F_NOTIFY; 6672 break; 6673 #ifdef F_GETOWN_EX 6674 case TARGET_F_GETOWN_EX: 6675 ret = F_GETOWN_EX; 6676 break; 6677 #endif 6678 #ifdef F_SETOWN_EX 6679 case TARGET_F_SETOWN_EX: 6680 ret = F_SETOWN_EX; 6681 break; 6682 #endif 6683 #ifdef F_SETPIPE_SZ 6684 case TARGET_F_SETPIPE_SZ: 6685 ret = F_SETPIPE_SZ; 6686 break; 6687 case TARGET_F_GETPIPE_SZ: 6688 ret = F_GETPIPE_SZ; 6689 break; 6690 #endif 6691 #ifdef F_ADD_SEALS 6692 case TARGET_F_ADD_SEALS: 6693 ret = F_ADD_SEALS; 6694 break; 6695 case TARGET_F_GET_SEALS: 6696 ret = F_GET_SEALS; 6697 break; 6698 #endif 6699 default: 6700 ret = -TARGET_EINVAL; 6701 break; 6702 } 6703 6704 #if defined(__powerpc64__) 6705 /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and 6706 * is not supported by kernel. The glibc fcntl call actually adjusts 6707 * them to 5, 6 and 7 before making the syscall(). Since we make the 6708 * syscall directly, adjust to what is supported by the kernel. 6709 */ 6710 if (ret >= F_GETLK64 && ret <= F_SETLKW64) { 6711 ret -= F_GETLK64 - 5; 6712 } 6713 #endif 6714 6715 return ret; 6716 } 6717 6718 #define FLOCK_TRANSTBL \ 6719 switch (type) { \ 6720 TRANSTBL_CONVERT(F_RDLCK); \ 6721 TRANSTBL_CONVERT(F_WRLCK); \ 6722 TRANSTBL_CONVERT(F_UNLCK); \ 6723 } 6724 6725 static int target_to_host_flock(int type) 6726 { 6727 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a 6728 FLOCK_TRANSTBL 6729 #undef TRANSTBL_CONVERT 6730 return -TARGET_EINVAL; 6731 } 6732 6733 static int host_to_target_flock(int type) 6734 { 6735 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a 6736 FLOCK_TRANSTBL 6737 #undef TRANSTBL_CONVERT 6738 /* if we don't know how to convert the value coming 6739 * from the host we copy to the target field as-is 6740 */ 6741 return type; 6742 } 6743 6744 static inline abi_long copy_from_user_flock(struct flock64 *fl, 6745 abi_ulong target_flock_addr) 6746 { 6747 struct target_flock *target_fl; 6748 int l_type; 6749 6750 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 6751 return -TARGET_EFAULT; 6752 } 6753 6754 __get_user(l_type, &target_fl->l_type); 6755 l_type = target_to_host_flock(l_type); 6756 if (l_type < 0) { 6757 return l_type; 6758 } 6759 fl->l_type = l_type; 6760 __get_user(fl->l_whence, &target_fl->l_whence); 6761 __get_user(fl->l_start, &target_fl->l_start); 6762 __get_user(fl->l_len, &target_fl->l_len); 6763 __get_user(fl->l_pid, &target_fl->l_pid); 6764 unlock_user_struct(target_fl, target_flock_addr, 0); 6765 return 0; 6766 } 6767 6768 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr, 6769 const struct flock64 *fl) 6770 { 6771 struct target_flock *target_fl; 6772 short l_type; 6773 6774 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 6775 return -TARGET_EFAULT; 6776 } 6777 6778 l_type = host_to_target_flock(fl->l_type); 6779 __put_user(l_type, &target_fl->l_type); 6780 __put_user(fl->l_whence, &target_fl->l_whence); 6781 __put_user(fl->l_start, &target_fl->l_start); 6782 __put_user(fl->l_len, &target_fl->l_len); 6783 __put_user(fl->l_pid, &target_fl->l_pid); 6784 unlock_user_struct(target_fl, target_flock_addr, 1); 6785 return 0; 6786 } 6787 6788 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr); 6789 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl); 6790 6791 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32 6792 static inline abi_long copy_from_user_oabi_flock64(struct flock64 *fl, 6793 abi_ulong target_flock_addr) 6794 { 6795 struct target_oabi_flock64 *target_fl; 6796 int l_type; 6797 6798 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 6799 return -TARGET_EFAULT; 6800 } 6801 6802 __get_user(l_type, &target_fl->l_type); 6803 l_type = target_to_host_flock(l_type); 6804 if (l_type < 0) { 6805 return l_type; 6806 } 6807 fl->l_type = l_type; 6808 __get_user(fl->l_whence, &target_fl->l_whence); 6809 __get_user(fl->l_start, &target_fl->l_start); 6810 __get_user(fl->l_len, &target_fl->l_len); 6811 __get_user(fl->l_pid, &target_fl->l_pid); 6812 unlock_user_struct(target_fl, target_flock_addr, 0); 6813 return 0; 6814 } 6815 6816 static inline abi_long copy_to_user_oabi_flock64(abi_ulong target_flock_addr, 6817 const struct flock64 *fl) 6818 { 6819 struct target_oabi_flock64 *target_fl; 6820 short l_type; 6821 6822 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 6823 return -TARGET_EFAULT; 6824 } 6825 6826 l_type = host_to_target_flock(fl->l_type); 6827 __put_user(l_type, &target_fl->l_type); 6828 __put_user(fl->l_whence, &target_fl->l_whence); 6829 __put_user(fl->l_start, &target_fl->l_start); 6830 __put_user(fl->l_len, &target_fl->l_len); 6831 __put_user(fl->l_pid, &target_fl->l_pid); 6832 unlock_user_struct(target_fl, target_flock_addr, 1); 6833 return 0; 6834 } 6835 #endif 6836 6837 static inline abi_long copy_from_user_flock64(struct flock64 *fl, 6838 abi_ulong target_flock_addr) 6839 { 6840 struct target_flock64 *target_fl; 6841 int l_type; 6842 6843 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) { 6844 return -TARGET_EFAULT; 6845 } 6846 6847 __get_user(l_type, &target_fl->l_type); 6848 l_type = target_to_host_flock(l_type); 6849 if (l_type < 0) { 6850 return l_type; 6851 } 6852 fl->l_type = l_type; 6853 __get_user(fl->l_whence, &target_fl->l_whence); 6854 __get_user(fl->l_start, &target_fl->l_start); 6855 __get_user(fl->l_len, &target_fl->l_len); 6856 __get_user(fl->l_pid, &target_fl->l_pid); 6857 unlock_user_struct(target_fl, target_flock_addr, 0); 6858 return 0; 6859 } 6860 6861 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr, 6862 const struct flock64 *fl) 6863 { 6864 struct target_flock64 *target_fl; 6865 short l_type; 6866 6867 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) { 6868 return -TARGET_EFAULT; 6869 } 6870 6871 l_type = host_to_target_flock(fl->l_type); 6872 __put_user(l_type, &target_fl->l_type); 6873 __put_user(fl->l_whence, &target_fl->l_whence); 6874 __put_user(fl->l_start, &target_fl->l_start); 6875 __put_user(fl->l_len, &target_fl->l_len); 6876 __put_user(fl->l_pid, &target_fl->l_pid); 6877 unlock_user_struct(target_fl, target_flock_addr, 1); 6878 return 0; 6879 } 6880 6881 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg) 6882 { 6883 struct flock64 fl64; 6884 #ifdef F_GETOWN_EX 6885 struct f_owner_ex fox; 6886 struct target_f_owner_ex *target_fox; 6887 #endif 6888 abi_long ret; 6889 int host_cmd = target_to_host_fcntl_cmd(cmd); 6890 6891 if (host_cmd == -TARGET_EINVAL) 6892 return host_cmd; 6893 6894 switch(cmd) { 6895 case TARGET_F_GETLK: 6896 ret = copy_from_user_flock(&fl64, arg); 6897 if (ret) { 6898 return ret; 6899 } 6900 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 6901 if (ret == 0) { 6902 ret = copy_to_user_flock(arg, &fl64); 6903 } 6904 break; 6905 6906 case TARGET_F_SETLK: 6907 case TARGET_F_SETLKW: 6908 ret = copy_from_user_flock(&fl64, arg); 6909 if (ret) { 6910 return ret; 6911 } 6912 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 6913 break; 6914 6915 case TARGET_F_GETLK64: 6916 case TARGET_F_OFD_GETLK: 6917 ret = copy_from_user_flock64(&fl64, arg); 6918 if (ret) { 6919 return ret; 6920 } 6921 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 6922 if (ret == 0) { 6923 ret = copy_to_user_flock64(arg, &fl64); 6924 } 6925 break; 6926 case TARGET_F_SETLK64: 6927 case TARGET_F_SETLKW64: 6928 case TARGET_F_OFD_SETLK: 6929 case TARGET_F_OFD_SETLKW: 6930 ret = copy_from_user_flock64(&fl64, arg); 6931 if (ret) { 6932 return ret; 6933 } 6934 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64)); 6935 break; 6936 6937 case TARGET_F_GETFL: 6938 ret = get_errno(safe_fcntl(fd, host_cmd, arg)); 6939 if (ret >= 0) { 6940 ret = host_to_target_bitmask(ret, fcntl_flags_tbl); 6941 } 6942 break; 6943 6944 case TARGET_F_SETFL: 6945 ret = get_errno(safe_fcntl(fd, host_cmd, 6946 target_to_host_bitmask(arg, 6947 fcntl_flags_tbl))); 6948 break; 6949 6950 #ifdef F_GETOWN_EX 6951 case TARGET_F_GETOWN_EX: 6952 ret = get_errno(safe_fcntl(fd, host_cmd, &fox)); 6953 if (ret >= 0) { 6954 if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0)) 6955 return -TARGET_EFAULT; 6956 target_fox->type = tswap32(fox.type); 6957 target_fox->pid = tswap32(fox.pid); 6958 unlock_user_struct(target_fox, arg, 1); 6959 } 6960 break; 6961 #endif 6962 6963 #ifdef F_SETOWN_EX 6964 case TARGET_F_SETOWN_EX: 6965 if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1)) 6966 return -TARGET_EFAULT; 6967 fox.type = tswap32(target_fox->type); 6968 fox.pid = tswap32(target_fox->pid); 6969 unlock_user_struct(target_fox, arg, 0); 6970 ret = get_errno(safe_fcntl(fd, host_cmd, &fox)); 6971 break; 6972 #endif 6973 6974 case TARGET_F_SETSIG: 6975 ret = get_errno(safe_fcntl(fd, host_cmd, target_to_host_signal(arg))); 6976 break; 6977 6978 case TARGET_F_GETSIG: 6979 ret = host_to_target_signal(get_errno(safe_fcntl(fd, host_cmd, arg))); 6980 break; 6981 6982 case TARGET_F_SETOWN: 6983 case TARGET_F_GETOWN: 6984 case TARGET_F_SETLEASE: 6985 case TARGET_F_GETLEASE: 6986 case TARGET_F_SETPIPE_SZ: 6987 case TARGET_F_GETPIPE_SZ: 6988 case TARGET_F_ADD_SEALS: 6989 case TARGET_F_GET_SEALS: 6990 ret = get_errno(safe_fcntl(fd, host_cmd, arg)); 6991 break; 6992 6993 default: 6994 ret = get_errno(safe_fcntl(fd, cmd, arg)); 6995 break; 6996 } 6997 return ret; 6998 } 6999 7000 #ifdef USE_UID16 7001 7002 static inline int high2lowuid(int uid) 7003 { 7004 if (uid > 65535) 7005 return 65534; 7006 else 7007 return uid; 7008 } 7009 7010 static inline int high2lowgid(int gid) 7011 { 7012 if (gid > 65535) 7013 return 65534; 7014 else 7015 return gid; 7016 } 7017 7018 static inline int low2highuid(int uid) 7019 { 7020 if ((int16_t)uid == -1) 7021 return -1; 7022 else 7023 return uid; 7024 } 7025 7026 static inline int low2highgid(int gid) 7027 { 7028 if ((int16_t)gid == -1) 7029 return -1; 7030 else 7031 return gid; 7032 } 7033 static inline int tswapid(int id) 7034 { 7035 return tswap16(id); 7036 } 7037 7038 #define put_user_id(x, gaddr) put_user_u16(x, gaddr) 7039 7040 #else /* !USE_UID16 */ 7041 static inline int high2lowuid(int uid) 7042 { 7043 return uid; 7044 } 7045 static inline int high2lowgid(int gid) 7046 { 7047 return gid; 7048 } 7049 static inline int low2highuid(int uid) 7050 { 7051 return uid; 7052 } 7053 static inline int low2highgid(int gid) 7054 { 7055 return gid; 7056 } 7057 static inline int tswapid(int id) 7058 { 7059 return tswap32(id); 7060 } 7061 7062 #define put_user_id(x, gaddr) put_user_u32(x, gaddr) 7063 7064 #endif /* USE_UID16 */ 7065 7066 /* We must do direct syscalls for setting UID/GID, because we want to 7067 * implement the Linux system call semantics of "change only for this thread", 7068 * not the libc/POSIX semantics of "change for all threads in process". 7069 * (See http://ewontfix.com/17/ for more details.) 7070 * We use the 32-bit version of the syscalls if present; if it is not 7071 * then either the host architecture supports 32-bit UIDs natively with 7072 * the standard syscall, or the 16-bit UID is the best we can do. 7073 */ 7074 #ifdef __NR_setuid32 7075 #define __NR_sys_setuid __NR_setuid32 7076 #else 7077 #define __NR_sys_setuid __NR_setuid 7078 #endif 7079 #ifdef __NR_setgid32 7080 #define __NR_sys_setgid __NR_setgid32 7081 #else 7082 #define __NR_sys_setgid __NR_setgid 7083 #endif 7084 #ifdef __NR_setresuid32 7085 #define __NR_sys_setresuid __NR_setresuid32 7086 #else 7087 #define __NR_sys_setresuid __NR_setresuid 7088 #endif 7089 #ifdef __NR_setresgid32 7090 #define __NR_sys_setresgid __NR_setresgid32 7091 #else 7092 #define __NR_sys_setresgid __NR_setresgid 7093 #endif 7094 7095 _syscall1(int, sys_setuid, uid_t, uid) 7096 _syscall1(int, sys_setgid, gid_t, gid) 7097 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid) 7098 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid) 7099 7100 void syscall_init(void) 7101 { 7102 IOCTLEntry *ie; 7103 const argtype *arg_type; 7104 int size; 7105 int i; 7106 7107 thunk_init(STRUCT_MAX); 7108 7109 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def); 7110 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def); 7111 #include "syscall_types.h" 7112 #undef STRUCT 7113 #undef STRUCT_SPECIAL 7114 7115 /* Build target_to_host_errno_table[] table from 7116 * host_to_target_errno_table[]. */ 7117 for (i = 0; i < ERRNO_TABLE_SIZE; i++) { 7118 target_to_host_errno_table[host_to_target_errno_table[i]] = i; 7119 } 7120 7121 /* we patch the ioctl size if necessary. We rely on the fact that 7122 no ioctl has all the bits at '1' in the size field */ 7123 ie = ioctl_entries; 7124 while (ie->target_cmd != 0) { 7125 if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) == 7126 TARGET_IOC_SIZEMASK) { 7127 arg_type = ie->arg_type; 7128 if (arg_type[0] != TYPE_PTR) { 7129 fprintf(stderr, "cannot patch size for ioctl 0x%x\n", 7130 ie->target_cmd); 7131 exit(1); 7132 } 7133 arg_type++; 7134 size = thunk_type_size(arg_type, 0); 7135 ie->target_cmd = (ie->target_cmd & 7136 ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) | 7137 (size << TARGET_IOC_SIZESHIFT); 7138 } 7139 7140 /* automatic consistency check if same arch */ 7141 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \ 7142 (defined(__x86_64__) && defined(TARGET_X86_64)) 7143 if (unlikely(ie->target_cmd != ie->host_cmd)) { 7144 fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n", 7145 ie->name, ie->target_cmd, ie->host_cmd); 7146 } 7147 #endif 7148 ie++; 7149 } 7150 } 7151 7152 #ifdef TARGET_NR_truncate64 7153 static inline abi_long target_truncate64(void *cpu_env, const char *arg1, 7154 abi_long arg2, 7155 abi_long arg3, 7156 abi_long arg4) 7157 { 7158 if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) { 7159 arg2 = arg3; 7160 arg3 = arg4; 7161 } 7162 return get_errno(truncate64(arg1, target_offset64(arg2, arg3))); 7163 } 7164 #endif 7165 7166 #ifdef TARGET_NR_ftruncate64 7167 static inline abi_long target_ftruncate64(void *cpu_env, abi_long arg1, 7168 abi_long arg2, 7169 abi_long arg3, 7170 abi_long arg4) 7171 { 7172 if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) { 7173 arg2 = arg3; 7174 arg3 = arg4; 7175 } 7176 return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3))); 7177 } 7178 #endif 7179 7180 #if defined(TARGET_NR_timer_settime) || \ 7181 (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)) 7182 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_its, 7183 abi_ulong target_addr) 7184 { 7185 if (target_to_host_timespec(&host_its->it_interval, target_addr + 7186 offsetof(struct target_itimerspec, 7187 it_interval)) || 7188 target_to_host_timespec(&host_its->it_value, target_addr + 7189 offsetof(struct target_itimerspec, 7190 it_value))) { 7191 return -TARGET_EFAULT; 7192 } 7193 7194 return 0; 7195 } 7196 #endif 7197 7198 #if defined(TARGET_NR_timer_settime64) || \ 7199 (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) 7200 static inline abi_long target_to_host_itimerspec64(struct itimerspec *host_its, 7201 abi_ulong target_addr) 7202 { 7203 if (target_to_host_timespec64(&host_its->it_interval, target_addr + 7204 offsetof(struct target__kernel_itimerspec, 7205 it_interval)) || 7206 target_to_host_timespec64(&host_its->it_value, target_addr + 7207 offsetof(struct target__kernel_itimerspec, 7208 it_value))) { 7209 return -TARGET_EFAULT; 7210 } 7211 7212 return 0; 7213 } 7214 #endif 7215 7216 #if ((defined(TARGET_NR_timerfd_gettime) || \ 7217 defined(TARGET_NR_timerfd_settime)) && defined(CONFIG_TIMERFD)) || \ 7218 defined(TARGET_NR_timer_gettime) || defined(TARGET_NR_timer_settime) 7219 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr, 7220 struct itimerspec *host_its) 7221 { 7222 if (host_to_target_timespec(target_addr + offsetof(struct target_itimerspec, 7223 it_interval), 7224 &host_its->it_interval) || 7225 host_to_target_timespec(target_addr + offsetof(struct target_itimerspec, 7226 it_value), 7227 &host_its->it_value)) { 7228 return -TARGET_EFAULT; 7229 } 7230 return 0; 7231 } 7232 #endif 7233 7234 #if ((defined(TARGET_NR_timerfd_gettime64) || \ 7235 defined(TARGET_NR_timerfd_settime64)) && defined(CONFIG_TIMERFD)) || \ 7236 defined(TARGET_NR_timer_gettime64) || defined(TARGET_NR_timer_settime64) 7237 static inline abi_long host_to_target_itimerspec64(abi_ulong target_addr, 7238 struct itimerspec *host_its) 7239 { 7240 if (host_to_target_timespec64(target_addr + 7241 offsetof(struct target__kernel_itimerspec, 7242 it_interval), 7243 &host_its->it_interval) || 7244 host_to_target_timespec64(target_addr + 7245 offsetof(struct target__kernel_itimerspec, 7246 it_value), 7247 &host_its->it_value)) { 7248 return -TARGET_EFAULT; 7249 } 7250 return 0; 7251 } 7252 #endif 7253 7254 #if defined(TARGET_NR_adjtimex) || \ 7255 (defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)) 7256 static inline abi_long target_to_host_timex(struct timex *host_tx, 7257 abi_long target_addr) 7258 { 7259 struct target_timex *target_tx; 7260 7261 if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) { 7262 return -TARGET_EFAULT; 7263 } 7264 7265 __get_user(host_tx->modes, &target_tx->modes); 7266 __get_user(host_tx->offset, &target_tx->offset); 7267 __get_user(host_tx->freq, &target_tx->freq); 7268 __get_user(host_tx->maxerror, &target_tx->maxerror); 7269 __get_user(host_tx->esterror, &target_tx->esterror); 7270 __get_user(host_tx->status, &target_tx->status); 7271 __get_user(host_tx->constant, &target_tx->constant); 7272 __get_user(host_tx->precision, &target_tx->precision); 7273 __get_user(host_tx->tolerance, &target_tx->tolerance); 7274 __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec); 7275 __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec); 7276 __get_user(host_tx->tick, &target_tx->tick); 7277 __get_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7278 __get_user(host_tx->jitter, &target_tx->jitter); 7279 __get_user(host_tx->shift, &target_tx->shift); 7280 __get_user(host_tx->stabil, &target_tx->stabil); 7281 __get_user(host_tx->jitcnt, &target_tx->jitcnt); 7282 __get_user(host_tx->calcnt, &target_tx->calcnt); 7283 __get_user(host_tx->errcnt, &target_tx->errcnt); 7284 __get_user(host_tx->stbcnt, &target_tx->stbcnt); 7285 __get_user(host_tx->tai, &target_tx->tai); 7286 7287 unlock_user_struct(target_tx, target_addr, 0); 7288 return 0; 7289 } 7290 7291 static inline abi_long host_to_target_timex(abi_long target_addr, 7292 struct timex *host_tx) 7293 { 7294 struct target_timex *target_tx; 7295 7296 if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) { 7297 return -TARGET_EFAULT; 7298 } 7299 7300 __put_user(host_tx->modes, &target_tx->modes); 7301 __put_user(host_tx->offset, &target_tx->offset); 7302 __put_user(host_tx->freq, &target_tx->freq); 7303 __put_user(host_tx->maxerror, &target_tx->maxerror); 7304 __put_user(host_tx->esterror, &target_tx->esterror); 7305 __put_user(host_tx->status, &target_tx->status); 7306 __put_user(host_tx->constant, &target_tx->constant); 7307 __put_user(host_tx->precision, &target_tx->precision); 7308 __put_user(host_tx->tolerance, &target_tx->tolerance); 7309 __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec); 7310 __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec); 7311 __put_user(host_tx->tick, &target_tx->tick); 7312 __put_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7313 __put_user(host_tx->jitter, &target_tx->jitter); 7314 __put_user(host_tx->shift, &target_tx->shift); 7315 __put_user(host_tx->stabil, &target_tx->stabil); 7316 __put_user(host_tx->jitcnt, &target_tx->jitcnt); 7317 __put_user(host_tx->calcnt, &target_tx->calcnt); 7318 __put_user(host_tx->errcnt, &target_tx->errcnt); 7319 __put_user(host_tx->stbcnt, &target_tx->stbcnt); 7320 __put_user(host_tx->tai, &target_tx->tai); 7321 7322 unlock_user_struct(target_tx, target_addr, 1); 7323 return 0; 7324 } 7325 #endif 7326 7327 7328 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME) 7329 static inline abi_long target_to_host_timex64(struct timex *host_tx, 7330 abi_long target_addr) 7331 { 7332 struct target__kernel_timex *target_tx; 7333 7334 if (copy_from_user_timeval64(&host_tx->time, target_addr + 7335 offsetof(struct target__kernel_timex, 7336 time))) { 7337 return -TARGET_EFAULT; 7338 } 7339 7340 if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) { 7341 return -TARGET_EFAULT; 7342 } 7343 7344 __get_user(host_tx->modes, &target_tx->modes); 7345 __get_user(host_tx->offset, &target_tx->offset); 7346 __get_user(host_tx->freq, &target_tx->freq); 7347 __get_user(host_tx->maxerror, &target_tx->maxerror); 7348 __get_user(host_tx->esterror, &target_tx->esterror); 7349 __get_user(host_tx->status, &target_tx->status); 7350 __get_user(host_tx->constant, &target_tx->constant); 7351 __get_user(host_tx->precision, &target_tx->precision); 7352 __get_user(host_tx->tolerance, &target_tx->tolerance); 7353 __get_user(host_tx->tick, &target_tx->tick); 7354 __get_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7355 __get_user(host_tx->jitter, &target_tx->jitter); 7356 __get_user(host_tx->shift, &target_tx->shift); 7357 __get_user(host_tx->stabil, &target_tx->stabil); 7358 __get_user(host_tx->jitcnt, &target_tx->jitcnt); 7359 __get_user(host_tx->calcnt, &target_tx->calcnt); 7360 __get_user(host_tx->errcnt, &target_tx->errcnt); 7361 __get_user(host_tx->stbcnt, &target_tx->stbcnt); 7362 __get_user(host_tx->tai, &target_tx->tai); 7363 7364 unlock_user_struct(target_tx, target_addr, 0); 7365 return 0; 7366 } 7367 7368 static inline abi_long host_to_target_timex64(abi_long target_addr, 7369 struct timex *host_tx) 7370 { 7371 struct target__kernel_timex *target_tx; 7372 7373 if (copy_to_user_timeval64(target_addr + 7374 offsetof(struct target__kernel_timex, time), 7375 &host_tx->time)) { 7376 return -TARGET_EFAULT; 7377 } 7378 7379 if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) { 7380 return -TARGET_EFAULT; 7381 } 7382 7383 __put_user(host_tx->modes, &target_tx->modes); 7384 __put_user(host_tx->offset, &target_tx->offset); 7385 __put_user(host_tx->freq, &target_tx->freq); 7386 __put_user(host_tx->maxerror, &target_tx->maxerror); 7387 __put_user(host_tx->esterror, &target_tx->esterror); 7388 __put_user(host_tx->status, &target_tx->status); 7389 __put_user(host_tx->constant, &target_tx->constant); 7390 __put_user(host_tx->precision, &target_tx->precision); 7391 __put_user(host_tx->tolerance, &target_tx->tolerance); 7392 __put_user(host_tx->tick, &target_tx->tick); 7393 __put_user(host_tx->ppsfreq, &target_tx->ppsfreq); 7394 __put_user(host_tx->jitter, &target_tx->jitter); 7395 __put_user(host_tx->shift, &target_tx->shift); 7396 __put_user(host_tx->stabil, &target_tx->stabil); 7397 __put_user(host_tx->jitcnt, &target_tx->jitcnt); 7398 __put_user(host_tx->calcnt, &target_tx->calcnt); 7399 __put_user(host_tx->errcnt, &target_tx->errcnt); 7400 __put_user(host_tx->stbcnt, &target_tx->stbcnt); 7401 __put_user(host_tx->tai, &target_tx->tai); 7402 7403 unlock_user_struct(target_tx, target_addr, 1); 7404 return 0; 7405 } 7406 #endif 7407 7408 #ifndef HAVE_SIGEV_NOTIFY_THREAD_ID 7409 #define sigev_notify_thread_id _sigev_un._tid 7410 #endif 7411 7412 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp, 7413 abi_ulong target_addr) 7414 { 7415 struct target_sigevent *target_sevp; 7416 7417 if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) { 7418 return -TARGET_EFAULT; 7419 } 7420 7421 /* This union is awkward on 64 bit systems because it has a 32 bit 7422 * integer and a pointer in it; we follow the conversion approach 7423 * used for handling sigval types in signal.c so the guest should get 7424 * the correct value back even if we did a 64 bit byteswap and it's 7425 * using the 32 bit integer. 7426 */ 7427 host_sevp->sigev_value.sival_ptr = 7428 (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr); 7429 host_sevp->sigev_signo = 7430 target_to_host_signal(tswap32(target_sevp->sigev_signo)); 7431 host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify); 7432 host_sevp->sigev_notify_thread_id = tswap32(target_sevp->_sigev_un._tid); 7433 7434 unlock_user_struct(target_sevp, target_addr, 1); 7435 return 0; 7436 } 7437 7438 #if defined(TARGET_NR_mlockall) 7439 static inline int target_to_host_mlockall_arg(int arg) 7440 { 7441 int result = 0; 7442 7443 if (arg & TARGET_MCL_CURRENT) { 7444 result |= MCL_CURRENT; 7445 } 7446 if (arg & TARGET_MCL_FUTURE) { 7447 result |= MCL_FUTURE; 7448 } 7449 #ifdef MCL_ONFAULT 7450 if (arg & TARGET_MCL_ONFAULT) { 7451 result |= MCL_ONFAULT; 7452 } 7453 #endif 7454 7455 return result; 7456 } 7457 #endif 7458 7459 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) || \ 7460 defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) || \ 7461 defined(TARGET_NR_newfstatat)) 7462 static inline abi_long host_to_target_stat64(void *cpu_env, 7463 abi_ulong target_addr, 7464 struct stat *host_st) 7465 { 7466 #if defined(TARGET_ARM) && defined(TARGET_ABI32) 7467 if (((CPUARMState *)cpu_env)->eabi) { 7468 struct target_eabi_stat64 *target_st; 7469 7470 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0)) 7471 return -TARGET_EFAULT; 7472 memset(target_st, 0, sizeof(struct target_eabi_stat64)); 7473 __put_user(host_st->st_dev, &target_st->st_dev); 7474 __put_user(host_st->st_ino, &target_st->st_ino); 7475 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO 7476 __put_user(host_st->st_ino, &target_st->__st_ino); 7477 #endif 7478 __put_user(host_st->st_mode, &target_st->st_mode); 7479 __put_user(host_st->st_nlink, &target_st->st_nlink); 7480 __put_user(host_st->st_uid, &target_st->st_uid); 7481 __put_user(host_st->st_gid, &target_st->st_gid); 7482 __put_user(host_st->st_rdev, &target_st->st_rdev); 7483 __put_user(host_st->st_size, &target_st->st_size); 7484 __put_user(host_st->st_blksize, &target_st->st_blksize); 7485 __put_user(host_st->st_blocks, &target_st->st_blocks); 7486 __put_user(host_st->st_atime, &target_st->target_st_atime); 7487 __put_user(host_st->st_mtime, &target_st->target_st_mtime); 7488 __put_user(host_st->st_ctime, &target_st->target_st_ctime); 7489 #ifdef HAVE_STRUCT_STAT_ST_ATIM 7490 __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec); 7491 __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec); 7492 __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec); 7493 #endif 7494 unlock_user_struct(target_st, target_addr, 1); 7495 } else 7496 #endif 7497 { 7498 #if defined(TARGET_HAS_STRUCT_STAT64) 7499 struct target_stat64 *target_st; 7500 #else 7501 struct target_stat *target_st; 7502 #endif 7503 7504 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0)) 7505 return -TARGET_EFAULT; 7506 memset(target_st, 0, sizeof(*target_st)); 7507 __put_user(host_st->st_dev, &target_st->st_dev); 7508 __put_user(host_st->st_ino, &target_st->st_ino); 7509 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO 7510 __put_user(host_st->st_ino, &target_st->__st_ino); 7511 #endif 7512 __put_user(host_st->st_mode, &target_st->st_mode); 7513 __put_user(host_st->st_nlink, &target_st->st_nlink); 7514 __put_user(host_st->st_uid, &target_st->st_uid); 7515 __put_user(host_st->st_gid, &target_st->st_gid); 7516 __put_user(host_st->st_rdev, &target_st->st_rdev); 7517 /* XXX: better use of kernel struct */ 7518 __put_user(host_st->st_size, &target_st->st_size); 7519 __put_user(host_st->st_blksize, &target_st->st_blksize); 7520 __put_user(host_st->st_blocks, &target_st->st_blocks); 7521 __put_user(host_st->st_atime, &target_st->target_st_atime); 7522 __put_user(host_st->st_mtime, &target_st->target_st_mtime); 7523 __put_user(host_st->st_ctime, &target_st->target_st_ctime); 7524 #ifdef HAVE_STRUCT_STAT_ST_ATIM 7525 __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec); 7526 __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec); 7527 __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec); 7528 #endif 7529 unlock_user_struct(target_st, target_addr, 1); 7530 } 7531 7532 return 0; 7533 } 7534 #endif 7535 7536 #if defined(TARGET_NR_statx) && defined(__NR_statx) 7537 static inline abi_long host_to_target_statx(struct target_statx *host_stx, 7538 abi_ulong target_addr) 7539 { 7540 struct target_statx *target_stx; 7541 7542 if (!lock_user_struct(VERIFY_WRITE, target_stx, target_addr, 0)) { 7543 return -TARGET_EFAULT; 7544 } 7545 memset(target_stx, 0, sizeof(*target_stx)); 7546 7547 __put_user(host_stx->stx_mask, &target_stx->stx_mask); 7548 __put_user(host_stx->stx_blksize, &target_stx->stx_blksize); 7549 __put_user(host_stx->stx_attributes, &target_stx->stx_attributes); 7550 __put_user(host_stx->stx_nlink, &target_stx->stx_nlink); 7551 __put_user(host_stx->stx_uid, &target_stx->stx_uid); 7552 __put_user(host_stx->stx_gid, &target_stx->stx_gid); 7553 __put_user(host_stx->stx_mode, &target_stx->stx_mode); 7554 __put_user(host_stx->stx_ino, &target_stx->stx_ino); 7555 __put_user(host_stx->stx_size, &target_stx->stx_size); 7556 __put_user(host_stx->stx_blocks, &target_stx->stx_blocks); 7557 __put_user(host_stx->stx_attributes_mask, &target_stx->stx_attributes_mask); 7558 __put_user(host_stx->stx_atime.tv_sec, &target_stx->stx_atime.tv_sec); 7559 __put_user(host_stx->stx_atime.tv_nsec, &target_stx->stx_atime.tv_nsec); 7560 __put_user(host_stx->stx_btime.tv_sec, &target_stx->stx_btime.tv_sec); 7561 __put_user(host_stx->stx_btime.tv_nsec, &target_stx->stx_btime.tv_nsec); 7562 __put_user(host_stx->stx_ctime.tv_sec, &target_stx->stx_ctime.tv_sec); 7563 __put_user(host_stx->stx_ctime.tv_nsec, &target_stx->stx_ctime.tv_nsec); 7564 __put_user(host_stx->stx_mtime.tv_sec, &target_stx->stx_mtime.tv_sec); 7565 __put_user(host_stx->stx_mtime.tv_nsec, &target_stx->stx_mtime.tv_nsec); 7566 __put_user(host_stx->stx_rdev_major, &target_stx->stx_rdev_major); 7567 __put_user(host_stx->stx_rdev_minor, &target_stx->stx_rdev_minor); 7568 __put_user(host_stx->stx_dev_major, &target_stx->stx_dev_major); 7569 __put_user(host_stx->stx_dev_minor, &target_stx->stx_dev_minor); 7570 7571 unlock_user_struct(target_stx, target_addr, 1); 7572 7573 return 0; 7574 } 7575 #endif 7576 7577 static int do_sys_futex(int *uaddr, int op, int val, 7578 const struct timespec *timeout, int *uaddr2, 7579 int val3) 7580 { 7581 #if HOST_LONG_BITS == 64 7582 #if defined(__NR_futex) 7583 /* always a 64-bit time_t, it doesn't define _time64 version */ 7584 return sys_futex(uaddr, op, val, timeout, uaddr2, val3); 7585 7586 #endif 7587 #else /* HOST_LONG_BITS == 64 */ 7588 #if defined(__NR_futex_time64) 7589 if (sizeof(timeout->tv_sec) == 8) { 7590 /* _time64 function on 32bit arch */ 7591 return sys_futex_time64(uaddr, op, val, timeout, uaddr2, val3); 7592 } 7593 #endif 7594 #if defined(__NR_futex) 7595 /* old function on 32bit arch */ 7596 return sys_futex(uaddr, op, val, timeout, uaddr2, val3); 7597 #endif 7598 #endif /* HOST_LONG_BITS == 64 */ 7599 g_assert_not_reached(); 7600 } 7601 7602 static int do_safe_futex(int *uaddr, int op, int val, 7603 const struct timespec *timeout, int *uaddr2, 7604 int val3) 7605 { 7606 #if HOST_LONG_BITS == 64 7607 #if defined(__NR_futex) 7608 /* always a 64-bit time_t, it doesn't define _time64 version */ 7609 return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3)); 7610 #endif 7611 #else /* HOST_LONG_BITS == 64 */ 7612 #if defined(__NR_futex_time64) 7613 if (sizeof(timeout->tv_sec) == 8) { 7614 /* _time64 function on 32bit arch */ 7615 return get_errno(safe_futex_time64(uaddr, op, val, timeout, uaddr2, 7616 val3)); 7617 } 7618 #endif 7619 #if defined(__NR_futex) 7620 /* old function on 32bit arch */ 7621 return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3)); 7622 #endif 7623 #endif /* HOST_LONG_BITS == 64 */ 7624 return -TARGET_ENOSYS; 7625 } 7626 7627 /* ??? Using host futex calls even when target atomic operations 7628 are not really atomic probably breaks things. However implementing 7629 futexes locally would make futexes shared between multiple processes 7630 tricky. However they're probably useless because guest atomic 7631 operations won't work either. */ 7632 #if defined(TARGET_NR_futex) 7633 static int do_futex(CPUState *cpu, target_ulong uaddr, int op, int val, 7634 target_ulong timeout, target_ulong uaddr2, int val3) 7635 { 7636 struct timespec ts, *pts; 7637 int base_op; 7638 7639 /* ??? We assume FUTEX_* constants are the same on both host 7640 and target. */ 7641 #ifdef FUTEX_CMD_MASK 7642 base_op = op & FUTEX_CMD_MASK; 7643 #else 7644 base_op = op; 7645 #endif 7646 switch (base_op) { 7647 case FUTEX_WAIT: 7648 case FUTEX_WAIT_BITSET: 7649 if (timeout) { 7650 pts = &ts; 7651 target_to_host_timespec(pts, timeout); 7652 } else { 7653 pts = NULL; 7654 } 7655 return do_safe_futex(g2h(cpu, uaddr), 7656 op, tswap32(val), pts, NULL, val3); 7657 case FUTEX_WAKE: 7658 return do_safe_futex(g2h(cpu, uaddr), 7659 op, val, NULL, NULL, 0); 7660 case FUTEX_FD: 7661 return do_safe_futex(g2h(cpu, uaddr), 7662 op, val, NULL, NULL, 0); 7663 case FUTEX_REQUEUE: 7664 case FUTEX_CMP_REQUEUE: 7665 case FUTEX_WAKE_OP: 7666 /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the 7667 TIMEOUT parameter is interpreted as a uint32_t by the kernel. 7668 But the prototype takes a `struct timespec *'; insert casts 7669 to satisfy the compiler. We do not need to tswap TIMEOUT 7670 since it's not compared to guest memory. */ 7671 pts = (struct timespec *)(uintptr_t) timeout; 7672 return do_safe_futex(g2h(cpu, uaddr), op, val, pts, g2h(cpu, uaddr2), 7673 (base_op == FUTEX_CMP_REQUEUE 7674 ? tswap32(val3) : val3)); 7675 default: 7676 return -TARGET_ENOSYS; 7677 } 7678 } 7679 #endif 7680 7681 #if defined(TARGET_NR_futex_time64) 7682 static int do_futex_time64(CPUState *cpu, target_ulong uaddr, int op, 7683 int val, target_ulong timeout, 7684 target_ulong uaddr2, int val3) 7685 { 7686 struct timespec ts, *pts; 7687 int base_op; 7688 7689 /* ??? We assume FUTEX_* constants are the same on both host 7690 and target. */ 7691 #ifdef FUTEX_CMD_MASK 7692 base_op = op & FUTEX_CMD_MASK; 7693 #else 7694 base_op = op; 7695 #endif 7696 switch (base_op) { 7697 case FUTEX_WAIT: 7698 case FUTEX_WAIT_BITSET: 7699 if (timeout) { 7700 pts = &ts; 7701 if (target_to_host_timespec64(pts, timeout)) { 7702 return -TARGET_EFAULT; 7703 } 7704 } else { 7705 pts = NULL; 7706 } 7707 return do_safe_futex(g2h(cpu, uaddr), op, 7708 tswap32(val), pts, NULL, val3); 7709 case FUTEX_WAKE: 7710 return do_safe_futex(g2h(cpu, uaddr), op, val, NULL, NULL, 0); 7711 case FUTEX_FD: 7712 return do_safe_futex(g2h(cpu, uaddr), op, val, NULL, NULL, 0); 7713 case FUTEX_REQUEUE: 7714 case FUTEX_CMP_REQUEUE: 7715 case FUTEX_WAKE_OP: 7716 /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the 7717 TIMEOUT parameter is interpreted as a uint32_t by the kernel. 7718 But the prototype takes a `struct timespec *'; insert casts 7719 to satisfy the compiler. We do not need to tswap TIMEOUT 7720 since it's not compared to guest memory. */ 7721 pts = (struct timespec *)(uintptr_t) timeout; 7722 return do_safe_futex(g2h(cpu, uaddr), op, val, pts, g2h(cpu, uaddr2), 7723 (base_op == FUTEX_CMP_REQUEUE 7724 ? tswap32(val3) : val3)); 7725 default: 7726 return -TARGET_ENOSYS; 7727 } 7728 } 7729 #endif 7730 7731 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 7732 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname, 7733 abi_long handle, abi_long mount_id, 7734 abi_long flags) 7735 { 7736 struct file_handle *target_fh; 7737 struct file_handle *fh; 7738 int mid = 0; 7739 abi_long ret; 7740 char *name; 7741 unsigned int size, total_size; 7742 7743 if (get_user_s32(size, handle)) { 7744 return -TARGET_EFAULT; 7745 } 7746 7747 name = lock_user_string(pathname); 7748 if (!name) { 7749 return -TARGET_EFAULT; 7750 } 7751 7752 total_size = sizeof(struct file_handle) + size; 7753 target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0); 7754 if (!target_fh) { 7755 unlock_user(name, pathname, 0); 7756 return -TARGET_EFAULT; 7757 } 7758 7759 fh = g_malloc0(total_size); 7760 fh->handle_bytes = size; 7761 7762 ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags)); 7763 unlock_user(name, pathname, 0); 7764 7765 /* man name_to_handle_at(2): 7766 * Other than the use of the handle_bytes field, the caller should treat 7767 * the file_handle structure as an opaque data type 7768 */ 7769 7770 memcpy(target_fh, fh, total_size); 7771 target_fh->handle_bytes = tswap32(fh->handle_bytes); 7772 target_fh->handle_type = tswap32(fh->handle_type); 7773 g_free(fh); 7774 unlock_user(target_fh, handle, total_size); 7775 7776 if (put_user_s32(mid, mount_id)) { 7777 return -TARGET_EFAULT; 7778 } 7779 7780 return ret; 7781 7782 } 7783 #endif 7784 7785 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 7786 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle, 7787 abi_long flags) 7788 { 7789 struct file_handle *target_fh; 7790 struct file_handle *fh; 7791 unsigned int size, total_size; 7792 abi_long ret; 7793 7794 if (get_user_s32(size, handle)) { 7795 return -TARGET_EFAULT; 7796 } 7797 7798 total_size = sizeof(struct file_handle) + size; 7799 target_fh = lock_user(VERIFY_READ, handle, total_size, 1); 7800 if (!target_fh) { 7801 return -TARGET_EFAULT; 7802 } 7803 7804 fh = g_memdup(target_fh, total_size); 7805 fh->handle_bytes = size; 7806 fh->handle_type = tswap32(target_fh->handle_type); 7807 7808 ret = get_errno(open_by_handle_at(mount_fd, fh, 7809 target_to_host_bitmask(flags, fcntl_flags_tbl))); 7810 7811 g_free(fh); 7812 7813 unlock_user(target_fh, handle, total_size); 7814 7815 return ret; 7816 } 7817 #endif 7818 7819 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4) 7820 7821 static abi_long do_signalfd4(int fd, abi_long mask, int flags) 7822 { 7823 int host_flags; 7824 target_sigset_t *target_mask; 7825 sigset_t host_mask; 7826 abi_long ret; 7827 7828 if (flags & ~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC)) { 7829 return -TARGET_EINVAL; 7830 } 7831 if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) { 7832 return -TARGET_EFAULT; 7833 } 7834 7835 target_to_host_sigset(&host_mask, target_mask); 7836 7837 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl); 7838 7839 ret = get_errno(signalfd(fd, &host_mask, host_flags)); 7840 if (ret >= 0) { 7841 fd_trans_register(ret, &target_signalfd_trans); 7842 } 7843 7844 unlock_user_struct(target_mask, mask, 0); 7845 7846 return ret; 7847 } 7848 #endif 7849 7850 /* Map host to target signal numbers for the wait family of syscalls. 7851 Assume all other status bits are the same. */ 7852 int host_to_target_waitstatus(int status) 7853 { 7854 if (WIFSIGNALED(status)) { 7855 return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f); 7856 } 7857 if (WIFSTOPPED(status)) { 7858 return (host_to_target_signal(WSTOPSIG(status)) << 8) 7859 | (status & 0xff); 7860 } 7861 return status; 7862 } 7863 7864 static int open_self_cmdline(void *cpu_env, int fd) 7865 { 7866 CPUState *cpu = env_cpu((CPUArchState *)cpu_env); 7867 struct linux_binprm *bprm = ((TaskState *)cpu->opaque)->bprm; 7868 int i; 7869 7870 for (i = 0; i < bprm->argc; i++) { 7871 size_t len = strlen(bprm->argv[i]) + 1; 7872 7873 if (write(fd, bprm->argv[i], len) != len) { 7874 return -1; 7875 } 7876 } 7877 7878 return 0; 7879 } 7880 7881 static int open_self_maps(void *cpu_env, int fd) 7882 { 7883 CPUState *cpu = env_cpu((CPUArchState *)cpu_env); 7884 TaskState *ts = cpu->opaque; 7885 GSList *map_info = read_self_maps(); 7886 GSList *s; 7887 int count; 7888 7889 for (s = map_info; s; s = g_slist_next(s)) { 7890 MapInfo *e = (MapInfo *) s->data; 7891 7892 if (h2g_valid(e->start)) { 7893 unsigned long min = e->start; 7894 unsigned long max = e->end; 7895 int flags = page_get_flags(h2g(min)); 7896 const char *path; 7897 7898 max = h2g_valid(max - 1) ? 7899 max : (uintptr_t) g2h_untagged(GUEST_ADDR_MAX) + 1; 7900 7901 if (page_check_range(h2g(min), max - min, flags) == -1) { 7902 continue; 7903 } 7904 7905 if (h2g(min) == ts->info->stack_limit) { 7906 path = "[stack]"; 7907 } else { 7908 path = e->path; 7909 } 7910 7911 count = dprintf(fd, TARGET_ABI_FMT_ptr "-" TARGET_ABI_FMT_ptr 7912 " %c%c%c%c %08" PRIx64 " %s %"PRId64, 7913 h2g(min), h2g(max - 1) + 1, 7914 (flags & PAGE_READ) ? 'r' : '-', 7915 (flags & PAGE_WRITE_ORG) ? 'w' : '-', 7916 (flags & PAGE_EXEC) ? 'x' : '-', 7917 e->is_priv ? 'p' : '-', 7918 (uint64_t) e->offset, e->dev, e->inode); 7919 if (path) { 7920 dprintf(fd, "%*s%s\n", 73 - count, "", path); 7921 } else { 7922 dprintf(fd, "\n"); 7923 } 7924 } 7925 } 7926 7927 free_self_maps(map_info); 7928 7929 #ifdef TARGET_VSYSCALL_PAGE 7930 /* 7931 * We only support execution from the vsyscall page. 7932 * This is as if CONFIG_LEGACY_VSYSCALL_XONLY=y from v5.3. 7933 */ 7934 count = dprintf(fd, TARGET_FMT_lx "-" TARGET_FMT_lx 7935 " --xp 00000000 00:00 0", 7936 TARGET_VSYSCALL_PAGE, TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE); 7937 dprintf(fd, "%*s%s\n", 73 - count, "", "[vsyscall]"); 7938 #endif 7939 7940 return 0; 7941 } 7942 7943 static int open_self_stat(void *cpu_env, int fd) 7944 { 7945 CPUState *cpu = env_cpu((CPUArchState *)cpu_env); 7946 TaskState *ts = cpu->opaque; 7947 g_autoptr(GString) buf = g_string_new(NULL); 7948 int i; 7949 7950 for (i = 0; i < 44; i++) { 7951 if (i == 0) { 7952 /* pid */ 7953 g_string_printf(buf, FMT_pid " ", getpid()); 7954 } else if (i == 1) { 7955 /* app name */ 7956 gchar *bin = g_strrstr(ts->bprm->argv[0], "/"); 7957 bin = bin ? bin + 1 : ts->bprm->argv[0]; 7958 g_string_printf(buf, "(%.15s) ", bin); 7959 } else if (i == 3) { 7960 /* ppid */ 7961 g_string_printf(buf, FMT_pid " ", getppid()); 7962 } else if (i == 27) { 7963 /* stack bottom */ 7964 g_string_printf(buf, TARGET_ABI_FMT_ld " ", ts->info->start_stack); 7965 } else { 7966 /* for the rest, there is MasterCard */ 7967 g_string_printf(buf, "0%c", i == 43 ? '\n' : ' '); 7968 } 7969 7970 if (write(fd, buf->str, buf->len) != buf->len) { 7971 return -1; 7972 } 7973 } 7974 7975 return 0; 7976 } 7977 7978 static int open_self_auxv(void *cpu_env, int fd) 7979 { 7980 CPUState *cpu = env_cpu((CPUArchState *)cpu_env); 7981 TaskState *ts = cpu->opaque; 7982 abi_ulong auxv = ts->info->saved_auxv; 7983 abi_ulong len = ts->info->auxv_len; 7984 char *ptr; 7985 7986 /* 7987 * Auxiliary vector is stored in target process stack. 7988 * read in whole auxv vector and copy it to file 7989 */ 7990 ptr = lock_user(VERIFY_READ, auxv, len, 0); 7991 if (ptr != NULL) { 7992 while (len > 0) { 7993 ssize_t r; 7994 r = write(fd, ptr, len); 7995 if (r <= 0) { 7996 break; 7997 } 7998 len -= r; 7999 ptr += r; 8000 } 8001 lseek(fd, 0, SEEK_SET); 8002 unlock_user(ptr, auxv, len); 8003 } 8004 8005 return 0; 8006 } 8007 8008 static int is_proc_myself(const char *filename, const char *entry) 8009 { 8010 if (!strncmp(filename, "/proc/", strlen("/proc/"))) { 8011 filename += strlen("/proc/"); 8012 if (!strncmp(filename, "self/", strlen("self/"))) { 8013 filename += strlen("self/"); 8014 } else if (*filename >= '1' && *filename <= '9') { 8015 char myself[80]; 8016 snprintf(myself, sizeof(myself), "%d/", getpid()); 8017 if (!strncmp(filename, myself, strlen(myself))) { 8018 filename += strlen(myself); 8019 } else { 8020 return 0; 8021 } 8022 } else { 8023 return 0; 8024 } 8025 if (!strcmp(filename, entry)) { 8026 return 1; 8027 } 8028 } 8029 return 0; 8030 } 8031 8032 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) || \ 8033 defined(TARGET_SPARC) || defined(TARGET_M68K) || defined(TARGET_HPPA) 8034 static int is_proc(const char *filename, const char *entry) 8035 { 8036 return strcmp(filename, entry) == 0; 8037 } 8038 #endif 8039 8040 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 8041 static int open_net_route(void *cpu_env, int fd) 8042 { 8043 FILE *fp; 8044 char *line = NULL; 8045 size_t len = 0; 8046 ssize_t read; 8047 8048 fp = fopen("/proc/net/route", "r"); 8049 if (fp == NULL) { 8050 return -1; 8051 } 8052 8053 /* read header */ 8054 8055 read = getline(&line, &len, fp); 8056 dprintf(fd, "%s", line); 8057 8058 /* read routes */ 8059 8060 while ((read = getline(&line, &len, fp)) != -1) { 8061 char iface[16]; 8062 uint32_t dest, gw, mask; 8063 unsigned int flags, refcnt, use, metric, mtu, window, irtt; 8064 int fields; 8065 8066 fields = sscanf(line, 8067 "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n", 8068 iface, &dest, &gw, &flags, &refcnt, &use, &metric, 8069 &mask, &mtu, &window, &irtt); 8070 if (fields != 11) { 8071 continue; 8072 } 8073 dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n", 8074 iface, tswap32(dest), tswap32(gw), flags, refcnt, use, 8075 metric, tswap32(mask), mtu, window, irtt); 8076 } 8077 8078 free(line); 8079 fclose(fp); 8080 8081 return 0; 8082 } 8083 #endif 8084 8085 #if defined(TARGET_SPARC) 8086 static int open_cpuinfo(void *cpu_env, int fd) 8087 { 8088 dprintf(fd, "type\t\t: sun4u\n"); 8089 return 0; 8090 } 8091 #endif 8092 8093 #if defined(TARGET_HPPA) 8094 static int open_cpuinfo(void *cpu_env, int fd) 8095 { 8096 dprintf(fd, "cpu family\t: PA-RISC 1.1e\n"); 8097 dprintf(fd, "cpu\t\t: PA7300LC (PCX-L2)\n"); 8098 dprintf(fd, "capabilities\t: os32\n"); 8099 dprintf(fd, "model\t\t: 9000/778/B160L\n"); 8100 dprintf(fd, "model name\t: Merlin L2 160 QEMU (9000/778/B160L)\n"); 8101 return 0; 8102 } 8103 #endif 8104 8105 #if defined(TARGET_M68K) 8106 static int open_hardware(void *cpu_env, int fd) 8107 { 8108 dprintf(fd, "Model:\t\tqemu-m68k\n"); 8109 return 0; 8110 } 8111 #endif 8112 8113 static int do_openat(void *cpu_env, int dirfd, const char *pathname, int flags, mode_t mode) 8114 { 8115 struct fake_open { 8116 const char *filename; 8117 int (*fill)(void *cpu_env, int fd); 8118 int (*cmp)(const char *s1, const char *s2); 8119 }; 8120 const struct fake_open *fake_open; 8121 static const struct fake_open fakes[] = { 8122 { "maps", open_self_maps, is_proc_myself }, 8123 { "stat", open_self_stat, is_proc_myself }, 8124 { "auxv", open_self_auxv, is_proc_myself }, 8125 { "cmdline", open_self_cmdline, is_proc_myself }, 8126 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 8127 { "/proc/net/route", open_net_route, is_proc }, 8128 #endif 8129 #if defined(TARGET_SPARC) || defined(TARGET_HPPA) 8130 { "/proc/cpuinfo", open_cpuinfo, is_proc }, 8131 #endif 8132 #if defined(TARGET_M68K) 8133 { "/proc/hardware", open_hardware, is_proc }, 8134 #endif 8135 { NULL, NULL, NULL } 8136 }; 8137 8138 if (is_proc_myself(pathname, "exe")) { 8139 int execfd = qemu_getauxval(AT_EXECFD); 8140 return execfd ? execfd : safe_openat(dirfd, exec_path, flags, mode); 8141 } 8142 8143 for (fake_open = fakes; fake_open->filename; fake_open++) { 8144 if (fake_open->cmp(pathname, fake_open->filename)) { 8145 break; 8146 } 8147 } 8148 8149 if (fake_open->filename) { 8150 const char *tmpdir; 8151 char filename[PATH_MAX]; 8152 int fd, r; 8153 8154 /* create temporary file to map stat to */ 8155 tmpdir = getenv("TMPDIR"); 8156 if (!tmpdir) 8157 tmpdir = "/tmp"; 8158 snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir); 8159 fd = mkstemp(filename); 8160 if (fd < 0) { 8161 return fd; 8162 } 8163 unlink(filename); 8164 8165 if ((r = fake_open->fill(cpu_env, fd))) { 8166 int e = errno; 8167 close(fd); 8168 errno = e; 8169 return r; 8170 } 8171 lseek(fd, 0, SEEK_SET); 8172 8173 return fd; 8174 } 8175 8176 return safe_openat(dirfd, path(pathname), flags, mode); 8177 } 8178 8179 #define TIMER_MAGIC 0x0caf0000 8180 #define TIMER_MAGIC_MASK 0xffff0000 8181 8182 /* Convert QEMU provided timer ID back to internal 16bit index format */ 8183 static target_timer_t get_timer_id(abi_long arg) 8184 { 8185 target_timer_t timerid = arg; 8186 8187 if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) { 8188 return -TARGET_EINVAL; 8189 } 8190 8191 timerid &= 0xffff; 8192 8193 if (timerid >= ARRAY_SIZE(g_posix_timers)) { 8194 return -TARGET_EINVAL; 8195 } 8196 8197 return timerid; 8198 } 8199 8200 static int target_to_host_cpu_mask(unsigned long *host_mask, 8201 size_t host_size, 8202 abi_ulong target_addr, 8203 size_t target_size) 8204 { 8205 unsigned target_bits = sizeof(abi_ulong) * 8; 8206 unsigned host_bits = sizeof(*host_mask) * 8; 8207 abi_ulong *target_mask; 8208 unsigned i, j; 8209 8210 assert(host_size >= target_size); 8211 8212 target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1); 8213 if (!target_mask) { 8214 return -TARGET_EFAULT; 8215 } 8216 memset(host_mask, 0, host_size); 8217 8218 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) { 8219 unsigned bit = i * target_bits; 8220 abi_ulong val; 8221 8222 __get_user(val, &target_mask[i]); 8223 for (j = 0; j < target_bits; j++, bit++) { 8224 if (val & (1UL << j)) { 8225 host_mask[bit / host_bits] |= 1UL << (bit % host_bits); 8226 } 8227 } 8228 } 8229 8230 unlock_user(target_mask, target_addr, 0); 8231 return 0; 8232 } 8233 8234 static int host_to_target_cpu_mask(const unsigned long *host_mask, 8235 size_t host_size, 8236 abi_ulong target_addr, 8237 size_t target_size) 8238 { 8239 unsigned target_bits = sizeof(abi_ulong) * 8; 8240 unsigned host_bits = sizeof(*host_mask) * 8; 8241 abi_ulong *target_mask; 8242 unsigned i, j; 8243 8244 assert(host_size >= target_size); 8245 8246 target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0); 8247 if (!target_mask) { 8248 return -TARGET_EFAULT; 8249 } 8250 8251 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) { 8252 unsigned bit = i * target_bits; 8253 abi_ulong val = 0; 8254 8255 for (j = 0; j < target_bits; j++, bit++) { 8256 if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) { 8257 val |= 1UL << j; 8258 } 8259 } 8260 __put_user(val, &target_mask[i]); 8261 } 8262 8263 unlock_user(target_mask, target_addr, target_size); 8264 return 0; 8265 } 8266 8267 #if defined(TARGET_NR_pivot_root) && defined(__NR_pivot_root) 8268 _syscall2(int, pivot_root, const char *, new_root, const char *, put_old) 8269 #endif 8270 8271 /* This is an internal helper for do_syscall so that it is easier 8272 * to have a single return point, so that actions, such as logging 8273 * of syscall results, can be performed. 8274 * All errnos that do_syscall() returns must be -TARGET_<errcode>. 8275 */ 8276 static abi_long do_syscall1(void *cpu_env, int num, abi_long arg1, 8277 abi_long arg2, abi_long arg3, abi_long arg4, 8278 abi_long arg5, abi_long arg6, abi_long arg7, 8279 abi_long arg8) 8280 { 8281 CPUState *cpu = env_cpu(cpu_env); 8282 abi_long ret; 8283 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \ 8284 || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \ 8285 || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \ 8286 || defined(TARGET_NR_statx) 8287 struct stat st; 8288 #endif 8289 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \ 8290 || defined(TARGET_NR_fstatfs) 8291 struct statfs stfs; 8292 #endif 8293 void *p; 8294 8295 switch(num) { 8296 case TARGET_NR_exit: 8297 /* In old applications this may be used to implement _exit(2). 8298 However in threaded applications it is used for thread termination, 8299 and _exit_group is used for application termination. 8300 Do thread termination if we have more then one thread. */ 8301 8302 if (block_signals()) { 8303 return -TARGET_ERESTARTSYS; 8304 } 8305 8306 pthread_mutex_lock(&clone_lock); 8307 8308 if (CPU_NEXT(first_cpu)) { 8309 TaskState *ts = cpu->opaque; 8310 8311 object_property_set_bool(OBJECT(cpu), "realized", false, NULL); 8312 object_unref(OBJECT(cpu)); 8313 /* 8314 * At this point the CPU should be unrealized and removed 8315 * from cpu lists. We can clean-up the rest of the thread 8316 * data without the lock held. 8317 */ 8318 8319 pthread_mutex_unlock(&clone_lock); 8320 8321 if (ts->child_tidptr) { 8322 put_user_u32(0, ts->child_tidptr); 8323 do_sys_futex(g2h(cpu, ts->child_tidptr), 8324 FUTEX_WAKE, INT_MAX, NULL, NULL, 0); 8325 } 8326 thread_cpu = NULL; 8327 g_free(ts); 8328 rcu_unregister_thread(); 8329 pthread_exit(NULL); 8330 } 8331 8332 pthread_mutex_unlock(&clone_lock); 8333 preexit_cleanup(cpu_env, arg1); 8334 _exit(arg1); 8335 return 0; /* avoid warning */ 8336 case TARGET_NR_read: 8337 if (arg2 == 0 && arg3 == 0) { 8338 return get_errno(safe_read(arg1, 0, 0)); 8339 } else { 8340 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0))) 8341 return -TARGET_EFAULT; 8342 ret = get_errno(safe_read(arg1, p, arg3)); 8343 if (ret >= 0 && 8344 fd_trans_host_to_target_data(arg1)) { 8345 ret = fd_trans_host_to_target_data(arg1)(p, ret); 8346 } 8347 unlock_user(p, arg2, ret); 8348 } 8349 return ret; 8350 case TARGET_NR_write: 8351 if (arg2 == 0 && arg3 == 0) { 8352 return get_errno(safe_write(arg1, 0, 0)); 8353 } 8354 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1))) 8355 return -TARGET_EFAULT; 8356 if (fd_trans_target_to_host_data(arg1)) { 8357 void *copy = g_malloc(arg3); 8358 memcpy(copy, p, arg3); 8359 ret = fd_trans_target_to_host_data(arg1)(copy, arg3); 8360 if (ret >= 0) { 8361 ret = get_errno(safe_write(arg1, copy, ret)); 8362 } 8363 g_free(copy); 8364 } else { 8365 ret = get_errno(safe_write(arg1, p, arg3)); 8366 } 8367 unlock_user(p, arg2, 0); 8368 return ret; 8369 8370 #ifdef TARGET_NR_open 8371 case TARGET_NR_open: 8372 if (!(p = lock_user_string(arg1))) 8373 return -TARGET_EFAULT; 8374 ret = get_errno(do_openat(cpu_env, AT_FDCWD, p, 8375 target_to_host_bitmask(arg2, fcntl_flags_tbl), 8376 arg3)); 8377 fd_trans_unregister(ret); 8378 unlock_user(p, arg1, 0); 8379 return ret; 8380 #endif 8381 case TARGET_NR_openat: 8382 if (!(p = lock_user_string(arg2))) 8383 return -TARGET_EFAULT; 8384 ret = get_errno(do_openat(cpu_env, arg1, p, 8385 target_to_host_bitmask(arg3, fcntl_flags_tbl), 8386 arg4)); 8387 fd_trans_unregister(ret); 8388 unlock_user(p, arg2, 0); 8389 return ret; 8390 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 8391 case TARGET_NR_name_to_handle_at: 8392 ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5); 8393 return ret; 8394 #endif 8395 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE) 8396 case TARGET_NR_open_by_handle_at: 8397 ret = do_open_by_handle_at(arg1, arg2, arg3); 8398 fd_trans_unregister(ret); 8399 return ret; 8400 #endif 8401 case TARGET_NR_close: 8402 fd_trans_unregister(arg1); 8403 return get_errno(close(arg1)); 8404 8405 case TARGET_NR_brk: 8406 return do_brk(arg1); 8407 #ifdef TARGET_NR_fork 8408 case TARGET_NR_fork: 8409 return get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0)); 8410 #endif 8411 #ifdef TARGET_NR_waitpid 8412 case TARGET_NR_waitpid: 8413 { 8414 int status; 8415 ret = get_errno(safe_wait4(arg1, &status, arg3, 0)); 8416 if (!is_error(ret) && arg2 && ret 8417 && put_user_s32(host_to_target_waitstatus(status), arg2)) 8418 return -TARGET_EFAULT; 8419 } 8420 return ret; 8421 #endif 8422 #ifdef TARGET_NR_waitid 8423 case TARGET_NR_waitid: 8424 { 8425 siginfo_t info; 8426 info.si_pid = 0; 8427 ret = get_errno(safe_waitid(arg1, arg2, &info, arg4, NULL)); 8428 if (!is_error(ret) && arg3 && info.si_pid != 0) { 8429 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0))) 8430 return -TARGET_EFAULT; 8431 host_to_target_siginfo(p, &info); 8432 unlock_user(p, arg3, sizeof(target_siginfo_t)); 8433 } 8434 } 8435 return ret; 8436 #endif 8437 #ifdef TARGET_NR_creat /* not on alpha */ 8438 case TARGET_NR_creat: 8439 if (!(p = lock_user_string(arg1))) 8440 return -TARGET_EFAULT; 8441 ret = get_errno(creat(p, arg2)); 8442 fd_trans_unregister(ret); 8443 unlock_user(p, arg1, 0); 8444 return ret; 8445 #endif 8446 #ifdef TARGET_NR_link 8447 case TARGET_NR_link: 8448 { 8449 void * p2; 8450 p = lock_user_string(arg1); 8451 p2 = lock_user_string(arg2); 8452 if (!p || !p2) 8453 ret = -TARGET_EFAULT; 8454 else 8455 ret = get_errno(link(p, p2)); 8456 unlock_user(p2, arg2, 0); 8457 unlock_user(p, arg1, 0); 8458 } 8459 return ret; 8460 #endif 8461 #if defined(TARGET_NR_linkat) 8462 case TARGET_NR_linkat: 8463 { 8464 void * p2 = NULL; 8465 if (!arg2 || !arg4) 8466 return -TARGET_EFAULT; 8467 p = lock_user_string(arg2); 8468 p2 = lock_user_string(arg4); 8469 if (!p || !p2) 8470 ret = -TARGET_EFAULT; 8471 else 8472 ret = get_errno(linkat(arg1, p, arg3, p2, arg5)); 8473 unlock_user(p, arg2, 0); 8474 unlock_user(p2, arg4, 0); 8475 } 8476 return ret; 8477 #endif 8478 #ifdef TARGET_NR_unlink 8479 case TARGET_NR_unlink: 8480 if (!(p = lock_user_string(arg1))) 8481 return -TARGET_EFAULT; 8482 ret = get_errno(unlink(p)); 8483 unlock_user(p, arg1, 0); 8484 return ret; 8485 #endif 8486 #if defined(TARGET_NR_unlinkat) 8487 case TARGET_NR_unlinkat: 8488 if (!(p = lock_user_string(arg2))) 8489 return -TARGET_EFAULT; 8490 ret = get_errno(unlinkat(arg1, p, arg3)); 8491 unlock_user(p, arg2, 0); 8492 return ret; 8493 #endif 8494 case TARGET_NR_execve: 8495 { 8496 char **argp, **envp; 8497 int argc, envc; 8498 abi_ulong gp; 8499 abi_ulong guest_argp; 8500 abi_ulong guest_envp; 8501 abi_ulong addr; 8502 char **q; 8503 int total_size = 0; 8504 8505 argc = 0; 8506 guest_argp = arg2; 8507 for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) { 8508 if (get_user_ual(addr, gp)) 8509 return -TARGET_EFAULT; 8510 if (!addr) 8511 break; 8512 argc++; 8513 } 8514 envc = 0; 8515 guest_envp = arg3; 8516 for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) { 8517 if (get_user_ual(addr, gp)) 8518 return -TARGET_EFAULT; 8519 if (!addr) 8520 break; 8521 envc++; 8522 } 8523 8524 argp = g_new0(char *, argc + 1); 8525 envp = g_new0(char *, envc + 1); 8526 8527 for (gp = guest_argp, q = argp; gp; 8528 gp += sizeof(abi_ulong), q++) { 8529 if (get_user_ual(addr, gp)) 8530 goto execve_efault; 8531 if (!addr) 8532 break; 8533 if (!(*q = lock_user_string(addr))) 8534 goto execve_efault; 8535 total_size += strlen(*q) + 1; 8536 } 8537 *q = NULL; 8538 8539 for (gp = guest_envp, q = envp; gp; 8540 gp += sizeof(abi_ulong), q++) { 8541 if (get_user_ual(addr, gp)) 8542 goto execve_efault; 8543 if (!addr) 8544 break; 8545 if (!(*q = lock_user_string(addr))) 8546 goto execve_efault; 8547 total_size += strlen(*q) + 1; 8548 } 8549 *q = NULL; 8550 8551 if (!(p = lock_user_string(arg1))) 8552 goto execve_efault; 8553 /* Although execve() is not an interruptible syscall it is 8554 * a special case where we must use the safe_syscall wrapper: 8555 * if we allow a signal to happen before we make the host 8556 * syscall then we will 'lose' it, because at the point of 8557 * execve the process leaves QEMU's control. So we use the 8558 * safe syscall wrapper to ensure that we either take the 8559 * signal as a guest signal, or else it does not happen 8560 * before the execve completes and makes it the other 8561 * program's problem. 8562 */ 8563 ret = get_errno(safe_execve(p, argp, envp)); 8564 unlock_user(p, arg1, 0); 8565 8566 goto execve_end; 8567 8568 execve_efault: 8569 ret = -TARGET_EFAULT; 8570 8571 execve_end: 8572 for (gp = guest_argp, q = argp; *q; 8573 gp += sizeof(abi_ulong), q++) { 8574 if (get_user_ual(addr, gp) 8575 || !addr) 8576 break; 8577 unlock_user(*q, addr, 0); 8578 } 8579 for (gp = guest_envp, q = envp; *q; 8580 gp += sizeof(abi_ulong), q++) { 8581 if (get_user_ual(addr, gp) 8582 || !addr) 8583 break; 8584 unlock_user(*q, addr, 0); 8585 } 8586 8587 g_free(argp); 8588 g_free(envp); 8589 } 8590 return ret; 8591 case TARGET_NR_chdir: 8592 if (!(p = lock_user_string(arg1))) 8593 return -TARGET_EFAULT; 8594 ret = get_errno(chdir(p)); 8595 unlock_user(p, arg1, 0); 8596 return ret; 8597 #ifdef TARGET_NR_time 8598 case TARGET_NR_time: 8599 { 8600 time_t host_time; 8601 ret = get_errno(time(&host_time)); 8602 if (!is_error(ret) 8603 && arg1 8604 && put_user_sal(host_time, arg1)) 8605 return -TARGET_EFAULT; 8606 } 8607 return ret; 8608 #endif 8609 #ifdef TARGET_NR_mknod 8610 case TARGET_NR_mknod: 8611 if (!(p = lock_user_string(arg1))) 8612 return -TARGET_EFAULT; 8613 ret = get_errno(mknod(p, arg2, arg3)); 8614 unlock_user(p, arg1, 0); 8615 return ret; 8616 #endif 8617 #if defined(TARGET_NR_mknodat) 8618 case TARGET_NR_mknodat: 8619 if (!(p = lock_user_string(arg2))) 8620 return -TARGET_EFAULT; 8621 ret = get_errno(mknodat(arg1, p, arg3, arg4)); 8622 unlock_user(p, arg2, 0); 8623 return ret; 8624 #endif 8625 #ifdef TARGET_NR_chmod 8626 case TARGET_NR_chmod: 8627 if (!(p = lock_user_string(arg1))) 8628 return -TARGET_EFAULT; 8629 ret = get_errno(chmod(p, arg2)); 8630 unlock_user(p, arg1, 0); 8631 return ret; 8632 #endif 8633 #ifdef TARGET_NR_lseek 8634 case TARGET_NR_lseek: 8635 return get_errno(lseek(arg1, arg2, arg3)); 8636 #endif 8637 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA) 8638 /* Alpha specific */ 8639 case TARGET_NR_getxpid: 8640 ((CPUAlphaState *)cpu_env)->ir[IR_A4] = getppid(); 8641 return get_errno(getpid()); 8642 #endif 8643 #ifdef TARGET_NR_getpid 8644 case TARGET_NR_getpid: 8645 return get_errno(getpid()); 8646 #endif 8647 case TARGET_NR_mount: 8648 { 8649 /* need to look at the data field */ 8650 void *p2, *p3; 8651 8652 if (arg1) { 8653 p = lock_user_string(arg1); 8654 if (!p) { 8655 return -TARGET_EFAULT; 8656 } 8657 } else { 8658 p = NULL; 8659 } 8660 8661 p2 = lock_user_string(arg2); 8662 if (!p2) { 8663 if (arg1) { 8664 unlock_user(p, arg1, 0); 8665 } 8666 return -TARGET_EFAULT; 8667 } 8668 8669 if (arg3) { 8670 p3 = lock_user_string(arg3); 8671 if (!p3) { 8672 if (arg1) { 8673 unlock_user(p, arg1, 0); 8674 } 8675 unlock_user(p2, arg2, 0); 8676 return -TARGET_EFAULT; 8677 } 8678 } else { 8679 p3 = NULL; 8680 } 8681 8682 /* FIXME - arg5 should be locked, but it isn't clear how to 8683 * do that since it's not guaranteed to be a NULL-terminated 8684 * string. 8685 */ 8686 if (!arg5) { 8687 ret = mount(p, p2, p3, (unsigned long)arg4, NULL); 8688 } else { 8689 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(cpu, arg5)); 8690 } 8691 ret = get_errno(ret); 8692 8693 if (arg1) { 8694 unlock_user(p, arg1, 0); 8695 } 8696 unlock_user(p2, arg2, 0); 8697 if (arg3) { 8698 unlock_user(p3, arg3, 0); 8699 } 8700 } 8701 return ret; 8702 #if defined(TARGET_NR_umount) || defined(TARGET_NR_oldumount) 8703 #if defined(TARGET_NR_umount) 8704 case TARGET_NR_umount: 8705 #endif 8706 #if defined(TARGET_NR_oldumount) 8707 case TARGET_NR_oldumount: 8708 #endif 8709 if (!(p = lock_user_string(arg1))) 8710 return -TARGET_EFAULT; 8711 ret = get_errno(umount(p)); 8712 unlock_user(p, arg1, 0); 8713 return ret; 8714 #endif 8715 #ifdef TARGET_NR_stime /* not on alpha */ 8716 case TARGET_NR_stime: 8717 { 8718 struct timespec ts; 8719 ts.tv_nsec = 0; 8720 if (get_user_sal(ts.tv_sec, arg1)) { 8721 return -TARGET_EFAULT; 8722 } 8723 return get_errno(clock_settime(CLOCK_REALTIME, &ts)); 8724 } 8725 #endif 8726 #ifdef TARGET_NR_alarm /* not on alpha */ 8727 case TARGET_NR_alarm: 8728 return alarm(arg1); 8729 #endif 8730 #ifdef TARGET_NR_pause /* not on alpha */ 8731 case TARGET_NR_pause: 8732 if (!block_signals()) { 8733 sigsuspend(&((TaskState *)cpu->opaque)->signal_mask); 8734 } 8735 return -TARGET_EINTR; 8736 #endif 8737 #ifdef TARGET_NR_utime 8738 case TARGET_NR_utime: 8739 { 8740 struct utimbuf tbuf, *host_tbuf; 8741 struct target_utimbuf *target_tbuf; 8742 if (arg2) { 8743 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1)) 8744 return -TARGET_EFAULT; 8745 tbuf.actime = tswapal(target_tbuf->actime); 8746 tbuf.modtime = tswapal(target_tbuf->modtime); 8747 unlock_user_struct(target_tbuf, arg2, 0); 8748 host_tbuf = &tbuf; 8749 } else { 8750 host_tbuf = NULL; 8751 } 8752 if (!(p = lock_user_string(arg1))) 8753 return -TARGET_EFAULT; 8754 ret = get_errno(utime(p, host_tbuf)); 8755 unlock_user(p, arg1, 0); 8756 } 8757 return ret; 8758 #endif 8759 #ifdef TARGET_NR_utimes 8760 case TARGET_NR_utimes: 8761 { 8762 struct timeval *tvp, tv[2]; 8763 if (arg2) { 8764 if (copy_from_user_timeval(&tv[0], arg2) 8765 || copy_from_user_timeval(&tv[1], 8766 arg2 + sizeof(struct target_timeval))) 8767 return -TARGET_EFAULT; 8768 tvp = tv; 8769 } else { 8770 tvp = NULL; 8771 } 8772 if (!(p = lock_user_string(arg1))) 8773 return -TARGET_EFAULT; 8774 ret = get_errno(utimes(p, tvp)); 8775 unlock_user(p, arg1, 0); 8776 } 8777 return ret; 8778 #endif 8779 #if defined(TARGET_NR_futimesat) 8780 case TARGET_NR_futimesat: 8781 { 8782 struct timeval *tvp, tv[2]; 8783 if (arg3) { 8784 if (copy_from_user_timeval(&tv[0], arg3) 8785 || copy_from_user_timeval(&tv[1], 8786 arg3 + sizeof(struct target_timeval))) 8787 return -TARGET_EFAULT; 8788 tvp = tv; 8789 } else { 8790 tvp = NULL; 8791 } 8792 if (!(p = lock_user_string(arg2))) { 8793 return -TARGET_EFAULT; 8794 } 8795 ret = get_errno(futimesat(arg1, path(p), tvp)); 8796 unlock_user(p, arg2, 0); 8797 } 8798 return ret; 8799 #endif 8800 #ifdef TARGET_NR_access 8801 case TARGET_NR_access: 8802 if (!(p = lock_user_string(arg1))) { 8803 return -TARGET_EFAULT; 8804 } 8805 ret = get_errno(access(path(p), arg2)); 8806 unlock_user(p, arg1, 0); 8807 return ret; 8808 #endif 8809 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat) 8810 case TARGET_NR_faccessat: 8811 if (!(p = lock_user_string(arg2))) { 8812 return -TARGET_EFAULT; 8813 } 8814 ret = get_errno(faccessat(arg1, p, arg3, 0)); 8815 unlock_user(p, arg2, 0); 8816 return ret; 8817 #endif 8818 #ifdef TARGET_NR_nice /* not on alpha */ 8819 case TARGET_NR_nice: 8820 return get_errno(nice(arg1)); 8821 #endif 8822 case TARGET_NR_sync: 8823 sync(); 8824 return 0; 8825 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS) 8826 case TARGET_NR_syncfs: 8827 return get_errno(syncfs(arg1)); 8828 #endif 8829 case TARGET_NR_kill: 8830 return get_errno(safe_kill(arg1, target_to_host_signal(arg2))); 8831 #ifdef TARGET_NR_rename 8832 case TARGET_NR_rename: 8833 { 8834 void *p2; 8835 p = lock_user_string(arg1); 8836 p2 = lock_user_string(arg2); 8837 if (!p || !p2) 8838 ret = -TARGET_EFAULT; 8839 else 8840 ret = get_errno(rename(p, p2)); 8841 unlock_user(p2, arg2, 0); 8842 unlock_user(p, arg1, 0); 8843 } 8844 return ret; 8845 #endif 8846 #if defined(TARGET_NR_renameat) 8847 case TARGET_NR_renameat: 8848 { 8849 void *p2; 8850 p = lock_user_string(arg2); 8851 p2 = lock_user_string(arg4); 8852 if (!p || !p2) 8853 ret = -TARGET_EFAULT; 8854 else 8855 ret = get_errno(renameat(arg1, p, arg3, p2)); 8856 unlock_user(p2, arg4, 0); 8857 unlock_user(p, arg2, 0); 8858 } 8859 return ret; 8860 #endif 8861 #if defined(TARGET_NR_renameat2) 8862 case TARGET_NR_renameat2: 8863 { 8864 void *p2; 8865 p = lock_user_string(arg2); 8866 p2 = lock_user_string(arg4); 8867 if (!p || !p2) { 8868 ret = -TARGET_EFAULT; 8869 } else { 8870 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5)); 8871 } 8872 unlock_user(p2, arg4, 0); 8873 unlock_user(p, arg2, 0); 8874 } 8875 return ret; 8876 #endif 8877 #ifdef TARGET_NR_mkdir 8878 case TARGET_NR_mkdir: 8879 if (!(p = lock_user_string(arg1))) 8880 return -TARGET_EFAULT; 8881 ret = get_errno(mkdir(p, arg2)); 8882 unlock_user(p, arg1, 0); 8883 return ret; 8884 #endif 8885 #if defined(TARGET_NR_mkdirat) 8886 case TARGET_NR_mkdirat: 8887 if (!(p = lock_user_string(arg2))) 8888 return -TARGET_EFAULT; 8889 ret = get_errno(mkdirat(arg1, p, arg3)); 8890 unlock_user(p, arg2, 0); 8891 return ret; 8892 #endif 8893 #ifdef TARGET_NR_rmdir 8894 case TARGET_NR_rmdir: 8895 if (!(p = lock_user_string(arg1))) 8896 return -TARGET_EFAULT; 8897 ret = get_errno(rmdir(p)); 8898 unlock_user(p, arg1, 0); 8899 return ret; 8900 #endif 8901 case TARGET_NR_dup: 8902 ret = get_errno(dup(arg1)); 8903 if (ret >= 0) { 8904 fd_trans_dup(arg1, ret); 8905 } 8906 return ret; 8907 #ifdef TARGET_NR_pipe 8908 case TARGET_NR_pipe: 8909 return do_pipe(cpu_env, arg1, 0, 0); 8910 #endif 8911 #ifdef TARGET_NR_pipe2 8912 case TARGET_NR_pipe2: 8913 return do_pipe(cpu_env, arg1, 8914 target_to_host_bitmask(arg2, fcntl_flags_tbl), 1); 8915 #endif 8916 case TARGET_NR_times: 8917 { 8918 struct target_tms *tmsp; 8919 struct tms tms; 8920 ret = get_errno(times(&tms)); 8921 if (arg1) { 8922 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0); 8923 if (!tmsp) 8924 return -TARGET_EFAULT; 8925 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime)); 8926 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime)); 8927 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime)); 8928 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime)); 8929 } 8930 if (!is_error(ret)) 8931 ret = host_to_target_clock_t(ret); 8932 } 8933 return ret; 8934 case TARGET_NR_acct: 8935 if (arg1 == 0) { 8936 ret = get_errno(acct(NULL)); 8937 } else { 8938 if (!(p = lock_user_string(arg1))) { 8939 return -TARGET_EFAULT; 8940 } 8941 ret = get_errno(acct(path(p))); 8942 unlock_user(p, arg1, 0); 8943 } 8944 return ret; 8945 #ifdef TARGET_NR_umount2 8946 case TARGET_NR_umount2: 8947 if (!(p = lock_user_string(arg1))) 8948 return -TARGET_EFAULT; 8949 ret = get_errno(umount2(p, arg2)); 8950 unlock_user(p, arg1, 0); 8951 return ret; 8952 #endif 8953 case TARGET_NR_ioctl: 8954 return do_ioctl(arg1, arg2, arg3); 8955 #ifdef TARGET_NR_fcntl 8956 case TARGET_NR_fcntl: 8957 return do_fcntl(arg1, arg2, arg3); 8958 #endif 8959 case TARGET_NR_setpgid: 8960 return get_errno(setpgid(arg1, arg2)); 8961 case TARGET_NR_umask: 8962 return get_errno(umask(arg1)); 8963 case TARGET_NR_chroot: 8964 if (!(p = lock_user_string(arg1))) 8965 return -TARGET_EFAULT; 8966 ret = get_errno(chroot(p)); 8967 unlock_user(p, arg1, 0); 8968 return ret; 8969 #ifdef TARGET_NR_dup2 8970 case TARGET_NR_dup2: 8971 ret = get_errno(dup2(arg1, arg2)); 8972 if (ret >= 0) { 8973 fd_trans_dup(arg1, arg2); 8974 } 8975 return ret; 8976 #endif 8977 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3) 8978 case TARGET_NR_dup3: 8979 { 8980 int host_flags; 8981 8982 if ((arg3 & ~TARGET_O_CLOEXEC) != 0) { 8983 return -EINVAL; 8984 } 8985 host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl); 8986 ret = get_errno(dup3(arg1, arg2, host_flags)); 8987 if (ret >= 0) { 8988 fd_trans_dup(arg1, arg2); 8989 } 8990 return ret; 8991 } 8992 #endif 8993 #ifdef TARGET_NR_getppid /* not on alpha */ 8994 case TARGET_NR_getppid: 8995 return get_errno(getppid()); 8996 #endif 8997 #ifdef TARGET_NR_getpgrp 8998 case TARGET_NR_getpgrp: 8999 return get_errno(getpgrp()); 9000 #endif 9001 case TARGET_NR_setsid: 9002 return get_errno(setsid()); 9003 #ifdef TARGET_NR_sigaction 9004 case TARGET_NR_sigaction: 9005 { 9006 #if defined(TARGET_MIPS) 9007 struct target_sigaction act, oact, *pact, *old_act; 9008 9009 if (arg2) { 9010 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 9011 return -TARGET_EFAULT; 9012 act._sa_handler = old_act->_sa_handler; 9013 target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]); 9014 act.sa_flags = old_act->sa_flags; 9015 unlock_user_struct(old_act, arg2, 0); 9016 pact = &act; 9017 } else { 9018 pact = NULL; 9019 } 9020 9021 ret = get_errno(do_sigaction(arg1, pact, &oact, 0)); 9022 9023 if (!is_error(ret) && arg3) { 9024 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 9025 return -TARGET_EFAULT; 9026 old_act->_sa_handler = oact._sa_handler; 9027 old_act->sa_flags = oact.sa_flags; 9028 old_act->sa_mask.sig[0] = oact.sa_mask.sig[0]; 9029 old_act->sa_mask.sig[1] = 0; 9030 old_act->sa_mask.sig[2] = 0; 9031 old_act->sa_mask.sig[3] = 0; 9032 unlock_user_struct(old_act, arg3, 1); 9033 } 9034 #else 9035 struct target_old_sigaction *old_act; 9036 struct target_sigaction act, oact, *pact; 9037 if (arg2) { 9038 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 9039 return -TARGET_EFAULT; 9040 act._sa_handler = old_act->_sa_handler; 9041 target_siginitset(&act.sa_mask, old_act->sa_mask); 9042 act.sa_flags = old_act->sa_flags; 9043 #ifdef TARGET_ARCH_HAS_SA_RESTORER 9044 act.sa_restorer = old_act->sa_restorer; 9045 #endif 9046 unlock_user_struct(old_act, arg2, 0); 9047 pact = &act; 9048 } else { 9049 pact = NULL; 9050 } 9051 ret = get_errno(do_sigaction(arg1, pact, &oact, 0)); 9052 if (!is_error(ret) && arg3) { 9053 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 9054 return -TARGET_EFAULT; 9055 old_act->_sa_handler = oact._sa_handler; 9056 old_act->sa_mask = oact.sa_mask.sig[0]; 9057 old_act->sa_flags = oact.sa_flags; 9058 #ifdef TARGET_ARCH_HAS_SA_RESTORER 9059 old_act->sa_restorer = oact.sa_restorer; 9060 #endif 9061 unlock_user_struct(old_act, arg3, 1); 9062 } 9063 #endif 9064 } 9065 return ret; 9066 #endif 9067 case TARGET_NR_rt_sigaction: 9068 { 9069 /* 9070 * For Alpha and SPARC this is a 5 argument syscall, with 9071 * a 'restorer' parameter which must be copied into the 9072 * sa_restorer field of the sigaction struct. 9073 * For Alpha that 'restorer' is arg5; for SPARC it is arg4, 9074 * and arg5 is the sigsetsize. 9075 */ 9076 #if defined(TARGET_ALPHA) 9077 target_ulong sigsetsize = arg4; 9078 target_ulong restorer = arg5; 9079 #elif defined(TARGET_SPARC) 9080 target_ulong restorer = arg4; 9081 target_ulong sigsetsize = arg5; 9082 #else 9083 target_ulong sigsetsize = arg4; 9084 target_ulong restorer = 0; 9085 #endif 9086 struct target_sigaction *act = NULL; 9087 struct target_sigaction *oact = NULL; 9088 9089 if (sigsetsize != sizeof(target_sigset_t)) { 9090 return -TARGET_EINVAL; 9091 } 9092 if (arg2 && !lock_user_struct(VERIFY_READ, act, arg2, 1)) { 9093 return -TARGET_EFAULT; 9094 } 9095 if (arg3 && !lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) { 9096 ret = -TARGET_EFAULT; 9097 } else { 9098 ret = get_errno(do_sigaction(arg1, act, oact, restorer)); 9099 if (oact) { 9100 unlock_user_struct(oact, arg3, 1); 9101 } 9102 } 9103 if (act) { 9104 unlock_user_struct(act, arg2, 0); 9105 } 9106 } 9107 return ret; 9108 #ifdef TARGET_NR_sgetmask /* not on alpha */ 9109 case TARGET_NR_sgetmask: 9110 { 9111 sigset_t cur_set; 9112 abi_ulong target_set; 9113 ret = do_sigprocmask(0, NULL, &cur_set); 9114 if (!ret) { 9115 host_to_target_old_sigset(&target_set, &cur_set); 9116 ret = target_set; 9117 } 9118 } 9119 return ret; 9120 #endif 9121 #ifdef TARGET_NR_ssetmask /* not on alpha */ 9122 case TARGET_NR_ssetmask: 9123 { 9124 sigset_t set, oset; 9125 abi_ulong target_set = arg1; 9126 target_to_host_old_sigset(&set, &target_set); 9127 ret = do_sigprocmask(SIG_SETMASK, &set, &oset); 9128 if (!ret) { 9129 host_to_target_old_sigset(&target_set, &oset); 9130 ret = target_set; 9131 } 9132 } 9133 return ret; 9134 #endif 9135 #ifdef TARGET_NR_sigprocmask 9136 case TARGET_NR_sigprocmask: 9137 { 9138 #if defined(TARGET_ALPHA) 9139 sigset_t set, oldset; 9140 abi_ulong mask; 9141 int how; 9142 9143 switch (arg1) { 9144 case TARGET_SIG_BLOCK: 9145 how = SIG_BLOCK; 9146 break; 9147 case TARGET_SIG_UNBLOCK: 9148 how = SIG_UNBLOCK; 9149 break; 9150 case TARGET_SIG_SETMASK: 9151 how = SIG_SETMASK; 9152 break; 9153 default: 9154 return -TARGET_EINVAL; 9155 } 9156 mask = arg2; 9157 target_to_host_old_sigset(&set, &mask); 9158 9159 ret = do_sigprocmask(how, &set, &oldset); 9160 if (!is_error(ret)) { 9161 host_to_target_old_sigset(&mask, &oldset); 9162 ret = mask; 9163 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; /* force no error */ 9164 } 9165 #else 9166 sigset_t set, oldset, *set_ptr; 9167 int how; 9168 9169 if (arg2) { 9170 switch (arg1) { 9171 case TARGET_SIG_BLOCK: 9172 how = SIG_BLOCK; 9173 break; 9174 case TARGET_SIG_UNBLOCK: 9175 how = SIG_UNBLOCK; 9176 break; 9177 case TARGET_SIG_SETMASK: 9178 how = SIG_SETMASK; 9179 break; 9180 default: 9181 return -TARGET_EINVAL; 9182 } 9183 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1))) 9184 return -TARGET_EFAULT; 9185 target_to_host_old_sigset(&set, p); 9186 unlock_user(p, arg2, 0); 9187 set_ptr = &set; 9188 } else { 9189 how = 0; 9190 set_ptr = NULL; 9191 } 9192 ret = do_sigprocmask(how, set_ptr, &oldset); 9193 if (!is_error(ret) && arg3) { 9194 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0))) 9195 return -TARGET_EFAULT; 9196 host_to_target_old_sigset(p, &oldset); 9197 unlock_user(p, arg3, sizeof(target_sigset_t)); 9198 } 9199 #endif 9200 } 9201 return ret; 9202 #endif 9203 case TARGET_NR_rt_sigprocmask: 9204 { 9205 int how = arg1; 9206 sigset_t set, oldset, *set_ptr; 9207 9208 if (arg4 != sizeof(target_sigset_t)) { 9209 return -TARGET_EINVAL; 9210 } 9211 9212 if (arg2) { 9213 switch(how) { 9214 case TARGET_SIG_BLOCK: 9215 how = SIG_BLOCK; 9216 break; 9217 case TARGET_SIG_UNBLOCK: 9218 how = SIG_UNBLOCK; 9219 break; 9220 case TARGET_SIG_SETMASK: 9221 how = SIG_SETMASK; 9222 break; 9223 default: 9224 return -TARGET_EINVAL; 9225 } 9226 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1))) 9227 return -TARGET_EFAULT; 9228 target_to_host_sigset(&set, p); 9229 unlock_user(p, arg2, 0); 9230 set_ptr = &set; 9231 } else { 9232 how = 0; 9233 set_ptr = NULL; 9234 } 9235 ret = do_sigprocmask(how, set_ptr, &oldset); 9236 if (!is_error(ret) && arg3) { 9237 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0))) 9238 return -TARGET_EFAULT; 9239 host_to_target_sigset(p, &oldset); 9240 unlock_user(p, arg3, sizeof(target_sigset_t)); 9241 } 9242 } 9243 return ret; 9244 #ifdef TARGET_NR_sigpending 9245 case TARGET_NR_sigpending: 9246 { 9247 sigset_t set; 9248 ret = get_errno(sigpending(&set)); 9249 if (!is_error(ret)) { 9250 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0))) 9251 return -TARGET_EFAULT; 9252 host_to_target_old_sigset(p, &set); 9253 unlock_user(p, arg1, sizeof(target_sigset_t)); 9254 } 9255 } 9256 return ret; 9257 #endif 9258 case TARGET_NR_rt_sigpending: 9259 { 9260 sigset_t set; 9261 9262 /* Yes, this check is >, not != like most. We follow the kernel's 9263 * logic and it does it like this because it implements 9264 * NR_sigpending through the same code path, and in that case 9265 * the old_sigset_t is smaller in size. 9266 */ 9267 if (arg2 > sizeof(target_sigset_t)) { 9268 return -TARGET_EINVAL; 9269 } 9270 9271 ret = get_errno(sigpending(&set)); 9272 if (!is_error(ret)) { 9273 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0))) 9274 return -TARGET_EFAULT; 9275 host_to_target_sigset(p, &set); 9276 unlock_user(p, arg1, sizeof(target_sigset_t)); 9277 } 9278 } 9279 return ret; 9280 #ifdef TARGET_NR_sigsuspend 9281 case TARGET_NR_sigsuspend: 9282 { 9283 TaskState *ts = cpu->opaque; 9284 #if defined(TARGET_ALPHA) 9285 abi_ulong mask = arg1; 9286 target_to_host_old_sigset(&ts->sigsuspend_mask, &mask); 9287 #else 9288 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1))) 9289 return -TARGET_EFAULT; 9290 target_to_host_old_sigset(&ts->sigsuspend_mask, p); 9291 unlock_user(p, arg1, 0); 9292 #endif 9293 ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask, 9294 SIGSET_T_SIZE)); 9295 if (ret != -TARGET_ERESTARTSYS) { 9296 ts->in_sigsuspend = 1; 9297 } 9298 } 9299 return ret; 9300 #endif 9301 case TARGET_NR_rt_sigsuspend: 9302 { 9303 TaskState *ts = cpu->opaque; 9304 9305 if (arg2 != sizeof(target_sigset_t)) { 9306 return -TARGET_EINVAL; 9307 } 9308 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1))) 9309 return -TARGET_EFAULT; 9310 target_to_host_sigset(&ts->sigsuspend_mask, p); 9311 unlock_user(p, arg1, 0); 9312 ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask, 9313 SIGSET_T_SIZE)); 9314 if (ret != -TARGET_ERESTARTSYS) { 9315 ts->in_sigsuspend = 1; 9316 } 9317 } 9318 return ret; 9319 #ifdef TARGET_NR_rt_sigtimedwait 9320 case TARGET_NR_rt_sigtimedwait: 9321 { 9322 sigset_t set; 9323 struct timespec uts, *puts; 9324 siginfo_t uinfo; 9325 9326 if (arg4 != sizeof(target_sigset_t)) { 9327 return -TARGET_EINVAL; 9328 } 9329 9330 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1))) 9331 return -TARGET_EFAULT; 9332 target_to_host_sigset(&set, p); 9333 unlock_user(p, arg1, 0); 9334 if (arg3) { 9335 puts = &uts; 9336 if (target_to_host_timespec(puts, arg3)) { 9337 return -TARGET_EFAULT; 9338 } 9339 } else { 9340 puts = NULL; 9341 } 9342 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts, 9343 SIGSET_T_SIZE)); 9344 if (!is_error(ret)) { 9345 if (arg2) { 9346 p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t), 9347 0); 9348 if (!p) { 9349 return -TARGET_EFAULT; 9350 } 9351 host_to_target_siginfo(p, &uinfo); 9352 unlock_user(p, arg2, sizeof(target_siginfo_t)); 9353 } 9354 ret = host_to_target_signal(ret); 9355 } 9356 } 9357 return ret; 9358 #endif 9359 #ifdef TARGET_NR_rt_sigtimedwait_time64 9360 case TARGET_NR_rt_sigtimedwait_time64: 9361 { 9362 sigset_t set; 9363 struct timespec uts, *puts; 9364 siginfo_t uinfo; 9365 9366 if (arg4 != sizeof(target_sigset_t)) { 9367 return -TARGET_EINVAL; 9368 } 9369 9370 p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1); 9371 if (!p) { 9372 return -TARGET_EFAULT; 9373 } 9374 target_to_host_sigset(&set, p); 9375 unlock_user(p, arg1, 0); 9376 if (arg3) { 9377 puts = &uts; 9378 if (target_to_host_timespec64(puts, arg3)) { 9379 return -TARGET_EFAULT; 9380 } 9381 } else { 9382 puts = NULL; 9383 } 9384 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts, 9385 SIGSET_T_SIZE)); 9386 if (!is_error(ret)) { 9387 if (arg2) { 9388 p = lock_user(VERIFY_WRITE, arg2, 9389 sizeof(target_siginfo_t), 0); 9390 if (!p) { 9391 return -TARGET_EFAULT; 9392 } 9393 host_to_target_siginfo(p, &uinfo); 9394 unlock_user(p, arg2, sizeof(target_siginfo_t)); 9395 } 9396 ret = host_to_target_signal(ret); 9397 } 9398 } 9399 return ret; 9400 #endif 9401 case TARGET_NR_rt_sigqueueinfo: 9402 { 9403 siginfo_t uinfo; 9404 9405 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1); 9406 if (!p) { 9407 return -TARGET_EFAULT; 9408 } 9409 target_to_host_siginfo(&uinfo, p); 9410 unlock_user(p, arg3, 0); 9411 ret = get_errno(sys_rt_sigqueueinfo(arg1, arg2, &uinfo)); 9412 } 9413 return ret; 9414 case TARGET_NR_rt_tgsigqueueinfo: 9415 { 9416 siginfo_t uinfo; 9417 9418 p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1); 9419 if (!p) { 9420 return -TARGET_EFAULT; 9421 } 9422 target_to_host_siginfo(&uinfo, p); 9423 unlock_user(p, arg4, 0); 9424 ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, arg3, &uinfo)); 9425 } 9426 return ret; 9427 #ifdef TARGET_NR_sigreturn 9428 case TARGET_NR_sigreturn: 9429 if (block_signals()) { 9430 return -TARGET_ERESTARTSYS; 9431 } 9432 return do_sigreturn(cpu_env); 9433 #endif 9434 case TARGET_NR_rt_sigreturn: 9435 if (block_signals()) { 9436 return -TARGET_ERESTARTSYS; 9437 } 9438 return do_rt_sigreturn(cpu_env); 9439 case TARGET_NR_sethostname: 9440 if (!(p = lock_user_string(arg1))) 9441 return -TARGET_EFAULT; 9442 ret = get_errno(sethostname(p, arg2)); 9443 unlock_user(p, arg1, 0); 9444 return ret; 9445 #ifdef TARGET_NR_setrlimit 9446 case TARGET_NR_setrlimit: 9447 { 9448 int resource = target_to_host_resource(arg1); 9449 struct target_rlimit *target_rlim; 9450 struct rlimit rlim; 9451 if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1)) 9452 return -TARGET_EFAULT; 9453 rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur); 9454 rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max); 9455 unlock_user_struct(target_rlim, arg2, 0); 9456 /* 9457 * If we just passed through resource limit settings for memory then 9458 * they would also apply to QEMU's own allocations, and QEMU will 9459 * crash or hang or die if its allocations fail. Ideally we would 9460 * track the guest allocations in QEMU and apply the limits ourselves. 9461 * For now, just tell the guest the call succeeded but don't actually 9462 * limit anything. 9463 */ 9464 if (resource != RLIMIT_AS && 9465 resource != RLIMIT_DATA && 9466 resource != RLIMIT_STACK) { 9467 return get_errno(setrlimit(resource, &rlim)); 9468 } else { 9469 return 0; 9470 } 9471 } 9472 #endif 9473 #ifdef TARGET_NR_getrlimit 9474 case TARGET_NR_getrlimit: 9475 { 9476 int resource = target_to_host_resource(arg1); 9477 struct target_rlimit *target_rlim; 9478 struct rlimit rlim; 9479 9480 ret = get_errno(getrlimit(resource, &rlim)); 9481 if (!is_error(ret)) { 9482 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0)) 9483 return -TARGET_EFAULT; 9484 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur); 9485 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max); 9486 unlock_user_struct(target_rlim, arg2, 1); 9487 } 9488 } 9489 return ret; 9490 #endif 9491 case TARGET_NR_getrusage: 9492 { 9493 struct rusage rusage; 9494 ret = get_errno(getrusage(arg1, &rusage)); 9495 if (!is_error(ret)) { 9496 ret = host_to_target_rusage(arg2, &rusage); 9497 } 9498 } 9499 return ret; 9500 #if defined(TARGET_NR_gettimeofday) 9501 case TARGET_NR_gettimeofday: 9502 { 9503 struct timeval tv; 9504 struct timezone tz; 9505 9506 ret = get_errno(gettimeofday(&tv, &tz)); 9507 if (!is_error(ret)) { 9508 if (arg1 && copy_to_user_timeval(arg1, &tv)) { 9509 return -TARGET_EFAULT; 9510 } 9511 if (arg2 && copy_to_user_timezone(arg2, &tz)) { 9512 return -TARGET_EFAULT; 9513 } 9514 } 9515 } 9516 return ret; 9517 #endif 9518 #if defined(TARGET_NR_settimeofday) 9519 case TARGET_NR_settimeofday: 9520 { 9521 struct timeval tv, *ptv = NULL; 9522 struct timezone tz, *ptz = NULL; 9523 9524 if (arg1) { 9525 if (copy_from_user_timeval(&tv, arg1)) { 9526 return -TARGET_EFAULT; 9527 } 9528 ptv = &tv; 9529 } 9530 9531 if (arg2) { 9532 if (copy_from_user_timezone(&tz, arg2)) { 9533 return -TARGET_EFAULT; 9534 } 9535 ptz = &tz; 9536 } 9537 9538 return get_errno(settimeofday(ptv, ptz)); 9539 } 9540 #endif 9541 #if defined(TARGET_NR_select) 9542 case TARGET_NR_select: 9543 #if defined(TARGET_WANT_NI_OLD_SELECT) 9544 /* some architectures used to have old_select here 9545 * but now ENOSYS it. 9546 */ 9547 ret = -TARGET_ENOSYS; 9548 #elif defined(TARGET_WANT_OLD_SYS_SELECT) 9549 ret = do_old_select(arg1); 9550 #else 9551 ret = do_select(arg1, arg2, arg3, arg4, arg5); 9552 #endif 9553 return ret; 9554 #endif 9555 #ifdef TARGET_NR_pselect6 9556 case TARGET_NR_pselect6: 9557 return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, false); 9558 #endif 9559 #ifdef TARGET_NR_pselect6_time64 9560 case TARGET_NR_pselect6_time64: 9561 return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, true); 9562 #endif 9563 #ifdef TARGET_NR_symlink 9564 case TARGET_NR_symlink: 9565 { 9566 void *p2; 9567 p = lock_user_string(arg1); 9568 p2 = lock_user_string(arg2); 9569 if (!p || !p2) 9570 ret = -TARGET_EFAULT; 9571 else 9572 ret = get_errno(symlink(p, p2)); 9573 unlock_user(p2, arg2, 0); 9574 unlock_user(p, arg1, 0); 9575 } 9576 return ret; 9577 #endif 9578 #if defined(TARGET_NR_symlinkat) 9579 case TARGET_NR_symlinkat: 9580 { 9581 void *p2; 9582 p = lock_user_string(arg1); 9583 p2 = lock_user_string(arg3); 9584 if (!p || !p2) 9585 ret = -TARGET_EFAULT; 9586 else 9587 ret = get_errno(symlinkat(p, arg2, p2)); 9588 unlock_user(p2, arg3, 0); 9589 unlock_user(p, arg1, 0); 9590 } 9591 return ret; 9592 #endif 9593 #ifdef TARGET_NR_readlink 9594 case TARGET_NR_readlink: 9595 { 9596 void *p2; 9597 p = lock_user_string(arg1); 9598 p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0); 9599 if (!p || !p2) { 9600 ret = -TARGET_EFAULT; 9601 } else if (!arg3) { 9602 /* Short circuit this for the magic exe check. */ 9603 ret = -TARGET_EINVAL; 9604 } else if (is_proc_myself((const char *)p, "exe")) { 9605 char real[PATH_MAX], *temp; 9606 temp = realpath(exec_path, real); 9607 /* Return value is # of bytes that we wrote to the buffer. */ 9608 if (temp == NULL) { 9609 ret = get_errno(-1); 9610 } else { 9611 /* Don't worry about sign mismatch as earlier mapping 9612 * logic would have thrown a bad address error. */ 9613 ret = MIN(strlen(real), arg3); 9614 /* We cannot NUL terminate the string. */ 9615 memcpy(p2, real, ret); 9616 } 9617 } else { 9618 ret = get_errno(readlink(path(p), p2, arg3)); 9619 } 9620 unlock_user(p2, arg2, ret); 9621 unlock_user(p, arg1, 0); 9622 } 9623 return ret; 9624 #endif 9625 #if defined(TARGET_NR_readlinkat) 9626 case TARGET_NR_readlinkat: 9627 { 9628 void *p2; 9629 p = lock_user_string(arg2); 9630 p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0); 9631 if (!p || !p2) { 9632 ret = -TARGET_EFAULT; 9633 } else if (is_proc_myself((const char *)p, "exe")) { 9634 char real[PATH_MAX], *temp; 9635 temp = realpath(exec_path, real); 9636 ret = temp == NULL ? get_errno(-1) : strlen(real) ; 9637 snprintf((char *)p2, arg4, "%s", real); 9638 } else { 9639 ret = get_errno(readlinkat(arg1, path(p), p2, arg4)); 9640 } 9641 unlock_user(p2, arg3, ret); 9642 unlock_user(p, arg2, 0); 9643 } 9644 return ret; 9645 #endif 9646 #ifdef TARGET_NR_swapon 9647 case TARGET_NR_swapon: 9648 if (!(p = lock_user_string(arg1))) 9649 return -TARGET_EFAULT; 9650 ret = get_errno(swapon(p, arg2)); 9651 unlock_user(p, arg1, 0); 9652 return ret; 9653 #endif 9654 case TARGET_NR_reboot: 9655 if (arg3 == LINUX_REBOOT_CMD_RESTART2) { 9656 /* arg4 must be ignored in all other cases */ 9657 p = lock_user_string(arg4); 9658 if (!p) { 9659 return -TARGET_EFAULT; 9660 } 9661 ret = get_errno(reboot(arg1, arg2, arg3, p)); 9662 unlock_user(p, arg4, 0); 9663 } else { 9664 ret = get_errno(reboot(arg1, arg2, arg3, NULL)); 9665 } 9666 return ret; 9667 #ifdef TARGET_NR_mmap 9668 case TARGET_NR_mmap: 9669 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \ 9670 (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \ 9671 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \ 9672 || defined(TARGET_S390X) 9673 { 9674 abi_ulong *v; 9675 abi_ulong v1, v2, v3, v4, v5, v6; 9676 if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1))) 9677 return -TARGET_EFAULT; 9678 v1 = tswapal(v[0]); 9679 v2 = tswapal(v[1]); 9680 v3 = tswapal(v[2]); 9681 v4 = tswapal(v[3]); 9682 v5 = tswapal(v[4]); 9683 v6 = tswapal(v[5]); 9684 unlock_user(v, arg1, 0); 9685 ret = get_errno(target_mmap(v1, v2, v3, 9686 target_to_host_bitmask(v4, mmap_flags_tbl), 9687 v5, v6)); 9688 } 9689 #else 9690 /* mmap pointers are always untagged */ 9691 ret = get_errno(target_mmap(arg1, arg2, arg3, 9692 target_to_host_bitmask(arg4, mmap_flags_tbl), 9693 arg5, 9694 arg6)); 9695 #endif 9696 return ret; 9697 #endif 9698 #ifdef TARGET_NR_mmap2 9699 case TARGET_NR_mmap2: 9700 #ifndef MMAP_SHIFT 9701 #define MMAP_SHIFT 12 9702 #endif 9703 ret = target_mmap(arg1, arg2, arg3, 9704 target_to_host_bitmask(arg4, mmap_flags_tbl), 9705 arg5, arg6 << MMAP_SHIFT); 9706 return get_errno(ret); 9707 #endif 9708 case TARGET_NR_munmap: 9709 arg1 = cpu_untagged_addr(cpu, arg1); 9710 return get_errno(target_munmap(arg1, arg2)); 9711 case TARGET_NR_mprotect: 9712 arg1 = cpu_untagged_addr(cpu, arg1); 9713 { 9714 TaskState *ts = cpu->opaque; 9715 /* Special hack to detect libc making the stack executable. */ 9716 if ((arg3 & PROT_GROWSDOWN) 9717 && arg1 >= ts->info->stack_limit 9718 && arg1 <= ts->info->start_stack) { 9719 arg3 &= ~PROT_GROWSDOWN; 9720 arg2 = arg2 + arg1 - ts->info->stack_limit; 9721 arg1 = ts->info->stack_limit; 9722 } 9723 } 9724 return get_errno(target_mprotect(arg1, arg2, arg3)); 9725 #ifdef TARGET_NR_mremap 9726 case TARGET_NR_mremap: 9727 arg1 = cpu_untagged_addr(cpu, arg1); 9728 /* mremap new_addr (arg5) is always untagged */ 9729 return get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5)); 9730 #endif 9731 /* ??? msync/mlock/munlock are broken for softmmu. */ 9732 #ifdef TARGET_NR_msync 9733 case TARGET_NR_msync: 9734 return get_errno(msync(g2h(cpu, arg1), arg2, arg3)); 9735 #endif 9736 #ifdef TARGET_NR_mlock 9737 case TARGET_NR_mlock: 9738 return get_errno(mlock(g2h(cpu, arg1), arg2)); 9739 #endif 9740 #ifdef TARGET_NR_munlock 9741 case TARGET_NR_munlock: 9742 return get_errno(munlock(g2h(cpu, arg1), arg2)); 9743 #endif 9744 #ifdef TARGET_NR_mlockall 9745 case TARGET_NR_mlockall: 9746 return get_errno(mlockall(target_to_host_mlockall_arg(arg1))); 9747 #endif 9748 #ifdef TARGET_NR_munlockall 9749 case TARGET_NR_munlockall: 9750 return get_errno(munlockall()); 9751 #endif 9752 #ifdef TARGET_NR_truncate 9753 case TARGET_NR_truncate: 9754 if (!(p = lock_user_string(arg1))) 9755 return -TARGET_EFAULT; 9756 ret = get_errno(truncate(p, arg2)); 9757 unlock_user(p, arg1, 0); 9758 return ret; 9759 #endif 9760 #ifdef TARGET_NR_ftruncate 9761 case TARGET_NR_ftruncate: 9762 return get_errno(ftruncate(arg1, arg2)); 9763 #endif 9764 case TARGET_NR_fchmod: 9765 return get_errno(fchmod(arg1, arg2)); 9766 #if defined(TARGET_NR_fchmodat) 9767 case TARGET_NR_fchmodat: 9768 if (!(p = lock_user_string(arg2))) 9769 return -TARGET_EFAULT; 9770 ret = get_errno(fchmodat(arg1, p, arg3, 0)); 9771 unlock_user(p, arg2, 0); 9772 return ret; 9773 #endif 9774 case TARGET_NR_getpriority: 9775 /* Note that negative values are valid for getpriority, so we must 9776 differentiate based on errno settings. */ 9777 errno = 0; 9778 ret = getpriority(arg1, arg2); 9779 if (ret == -1 && errno != 0) { 9780 return -host_to_target_errno(errno); 9781 } 9782 #ifdef TARGET_ALPHA 9783 /* Return value is the unbiased priority. Signal no error. */ 9784 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; 9785 #else 9786 /* Return value is a biased priority to avoid negative numbers. */ 9787 ret = 20 - ret; 9788 #endif 9789 return ret; 9790 case TARGET_NR_setpriority: 9791 return get_errno(setpriority(arg1, arg2, arg3)); 9792 #ifdef TARGET_NR_statfs 9793 case TARGET_NR_statfs: 9794 if (!(p = lock_user_string(arg1))) { 9795 return -TARGET_EFAULT; 9796 } 9797 ret = get_errno(statfs(path(p), &stfs)); 9798 unlock_user(p, arg1, 0); 9799 convert_statfs: 9800 if (!is_error(ret)) { 9801 struct target_statfs *target_stfs; 9802 9803 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0)) 9804 return -TARGET_EFAULT; 9805 __put_user(stfs.f_type, &target_stfs->f_type); 9806 __put_user(stfs.f_bsize, &target_stfs->f_bsize); 9807 __put_user(stfs.f_blocks, &target_stfs->f_blocks); 9808 __put_user(stfs.f_bfree, &target_stfs->f_bfree); 9809 __put_user(stfs.f_bavail, &target_stfs->f_bavail); 9810 __put_user(stfs.f_files, &target_stfs->f_files); 9811 __put_user(stfs.f_ffree, &target_stfs->f_ffree); 9812 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]); 9813 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]); 9814 __put_user(stfs.f_namelen, &target_stfs->f_namelen); 9815 __put_user(stfs.f_frsize, &target_stfs->f_frsize); 9816 #ifdef _STATFS_F_FLAGS 9817 __put_user(stfs.f_flags, &target_stfs->f_flags); 9818 #else 9819 __put_user(0, &target_stfs->f_flags); 9820 #endif 9821 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare)); 9822 unlock_user_struct(target_stfs, arg2, 1); 9823 } 9824 return ret; 9825 #endif 9826 #ifdef TARGET_NR_fstatfs 9827 case TARGET_NR_fstatfs: 9828 ret = get_errno(fstatfs(arg1, &stfs)); 9829 goto convert_statfs; 9830 #endif 9831 #ifdef TARGET_NR_statfs64 9832 case TARGET_NR_statfs64: 9833 if (!(p = lock_user_string(arg1))) { 9834 return -TARGET_EFAULT; 9835 } 9836 ret = get_errno(statfs(path(p), &stfs)); 9837 unlock_user(p, arg1, 0); 9838 convert_statfs64: 9839 if (!is_error(ret)) { 9840 struct target_statfs64 *target_stfs; 9841 9842 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0)) 9843 return -TARGET_EFAULT; 9844 __put_user(stfs.f_type, &target_stfs->f_type); 9845 __put_user(stfs.f_bsize, &target_stfs->f_bsize); 9846 __put_user(stfs.f_blocks, &target_stfs->f_blocks); 9847 __put_user(stfs.f_bfree, &target_stfs->f_bfree); 9848 __put_user(stfs.f_bavail, &target_stfs->f_bavail); 9849 __put_user(stfs.f_files, &target_stfs->f_files); 9850 __put_user(stfs.f_ffree, &target_stfs->f_ffree); 9851 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]); 9852 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]); 9853 __put_user(stfs.f_namelen, &target_stfs->f_namelen); 9854 __put_user(stfs.f_frsize, &target_stfs->f_frsize); 9855 #ifdef _STATFS_F_FLAGS 9856 __put_user(stfs.f_flags, &target_stfs->f_flags); 9857 #else 9858 __put_user(0, &target_stfs->f_flags); 9859 #endif 9860 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare)); 9861 unlock_user_struct(target_stfs, arg3, 1); 9862 } 9863 return ret; 9864 case TARGET_NR_fstatfs64: 9865 ret = get_errno(fstatfs(arg1, &stfs)); 9866 goto convert_statfs64; 9867 #endif 9868 #ifdef TARGET_NR_socketcall 9869 case TARGET_NR_socketcall: 9870 return do_socketcall(arg1, arg2); 9871 #endif 9872 #ifdef TARGET_NR_accept 9873 case TARGET_NR_accept: 9874 return do_accept4(arg1, arg2, arg3, 0); 9875 #endif 9876 #ifdef TARGET_NR_accept4 9877 case TARGET_NR_accept4: 9878 return do_accept4(arg1, arg2, arg3, arg4); 9879 #endif 9880 #ifdef TARGET_NR_bind 9881 case TARGET_NR_bind: 9882 return do_bind(arg1, arg2, arg3); 9883 #endif 9884 #ifdef TARGET_NR_connect 9885 case TARGET_NR_connect: 9886 return do_connect(arg1, arg2, arg3); 9887 #endif 9888 #ifdef TARGET_NR_getpeername 9889 case TARGET_NR_getpeername: 9890 return do_getpeername(arg1, arg2, arg3); 9891 #endif 9892 #ifdef TARGET_NR_getsockname 9893 case TARGET_NR_getsockname: 9894 return do_getsockname(arg1, arg2, arg3); 9895 #endif 9896 #ifdef TARGET_NR_getsockopt 9897 case TARGET_NR_getsockopt: 9898 return do_getsockopt(arg1, arg2, arg3, arg4, arg5); 9899 #endif 9900 #ifdef TARGET_NR_listen 9901 case TARGET_NR_listen: 9902 return get_errno(listen(arg1, arg2)); 9903 #endif 9904 #ifdef TARGET_NR_recv 9905 case TARGET_NR_recv: 9906 return do_recvfrom(arg1, arg2, arg3, arg4, 0, 0); 9907 #endif 9908 #ifdef TARGET_NR_recvfrom 9909 case TARGET_NR_recvfrom: 9910 return do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6); 9911 #endif 9912 #ifdef TARGET_NR_recvmsg 9913 case TARGET_NR_recvmsg: 9914 return do_sendrecvmsg(arg1, arg2, arg3, 0); 9915 #endif 9916 #ifdef TARGET_NR_send 9917 case TARGET_NR_send: 9918 return do_sendto(arg1, arg2, arg3, arg4, 0, 0); 9919 #endif 9920 #ifdef TARGET_NR_sendmsg 9921 case TARGET_NR_sendmsg: 9922 return do_sendrecvmsg(arg1, arg2, arg3, 1); 9923 #endif 9924 #ifdef TARGET_NR_sendmmsg 9925 case TARGET_NR_sendmmsg: 9926 return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1); 9927 #endif 9928 #ifdef TARGET_NR_recvmmsg 9929 case TARGET_NR_recvmmsg: 9930 return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0); 9931 #endif 9932 #ifdef TARGET_NR_sendto 9933 case TARGET_NR_sendto: 9934 return do_sendto(arg1, arg2, arg3, arg4, arg5, arg6); 9935 #endif 9936 #ifdef TARGET_NR_shutdown 9937 case TARGET_NR_shutdown: 9938 return get_errno(shutdown(arg1, arg2)); 9939 #endif 9940 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom) 9941 case TARGET_NR_getrandom: 9942 p = lock_user(VERIFY_WRITE, arg1, arg2, 0); 9943 if (!p) { 9944 return -TARGET_EFAULT; 9945 } 9946 ret = get_errno(getrandom(p, arg2, arg3)); 9947 unlock_user(p, arg1, ret); 9948 return ret; 9949 #endif 9950 #ifdef TARGET_NR_socket 9951 case TARGET_NR_socket: 9952 return do_socket(arg1, arg2, arg3); 9953 #endif 9954 #ifdef TARGET_NR_socketpair 9955 case TARGET_NR_socketpair: 9956 return do_socketpair(arg1, arg2, arg3, arg4); 9957 #endif 9958 #ifdef TARGET_NR_setsockopt 9959 case TARGET_NR_setsockopt: 9960 return do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5); 9961 #endif 9962 #if defined(TARGET_NR_syslog) 9963 case TARGET_NR_syslog: 9964 { 9965 int len = arg2; 9966 9967 switch (arg1) { 9968 case TARGET_SYSLOG_ACTION_CLOSE: /* Close log */ 9969 case TARGET_SYSLOG_ACTION_OPEN: /* Open log */ 9970 case TARGET_SYSLOG_ACTION_CLEAR: /* Clear ring buffer */ 9971 case TARGET_SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging */ 9972 case TARGET_SYSLOG_ACTION_CONSOLE_ON: /* Enable logging */ 9973 case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */ 9974 case TARGET_SYSLOG_ACTION_SIZE_UNREAD: /* Number of chars */ 9975 case TARGET_SYSLOG_ACTION_SIZE_BUFFER: /* Size of the buffer */ 9976 return get_errno(sys_syslog((int)arg1, NULL, (int)arg3)); 9977 case TARGET_SYSLOG_ACTION_READ: /* Read from log */ 9978 case TARGET_SYSLOG_ACTION_READ_CLEAR: /* Read/clear msgs */ 9979 case TARGET_SYSLOG_ACTION_READ_ALL: /* Read last messages */ 9980 { 9981 if (len < 0) { 9982 return -TARGET_EINVAL; 9983 } 9984 if (len == 0) { 9985 return 0; 9986 } 9987 p = lock_user(VERIFY_WRITE, arg2, arg3, 0); 9988 if (!p) { 9989 return -TARGET_EFAULT; 9990 } 9991 ret = get_errno(sys_syslog((int)arg1, p, (int)arg3)); 9992 unlock_user(p, arg2, arg3); 9993 } 9994 return ret; 9995 default: 9996 return -TARGET_EINVAL; 9997 } 9998 } 9999 break; 10000 #endif 10001 case TARGET_NR_setitimer: 10002 { 10003 struct itimerval value, ovalue, *pvalue; 10004 10005 if (arg2) { 10006 pvalue = &value; 10007 if (copy_from_user_timeval(&pvalue->it_interval, arg2) 10008 || copy_from_user_timeval(&pvalue->it_value, 10009 arg2 + sizeof(struct target_timeval))) 10010 return -TARGET_EFAULT; 10011 } else { 10012 pvalue = NULL; 10013 } 10014 ret = get_errno(setitimer(arg1, pvalue, &ovalue)); 10015 if (!is_error(ret) && arg3) { 10016 if (copy_to_user_timeval(arg3, 10017 &ovalue.it_interval) 10018 || copy_to_user_timeval(arg3 + sizeof(struct target_timeval), 10019 &ovalue.it_value)) 10020 return -TARGET_EFAULT; 10021 } 10022 } 10023 return ret; 10024 case TARGET_NR_getitimer: 10025 { 10026 struct itimerval value; 10027 10028 ret = get_errno(getitimer(arg1, &value)); 10029 if (!is_error(ret) && arg2) { 10030 if (copy_to_user_timeval(arg2, 10031 &value.it_interval) 10032 || copy_to_user_timeval(arg2 + sizeof(struct target_timeval), 10033 &value.it_value)) 10034 return -TARGET_EFAULT; 10035 } 10036 } 10037 return ret; 10038 #ifdef TARGET_NR_stat 10039 case TARGET_NR_stat: 10040 if (!(p = lock_user_string(arg1))) { 10041 return -TARGET_EFAULT; 10042 } 10043 ret = get_errno(stat(path(p), &st)); 10044 unlock_user(p, arg1, 0); 10045 goto do_stat; 10046 #endif 10047 #ifdef TARGET_NR_lstat 10048 case TARGET_NR_lstat: 10049 if (!(p = lock_user_string(arg1))) { 10050 return -TARGET_EFAULT; 10051 } 10052 ret = get_errno(lstat(path(p), &st)); 10053 unlock_user(p, arg1, 0); 10054 goto do_stat; 10055 #endif 10056 #ifdef TARGET_NR_fstat 10057 case TARGET_NR_fstat: 10058 { 10059 ret = get_errno(fstat(arg1, &st)); 10060 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat) 10061 do_stat: 10062 #endif 10063 if (!is_error(ret)) { 10064 struct target_stat *target_st; 10065 10066 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0)) 10067 return -TARGET_EFAULT; 10068 memset(target_st, 0, sizeof(*target_st)); 10069 __put_user(st.st_dev, &target_st->st_dev); 10070 __put_user(st.st_ino, &target_st->st_ino); 10071 __put_user(st.st_mode, &target_st->st_mode); 10072 __put_user(st.st_uid, &target_st->st_uid); 10073 __put_user(st.st_gid, &target_st->st_gid); 10074 __put_user(st.st_nlink, &target_st->st_nlink); 10075 __put_user(st.st_rdev, &target_st->st_rdev); 10076 __put_user(st.st_size, &target_st->st_size); 10077 __put_user(st.st_blksize, &target_st->st_blksize); 10078 __put_user(st.st_blocks, &target_st->st_blocks); 10079 __put_user(st.st_atime, &target_st->target_st_atime); 10080 __put_user(st.st_mtime, &target_st->target_st_mtime); 10081 __put_user(st.st_ctime, &target_st->target_st_ctime); 10082 #if defined(HAVE_STRUCT_STAT_ST_ATIM) && defined(TARGET_STAT_HAVE_NSEC) 10083 __put_user(st.st_atim.tv_nsec, 10084 &target_st->target_st_atime_nsec); 10085 __put_user(st.st_mtim.tv_nsec, 10086 &target_st->target_st_mtime_nsec); 10087 __put_user(st.st_ctim.tv_nsec, 10088 &target_st->target_st_ctime_nsec); 10089 #endif 10090 unlock_user_struct(target_st, arg2, 1); 10091 } 10092 } 10093 return ret; 10094 #endif 10095 case TARGET_NR_vhangup: 10096 return get_errno(vhangup()); 10097 #ifdef TARGET_NR_syscall 10098 case TARGET_NR_syscall: 10099 return do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5, 10100 arg6, arg7, arg8, 0); 10101 #endif 10102 #if defined(TARGET_NR_wait4) 10103 case TARGET_NR_wait4: 10104 { 10105 int status; 10106 abi_long status_ptr = arg2; 10107 struct rusage rusage, *rusage_ptr; 10108 abi_ulong target_rusage = arg4; 10109 abi_long rusage_err; 10110 if (target_rusage) 10111 rusage_ptr = &rusage; 10112 else 10113 rusage_ptr = NULL; 10114 ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr)); 10115 if (!is_error(ret)) { 10116 if (status_ptr && ret) { 10117 status = host_to_target_waitstatus(status); 10118 if (put_user_s32(status, status_ptr)) 10119 return -TARGET_EFAULT; 10120 } 10121 if (target_rusage) { 10122 rusage_err = host_to_target_rusage(target_rusage, &rusage); 10123 if (rusage_err) { 10124 ret = rusage_err; 10125 } 10126 } 10127 } 10128 } 10129 return ret; 10130 #endif 10131 #ifdef TARGET_NR_swapoff 10132 case TARGET_NR_swapoff: 10133 if (!(p = lock_user_string(arg1))) 10134 return -TARGET_EFAULT; 10135 ret = get_errno(swapoff(p)); 10136 unlock_user(p, arg1, 0); 10137 return ret; 10138 #endif 10139 case TARGET_NR_sysinfo: 10140 { 10141 struct target_sysinfo *target_value; 10142 struct sysinfo value; 10143 ret = get_errno(sysinfo(&value)); 10144 if (!is_error(ret) && arg1) 10145 { 10146 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0)) 10147 return -TARGET_EFAULT; 10148 __put_user(value.uptime, &target_value->uptime); 10149 __put_user(value.loads[0], &target_value->loads[0]); 10150 __put_user(value.loads[1], &target_value->loads[1]); 10151 __put_user(value.loads[2], &target_value->loads[2]); 10152 __put_user(value.totalram, &target_value->totalram); 10153 __put_user(value.freeram, &target_value->freeram); 10154 __put_user(value.sharedram, &target_value->sharedram); 10155 __put_user(value.bufferram, &target_value->bufferram); 10156 __put_user(value.totalswap, &target_value->totalswap); 10157 __put_user(value.freeswap, &target_value->freeswap); 10158 __put_user(value.procs, &target_value->procs); 10159 __put_user(value.totalhigh, &target_value->totalhigh); 10160 __put_user(value.freehigh, &target_value->freehigh); 10161 __put_user(value.mem_unit, &target_value->mem_unit); 10162 unlock_user_struct(target_value, arg1, 1); 10163 } 10164 } 10165 return ret; 10166 #ifdef TARGET_NR_ipc 10167 case TARGET_NR_ipc: 10168 return do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6); 10169 #endif 10170 #ifdef TARGET_NR_semget 10171 case TARGET_NR_semget: 10172 return get_errno(semget(arg1, arg2, arg3)); 10173 #endif 10174 #ifdef TARGET_NR_semop 10175 case TARGET_NR_semop: 10176 return do_semtimedop(arg1, arg2, arg3, 0, false); 10177 #endif 10178 #ifdef TARGET_NR_semtimedop 10179 case TARGET_NR_semtimedop: 10180 return do_semtimedop(arg1, arg2, arg3, arg4, false); 10181 #endif 10182 #ifdef TARGET_NR_semtimedop_time64 10183 case TARGET_NR_semtimedop_time64: 10184 return do_semtimedop(arg1, arg2, arg3, arg4, true); 10185 #endif 10186 #ifdef TARGET_NR_semctl 10187 case TARGET_NR_semctl: 10188 return do_semctl(arg1, arg2, arg3, arg4); 10189 #endif 10190 #ifdef TARGET_NR_msgctl 10191 case TARGET_NR_msgctl: 10192 return do_msgctl(arg1, arg2, arg3); 10193 #endif 10194 #ifdef TARGET_NR_msgget 10195 case TARGET_NR_msgget: 10196 return get_errno(msgget(arg1, arg2)); 10197 #endif 10198 #ifdef TARGET_NR_msgrcv 10199 case TARGET_NR_msgrcv: 10200 return do_msgrcv(arg1, arg2, arg3, arg4, arg5); 10201 #endif 10202 #ifdef TARGET_NR_msgsnd 10203 case TARGET_NR_msgsnd: 10204 return do_msgsnd(arg1, arg2, arg3, arg4); 10205 #endif 10206 #ifdef TARGET_NR_shmget 10207 case TARGET_NR_shmget: 10208 return get_errno(shmget(arg1, arg2, arg3)); 10209 #endif 10210 #ifdef TARGET_NR_shmctl 10211 case TARGET_NR_shmctl: 10212 return do_shmctl(arg1, arg2, arg3); 10213 #endif 10214 #ifdef TARGET_NR_shmat 10215 case TARGET_NR_shmat: 10216 return do_shmat(cpu_env, arg1, arg2, arg3); 10217 #endif 10218 #ifdef TARGET_NR_shmdt 10219 case TARGET_NR_shmdt: 10220 return do_shmdt(arg1); 10221 #endif 10222 case TARGET_NR_fsync: 10223 return get_errno(fsync(arg1)); 10224 case TARGET_NR_clone: 10225 /* Linux manages to have three different orderings for its 10226 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines 10227 * match the kernel's CONFIG_CLONE_* settings. 10228 * Microblaze is further special in that it uses a sixth 10229 * implicit argument to clone for the TLS pointer. 10230 */ 10231 #if defined(TARGET_MICROBLAZE) 10232 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5)); 10233 #elif defined(TARGET_CLONE_BACKWARDS) 10234 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5)); 10235 #elif defined(TARGET_CLONE_BACKWARDS2) 10236 ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4)); 10237 #else 10238 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4)); 10239 #endif 10240 return ret; 10241 #ifdef __NR_exit_group 10242 /* new thread calls */ 10243 case TARGET_NR_exit_group: 10244 preexit_cleanup(cpu_env, arg1); 10245 return get_errno(exit_group(arg1)); 10246 #endif 10247 case TARGET_NR_setdomainname: 10248 if (!(p = lock_user_string(arg1))) 10249 return -TARGET_EFAULT; 10250 ret = get_errno(setdomainname(p, arg2)); 10251 unlock_user(p, arg1, 0); 10252 return ret; 10253 case TARGET_NR_uname: 10254 /* no need to transcode because we use the linux syscall */ 10255 { 10256 struct new_utsname * buf; 10257 10258 if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0)) 10259 return -TARGET_EFAULT; 10260 ret = get_errno(sys_uname(buf)); 10261 if (!is_error(ret)) { 10262 /* Overwrite the native machine name with whatever is being 10263 emulated. */ 10264 g_strlcpy(buf->machine, cpu_to_uname_machine(cpu_env), 10265 sizeof(buf->machine)); 10266 /* Allow the user to override the reported release. */ 10267 if (qemu_uname_release && *qemu_uname_release) { 10268 g_strlcpy(buf->release, qemu_uname_release, 10269 sizeof(buf->release)); 10270 } 10271 } 10272 unlock_user_struct(buf, arg1, 1); 10273 } 10274 return ret; 10275 #ifdef TARGET_I386 10276 case TARGET_NR_modify_ldt: 10277 return do_modify_ldt(cpu_env, arg1, arg2, arg3); 10278 #if !defined(TARGET_X86_64) 10279 case TARGET_NR_vm86: 10280 return do_vm86(cpu_env, arg1, arg2); 10281 #endif 10282 #endif 10283 #if defined(TARGET_NR_adjtimex) 10284 case TARGET_NR_adjtimex: 10285 { 10286 struct timex host_buf; 10287 10288 if (target_to_host_timex(&host_buf, arg1) != 0) { 10289 return -TARGET_EFAULT; 10290 } 10291 ret = get_errno(adjtimex(&host_buf)); 10292 if (!is_error(ret)) { 10293 if (host_to_target_timex(arg1, &host_buf) != 0) { 10294 return -TARGET_EFAULT; 10295 } 10296 } 10297 } 10298 return ret; 10299 #endif 10300 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME) 10301 case TARGET_NR_clock_adjtime: 10302 { 10303 struct timex htx, *phtx = &htx; 10304 10305 if (target_to_host_timex(phtx, arg2) != 0) { 10306 return -TARGET_EFAULT; 10307 } 10308 ret = get_errno(clock_adjtime(arg1, phtx)); 10309 if (!is_error(ret) && phtx) { 10310 if (host_to_target_timex(arg2, phtx) != 0) { 10311 return -TARGET_EFAULT; 10312 } 10313 } 10314 } 10315 return ret; 10316 #endif 10317 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME) 10318 case TARGET_NR_clock_adjtime64: 10319 { 10320 struct timex htx; 10321 10322 if (target_to_host_timex64(&htx, arg2) != 0) { 10323 return -TARGET_EFAULT; 10324 } 10325 ret = get_errno(clock_adjtime(arg1, &htx)); 10326 if (!is_error(ret) && host_to_target_timex64(arg2, &htx)) { 10327 return -TARGET_EFAULT; 10328 } 10329 } 10330 return ret; 10331 #endif 10332 case TARGET_NR_getpgid: 10333 return get_errno(getpgid(arg1)); 10334 case TARGET_NR_fchdir: 10335 return get_errno(fchdir(arg1)); 10336 case TARGET_NR_personality: 10337 return get_errno(personality(arg1)); 10338 #ifdef TARGET_NR__llseek /* Not on alpha */ 10339 case TARGET_NR__llseek: 10340 { 10341 int64_t res; 10342 #if !defined(__NR_llseek) 10343 res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5); 10344 if (res == -1) { 10345 ret = get_errno(res); 10346 } else { 10347 ret = 0; 10348 } 10349 #else 10350 ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5)); 10351 #endif 10352 if ((ret == 0) && put_user_s64(res, arg4)) { 10353 return -TARGET_EFAULT; 10354 } 10355 } 10356 return ret; 10357 #endif 10358 #ifdef TARGET_NR_getdents 10359 case TARGET_NR_getdents: 10360 #ifdef EMULATE_GETDENTS_WITH_GETDENTS 10361 #if TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 64 10362 { 10363 struct target_dirent *target_dirp; 10364 struct linux_dirent *dirp; 10365 abi_long count = arg3; 10366 10367 dirp = g_try_malloc(count); 10368 if (!dirp) { 10369 return -TARGET_ENOMEM; 10370 } 10371 10372 ret = get_errno(sys_getdents(arg1, dirp, count)); 10373 if (!is_error(ret)) { 10374 struct linux_dirent *de; 10375 struct target_dirent *tde; 10376 int len = ret; 10377 int reclen, treclen; 10378 int count1, tnamelen; 10379 10380 count1 = 0; 10381 de = dirp; 10382 if (!(target_dirp = lock_user(VERIFY_WRITE, arg2, count, 0))) 10383 return -TARGET_EFAULT; 10384 tde = target_dirp; 10385 while (len > 0) { 10386 reclen = de->d_reclen; 10387 tnamelen = reclen - offsetof(struct linux_dirent, d_name); 10388 assert(tnamelen >= 0); 10389 treclen = tnamelen + offsetof(struct target_dirent, d_name); 10390 assert(count1 + treclen <= count); 10391 tde->d_reclen = tswap16(treclen); 10392 tde->d_ino = tswapal(de->d_ino); 10393 tde->d_off = tswapal(de->d_off); 10394 memcpy(tde->d_name, de->d_name, tnamelen); 10395 de = (struct linux_dirent *)((char *)de + reclen); 10396 len -= reclen; 10397 tde = (struct target_dirent *)((char *)tde + treclen); 10398 count1 += treclen; 10399 } 10400 ret = count1; 10401 unlock_user(target_dirp, arg2, ret); 10402 } 10403 g_free(dirp); 10404 } 10405 #else 10406 { 10407 struct linux_dirent *dirp; 10408 abi_long count = arg3; 10409 10410 if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0))) 10411 return -TARGET_EFAULT; 10412 ret = get_errno(sys_getdents(arg1, dirp, count)); 10413 if (!is_error(ret)) { 10414 struct linux_dirent *de; 10415 int len = ret; 10416 int reclen; 10417 de = dirp; 10418 while (len > 0) { 10419 reclen = de->d_reclen; 10420 if (reclen > len) 10421 break; 10422 de->d_reclen = tswap16(reclen); 10423 tswapls(&de->d_ino); 10424 tswapls(&de->d_off); 10425 de = (struct linux_dirent *)((char *)de + reclen); 10426 len -= reclen; 10427 } 10428 } 10429 unlock_user(dirp, arg2, ret); 10430 } 10431 #endif 10432 #else 10433 /* Implement getdents in terms of getdents64 */ 10434 { 10435 struct linux_dirent64 *dirp; 10436 abi_long count = arg3; 10437 10438 dirp = lock_user(VERIFY_WRITE, arg2, count, 0); 10439 if (!dirp) { 10440 return -TARGET_EFAULT; 10441 } 10442 ret = get_errno(sys_getdents64(arg1, dirp, count)); 10443 if (!is_error(ret)) { 10444 /* Convert the dirent64 structs to target dirent. We do this 10445 * in-place, since we can guarantee that a target_dirent is no 10446 * larger than a dirent64; however this means we have to be 10447 * careful to read everything before writing in the new format. 10448 */ 10449 struct linux_dirent64 *de; 10450 struct target_dirent *tde; 10451 int len = ret; 10452 int tlen = 0; 10453 10454 de = dirp; 10455 tde = (struct target_dirent *)dirp; 10456 while (len > 0) { 10457 int namelen, treclen; 10458 int reclen = de->d_reclen; 10459 uint64_t ino = de->d_ino; 10460 int64_t off = de->d_off; 10461 uint8_t type = de->d_type; 10462 10463 namelen = strlen(de->d_name); 10464 treclen = offsetof(struct target_dirent, d_name) 10465 + namelen + 2; 10466 treclen = QEMU_ALIGN_UP(treclen, sizeof(abi_long)); 10467 10468 memmove(tde->d_name, de->d_name, namelen + 1); 10469 tde->d_ino = tswapal(ino); 10470 tde->d_off = tswapal(off); 10471 tde->d_reclen = tswap16(treclen); 10472 /* The target_dirent type is in what was formerly a padding 10473 * byte at the end of the structure: 10474 */ 10475 *(((char *)tde) + treclen - 1) = type; 10476 10477 de = (struct linux_dirent64 *)((char *)de + reclen); 10478 tde = (struct target_dirent *)((char *)tde + treclen); 10479 len -= reclen; 10480 tlen += treclen; 10481 } 10482 ret = tlen; 10483 } 10484 unlock_user(dirp, arg2, ret); 10485 } 10486 #endif 10487 return ret; 10488 #endif /* TARGET_NR_getdents */ 10489 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64) 10490 case TARGET_NR_getdents64: 10491 { 10492 struct linux_dirent64 *dirp; 10493 abi_long count = arg3; 10494 if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0))) 10495 return -TARGET_EFAULT; 10496 ret = get_errno(sys_getdents64(arg1, dirp, count)); 10497 if (!is_error(ret)) { 10498 struct linux_dirent64 *de; 10499 int len = ret; 10500 int reclen; 10501 de = dirp; 10502 while (len > 0) { 10503 reclen = de->d_reclen; 10504 if (reclen > len) 10505 break; 10506 de->d_reclen = tswap16(reclen); 10507 tswap64s((uint64_t *)&de->d_ino); 10508 tswap64s((uint64_t *)&de->d_off); 10509 de = (struct linux_dirent64 *)((char *)de + reclen); 10510 len -= reclen; 10511 } 10512 } 10513 unlock_user(dirp, arg2, ret); 10514 } 10515 return ret; 10516 #endif /* TARGET_NR_getdents64 */ 10517 #if defined(TARGET_NR__newselect) 10518 case TARGET_NR__newselect: 10519 return do_select(arg1, arg2, arg3, arg4, arg5); 10520 #endif 10521 #ifdef TARGET_NR_poll 10522 case TARGET_NR_poll: 10523 return do_ppoll(arg1, arg2, arg3, arg4, arg5, false, false); 10524 #endif 10525 #ifdef TARGET_NR_ppoll 10526 case TARGET_NR_ppoll: 10527 return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, false); 10528 #endif 10529 #ifdef TARGET_NR_ppoll_time64 10530 case TARGET_NR_ppoll_time64: 10531 return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, true); 10532 #endif 10533 case TARGET_NR_flock: 10534 /* NOTE: the flock constant seems to be the same for every 10535 Linux platform */ 10536 return get_errno(safe_flock(arg1, arg2)); 10537 case TARGET_NR_readv: 10538 { 10539 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0); 10540 if (vec != NULL) { 10541 ret = get_errno(safe_readv(arg1, vec, arg3)); 10542 unlock_iovec(vec, arg2, arg3, 1); 10543 } else { 10544 ret = -host_to_target_errno(errno); 10545 } 10546 } 10547 return ret; 10548 case TARGET_NR_writev: 10549 { 10550 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 10551 if (vec != NULL) { 10552 ret = get_errno(safe_writev(arg1, vec, arg3)); 10553 unlock_iovec(vec, arg2, arg3, 0); 10554 } else { 10555 ret = -host_to_target_errno(errno); 10556 } 10557 } 10558 return ret; 10559 #if defined(TARGET_NR_preadv) 10560 case TARGET_NR_preadv: 10561 { 10562 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0); 10563 if (vec != NULL) { 10564 unsigned long low, high; 10565 10566 target_to_host_low_high(arg4, arg5, &low, &high); 10567 ret = get_errno(safe_preadv(arg1, vec, arg3, low, high)); 10568 unlock_iovec(vec, arg2, arg3, 1); 10569 } else { 10570 ret = -host_to_target_errno(errno); 10571 } 10572 } 10573 return ret; 10574 #endif 10575 #if defined(TARGET_NR_pwritev) 10576 case TARGET_NR_pwritev: 10577 { 10578 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 10579 if (vec != NULL) { 10580 unsigned long low, high; 10581 10582 target_to_host_low_high(arg4, arg5, &low, &high); 10583 ret = get_errno(safe_pwritev(arg1, vec, arg3, low, high)); 10584 unlock_iovec(vec, arg2, arg3, 0); 10585 } else { 10586 ret = -host_to_target_errno(errno); 10587 } 10588 } 10589 return ret; 10590 #endif 10591 case TARGET_NR_getsid: 10592 return get_errno(getsid(arg1)); 10593 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */ 10594 case TARGET_NR_fdatasync: 10595 return get_errno(fdatasync(arg1)); 10596 #endif 10597 case TARGET_NR_sched_getaffinity: 10598 { 10599 unsigned int mask_size; 10600 unsigned long *mask; 10601 10602 /* 10603 * sched_getaffinity needs multiples of ulong, so need to take 10604 * care of mismatches between target ulong and host ulong sizes. 10605 */ 10606 if (arg2 & (sizeof(abi_ulong) - 1)) { 10607 return -TARGET_EINVAL; 10608 } 10609 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1); 10610 10611 mask = alloca(mask_size); 10612 memset(mask, 0, mask_size); 10613 ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask)); 10614 10615 if (!is_error(ret)) { 10616 if (ret > arg2) { 10617 /* More data returned than the caller's buffer will fit. 10618 * This only happens if sizeof(abi_long) < sizeof(long) 10619 * and the caller passed us a buffer holding an odd number 10620 * of abi_longs. If the host kernel is actually using the 10621 * extra 4 bytes then fail EINVAL; otherwise we can just 10622 * ignore them and only copy the interesting part. 10623 */ 10624 int numcpus = sysconf(_SC_NPROCESSORS_CONF); 10625 if (numcpus > arg2 * 8) { 10626 return -TARGET_EINVAL; 10627 } 10628 ret = arg2; 10629 } 10630 10631 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) { 10632 return -TARGET_EFAULT; 10633 } 10634 } 10635 } 10636 return ret; 10637 case TARGET_NR_sched_setaffinity: 10638 { 10639 unsigned int mask_size; 10640 unsigned long *mask; 10641 10642 /* 10643 * sched_setaffinity needs multiples of ulong, so need to take 10644 * care of mismatches between target ulong and host ulong sizes. 10645 */ 10646 if (arg2 & (sizeof(abi_ulong) - 1)) { 10647 return -TARGET_EINVAL; 10648 } 10649 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1); 10650 mask = alloca(mask_size); 10651 10652 ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2); 10653 if (ret) { 10654 return ret; 10655 } 10656 10657 return get_errno(sys_sched_setaffinity(arg1, mask_size, mask)); 10658 } 10659 case TARGET_NR_getcpu: 10660 { 10661 unsigned cpu, node; 10662 ret = get_errno(sys_getcpu(arg1 ? &cpu : NULL, 10663 arg2 ? &node : NULL, 10664 NULL)); 10665 if (is_error(ret)) { 10666 return ret; 10667 } 10668 if (arg1 && put_user_u32(cpu, arg1)) { 10669 return -TARGET_EFAULT; 10670 } 10671 if (arg2 && put_user_u32(node, arg2)) { 10672 return -TARGET_EFAULT; 10673 } 10674 } 10675 return ret; 10676 case TARGET_NR_sched_setparam: 10677 { 10678 struct sched_param *target_schp; 10679 struct sched_param schp; 10680 10681 if (arg2 == 0) { 10682 return -TARGET_EINVAL; 10683 } 10684 if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1)) 10685 return -TARGET_EFAULT; 10686 schp.sched_priority = tswap32(target_schp->sched_priority); 10687 unlock_user_struct(target_schp, arg2, 0); 10688 return get_errno(sched_setparam(arg1, &schp)); 10689 } 10690 case TARGET_NR_sched_getparam: 10691 { 10692 struct sched_param *target_schp; 10693 struct sched_param schp; 10694 10695 if (arg2 == 0) { 10696 return -TARGET_EINVAL; 10697 } 10698 ret = get_errno(sched_getparam(arg1, &schp)); 10699 if (!is_error(ret)) { 10700 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0)) 10701 return -TARGET_EFAULT; 10702 target_schp->sched_priority = tswap32(schp.sched_priority); 10703 unlock_user_struct(target_schp, arg2, 1); 10704 } 10705 } 10706 return ret; 10707 case TARGET_NR_sched_setscheduler: 10708 { 10709 struct sched_param *target_schp; 10710 struct sched_param schp; 10711 if (arg3 == 0) { 10712 return -TARGET_EINVAL; 10713 } 10714 if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1)) 10715 return -TARGET_EFAULT; 10716 schp.sched_priority = tswap32(target_schp->sched_priority); 10717 unlock_user_struct(target_schp, arg3, 0); 10718 return get_errno(sched_setscheduler(arg1, arg2, &schp)); 10719 } 10720 case TARGET_NR_sched_getscheduler: 10721 return get_errno(sched_getscheduler(arg1)); 10722 case TARGET_NR_sched_yield: 10723 return get_errno(sched_yield()); 10724 case TARGET_NR_sched_get_priority_max: 10725 return get_errno(sched_get_priority_max(arg1)); 10726 case TARGET_NR_sched_get_priority_min: 10727 return get_errno(sched_get_priority_min(arg1)); 10728 #ifdef TARGET_NR_sched_rr_get_interval 10729 case TARGET_NR_sched_rr_get_interval: 10730 { 10731 struct timespec ts; 10732 ret = get_errno(sched_rr_get_interval(arg1, &ts)); 10733 if (!is_error(ret)) { 10734 ret = host_to_target_timespec(arg2, &ts); 10735 } 10736 } 10737 return ret; 10738 #endif 10739 #ifdef TARGET_NR_sched_rr_get_interval_time64 10740 case TARGET_NR_sched_rr_get_interval_time64: 10741 { 10742 struct timespec ts; 10743 ret = get_errno(sched_rr_get_interval(arg1, &ts)); 10744 if (!is_error(ret)) { 10745 ret = host_to_target_timespec64(arg2, &ts); 10746 } 10747 } 10748 return ret; 10749 #endif 10750 #if defined(TARGET_NR_nanosleep) 10751 case TARGET_NR_nanosleep: 10752 { 10753 struct timespec req, rem; 10754 target_to_host_timespec(&req, arg1); 10755 ret = get_errno(safe_nanosleep(&req, &rem)); 10756 if (is_error(ret) && arg2) { 10757 host_to_target_timespec(arg2, &rem); 10758 } 10759 } 10760 return ret; 10761 #endif 10762 case TARGET_NR_prctl: 10763 switch (arg1) { 10764 case PR_GET_PDEATHSIG: 10765 { 10766 int deathsig; 10767 ret = get_errno(prctl(arg1, &deathsig, arg3, arg4, arg5)); 10768 if (!is_error(ret) && arg2 10769 && put_user_s32(deathsig, arg2)) { 10770 return -TARGET_EFAULT; 10771 } 10772 return ret; 10773 } 10774 #ifdef PR_GET_NAME 10775 case PR_GET_NAME: 10776 { 10777 void *name = lock_user(VERIFY_WRITE, arg2, 16, 1); 10778 if (!name) { 10779 return -TARGET_EFAULT; 10780 } 10781 ret = get_errno(prctl(arg1, (unsigned long)name, 10782 arg3, arg4, arg5)); 10783 unlock_user(name, arg2, 16); 10784 return ret; 10785 } 10786 case PR_SET_NAME: 10787 { 10788 void *name = lock_user(VERIFY_READ, arg2, 16, 1); 10789 if (!name) { 10790 return -TARGET_EFAULT; 10791 } 10792 ret = get_errno(prctl(arg1, (unsigned long)name, 10793 arg3, arg4, arg5)); 10794 unlock_user(name, arg2, 0); 10795 return ret; 10796 } 10797 #endif 10798 #ifdef TARGET_MIPS 10799 case TARGET_PR_GET_FP_MODE: 10800 { 10801 CPUMIPSState *env = ((CPUMIPSState *)cpu_env); 10802 ret = 0; 10803 if (env->CP0_Status & (1 << CP0St_FR)) { 10804 ret |= TARGET_PR_FP_MODE_FR; 10805 } 10806 if (env->CP0_Config5 & (1 << CP0C5_FRE)) { 10807 ret |= TARGET_PR_FP_MODE_FRE; 10808 } 10809 return ret; 10810 } 10811 case TARGET_PR_SET_FP_MODE: 10812 { 10813 CPUMIPSState *env = ((CPUMIPSState *)cpu_env); 10814 bool old_fr = env->CP0_Status & (1 << CP0St_FR); 10815 bool old_fre = env->CP0_Config5 & (1 << CP0C5_FRE); 10816 bool new_fr = arg2 & TARGET_PR_FP_MODE_FR; 10817 bool new_fre = arg2 & TARGET_PR_FP_MODE_FRE; 10818 10819 const unsigned int known_bits = TARGET_PR_FP_MODE_FR | 10820 TARGET_PR_FP_MODE_FRE; 10821 10822 /* If nothing to change, return right away, successfully. */ 10823 if (old_fr == new_fr && old_fre == new_fre) { 10824 return 0; 10825 } 10826 /* Check the value is valid */ 10827 if (arg2 & ~known_bits) { 10828 return -TARGET_EOPNOTSUPP; 10829 } 10830 /* Setting FRE without FR is not supported. */ 10831 if (new_fre && !new_fr) { 10832 return -TARGET_EOPNOTSUPP; 10833 } 10834 if (new_fr && !(env->active_fpu.fcr0 & (1 << FCR0_F64))) { 10835 /* FR1 is not supported */ 10836 return -TARGET_EOPNOTSUPP; 10837 } 10838 if (!new_fr && (env->active_fpu.fcr0 & (1 << FCR0_F64)) 10839 && !(env->CP0_Status_rw_bitmask & (1 << CP0St_FR))) { 10840 /* cannot set FR=0 */ 10841 return -TARGET_EOPNOTSUPP; 10842 } 10843 if (new_fre && !(env->active_fpu.fcr0 & (1 << FCR0_FREP))) { 10844 /* Cannot set FRE=1 */ 10845 return -TARGET_EOPNOTSUPP; 10846 } 10847 10848 int i; 10849 fpr_t *fpr = env->active_fpu.fpr; 10850 for (i = 0; i < 32 ; i += 2) { 10851 if (!old_fr && new_fr) { 10852 fpr[i].w[!FP_ENDIAN_IDX] = fpr[i + 1].w[FP_ENDIAN_IDX]; 10853 } else if (old_fr && !new_fr) { 10854 fpr[i + 1].w[FP_ENDIAN_IDX] = fpr[i].w[!FP_ENDIAN_IDX]; 10855 } 10856 } 10857 10858 if (new_fr) { 10859 env->CP0_Status |= (1 << CP0St_FR); 10860 env->hflags |= MIPS_HFLAG_F64; 10861 } else { 10862 env->CP0_Status &= ~(1 << CP0St_FR); 10863 env->hflags &= ~MIPS_HFLAG_F64; 10864 } 10865 if (new_fre) { 10866 env->CP0_Config5 |= (1 << CP0C5_FRE); 10867 if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) { 10868 env->hflags |= MIPS_HFLAG_FRE; 10869 } 10870 } else { 10871 env->CP0_Config5 &= ~(1 << CP0C5_FRE); 10872 env->hflags &= ~MIPS_HFLAG_FRE; 10873 } 10874 10875 return 0; 10876 } 10877 #endif /* MIPS */ 10878 #ifdef TARGET_AARCH64 10879 case TARGET_PR_SVE_SET_VL: 10880 /* 10881 * We cannot support either PR_SVE_SET_VL_ONEXEC or 10882 * PR_SVE_VL_INHERIT. Note the kernel definition 10883 * of sve_vl_valid allows for VQ=512, i.e. VL=8192, 10884 * even though the current architectural maximum is VQ=16. 10885 */ 10886 ret = -TARGET_EINVAL; 10887 if (cpu_isar_feature(aa64_sve, env_archcpu(cpu_env)) 10888 && arg2 >= 0 && arg2 <= 512 * 16 && !(arg2 & 15)) { 10889 CPUARMState *env = cpu_env; 10890 ARMCPU *cpu = env_archcpu(env); 10891 uint32_t vq, old_vq; 10892 10893 old_vq = (env->vfp.zcr_el[1] & 0xf) + 1; 10894 vq = MAX(arg2 / 16, 1); 10895 vq = MIN(vq, cpu->sve_max_vq); 10896 10897 if (vq < old_vq) { 10898 aarch64_sve_narrow_vq(env, vq); 10899 } 10900 env->vfp.zcr_el[1] = vq - 1; 10901 arm_rebuild_hflags(env); 10902 ret = vq * 16; 10903 } 10904 return ret; 10905 case TARGET_PR_SVE_GET_VL: 10906 ret = -TARGET_EINVAL; 10907 { 10908 ARMCPU *cpu = env_archcpu(cpu_env); 10909 if (cpu_isar_feature(aa64_sve, cpu)) { 10910 ret = ((cpu->env.vfp.zcr_el[1] & 0xf) + 1) * 16; 10911 } 10912 } 10913 return ret; 10914 case TARGET_PR_PAC_RESET_KEYS: 10915 { 10916 CPUARMState *env = cpu_env; 10917 ARMCPU *cpu = env_archcpu(env); 10918 10919 if (arg3 || arg4 || arg5) { 10920 return -TARGET_EINVAL; 10921 } 10922 if (cpu_isar_feature(aa64_pauth, cpu)) { 10923 int all = (TARGET_PR_PAC_APIAKEY | TARGET_PR_PAC_APIBKEY | 10924 TARGET_PR_PAC_APDAKEY | TARGET_PR_PAC_APDBKEY | 10925 TARGET_PR_PAC_APGAKEY); 10926 int ret = 0; 10927 Error *err = NULL; 10928 10929 if (arg2 == 0) { 10930 arg2 = all; 10931 } else if (arg2 & ~all) { 10932 return -TARGET_EINVAL; 10933 } 10934 if (arg2 & TARGET_PR_PAC_APIAKEY) { 10935 ret |= qemu_guest_getrandom(&env->keys.apia, 10936 sizeof(ARMPACKey), &err); 10937 } 10938 if (arg2 & TARGET_PR_PAC_APIBKEY) { 10939 ret |= qemu_guest_getrandom(&env->keys.apib, 10940 sizeof(ARMPACKey), &err); 10941 } 10942 if (arg2 & TARGET_PR_PAC_APDAKEY) { 10943 ret |= qemu_guest_getrandom(&env->keys.apda, 10944 sizeof(ARMPACKey), &err); 10945 } 10946 if (arg2 & TARGET_PR_PAC_APDBKEY) { 10947 ret |= qemu_guest_getrandom(&env->keys.apdb, 10948 sizeof(ARMPACKey), &err); 10949 } 10950 if (arg2 & TARGET_PR_PAC_APGAKEY) { 10951 ret |= qemu_guest_getrandom(&env->keys.apga, 10952 sizeof(ARMPACKey), &err); 10953 } 10954 if (ret != 0) { 10955 /* 10956 * Some unknown failure in the crypto. The best 10957 * we can do is log it and fail the syscall. 10958 * The real syscall cannot fail this way. 10959 */ 10960 qemu_log_mask(LOG_UNIMP, 10961 "PR_PAC_RESET_KEYS: Crypto failure: %s", 10962 error_get_pretty(err)); 10963 error_free(err); 10964 return -TARGET_EIO; 10965 } 10966 return 0; 10967 } 10968 } 10969 return -TARGET_EINVAL; 10970 case TARGET_PR_SET_TAGGED_ADDR_CTRL: 10971 { 10972 abi_ulong valid_mask = TARGET_PR_TAGGED_ADDR_ENABLE; 10973 CPUARMState *env = cpu_env; 10974 ARMCPU *cpu = env_archcpu(env); 10975 10976 if (cpu_isar_feature(aa64_mte, cpu)) { 10977 valid_mask |= TARGET_PR_MTE_TCF_MASK; 10978 valid_mask |= TARGET_PR_MTE_TAG_MASK; 10979 } 10980 10981 if ((arg2 & ~valid_mask) || arg3 || arg4 || arg5) { 10982 return -TARGET_EINVAL; 10983 } 10984 env->tagged_addr_enable = arg2 & TARGET_PR_TAGGED_ADDR_ENABLE; 10985 10986 if (cpu_isar_feature(aa64_mte, cpu)) { 10987 switch (arg2 & TARGET_PR_MTE_TCF_MASK) { 10988 case TARGET_PR_MTE_TCF_NONE: 10989 case TARGET_PR_MTE_TCF_SYNC: 10990 case TARGET_PR_MTE_TCF_ASYNC: 10991 break; 10992 default: 10993 return -EINVAL; 10994 } 10995 10996 /* 10997 * Write PR_MTE_TCF to SCTLR_EL1[TCF0]. 10998 * Note that the syscall values are consistent with hw. 10999 */ 11000 env->cp15.sctlr_el[1] = 11001 deposit64(env->cp15.sctlr_el[1], 38, 2, 11002 arg2 >> TARGET_PR_MTE_TCF_SHIFT); 11003 11004 /* 11005 * Write PR_MTE_TAG to GCR_EL1[Exclude]. 11006 * Note that the syscall uses an include mask, 11007 * and hardware uses an exclude mask -- invert. 11008 */ 11009 env->cp15.gcr_el1 = 11010 deposit64(env->cp15.gcr_el1, 0, 16, 11011 ~arg2 >> TARGET_PR_MTE_TAG_SHIFT); 11012 arm_rebuild_hflags(env); 11013 } 11014 return 0; 11015 } 11016 case TARGET_PR_GET_TAGGED_ADDR_CTRL: 11017 { 11018 abi_long ret = 0; 11019 CPUARMState *env = cpu_env; 11020 ARMCPU *cpu = env_archcpu(env); 11021 11022 if (arg2 || arg3 || arg4 || arg5) { 11023 return -TARGET_EINVAL; 11024 } 11025 if (env->tagged_addr_enable) { 11026 ret |= TARGET_PR_TAGGED_ADDR_ENABLE; 11027 } 11028 if (cpu_isar_feature(aa64_mte, cpu)) { 11029 /* See above. */ 11030 ret |= (extract64(env->cp15.sctlr_el[1], 38, 2) 11031 << TARGET_PR_MTE_TCF_SHIFT); 11032 ret = deposit64(ret, TARGET_PR_MTE_TAG_SHIFT, 16, 11033 ~env->cp15.gcr_el1); 11034 } 11035 return ret; 11036 } 11037 #endif /* AARCH64 */ 11038 case PR_GET_SECCOMP: 11039 case PR_SET_SECCOMP: 11040 /* Disable seccomp to prevent the target disabling syscalls we 11041 * need. */ 11042 return -TARGET_EINVAL; 11043 default: 11044 /* Most prctl options have no pointer arguments */ 11045 return get_errno(prctl(arg1, arg2, arg3, arg4, arg5)); 11046 } 11047 break; 11048 #ifdef TARGET_NR_arch_prctl 11049 case TARGET_NR_arch_prctl: 11050 return do_arch_prctl(cpu_env, arg1, arg2); 11051 #endif 11052 #ifdef TARGET_NR_pread64 11053 case TARGET_NR_pread64: 11054 if (regpairs_aligned(cpu_env, num)) { 11055 arg4 = arg5; 11056 arg5 = arg6; 11057 } 11058 if (arg2 == 0 && arg3 == 0) { 11059 /* Special-case NULL buffer and zero length, which should succeed */ 11060 p = 0; 11061 } else { 11062 p = lock_user(VERIFY_WRITE, arg2, arg3, 0); 11063 if (!p) { 11064 return -TARGET_EFAULT; 11065 } 11066 } 11067 ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5))); 11068 unlock_user(p, arg2, ret); 11069 return ret; 11070 case TARGET_NR_pwrite64: 11071 if (regpairs_aligned(cpu_env, num)) { 11072 arg4 = arg5; 11073 arg5 = arg6; 11074 } 11075 if (arg2 == 0 && arg3 == 0) { 11076 /* Special-case NULL buffer and zero length, which should succeed */ 11077 p = 0; 11078 } else { 11079 p = lock_user(VERIFY_READ, arg2, arg3, 1); 11080 if (!p) { 11081 return -TARGET_EFAULT; 11082 } 11083 } 11084 ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5))); 11085 unlock_user(p, arg2, 0); 11086 return ret; 11087 #endif 11088 case TARGET_NR_getcwd: 11089 if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0))) 11090 return -TARGET_EFAULT; 11091 ret = get_errno(sys_getcwd1(p, arg2)); 11092 unlock_user(p, arg1, ret); 11093 return ret; 11094 case TARGET_NR_capget: 11095 case TARGET_NR_capset: 11096 { 11097 struct target_user_cap_header *target_header; 11098 struct target_user_cap_data *target_data = NULL; 11099 struct __user_cap_header_struct header; 11100 struct __user_cap_data_struct data[2]; 11101 struct __user_cap_data_struct *dataptr = NULL; 11102 int i, target_datalen; 11103 int data_items = 1; 11104 11105 if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) { 11106 return -TARGET_EFAULT; 11107 } 11108 header.version = tswap32(target_header->version); 11109 header.pid = tswap32(target_header->pid); 11110 11111 if (header.version != _LINUX_CAPABILITY_VERSION) { 11112 /* Version 2 and up takes pointer to two user_data structs */ 11113 data_items = 2; 11114 } 11115 11116 target_datalen = sizeof(*target_data) * data_items; 11117 11118 if (arg2) { 11119 if (num == TARGET_NR_capget) { 11120 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0); 11121 } else { 11122 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1); 11123 } 11124 if (!target_data) { 11125 unlock_user_struct(target_header, arg1, 0); 11126 return -TARGET_EFAULT; 11127 } 11128 11129 if (num == TARGET_NR_capset) { 11130 for (i = 0; i < data_items; i++) { 11131 data[i].effective = tswap32(target_data[i].effective); 11132 data[i].permitted = tswap32(target_data[i].permitted); 11133 data[i].inheritable = tswap32(target_data[i].inheritable); 11134 } 11135 } 11136 11137 dataptr = data; 11138 } 11139 11140 if (num == TARGET_NR_capget) { 11141 ret = get_errno(capget(&header, dataptr)); 11142 } else { 11143 ret = get_errno(capset(&header, dataptr)); 11144 } 11145 11146 /* The kernel always updates version for both capget and capset */ 11147 target_header->version = tswap32(header.version); 11148 unlock_user_struct(target_header, arg1, 1); 11149 11150 if (arg2) { 11151 if (num == TARGET_NR_capget) { 11152 for (i = 0; i < data_items; i++) { 11153 target_data[i].effective = tswap32(data[i].effective); 11154 target_data[i].permitted = tswap32(data[i].permitted); 11155 target_data[i].inheritable = tswap32(data[i].inheritable); 11156 } 11157 unlock_user(target_data, arg2, target_datalen); 11158 } else { 11159 unlock_user(target_data, arg2, 0); 11160 } 11161 } 11162 return ret; 11163 } 11164 case TARGET_NR_sigaltstack: 11165 return do_sigaltstack(arg1, arg2, cpu_env); 11166 11167 #ifdef CONFIG_SENDFILE 11168 #ifdef TARGET_NR_sendfile 11169 case TARGET_NR_sendfile: 11170 { 11171 off_t *offp = NULL; 11172 off_t off; 11173 if (arg3) { 11174 ret = get_user_sal(off, arg3); 11175 if (is_error(ret)) { 11176 return ret; 11177 } 11178 offp = &off; 11179 } 11180 ret = get_errno(sendfile(arg1, arg2, offp, arg4)); 11181 if (!is_error(ret) && arg3) { 11182 abi_long ret2 = put_user_sal(off, arg3); 11183 if (is_error(ret2)) { 11184 ret = ret2; 11185 } 11186 } 11187 return ret; 11188 } 11189 #endif 11190 #ifdef TARGET_NR_sendfile64 11191 case TARGET_NR_sendfile64: 11192 { 11193 off_t *offp = NULL; 11194 off_t off; 11195 if (arg3) { 11196 ret = get_user_s64(off, arg3); 11197 if (is_error(ret)) { 11198 return ret; 11199 } 11200 offp = &off; 11201 } 11202 ret = get_errno(sendfile(arg1, arg2, offp, arg4)); 11203 if (!is_error(ret) && arg3) { 11204 abi_long ret2 = put_user_s64(off, arg3); 11205 if (is_error(ret2)) { 11206 ret = ret2; 11207 } 11208 } 11209 return ret; 11210 } 11211 #endif 11212 #endif 11213 #ifdef TARGET_NR_vfork 11214 case TARGET_NR_vfork: 11215 return get_errno(do_fork(cpu_env, 11216 CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD, 11217 0, 0, 0, 0)); 11218 #endif 11219 #ifdef TARGET_NR_ugetrlimit 11220 case TARGET_NR_ugetrlimit: 11221 { 11222 struct rlimit rlim; 11223 int resource = target_to_host_resource(arg1); 11224 ret = get_errno(getrlimit(resource, &rlim)); 11225 if (!is_error(ret)) { 11226 struct target_rlimit *target_rlim; 11227 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0)) 11228 return -TARGET_EFAULT; 11229 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur); 11230 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max); 11231 unlock_user_struct(target_rlim, arg2, 1); 11232 } 11233 return ret; 11234 } 11235 #endif 11236 #ifdef TARGET_NR_truncate64 11237 case TARGET_NR_truncate64: 11238 if (!(p = lock_user_string(arg1))) 11239 return -TARGET_EFAULT; 11240 ret = target_truncate64(cpu_env, p, arg2, arg3, arg4); 11241 unlock_user(p, arg1, 0); 11242 return ret; 11243 #endif 11244 #ifdef TARGET_NR_ftruncate64 11245 case TARGET_NR_ftruncate64: 11246 return target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4); 11247 #endif 11248 #ifdef TARGET_NR_stat64 11249 case TARGET_NR_stat64: 11250 if (!(p = lock_user_string(arg1))) { 11251 return -TARGET_EFAULT; 11252 } 11253 ret = get_errno(stat(path(p), &st)); 11254 unlock_user(p, arg1, 0); 11255 if (!is_error(ret)) 11256 ret = host_to_target_stat64(cpu_env, arg2, &st); 11257 return ret; 11258 #endif 11259 #ifdef TARGET_NR_lstat64 11260 case TARGET_NR_lstat64: 11261 if (!(p = lock_user_string(arg1))) { 11262 return -TARGET_EFAULT; 11263 } 11264 ret = get_errno(lstat(path(p), &st)); 11265 unlock_user(p, arg1, 0); 11266 if (!is_error(ret)) 11267 ret = host_to_target_stat64(cpu_env, arg2, &st); 11268 return ret; 11269 #endif 11270 #ifdef TARGET_NR_fstat64 11271 case TARGET_NR_fstat64: 11272 ret = get_errno(fstat(arg1, &st)); 11273 if (!is_error(ret)) 11274 ret = host_to_target_stat64(cpu_env, arg2, &st); 11275 return ret; 11276 #endif 11277 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat)) 11278 #ifdef TARGET_NR_fstatat64 11279 case TARGET_NR_fstatat64: 11280 #endif 11281 #ifdef TARGET_NR_newfstatat 11282 case TARGET_NR_newfstatat: 11283 #endif 11284 if (!(p = lock_user_string(arg2))) { 11285 return -TARGET_EFAULT; 11286 } 11287 ret = get_errno(fstatat(arg1, path(p), &st, arg4)); 11288 unlock_user(p, arg2, 0); 11289 if (!is_error(ret)) 11290 ret = host_to_target_stat64(cpu_env, arg3, &st); 11291 return ret; 11292 #endif 11293 #if defined(TARGET_NR_statx) 11294 case TARGET_NR_statx: 11295 { 11296 struct target_statx *target_stx; 11297 int dirfd = arg1; 11298 int flags = arg3; 11299 11300 p = lock_user_string(arg2); 11301 if (p == NULL) { 11302 return -TARGET_EFAULT; 11303 } 11304 #if defined(__NR_statx) 11305 { 11306 /* 11307 * It is assumed that struct statx is architecture independent. 11308 */ 11309 struct target_statx host_stx; 11310 int mask = arg4; 11311 11312 ret = get_errno(sys_statx(dirfd, p, flags, mask, &host_stx)); 11313 if (!is_error(ret)) { 11314 if (host_to_target_statx(&host_stx, arg5) != 0) { 11315 unlock_user(p, arg2, 0); 11316 return -TARGET_EFAULT; 11317 } 11318 } 11319 11320 if (ret != -TARGET_ENOSYS) { 11321 unlock_user(p, arg2, 0); 11322 return ret; 11323 } 11324 } 11325 #endif 11326 ret = get_errno(fstatat(dirfd, path(p), &st, flags)); 11327 unlock_user(p, arg2, 0); 11328 11329 if (!is_error(ret)) { 11330 if (!lock_user_struct(VERIFY_WRITE, target_stx, arg5, 0)) { 11331 return -TARGET_EFAULT; 11332 } 11333 memset(target_stx, 0, sizeof(*target_stx)); 11334 __put_user(major(st.st_dev), &target_stx->stx_dev_major); 11335 __put_user(minor(st.st_dev), &target_stx->stx_dev_minor); 11336 __put_user(st.st_ino, &target_stx->stx_ino); 11337 __put_user(st.st_mode, &target_stx->stx_mode); 11338 __put_user(st.st_uid, &target_stx->stx_uid); 11339 __put_user(st.st_gid, &target_stx->stx_gid); 11340 __put_user(st.st_nlink, &target_stx->stx_nlink); 11341 __put_user(major(st.st_rdev), &target_stx->stx_rdev_major); 11342 __put_user(minor(st.st_rdev), &target_stx->stx_rdev_minor); 11343 __put_user(st.st_size, &target_stx->stx_size); 11344 __put_user(st.st_blksize, &target_stx->stx_blksize); 11345 __put_user(st.st_blocks, &target_stx->stx_blocks); 11346 __put_user(st.st_atime, &target_stx->stx_atime.tv_sec); 11347 __put_user(st.st_mtime, &target_stx->stx_mtime.tv_sec); 11348 __put_user(st.st_ctime, &target_stx->stx_ctime.tv_sec); 11349 unlock_user_struct(target_stx, arg5, 1); 11350 } 11351 } 11352 return ret; 11353 #endif 11354 #ifdef TARGET_NR_lchown 11355 case TARGET_NR_lchown: 11356 if (!(p = lock_user_string(arg1))) 11357 return -TARGET_EFAULT; 11358 ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3))); 11359 unlock_user(p, arg1, 0); 11360 return ret; 11361 #endif 11362 #ifdef TARGET_NR_getuid 11363 case TARGET_NR_getuid: 11364 return get_errno(high2lowuid(getuid())); 11365 #endif 11366 #ifdef TARGET_NR_getgid 11367 case TARGET_NR_getgid: 11368 return get_errno(high2lowgid(getgid())); 11369 #endif 11370 #ifdef TARGET_NR_geteuid 11371 case TARGET_NR_geteuid: 11372 return get_errno(high2lowuid(geteuid())); 11373 #endif 11374 #ifdef TARGET_NR_getegid 11375 case TARGET_NR_getegid: 11376 return get_errno(high2lowgid(getegid())); 11377 #endif 11378 case TARGET_NR_setreuid: 11379 return get_errno(setreuid(low2highuid(arg1), low2highuid(arg2))); 11380 case TARGET_NR_setregid: 11381 return get_errno(setregid(low2highgid(arg1), low2highgid(arg2))); 11382 case TARGET_NR_getgroups: 11383 { 11384 int gidsetsize = arg1; 11385 target_id *target_grouplist; 11386 gid_t *grouplist; 11387 int i; 11388 11389 grouplist = alloca(gidsetsize * sizeof(gid_t)); 11390 ret = get_errno(getgroups(gidsetsize, grouplist)); 11391 if (gidsetsize == 0) 11392 return ret; 11393 if (!is_error(ret)) { 11394 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * sizeof(target_id), 0); 11395 if (!target_grouplist) 11396 return -TARGET_EFAULT; 11397 for(i = 0;i < ret; i++) 11398 target_grouplist[i] = tswapid(high2lowgid(grouplist[i])); 11399 unlock_user(target_grouplist, arg2, gidsetsize * sizeof(target_id)); 11400 } 11401 } 11402 return ret; 11403 case TARGET_NR_setgroups: 11404 { 11405 int gidsetsize = arg1; 11406 target_id *target_grouplist; 11407 gid_t *grouplist = NULL; 11408 int i; 11409 if (gidsetsize) { 11410 grouplist = alloca(gidsetsize * sizeof(gid_t)); 11411 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * sizeof(target_id), 1); 11412 if (!target_grouplist) { 11413 return -TARGET_EFAULT; 11414 } 11415 for (i = 0; i < gidsetsize; i++) { 11416 grouplist[i] = low2highgid(tswapid(target_grouplist[i])); 11417 } 11418 unlock_user(target_grouplist, arg2, 0); 11419 } 11420 return get_errno(setgroups(gidsetsize, grouplist)); 11421 } 11422 case TARGET_NR_fchown: 11423 return get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3))); 11424 #if defined(TARGET_NR_fchownat) 11425 case TARGET_NR_fchownat: 11426 if (!(p = lock_user_string(arg2))) 11427 return -TARGET_EFAULT; 11428 ret = get_errno(fchownat(arg1, p, low2highuid(arg3), 11429 low2highgid(arg4), arg5)); 11430 unlock_user(p, arg2, 0); 11431 return ret; 11432 #endif 11433 #ifdef TARGET_NR_setresuid 11434 case TARGET_NR_setresuid: 11435 return get_errno(sys_setresuid(low2highuid(arg1), 11436 low2highuid(arg2), 11437 low2highuid(arg3))); 11438 #endif 11439 #ifdef TARGET_NR_getresuid 11440 case TARGET_NR_getresuid: 11441 { 11442 uid_t ruid, euid, suid; 11443 ret = get_errno(getresuid(&ruid, &euid, &suid)); 11444 if (!is_error(ret)) { 11445 if (put_user_id(high2lowuid(ruid), arg1) 11446 || put_user_id(high2lowuid(euid), arg2) 11447 || put_user_id(high2lowuid(suid), arg3)) 11448 return -TARGET_EFAULT; 11449 } 11450 } 11451 return ret; 11452 #endif 11453 #ifdef TARGET_NR_getresgid 11454 case TARGET_NR_setresgid: 11455 return get_errno(sys_setresgid(low2highgid(arg1), 11456 low2highgid(arg2), 11457 low2highgid(arg3))); 11458 #endif 11459 #ifdef TARGET_NR_getresgid 11460 case TARGET_NR_getresgid: 11461 { 11462 gid_t rgid, egid, sgid; 11463 ret = get_errno(getresgid(&rgid, &egid, &sgid)); 11464 if (!is_error(ret)) { 11465 if (put_user_id(high2lowgid(rgid), arg1) 11466 || put_user_id(high2lowgid(egid), arg2) 11467 || put_user_id(high2lowgid(sgid), arg3)) 11468 return -TARGET_EFAULT; 11469 } 11470 } 11471 return ret; 11472 #endif 11473 #ifdef TARGET_NR_chown 11474 case TARGET_NR_chown: 11475 if (!(p = lock_user_string(arg1))) 11476 return -TARGET_EFAULT; 11477 ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3))); 11478 unlock_user(p, arg1, 0); 11479 return ret; 11480 #endif 11481 case TARGET_NR_setuid: 11482 return get_errno(sys_setuid(low2highuid(arg1))); 11483 case TARGET_NR_setgid: 11484 return get_errno(sys_setgid(low2highgid(arg1))); 11485 case TARGET_NR_setfsuid: 11486 return get_errno(setfsuid(arg1)); 11487 case TARGET_NR_setfsgid: 11488 return get_errno(setfsgid(arg1)); 11489 11490 #ifdef TARGET_NR_lchown32 11491 case TARGET_NR_lchown32: 11492 if (!(p = lock_user_string(arg1))) 11493 return -TARGET_EFAULT; 11494 ret = get_errno(lchown(p, arg2, arg3)); 11495 unlock_user(p, arg1, 0); 11496 return ret; 11497 #endif 11498 #ifdef TARGET_NR_getuid32 11499 case TARGET_NR_getuid32: 11500 return get_errno(getuid()); 11501 #endif 11502 11503 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA) 11504 /* Alpha specific */ 11505 case TARGET_NR_getxuid: 11506 { 11507 uid_t euid; 11508 euid=geteuid(); 11509 ((CPUAlphaState *)cpu_env)->ir[IR_A4]=euid; 11510 } 11511 return get_errno(getuid()); 11512 #endif 11513 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA) 11514 /* Alpha specific */ 11515 case TARGET_NR_getxgid: 11516 { 11517 uid_t egid; 11518 egid=getegid(); 11519 ((CPUAlphaState *)cpu_env)->ir[IR_A4]=egid; 11520 } 11521 return get_errno(getgid()); 11522 #endif 11523 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA) 11524 /* Alpha specific */ 11525 case TARGET_NR_osf_getsysinfo: 11526 ret = -TARGET_EOPNOTSUPP; 11527 switch (arg1) { 11528 case TARGET_GSI_IEEE_FP_CONTROL: 11529 { 11530 uint64_t fpcr = cpu_alpha_load_fpcr(cpu_env); 11531 uint64_t swcr = ((CPUAlphaState *)cpu_env)->swcr; 11532 11533 swcr &= ~SWCR_STATUS_MASK; 11534 swcr |= (fpcr >> 35) & SWCR_STATUS_MASK; 11535 11536 if (put_user_u64 (swcr, arg2)) 11537 return -TARGET_EFAULT; 11538 ret = 0; 11539 } 11540 break; 11541 11542 /* case GSI_IEEE_STATE_AT_SIGNAL: 11543 -- Not implemented in linux kernel. 11544 case GSI_UACPROC: 11545 -- Retrieves current unaligned access state; not much used. 11546 case GSI_PROC_TYPE: 11547 -- Retrieves implver information; surely not used. 11548 case GSI_GET_HWRPB: 11549 -- Grabs a copy of the HWRPB; surely not used. 11550 */ 11551 } 11552 return ret; 11553 #endif 11554 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA) 11555 /* Alpha specific */ 11556 case TARGET_NR_osf_setsysinfo: 11557 ret = -TARGET_EOPNOTSUPP; 11558 switch (arg1) { 11559 case TARGET_SSI_IEEE_FP_CONTROL: 11560 { 11561 uint64_t swcr, fpcr; 11562 11563 if (get_user_u64 (swcr, arg2)) { 11564 return -TARGET_EFAULT; 11565 } 11566 11567 /* 11568 * The kernel calls swcr_update_status to update the 11569 * status bits from the fpcr at every point that it 11570 * could be queried. Therefore, we store the status 11571 * bits only in FPCR. 11572 */ 11573 ((CPUAlphaState *)cpu_env)->swcr 11574 = swcr & (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK); 11575 11576 fpcr = cpu_alpha_load_fpcr(cpu_env); 11577 fpcr &= ((uint64_t)FPCR_DYN_MASK << 32); 11578 fpcr |= alpha_ieee_swcr_to_fpcr(swcr); 11579 cpu_alpha_store_fpcr(cpu_env, fpcr); 11580 ret = 0; 11581 } 11582 break; 11583 11584 case TARGET_SSI_IEEE_RAISE_EXCEPTION: 11585 { 11586 uint64_t exc, fpcr, fex; 11587 11588 if (get_user_u64(exc, arg2)) { 11589 return -TARGET_EFAULT; 11590 } 11591 exc &= SWCR_STATUS_MASK; 11592 fpcr = cpu_alpha_load_fpcr(cpu_env); 11593 11594 /* Old exceptions are not signaled. */ 11595 fex = alpha_ieee_fpcr_to_swcr(fpcr); 11596 fex = exc & ~fex; 11597 fex >>= SWCR_STATUS_TO_EXCSUM_SHIFT; 11598 fex &= ((CPUArchState *)cpu_env)->swcr; 11599 11600 /* Update the hardware fpcr. */ 11601 fpcr |= alpha_ieee_swcr_to_fpcr(exc); 11602 cpu_alpha_store_fpcr(cpu_env, fpcr); 11603 11604 if (fex) { 11605 int si_code = TARGET_FPE_FLTUNK; 11606 target_siginfo_t info; 11607 11608 if (fex & SWCR_TRAP_ENABLE_DNO) { 11609 si_code = TARGET_FPE_FLTUND; 11610 } 11611 if (fex & SWCR_TRAP_ENABLE_INE) { 11612 si_code = TARGET_FPE_FLTRES; 11613 } 11614 if (fex & SWCR_TRAP_ENABLE_UNF) { 11615 si_code = TARGET_FPE_FLTUND; 11616 } 11617 if (fex & SWCR_TRAP_ENABLE_OVF) { 11618 si_code = TARGET_FPE_FLTOVF; 11619 } 11620 if (fex & SWCR_TRAP_ENABLE_DZE) { 11621 si_code = TARGET_FPE_FLTDIV; 11622 } 11623 if (fex & SWCR_TRAP_ENABLE_INV) { 11624 si_code = TARGET_FPE_FLTINV; 11625 } 11626 11627 info.si_signo = SIGFPE; 11628 info.si_errno = 0; 11629 info.si_code = si_code; 11630 info._sifields._sigfault._addr 11631 = ((CPUArchState *)cpu_env)->pc; 11632 queue_signal((CPUArchState *)cpu_env, info.si_signo, 11633 QEMU_SI_FAULT, &info); 11634 } 11635 ret = 0; 11636 } 11637 break; 11638 11639 /* case SSI_NVPAIRS: 11640 -- Used with SSIN_UACPROC to enable unaligned accesses. 11641 case SSI_IEEE_STATE_AT_SIGNAL: 11642 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL: 11643 -- Not implemented in linux kernel 11644 */ 11645 } 11646 return ret; 11647 #endif 11648 #ifdef TARGET_NR_osf_sigprocmask 11649 /* Alpha specific. */ 11650 case TARGET_NR_osf_sigprocmask: 11651 { 11652 abi_ulong mask; 11653 int how; 11654 sigset_t set, oldset; 11655 11656 switch(arg1) { 11657 case TARGET_SIG_BLOCK: 11658 how = SIG_BLOCK; 11659 break; 11660 case TARGET_SIG_UNBLOCK: 11661 how = SIG_UNBLOCK; 11662 break; 11663 case TARGET_SIG_SETMASK: 11664 how = SIG_SETMASK; 11665 break; 11666 default: 11667 return -TARGET_EINVAL; 11668 } 11669 mask = arg2; 11670 target_to_host_old_sigset(&set, &mask); 11671 ret = do_sigprocmask(how, &set, &oldset); 11672 if (!ret) { 11673 host_to_target_old_sigset(&mask, &oldset); 11674 ret = mask; 11675 } 11676 } 11677 return ret; 11678 #endif 11679 11680 #ifdef TARGET_NR_getgid32 11681 case TARGET_NR_getgid32: 11682 return get_errno(getgid()); 11683 #endif 11684 #ifdef TARGET_NR_geteuid32 11685 case TARGET_NR_geteuid32: 11686 return get_errno(geteuid()); 11687 #endif 11688 #ifdef TARGET_NR_getegid32 11689 case TARGET_NR_getegid32: 11690 return get_errno(getegid()); 11691 #endif 11692 #ifdef TARGET_NR_setreuid32 11693 case TARGET_NR_setreuid32: 11694 return get_errno(setreuid(arg1, arg2)); 11695 #endif 11696 #ifdef TARGET_NR_setregid32 11697 case TARGET_NR_setregid32: 11698 return get_errno(setregid(arg1, arg2)); 11699 #endif 11700 #ifdef TARGET_NR_getgroups32 11701 case TARGET_NR_getgroups32: 11702 { 11703 int gidsetsize = arg1; 11704 uint32_t *target_grouplist; 11705 gid_t *grouplist; 11706 int i; 11707 11708 grouplist = alloca(gidsetsize * sizeof(gid_t)); 11709 ret = get_errno(getgroups(gidsetsize, grouplist)); 11710 if (gidsetsize == 0) 11711 return ret; 11712 if (!is_error(ret)) { 11713 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * 4, 0); 11714 if (!target_grouplist) { 11715 return -TARGET_EFAULT; 11716 } 11717 for(i = 0;i < ret; i++) 11718 target_grouplist[i] = tswap32(grouplist[i]); 11719 unlock_user(target_grouplist, arg2, gidsetsize * 4); 11720 } 11721 } 11722 return ret; 11723 #endif 11724 #ifdef TARGET_NR_setgroups32 11725 case TARGET_NR_setgroups32: 11726 { 11727 int gidsetsize = arg1; 11728 uint32_t *target_grouplist; 11729 gid_t *grouplist; 11730 int i; 11731 11732 grouplist = alloca(gidsetsize * sizeof(gid_t)); 11733 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * 4, 1); 11734 if (!target_grouplist) { 11735 return -TARGET_EFAULT; 11736 } 11737 for(i = 0;i < gidsetsize; i++) 11738 grouplist[i] = tswap32(target_grouplist[i]); 11739 unlock_user(target_grouplist, arg2, 0); 11740 return get_errno(setgroups(gidsetsize, grouplist)); 11741 } 11742 #endif 11743 #ifdef TARGET_NR_fchown32 11744 case TARGET_NR_fchown32: 11745 return get_errno(fchown(arg1, arg2, arg3)); 11746 #endif 11747 #ifdef TARGET_NR_setresuid32 11748 case TARGET_NR_setresuid32: 11749 return get_errno(sys_setresuid(arg1, arg2, arg3)); 11750 #endif 11751 #ifdef TARGET_NR_getresuid32 11752 case TARGET_NR_getresuid32: 11753 { 11754 uid_t ruid, euid, suid; 11755 ret = get_errno(getresuid(&ruid, &euid, &suid)); 11756 if (!is_error(ret)) { 11757 if (put_user_u32(ruid, arg1) 11758 || put_user_u32(euid, arg2) 11759 || put_user_u32(suid, arg3)) 11760 return -TARGET_EFAULT; 11761 } 11762 } 11763 return ret; 11764 #endif 11765 #ifdef TARGET_NR_setresgid32 11766 case TARGET_NR_setresgid32: 11767 return get_errno(sys_setresgid(arg1, arg2, arg3)); 11768 #endif 11769 #ifdef TARGET_NR_getresgid32 11770 case TARGET_NR_getresgid32: 11771 { 11772 gid_t rgid, egid, sgid; 11773 ret = get_errno(getresgid(&rgid, &egid, &sgid)); 11774 if (!is_error(ret)) { 11775 if (put_user_u32(rgid, arg1) 11776 || put_user_u32(egid, arg2) 11777 || put_user_u32(sgid, arg3)) 11778 return -TARGET_EFAULT; 11779 } 11780 } 11781 return ret; 11782 #endif 11783 #ifdef TARGET_NR_chown32 11784 case TARGET_NR_chown32: 11785 if (!(p = lock_user_string(arg1))) 11786 return -TARGET_EFAULT; 11787 ret = get_errno(chown(p, arg2, arg3)); 11788 unlock_user(p, arg1, 0); 11789 return ret; 11790 #endif 11791 #ifdef TARGET_NR_setuid32 11792 case TARGET_NR_setuid32: 11793 return get_errno(sys_setuid(arg1)); 11794 #endif 11795 #ifdef TARGET_NR_setgid32 11796 case TARGET_NR_setgid32: 11797 return get_errno(sys_setgid(arg1)); 11798 #endif 11799 #ifdef TARGET_NR_setfsuid32 11800 case TARGET_NR_setfsuid32: 11801 return get_errno(setfsuid(arg1)); 11802 #endif 11803 #ifdef TARGET_NR_setfsgid32 11804 case TARGET_NR_setfsgid32: 11805 return get_errno(setfsgid(arg1)); 11806 #endif 11807 #ifdef TARGET_NR_mincore 11808 case TARGET_NR_mincore: 11809 { 11810 void *a = lock_user(VERIFY_READ, arg1, arg2, 0); 11811 if (!a) { 11812 return -TARGET_ENOMEM; 11813 } 11814 p = lock_user_string(arg3); 11815 if (!p) { 11816 ret = -TARGET_EFAULT; 11817 } else { 11818 ret = get_errno(mincore(a, arg2, p)); 11819 unlock_user(p, arg3, ret); 11820 } 11821 unlock_user(a, arg1, 0); 11822 } 11823 return ret; 11824 #endif 11825 #ifdef TARGET_NR_arm_fadvise64_64 11826 case TARGET_NR_arm_fadvise64_64: 11827 /* arm_fadvise64_64 looks like fadvise64_64 but 11828 * with different argument order: fd, advice, offset, len 11829 * rather than the usual fd, offset, len, advice. 11830 * Note that offset and len are both 64-bit so appear as 11831 * pairs of 32-bit registers. 11832 */ 11833 ret = posix_fadvise(arg1, target_offset64(arg3, arg4), 11834 target_offset64(arg5, arg6), arg2); 11835 return -host_to_target_errno(ret); 11836 #endif 11837 11838 #if TARGET_ABI_BITS == 32 11839 11840 #ifdef TARGET_NR_fadvise64_64 11841 case TARGET_NR_fadvise64_64: 11842 #if defined(TARGET_PPC) || defined(TARGET_XTENSA) 11843 /* 6 args: fd, advice, offset (high, low), len (high, low) */ 11844 ret = arg2; 11845 arg2 = arg3; 11846 arg3 = arg4; 11847 arg4 = arg5; 11848 arg5 = arg6; 11849 arg6 = ret; 11850 #else 11851 /* 6 args: fd, offset (high, low), len (high, low), advice */ 11852 if (regpairs_aligned(cpu_env, num)) { 11853 /* offset is in (3,4), len in (5,6) and advice in 7 */ 11854 arg2 = arg3; 11855 arg3 = arg4; 11856 arg4 = arg5; 11857 arg5 = arg6; 11858 arg6 = arg7; 11859 } 11860 #endif 11861 ret = posix_fadvise(arg1, target_offset64(arg2, arg3), 11862 target_offset64(arg4, arg5), arg6); 11863 return -host_to_target_errno(ret); 11864 #endif 11865 11866 #ifdef TARGET_NR_fadvise64 11867 case TARGET_NR_fadvise64: 11868 /* 5 args: fd, offset (high, low), len, advice */ 11869 if (regpairs_aligned(cpu_env, num)) { 11870 /* offset is in (3,4), len in 5 and advice in 6 */ 11871 arg2 = arg3; 11872 arg3 = arg4; 11873 arg4 = arg5; 11874 arg5 = arg6; 11875 } 11876 ret = posix_fadvise(arg1, target_offset64(arg2, arg3), arg4, arg5); 11877 return -host_to_target_errno(ret); 11878 #endif 11879 11880 #else /* not a 32-bit ABI */ 11881 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64) 11882 #ifdef TARGET_NR_fadvise64_64 11883 case TARGET_NR_fadvise64_64: 11884 #endif 11885 #ifdef TARGET_NR_fadvise64 11886 case TARGET_NR_fadvise64: 11887 #endif 11888 #ifdef TARGET_S390X 11889 switch (arg4) { 11890 case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */ 11891 case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */ 11892 case 6: arg4 = POSIX_FADV_DONTNEED; break; 11893 case 7: arg4 = POSIX_FADV_NOREUSE; break; 11894 default: break; 11895 } 11896 #endif 11897 return -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4)); 11898 #endif 11899 #endif /* end of 64-bit ABI fadvise handling */ 11900 11901 #ifdef TARGET_NR_madvise 11902 case TARGET_NR_madvise: 11903 /* A straight passthrough may not be safe because qemu sometimes 11904 turns private file-backed mappings into anonymous mappings. 11905 This will break MADV_DONTNEED. 11906 This is a hint, so ignoring and returning success is ok. */ 11907 return 0; 11908 #endif 11909 #ifdef TARGET_NR_fcntl64 11910 case TARGET_NR_fcntl64: 11911 { 11912 int cmd; 11913 struct flock64 fl; 11914 from_flock64_fn *copyfrom = copy_from_user_flock64; 11915 to_flock64_fn *copyto = copy_to_user_flock64; 11916 11917 #ifdef TARGET_ARM 11918 if (!((CPUARMState *)cpu_env)->eabi) { 11919 copyfrom = copy_from_user_oabi_flock64; 11920 copyto = copy_to_user_oabi_flock64; 11921 } 11922 #endif 11923 11924 cmd = target_to_host_fcntl_cmd(arg2); 11925 if (cmd == -TARGET_EINVAL) { 11926 return cmd; 11927 } 11928 11929 switch(arg2) { 11930 case TARGET_F_GETLK64: 11931 ret = copyfrom(&fl, arg3); 11932 if (ret) { 11933 break; 11934 } 11935 ret = get_errno(safe_fcntl(arg1, cmd, &fl)); 11936 if (ret == 0) { 11937 ret = copyto(arg3, &fl); 11938 } 11939 break; 11940 11941 case TARGET_F_SETLK64: 11942 case TARGET_F_SETLKW64: 11943 ret = copyfrom(&fl, arg3); 11944 if (ret) { 11945 break; 11946 } 11947 ret = get_errno(safe_fcntl(arg1, cmd, &fl)); 11948 break; 11949 default: 11950 ret = do_fcntl(arg1, arg2, arg3); 11951 break; 11952 } 11953 return ret; 11954 } 11955 #endif 11956 #ifdef TARGET_NR_cacheflush 11957 case TARGET_NR_cacheflush: 11958 /* self-modifying code is handled automatically, so nothing needed */ 11959 return 0; 11960 #endif 11961 #ifdef TARGET_NR_getpagesize 11962 case TARGET_NR_getpagesize: 11963 return TARGET_PAGE_SIZE; 11964 #endif 11965 case TARGET_NR_gettid: 11966 return get_errno(sys_gettid()); 11967 #ifdef TARGET_NR_readahead 11968 case TARGET_NR_readahead: 11969 #if TARGET_ABI_BITS == 32 11970 if (regpairs_aligned(cpu_env, num)) { 11971 arg2 = arg3; 11972 arg3 = arg4; 11973 arg4 = arg5; 11974 } 11975 ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4)); 11976 #else 11977 ret = get_errno(readahead(arg1, arg2, arg3)); 11978 #endif 11979 return ret; 11980 #endif 11981 #ifdef CONFIG_ATTR 11982 #ifdef TARGET_NR_setxattr 11983 case TARGET_NR_listxattr: 11984 case TARGET_NR_llistxattr: 11985 { 11986 void *p, *b = 0; 11987 if (arg2) { 11988 b = lock_user(VERIFY_WRITE, arg2, arg3, 0); 11989 if (!b) { 11990 return -TARGET_EFAULT; 11991 } 11992 } 11993 p = lock_user_string(arg1); 11994 if (p) { 11995 if (num == TARGET_NR_listxattr) { 11996 ret = get_errno(listxattr(p, b, arg3)); 11997 } else { 11998 ret = get_errno(llistxattr(p, b, arg3)); 11999 } 12000 } else { 12001 ret = -TARGET_EFAULT; 12002 } 12003 unlock_user(p, arg1, 0); 12004 unlock_user(b, arg2, arg3); 12005 return ret; 12006 } 12007 case TARGET_NR_flistxattr: 12008 { 12009 void *b = 0; 12010 if (arg2) { 12011 b = lock_user(VERIFY_WRITE, arg2, arg3, 0); 12012 if (!b) { 12013 return -TARGET_EFAULT; 12014 } 12015 } 12016 ret = get_errno(flistxattr(arg1, b, arg3)); 12017 unlock_user(b, arg2, arg3); 12018 return ret; 12019 } 12020 case TARGET_NR_setxattr: 12021 case TARGET_NR_lsetxattr: 12022 { 12023 void *p, *n, *v = 0; 12024 if (arg3) { 12025 v = lock_user(VERIFY_READ, arg3, arg4, 1); 12026 if (!v) { 12027 return -TARGET_EFAULT; 12028 } 12029 } 12030 p = lock_user_string(arg1); 12031 n = lock_user_string(arg2); 12032 if (p && n) { 12033 if (num == TARGET_NR_setxattr) { 12034 ret = get_errno(setxattr(p, n, v, arg4, arg5)); 12035 } else { 12036 ret = get_errno(lsetxattr(p, n, v, arg4, arg5)); 12037 } 12038 } else { 12039 ret = -TARGET_EFAULT; 12040 } 12041 unlock_user(p, arg1, 0); 12042 unlock_user(n, arg2, 0); 12043 unlock_user(v, arg3, 0); 12044 } 12045 return ret; 12046 case TARGET_NR_fsetxattr: 12047 { 12048 void *n, *v = 0; 12049 if (arg3) { 12050 v = lock_user(VERIFY_READ, arg3, arg4, 1); 12051 if (!v) { 12052 return -TARGET_EFAULT; 12053 } 12054 } 12055 n = lock_user_string(arg2); 12056 if (n) { 12057 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5)); 12058 } else { 12059 ret = -TARGET_EFAULT; 12060 } 12061 unlock_user(n, arg2, 0); 12062 unlock_user(v, arg3, 0); 12063 } 12064 return ret; 12065 case TARGET_NR_getxattr: 12066 case TARGET_NR_lgetxattr: 12067 { 12068 void *p, *n, *v = 0; 12069 if (arg3) { 12070 v = lock_user(VERIFY_WRITE, arg3, arg4, 0); 12071 if (!v) { 12072 return -TARGET_EFAULT; 12073 } 12074 } 12075 p = lock_user_string(arg1); 12076 n = lock_user_string(arg2); 12077 if (p && n) { 12078 if (num == TARGET_NR_getxattr) { 12079 ret = get_errno(getxattr(p, n, v, arg4)); 12080 } else { 12081 ret = get_errno(lgetxattr(p, n, v, arg4)); 12082 } 12083 } else { 12084 ret = -TARGET_EFAULT; 12085 } 12086 unlock_user(p, arg1, 0); 12087 unlock_user(n, arg2, 0); 12088 unlock_user(v, arg3, arg4); 12089 } 12090 return ret; 12091 case TARGET_NR_fgetxattr: 12092 { 12093 void *n, *v = 0; 12094 if (arg3) { 12095 v = lock_user(VERIFY_WRITE, arg3, arg4, 0); 12096 if (!v) { 12097 return -TARGET_EFAULT; 12098 } 12099 } 12100 n = lock_user_string(arg2); 12101 if (n) { 12102 ret = get_errno(fgetxattr(arg1, n, v, arg4)); 12103 } else { 12104 ret = -TARGET_EFAULT; 12105 } 12106 unlock_user(n, arg2, 0); 12107 unlock_user(v, arg3, arg4); 12108 } 12109 return ret; 12110 case TARGET_NR_removexattr: 12111 case TARGET_NR_lremovexattr: 12112 { 12113 void *p, *n; 12114 p = lock_user_string(arg1); 12115 n = lock_user_string(arg2); 12116 if (p && n) { 12117 if (num == TARGET_NR_removexattr) { 12118 ret = get_errno(removexattr(p, n)); 12119 } else { 12120 ret = get_errno(lremovexattr(p, n)); 12121 } 12122 } else { 12123 ret = -TARGET_EFAULT; 12124 } 12125 unlock_user(p, arg1, 0); 12126 unlock_user(n, arg2, 0); 12127 } 12128 return ret; 12129 case TARGET_NR_fremovexattr: 12130 { 12131 void *n; 12132 n = lock_user_string(arg2); 12133 if (n) { 12134 ret = get_errno(fremovexattr(arg1, n)); 12135 } else { 12136 ret = -TARGET_EFAULT; 12137 } 12138 unlock_user(n, arg2, 0); 12139 } 12140 return ret; 12141 #endif 12142 #endif /* CONFIG_ATTR */ 12143 #ifdef TARGET_NR_set_thread_area 12144 case TARGET_NR_set_thread_area: 12145 #if defined(TARGET_MIPS) 12146 ((CPUMIPSState *) cpu_env)->active_tc.CP0_UserLocal = arg1; 12147 return 0; 12148 #elif defined(TARGET_CRIS) 12149 if (arg1 & 0xff) 12150 ret = -TARGET_EINVAL; 12151 else { 12152 ((CPUCRISState *) cpu_env)->pregs[PR_PID] = arg1; 12153 ret = 0; 12154 } 12155 return ret; 12156 #elif defined(TARGET_I386) && defined(TARGET_ABI32) 12157 return do_set_thread_area(cpu_env, arg1); 12158 #elif defined(TARGET_M68K) 12159 { 12160 TaskState *ts = cpu->opaque; 12161 ts->tp_value = arg1; 12162 return 0; 12163 } 12164 #else 12165 return -TARGET_ENOSYS; 12166 #endif 12167 #endif 12168 #ifdef TARGET_NR_get_thread_area 12169 case TARGET_NR_get_thread_area: 12170 #if defined(TARGET_I386) && defined(TARGET_ABI32) 12171 return do_get_thread_area(cpu_env, arg1); 12172 #elif defined(TARGET_M68K) 12173 { 12174 TaskState *ts = cpu->opaque; 12175 return ts->tp_value; 12176 } 12177 #else 12178 return -TARGET_ENOSYS; 12179 #endif 12180 #endif 12181 #ifdef TARGET_NR_getdomainname 12182 case TARGET_NR_getdomainname: 12183 return -TARGET_ENOSYS; 12184 #endif 12185 12186 #ifdef TARGET_NR_clock_settime 12187 case TARGET_NR_clock_settime: 12188 { 12189 struct timespec ts; 12190 12191 ret = target_to_host_timespec(&ts, arg2); 12192 if (!is_error(ret)) { 12193 ret = get_errno(clock_settime(arg1, &ts)); 12194 } 12195 return ret; 12196 } 12197 #endif 12198 #ifdef TARGET_NR_clock_settime64 12199 case TARGET_NR_clock_settime64: 12200 { 12201 struct timespec ts; 12202 12203 ret = target_to_host_timespec64(&ts, arg2); 12204 if (!is_error(ret)) { 12205 ret = get_errno(clock_settime(arg1, &ts)); 12206 } 12207 return ret; 12208 } 12209 #endif 12210 #ifdef TARGET_NR_clock_gettime 12211 case TARGET_NR_clock_gettime: 12212 { 12213 struct timespec ts; 12214 ret = get_errno(clock_gettime(arg1, &ts)); 12215 if (!is_error(ret)) { 12216 ret = host_to_target_timespec(arg2, &ts); 12217 } 12218 return ret; 12219 } 12220 #endif 12221 #ifdef TARGET_NR_clock_gettime64 12222 case TARGET_NR_clock_gettime64: 12223 { 12224 struct timespec ts; 12225 ret = get_errno(clock_gettime(arg1, &ts)); 12226 if (!is_error(ret)) { 12227 ret = host_to_target_timespec64(arg2, &ts); 12228 } 12229 return ret; 12230 } 12231 #endif 12232 #ifdef TARGET_NR_clock_getres 12233 case TARGET_NR_clock_getres: 12234 { 12235 struct timespec ts; 12236 ret = get_errno(clock_getres(arg1, &ts)); 12237 if (!is_error(ret)) { 12238 host_to_target_timespec(arg2, &ts); 12239 } 12240 return ret; 12241 } 12242 #endif 12243 #ifdef TARGET_NR_clock_getres_time64 12244 case TARGET_NR_clock_getres_time64: 12245 { 12246 struct timespec ts; 12247 ret = get_errno(clock_getres(arg1, &ts)); 12248 if (!is_error(ret)) { 12249 host_to_target_timespec64(arg2, &ts); 12250 } 12251 return ret; 12252 } 12253 #endif 12254 #ifdef TARGET_NR_clock_nanosleep 12255 case TARGET_NR_clock_nanosleep: 12256 { 12257 struct timespec ts; 12258 if (target_to_host_timespec(&ts, arg3)) { 12259 return -TARGET_EFAULT; 12260 } 12261 ret = get_errno(safe_clock_nanosleep(arg1, arg2, 12262 &ts, arg4 ? &ts : NULL)); 12263 /* 12264 * if the call is interrupted by a signal handler, it fails 12265 * with error -TARGET_EINTR and if arg4 is not NULL and arg2 is not 12266 * TIMER_ABSTIME, it returns the remaining unslept time in arg4. 12267 */ 12268 if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME && 12269 host_to_target_timespec(arg4, &ts)) { 12270 return -TARGET_EFAULT; 12271 } 12272 12273 return ret; 12274 } 12275 #endif 12276 #ifdef TARGET_NR_clock_nanosleep_time64 12277 case TARGET_NR_clock_nanosleep_time64: 12278 { 12279 struct timespec ts; 12280 12281 if (target_to_host_timespec64(&ts, arg3)) { 12282 return -TARGET_EFAULT; 12283 } 12284 12285 ret = get_errno(safe_clock_nanosleep(arg1, arg2, 12286 &ts, arg4 ? &ts : NULL)); 12287 12288 if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME && 12289 host_to_target_timespec64(arg4, &ts)) { 12290 return -TARGET_EFAULT; 12291 } 12292 return ret; 12293 } 12294 #endif 12295 12296 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address) 12297 case TARGET_NR_set_tid_address: 12298 return get_errno(set_tid_address((int *)g2h(cpu, arg1))); 12299 #endif 12300 12301 case TARGET_NR_tkill: 12302 return get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2))); 12303 12304 case TARGET_NR_tgkill: 12305 return get_errno(safe_tgkill((int)arg1, (int)arg2, 12306 target_to_host_signal(arg3))); 12307 12308 #ifdef TARGET_NR_set_robust_list 12309 case TARGET_NR_set_robust_list: 12310 case TARGET_NR_get_robust_list: 12311 /* The ABI for supporting robust futexes has userspace pass 12312 * the kernel a pointer to a linked list which is updated by 12313 * userspace after the syscall; the list is walked by the kernel 12314 * when the thread exits. Since the linked list in QEMU guest 12315 * memory isn't a valid linked list for the host and we have 12316 * no way to reliably intercept the thread-death event, we can't 12317 * support these. Silently return ENOSYS so that guest userspace 12318 * falls back to a non-robust futex implementation (which should 12319 * be OK except in the corner case of the guest crashing while 12320 * holding a mutex that is shared with another process via 12321 * shared memory). 12322 */ 12323 return -TARGET_ENOSYS; 12324 #endif 12325 12326 #if defined(TARGET_NR_utimensat) 12327 case TARGET_NR_utimensat: 12328 { 12329 struct timespec *tsp, ts[2]; 12330 if (!arg3) { 12331 tsp = NULL; 12332 } else { 12333 if (target_to_host_timespec(ts, arg3)) { 12334 return -TARGET_EFAULT; 12335 } 12336 if (target_to_host_timespec(ts + 1, arg3 + 12337 sizeof(struct target_timespec))) { 12338 return -TARGET_EFAULT; 12339 } 12340 tsp = ts; 12341 } 12342 if (!arg2) 12343 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4)); 12344 else { 12345 if (!(p = lock_user_string(arg2))) { 12346 return -TARGET_EFAULT; 12347 } 12348 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4)); 12349 unlock_user(p, arg2, 0); 12350 } 12351 } 12352 return ret; 12353 #endif 12354 #ifdef TARGET_NR_utimensat_time64 12355 case TARGET_NR_utimensat_time64: 12356 { 12357 struct timespec *tsp, ts[2]; 12358 if (!arg3) { 12359 tsp = NULL; 12360 } else { 12361 if (target_to_host_timespec64(ts, arg3)) { 12362 return -TARGET_EFAULT; 12363 } 12364 if (target_to_host_timespec64(ts + 1, arg3 + 12365 sizeof(struct target__kernel_timespec))) { 12366 return -TARGET_EFAULT; 12367 } 12368 tsp = ts; 12369 } 12370 if (!arg2) 12371 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4)); 12372 else { 12373 p = lock_user_string(arg2); 12374 if (!p) { 12375 return -TARGET_EFAULT; 12376 } 12377 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4)); 12378 unlock_user(p, arg2, 0); 12379 } 12380 } 12381 return ret; 12382 #endif 12383 #ifdef TARGET_NR_futex 12384 case TARGET_NR_futex: 12385 return do_futex(cpu, arg1, arg2, arg3, arg4, arg5, arg6); 12386 #endif 12387 #ifdef TARGET_NR_futex_time64 12388 case TARGET_NR_futex_time64: 12389 return do_futex_time64(cpu, arg1, arg2, arg3, arg4, arg5, arg6); 12390 #endif 12391 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init) 12392 case TARGET_NR_inotify_init: 12393 ret = get_errno(sys_inotify_init()); 12394 if (ret >= 0) { 12395 fd_trans_register(ret, &target_inotify_trans); 12396 } 12397 return ret; 12398 #endif 12399 #ifdef CONFIG_INOTIFY1 12400 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1) 12401 case TARGET_NR_inotify_init1: 12402 ret = get_errno(sys_inotify_init1(target_to_host_bitmask(arg1, 12403 fcntl_flags_tbl))); 12404 if (ret >= 0) { 12405 fd_trans_register(ret, &target_inotify_trans); 12406 } 12407 return ret; 12408 #endif 12409 #endif 12410 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch) 12411 case TARGET_NR_inotify_add_watch: 12412 p = lock_user_string(arg2); 12413 ret = get_errno(sys_inotify_add_watch(arg1, path(p), arg3)); 12414 unlock_user(p, arg2, 0); 12415 return ret; 12416 #endif 12417 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch) 12418 case TARGET_NR_inotify_rm_watch: 12419 return get_errno(sys_inotify_rm_watch(arg1, arg2)); 12420 #endif 12421 12422 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 12423 case TARGET_NR_mq_open: 12424 { 12425 struct mq_attr posix_mq_attr; 12426 struct mq_attr *pposix_mq_attr; 12427 int host_flags; 12428 12429 host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl); 12430 pposix_mq_attr = NULL; 12431 if (arg4) { 12432 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) { 12433 return -TARGET_EFAULT; 12434 } 12435 pposix_mq_attr = &posix_mq_attr; 12436 } 12437 p = lock_user_string(arg1 - 1); 12438 if (!p) { 12439 return -TARGET_EFAULT; 12440 } 12441 ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr)); 12442 unlock_user (p, arg1, 0); 12443 } 12444 return ret; 12445 12446 case TARGET_NR_mq_unlink: 12447 p = lock_user_string(arg1 - 1); 12448 if (!p) { 12449 return -TARGET_EFAULT; 12450 } 12451 ret = get_errno(mq_unlink(p)); 12452 unlock_user (p, arg1, 0); 12453 return ret; 12454 12455 #ifdef TARGET_NR_mq_timedsend 12456 case TARGET_NR_mq_timedsend: 12457 { 12458 struct timespec ts; 12459 12460 p = lock_user (VERIFY_READ, arg2, arg3, 1); 12461 if (arg5 != 0) { 12462 if (target_to_host_timespec(&ts, arg5)) { 12463 return -TARGET_EFAULT; 12464 } 12465 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts)); 12466 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) { 12467 return -TARGET_EFAULT; 12468 } 12469 } else { 12470 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL)); 12471 } 12472 unlock_user (p, arg2, arg3); 12473 } 12474 return ret; 12475 #endif 12476 #ifdef TARGET_NR_mq_timedsend_time64 12477 case TARGET_NR_mq_timedsend_time64: 12478 { 12479 struct timespec ts; 12480 12481 p = lock_user(VERIFY_READ, arg2, arg3, 1); 12482 if (arg5 != 0) { 12483 if (target_to_host_timespec64(&ts, arg5)) { 12484 return -TARGET_EFAULT; 12485 } 12486 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts)); 12487 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) { 12488 return -TARGET_EFAULT; 12489 } 12490 } else { 12491 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL)); 12492 } 12493 unlock_user(p, arg2, arg3); 12494 } 12495 return ret; 12496 #endif 12497 12498 #ifdef TARGET_NR_mq_timedreceive 12499 case TARGET_NR_mq_timedreceive: 12500 { 12501 struct timespec ts; 12502 unsigned int prio; 12503 12504 p = lock_user (VERIFY_READ, arg2, arg3, 1); 12505 if (arg5 != 0) { 12506 if (target_to_host_timespec(&ts, arg5)) { 12507 return -TARGET_EFAULT; 12508 } 12509 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 12510 &prio, &ts)); 12511 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) { 12512 return -TARGET_EFAULT; 12513 } 12514 } else { 12515 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 12516 &prio, NULL)); 12517 } 12518 unlock_user (p, arg2, arg3); 12519 if (arg4 != 0) 12520 put_user_u32(prio, arg4); 12521 } 12522 return ret; 12523 #endif 12524 #ifdef TARGET_NR_mq_timedreceive_time64 12525 case TARGET_NR_mq_timedreceive_time64: 12526 { 12527 struct timespec ts; 12528 unsigned int prio; 12529 12530 p = lock_user(VERIFY_READ, arg2, arg3, 1); 12531 if (arg5 != 0) { 12532 if (target_to_host_timespec64(&ts, arg5)) { 12533 return -TARGET_EFAULT; 12534 } 12535 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 12536 &prio, &ts)); 12537 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) { 12538 return -TARGET_EFAULT; 12539 } 12540 } else { 12541 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3, 12542 &prio, NULL)); 12543 } 12544 unlock_user(p, arg2, arg3); 12545 if (arg4 != 0) { 12546 put_user_u32(prio, arg4); 12547 } 12548 } 12549 return ret; 12550 #endif 12551 12552 /* Not implemented for now... */ 12553 /* case TARGET_NR_mq_notify: */ 12554 /* break; */ 12555 12556 case TARGET_NR_mq_getsetattr: 12557 { 12558 struct mq_attr posix_mq_attr_in, posix_mq_attr_out; 12559 ret = 0; 12560 if (arg2 != 0) { 12561 copy_from_user_mq_attr(&posix_mq_attr_in, arg2); 12562 ret = get_errno(mq_setattr(arg1, &posix_mq_attr_in, 12563 &posix_mq_attr_out)); 12564 } else if (arg3 != 0) { 12565 ret = get_errno(mq_getattr(arg1, &posix_mq_attr_out)); 12566 } 12567 if (ret == 0 && arg3 != 0) { 12568 copy_to_user_mq_attr(arg3, &posix_mq_attr_out); 12569 } 12570 } 12571 return ret; 12572 #endif 12573 12574 #ifdef CONFIG_SPLICE 12575 #ifdef TARGET_NR_tee 12576 case TARGET_NR_tee: 12577 { 12578 ret = get_errno(tee(arg1,arg2,arg3,arg4)); 12579 } 12580 return ret; 12581 #endif 12582 #ifdef TARGET_NR_splice 12583 case TARGET_NR_splice: 12584 { 12585 loff_t loff_in, loff_out; 12586 loff_t *ploff_in = NULL, *ploff_out = NULL; 12587 if (arg2) { 12588 if (get_user_u64(loff_in, arg2)) { 12589 return -TARGET_EFAULT; 12590 } 12591 ploff_in = &loff_in; 12592 } 12593 if (arg4) { 12594 if (get_user_u64(loff_out, arg4)) { 12595 return -TARGET_EFAULT; 12596 } 12597 ploff_out = &loff_out; 12598 } 12599 ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6)); 12600 if (arg2) { 12601 if (put_user_u64(loff_in, arg2)) { 12602 return -TARGET_EFAULT; 12603 } 12604 } 12605 if (arg4) { 12606 if (put_user_u64(loff_out, arg4)) { 12607 return -TARGET_EFAULT; 12608 } 12609 } 12610 } 12611 return ret; 12612 #endif 12613 #ifdef TARGET_NR_vmsplice 12614 case TARGET_NR_vmsplice: 12615 { 12616 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 12617 if (vec != NULL) { 12618 ret = get_errno(vmsplice(arg1, vec, arg3, arg4)); 12619 unlock_iovec(vec, arg2, arg3, 0); 12620 } else { 12621 ret = -host_to_target_errno(errno); 12622 } 12623 } 12624 return ret; 12625 #endif 12626 #endif /* CONFIG_SPLICE */ 12627 #ifdef CONFIG_EVENTFD 12628 #if defined(TARGET_NR_eventfd) 12629 case TARGET_NR_eventfd: 12630 ret = get_errno(eventfd(arg1, 0)); 12631 if (ret >= 0) { 12632 fd_trans_register(ret, &target_eventfd_trans); 12633 } 12634 return ret; 12635 #endif 12636 #if defined(TARGET_NR_eventfd2) 12637 case TARGET_NR_eventfd2: 12638 { 12639 int host_flags = arg2 & (~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC)); 12640 if (arg2 & TARGET_O_NONBLOCK) { 12641 host_flags |= O_NONBLOCK; 12642 } 12643 if (arg2 & TARGET_O_CLOEXEC) { 12644 host_flags |= O_CLOEXEC; 12645 } 12646 ret = get_errno(eventfd(arg1, host_flags)); 12647 if (ret >= 0) { 12648 fd_trans_register(ret, &target_eventfd_trans); 12649 } 12650 return ret; 12651 } 12652 #endif 12653 #endif /* CONFIG_EVENTFD */ 12654 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate) 12655 case TARGET_NR_fallocate: 12656 #if TARGET_ABI_BITS == 32 12657 ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4), 12658 target_offset64(arg5, arg6))); 12659 #else 12660 ret = get_errno(fallocate(arg1, arg2, arg3, arg4)); 12661 #endif 12662 return ret; 12663 #endif 12664 #if defined(CONFIG_SYNC_FILE_RANGE) 12665 #if defined(TARGET_NR_sync_file_range) 12666 case TARGET_NR_sync_file_range: 12667 #if TARGET_ABI_BITS == 32 12668 #if defined(TARGET_MIPS) 12669 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4), 12670 target_offset64(arg5, arg6), arg7)); 12671 #else 12672 ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3), 12673 target_offset64(arg4, arg5), arg6)); 12674 #endif /* !TARGET_MIPS */ 12675 #else 12676 ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4)); 12677 #endif 12678 return ret; 12679 #endif 12680 #if defined(TARGET_NR_sync_file_range2) || \ 12681 defined(TARGET_NR_arm_sync_file_range) 12682 #if defined(TARGET_NR_sync_file_range2) 12683 case TARGET_NR_sync_file_range2: 12684 #endif 12685 #if defined(TARGET_NR_arm_sync_file_range) 12686 case TARGET_NR_arm_sync_file_range: 12687 #endif 12688 /* This is like sync_file_range but the arguments are reordered */ 12689 #if TARGET_ABI_BITS == 32 12690 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4), 12691 target_offset64(arg5, arg6), arg2)); 12692 #else 12693 ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2)); 12694 #endif 12695 return ret; 12696 #endif 12697 #endif 12698 #if defined(TARGET_NR_signalfd4) 12699 case TARGET_NR_signalfd4: 12700 return do_signalfd4(arg1, arg2, arg4); 12701 #endif 12702 #if defined(TARGET_NR_signalfd) 12703 case TARGET_NR_signalfd: 12704 return do_signalfd4(arg1, arg2, 0); 12705 #endif 12706 #if defined(CONFIG_EPOLL) 12707 #if defined(TARGET_NR_epoll_create) 12708 case TARGET_NR_epoll_create: 12709 return get_errno(epoll_create(arg1)); 12710 #endif 12711 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1) 12712 case TARGET_NR_epoll_create1: 12713 return get_errno(epoll_create1(target_to_host_bitmask(arg1, fcntl_flags_tbl))); 12714 #endif 12715 #if defined(TARGET_NR_epoll_ctl) 12716 case TARGET_NR_epoll_ctl: 12717 { 12718 struct epoll_event ep; 12719 struct epoll_event *epp = 0; 12720 if (arg4) { 12721 if (arg2 != EPOLL_CTL_DEL) { 12722 struct target_epoll_event *target_ep; 12723 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) { 12724 return -TARGET_EFAULT; 12725 } 12726 ep.events = tswap32(target_ep->events); 12727 /* 12728 * The epoll_data_t union is just opaque data to the kernel, 12729 * so we transfer all 64 bits across and need not worry what 12730 * actual data type it is. 12731 */ 12732 ep.data.u64 = tswap64(target_ep->data.u64); 12733 unlock_user_struct(target_ep, arg4, 0); 12734 } 12735 /* 12736 * before kernel 2.6.9, EPOLL_CTL_DEL operation required a 12737 * non-null pointer, even though this argument is ignored. 12738 * 12739 */ 12740 epp = &ep; 12741 } 12742 return get_errno(epoll_ctl(arg1, arg2, arg3, epp)); 12743 } 12744 #endif 12745 12746 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait) 12747 #if defined(TARGET_NR_epoll_wait) 12748 case TARGET_NR_epoll_wait: 12749 #endif 12750 #if defined(TARGET_NR_epoll_pwait) 12751 case TARGET_NR_epoll_pwait: 12752 #endif 12753 { 12754 struct target_epoll_event *target_ep; 12755 struct epoll_event *ep; 12756 int epfd = arg1; 12757 int maxevents = arg3; 12758 int timeout = arg4; 12759 12760 if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) { 12761 return -TARGET_EINVAL; 12762 } 12763 12764 target_ep = lock_user(VERIFY_WRITE, arg2, 12765 maxevents * sizeof(struct target_epoll_event), 1); 12766 if (!target_ep) { 12767 return -TARGET_EFAULT; 12768 } 12769 12770 ep = g_try_new(struct epoll_event, maxevents); 12771 if (!ep) { 12772 unlock_user(target_ep, arg2, 0); 12773 return -TARGET_ENOMEM; 12774 } 12775 12776 switch (num) { 12777 #if defined(TARGET_NR_epoll_pwait) 12778 case TARGET_NR_epoll_pwait: 12779 { 12780 target_sigset_t *target_set; 12781 sigset_t _set, *set = &_set; 12782 12783 if (arg5) { 12784 if (arg6 != sizeof(target_sigset_t)) { 12785 ret = -TARGET_EINVAL; 12786 break; 12787 } 12788 12789 target_set = lock_user(VERIFY_READ, arg5, 12790 sizeof(target_sigset_t), 1); 12791 if (!target_set) { 12792 ret = -TARGET_EFAULT; 12793 break; 12794 } 12795 target_to_host_sigset(set, target_set); 12796 unlock_user(target_set, arg5, 0); 12797 } else { 12798 set = NULL; 12799 } 12800 12801 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout, 12802 set, SIGSET_T_SIZE)); 12803 break; 12804 } 12805 #endif 12806 #if defined(TARGET_NR_epoll_wait) 12807 case TARGET_NR_epoll_wait: 12808 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout, 12809 NULL, 0)); 12810 break; 12811 #endif 12812 default: 12813 ret = -TARGET_ENOSYS; 12814 } 12815 if (!is_error(ret)) { 12816 int i; 12817 for (i = 0; i < ret; i++) { 12818 target_ep[i].events = tswap32(ep[i].events); 12819 target_ep[i].data.u64 = tswap64(ep[i].data.u64); 12820 } 12821 unlock_user(target_ep, arg2, 12822 ret * sizeof(struct target_epoll_event)); 12823 } else { 12824 unlock_user(target_ep, arg2, 0); 12825 } 12826 g_free(ep); 12827 return ret; 12828 } 12829 #endif 12830 #endif 12831 #ifdef TARGET_NR_prlimit64 12832 case TARGET_NR_prlimit64: 12833 { 12834 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */ 12835 struct target_rlimit64 *target_rnew, *target_rold; 12836 struct host_rlimit64 rnew, rold, *rnewp = 0; 12837 int resource = target_to_host_resource(arg2); 12838 12839 if (arg3 && (resource != RLIMIT_AS && 12840 resource != RLIMIT_DATA && 12841 resource != RLIMIT_STACK)) { 12842 if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) { 12843 return -TARGET_EFAULT; 12844 } 12845 rnew.rlim_cur = tswap64(target_rnew->rlim_cur); 12846 rnew.rlim_max = tswap64(target_rnew->rlim_max); 12847 unlock_user_struct(target_rnew, arg3, 0); 12848 rnewp = &rnew; 12849 } 12850 12851 ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0)); 12852 if (!is_error(ret) && arg4) { 12853 if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) { 12854 return -TARGET_EFAULT; 12855 } 12856 target_rold->rlim_cur = tswap64(rold.rlim_cur); 12857 target_rold->rlim_max = tswap64(rold.rlim_max); 12858 unlock_user_struct(target_rold, arg4, 1); 12859 } 12860 return ret; 12861 } 12862 #endif 12863 #ifdef TARGET_NR_gethostname 12864 case TARGET_NR_gethostname: 12865 { 12866 char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0); 12867 if (name) { 12868 ret = get_errno(gethostname(name, arg2)); 12869 unlock_user(name, arg1, arg2); 12870 } else { 12871 ret = -TARGET_EFAULT; 12872 } 12873 return ret; 12874 } 12875 #endif 12876 #ifdef TARGET_NR_atomic_cmpxchg_32 12877 case TARGET_NR_atomic_cmpxchg_32: 12878 { 12879 /* should use start_exclusive from main.c */ 12880 abi_ulong mem_value; 12881 if (get_user_u32(mem_value, arg6)) { 12882 target_siginfo_t info; 12883 info.si_signo = SIGSEGV; 12884 info.si_errno = 0; 12885 info.si_code = TARGET_SEGV_MAPERR; 12886 info._sifields._sigfault._addr = arg6; 12887 queue_signal((CPUArchState *)cpu_env, info.si_signo, 12888 QEMU_SI_FAULT, &info); 12889 ret = 0xdeadbeef; 12890 12891 } 12892 if (mem_value == arg2) 12893 put_user_u32(arg1, arg6); 12894 return mem_value; 12895 } 12896 #endif 12897 #ifdef TARGET_NR_atomic_barrier 12898 case TARGET_NR_atomic_barrier: 12899 /* Like the kernel implementation and the 12900 qemu arm barrier, no-op this? */ 12901 return 0; 12902 #endif 12903 12904 #ifdef TARGET_NR_timer_create 12905 case TARGET_NR_timer_create: 12906 { 12907 /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */ 12908 12909 struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL; 12910 12911 int clkid = arg1; 12912 int timer_index = next_free_host_timer(); 12913 12914 if (timer_index < 0) { 12915 ret = -TARGET_EAGAIN; 12916 } else { 12917 timer_t *phtimer = g_posix_timers + timer_index; 12918 12919 if (arg2) { 12920 phost_sevp = &host_sevp; 12921 ret = target_to_host_sigevent(phost_sevp, arg2); 12922 if (ret != 0) { 12923 return ret; 12924 } 12925 } 12926 12927 ret = get_errno(timer_create(clkid, phost_sevp, phtimer)); 12928 if (ret) { 12929 phtimer = NULL; 12930 } else { 12931 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) { 12932 return -TARGET_EFAULT; 12933 } 12934 } 12935 } 12936 return ret; 12937 } 12938 #endif 12939 12940 #ifdef TARGET_NR_timer_settime 12941 case TARGET_NR_timer_settime: 12942 { 12943 /* args: timer_t timerid, int flags, const struct itimerspec *new_value, 12944 * struct itimerspec * old_value */ 12945 target_timer_t timerid = get_timer_id(arg1); 12946 12947 if (timerid < 0) { 12948 ret = timerid; 12949 } else if (arg3 == 0) { 12950 ret = -TARGET_EINVAL; 12951 } else { 12952 timer_t htimer = g_posix_timers[timerid]; 12953 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},}; 12954 12955 if (target_to_host_itimerspec(&hspec_new, arg3)) { 12956 return -TARGET_EFAULT; 12957 } 12958 ret = get_errno( 12959 timer_settime(htimer, arg2, &hspec_new, &hspec_old)); 12960 if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) { 12961 return -TARGET_EFAULT; 12962 } 12963 } 12964 return ret; 12965 } 12966 #endif 12967 12968 #ifdef TARGET_NR_timer_settime64 12969 case TARGET_NR_timer_settime64: 12970 { 12971 target_timer_t timerid = get_timer_id(arg1); 12972 12973 if (timerid < 0) { 12974 ret = timerid; 12975 } else if (arg3 == 0) { 12976 ret = -TARGET_EINVAL; 12977 } else { 12978 timer_t htimer = g_posix_timers[timerid]; 12979 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},}; 12980 12981 if (target_to_host_itimerspec64(&hspec_new, arg3)) { 12982 return -TARGET_EFAULT; 12983 } 12984 ret = get_errno( 12985 timer_settime(htimer, arg2, &hspec_new, &hspec_old)); 12986 if (arg4 && host_to_target_itimerspec64(arg4, &hspec_old)) { 12987 return -TARGET_EFAULT; 12988 } 12989 } 12990 return ret; 12991 } 12992 #endif 12993 12994 #ifdef TARGET_NR_timer_gettime 12995 case TARGET_NR_timer_gettime: 12996 { 12997 /* args: timer_t timerid, struct itimerspec *curr_value */ 12998 target_timer_t timerid = get_timer_id(arg1); 12999 13000 if (timerid < 0) { 13001 ret = timerid; 13002 } else if (!arg2) { 13003 ret = -TARGET_EFAULT; 13004 } else { 13005 timer_t htimer = g_posix_timers[timerid]; 13006 struct itimerspec hspec; 13007 ret = get_errno(timer_gettime(htimer, &hspec)); 13008 13009 if (host_to_target_itimerspec(arg2, &hspec)) { 13010 ret = -TARGET_EFAULT; 13011 } 13012 } 13013 return ret; 13014 } 13015 #endif 13016 13017 #ifdef TARGET_NR_timer_gettime64 13018 case TARGET_NR_timer_gettime64: 13019 { 13020 /* args: timer_t timerid, struct itimerspec64 *curr_value */ 13021 target_timer_t timerid = get_timer_id(arg1); 13022 13023 if (timerid < 0) { 13024 ret = timerid; 13025 } else if (!arg2) { 13026 ret = -TARGET_EFAULT; 13027 } else { 13028 timer_t htimer = g_posix_timers[timerid]; 13029 struct itimerspec hspec; 13030 ret = get_errno(timer_gettime(htimer, &hspec)); 13031 13032 if (host_to_target_itimerspec64(arg2, &hspec)) { 13033 ret = -TARGET_EFAULT; 13034 } 13035 } 13036 return ret; 13037 } 13038 #endif 13039 13040 #ifdef TARGET_NR_timer_getoverrun 13041 case TARGET_NR_timer_getoverrun: 13042 { 13043 /* args: timer_t timerid */ 13044 target_timer_t timerid = get_timer_id(arg1); 13045 13046 if (timerid < 0) { 13047 ret = timerid; 13048 } else { 13049 timer_t htimer = g_posix_timers[timerid]; 13050 ret = get_errno(timer_getoverrun(htimer)); 13051 } 13052 return ret; 13053 } 13054 #endif 13055 13056 #ifdef TARGET_NR_timer_delete 13057 case TARGET_NR_timer_delete: 13058 { 13059 /* args: timer_t timerid */ 13060 target_timer_t timerid = get_timer_id(arg1); 13061 13062 if (timerid < 0) { 13063 ret = timerid; 13064 } else { 13065 timer_t htimer = g_posix_timers[timerid]; 13066 ret = get_errno(timer_delete(htimer)); 13067 g_posix_timers[timerid] = 0; 13068 } 13069 return ret; 13070 } 13071 #endif 13072 13073 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD) 13074 case TARGET_NR_timerfd_create: 13075 return get_errno(timerfd_create(arg1, 13076 target_to_host_bitmask(arg2, fcntl_flags_tbl))); 13077 #endif 13078 13079 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD) 13080 case TARGET_NR_timerfd_gettime: 13081 { 13082 struct itimerspec its_curr; 13083 13084 ret = get_errno(timerfd_gettime(arg1, &its_curr)); 13085 13086 if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) { 13087 return -TARGET_EFAULT; 13088 } 13089 } 13090 return ret; 13091 #endif 13092 13093 #if defined(TARGET_NR_timerfd_gettime64) && defined(CONFIG_TIMERFD) 13094 case TARGET_NR_timerfd_gettime64: 13095 { 13096 struct itimerspec its_curr; 13097 13098 ret = get_errno(timerfd_gettime(arg1, &its_curr)); 13099 13100 if (arg2 && host_to_target_itimerspec64(arg2, &its_curr)) { 13101 return -TARGET_EFAULT; 13102 } 13103 } 13104 return ret; 13105 #endif 13106 13107 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD) 13108 case TARGET_NR_timerfd_settime: 13109 { 13110 struct itimerspec its_new, its_old, *p_new; 13111 13112 if (arg3) { 13113 if (target_to_host_itimerspec(&its_new, arg3)) { 13114 return -TARGET_EFAULT; 13115 } 13116 p_new = &its_new; 13117 } else { 13118 p_new = NULL; 13119 } 13120 13121 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old)); 13122 13123 if (arg4 && host_to_target_itimerspec(arg4, &its_old)) { 13124 return -TARGET_EFAULT; 13125 } 13126 } 13127 return ret; 13128 #endif 13129 13130 #if defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD) 13131 case TARGET_NR_timerfd_settime64: 13132 { 13133 struct itimerspec its_new, its_old, *p_new; 13134 13135 if (arg3) { 13136 if (target_to_host_itimerspec64(&its_new, arg3)) { 13137 return -TARGET_EFAULT; 13138 } 13139 p_new = &its_new; 13140 } else { 13141 p_new = NULL; 13142 } 13143 13144 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old)); 13145 13146 if (arg4 && host_to_target_itimerspec64(arg4, &its_old)) { 13147 return -TARGET_EFAULT; 13148 } 13149 } 13150 return ret; 13151 #endif 13152 13153 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get) 13154 case TARGET_NR_ioprio_get: 13155 return get_errno(ioprio_get(arg1, arg2)); 13156 #endif 13157 13158 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set) 13159 case TARGET_NR_ioprio_set: 13160 return get_errno(ioprio_set(arg1, arg2, arg3)); 13161 #endif 13162 13163 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS) 13164 case TARGET_NR_setns: 13165 return get_errno(setns(arg1, arg2)); 13166 #endif 13167 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS) 13168 case TARGET_NR_unshare: 13169 return get_errno(unshare(arg1)); 13170 #endif 13171 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp) 13172 case TARGET_NR_kcmp: 13173 return get_errno(kcmp(arg1, arg2, arg3, arg4, arg5)); 13174 #endif 13175 #ifdef TARGET_NR_swapcontext 13176 case TARGET_NR_swapcontext: 13177 /* PowerPC specific. */ 13178 return do_swapcontext(cpu_env, arg1, arg2, arg3); 13179 #endif 13180 #ifdef TARGET_NR_memfd_create 13181 case TARGET_NR_memfd_create: 13182 p = lock_user_string(arg1); 13183 if (!p) { 13184 return -TARGET_EFAULT; 13185 } 13186 ret = get_errno(memfd_create(p, arg2)); 13187 fd_trans_unregister(ret); 13188 unlock_user(p, arg1, 0); 13189 return ret; 13190 #endif 13191 #if defined TARGET_NR_membarrier && defined __NR_membarrier 13192 case TARGET_NR_membarrier: 13193 return get_errno(membarrier(arg1, arg2)); 13194 #endif 13195 13196 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range) 13197 case TARGET_NR_copy_file_range: 13198 { 13199 loff_t inoff, outoff; 13200 loff_t *pinoff = NULL, *poutoff = NULL; 13201 13202 if (arg2) { 13203 if (get_user_u64(inoff, arg2)) { 13204 return -TARGET_EFAULT; 13205 } 13206 pinoff = &inoff; 13207 } 13208 if (arg4) { 13209 if (get_user_u64(outoff, arg4)) { 13210 return -TARGET_EFAULT; 13211 } 13212 poutoff = &outoff; 13213 } 13214 /* Do not sign-extend the count parameter. */ 13215 ret = get_errno(safe_copy_file_range(arg1, pinoff, arg3, poutoff, 13216 (abi_ulong)arg5, arg6)); 13217 if (!is_error(ret) && ret > 0) { 13218 if (arg2) { 13219 if (put_user_u64(inoff, arg2)) { 13220 return -TARGET_EFAULT; 13221 } 13222 } 13223 if (arg4) { 13224 if (put_user_u64(outoff, arg4)) { 13225 return -TARGET_EFAULT; 13226 } 13227 } 13228 } 13229 } 13230 return ret; 13231 #endif 13232 13233 #if defined(TARGET_NR_pivot_root) 13234 case TARGET_NR_pivot_root: 13235 { 13236 void *p2; 13237 p = lock_user_string(arg1); /* new_root */ 13238 p2 = lock_user_string(arg2); /* put_old */ 13239 if (!p || !p2) { 13240 ret = -TARGET_EFAULT; 13241 } else { 13242 ret = get_errno(pivot_root(p, p2)); 13243 } 13244 unlock_user(p2, arg2, 0); 13245 unlock_user(p, arg1, 0); 13246 } 13247 return ret; 13248 #endif 13249 13250 default: 13251 qemu_log_mask(LOG_UNIMP, "Unsupported syscall: %d\n", num); 13252 return -TARGET_ENOSYS; 13253 } 13254 return ret; 13255 } 13256 13257 abi_long do_syscall(void *cpu_env, int num, abi_long arg1, 13258 abi_long arg2, abi_long arg3, abi_long arg4, 13259 abi_long arg5, abi_long arg6, abi_long arg7, 13260 abi_long arg8) 13261 { 13262 CPUState *cpu = env_cpu(cpu_env); 13263 abi_long ret; 13264 13265 #ifdef DEBUG_ERESTARTSYS 13266 /* Debug-only code for exercising the syscall-restart code paths 13267 * in the per-architecture cpu main loops: restart every syscall 13268 * the guest makes once before letting it through. 13269 */ 13270 { 13271 static bool flag; 13272 flag = !flag; 13273 if (flag) { 13274 return -TARGET_ERESTARTSYS; 13275 } 13276 } 13277 #endif 13278 13279 record_syscall_start(cpu, num, arg1, 13280 arg2, arg3, arg4, arg5, arg6, arg7, arg8); 13281 13282 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) { 13283 print_syscall(cpu_env, num, arg1, arg2, arg3, arg4, arg5, arg6); 13284 } 13285 13286 ret = do_syscall1(cpu_env, num, arg1, arg2, arg3, arg4, 13287 arg5, arg6, arg7, arg8); 13288 13289 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) { 13290 print_syscall_ret(cpu_env, num, ret, arg1, arg2, 13291 arg3, arg4, arg5, arg6); 13292 } 13293 13294 record_syscall_return(cpu, num, ret); 13295 return ret; 13296 } 13297