xref: /openbmc/qemu/linux-user/syscall.c (revision f7bbb156)
1 /*
2  *  Linux syscalls
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
23 #include "qemu/memfd.h"
24 #include "qemu/queue.h"
25 #include <elf.h>
26 #include <endian.h>
27 #include <grp.h>
28 #include <sys/ipc.h>
29 #include <sys/msg.h>
30 #include <sys/wait.h>
31 #include <sys/mount.h>
32 #include <sys/file.h>
33 #include <sys/fsuid.h>
34 #include <sys/personality.h>
35 #include <sys/prctl.h>
36 #include <sys/resource.h>
37 #include <sys/swap.h>
38 #include <linux/capability.h>
39 #include <sched.h>
40 #include <sys/timex.h>
41 #include <sys/socket.h>
42 #include <linux/sockios.h>
43 #include <sys/un.h>
44 #include <sys/uio.h>
45 #include <poll.h>
46 #include <sys/times.h>
47 #include <sys/shm.h>
48 #include <sys/sem.h>
49 #include <sys/statfs.h>
50 #include <utime.h>
51 #include <sys/sysinfo.h>
52 #include <sys/signalfd.h>
53 //#include <sys/user.h>
54 #include <netinet/in.h>
55 #include <netinet/ip.h>
56 #include <netinet/tcp.h>
57 #include <netinet/udp.h>
58 #include <linux/wireless.h>
59 #include <linux/icmp.h>
60 #include <linux/icmpv6.h>
61 #include <linux/if_tun.h>
62 #include <linux/in6.h>
63 #include <linux/errqueue.h>
64 #include <linux/random.h>
65 #ifdef CONFIG_TIMERFD
66 #include <sys/timerfd.h>
67 #endif
68 #ifdef CONFIG_EVENTFD
69 #include <sys/eventfd.h>
70 #endif
71 #ifdef CONFIG_EPOLL
72 #include <sys/epoll.h>
73 #endif
74 #ifdef CONFIG_ATTR
75 #include "qemu/xattr.h"
76 #endif
77 #ifdef CONFIG_SENDFILE
78 #include <sys/sendfile.h>
79 #endif
80 #ifdef HAVE_SYS_KCOV_H
81 #include <sys/kcov.h>
82 #endif
83 
84 #define termios host_termios
85 #define winsize host_winsize
86 #define termio host_termio
87 #define sgttyb host_sgttyb /* same as target */
88 #define tchars host_tchars /* same as target */
89 #define ltchars host_ltchars /* same as target */
90 
91 #include <linux/termios.h>
92 #include <linux/unistd.h>
93 #include <linux/cdrom.h>
94 #include <linux/hdreg.h>
95 #include <linux/soundcard.h>
96 #include <linux/kd.h>
97 #include <linux/mtio.h>
98 
99 #ifdef HAVE_SYS_MOUNT_FSCONFIG
100 /*
101  * glibc >= 2.36 linux/mount.h conflicts with sys/mount.h,
102  * which in turn prevents use of linux/fs.h. So we have to
103  * define the constants ourselves for now.
104  */
105 #define FS_IOC_GETFLAGS                _IOR('f', 1, long)
106 #define FS_IOC_SETFLAGS                _IOW('f', 2, long)
107 #define FS_IOC_GETVERSION              _IOR('v', 1, long)
108 #define FS_IOC_SETVERSION              _IOW('v', 2, long)
109 #define FS_IOC_FIEMAP                  _IOWR('f', 11, struct fiemap)
110 #define FS_IOC32_GETFLAGS              _IOR('f', 1, int)
111 #define FS_IOC32_SETFLAGS              _IOW('f', 2, int)
112 #define FS_IOC32_GETVERSION            _IOR('v', 1, int)
113 #define FS_IOC32_SETVERSION            _IOW('v', 2, int)
114 #else
115 #include <linux/fs.h>
116 #endif
117 #include <linux/fd.h>
118 #if defined(CONFIG_FIEMAP)
119 #include <linux/fiemap.h>
120 #endif
121 #include <linux/fb.h>
122 #if defined(CONFIG_USBFS)
123 #include <linux/usbdevice_fs.h>
124 #include <linux/usb/ch9.h>
125 #endif
126 #include <linux/vt.h>
127 #include <linux/dm-ioctl.h>
128 #include <linux/reboot.h>
129 #include <linux/route.h>
130 #include <linux/filter.h>
131 #include <linux/blkpg.h>
132 #include <netpacket/packet.h>
133 #include <linux/netlink.h>
134 #include <linux/if_alg.h>
135 #include <linux/rtc.h>
136 #include <sound/asound.h>
137 #ifdef HAVE_BTRFS_H
138 #include <linux/btrfs.h>
139 #endif
140 #ifdef HAVE_DRM_H
141 #include <libdrm/drm.h>
142 #include <libdrm/i915_drm.h>
143 #endif
144 #include "linux_loop.h"
145 #include "uname.h"
146 
147 #include "qemu.h"
148 #include "user-internals.h"
149 #include "strace.h"
150 #include "signal-common.h"
151 #include "loader.h"
152 #include "user-mmap.h"
153 #include "user/safe-syscall.h"
154 #include "qemu/guest-random.h"
155 #include "qemu/selfmap.h"
156 #include "user/syscall-trace.h"
157 #include "special-errno.h"
158 #include "qapi/error.h"
159 #include "fd-trans.h"
160 #include "tcg/tcg.h"
161 
162 #ifndef CLONE_IO
163 #define CLONE_IO                0x80000000      /* Clone io context */
164 #endif
165 
166 /* We can't directly call the host clone syscall, because this will
167  * badly confuse libc (breaking mutexes, for example). So we must
168  * divide clone flags into:
169  *  * flag combinations that look like pthread_create()
170  *  * flag combinations that look like fork()
171  *  * flags we can implement within QEMU itself
172  *  * flags we can't support and will return an error for
173  */
174 /* For thread creation, all these flags must be present; for
175  * fork, none must be present.
176  */
177 #define CLONE_THREAD_FLAGS                              \
178     (CLONE_VM | CLONE_FS | CLONE_FILES |                \
179      CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
180 
181 /* These flags are ignored:
182  * CLONE_DETACHED is now ignored by the kernel;
183  * CLONE_IO is just an optimisation hint to the I/O scheduler
184  */
185 #define CLONE_IGNORED_FLAGS                     \
186     (CLONE_DETACHED | CLONE_IO)
187 
188 /* Flags for fork which we can implement within QEMU itself */
189 #define CLONE_OPTIONAL_FORK_FLAGS               \
190     (CLONE_SETTLS | CLONE_PARENT_SETTID |       \
191      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
192 
193 /* Flags for thread creation which we can implement within QEMU itself */
194 #define CLONE_OPTIONAL_THREAD_FLAGS                             \
195     (CLONE_SETTLS | CLONE_PARENT_SETTID |                       \
196      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
197 
198 #define CLONE_INVALID_FORK_FLAGS                                        \
199     (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
200 
201 #define CLONE_INVALID_THREAD_FLAGS                                      \
202     (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS |     \
203        CLONE_IGNORED_FLAGS))
204 
205 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits
206  * have almost all been allocated. We cannot support any of
207  * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
208  * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
209  * The checks against the invalid thread masks above will catch these.
210  * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
211  */
212 
213 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
214  * once. This exercises the codepaths for restart.
215  */
216 //#define DEBUG_ERESTARTSYS
217 
218 //#include <linux/msdos_fs.h>
219 #define VFAT_IOCTL_READDIR_BOTH \
220     _IOC(_IOC_READ, 'r', 1, (sizeof(struct linux_dirent) + 256) * 2)
221 #define VFAT_IOCTL_READDIR_SHORT \
222     _IOC(_IOC_READ, 'r', 2, (sizeof(struct linux_dirent) + 256) * 2)
223 
224 #undef _syscall0
225 #undef _syscall1
226 #undef _syscall2
227 #undef _syscall3
228 #undef _syscall4
229 #undef _syscall5
230 #undef _syscall6
231 
232 #define _syscall0(type,name)		\
233 static type name (void)			\
234 {					\
235 	return syscall(__NR_##name);	\
236 }
237 
238 #define _syscall1(type,name,type1,arg1)		\
239 static type name (type1 arg1)			\
240 {						\
241 	return syscall(__NR_##name, arg1);	\
242 }
243 
244 #define _syscall2(type,name,type1,arg1,type2,arg2)	\
245 static type name (type1 arg1,type2 arg2)		\
246 {							\
247 	return syscall(__NR_##name, arg1, arg2);	\
248 }
249 
250 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3)	\
251 static type name (type1 arg1,type2 arg2,type3 arg3)		\
252 {								\
253 	return syscall(__NR_##name, arg1, arg2, arg3);		\
254 }
255 
256 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4)	\
257 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4)			\
258 {										\
259 	return syscall(__NR_##name, arg1, arg2, arg3, arg4);			\
260 }
261 
262 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
263 		  type5,arg5)							\
264 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5)	\
265 {										\
266 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5);		\
267 }
268 
269 
270 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
271 		  type5,arg5,type6,arg6)					\
272 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5,	\
273                   type6 arg6)							\
274 {										\
275 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6);	\
276 }
277 
278 
279 #define __NR_sys_uname __NR_uname
280 #define __NR_sys_getcwd1 __NR_getcwd
281 #define __NR_sys_getdents __NR_getdents
282 #define __NR_sys_getdents64 __NR_getdents64
283 #define __NR_sys_getpriority __NR_getpriority
284 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
285 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo
286 #define __NR_sys_syslog __NR_syslog
287 #if defined(__NR_futex)
288 # define __NR_sys_futex __NR_futex
289 #endif
290 #if defined(__NR_futex_time64)
291 # define __NR_sys_futex_time64 __NR_futex_time64
292 #endif
293 #define __NR_sys_statx __NR_statx
294 
295 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__)
296 #define __NR__llseek __NR_lseek
297 #endif
298 
299 /* Newer kernel ports have llseek() instead of _llseek() */
300 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
301 #define TARGET_NR__llseek TARGET_NR_llseek
302 #endif
303 
304 /* some platforms need to mask more bits than just TARGET_O_NONBLOCK */
305 #ifndef TARGET_O_NONBLOCK_MASK
306 #define TARGET_O_NONBLOCK_MASK TARGET_O_NONBLOCK
307 #endif
308 
309 #define __NR_sys_gettid __NR_gettid
310 _syscall0(int, sys_gettid)
311 
312 /* For the 64-bit guest on 32-bit host case we must emulate
313  * getdents using getdents64, because otherwise the host
314  * might hand us back more dirent records than we can fit
315  * into the guest buffer after structure format conversion.
316  * Otherwise we emulate getdents with getdents if the host has it.
317  */
318 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS
319 #define EMULATE_GETDENTS_WITH_GETDENTS
320 #endif
321 
322 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS)
323 _syscall3(int, sys_getdents, uint, fd, struct linux_dirent *, dirp, uint, count);
324 #endif
325 #if (defined(TARGET_NR_getdents) && \
326       !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \
327     (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
328 _syscall3(int, sys_getdents64, uint, fd, struct linux_dirent64 *, dirp, uint, count);
329 #endif
330 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
331 _syscall5(int, _llseek,  uint,  fd, ulong, hi, ulong, lo,
332           loff_t *, res, uint, wh);
333 #endif
334 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo)
335 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig,
336           siginfo_t *, uinfo)
337 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len)
338 #ifdef __NR_exit_group
339 _syscall1(int,exit_group,int,error_code)
340 #endif
341 #if defined(__NR_futex)
342 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val,
343           const struct timespec *,timeout,int *,uaddr2,int,val3)
344 #endif
345 #if defined(__NR_futex_time64)
346 _syscall6(int,sys_futex_time64,int *,uaddr,int,op,int,val,
347           const struct timespec *,timeout,int *,uaddr2,int,val3)
348 #endif
349 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
350 _syscall2(int, pidfd_open, pid_t, pid, unsigned int, flags);
351 #endif
352 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
353 _syscall4(int, pidfd_send_signal, int, pidfd, int, sig, siginfo_t *, info,
354                              unsigned int, flags);
355 #endif
356 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
357 _syscall3(int, pidfd_getfd, int, pidfd, int, targetfd, unsigned int, flags);
358 #endif
359 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
360 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len,
361           unsigned long *, user_mask_ptr);
362 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
363 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len,
364           unsigned long *, user_mask_ptr);
365 /* sched_attr is not defined in glibc */
366 struct sched_attr {
367     uint32_t size;
368     uint32_t sched_policy;
369     uint64_t sched_flags;
370     int32_t sched_nice;
371     uint32_t sched_priority;
372     uint64_t sched_runtime;
373     uint64_t sched_deadline;
374     uint64_t sched_period;
375     uint32_t sched_util_min;
376     uint32_t sched_util_max;
377 };
378 #define __NR_sys_sched_getattr __NR_sched_getattr
379 _syscall4(int, sys_sched_getattr, pid_t, pid, struct sched_attr *, attr,
380           unsigned int, size, unsigned int, flags);
381 #define __NR_sys_sched_setattr __NR_sched_setattr
382 _syscall3(int, sys_sched_setattr, pid_t, pid, struct sched_attr *, attr,
383           unsigned int, flags);
384 #define __NR_sys_sched_getscheduler __NR_sched_getscheduler
385 _syscall1(int, sys_sched_getscheduler, pid_t, pid);
386 #define __NR_sys_sched_setscheduler __NR_sched_setscheduler
387 _syscall3(int, sys_sched_setscheduler, pid_t, pid, int, policy,
388           const struct sched_param *, param);
389 #define __NR_sys_sched_getparam __NR_sched_getparam
390 _syscall2(int, sys_sched_getparam, pid_t, pid,
391           struct sched_param *, param);
392 #define __NR_sys_sched_setparam __NR_sched_setparam
393 _syscall2(int, sys_sched_setparam, pid_t, pid,
394           const struct sched_param *, param);
395 #define __NR_sys_getcpu __NR_getcpu
396 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache);
397 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd,
398           void *, arg);
399 _syscall2(int, capget, struct __user_cap_header_struct *, header,
400           struct __user_cap_data_struct *, data);
401 _syscall2(int, capset, struct __user_cap_header_struct *, header,
402           struct __user_cap_data_struct *, data);
403 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
404 _syscall2(int, ioprio_get, int, which, int, who)
405 #endif
406 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
407 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio)
408 #endif
409 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
410 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags)
411 #endif
412 
413 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
414 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type,
415           unsigned long, idx1, unsigned long, idx2)
416 #endif
417 
418 /*
419  * It is assumed that struct statx is architecture independent.
420  */
421 #if defined(TARGET_NR_statx) && defined(__NR_statx)
422 _syscall5(int, sys_statx, int, dirfd, const char *, pathname, int, flags,
423           unsigned int, mask, struct target_statx *, statxbuf)
424 #endif
425 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier)
426 _syscall2(int, membarrier, int, cmd, int, flags)
427 #endif
428 
429 static const bitmask_transtbl fcntl_flags_tbl[] = {
430   { TARGET_O_ACCMODE,   TARGET_O_WRONLY,    O_ACCMODE,   O_WRONLY,    },
431   { TARGET_O_ACCMODE,   TARGET_O_RDWR,      O_ACCMODE,   O_RDWR,      },
432   { TARGET_O_CREAT,     TARGET_O_CREAT,     O_CREAT,     O_CREAT,     },
433   { TARGET_O_EXCL,      TARGET_O_EXCL,      O_EXCL,      O_EXCL,      },
434   { TARGET_O_NOCTTY,    TARGET_O_NOCTTY,    O_NOCTTY,    O_NOCTTY,    },
435   { TARGET_O_TRUNC,     TARGET_O_TRUNC,     O_TRUNC,     O_TRUNC,     },
436   { TARGET_O_APPEND,    TARGET_O_APPEND,    O_APPEND,    O_APPEND,    },
437   { TARGET_O_NONBLOCK,  TARGET_O_NONBLOCK,  O_NONBLOCK,  O_NONBLOCK,  },
438   { TARGET_O_SYNC,      TARGET_O_DSYNC,     O_SYNC,      O_DSYNC,     },
439   { TARGET_O_SYNC,      TARGET_O_SYNC,      O_SYNC,      O_SYNC,      },
440   { TARGET_FASYNC,      TARGET_FASYNC,      FASYNC,      FASYNC,      },
441   { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, },
442   { TARGET_O_NOFOLLOW,  TARGET_O_NOFOLLOW,  O_NOFOLLOW,  O_NOFOLLOW,  },
443 #if defined(O_DIRECT)
444   { TARGET_O_DIRECT,    TARGET_O_DIRECT,    O_DIRECT,    O_DIRECT,    },
445 #endif
446 #if defined(O_NOATIME)
447   { TARGET_O_NOATIME,   TARGET_O_NOATIME,   O_NOATIME,   O_NOATIME    },
448 #endif
449 #if defined(O_CLOEXEC)
450   { TARGET_O_CLOEXEC,   TARGET_O_CLOEXEC,   O_CLOEXEC,   O_CLOEXEC    },
451 #endif
452 #if defined(O_PATH)
453   { TARGET_O_PATH,      TARGET_O_PATH,      O_PATH,      O_PATH       },
454 #endif
455 #if defined(O_TMPFILE)
456   { TARGET_O_TMPFILE,   TARGET_O_TMPFILE,   O_TMPFILE,   O_TMPFILE    },
457 #endif
458   /* Don't terminate the list prematurely on 64-bit host+guest.  */
459 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
460   { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, },
461 #endif
462   { 0, 0, 0, 0 }
463 };
464 
465 _syscall2(int, sys_getcwd1, char *, buf, size_t, size)
466 
467 #if defined(TARGET_NR_utimensat) || defined(TARGET_NR_utimensat_time64)
468 #if defined(__NR_utimensat)
469 #define __NR_sys_utimensat __NR_utimensat
470 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname,
471           const struct timespec *,tsp,int,flags)
472 #else
473 static int sys_utimensat(int dirfd, const char *pathname,
474                          const struct timespec times[2], int flags)
475 {
476     errno = ENOSYS;
477     return -1;
478 }
479 #endif
480 #endif /* TARGET_NR_utimensat */
481 
482 #ifdef TARGET_NR_renameat2
483 #if defined(__NR_renameat2)
484 #define __NR_sys_renameat2 __NR_renameat2
485 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd,
486           const char *, new, unsigned int, flags)
487 #else
488 static int sys_renameat2(int oldfd, const char *old,
489                          int newfd, const char *new, int flags)
490 {
491     if (flags == 0) {
492         return renameat(oldfd, old, newfd, new);
493     }
494     errno = ENOSYS;
495     return -1;
496 }
497 #endif
498 #endif /* TARGET_NR_renameat2 */
499 
500 #ifdef CONFIG_INOTIFY
501 #include <sys/inotify.h>
502 #else
503 /* Userspace can usually survive runtime without inotify */
504 #undef TARGET_NR_inotify_init
505 #undef TARGET_NR_inotify_init1
506 #undef TARGET_NR_inotify_add_watch
507 #undef TARGET_NR_inotify_rm_watch
508 #endif /* CONFIG_INOTIFY  */
509 
510 #if defined(TARGET_NR_prlimit64)
511 #ifndef __NR_prlimit64
512 # define __NR_prlimit64 -1
513 #endif
514 #define __NR_sys_prlimit64 __NR_prlimit64
515 /* The glibc rlimit structure may not be that used by the underlying syscall */
516 struct host_rlimit64 {
517     uint64_t rlim_cur;
518     uint64_t rlim_max;
519 };
520 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource,
521           const struct host_rlimit64 *, new_limit,
522           struct host_rlimit64 *, old_limit)
523 #endif
524 
525 
526 #if defined(TARGET_NR_timer_create)
527 /* Maximum of 32 active POSIX timers allowed at any one time. */
528 #define GUEST_TIMER_MAX 32
529 static timer_t g_posix_timers[GUEST_TIMER_MAX];
530 static int g_posix_timer_allocated[GUEST_TIMER_MAX];
531 
532 static inline int next_free_host_timer(void)
533 {
534     int k;
535     for (k = 0; k < ARRAY_SIZE(g_posix_timer_allocated); k++) {
536         if (qatomic_xchg(g_posix_timer_allocated + k, 1) == 0) {
537             return k;
538         }
539     }
540     return -1;
541 }
542 
543 static inline void free_host_timer_slot(int id)
544 {
545     qatomic_store_release(g_posix_timer_allocated + id, 0);
546 }
547 #endif
548 
549 static inline int host_to_target_errno(int host_errno)
550 {
551     switch (host_errno) {
552 #define E(X)  case X: return TARGET_##X;
553 #include "errnos.c.inc"
554 #undef E
555     default:
556         return host_errno;
557     }
558 }
559 
560 static inline int target_to_host_errno(int target_errno)
561 {
562     switch (target_errno) {
563 #define E(X)  case TARGET_##X: return X;
564 #include "errnos.c.inc"
565 #undef E
566     default:
567         return target_errno;
568     }
569 }
570 
571 abi_long get_errno(abi_long ret)
572 {
573     if (ret == -1)
574         return -host_to_target_errno(errno);
575     else
576         return ret;
577 }
578 
579 const char *target_strerror(int err)
580 {
581     if (err == QEMU_ERESTARTSYS) {
582         return "To be restarted";
583     }
584     if (err == QEMU_ESIGRETURN) {
585         return "Successful exit from sigreturn";
586     }
587 
588     return strerror(target_to_host_errno(err));
589 }
590 
591 static int check_zeroed_user(abi_long addr, size_t ksize, size_t usize)
592 {
593     int i;
594     uint8_t b;
595     if (usize <= ksize) {
596         return 1;
597     }
598     for (i = ksize; i < usize; i++) {
599         if (get_user_u8(b, addr + i)) {
600             return -TARGET_EFAULT;
601         }
602         if (b != 0) {
603             return 0;
604         }
605     }
606     return 1;
607 }
608 
609 #define safe_syscall0(type, name) \
610 static type safe_##name(void) \
611 { \
612     return safe_syscall(__NR_##name); \
613 }
614 
615 #define safe_syscall1(type, name, type1, arg1) \
616 static type safe_##name(type1 arg1) \
617 { \
618     return safe_syscall(__NR_##name, arg1); \
619 }
620 
621 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
622 static type safe_##name(type1 arg1, type2 arg2) \
623 { \
624     return safe_syscall(__NR_##name, arg1, arg2); \
625 }
626 
627 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
628 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
629 { \
630     return safe_syscall(__NR_##name, arg1, arg2, arg3); \
631 }
632 
633 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
634     type4, arg4) \
635 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
636 { \
637     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
638 }
639 
640 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
641     type4, arg4, type5, arg5) \
642 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
643     type5 arg5) \
644 { \
645     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
646 }
647 
648 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
649     type4, arg4, type5, arg5, type6, arg6) \
650 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
651     type5 arg5, type6 arg6) \
652 { \
653     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
654 }
655 
656 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count)
657 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count)
658 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \
659               int, flags, mode_t, mode)
660 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid)
661 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \
662               struct rusage *, rusage)
663 #endif
664 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \
665               int, options, struct rusage *, rusage)
666 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp)
667 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
668     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
669 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \
670               fd_set *, exceptfds, struct timespec *, timeout, void *, sig)
671 #endif
672 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_ppoll_time64)
673 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds,
674               struct timespec *, tsp, const sigset_t *, sigmask,
675               size_t, sigsetsize)
676 #endif
677 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events,
678               int, maxevents, int, timeout, const sigset_t *, sigmask,
679               size_t, sigsetsize)
680 #if defined(__NR_futex)
681 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \
682               const struct timespec *,timeout,int *,uaddr2,int,val3)
683 #endif
684 #if defined(__NR_futex_time64)
685 safe_syscall6(int,futex_time64,int *,uaddr,int,op,int,val, \
686               const struct timespec *,timeout,int *,uaddr2,int,val3)
687 #endif
688 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize)
689 safe_syscall2(int, kill, pid_t, pid, int, sig)
690 safe_syscall2(int, tkill, int, tid, int, sig)
691 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig)
692 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt)
693 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt)
694 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt,
695               unsigned long, pos_l, unsigned long, pos_h)
696 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt,
697               unsigned long, pos_l, unsigned long, pos_h)
698 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr,
699               socklen_t, addrlen)
700 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len,
701               int, flags, const struct sockaddr *, addr, socklen_t, addrlen)
702 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len,
703               int, flags, struct sockaddr *, addr, socklen_t *, addrlen)
704 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags)
705 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags)
706 safe_syscall2(int, flock, int, fd, int, operation)
707 #if defined(TARGET_NR_rt_sigtimedwait) || defined(TARGET_NR_rt_sigtimedwait_time64)
708 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo,
709               const struct timespec *, uts, size_t, sigsetsize)
710 #endif
711 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len,
712               int, flags)
713 #if defined(TARGET_NR_nanosleep)
714 safe_syscall2(int, nanosleep, const struct timespec *, req,
715               struct timespec *, rem)
716 #endif
717 #if defined(TARGET_NR_clock_nanosleep) || \
718     defined(TARGET_NR_clock_nanosleep_time64)
719 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags,
720               const struct timespec *, req, struct timespec *, rem)
721 #endif
722 #ifdef __NR_ipc
723 #ifdef __s390x__
724 safe_syscall5(int, ipc, int, call, long, first, long, second, long, third,
725               void *, ptr)
726 #else
727 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third,
728               void *, ptr, long, fifth)
729 #endif
730 #endif
731 #ifdef __NR_msgsnd
732 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz,
733               int, flags)
734 #endif
735 #ifdef __NR_msgrcv
736 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz,
737               long, msgtype, int, flags)
738 #endif
739 #ifdef __NR_semtimedop
740 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops,
741               unsigned, nsops, const struct timespec *, timeout)
742 #endif
743 #if defined(TARGET_NR_mq_timedsend) || \
744     defined(TARGET_NR_mq_timedsend_time64)
745 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr,
746               size_t, len, unsigned, prio, const struct timespec *, timeout)
747 #endif
748 #if defined(TARGET_NR_mq_timedreceive) || \
749     defined(TARGET_NR_mq_timedreceive_time64)
750 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr,
751               size_t, len, unsigned *, prio, const struct timespec *, timeout)
752 #endif
753 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
754 safe_syscall6(ssize_t, copy_file_range, int, infd, loff_t *, pinoff,
755               int, outfd, loff_t *, poutoff, size_t, length,
756               unsigned int, flags)
757 #endif
758 
759 /* We do ioctl like this rather than via safe_syscall3 to preserve the
760  * "third argument might be integer or pointer or not present" behaviour of
761  * the libc function.
762  */
763 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
764 /* Similarly for fcntl. Note that callers must always:
765  *  pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
766  *  use the flock64 struct rather than unsuffixed flock
767  * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
768  */
769 #ifdef __NR_fcntl64
770 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
771 #else
772 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
773 #endif
774 
775 static inline int host_to_target_sock_type(int host_type)
776 {
777     int target_type;
778 
779     switch (host_type & 0xf /* SOCK_TYPE_MASK */) {
780     case SOCK_DGRAM:
781         target_type = TARGET_SOCK_DGRAM;
782         break;
783     case SOCK_STREAM:
784         target_type = TARGET_SOCK_STREAM;
785         break;
786     default:
787         target_type = host_type & 0xf /* SOCK_TYPE_MASK */;
788         break;
789     }
790 
791 #if defined(SOCK_CLOEXEC)
792     if (host_type & SOCK_CLOEXEC) {
793         target_type |= TARGET_SOCK_CLOEXEC;
794     }
795 #endif
796 
797 #if defined(SOCK_NONBLOCK)
798     if (host_type & SOCK_NONBLOCK) {
799         target_type |= TARGET_SOCK_NONBLOCK;
800     }
801 #endif
802 
803     return target_type;
804 }
805 
806 static abi_ulong target_brk;
807 static abi_ulong target_original_brk;
808 static abi_ulong brk_page;
809 
810 void target_set_brk(abi_ulong new_brk)
811 {
812     target_original_brk = target_brk = HOST_PAGE_ALIGN(new_brk);
813     brk_page = HOST_PAGE_ALIGN(target_brk);
814 }
815 
816 //#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0)
817 #define DEBUGF_BRK(message, args...)
818 
819 /* do_brk() must return target values and target errnos. */
820 abi_long do_brk(abi_ulong new_brk)
821 {
822     abi_long mapped_addr;
823     abi_ulong new_alloc_size;
824 
825     /* brk pointers are always untagged */
826 
827     DEBUGF_BRK("do_brk(" TARGET_ABI_FMT_lx ") -> ", new_brk);
828 
829     if (!new_brk) {
830         DEBUGF_BRK(TARGET_ABI_FMT_lx " (!new_brk)\n", target_brk);
831         return target_brk;
832     }
833     if (new_brk < target_original_brk) {
834         DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk < target_original_brk)\n",
835                    target_brk);
836         return target_brk;
837     }
838 
839     /* If the new brk is less than the highest page reserved to the
840      * target heap allocation, set it and we're almost done...  */
841     if (new_brk <= brk_page) {
842         /* Heap contents are initialized to zero, as for anonymous
843          * mapped pages.  */
844         if (new_brk > target_brk) {
845             memset(g2h_untagged(target_brk), 0, new_brk - target_brk);
846         }
847 	target_brk = new_brk;
848         DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk <= brk_page)\n", target_brk);
849 	return target_brk;
850     }
851 
852     /* We need to allocate more memory after the brk... Note that
853      * we don't use MAP_FIXED because that will map over the top of
854      * any existing mapping (like the one with the host libc or qemu
855      * itself); instead we treat "mapped but at wrong address" as
856      * a failure and unmap again.
857      */
858     new_alloc_size = HOST_PAGE_ALIGN(new_brk - brk_page);
859     mapped_addr = get_errno(target_mmap(brk_page, new_alloc_size,
860                                         PROT_READ|PROT_WRITE,
861                                         MAP_ANON|MAP_PRIVATE, 0, 0));
862 
863     if (mapped_addr == brk_page) {
864         /* Heap contents are initialized to zero, as for anonymous
865          * mapped pages.  Technically the new pages are already
866          * initialized to zero since they *are* anonymous mapped
867          * pages, however we have to take care with the contents that
868          * come from the remaining part of the previous page: it may
869          * contains garbage data due to a previous heap usage (grown
870          * then shrunken).  */
871         memset(g2h_untagged(target_brk), 0, brk_page - target_brk);
872 
873         target_brk = new_brk;
874         brk_page = HOST_PAGE_ALIGN(target_brk);
875         DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr == brk_page)\n",
876             target_brk);
877         return target_brk;
878     } else if (mapped_addr != -1) {
879         /* Mapped but at wrong address, meaning there wasn't actually
880          * enough space for this brk.
881          */
882         target_munmap(mapped_addr, new_alloc_size);
883         mapped_addr = -1;
884         DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr != -1)\n", target_brk);
885     }
886     else {
887         DEBUGF_BRK(TARGET_ABI_FMT_lx " (otherwise)\n", target_brk);
888     }
889 
890 #if defined(TARGET_ALPHA)
891     /* We (partially) emulate OSF/1 on Alpha, which requires we
892        return a proper errno, not an unchanged brk value.  */
893     return -TARGET_ENOMEM;
894 #endif
895     /* For everything else, return the previous break. */
896     return target_brk;
897 }
898 
899 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
900     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
901 static inline abi_long copy_from_user_fdset(fd_set *fds,
902                                             abi_ulong target_fds_addr,
903                                             int n)
904 {
905     int i, nw, j, k;
906     abi_ulong b, *target_fds;
907 
908     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
909     if (!(target_fds = lock_user(VERIFY_READ,
910                                  target_fds_addr,
911                                  sizeof(abi_ulong) * nw,
912                                  1)))
913         return -TARGET_EFAULT;
914 
915     FD_ZERO(fds);
916     k = 0;
917     for (i = 0; i < nw; i++) {
918         /* grab the abi_ulong */
919         __get_user(b, &target_fds[i]);
920         for (j = 0; j < TARGET_ABI_BITS; j++) {
921             /* check the bit inside the abi_ulong */
922             if ((b >> j) & 1)
923                 FD_SET(k, fds);
924             k++;
925         }
926     }
927 
928     unlock_user(target_fds, target_fds_addr, 0);
929 
930     return 0;
931 }
932 
933 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr,
934                                                  abi_ulong target_fds_addr,
935                                                  int n)
936 {
937     if (target_fds_addr) {
938         if (copy_from_user_fdset(fds, target_fds_addr, n))
939             return -TARGET_EFAULT;
940         *fds_ptr = fds;
941     } else {
942         *fds_ptr = NULL;
943     }
944     return 0;
945 }
946 
947 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr,
948                                           const fd_set *fds,
949                                           int n)
950 {
951     int i, nw, j, k;
952     abi_long v;
953     abi_ulong *target_fds;
954 
955     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
956     if (!(target_fds = lock_user(VERIFY_WRITE,
957                                  target_fds_addr,
958                                  sizeof(abi_ulong) * nw,
959                                  0)))
960         return -TARGET_EFAULT;
961 
962     k = 0;
963     for (i = 0; i < nw; i++) {
964         v = 0;
965         for (j = 0; j < TARGET_ABI_BITS; j++) {
966             v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j);
967             k++;
968         }
969         __put_user(v, &target_fds[i]);
970     }
971 
972     unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw);
973 
974     return 0;
975 }
976 #endif
977 
978 #if defined(__alpha__)
979 #define HOST_HZ 1024
980 #else
981 #define HOST_HZ 100
982 #endif
983 
984 static inline abi_long host_to_target_clock_t(long ticks)
985 {
986 #if HOST_HZ == TARGET_HZ
987     return ticks;
988 #else
989     return ((int64_t)ticks * TARGET_HZ) / HOST_HZ;
990 #endif
991 }
992 
993 static inline abi_long host_to_target_rusage(abi_ulong target_addr,
994                                              const struct rusage *rusage)
995 {
996     struct target_rusage *target_rusage;
997 
998     if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0))
999         return -TARGET_EFAULT;
1000     target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec);
1001     target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec);
1002     target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec);
1003     target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec);
1004     target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss);
1005     target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss);
1006     target_rusage->ru_idrss = tswapal(rusage->ru_idrss);
1007     target_rusage->ru_isrss = tswapal(rusage->ru_isrss);
1008     target_rusage->ru_minflt = tswapal(rusage->ru_minflt);
1009     target_rusage->ru_majflt = tswapal(rusage->ru_majflt);
1010     target_rusage->ru_nswap = tswapal(rusage->ru_nswap);
1011     target_rusage->ru_inblock = tswapal(rusage->ru_inblock);
1012     target_rusage->ru_oublock = tswapal(rusage->ru_oublock);
1013     target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd);
1014     target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv);
1015     target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals);
1016     target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw);
1017     target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw);
1018     unlock_user_struct(target_rusage, target_addr, 1);
1019 
1020     return 0;
1021 }
1022 
1023 #ifdef TARGET_NR_setrlimit
1024 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim)
1025 {
1026     abi_ulong target_rlim_swap;
1027     rlim_t result;
1028 
1029     target_rlim_swap = tswapal(target_rlim);
1030     if (target_rlim_swap == TARGET_RLIM_INFINITY)
1031         return RLIM_INFINITY;
1032 
1033     result = target_rlim_swap;
1034     if (target_rlim_swap != (rlim_t)result)
1035         return RLIM_INFINITY;
1036 
1037     return result;
1038 }
1039 #endif
1040 
1041 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit)
1042 static inline abi_ulong host_to_target_rlim(rlim_t rlim)
1043 {
1044     abi_ulong target_rlim_swap;
1045     abi_ulong result;
1046 
1047     if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim)
1048         target_rlim_swap = TARGET_RLIM_INFINITY;
1049     else
1050         target_rlim_swap = rlim;
1051     result = tswapal(target_rlim_swap);
1052 
1053     return result;
1054 }
1055 #endif
1056 
1057 static inline int target_to_host_resource(int code)
1058 {
1059     switch (code) {
1060     case TARGET_RLIMIT_AS:
1061         return RLIMIT_AS;
1062     case TARGET_RLIMIT_CORE:
1063         return RLIMIT_CORE;
1064     case TARGET_RLIMIT_CPU:
1065         return RLIMIT_CPU;
1066     case TARGET_RLIMIT_DATA:
1067         return RLIMIT_DATA;
1068     case TARGET_RLIMIT_FSIZE:
1069         return RLIMIT_FSIZE;
1070     case TARGET_RLIMIT_LOCKS:
1071         return RLIMIT_LOCKS;
1072     case TARGET_RLIMIT_MEMLOCK:
1073         return RLIMIT_MEMLOCK;
1074     case TARGET_RLIMIT_MSGQUEUE:
1075         return RLIMIT_MSGQUEUE;
1076     case TARGET_RLIMIT_NICE:
1077         return RLIMIT_NICE;
1078     case TARGET_RLIMIT_NOFILE:
1079         return RLIMIT_NOFILE;
1080     case TARGET_RLIMIT_NPROC:
1081         return RLIMIT_NPROC;
1082     case TARGET_RLIMIT_RSS:
1083         return RLIMIT_RSS;
1084     case TARGET_RLIMIT_RTPRIO:
1085         return RLIMIT_RTPRIO;
1086 #ifdef RLIMIT_RTTIME
1087     case TARGET_RLIMIT_RTTIME:
1088         return RLIMIT_RTTIME;
1089 #endif
1090     case TARGET_RLIMIT_SIGPENDING:
1091         return RLIMIT_SIGPENDING;
1092     case TARGET_RLIMIT_STACK:
1093         return RLIMIT_STACK;
1094     default:
1095         return code;
1096     }
1097 }
1098 
1099 static inline abi_long copy_from_user_timeval(struct timeval *tv,
1100                                               abi_ulong target_tv_addr)
1101 {
1102     struct target_timeval *target_tv;
1103 
1104     if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1105         return -TARGET_EFAULT;
1106     }
1107 
1108     __get_user(tv->tv_sec, &target_tv->tv_sec);
1109     __get_user(tv->tv_usec, &target_tv->tv_usec);
1110 
1111     unlock_user_struct(target_tv, target_tv_addr, 0);
1112 
1113     return 0;
1114 }
1115 
1116 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr,
1117                                             const struct timeval *tv)
1118 {
1119     struct target_timeval *target_tv;
1120 
1121     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1122         return -TARGET_EFAULT;
1123     }
1124 
1125     __put_user(tv->tv_sec, &target_tv->tv_sec);
1126     __put_user(tv->tv_usec, &target_tv->tv_usec);
1127 
1128     unlock_user_struct(target_tv, target_tv_addr, 1);
1129 
1130     return 0;
1131 }
1132 
1133 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
1134 static inline abi_long copy_from_user_timeval64(struct timeval *tv,
1135                                                 abi_ulong target_tv_addr)
1136 {
1137     struct target__kernel_sock_timeval *target_tv;
1138 
1139     if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1140         return -TARGET_EFAULT;
1141     }
1142 
1143     __get_user(tv->tv_sec, &target_tv->tv_sec);
1144     __get_user(tv->tv_usec, &target_tv->tv_usec);
1145 
1146     unlock_user_struct(target_tv, target_tv_addr, 0);
1147 
1148     return 0;
1149 }
1150 #endif
1151 
1152 static inline abi_long copy_to_user_timeval64(abi_ulong target_tv_addr,
1153                                               const struct timeval *tv)
1154 {
1155     struct target__kernel_sock_timeval *target_tv;
1156 
1157     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1158         return -TARGET_EFAULT;
1159     }
1160 
1161     __put_user(tv->tv_sec, &target_tv->tv_sec);
1162     __put_user(tv->tv_usec, &target_tv->tv_usec);
1163 
1164     unlock_user_struct(target_tv, target_tv_addr, 1);
1165 
1166     return 0;
1167 }
1168 
1169 #if defined(TARGET_NR_futex) || \
1170     defined(TARGET_NR_rt_sigtimedwait) || \
1171     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \
1172     defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \
1173     defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \
1174     defined(TARGET_NR_mq_timedreceive) || defined(TARGET_NR_ipc) || \
1175     defined(TARGET_NR_semop) || defined(TARGET_NR_semtimedop) || \
1176     defined(TARGET_NR_timer_settime) || \
1177     (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
1178 static inline abi_long target_to_host_timespec(struct timespec *host_ts,
1179                                                abi_ulong target_addr)
1180 {
1181     struct target_timespec *target_ts;
1182 
1183     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1184         return -TARGET_EFAULT;
1185     }
1186     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1187     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1188     unlock_user_struct(target_ts, target_addr, 0);
1189     return 0;
1190 }
1191 #endif
1192 
1193 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64) || \
1194     defined(TARGET_NR_timer_settime64) || \
1195     defined(TARGET_NR_mq_timedsend_time64) || \
1196     defined(TARGET_NR_mq_timedreceive_time64) || \
1197     (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) || \
1198     defined(TARGET_NR_clock_nanosleep_time64) || \
1199     defined(TARGET_NR_rt_sigtimedwait_time64) || \
1200     defined(TARGET_NR_utimensat) || \
1201     defined(TARGET_NR_utimensat_time64) || \
1202     defined(TARGET_NR_semtimedop_time64) || \
1203     defined(TARGET_NR_pselect6_time64) || defined(TARGET_NR_ppoll_time64)
1204 static inline abi_long target_to_host_timespec64(struct timespec *host_ts,
1205                                                  abi_ulong target_addr)
1206 {
1207     struct target__kernel_timespec *target_ts;
1208 
1209     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1210         return -TARGET_EFAULT;
1211     }
1212     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1213     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1214     /* in 32bit mode, this drops the padding */
1215     host_ts->tv_nsec = (long)(abi_long)host_ts->tv_nsec;
1216     unlock_user_struct(target_ts, target_addr, 0);
1217     return 0;
1218 }
1219 #endif
1220 
1221 static inline abi_long host_to_target_timespec(abi_ulong target_addr,
1222                                                struct timespec *host_ts)
1223 {
1224     struct target_timespec *target_ts;
1225 
1226     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1227         return -TARGET_EFAULT;
1228     }
1229     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1230     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1231     unlock_user_struct(target_ts, target_addr, 1);
1232     return 0;
1233 }
1234 
1235 static inline abi_long host_to_target_timespec64(abi_ulong target_addr,
1236                                                  struct timespec *host_ts)
1237 {
1238     struct target__kernel_timespec *target_ts;
1239 
1240     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1241         return -TARGET_EFAULT;
1242     }
1243     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1244     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1245     unlock_user_struct(target_ts, target_addr, 1);
1246     return 0;
1247 }
1248 
1249 #if defined(TARGET_NR_gettimeofday)
1250 static inline abi_long copy_to_user_timezone(abi_ulong target_tz_addr,
1251                                              struct timezone *tz)
1252 {
1253     struct target_timezone *target_tz;
1254 
1255     if (!lock_user_struct(VERIFY_WRITE, target_tz, target_tz_addr, 1)) {
1256         return -TARGET_EFAULT;
1257     }
1258 
1259     __put_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1260     __put_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1261 
1262     unlock_user_struct(target_tz, target_tz_addr, 1);
1263 
1264     return 0;
1265 }
1266 #endif
1267 
1268 #if defined(TARGET_NR_settimeofday)
1269 static inline abi_long copy_from_user_timezone(struct timezone *tz,
1270                                                abi_ulong target_tz_addr)
1271 {
1272     struct target_timezone *target_tz;
1273 
1274     if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) {
1275         return -TARGET_EFAULT;
1276     }
1277 
1278     __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1279     __get_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1280 
1281     unlock_user_struct(target_tz, target_tz_addr, 0);
1282 
1283     return 0;
1284 }
1285 #endif
1286 
1287 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1288 #include <mqueue.h>
1289 
1290 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr,
1291                                               abi_ulong target_mq_attr_addr)
1292 {
1293     struct target_mq_attr *target_mq_attr;
1294 
1295     if (!lock_user_struct(VERIFY_READ, target_mq_attr,
1296                           target_mq_attr_addr, 1))
1297         return -TARGET_EFAULT;
1298 
1299     __get_user(attr->mq_flags, &target_mq_attr->mq_flags);
1300     __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1301     __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1302     __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1303 
1304     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0);
1305 
1306     return 0;
1307 }
1308 
1309 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr,
1310                                             const struct mq_attr *attr)
1311 {
1312     struct target_mq_attr *target_mq_attr;
1313 
1314     if (!lock_user_struct(VERIFY_WRITE, target_mq_attr,
1315                           target_mq_attr_addr, 0))
1316         return -TARGET_EFAULT;
1317 
1318     __put_user(attr->mq_flags, &target_mq_attr->mq_flags);
1319     __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1320     __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1321     __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1322 
1323     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1);
1324 
1325     return 0;
1326 }
1327 #endif
1328 
1329 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1330 /* do_select() must return target values and target errnos. */
1331 static abi_long do_select(int n,
1332                           abi_ulong rfd_addr, abi_ulong wfd_addr,
1333                           abi_ulong efd_addr, abi_ulong target_tv_addr)
1334 {
1335     fd_set rfds, wfds, efds;
1336     fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1337     struct timeval tv;
1338     struct timespec ts, *ts_ptr;
1339     abi_long ret;
1340 
1341     ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1342     if (ret) {
1343         return ret;
1344     }
1345     ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1346     if (ret) {
1347         return ret;
1348     }
1349     ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1350     if (ret) {
1351         return ret;
1352     }
1353 
1354     if (target_tv_addr) {
1355         if (copy_from_user_timeval(&tv, target_tv_addr))
1356             return -TARGET_EFAULT;
1357         ts.tv_sec = tv.tv_sec;
1358         ts.tv_nsec = tv.tv_usec * 1000;
1359         ts_ptr = &ts;
1360     } else {
1361         ts_ptr = NULL;
1362     }
1363 
1364     ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1365                                   ts_ptr, NULL));
1366 
1367     if (!is_error(ret)) {
1368         if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
1369             return -TARGET_EFAULT;
1370         if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
1371             return -TARGET_EFAULT;
1372         if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
1373             return -TARGET_EFAULT;
1374 
1375         if (target_tv_addr) {
1376             tv.tv_sec = ts.tv_sec;
1377             tv.tv_usec = ts.tv_nsec / 1000;
1378             if (copy_to_user_timeval(target_tv_addr, &tv)) {
1379                 return -TARGET_EFAULT;
1380             }
1381         }
1382     }
1383 
1384     return ret;
1385 }
1386 
1387 #if defined(TARGET_WANT_OLD_SYS_SELECT)
1388 static abi_long do_old_select(abi_ulong arg1)
1389 {
1390     struct target_sel_arg_struct *sel;
1391     abi_ulong inp, outp, exp, tvp;
1392     long nsel;
1393 
1394     if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) {
1395         return -TARGET_EFAULT;
1396     }
1397 
1398     nsel = tswapal(sel->n);
1399     inp = tswapal(sel->inp);
1400     outp = tswapal(sel->outp);
1401     exp = tswapal(sel->exp);
1402     tvp = tswapal(sel->tvp);
1403 
1404     unlock_user_struct(sel, arg1, 0);
1405 
1406     return do_select(nsel, inp, outp, exp, tvp);
1407 }
1408 #endif
1409 #endif
1410 
1411 #if defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
1412 static abi_long do_pselect6(abi_long arg1, abi_long arg2, abi_long arg3,
1413                             abi_long arg4, abi_long arg5, abi_long arg6,
1414                             bool time64)
1415 {
1416     abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr;
1417     fd_set rfds, wfds, efds;
1418     fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1419     struct timespec ts, *ts_ptr;
1420     abi_long ret;
1421 
1422     /*
1423      * The 6th arg is actually two args smashed together,
1424      * so we cannot use the C library.
1425      */
1426     struct {
1427         sigset_t *set;
1428         size_t size;
1429     } sig, *sig_ptr;
1430 
1431     abi_ulong arg_sigset, arg_sigsize, *arg7;
1432 
1433     n = arg1;
1434     rfd_addr = arg2;
1435     wfd_addr = arg3;
1436     efd_addr = arg4;
1437     ts_addr = arg5;
1438 
1439     ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1440     if (ret) {
1441         return ret;
1442     }
1443     ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1444     if (ret) {
1445         return ret;
1446     }
1447     ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1448     if (ret) {
1449         return ret;
1450     }
1451 
1452     /*
1453      * This takes a timespec, and not a timeval, so we cannot
1454      * use the do_select() helper ...
1455      */
1456     if (ts_addr) {
1457         if (time64) {
1458             if (target_to_host_timespec64(&ts, ts_addr)) {
1459                 return -TARGET_EFAULT;
1460             }
1461         } else {
1462             if (target_to_host_timespec(&ts, ts_addr)) {
1463                 return -TARGET_EFAULT;
1464             }
1465         }
1466             ts_ptr = &ts;
1467     } else {
1468         ts_ptr = NULL;
1469     }
1470 
1471     /* Extract the two packed args for the sigset */
1472     sig_ptr = NULL;
1473     if (arg6) {
1474         arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1);
1475         if (!arg7) {
1476             return -TARGET_EFAULT;
1477         }
1478         arg_sigset = tswapal(arg7[0]);
1479         arg_sigsize = tswapal(arg7[1]);
1480         unlock_user(arg7, arg6, 0);
1481 
1482         if (arg_sigset) {
1483             ret = process_sigsuspend_mask(&sig.set, arg_sigset, arg_sigsize);
1484             if (ret != 0) {
1485                 return ret;
1486             }
1487             sig_ptr = &sig;
1488             sig.size = SIGSET_T_SIZE;
1489         }
1490     }
1491 
1492     ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1493                                   ts_ptr, sig_ptr));
1494 
1495     if (sig_ptr) {
1496         finish_sigsuspend_mask(ret);
1497     }
1498 
1499     if (!is_error(ret)) {
1500         if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) {
1501             return -TARGET_EFAULT;
1502         }
1503         if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) {
1504             return -TARGET_EFAULT;
1505         }
1506         if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) {
1507             return -TARGET_EFAULT;
1508         }
1509         if (time64) {
1510             if (ts_addr && host_to_target_timespec64(ts_addr, &ts)) {
1511                 return -TARGET_EFAULT;
1512             }
1513         } else {
1514             if (ts_addr && host_to_target_timespec(ts_addr, &ts)) {
1515                 return -TARGET_EFAULT;
1516             }
1517         }
1518     }
1519     return ret;
1520 }
1521 #endif
1522 
1523 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) || \
1524     defined(TARGET_NR_ppoll_time64)
1525 static abi_long do_ppoll(abi_long arg1, abi_long arg2, abi_long arg3,
1526                          abi_long arg4, abi_long arg5, bool ppoll, bool time64)
1527 {
1528     struct target_pollfd *target_pfd;
1529     unsigned int nfds = arg2;
1530     struct pollfd *pfd;
1531     unsigned int i;
1532     abi_long ret;
1533 
1534     pfd = NULL;
1535     target_pfd = NULL;
1536     if (nfds) {
1537         if (nfds > (INT_MAX / sizeof(struct target_pollfd))) {
1538             return -TARGET_EINVAL;
1539         }
1540         target_pfd = lock_user(VERIFY_WRITE, arg1,
1541                                sizeof(struct target_pollfd) * nfds, 1);
1542         if (!target_pfd) {
1543             return -TARGET_EFAULT;
1544         }
1545 
1546         pfd = alloca(sizeof(struct pollfd) * nfds);
1547         for (i = 0; i < nfds; i++) {
1548             pfd[i].fd = tswap32(target_pfd[i].fd);
1549             pfd[i].events = tswap16(target_pfd[i].events);
1550         }
1551     }
1552     if (ppoll) {
1553         struct timespec _timeout_ts, *timeout_ts = &_timeout_ts;
1554         sigset_t *set = NULL;
1555 
1556         if (arg3) {
1557             if (time64) {
1558                 if (target_to_host_timespec64(timeout_ts, arg3)) {
1559                     unlock_user(target_pfd, arg1, 0);
1560                     return -TARGET_EFAULT;
1561                 }
1562             } else {
1563                 if (target_to_host_timespec(timeout_ts, arg3)) {
1564                     unlock_user(target_pfd, arg1, 0);
1565                     return -TARGET_EFAULT;
1566                 }
1567             }
1568         } else {
1569             timeout_ts = NULL;
1570         }
1571 
1572         if (arg4) {
1573             ret = process_sigsuspend_mask(&set, arg4, arg5);
1574             if (ret != 0) {
1575                 unlock_user(target_pfd, arg1, 0);
1576                 return ret;
1577             }
1578         }
1579 
1580         ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts,
1581                                    set, SIGSET_T_SIZE));
1582 
1583         if (set) {
1584             finish_sigsuspend_mask(ret);
1585         }
1586         if (!is_error(ret) && arg3) {
1587             if (time64) {
1588                 if (host_to_target_timespec64(arg3, timeout_ts)) {
1589                     return -TARGET_EFAULT;
1590                 }
1591             } else {
1592                 if (host_to_target_timespec(arg3, timeout_ts)) {
1593                     return -TARGET_EFAULT;
1594                 }
1595             }
1596         }
1597     } else {
1598           struct timespec ts, *pts;
1599 
1600           if (arg3 >= 0) {
1601               /* Convert ms to secs, ns */
1602               ts.tv_sec = arg3 / 1000;
1603               ts.tv_nsec = (arg3 % 1000) * 1000000LL;
1604               pts = &ts;
1605           } else {
1606               /* -ve poll() timeout means "infinite" */
1607               pts = NULL;
1608           }
1609           ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0));
1610     }
1611 
1612     if (!is_error(ret)) {
1613         for (i = 0; i < nfds; i++) {
1614             target_pfd[i].revents = tswap16(pfd[i].revents);
1615         }
1616     }
1617     unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds);
1618     return ret;
1619 }
1620 #endif
1621 
1622 static abi_long do_pipe(CPUArchState *cpu_env, abi_ulong pipedes,
1623                         int flags, int is_pipe2)
1624 {
1625     int host_pipe[2];
1626     abi_long ret;
1627     ret = pipe2(host_pipe, flags);
1628 
1629     if (is_error(ret))
1630         return get_errno(ret);
1631 
1632     /* Several targets have special calling conventions for the original
1633        pipe syscall, but didn't replicate this into the pipe2 syscall.  */
1634     if (!is_pipe2) {
1635 #if defined(TARGET_ALPHA)
1636         cpu_env->ir[IR_A4] = host_pipe[1];
1637         return host_pipe[0];
1638 #elif defined(TARGET_MIPS)
1639         cpu_env->active_tc.gpr[3] = host_pipe[1];
1640         return host_pipe[0];
1641 #elif defined(TARGET_SH4)
1642         cpu_env->gregs[1] = host_pipe[1];
1643         return host_pipe[0];
1644 #elif defined(TARGET_SPARC)
1645         cpu_env->regwptr[1] = host_pipe[1];
1646         return host_pipe[0];
1647 #endif
1648     }
1649 
1650     if (put_user_s32(host_pipe[0], pipedes)
1651         || put_user_s32(host_pipe[1], pipedes + sizeof(abi_int)))
1652         return -TARGET_EFAULT;
1653     return get_errno(ret);
1654 }
1655 
1656 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn,
1657                                               abi_ulong target_addr,
1658                                               socklen_t len)
1659 {
1660     struct target_ip_mreqn *target_smreqn;
1661 
1662     target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1);
1663     if (!target_smreqn)
1664         return -TARGET_EFAULT;
1665     mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr;
1666     mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr;
1667     if (len == sizeof(struct target_ip_mreqn))
1668         mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex);
1669     unlock_user(target_smreqn, target_addr, 0);
1670 
1671     return 0;
1672 }
1673 
1674 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr,
1675                                                abi_ulong target_addr,
1676                                                socklen_t len)
1677 {
1678     const socklen_t unix_maxlen = sizeof (struct sockaddr_un);
1679     sa_family_t sa_family;
1680     struct target_sockaddr *target_saddr;
1681 
1682     if (fd_trans_target_to_host_addr(fd)) {
1683         return fd_trans_target_to_host_addr(fd)(addr, target_addr, len);
1684     }
1685 
1686     target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
1687     if (!target_saddr)
1688         return -TARGET_EFAULT;
1689 
1690     sa_family = tswap16(target_saddr->sa_family);
1691 
1692     /* Oops. The caller might send a incomplete sun_path; sun_path
1693      * must be terminated by \0 (see the manual page), but
1694      * unfortunately it is quite common to specify sockaddr_un
1695      * length as "strlen(x->sun_path)" while it should be
1696      * "strlen(...) + 1". We'll fix that here if needed.
1697      * Linux kernel has a similar feature.
1698      */
1699 
1700     if (sa_family == AF_UNIX) {
1701         if (len < unix_maxlen && len > 0) {
1702             char *cp = (char*)target_saddr;
1703 
1704             if ( cp[len-1] && !cp[len] )
1705                 len++;
1706         }
1707         if (len > unix_maxlen)
1708             len = unix_maxlen;
1709     }
1710 
1711     memcpy(addr, target_saddr, len);
1712     addr->sa_family = sa_family;
1713     if (sa_family == AF_NETLINK) {
1714         struct sockaddr_nl *nladdr;
1715 
1716         nladdr = (struct sockaddr_nl *)addr;
1717         nladdr->nl_pid = tswap32(nladdr->nl_pid);
1718         nladdr->nl_groups = tswap32(nladdr->nl_groups);
1719     } else if (sa_family == AF_PACKET) {
1720 	struct target_sockaddr_ll *lladdr;
1721 
1722 	lladdr = (struct target_sockaddr_ll *)addr;
1723 	lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex);
1724 	lladdr->sll_hatype = tswap16(lladdr->sll_hatype);
1725     }
1726     unlock_user(target_saddr, target_addr, 0);
1727 
1728     return 0;
1729 }
1730 
1731 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr,
1732                                                struct sockaddr *addr,
1733                                                socklen_t len)
1734 {
1735     struct target_sockaddr *target_saddr;
1736 
1737     if (len == 0) {
1738         return 0;
1739     }
1740     assert(addr);
1741 
1742     target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0);
1743     if (!target_saddr)
1744         return -TARGET_EFAULT;
1745     memcpy(target_saddr, addr, len);
1746     if (len >= offsetof(struct target_sockaddr, sa_family) +
1747         sizeof(target_saddr->sa_family)) {
1748         target_saddr->sa_family = tswap16(addr->sa_family);
1749     }
1750     if (addr->sa_family == AF_NETLINK &&
1751         len >= sizeof(struct target_sockaddr_nl)) {
1752         struct target_sockaddr_nl *target_nl =
1753                (struct target_sockaddr_nl *)target_saddr;
1754         target_nl->nl_pid = tswap32(target_nl->nl_pid);
1755         target_nl->nl_groups = tswap32(target_nl->nl_groups);
1756     } else if (addr->sa_family == AF_PACKET) {
1757         struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr;
1758         target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex);
1759         target_ll->sll_hatype = tswap16(target_ll->sll_hatype);
1760     } else if (addr->sa_family == AF_INET6 &&
1761                len >= sizeof(struct target_sockaddr_in6)) {
1762         struct target_sockaddr_in6 *target_in6 =
1763                (struct target_sockaddr_in6 *)target_saddr;
1764         target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id);
1765     }
1766     unlock_user(target_saddr, target_addr, len);
1767 
1768     return 0;
1769 }
1770 
1771 static inline abi_long target_to_host_cmsg(struct msghdr *msgh,
1772                                            struct target_msghdr *target_msgh)
1773 {
1774     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1775     abi_long msg_controllen;
1776     abi_ulong target_cmsg_addr;
1777     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1778     socklen_t space = 0;
1779 
1780     msg_controllen = tswapal(target_msgh->msg_controllen);
1781     if (msg_controllen < sizeof (struct target_cmsghdr))
1782         goto the_end;
1783     target_cmsg_addr = tswapal(target_msgh->msg_control);
1784     target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1);
1785     target_cmsg_start = target_cmsg;
1786     if (!target_cmsg)
1787         return -TARGET_EFAULT;
1788 
1789     while (cmsg && target_cmsg) {
1790         void *data = CMSG_DATA(cmsg);
1791         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1792 
1793         int len = tswapal(target_cmsg->cmsg_len)
1794             - sizeof(struct target_cmsghdr);
1795 
1796         space += CMSG_SPACE(len);
1797         if (space > msgh->msg_controllen) {
1798             space -= CMSG_SPACE(len);
1799             /* This is a QEMU bug, since we allocated the payload
1800              * area ourselves (unlike overflow in host-to-target
1801              * conversion, which is just the guest giving us a buffer
1802              * that's too small). It can't happen for the payload types
1803              * we currently support; if it becomes an issue in future
1804              * we would need to improve our allocation strategy to
1805              * something more intelligent than "twice the size of the
1806              * target buffer we're reading from".
1807              */
1808             qemu_log_mask(LOG_UNIMP,
1809                           ("Unsupported ancillary data %d/%d: "
1810                            "unhandled msg size\n"),
1811                           tswap32(target_cmsg->cmsg_level),
1812                           tswap32(target_cmsg->cmsg_type));
1813             break;
1814         }
1815 
1816         if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) {
1817             cmsg->cmsg_level = SOL_SOCKET;
1818         } else {
1819             cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level);
1820         }
1821         cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type);
1822         cmsg->cmsg_len = CMSG_LEN(len);
1823 
1824         if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
1825             int *fd = (int *)data;
1826             int *target_fd = (int *)target_data;
1827             int i, numfds = len / sizeof(int);
1828 
1829             for (i = 0; i < numfds; i++) {
1830                 __get_user(fd[i], target_fd + i);
1831             }
1832         } else if (cmsg->cmsg_level == SOL_SOCKET
1833                &&  cmsg->cmsg_type == SCM_CREDENTIALS) {
1834             struct ucred *cred = (struct ucred *)data;
1835             struct target_ucred *target_cred =
1836                 (struct target_ucred *)target_data;
1837 
1838             __get_user(cred->pid, &target_cred->pid);
1839             __get_user(cred->uid, &target_cred->uid);
1840             __get_user(cred->gid, &target_cred->gid);
1841         } else {
1842             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
1843                           cmsg->cmsg_level, cmsg->cmsg_type);
1844             memcpy(data, target_data, len);
1845         }
1846 
1847         cmsg = CMSG_NXTHDR(msgh, cmsg);
1848         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1849                                          target_cmsg_start);
1850     }
1851     unlock_user(target_cmsg, target_cmsg_addr, 0);
1852  the_end:
1853     msgh->msg_controllen = space;
1854     return 0;
1855 }
1856 
1857 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh,
1858                                            struct msghdr *msgh)
1859 {
1860     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1861     abi_long msg_controllen;
1862     abi_ulong target_cmsg_addr;
1863     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1864     socklen_t space = 0;
1865 
1866     msg_controllen = tswapal(target_msgh->msg_controllen);
1867     if (msg_controllen < sizeof (struct target_cmsghdr))
1868         goto the_end;
1869     target_cmsg_addr = tswapal(target_msgh->msg_control);
1870     target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0);
1871     target_cmsg_start = target_cmsg;
1872     if (!target_cmsg)
1873         return -TARGET_EFAULT;
1874 
1875     while (cmsg && target_cmsg) {
1876         void *data = CMSG_DATA(cmsg);
1877         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1878 
1879         int len = cmsg->cmsg_len - sizeof(struct cmsghdr);
1880         int tgt_len, tgt_space;
1881 
1882         /* We never copy a half-header but may copy half-data;
1883          * this is Linux's behaviour in put_cmsg(). Note that
1884          * truncation here is a guest problem (which we report
1885          * to the guest via the CTRUNC bit), unlike truncation
1886          * in target_to_host_cmsg, which is a QEMU bug.
1887          */
1888         if (msg_controllen < sizeof(struct target_cmsghdr)) {
1889             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1890             break;
1891         }
1892 
1893         if (cmsg->cmsg_level == SOL_SOCKET) {
1894             target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET);
1895         } else {
1896             target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level);
1897         }
1898         target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type);
1899 
1900         /* Payload types which need a different size of payload on
1901          * the target must adjust tgt_len here.
1902          */
1903         tgt_len = len;
1904         switch (cmsg->cmsg_level) {
1905         case SOL_SOCKET:
1906             switch (cmsg->cmsg_type) {
1907             case SO_TIMESTAMP:
1908                 tgt_len = sizeof(struct target_timeval);
1909                 break;
1910             default:
1911                 break;
1912             }
1913             break;
1914         default:
1915             break;
1916         }
1917 
1918         if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) {
1919             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1920             tgt_len = msg_controllen - sizeof(struct target_cmsghdr);
1921         }
1922 
1923         /* We must now copy-and-convert len bytes of payload
1924          * into tgt_len bytes of destination space. Bear in mind
1925          * that in both source and destination we may be dealing
1926          * with a truncated value!
1927          */
1928         switch (cmsg->cmsg_level) {
1929         case SOL_SOCKET:
1930             switch (cmsg->cmsg_type) {
1931             case SCM_RIGHTS:
1932             {
1933                 int *fd = (int *)data;
1934                 int *target_fd = (int *)target_data;
1935                 int i, numfds = tgt_len / sizeof(int);
1936 
1937                 for (i = 0; i < numfds; i++) {
1938                     __put_user(fd[i], target_fd + i);
1939                 }
1940                 break;
1941             }
1942             case SO_TIMESTAMP:
1943             {
1944                 struct timeval *tv = (struct timeval *)data;
1945                 struct target_timeval *target_tv =
1946                     (struct target_timeval *)target_data;
1947 
1948                 if (len != sizeof(struct timeval) ||
1949                     tgt_len != sizeof(struct target_timeval)) {
1950                     goto unimplemented;
1951                 }
1952 
1953                 /* copy struct timeval to target */
1954                 __put_user(tv->tv_sec, &target_tv->tv_sec);
1955                 __put_user(tv->tv_usec, &target_tv->tv_usec);
1956                 break;
1957             }
1958             case SCM_CREDENTIALS:
1959             {
1960                 struct ucred *cred = (struct ucred *)data;
1961                 struct target_ucred *target_cred =
1962                     (struct target_ucred *)target_data;
1963 
1964                 __put_user(cred->pid, &target_cred->pid);
1965                 __put_user(cred->uid, &target_cred->uid);
1966                 __put_user(cred->gid, &target_cred->gid);
1967                 break;
1968             }
1969             default:
1970                 goto unimplemented;
1971             }
1972             break;
1973 
1974         case SOL_IP:
1975             switch (cmsg->cmsg_type) {
1976             case IP_TTL:
1977             {
1978                 uint32_t *v = (uint32_t *)data;
1979                 uint32_t *t_int = (uint32_t *)target_data;
1980 
1981                 if (len != sizeof(uint32_t) ||
1982                     tgt_len != sizeof(uint32_t)) {
1983                     goto unimplemented;
1984                 }
1985                 __put_user(*v, t_int);
1986                 break;
1987             }
1988             case IP_RECVERR:
1989             {
1990                 struct errhdr_t {
1991                    struct sock_extended_err ee;
1992                    struct sockaddr_in offender;
1993                 };
1994                 struct errhdr_t *errh = (struct errhdr_t *)data;
1995                 struct errhdr_t *target_errh =
1996                     (struct errhdr_t *)target_data;
1997 
1998                 if (len != sizeof(struct errhdr_t) ||
1999                     tgt_len != sizeof(struct errhdr_t)) {
2000                     goto unimplemented;
2001                 }
2002                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
2003                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
2004                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
2005                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
2006                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
2007                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
2008                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
2009                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
2010                     (void *) &errh->offender, sizeof(errh->offender));
2011                 break;
2012             }
2013             default:
2014                 goto unimplemented;
2015             }
2016             break;
2017 
2018         case SOL_IPV6:
2019             switch (cmsg->cmsg_type) {
2020             case IPV6_HOPLIMIT:
2021             {
2022                 uint32_t *v = (uint32_t *)data;
2023                 uint32_t *t_int = (uint32_t *)target_data;
2024 
2025                 if (len != sizeof(uint32_t) ||
2026                     tgt_len != sizeof(uint32_t)) {
2027                     goto unimplemented;
2028                 }
2029                 __put_user(*v, t_int);
2030                 break;
2031             }
2032             case IPV6_RECVERR:
2033             {
2034                 struct errhdr6_t {
2035                    struct sock_extended_err ee;
2036                    struct sockaddr_in6 offender;
2037                 };
2038                 struct errhdr6_t *errh = (struct errhdr6_t *)data;
2039                 struct errhdr6_t *target_errh =
2040                     (struct errhdr6_t *)target_data;
2041 
2042                 if (len != sizeof(struct errhdr6_t) ||
2043                     tgt_len != sizeof(struct errhdr6_t)) {
2044                     goto unimplemented;
2045                 }
2046                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
2047                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
2048                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
2049                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
2050                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
2051                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
2052                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
2053                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
2054                     (void *) &errh->offender, sizeof(errh->offender));
2055                 break;
2056             }
2057             default:
2058                 goto unimplemented;
2059             }
2060             break;
2061 
2062         default:
2063         unimplemented:
2064             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
2065                           cmsg->cmsg_level, cmsg->cmsg_type);
2066             memcpy(target_data, data, MIN(len, tgt_len));
2067             if (tgt_len > len) {
2068                 memset(target_data + len, 0, tgt_len - len);
2069             }
2070         }
2071 
2072         target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len));
2073         tgt_space = TARGET_CMSG_SPACE(tgt_len);
2074         if (msg_controllen < tgt_space) {
2075             tgt_space = msg_controllen;
2076         }
2077         msg_controllen -= tgt_space;
2078         space += tgt_space;
2079         cmsg = CMSG_NXTHDR(msgh, cmsg);
2080         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
2081                                          target_cmsg_start);
2082     }
2083     unlock_user(target_cmsg, target_cmsg_addr, space);
2084  the_end:
2085     target_msgh->msg_controllen = tswapal(space);
2086     return 0;
2087 }
2088 
2089 /* do_setsockopt() Must return target values and target errnos. */
2090 static abi_long do_setsockopt(int sockfd, int level, int optname,
2091                               abi_ulong optval_addr, socklen_t optlen)
2092 {
2093     abi_long ret;
2094     int val;
2095     struct ip_mreqn *ip_mreq;
2096     struct ip_mreq_source *ip_mreq_source;
2097 
2098     switch(level) {
2099     case SOL_TCP:
2100     case SOL_UDP:
2101         /* TCP and UDP options all take an 'int' value.  */
2102         if (optlen < sizeof(uint32_t))
2103             return -TARGET_EINVAL;
2104 
2105         if (get_user_u32(val, optval_addr))
2106             return -TARGET_EFAULT;
2107         ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2108         break;
2109     case SOL_IP:
2110         switch(optname) {
2111         case IP_TOS:
2112         case IP_TTL:
2113         case IP_HDRINCL:
2114         case IP_ROUTER_ALERT:
2115         case IP_RECVOPTS:
2116         case IP_RETOPTS:
2117         case IP_PKTINFO:
2118         case IP_MTU_DISCOVER:
2119         case IP_RECVERR:
2120         case IP_RECVTTL:
2121         case IP_RECVTOS:
2122 #ifdef IP_FREEBIND
2123         case IP_FREEBIND:
2124 #endif
2125         case IP_MULTICAST_TTL:
2126         case IP_MULTICAST_LOOP:
2127             val = 0;
2128             if (optlen >= sizeof(uint32_t)) {
2129                 if (get_user_u32(val, optval_addr))
2130                     return -TARGET_EFAULT;
2131             } else if (optlen >= 1) {
2132                 if (get_user_u8(val, optval_addr))
2133                     return -TARGET_EFAULT;
2134             }
2135             ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2136             break;
2137         case IP_ADD_MEMBERSHIP:
2138         case IP_DROP_MEMBERSHIP:
2139             if (optlen < sizeof (struct target_ip_mreq) ||
2140                 optlen > sizeof (struct target_ip_mreqn))
2141                 return -TARGET_EINVAL;
2142 
2143             ip_mreq = (struct ip_mreqn *) alloca(optlen);
2144             target_to_host_ip_mreq(ip_mreq, optval_addr, optlen);
2145             ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen));
2146             break;
2147 
2148         case IP_BLOCK_SOURCE:
2149         case IP_UNBLOCK_SOURCE:
2150         case IP_ADD_SOURCE_MEMBERSHIP:
2151         case IP_DROP_SOURCE_MEMBERSHIP:
2152             if (optlen != sizeof (struct target_ip_mreq_source))
2153                 return -TARGET_EINVAL;
2154 
2155             ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2156             if (!ip_mreq_source) {
2157                 return -TARGET_EFAULT;
2158             }
2159             ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen));
2160             unlock_user (ip_mreq_source, optval_addr, 0);
2161             break;
2162 
2163         default:
2164             goto unimplemented;
2165         }
2166         break;
2167     case SOL_IPV6:
2168         switch (optname) {
2169         case IPV6_MTU_DISCOVER:
2170         case IPV6_MTU:
2171         case IPV6_V6ONLY:
2172         case IPV6_RECVPKTINFO:
2173         case IPV6_UNICAST_HOPS:
2174         case IPV6_MULTICAST_HOPS:
2175         case IPV6_MULTICAST_LOOP:
2176         case IPV6_RECVERR:
2177         case IPV6_RECVHOPLIMIT:
2178         case IPV6_2292HOPLIMIT:
2179         case IPV6_CHECKSUM:
2180         case IPV6_ADDRFORM:
2181         case IPV6_2292PKTINFO:
2182         case IPV6_RECVTCLASS:
2183         case IPV6_RECVRTHDR:
2184         case IPV6_2292RTHDR:
2185         case IPV6_RECVHOPOPTS:
2186         case IPV6_2292HOPOPTS:
2187         case IPV6_RECVDSTOPTS:
2188         case IPV6_2292DSTOPTS:
2189         case IPV6_TCLASS:
2190         case IPV6_ADDR_PREFERENCES:
2191 #ifdef IPV6_RECVPATHMTU
2192         case IPV6_RECVPATHMTU:
2193 #endif
2194 #ifdef IPV6_TRANSPARENT
2195         case IPV6_TRANSPARENT:
2196 #endif
2197 #ifdef IPV6_FREEBIND
2198         case IPV6_FREEBIND:
2199 #endif
2200 #ifdef IPV6_RECVORIGDSTADDR
2201         case IPV6_RECVORIGDSTADDR:
2202 #endif
2203             val = 0;
2204             if (optlen < sizeof(uint32_t)) {
2205                 return -TARGET_EINVAL;
2206             }
2207             if (get_user_u32(val, optval_addr)) {
2208                 return -TARGET_EFAULT;
2209             }
2210             ret = get_errno(setsockopt(sockfd, level, optname,
2211                                        &val, sizeof(val)));
2212             break;
2213         case IPV6_PKTINFO:
2214         {
2215             struct in6_pktinfo pki;
2216 
2217             if (optlen < sizeof(pki)) {
2218                 return -TARGET_EINVAL;
2219             }
2220 
2221             if (copy_from_user(&pki, optval_addr, sizeof(pki))) {
2222                 return -TARGET_EFAULT;
2223             }
2224 
2225             pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex);
2226 
2227             ret = get_errno(setsockopt(sockfd, level, optname,
2228                                        &pki, sizeof(pki)));
2229             break;
2230         }
2231         case IPV6_ADD_MEMBERSHIP:
2232         case IPV6_DROP_MEMBERSHIP:
2233         {
2234             struct ipv6_mreq ipv6mreq;
2235 
2236             if (optlen < sizeof(ipv6mreq)) {
2237                 return -TARGET_EINVAL;
2238             }
2239 
2240             if (copy_from_user(&ipv6mreq, optval_addr, sizeof(ipv6mreq))) {
2241                 return -TARGET_EFAULT;
2242             }
2243 
2244             ipv6mreq.ipv6mr_interface = tswap32(ipv6mreq.ipv6mr_interface);
2245 
2246             ret = get_errno(setsockopt(sockfd, level, optname,
2247                                        &ipv6mreq, sizeof(ipv6mreq)));
2248             break;
2249         }
2250         default:
2251             goto unimplemented;
2252         }
2253         break;
2254     case SOL_ICMPV6:
2255         switch (optname) {
2256         case ICMPV6_FILTER:
2257         {
2258             struct icmp6_filter icmp6f;
2259 
2260             if (optlen > sizeof(icmp6f)) {
2261                 optlen = sizeof(icmp6f);
2262             }
2263 
2264             if (copy_from_user(&icmp6f, optval_addr, optlen)) {
2265                 return -TARGET_EFAULT;
2266             }
2267 
2268             for (val = 0; val < 8; val++) {
2269                 icmp6f.data[val] = tswap32(icmp6f.data[val]);
2270             }
2271 
2272             ret = get_errno(setsockopt(sockfd, level, optname,
2273                                        &icmp6f, optlen));
2274             break;
2275         }
2276         default:
2277             goto unimplemented;
2278         }
2279         break;
2280     case SOL_RAW:
2281         switch (optname) {
2282         case ICMP_FILTER:
2283         case IPV6_CHECKSUM:
2284             /* those take an u32 value */
2285             if (optlen < sizeof(uint32_t)) {
2286                 return -TARGET_EINVAL;
2287             }
2288 
2289             if (get_user_u32(val, optval_addr)) {
2290                 return -TARGET_EFAULT;
2291             }
2292             ret = get_errno(setsockopt(sockfd, level, optname,
2293                                        &val, sizeof(val)));
2294             break;
2295 
2296         default:
2297             goto unimplemented;
2298         }
2299         break;
2300 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE)
2301     case SOL_ALG:
2302         switch (optname) {
2303         case ALG_SET_KEY:
2304         {
2305             char *alg_key = g_malloc(optlen);
2306 
2307             if (!alg_key) {
2308                 return -TARGET_ENOMEM;
2309             }
2310             if (copy_from_user(alg_key, optval_addr, optlen)) {
2311                 g_free(alg_key);
2312                 return -TARGET_EFAULT;
2313             }
2314             ret = get_errno(setsockopt(sockfd, level, optname,
2315                                        alg_key, optlen));
2316             g_free(alg_key);
2317             break;
2318         }
2319         case ALG_SET_AEAD_AUTHSIZE:
2320         {
2321             ret = get_errno(setsockopt(sockfd, level, optname,
2322                                        NULL, optlen));
2323             break;
2324         }
2325         default:
2326             goto unimplemented;
2327         }
2328         break;
2329 #endif
2330     case TARGET_SOL_SOCKET:
2331         switch (optname) {
2332         case TARGET_SO_RCVTIMEO:
2333         {
2334                 struct timeval tv;
2335 
2336                 optname = SO_RCVTIMEO;
2337 
2338 set_timeout:
2339                 if (optlen != sizeof(struct target_timeval)) {
2340                     return -TARGET_EINVAL;
2341                 }
2342 
2343                 if (copy_from_user_timeval(&tv, optval_addr)) {
2344                     return -TARGET_EFAULT;
2345                 }
2346 
2347                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2348                                 &tv, sizeof(tv)));
2349                 return ret;
2350         }
2351         case TARGET_SO_SNDTIMEO:
2352                 optname = SO_SNDTIMEO;
2353                 goto set_timeout;
2354         case TARGET_SO_ATTACH_FILTER:
2355         {
2356                 struct target_sock_fprog *tfprog;
2357                 struct target_sock_filter *tfilter;
2358                 struct sock_fprog fprog;
2359                 struct sock_filter *filter;
2360                 int i;
2361 
2362                 if (optlen != sizeof(*tfprog)) {
2363                     return -TARGET_EINVAL;
2364                 }
2365                 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) {
2366                     return -TARGET_EFAULT;
2367                 }
2368                 if (!lock_user_struct(VERIFY_READ, tfilter,
2369                                       tswapal(tfprog->filter), 0)) {
2370                     unlock_user_struct(tfprog, optval_addr, 1);
2371                     return -TARGET_EFAULT;
2372                 }
2373 
2374                 fprog.len = tswap16(tfprog->len);
2375                 filter = g_try_new(struct sock_filter, fprog.len);
2376                 if (filter == NULL) {
2377                     unlock_user_struct(tfilter, tfprog->filter, 1);
2378                     unlock_user_struct(tfprog, optval_addr, 1);
2379                     return -TARGET_ENOMEM;
2380                 }
2381                 for (i = 0; i < fprog.len; i++) {
2382                     filter[i].code = tswap16(tfilter[i].code);
2383                     filter[i].jt = tfilter[i].jt;
2384                     filter[i].jf = tfilter[i].jf;
2385                     filter[i].k = tswap32(tfilter[i].k);
2386                 }
2387                 fprog.filter = filter;
2388 
2389                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
2390                                 SO_ATTACH_FILTER, &fprog, sizeof(fprog)));
2391                 g_free(filter);
2392 
2393                 unlock_user_struct(tfilter, tfprog->filter, 1);
2394                 unlock_user_struct(tfprog, optval_addr, 1);
2395                 return ret;
2396         }
2397 	case TARGET_SO_BINDTODEVICE:
2398 	{
2399 		char *dev_ifname, *addr_ifname;
2400 
2401 		if (optlen > IFNAMSIZ - 1) {
2402 		    optlen = IFNAMSIZ - 1;
2403 		}
2404 		dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2405 		if (!dev_ifname) {
2406 		    return -TARGET_EFAULT;
2407 		}
2408 		optname = SO_BINDTODEVICE;
2409 		addr_ifname = alloca(IFNAMSIZ);
2410 		memcpy(addr_ifname, dev_ifname, optlen);
2411 		addr_ifname[optlen] = 0;
2412 		ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2413                                            addr_ifname, optlen));
2414 		unlock_user (dev_ifname, optval_addr, 0);
2415 		return ret;
2416 	}
2417         case TARGET_SO_LINGER:
2418         {
2419                 struct linger lg;
2420                 struct target_linger *tlg;
2421 
2422                 if (optlen != sizeof(struct target_linger)) {
2423                     return -TARGET_EINVAL;
2424                 }
2425                 if (!lock_user_struct(VERIFY_READ, tlg, optval_addr, 1)) {
2426                     return -TARGET_EFAULT;
2427                 }
2428                 __get_user(lg.l_onoff, &tlg->l_onoff);
2429                 __get_user(lg.l_linger, &tlg->l_linger);
2430                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, SO_LINGER,
2431                                 &lg, sizeof(lg)));
2432                 unlock_user_struct(tlg, optval_addr, 0);
2433                 return ret;
2434         }
2435             /* Options with 'int' argument.  */
2436         case TARGET_SO_DEBUG:
2437 		optname = SO_DEBUG;
2438 		break;
2439         case TARGET_SO_REUSEADDR:
2440 		optname = SO_REUSEADDR;
2441 		break;
2442 #ifdef SO_REUSEPORT
2443         case TARGET_SO_REUSEPORT:
2444                 optname = SO_REUSEPORT;
2445                 break;
2446 #endif
2447         case TARGET_SO_TYPE:
2448 		optname = SO_TYPE;
2449 		break;
2450         case TARGET_SO_ERROR:
2451 		optname = SO_ERROR;
2452 		break;
2453         case TARGET_SO_DONTROUTE:
2454 		optname = SO_DONTROUTE;
2455 		break;
2456         case TARGET_SO_BROADCAST:
2457 		optname = SO_BROADCAST;
2458 		break;
2459         case TARGET_SO_SNDBUF:
2460 		optname = SO_SNDBUF;
2461 		break;
2462         case TARGET_SO_SNDBUFFORCE:
2463                 optname = SO_SNDBUFFORCE;
2464                 break;
2465         case TARGET_SO_RCVBUF:
2466 		optname = SO_RCVBUF;
2467 		break;
2468         case TARGET_SO_RCVBUFFORCE:
2469                 optname = SO_RCVBUFFORCE;
2470                 break;
2471         case TARGET_SO_KEEPALIVE:
2472 		optname = SO_KEEPALIVE;
2473 		break;
2474         case TARGET_SO_OOBINLINE:
2475 		optname = SO_OOBINLINE;
2476 		break;
2477         case TARGET_SO_NO_CHECK:
2478 		optname = SO_NO_CHECK;
2479 		break;
2480         case TARGET_SO_PRIORITY:
2481 		optname = SO_PRIORITY;
2482 		break;
2483 #ifdef SO_BSDCOMPAT
2484         case TARGET_SO_BSDCOMPAT:
2485 		optname = SO_BSDCOMPAT;
2486 		break;
2487 #endif
2488         case TARGET_SO_PASSCRED:
2489 		optname = SO_PASSCRED;
2490 		break;
2491         case TARGET_SO_PASSSEC:
2492                 optname = SO_PASSSEC;
2493                 break;
2494         case TARGET_SO_TIMESTAMP:
2495 		optname = SO_TIMESTAMP;
2496 		break;
2497         case TARGET_SO_RCVLOWAT:
2498 		optname = SO_RCVLOWAT;
2499 		break;
2500         default:
2501             goto unimplemented;
2502         }
2503 	if (optlen < sizeof(uint32_t))
2504             return -TARGET_EINVAL;
2505 
2506 	if (get_user_u32(val, optval_addr))
2507             return -TARGET_EFAULT;
2508 	ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val)));
2509         break;
2510 #ifdef SOL_NETLINK
2511     case SOL_NETLINK:
2512         switch (optname) {
2513         case NETLINK_PKTINFO:
2514         case NETLINK_ADD_MEMBERSHIP:
2515         case NETLINK_DROP_MEMBERSHIP:
2516         case NETLINK_BROADCAST_ERROR:
2517         case NETLINK_NO_ENOBUFS:
2518 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2519         case NETLINK_LISTEN_ALL_NSID:
2520         case NETLINK_CAP_ACK:
2521 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2522 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2523         case NETLINK_EXT_ACK:
2524 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2525 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2526         case NETLINK_GET_STRICT_CHK:
2527 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2528             break;
2529         default:
2530             goto unimplemented;
2531         }
2532         val = 0;
2533         if (optlen < sizeof(uint32_t)) {
2534             return -TARGET_EINVAL;
2535         }
2536         if (get_user_u32(val, optval_addr)) {
2537             return -TARGET_EFAULT;
2538         }
2539         ret = get_errno(setsockopt(sockfd, SOL_NETLINK, optname, &val,
2540                                    sizeof(val)));
2541         break;
2542 #endif /* SOL_NETLINK */
2543     default:
2544     unimplemented:
2545         qemu_log_mask(LOG_UNIMP, "Unsupported setsockopt level=%d optname=%d\n",
2546                       level, optname);
2547         ret = -TARGET_ENOPROTOOPT;
2548     }
2549     return ret;
2550 }
2551 
2552 /* do_getsockopt() Must return target values and target errnos. */
2553 static abi_long do_getsockopt(int sockfd, int level, int optname,
2554                               abi_ulong optval_addr, abi_ulong optlen)
2555 {
2556     abi_long ret;
2557     int len, val;
2558     socklen_t lv;
2559 
2560     switch(level) {
2561     case TARGET_SOL_SOCKET:
2562         level = SOL_SOCKET;
2563         switch (optname) {
2564         /* These don't just return a single integer */
2565         case TARGET_SO_PEERNAME:
2566             goto unimplemented;
2567         case TARGET_SO_RCVTIMEO: {
2568             struct timeval tv;
2569             socklen_t tvlen;
2570 
2571             optname = SO_RCVTIMEO;
2572 
2573 get_timeout:
2574             if (get_user_u32(len, optlen)) {
2575                 return -TARGET_EFAULT;
2576             }
2577             if (len < 0) {
2578                 return -TARGET_EINVAL;
2579             }
2580 
2581             tvlen = sizeof(tv);
2582             ret = get_errno(getsockopt(sockfd, level, optname,
2583                                        &tv, &tvlen));
2584             if (ret < 0) {
2585                 return ret;
2586             }
2587             if (len > sizeof(struct target_timeval)) {
2588                 len = sizeof(struct target_timeval);
2589             }
2590             if (copy_to_user_timeval(optval_addr, &tv)) {
2591                 return -TARGET_EFAULT;
2592             }
2593             if (put_user_u32(len, optlen)) {
2594                 return -TARGET_EFAULT;
2595             }
2596             break;
2597         }
2598         case TARGET_SO_SNDTIMEO:
2599             optname = SO_SNDTIMEO;
2600             goto get_timeout;
2601         case TARGET_SO_PEERCRED: {
2602             struct ucred cr;
2603             socklen_t crlen;
2604             struct target_ucred *tcr;
2605 
2606             if (get_user_u32(len, optlen)) {
2607                 return -TARGET_EFAULT;
2608             }
2609             if (len < 0) {
2610                 return -TARGET_EINVAL;
2611             }
2612 
2613             crlen = sizeof(cr);
2614             ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED,
2615                                        &cr, &crlen));
2616             if (ret < 0) {
2617                 return ret;
2618             }
2619             if (len > crlen) {
2620                 len = crlen;
2621             }
2622             if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) {
2623                 return -TARGET_EFAULT;
2624             }
2625             __put_user(cr.pid, &tcr->pid);
2626             __put_user(cr.uid, &tcr->uid);
2627             __put_user(cr.gid, &tcr->gid);
2628             unlock_user_struct(tcr, optval_addr, 1);
2629             if (put_user_u32(len, optlen)) {
2630                 return -TARGET_EFAULT;
2631             }
2632             break;
2633         }
2634         case TARGET_SO_PEERSEC: {
2635             char *name;
2636 
2637             if (get_user_u32(len, optlen)) {
2638                 return -TARGET_EFAULT;
2639             }
2640             if (len < 0) {
2641                 return -TARGET_EINVAL;
2642             }
2643             name = lock_user(VERIFY_WRITE, optval_addr, len, 0);
2644             if (!name) {
2645                 return -TARGET_EFAULT;
2646             }
2647             lv = len;
2648             ret = get_errno(getsockopt(sockfd, level, SO_PEERSEC,
2649                                        name, &lv));
2650             if (put_user_u32(lv, optlen)) {
2651                 ret = -TARGET_EFAULT;
2652             }
2653             unlock_user(name, optval_addr, lv);
2654             break;
2655         }
2656         case TARGET_SO_LINGER:
2657         {
2658             struct linger lg;
2659             socklen_t lglen;
2660             struct target_linger *tlg;
2661 
2662             if (get_user_u32(len, optlen)) {
2663                 return -TARGET_EFAULT;
2664             }
2665             if (len < 0) {
2666                 return -TARGET_EINVAL;
2667             }
2668 
2669             lglen = sizeof(lg);
2670             ret = get_errno(getsockopt(sockfd, level, SO_LINGER,
2671                                        &lg, &lglen));
2672             if (ret < 0) {
2673                 return ret;
2674             }
2675             if (len > lglen) {
2676                 len = lglen;
2677             }
2678             if (!lock_user_struct(VERIFY_WRITE, tlg, optval_addr, 0)) {
2679                 return -TARGET_EFAULT;
2680             }
2681             __put_user(lg.l_onoff, &tlg->l_onoff);
2682             __put_user(lg.l_linger, &tlg->l_linger);
2683             unlock_user_struct(tlg, optval_addr, 1);
2684             if (put_user_u32(len, optlen)) {
2685                 return -TARGET_EFAULT;
2686             }
2687             break;
2688         }
2689         /* Options with 'int' argument.  */
2690         case TARGET_SO_DEBUG:
2691             optname = SO_DEBUG;
2692             goto int_case;
2693         case TARGET_SO_REUSEADDR:
2694             optname = SO_REUSEADDR;
2695             goto int_case;
2696 #ifdef SO_REUSEPORT
2697         case TARGET_SO_REUSEPORT:
2698             optname = SO_REUSEPORT;
2699             goto int_case;
2700 #endif
2701         case TARGET_SO_TYPE:
2702             optname = SO_TYPE;
2703             goto int_case;
2704         case TARGET_SO_ERROR:
2705             optname = SO_ERROR;
2706             goto int_case;
2707         case TARGET_SO_DONTROUTE:
2708             optname = SO_DONTROUTE;
2709             goto int_case;
2710         case TARGET_SO_BROADCAST:
2711             optname = SO_BROADCAST;
2712             goto int_case;
2713         case TARGET_SO_SNDBUF:
2714             optname = SO_SNDBUF;
2715             goto int_case;
2716         case TARGET_SO_RCVBUF:
2717             optname = SO_RCVBUF;
2718             goto int_case;
2719         case TARGET_SO_KEEPALIVE:
2720             optname = SO_KEEPALIVE;
2721             goto int_case;
2722         case TARGET_SO_OOBINLINE:
2723             optname = SO_OOBINLINE;
2724             goto int_case;
2725         case TARGET_SO_NO_CHECK:
2726             optname = SO_NO_CHECK;
2727             goto int_case;
2728         case TARGET_SO_PRIORITY:
2729             optname = SO_PRIORITY;
2730             goto int_case;
2731 #ifdef SO_BSDCOMPAT
2732         case TARGET_SO_BSDCOMPAT:
2733             optname = SO_BSDCOMPAT;
2734             goto int_case;
2735 #endif
2736         case TARGET_SO_PASSCRED:
2737             optname = SO_PASSCRED;
2738             goto int_case;
2739         case TARGET_SO_TIMESTAMP:
2740             optname = SO_TIMESTAMP;
2741             goto int_case;
2742         case TARGET_SO_RCVLOWAT:
2743             optname = SO_RCVLOWAT;
2744             goto int_case;
2745         case TARGET_SO_ACCEPTCONN:
2746             optname = SO_ACCEPTCONN;
2747             goto int_case;
2748         case TARGET_SO_PROTOCOL:
2749             optname = SO_PROTOCOL;
2750             goto int_case;
2751         case TARGET_SO_DOMAIN:
2752             optname = SO_DOMAIN;
2753             goto int_case;
2754         default:
2755             goto int_case;
2756         }
2757         break;
2758     case SOL_TCP:
2759     case SOL_UDP:
2760         /* TCP and UDP options all take an 'int' value.  */
2761     int_case:
2762         if (get_user_u32(len, optlen))
2763             return -TARGET_EFAULT;
2764         if (len < 0)
2765             return -TARGET_EINVAL;
2766         lv = sizeof(lv);
2767         ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2768         if (ret < 0)
2769             return ret;
2770         if (optname == SO_TYPE) {
2771             val = host_to_target_sock_type(val);
2772         }
2773         if (len > lv)
2774             len = lv;
2775         if (len == 4) {
2776             if (put_user_u32(val, optval_addr))
2777                 return -TARGET_EFAULT;
2778         } else {
2779             if (put_user_u8(val, optval_addr))
2780                 return -TARGET_EFAULT;
2781         }
2782         if (put_user_u32(len, optlen))
2783             return -TARGET_EFAULT;
2784         break;
2785     case SOL_IP:
2786         switch(optname) {
2787         case IP_TOS:
2788         case IP_TTL:
2789         case IP_HDRINCL:
2790         case IP_ROUTER_ALERT:
2791         case IP_RECVOPTS:
2792         case IP_RETOPTS:
2793         case IP_PKTINFO:
2794         case IP_MTU_DISCOVER:
2795         case IP_RECVERR:
2796         case IP_RECVTOS:
2797 #ifdef IP_FREEBIND
2798         case IP_FREEBIND:
2799 #endif
2800         case IP_MULTICAST_TTL:
2801         case IP_MULTICAST_LOOP:
2802             if (get_user_u32(len, optlen))
2803                 return -TARGET_EFAULT;
2804             if (len < 0)
2805                 return -TARGET_EINVAL;
2806             lv = sizeof(lv);
2807             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2808             if (ret < 0)
2809                 return ret;
2810             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2811                 len = 1;
2812                 if (put_user_u32(len, optlen)
2813                     || put_user_u8(val, optval_addr))
2814                     return -TARGET_EFAULT;
2815             } else {
2816                 if (len > sizeof(int))
2817                     len = sizeof(int);
2818                 if (put_user_u32(len, optlen)
2819                     || put_user_u32(val, optval_addr))
2820                     return -TARGET_EFAULT;
2821             }
2822             break;
2823         default:
2824             ret = -TARGET_ENOPROTOOPT;
2825             break;
2826         }
2827         break;
2828     case SOL_IPV6:
2829         switch (optname) {
2830         case IPV6_MTU_DISCOVER:
2831         case IPV6_MTU:
2832         case IPV6_V6ONLY:
2833         case IPV6_RECVPKTINFO:
2834         case IPV6_UNICAST_HOPS:
2835         case IPV6_MULTICAST_HOPS:
2836         case IPV6_MULTICAST_LOOP:
2837         case IPV6_RECVERR:
2838         case IPV6_RECVHOPLIMIT:
2839         case IPV6_2292HOPLIMIT:
2840         case IPV6_CHECKSUM:
2841         case IPV6_ADDRFORM:
2842         case IPV6_2292PKTINFO:
2843         case IPV6_RECVTCLASS:
2844         case IPV6_RECVRTHDR:
2845         case IPV6_2292RTHDR:
2846         case IPV6_RECVHOPOPTS:
2847         case IPV6_2292HOPOPTS:
2848         case IPV6_RECVDSTOPTS:
2849         case IPV6_2292DSTOPTS:
2850         case IPV6_TCLASS:
2851         case IPV6_ADDR_PREFERENCES:
2852 #ifdef IPV6_RECVPATHMTU
2853         case IPV6_RECVPATHMTU:
2854 #endif
2855 #ifdef IPV6_TRANSPARENT
2856         case IPV6_TRANSPARENT:
2857 #endif
2858 #ifdef IPV6_FREEBIND
2859         case IPV6_FREEBIND:
2860 #endif
2861 #ifdef IPV6_RECVORIGDSTADDR
2862         case IPV6_RECVORIGDSTADDR:
2863 #endif
2864             if (get_user_u32(len, optlen))
2865                 return -TARGET_EFAULT;
2866             if (len < 0)
2867                 return -TARGET_EINVAL;
2868             lv = sizeof(lv);
2869             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2870             if (ret < 0)
2871                 return ret;
2872             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2873                 len = 1;
2874                 if (put_user_u32(len, optlen)
2875                     || put_user_u8(val, optval_addr))
2876                     return -TARGET_EFAULT;
2877             } else {
2878                 if (len > sizeof(int))
2879                     len = sizeof(int);
2880                 if (put_user_u32(len, optlen)
2881                     || put_user_u32(val, optval_addr))
2882                     return -TARGET_EFAULT;
2883             }
2884             break;
2885         default:
2886             ret = -TARGET_ENOPROTOOPT;
2887             break;
2888         }
2889         break;
2890 #ifdef SOL_NETLINK
2891     case SOL_NETLINK:
2892         switch (optname) {
2893         case NETLINK_PKTINFO:
2894         case NETLINK_BROADCAST_ERROR:
2895         case NETLINK_NO_ENOBUFS:
2896 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2897         case NETLINK_LISTEN_ALL_NSID:
2898         case NETLINK_CAP_ACK:
2899 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2900 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2901         case NETLINK_EXT_ACK:
2902 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2903 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2904         case NETLINK_GET_STRICT_CHK:
2905 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2906             if (get_user_u32(len, optlen)) {
2907                 return -TARGET_EFAULT;
2908             }
2909             if (len != sizeof(val)) {
2910                 return -TARGET_EINVAL;
2911             }
2912             lv = len;
2913             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2914             if (ret < 0) {
2915                 return ret;
2916             }
2917             if (put_user_u32(lv, optlen)
2918                 || put_user_u32(val, optval_addr)) {
2919                 return -TARGET_EFAULT;
2920             }
2921             break;
2922 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2923         case NETLINK_LIST_MEMBERSHIPS:
2924         {
2925             uint32_t *results;
2926             int i;
2927             if (get_user_u32(len, optlen)) {
2928                 return -TARGET_EFAULT;
2929             }
2930             if (len < 0) {
2931                 return -TARGET_EINVAL;
2932             }
2933             results = lock_user(VERIFY_WRITE, optval_addr, len, 1);
2934             if (!results && len > 0) {
2935                 return -TARGET_EFAULT;
2936             }
2937             lv = len;
2938             ret = get_errno(getsockopt(sockfd, level, optname, results, &lv));
2939             if (ret < 0) {
2940                 unlock_user(results, optval_addr, 0);
2941                 return ret;
2942             }
2943             /* swap host endianess to target endianess. */
2944             for (i = 0; i < (len / sizeof(uint32_t)); i++) {
2945                 results[i] = tswap32(results[i]);
2946             }
2947             if (put_user_u32(lv, optlen)) {
2948                 return -TARGET_EFAULT;
2949             }
2950             unlock_user(results, optval_addr, 0);
2951             break;
2952         }
2953 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2954         default:
2955             goto unimplemented;
2956         }
2957         break;
2958 #endif /* SOL_NETLINK */
2959     default:
2960     unimplemented:
2961         qemu_log_mask(LOG_UNIMP,
2962                       "getsockopt level=%d optname=%d not yet supported\n",
2963                       level, optname);
2964         ret = -TARGET_EOPNOTSUPP;
2965         break;
2966     }
2967     return ret;
2968 }
2969 
2970 /* Convert target low/high pair representing file offset into the host
2971  * low/high pair. This function doesn't handle offsets bigger than 64 bits
2972  * as the kernel doesn't handle them either.
2973  */
2974 static void target_to_host_low_high(abi_ulong tlow,
2975                                     abi_ulong thigh,
2976                                     unsigned long *hlow,
2977                                     unsigned long *hhigh)
2978 {
2979     uint64_t off = tlow |
2980         ((unsigned long long)thigh << TARGET_LONG_BITS / 2) <<
2981         TARGET_LONG_BITS / 2;
2982 
2983     *hlow = off;
2984     *hhigh = (off >> HOST_LONG_BITS / 2) >> HOST_LONG_BITS / 2;
2985 }
2986 
2987 static struct iovec *lock_iovec(int type, abi_ulong target_addr,
2988                                 abi_ulong count, int copy)
2989 {
2990     struct target_iovec *target_vec;
2991     struct iovec *vec;
2992     abi_ulong total_len, max_len;
2993     int i;
2994     int err = 0;
2995     bool bad_address = false;
2996 
2997     if (count == 0) {
2998         errno = 0;
2999         return NULL;
3000     }
3001     if (count > IOV_MAX) {
3002         errno = EINVAL;
3003         return NULL;
3004     }
3005 
3006     vec = g_try_new0(struct iovec, count);
3007     if (vec == NULL) {
3008         errno = ENOMEM;
3009         return NULL;
3010     }
3011 
3012     target_vec = lock_user(VERIFY_READ, target_addr,
3013                            count * sizeof(struct target_iovec), 1);
3014     if (target_vec == NULL) {
3015         err = EFAULT;
3016         goto fail2;
3017     }
3018 
3019     /* ??? If host page size > target page size, this will result in a
3020        value larger than what we can actually support.  */
3021     max_len = 0x7fffffff & TARGET_PAGE_MASK;
3022     total_len = 0;
3023 
3024     for (i = 0; i < count; i++) {
3025         abi_ulong base = tswapal(target_vec[i].iov_base);
3026         abi_long len = tswapal(target_vec[i].iov_len);
3027 
3028         if (len < 0) {
3029             err = EINVAL;
3030             goto fail;
3031         } else if (len == 0) {
3032             /* Zero length pointer is ignored.  */
3033             vec[i].iov_base = 0;
3034         } else {
3035             vec[i].iov_base = lock_user(type, base, len, copy);
3036             /* If the first buffer pointer is bad, this is a fault.  But
3037              * subsequent bad buffers will result in a partial write; this
3038              * is realized by filling the vector with null pointers and
3039              * zero lengths. */
3040             if (!vec[i].iov_base) {
3041                 if (i == 0) {
3042                     err = EFAULT;
3043                     goto fail;
3044                 } else {
3045                     bad_address = true;
3046                 }
3047             }
3048             if (bad_address) {
3049                 len = 0;
3050             }
3051             if (len > max_len - total_len) {
3052                 len = max_len - total_len;
3053             }
3054         }
3055         vec[i].iov_len = len;
3056         total_len += len;
3057     }
3058 
3059     unlock_user(target_vec, target_addr, 0);
3060     return vec;
3061 
3062  fail:
3063     while (--i >= 0) {
3064         if (tswapal(target_vec[i].iov_len) > 0) {
3065             unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0);
3066         }
3067     }
3068     unlock_user(target_vec, target_addr, 0);
3069  fail2:
3070     g_free(vec);
3071     errno = err;
3072     return NULL;
3073 }
3074 
3075 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr,
3076                          abi_ulong count, int copy)
3077 {
3078     struct target_iovec *target_vec;
3079     int i;
3080 
3081     target_vec = lock_user(VERIFY_READ, target_addr,
3082                            count * sizeof(struct target_iovec), 1);
3083     if (target_vec) {
3084         for (i = 0; i < count; i++) {
3085             abi_ulong base = tswapal(target_vec[i].iov_base);
3086             abi_long len = tswapal(target_vec[i].iov_len);
3087             if (len < 0) {
3088                 break;
3089             }
3090             unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0);
3091         }
3092         unlock_user(target_vec, target_addr, 0);
3093     }
3094 
3095     g_free(vec);
3096 }
3097 
3098 static inline int target_to_host_sock_type(int *type)
3099 {
3100     int host_type = 0;
3101     int target_type = *type;
3102 
3103     switch (target_type & TARGET_SOCK_TYPE_MASK) {
3104     case TARGET_SOCK_DGRAM:
3105         host_type = SOCK_DGRAM;
3106         break;
3107     case TARGET_SOCK_STREAM:
3108         host_type = SOCK_STREAM;
3109         break;
3110     default:
3111         host_type = target_type & TARGET_SOCK_TYPE_MASK;
3112         break;
3113     }
3114     if (target_type & TARGET_SOCK_CLOEXEC) {
3115 #if defined(SOCK_CLOEXEC)
3116         host_type |= SOCK_CLOEXEC;
3117 #else
3118         return -TARGET_EINVAL;
3119 #endif
3120     }
3121     if (target_type & TARGET_SOCK_NONBLOCK) {
3122 #if defined(SOCK_NONBLOCK)
3123         host_type |= SOCK_NONBLOCK;
3124 #elif !defined(O_NONBLOCK)
3125         return -TARGET_EINVAL;
3126 #endif
3127     }
3128     *type = host_type;
3129     return 0;
3130 }
3131 
3132 /* Try to emulate socket type flags after socket creation.  */
3133 static int sock_flags_fixup(int fd, int target_type)
3134 {
3135 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
3136     if (target_type & TARGET_SOCK_NONBLOCK) {
3137         int flags = fcntl(fd, F_GETFL);
3138         if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) {
3139             close(fd);
3140             return -TARGET_EINVAL;
3141         }
3142     }
3143 #endif
3144     return fd;
3145 }
3146 
3147 /* do_socket() Must return target values and target errnos. */
3148 static abi_long do_socket(int domain, int type, int protocol)
3149 {
3150     int target_type = type;
3151     int ret;
3152 
3153     ret = target_to_host_sock_type(&type);
3154     if (ret) {
3155         return ret;
3156     }
3157 
3158     if (domain == PF_NETLINK && !(
3159 #ifdef CONFIG_RTNETLINK
3160          protocol == NETLINK_ROUTE ||
3161 #endif
3162          protocol == NETLINK_KOBJECT_UEVENT ||
3163          protocol == NETLINK_AUDIT)) {
3164         return -TARGET_EPROTONOSUPPORT;
3165     }
3166 
3167     if (domain == AF_PACKET ||
3168         (domain == AF_INET && type == SOCK_PACKET)) {
3169         protocol = tswap16(protocol);
3170     }
3171 
3172     ret = get_errno(socket(domain, type, protocol));
3173     if (ret >= 0) {
3174         ret = sock_flags_fixup(ret, target_type);
3175         if (type == SOCK_PACKET) {
3176             /* Manage an obsolete case :
3177              * if socket type is SOCK_PACKET, bind by name
3178              */
3179             fd_trans_register(ret, &target_packet_trans);
3180         } else if (domain == PF_NETLINK) {
3181             switch (protocol) {
3182 #ifdef CONFIG_RTNETLINK
3183             case NETLINK_ROUTE:
3184                 fd_trans_register(ret, &target_netlink_route_trans);
3185                 break;
3186 #endif
3187             case NETLINK_KOBJECT_UEVENT:
3188                 /* nothing to do: messages are strings */
3189                 break;
3190             case NETLINK_AUDIT:
3191                 fd_trans_register(ret, &target_netlink_audit_trans);
3192                 break;
3193             default:
3194                 g_assert_not_reached();
3195             }
3196         }
3197     }
3198     return ret;
3199 }
3200 
3201 /* do_bind() Must return target values and target errnos. */
3202 static abi_long do_bind(int sockfd, abi_ulong target_addr,
3203                         socklen_t addrlen)
3204 {
3205     void *addr;
3206     abi_long ret;
3207 
3208     if ((int)addrlen < 0) {
3209         return -TARGET_EINVAL;
3210     }
3211 
3212     addr = alloca(addrlen+1);
3213 
3214     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3215     if (ret)
3216         return ret;
3217 
3218     return get_errno(bind(sockfd, addr, addrlen));
3219 }
3220 
3221 /* do_connect() Must return target values and target errnos. */
3222 static abi_long do_connect(int sockfd, abi_ulong target_addr,
3223                            socklen_t addrlen)
3224 {
3225     void *addr;
3226     abi_long ret;
3227 
3228     if ((int)addrlen < 0) {
3229         return -TARGET_EINVAL;
3230     }
3231 
3232     addr = alloca(addrlen+1);
3233 
3234     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3235     if (ret)
3236         return ret;
3237 
3238     return get_errno(safe_connect(sockfd, addr, addrlen));
3239 }
3240 
3241 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
3242 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp,
3243                                       int flags, int send)
3244 {
3245     abi_long ret, len;
3246     struct msghdr msg;
3247     abi_ulong count;
3248     struct iovec *vec;
3249     abi_ulong target_vec;
3250 
3251     if (msgp->msg_name) {
3252         msg.msg_namelen = tswap32(msgp->msg_namelen);
3253         msg.msg_name = alloca(msg.msg_namelen+1);
3254         ret = target_to_host_sockaddr(fd, msg.msg_name,
3255                                       tswapal(msgp->msg_name),
3256                                       msg.msg_namelen);
3257         if (ret == -TARGET_EFAULT) {
3258             /* For connected sockets msg_name and msg_namelen must
3259              * be ignored, so returning EFAULT immediately is wrong.
3260              * Instead, pass a bad msg_name to the host kernel, and
3261              * let it decide whether to return EFAULT or not.
3262              */
3263             msg.msg_name = (void *)-1;
3264         } else if (ret) {
3265             goto out2;
3266         }
3267     } else {
3268         msg.msg_name = NULL;
3269         msg.msg_namelen = 0;
3270     }
3271     msg.msg_controllen = 2 * tswapal(msgp->msg_controllen);
3272     msg.msg_control = alloca(msg.msg_controllen);
3273     memset(msg.msg_control, 0, msg.msg_controllen);
3274 
3275     msg.msg_flags = tswap32(msgp->msg_flags);
3276 
3277     count = tswapal(msgp->msg_iovlen);
3278     target_vec = tswapal(msgp->msg_iov);
3279 
3280     if (count > IOV_MAX) {
3281         /* sendrcvmsg returns a different errno for this condition than
3282          * readv/writev, so we must catch it here before lock_iovec() does.
3283          */
3284         ret = -TARGET_EMSGSIZE;
3285         goto out2;
3286     }
3287 
3288     vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE,
3289                      target_vec, count, send);
3290     if (vec == NULL) {
3291         ret = -host_to_target_errno(errno);
3292         goto out2;
3293     }
3294     msg.msg_iovlen = count;
3295     msg.msg_iov = vec;
3296 
3297     if (send) {
3298         if (fd_trans_target_to_host_data(fd)) {
3299             void *host_msg;
3300 
3301             host_msg = g_malloc(msg.msg_iov->iov_len);
3302             memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len);
3303             ret = fd_trans_target_to_host_data(fd)(host_msg,
3304                                                    msg.msg_iov->iov_len);
3305             if (ret >= 0) {
3306                 msg.msg_iov->iov_base = host_msg;
3307                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3308             }
3309             g_free(host_msg);
3310         } else {
3311             ret = target_to_host_cmsg(&msg, msgp);
3312             if (ret == 0) {
3313                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3314             }
3315         }
3316     } else {
3317         ret = get_errno(safe_recvmsg(fd, &msg, flags));
3318         if (!is_error(ret)) {
3319             len = ret;
3320             if (fd_trans_host_to_target_data(fd)) {
3321                 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base,
3322                                                MIN(msg.msg_iov->iov_len, len));
3323             } else {
3324                 ret = host_to_target_cmsg(msgp, &msg);
3325             }
3326             if (!is_error(ret)) {
3327                 msgp->msg_namelen = tswap32(msg.msg_namelen);
3328                 msgp->msg_flags = tswap32(msg.msg_flags);
3329                 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) {
3330                     ret = host_to_target_sockaddr(tswapal(msgp->msg_name),
3331                                     msg.msg_name, msg.msg_namelen);
3332                     if (ret) {
3333                         goto out;
3334                     }
3335                 }
3336 
3337                 ret = len;
3338             }
3339         }
3340     }
3341 
3342 out:
3343     unlock_iovec(vec, target_vec, count, !send);
3344 out2:
3345     return ret;
3346 }
3347 
3348 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg,
3349                                int flags, int send)
3350 {
3351     abi_long ret;
3352     struct target_msghdr *msgp;
3353 
3354     if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE,
3355                           msgp,
3356                           target_msg,
3357                           send ? 1 : 0)) {
3358         return -TARGET_EFAULT;
3359     }
3360     ret = do_sendrecvmsg_locked(fd, msgp, flags, send);
3361     unlock_user_struct(msgp, target_msg, send ? 0 : 1);
3362     return ret;
3363 }
3364 
3365 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
3366  * so it might not have this *mmsg-specific flag either.
3367  */
3368 #ifndef MSG_WAITFORONE
3369 #define MSG_WAITFORONE 0x10000
3370 #endif
3371 
3372 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec,
3373                                 unsigned int vlen, unsigned int flags,
3374                                 int send)
3375 {
3376     struct target_mmsghdr *mmsgp;
3377     abi_long ret = 0;
3378     int i;
3379 
3380     if (vlen > UIO_MAXIOV) {
3381         vlen = UIO_MAXIOV;
3382     }
3383 
3384     mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1);
3385     if (!mmsgp) {
3386         return -TARGET_EFAULT;
3387     }
3388 
3389     for (i = 0; i < vlen; i++) {
3390         ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send);
3391         if (is_error(ret)) {
3392             break;
3393         }
3394         mmsgp[i].msg_len = tswap32(ret);
3395         /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3396         if (flags & MSG_WAITFORONE) {
3397             flags |= MSG_DONTWAIT;
3398         }
3399     }
3400 
3401     unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i);
3402 
3403     /* Return number of datagrams sent if we sent any at all;
3404      * otherwise return the error.
3405      */
3406     if (i) {
3407         return i;
3408     }
3409     return ret;
3410 }
3411 
3412 /* do_accept4() Must return target values and target errnos. */
3413 static abi_long do_accept4(int fd, abi_ulong target_addr,
3414                            abi_ulong target_addrlen_addr, int flags)
3415 {
3416     socklen_t addrlen, ret_addrlen;
3417     void *addr;
3418     abi_long ret;
3419     int host_flags;
3420 
3421     host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
3422 
3423     if (target_addr == 0) {
3424         return get_errno(safe_accept4(fd, NULL, NULL, host_flags));
3425     }
3426 
3427     /* linux returns EFAULT if addrlen pointer is invalid */
3428     if (get_user_u32(addrlen, target_addrlen_addr))
3429         return -TARGET_EFAULT;
3430 
3431     if ((int)addrlen < 0) {
3432         return -TARGET_EINVAL;
3433     }
3434 
3435     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3436         return -TARGET_EFAULT;
3437     }
3438 
3439     addr = alloca(addrlen);
3440 
3441     ret_addrlen = addrlen;
3442     ret = get_errno(safe_accept4(fd, addr, &ret_addrlen, host_flags));
3443     if (!is_error(ret)) {
3444         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3445         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3446             ret = -TARGET_EFAULT;
3447         }
3448     }
3449     return ret;
3450 }
3451 
3452 /* do_getpeername() Must return target values and target errnos. */
3453 static abi_long do_getpeername(int fd, abi_ulong target_addr,
3454                                abi_ulong target_addrlen_addr)
3455 {
3456     socklen_t addrlen, ret_addrlen;
3457     void *addr;
3458     abi_long ret;
3459 
3460     if (get_user_u32(addrlen, target_addrlen_addr))
3461         return -TARGET_EFAULT;
3462 
3463     if ((int)addrlen < 0) {
3464         return -TARGET_EINVAL;
3465     }
3466 
3467     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3468         return -TARGET_EFAULT;
3469     }
3470 
3471     addr = alloca(addrlen);
3472 
3473     ret_addrlen = addrlen;
3474     ret = get_errno(getpeername(fd, addr, &ret_addrlen));
3475     if (!is_error(ret)) {
3476         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3477         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3478             ret = -TARGET_EFAULT;
3479         }
3480     }
3481     return ret;
3482 }
3483 
3484 /* do_getsockname() Must return target values and target errnos. */
3485 static abi_long do_getsockname(int fd, abi_ulong target_addr,
3486                                abi_ulong target_addrlen_addr)
3487 {
3488     socklen_t addrlen, ret_addrlen;
3489     void *addr;
3490     abi_long ret;
3491 
3492     if (get_user_u32(addrlen, target_addrlen_addr))
3493         return -TARGET_EFAULT;
3494 
3495     if ((int)addrlen < 0) {
3496         return -TARGET_EINVAL;
3497     }
3498 
3499     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3500         return -TARGET_EFAULT;
3501     }
3502 
3503     addr = alloca(addrlen);
3504 
3505     ret_addrlen = addrlen;
3506     ret = get_errno(getsockname(fd, addr, &ret_addrlen));
3507     if (!is_error(ret)) {
3508         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3509         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3510             ret = -TARGET_EFAULT;
3511         }
3512     }
3513     return ret;
3514 }
3515 
3516 /* do_socketpair() Must return target values and target errnos. */
3517 static abi_long do_socketpair(int domain, int type, int protocol,
3518                               abi_ulong target_tab_addr)
3519 {
3520     int tab[2];
3521     abi_long ret;
3522 
3523     target_to_host_sock_type(&type);
3524 
3525     ret = get_errno(socketpair(domain, type, protocol, tab));
3526     if (!is_error(ret)) {
3527         if (put_user_s32(tab[0], target_tab_addr)
3528             || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0])))
3529             ret = -TARGET_EFAULT;
3530     }
3531     return ret;
3532 }
3533 
3534 /* do_sendto() Must return target values and target errnos. */
3535 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags,
3536                           abi_ulong target_addr, socklen_t addrlen)
3537 {
3538     void *addr;
3539     void *host_msg;
3540     void *copy_msg = NULL;
3541     abi_long ret;
3542 
3543     if ((int)addrlen < 0) {
3544         return -TARGET_EINVAL;
3545     }
3546 
3547     host_msg = lock_user(VERIFY_READ, msg, len, 1);
3548     if (!host_msg)
3549         return -TARGET_EFAULT;
3550     if (fd_trans_target_to_host_data(fd)) {
3551         copy_msg = host_msg;
3552         host_msg = g_malloc(len);
3553         memcpy(host_msg, copy_msg, len);
3554         ret = fd_trans_target_to_host_data(fd)(host_msg, len);
3555         if (ret < 0) {
3556             goto fail;
3557         }
3558     }
3559     if (target_addr) {
3560         addr = alloca(addrlen+1);
3561         ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen);
3562         if (ret) {
3563             goto fail;
3564         }
3565         ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen));
3566     } else {
3567         ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0));
3568     }
3569 fail:
3570     if (copy_msg) {
3571         g_free(host_msg);
3572         host_msg = copy_msg;
3573     }
3574     unlock_user(host_msg, msg, 0);
3575     return ret;
3576 }
3577 
3578 /* do_recvfrom() Must return target values and target errnos. */
3579 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags,
3580                             abi_ulong target_addr,
3581                             abi_ulong target_addrlen)
3582 {
3583     socklen_t addrlen, ret_addrlen;
3584     void *addr;
3585     void *host_msg;
3586     abi_long ret;
3587 
3588     if (!msg) {
3589         host_msg = NULL;
3590     } else {
3591         host_msg = lock_user(VERIFY_WRITE, msg, len, 0);
3592         if (!host_msg) {
3593             return -TARGET_EFAULT;
3594         }
3595     }
3596     if (target_addr) {
3597         if (get_user_u32(addrlen, target_addrlen)) {
3598             ret = -TARGET_EFAULT;
3599             goto fail;
3600         }
3601         if ((int)addrlen < 0) {
3602             ret = -TARGET_EINVAL;
3603             goto fail;
3604         }
3605         addr = alloca(addrlen);
3606         ret_addrlen = addrlen;
3607         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags,
3608                                       addr, &ret_addrlen));
3609     } else {
3610         addr = NULL; /* To keep compiler quiet.  */
3611         addrlen = 0; /* To keep compiler quiet.  */
3612         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0));
3613     }
3614     if (!is_error(ret)) {
3615         if (fd_trans_host_to_target_data(fd)) {
3616             abi_long trans;
3617             trans = fd_trans_host_to_target_data(fd)(host_msg, MIN(ret, len));
3618             if (is_error(trans)) {
3619                 ret = trans;
3620                 goto fail;
3621             }
3622         }
3623         if (target_addr) {
3624             host_to_target_sockaddr(target_addr, addr,
3625                                     MIN(addrlen, ret_addrlen));
3626             if (put_user_u32(ret_addrlen, target_addrlen)) {
3627                 ret = -TARGET_EFAULT;
3628                 goto fail;
3629             }
3630         }
3631         unlock_user(host_msg, msg, len);
3632     } else {
3633 fail:
3634         unlock_user(host_msg, msg, 0);
3635     }
3636     return ret;
3637 }
3638 
3639 #ifdef TARGET_NR_socketcall
3640 /* do_socketcall() must return target values and target errnos. */
3641 static abi_long do_socketcall(int num, abi_ulong vptr)
3642 {
3643     static const unsigned nargs[] = { /* number of arguments per operation */
3644         [TARGET_SYS_SOCKET] = 3,      /* domain, type, protocol */
3645         [TARGET_SYS_BIND] = 3,        /* fd, addr, addrlen */
3646         [TARGET_SYS_CONNECT] = 3,     /* fd, addr, addrlen */
3647         [TARGET_SYS_LISTEN] = 2,      /* fd, backlog */
3648         [TARGET_SYS_ACCEPT] = 3,      /* fd, addr, addrlen */
3649         [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */
3650         [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */
3651         [TARGET_SYS_SOCKETPAIR] = 4,  /* domain, type, protocol, tab */
3652         [TARGET_SYS_SEND] = 4,        /* fd, msg, len, flags */
3653         [TARGET_SYS_RECV] = 4,        /* fd, msg, len, flags */
3654         [TARGET_SYS_SENDTO] = 6,      /* fd, msg, len, flags, addr, addrlen */
3655         [TARGET_SYS_RECVFROM] = 6,    /* fd, msg, len, flags, addr, addrlen */
3656         [TARGET_SYS_SHUTDOWN] = 2,    /* fd, how */
3657         [TARGET_SYS_SETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3658         [TARGET_SYS_GETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3659         [TARGET_SYS_SENDMSG] = 3,     /* fd, msg, flags */
3660         [TARGET_SYS_RECVMSG] = 3,     /* fd, msg, flags */
3661         [TARGET_SYS_ACCEPT4] = 4,     /* fd, addr, addrlen, flags */
3662         [TARGET_SYS_RECVMMSG] = 4,    /* fd, msgvec, vlen, flags */
3663         [TARGET_SYS_SENDMMSG] = 4,    /* fd, msgvec, vlen, flags */
3664     };
3665     abi_long a[6]; /* max 6 args */
3666     unsigned i;
3667 
3668     /* check the range of the first argument num */
3669     /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */
3670     if (num < 1 || num > TARGET_SYS_SENDMMSG) {
3671         return -TARGET_EINVAL;
3672     }
3673     /* ensure we have space for args */
3674     if (nargs[num] > ARRAY_SIZE(a)) {
3675         return -TARGET_EINVAL;
3676     }
3677     /* collect the arguments in a[] according to nargs[] */
3678     for (i = 0; i < nargs[num]; ++i) {
3679         if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) {
3680             return -TARGET_EFAULT;
3681         }
3682     }
3683     /* now when we have the args, invoke the appropriate underlying function */
3684     switch (num) {
3685     case TARGET_SYS_SOCKET: /* domain, type, protocol */
3686         return do_socket(a[0], a[1], a[2]);
3687     case TARGET_SYS_BIND: /* sockfd, addr, addrlen */
3688         return do_bind(a[0], a[1], a[2]);
3689     case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */
3690         return do_connect(a[0], a[1], a[2]);
3691     case TARGET_SYS_LISTEN: /* sockfd, backlog */
3692         return get_errno(listen(a[0], a[1]));
3693     case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */
3694         return do_accept4(a[0], a[1], a[2], 0);
3695     case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */
3696         return do_getsockname(a[0], a[1], a[2]);
3697     case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */
3698         return do_getpeername(a[0], a[1], a[2]);
3699     case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */
3700         return do_socketpair(a[0], a[1], a[2], a[3]);
3701     case TARGET_SYS_SEND: /* sockfd, msg, len, flags */
3702         return do_sendto(a[0], a[1], a[2], a[3], 0, 0);
3703     case TARGET_SYS_RECV: /* sockfd, msg, len, flags */
3704         return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0);
3705     case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */
3706         return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]);
3707     case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */
3708         return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]);
3709     case TARGET_SYS_SHUTDOWN: /* sockfd, how */
3710         return get_errno(shutdown(a[0], a[1]));
3711     case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3712         return do_setsockopt(a[0], a[1], a[2], a[3], a[4]);
3713     case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3714         return do_getsockopt(a[0], a[1], a[2], a[3], a[4]);
3715     case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */
3716         return do_sendrecvmsg(a[0], a[1], a[2], 1);
3717     case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */
3718         return do_sendrecvmsg(a[0], a[1], a[2], 0);
3719     case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */
3720         return do_accept4(a[0], a[1], a[2], a[3]);
3721     case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */
3722         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0);
3723     case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */
3724         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1);
3725     default:
3726         qemu_log_mask(LOG_UNIMP, "Unsupported socketcall: %d\n", num);
3727         return -TARGET_EINVAL;
3728     }
3729 }
3730 #endif
3731 
3732 #define N_SHM_REGIONS	32
3733 
3734 static struct shm_region {
3735     abi_ulong start;
3736     abi_ulong size;
3737     bool in_use;
3738 } shm_regions[N_SHM_REGIONS];
3739 
3740 #ifndef TARGET_SEMID64_DS
3741 /* asm-generic version of this struct */
3742 struct target_semid64_ds
3743 {
3744   struct target_ipc_perm sem_perm;
3745   abi_ulong sem_otime;
3746 #if TARGET_ABI_BITS == 32
3747   abi_ulong __unused1;
3748 #endif
3749   abi_ulong sem_ctime;
3750 #if TARGET_ABI_BITS == 32
3751   abi_ulong __unused2;
3752 #endif
3753   abi_ulong sem_nsems;
3754   abi_ulong __unused3;
3755   abi_ulong __unused4;
3756 };
3757 #endif
3758 
3759 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip,
3760                                                abi_ulong target_addr)
3761 {
3762     struct target_ipc_perm *target_ip;
3763     struct target_semid64_ds *target_sd;
3764 
3765     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3766         return -TARGET_EFAULT;
3767     target_ip = &(target_sd->sem_perm);
3768     host_ip->__key = tswap32(target_ip->__key);
3769     host_ip->uid = tswap32(target_ip->uid);
3770     host_ip->gid = tswap32(target_ip->gid);
3771     host_ip->cuid = tswap32(target_ip->cuid);
3772     host_ip->cgid = tswap32(target_ip->cgid);
3773 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3774     host_ip->mode = tswap32(target_ip->mode);
3775 #else
3776     host_ip->mode = tswap16(target_ip->mode);
3777 #endif
3778 #if defined(TARGET_PPC)
3779     host_ip->__seq = tswap32(target_ip->__seq);
3780 #else
3781     host_ip->__seq = tswap16(target_ip->__seq);
3782 #endif
3783     unlock_user_struct(target_sd, target_addr, 0);
3784     return 0;
3785 }
3786 
3787 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr,
3788                                                struct ipc_perm *host_ip)
3789 {
3790     struct target_ipc_perm *target_ip;
3791     struct target_semid64_ds *target_sd;
3792 
3793     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3794         return -TARGET_EFAULT;
3795     target_ip = &(target_sd->sem_perm);
3796     target_ip->__key = tswap32(host_ip->__key);
3797     target_ip->uid = tswap32(host_ip->uid);
3798     target_ip->gid = tswap32(host_ip->gid);
3799     target_ip->cuid = tswap32(host_ip->cuid);
3800     target_ip->cgid = tswap32(host_ip->cgid);
3801 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3802     target_ip->mode = tswap32(host_ip->mode);
3803 #else
3804     target_ip->mode = tswap16(host_ip->mode);
3805 #endif
3806 #if defined(TARGET_PPC)
3807     target_ip->__seq = tswap32(host_ip->__seq);
3808 #else
3809     target_ip->__seq = tswap16(host_ip->__seq);
3810 #endif
3811     unlock_user_struct(target_sd, target_addr, 1);
3812     return 0;
3813 }
3814 
3815 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd,
3816                                                abi_ulong target_addr)
3817 {
3818     struct target_semid64_ds *target_sd;
3819 
3820     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3821         return -TARGET_EFAULT;
3822     if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr))
3823         return -TARGET_EFAULT;
3824     host_sd->sem_nsems = tswapal(target_sd->sem_nsems);
3825     host_sd->sem_otime = tswapal(target_sd->sem_otime);
3826     host_sd->sem_ctime = tswapal(target_sd->sem_ctime);
3827     unlock_user_struct(target_sd, target_addr, 0);
3828     return 0;
3829 }
3830 
3831 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr,
3832                                                struct semid_ds *host_sd)
3833 {
3834     struct target_semid64_ds *target_sd;
3835 
3836     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3837         return -TARGET_EFAULT;
3838     if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm)))
3839         return -TARGET_EFAULT;
3840     target_sd->sem_nsems = tswapal(host_sd->sem_nsems);
3841     target_sd->sem_otime = tswapal(host_sd->sem_otime);
3842     target_sd->sem_ctime = tswapal(host_sd->sem_ctime);
3843     unlock_user_struct(target_sd, target_addr, 1);
3844     return 0;
3845 }
3846 
3847 struct target_seminfo {
3848     int semmap;
3849     int semmni;
3850     int semmns;
3851     int semmnu;
3852     int semmsl;
3853     int semopm;
3854     int semume;
3855     int semusz;
3856     int semvmx;
3857     int semaem;
3858 };
3859 
3860 static inline abi_long host_to_target_seminfo(abi_ulong target_addr,
3861                                               struct seminfo *host_seminfo)
3862 {
3863     struct target_seminfo *target_seminfo;
3864     if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0))
3865         return -TARGET_EFAULT;
3866     __put_user(host_seminfo->semmap, &target_seminfo->semmap);
3867     __put_user(host_seminfo->semmni, &target_seminfo->semmni);
3868     __put_user(host_seminfo->semmns, &target_seminfo->semmns);
3869     __put_user(host_seminfo->semmnu, &target_seminfo->semmnu);
3870     __put_user(host_seminfo->semmsl, &target_seminfo->semmsl);
3871     __put_user(host_seminfo->semopm, &target_seminfo->semopm);
3872     __put_user(host_seminfo->semume, &target_seminfo->semume);
3873     __put_user(host_seminfo->semusz, &target_seminfo->semusz);
3874     __put_user(host_seminfo->semvmx, &target_seminfo->semvmx);
3875     __put_user(host_seminfo->semaem, &target_seminfo->semaem);
3876     unlock_user_struct(target_seminfo, target_addr, 1);
3877     return 0;
3878 }
3879 
3880 union semun {
3881 	int val;
3882 	struct semid_ds *buf;
3883 	unsigned short *array;
3884 	struct seminfo *__buf;
3885 };
3886 
3887 union target_semun {
3888 	int val;
3889 	abi_ulong buf;
3890 	abi_ulong array;
3891 	abi_ulong __buf;
3892 };
3893 
3894 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array,
3895                                                abi_ulong target_addr)
3896 {
3897     int nsems;
3898     unsigned short *array;
3899     union semun semun;
3900     struct semid_ds semid_ds;
3901     int i, ret;
3902 
3903     semun.buf = &semid_ds;
3904 
3905     ret = semctl(semid, 0, IPC_STAT, semun);
3906     if (ret == -1)
3907         return get_errno(ret);
3908 
3909     nsems = semid_ds.sem_nsems;
3910 
3911     *host_array = g_try_new(unsigned short, nsems);
3912     if (!*host_array) {
3913         return -TARGET_ENOMEM;
3914     }
3915     array = lock_user(VERIFY_READ, target_addr,
3916                       nsems*sizeof(unsigned short), 1);
3917     if (!array) {
3918         g_free(*host_array);
3919         return -TARGET_EFAULT;
3920     }
3921 
3922     for(i=0; i<nsems; i++) {
3923         __get_user((*host_array)[i], &array[i]);
3924     }
3925     unlock_user(array, target_addr, 0);
3926 
3927     return 0;
3928 }
3929 
3930 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr,
3931                                                unsigned short **host_array)
3932 {
3933     int nsems;
3934     unsigned short *array;
3935     union semun semun;
3936     struct semid_ds semid_ds;
3937     int i, ret;
3938 
3939     semun.buf = &semid_ds;
3940 
3941     ret = semctl(semid, 0, IPC_STAT, semun);
3942     if (ret == -1)
3943         return get_errno(ret);
3944 
3945     nsems = semid_ds.sem_nsems;
3946 
3947     array = lock_user(VERIFY_WRITE, target_addr,
3948                       nsems*sizeof(unsigned short), 0);
3949     if (!array)
3950         return -TARGET_EFAULT;
3951 
3952     for(i=0; i<nsems; i++) {
3953         __put_user((*host_array)[i], &array[i]);
3954     }
3955     g_free(*host_array);
3956     unlock_user(array, target_addr, 1);
3957 
3958     return 0;
3959 }
3960 
3961 static inline abi_long do_semctl(int semid, int semnum, int cmd,
3962                                  abi_ulong target_arg)
3963 {
3964     union target_semun target_su = { .buf = target_arg };
3965     union semun arg;
3966     struct semid_ds dsarg;
3967     unsigned short *array = NULL;
3968     struct seminfo seminfo;
3969     abi_long ret = -TARGET_EINVAL;
3970     abi_long err;
3971     cmd &= 0xff;
3972 
3973     switch( cmd ) {
3974 	case GETVAL:
3975 	case SETVAL:
3976             /* In 64 bit cross-endian situations, we will erroneously pick up
3977              * the wrong half of the union for the "val" element.  To rectify
3978              * this, the entire 8-byte structure is byteswapped, followed by
3979 	     * a swap of the 4 byte val field. In other cases, the data is
3980 	     * already in proper host byte order. */
3981 	    if (sizeof(target_su.val) != (sizeof(target_su.buf))) {
3982 		target_su.buf = tswapal(target_su.buf);
3983 		arg.val = tswap32(target_su.val);
3984 	    } else {
3985 		arg.val = target_su.val;
3986 	    }
3987             ret = get_errno(semctl(semid, semnum, cmd, arg));
3988             break;
3989 	case GETALL:
3990 	case SETALL:
3991             err = target_to_host_semarray(semid, &array, target_su.array);
3992             if (err)
3993                 return err;
3994             arg.array = array;
3995             ret = get_errno(semctl(semid, semnum, cmd, arg));
3996             err = host_to_target_semarray(semid, target_su.array, &array);
3997             if (err)
3998                 return err;
3999             break;
4000 	case IPC_STAT:
4001 	case IPC_SET:
4002 	case SEM_STAT:
4003             err = target_to_host_semid_ds(&dsarg, target_su.buf);
4004             if (err)
4005                 return err;
4006             arg.buf = &dsarg;
4007             ret = get_errno(semctl(semid, semnum, cmd, arg));
4008             err = host_to_target_semid_ds(target_su.buf, &dsarg);
4009             if (err)
4010                 return err;
4011             break;
4012 	case IPC_INFO:
4013 	case SEM_INFO:
4014             arg.__buf = &seminfo;
4015             ret = get_errno(semctl(semid, semnum, cmd, arg));
4016             err = host_to_target_seminfo(target_su.__buf, &seminfo);
4017             if (err)
4018                 return err;
4019             break;
4020 	case IPC_RMID:
4021 	case GETPID:
4022 	case GETNCNT:
4023 	case GETZCNT:
4024             ret = get_errno(semctl(semid, semnum, cmd, NULL));
4025             break;
4026     }
4027 
4028     return ret;
4029 }
4030 
4031 struct target_sembuf {
4032     unsigned short sem_num;
4033     short sem_op;
4034     short sem_flg;
4035 };
4036 
4037 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf,
4038                                              abi_ulong target_addr,
4039                                              unsigned nsops)
4040 {
4041     struct target_sembuf *target_sembuf;
4042     int i;
4043 
4044     target_sembuf = lock_user(VERIFY_READ, target_addr,
4045                               nsops*sizeof(struct target_sembuf), 1);
4046     if (!target_sembuf)
4047         return -TARGET_EFAULT;
4048 
4049     for(i=0; i<nsops; i++) {
4050         __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num);
4051         __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op);
4052         __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg);
4053     }
4054 
4055     unlock_user(target_sembuf, target_addr, 0);
4056 
4057     return 0;
4058 }
4059 
4060 #if defined(TARGET_NR_ipc) || defined(TARGET_NR_semop) || \
4061     defined(TARGET_NR_semtimedop) || defined(TARGET_NR_semtimedop_time64)
4062 
4063 /*
4064  * This macro is required to handle the s390 variants, which passes the
4065  * arguments in a different order than default.
4066  */
4067 #ifdef __s390x__
4068 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4069   (__nsops), (__timeout), (__sops)
4070 #else
4071 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4072   (__nsops), 0, (__sops), (__timeout)
4073 #endif
4074 
4075 static inline abi_long do_semtimedop(int semid,
4076                                      abi_long ptr,
4077                                      unsigned nsops,
4078                                      abi_long timeout, bool time64)
4079 {
4080     struct sembuf *sops;
4081     struct timespec ts, *pts = NULL;
4082     abi_long ret;
4083 
4084     if (timeout) {
4085         pts = &ts;
4086         if (time64) {
4087             if (target_to_host_timespec64(pts, timeout)) {
4088                 return -TARGET_EFAULT;
4089             }
4090         } else {
4091             if (target_to_host_timespec(pts, timeout)) {
4092                 return -TARGET_EFAULT;
4093             }
4094         }
4095     }
4096 
4097     if (nsops > TARGET_SEMOPM) {
4098         return -TARGET_E2BIG;
4099     }
4100 
4101     sops = g_new(struct sembuf, nsops);
4102 
4103     if (target_to_host_sembuf(sops, ptr, nsops)) {
4104         g_free(sops);
4105         return -TARGET_EFAULT;
4106     }
4107 
4108     ret = -TARGET_ENOSYS;
4109 #ifdef __NR_semtimedop
4110     ret = get_errno(safe_semtimedop(semid, sops, nsops, pts));
4111 #endif
4112 #ifdef __NR_ipc
4113     if (ret == -TARGET_ENOSYS) {
4114         ret = get_errno(safe_ipc(IPCOP_semtimedop, semid,
4115                                  SEMTIMEDOP_IPC_ARGS(nsops, sops, (long)pts)));
4116     }
4117 #endif
4118     g_free(sops);
4119     return ret;
4120 }
4121 #endif
4122 
4123 struct target_msqid_ds
4124 {
4125     struct target_ipc_perm msg_perm;
4126     abi_ulong msg_stime;
4127 #if TARGET_ABI_BITS == 32
4128     abi_ulong __unused1;
4129 #endif
4130     abi_ulong msg_rtime;
4131 #if TARGET_ABI_BITS == 32
4132     abi_ulong __unused2;
4133 #endif
4134     abi_ulong msg_ctime;
4135 #if TARGET_ABI_BITS == 32
4136     abi_ulong __unused3;
4137 #endif
4138     abi_ulong __msg_cbytes;
4139     abi_ulong msg_qnum;
4140     abi_ulong msg_qbytes;
4141     abi_ulong msg_lspid;
4142     abi_ulong msg_lrpid;
4143     abi_ulong __unused4;
4144     abi_ulong __unused5;
4145 };
4146 
4147 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md,
4148                                                abi_ulong target_addr)
4149 {
4150     struct target_msqid_ds *target_md;
4151 
4152     if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1))
4153         return -TARGET_EFAULT;
4154     if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr))
4155         return -TARGET_EFAULT;
4156     host_md->msg_stime = tswapal(target_md->msg_stime);
4157     host_md->msg_rtime = tswapal(target_md->msg_rtime);
4158     host_md->msg_ctime = tswapal(target_md->msg_ctime);
4159     host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes);
4160     host_md->msg_qnum = tswapal(target_md->msg_qnum);
4161     host_md->msg_qbytes = tswapal(target_md->msg_qbytes);
4162     host_md->msg_lspid = tswapal(target_md->msg_lspid);
4163     host_md->msg_lrpid = tswapal(target_md->msg_lrpid);
4164     unlock_user_struct(target_md, target_addr, 0);
4165     return 0;
4166 }
4167 
4168 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr,
4169                                                struct msqid_ds *host_md)
4170 {
4171     struct target_msqid_ds *target_md;
4172 
4173     if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0))
4174         return -TARGET_EFAULT;
4175     if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm)))
4176         return -TARGET_EFAULT;
4177     target_md->msg_stime = tswapal(host_md->msg_stime);
4178     target_md->msg_rtime = tswapal(host_md->msg_rtime);
4179     target_md->msg_ctime = tswapal(host_md->msg_ctime);
4180     target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes);
4181     target_md->msg_qnum = tswapal(host_md->msg_qnum);
4182     target_md->msg_qbytes = tswapal(host_md->msg_qbytes);
4183     target_md->msg_lspid = tswapal(host_md->msg_lspid);
4184     target_md->msg_lrpid = tswapal(host_md->msg_lrpid);
4185     unlock_user_struct(target_md, target_addr, 1);
4186     return 0;
4187 }
4188 
4189 struct target_msginfo {
4190     int msgpool;
4191     int msgmap;
4192     int msgmax;
4193     int msgmnb;
4194     int msgmni;
4195     int msgssz;
4196     int msgtql;
4197     unsigned short int msgseg;
4198 };
4199 
4200 static inline abi_long host_to_target_msginfo(abi_ulong target_addr,
4201                                               struct msginfo *host_msginfo)
4202 {
4203     struct target_msginfo *target_msginfo;
4204     if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0))
4205         return -TARGET_EFAULT;
4206     __put_user(host_msginfo->msgpool, &target_msginfo->msgpool);
4207     __put_user(host_msginfo->msgmap, &target_msginfo->msgmap);
4208     __put_user(host_msginfo->msgmax, &target_msginfo->msgmax);
4209     __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb);
4210     __put_user(host_msginfo->msgmni, &target_msginfo->msgmni);
4211     __put_user(host_msginfo->msgssz, &target_msginfo->msgssz);
4212     __put_user(host_msginfo->msgtql, &target_msginfo->msgtql);
4213     __put_user(host_msginfo->msgseg, &target_msginfo->msgseg);
4214     unlock_user_struct(target_msginfo, target_addr, 1);
4215     return 0;
4216 }
4217 
4218 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr)
4219 {
4220     struct msqid_ds dsarg;
4221     struct msginfo msginfo;
4222     abi_long ret = -TARGET_EINVAL;
4223 
4224     cmd &= 0xff;
4225 
4226     switch (cmd) {
4227     case IPC_STAT:
4228     case IPC_SET:
4229     case MSG_STAT:
4230         if (target_to_host_msqid_ds(&dsarg,ptr))
4231             return -TARGET_EFAULT;
4232         ret = get_errno(msgctl(msgid, cmd, &dsarg));
4233         if (host_to_target_msqid_ds(ptr,&dsarg))
4234             return -TARGET_EFAULT;
4235         break;
4236     case IPC_RMID:
4237         ret = get_errno(msgctl(msgid, cmd, NULL));
4238         break;
4239     case IPC_INFO:
4240     case MSG_INFO:
4241         ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo));
4242         if (host_to_target_msginfo(ptr, &msginfo))
4243             return -TARGET_EFAULT;
4244         break;
4245     }
4246 
4247     return ret;
4248 }
4249 
4250 struct target_msgbuf {
4251     abi_long mtype;
4252     char	mtext[1];
4253 };
4254 
4255 static inline abi_long do_msgsnd(int msqid, abi_long msgp,
4256                                  ssize_t msgsz, int msgflg)
4257 {
4258     struct target_msgbuf *target_mb;
4259     struct msgbuf *host_mb;
4260     abi_long ret = 0;
4261 
4262     if (msgsz < 0) {
4263         return -TARGET_EINVAL;
4264     }
4265 
4266     if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0))
4267         return -TARGET_EFAULT;
4268     host_mb = g_try_malloc(msgsz + sizeof(long));
4269     if (!host_mb) {
4270         unlock_user_struct(target_mb, msgp, 0);
4271         return -TARGET_ENOMEM;
4272     }
4273     host_mb->mtype = (abi_long) tswapal(target_mb->mtype);
4274     memcpy(host_mb->mtext, target_mb->mtext, msgsz);
4275     ret = -TARGET_ENOSYS;
4276 #ifdef __NR_msgsnd
4277     ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg));
4278 #endif
4279 #ifdef __NR_ipc
4280     if (ret == -TARGET_ENOSYS) {
4281 #ifdef __s390x__
4282         ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4283                                  host_mb));
4284 #else
4285         ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4286                                  host_mb, 0));
4287 #endif
4288     }
4289 #endif
4290     g_free(host_mb);
4291     unlock_user_struct(target_mb, msgp, 0);
4292 
4293     return ret;
4294 }
4295 
4296 #ifdef __NR_ipc
4297 #if defined(__sparc__)
4298 /* SPARC for msgrcv it does not use the kludge on final 2 arguments.  */
4299 #define MSGRCV_ARGS(__msgp, __msgtyp) __msgp, __msgtyp
4300 #elif defined(__s390x__)
4301 /* The s390 sys_ipc variant has only five parameters.  */
4302 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4303     ((long int[]){(long int)__msgp, __msgtyp})
4304 #else
4305 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4306     ((long int[]){(long int)__msgp, __msgtyp}), 0
4307 #endif
4308 #endif
4309 
4310 static inline abi_long do_msgrcv(int msqid, abi_long msgp,
4311                                  ssize_t msgsz, abi_long msgtyp,
4312                                  int msgflg)
4313 {
4314     struct target_msgbuf *target_mb;
4315     char *target_mtext;
4316     struct msgbuf *host_mb;
4317     abi_long ret = 0;
4318 
4319     if (msgsz < 0) {
4320         return -TARGET_EINVAL;
4321     }
4322 
4323     if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0))
4324         return -TARGET_EFAULT;
4325 
4326     host_mb = g_try_malloc(msgsz + sizeof(long));
4327     if (!host_mb) {
4328         ret = -TARGET_ENOMEM;
4329         goto end;
4330     }
4331     ret = -TARGET_ENOSYS;
4332 #ifdef __NR_msgrcv
4333     ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg));
4334 #endif
4335 #ifdef __NR_ipc
4336     if (ret == -TARGET_ENOSYS) {
4337         ret = get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv), msqid, msgsz,
4338                         msgflg, MSGRCV_ARGS(host_mb, msgtyp)));
4339     }
4340 #endif
4341 
4342     if (ret > 0) {
4343         abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong);
4344         target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0);
4345         if (!target_mtext) {
4346             ret = -TARGET_EFAULT;
4347             goto end;
4348         }
4349         memcpy(target_mb->mtext, host_mb->mtext, ret);
4350         unlock_user(target_mtext, target_mtext_addr, ret);
4351     }
4352 
4353     target_mb->mtype = tswapal(host_mb->mtype);
4354 
4355 end:
4356     if (target_mb)
4357         unlock_user_struct(target_mb, msgp, 1);
4358     g_free(host_mb);
4359     return ret;
4360 }
4361 
4362 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd,
4363                                                abi_ulong target_addr)
4364 {
4365     struct target_shmid_ds *target_sd;
4366 
4367     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
4368         return -TARGET_EFAULT;
4369     if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr))
4370         return -TARGET_EFAULT;
4371     __get_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4372     __get_user(host_sd->shm_atime, &target_sd->shm_atime);
4373     __get_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4374     __get_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4375     __get_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4376     __get_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4377     __get_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4378     unlock_user_struct(target_sd, target_addr, 0);
4379     return 0;
4380 }
4381 
4382 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr,
4383                                                struct shmid_ds *host_sd)
4384 {
4385     struct target_shmid_ds *target_sd;
4386 
4387     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
4388         return -TARGET_EFAULT;
4389     if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm)))
4390         return -TARGET_EFAULT;
4391     __put_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4392     __put_user(host_sd->shm_atime, &target_sd->shm_atime);
4393     __put_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4394     __put_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4395     __put_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4396     __put_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4397     __put_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4398     unlock_user_struct(target_sd, target_addr, 1);
4399     return 0;
4400 }
4401 
4402 struct  target_shminfo {
4403     abi_ulong shmmax;
4404     abi_ulong shmmin;
4405     abi_ulong shmmni;
4406     abi_ulong shmseg;
4407     abi_ulong shmall;
4408 };
4409 
4410 static inline abi_long host_to_target_shminfo(abi_ulong target_addr,
4411                                               struct shminfo *host_shminfo)
4412 {
4413     struct target_shminfo *target_shminfo;
4414     if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0))
4415         return -TARGET_EFAULT;
4416     __put_user(host_shminfo->shmmax, &target_shminfo->shmmax);
4417     __put_user(host_shminfo->shmmin, &target_shminfo->shmmin);
4418     __put_user(host_shminfo->shmmni, &target_shminfo->shmmni);
4419     __put_user(host_shminfo->shmseg, &target_shminfo->shmseg);
4420     __put_user(host_shminfo->shmall, &target_shminfo->shmall);
4421     unlock_user_struct(target_shminfo, target_addr, 1);
4422     return 0;
4423 }
4424 
4425 struct target_shm_info {
4426     int used_ids;
4427     abi_ulong shm_tot;
4428     abi_ulong shm_rss;
4429     abi_ulong shm_swp;
4430     abi_ulong swap_attempts;
4431     abi_ulong swap_successes;
4432 };
4433 
4434 static inline abi_long host_to_target_shm_info(abi_ulong target_addr,
4435                                                struct shm_info *host_shm_info)
4436 {
4437     struct target_shm_info *target_shm_info;
4438     if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0))
4439         return -TARGET_EFAULT;
4440     __put_user(host_shm_info->used_ids, &target_shm_info->used_ids);
4441     __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot);
4442     __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss);
4443     __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp);
4444     __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts);
4445     __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes);
4446     unlock_user_struct(target_shm_info, target_addr, 1);
4447     return 0;
4448 }
4449 
4450 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf)
4451 {
4452     struct shmid_ds dsarg;
4453     struct shminfo shminfo;
4454     struct shm_info shm_info;
4455     abi_long ret = -TARGET_EINVAL;
4456 
4457     cmd &= 0xff;
4458 
4459     switch(cmd) {
4460     case IPC_STAT:
4461     case IPC_SET:
4462     case SHM_STAT:
4463         if (target_to_host_shmid_ds(&dsarg, buf))
4464             return -TARGET_EFAULT;
4465         ret = get_errno(shmctl(shmid, cmd, &dsarg));
4466         if (host_to_target_shmid_ds(buf, &dsarg))
4467             return -TARGET_EFAULT;
4468         break;
4469     case IPC_INFO:
4470         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo));
4471         if (host_to_target_shminfo(buf, &shminfo))
4472             return -TARGET_EFAULT;
4473         break;
4474     case SHM_INFO:
4475         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info));
4476         if (host_to_target_shm_info(buf, &shm_info))
4477             return -TARGET_EFAULT;
4478         break;
4479     case IPC_RMID:
4480     case SHM_LOCK:
4481     case SHM_UNLOCK:
4482         ret = get_errno(shmctl(shmid, cmd, NULL));
4483         break;
4484     }
4485 
4486     return ret;
4487 }
4488 
4489 #ifndef TARGET_FORCE_SHMLBA
4490 /* For most architectures, SHMLBA is the same as the page size;
4491  * some architectures have larger values, in which case they should
4492  * define TARGET_FORCE_SHMLBA and provide a target_shmlba() function.
4493  * This corresponds to the kernel arch code defining __ARCH_FORCE_SHMLBA
4494  * and defining its own value for SHMLBA.
4495  *
4496  * The kernel also permits SHMLBA to be set by the architecture to a
4497  * value larger than the page size without setting __ARCH_FORCE_SHMLBA;
4498  * this means that addresses are rounded to the large size if
4499  * SHM_RND is set but addresses not aligned to that size are not rejected
4500  * as long as they are at least page-aligned. Since the only architecture
4501  * which uses this is ia64 this code doesn't provide for that oddity.
4502  */
4503 static inline abi_ulong target_shmlba(CPUArchState *cpu_env)
4504 {
4505     return TARGET_PAGE_SIZE;
4506 }
4507 #endif
4508 
4509 static inline abi_ulong do_shmat(CPUArchState *cpu_env,
4510                                  int shmid, abi_ulong shmaddr, int shmflg)
4511 {
4512     CPUState *cpu = env_cpu(cpu_env);
4513     abi_long raddr;
4514     void *host_raddr;
4515     struct shmid_ds shm_info;
4516     int i,ret;
4517     abi_ulong shmlba;
4518 
4519     /* shmat pointers are always untagged */
4520 
4521     /* find out the length of the shared memory segment */
4522     ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info));
4523     if (is_error(ret)) {
4524         /* can't get length, bail out */
4525         return ret;
4526     }
4527 
4528     shmlba = target_shmlba(cpu_env);
4529 
4530     if (shmaddr & (shmlba - 1)) {
4531         if (shmflg & SHM_RND) {
4532             shmaddr &= ~(shmlba - 1);
4533         } else {
4534             return -TARGET_EINVAL;
4535         }
4536     }
4537     if (!guest_range_valid_untagged(shmaddr, shm_info.shm_segsz)) {
4538         return -TARGET_EINVAL;
4539     }
4540 
4541     mmap_lock();
4542 
4543     /*
4544      * We're mapping shared memory, so ensure we generate code for parallel
4545      * execution and flush old translations.  This will work up to the level
4546      * supported by the host -- anything that requires EXCP_ATOMIC will not
4547      * be atomic with respect to an external process.
4548      */
4549     if (!(cpu->tcg_cflags & CF_PARALLEL)) {
4550         cpu->tcg_cflags |= CF_PARALLEL;
4551         tb_flush(cpu);
4552     }
4553 
4554     if (shmaddr)
4555         host_raddr = shmat(shmid, (void *)g2h_untagged(shmaddr), shmflg);
4556     else {
4557         abi_ulong mmap_start;
4558 
4559         /* In order to use the host shmat, we need to honor host SHMLBA.  */
4560         mmap_start = mmap_find_vma(0, shm_info.shm_segsz, MAX(SHMLBA, shmlba));
4561 
4562         if (mmap_start == -1) {
4563             errno = ENOMEM;
4564             host_raddr = (void *)-1;
4565         } else
4566             host_raddr = shmat(shmid, g2h_untagged(mmap_start),
4567                                shmflg | SHM_REMAP);
4568     }
4569 
4570     if (host_raddr == (void *)-1) {
4571         mmap_unlock();
4572         return get_errno((long)host_raddr);
4573     }
4574     raddr=h2g((unsigned long)host_raddr);
4575 
4576     page_set_flags(raddr, raddr + shm_info.shm_segsz,
4577                    PAGE_VALID | PAGE_RESET | PAGE_READ |
4578                    (shmflg & SHM_RDONLY ? 0 : PAGE_WRITE));
4579 
4580     for (i = 0; i < N_SHM_REGIONS; i++) {
4581         if (!shm_regions[i].in_use) {
4582             shm_regions[i].in_use = true;
4583             shm_regions[i].start = raddr;
4584             shm_regions[i].size = shm_info.shm_segsz;
4585             break;
4586         }
4587     }
4588 
4589     mmap_unlock();
4590     return raddr;
4591 
4592 }
4593 
4594 static inline abi_long do_shmdt(abi_ulong shmaddr)
4595 {
4596     int i;
4597     abi_long rv;
4598 
4599     /* shmdt pointers are always untagged */
4600 
4601     mmap_lock();
4602 
4603     for (i = 0; i < N_SHM_REGIONS; ++i) {
4604         if (shm_regions[i].in_use && shm_regions[i].start == shmaddr) {
4605             shm_regions[i].in_use = false;
4606             page_set_flags(shmaddr, shmaddr + shm_regions[i].size, 0);
4607             break;
4608         }
4609     }
4610     rv = get_errno(shmdt(g2h_untagged(shmaddr)));
4611 
4612     mmap_unlock();
4613 
4614     return rv;
4615 }
4616 
4617 #ifdef TARGET_NR_ipc
4618 /* ??? This only works with linear mappings.  */
4619 /* do_ipc() must return target values and target errnos. */
4620 static abi_long do_ipc(CPUArchState *cpu_env,
4621                        unsigned int call, abi_long first,
4622                        abi_long second, abi_long third,
4623                        abi_long ptr, abi_long fifth)
4624 {
4625     int version;
4626     abi_long ret = 0;
4627 
4628     version = call >> 16;
4629     call &= 0xffff;
4630 
4631     switch (call) {
4632     case IPCOP_semop:
4633         ret = do_semtimedop(first, ptr, second, 0, false);
4634         break;
4635     case IPCOP_semtimedop:
4636     /*
4637      * The s390 sys_ipc variant has only five parameters instead of six
4638      * (as for default variant) and the only difference is the handling of
4639      * SEMTIMEDOP where on s390 the third parameter is used as a pointer
4640      * to a struct timespec where the generic variant uses fifth parameter.
4641      */
4642 #if defined(TARGET_S390X)
4643         ret = do_semtimedop(first, ptr, second, third, TARGET_ABI_BITS == 64);
4644 #else
4645         ret = do_semtimedop(first, ptr, second, fifth, TARGET_ABI_BITS == 64);
4646 #endif
4647         break;
4648 
4649     case IPCOP_semget:
4650         ret = get_errno(semget(first, second, third));
4651         break;
4652 
4653     case IPCOP_semctl: {
4654         /* The semun argument to semctl is passed by value, so dereference the
4655          * ptr argument. */
4656         abi_ulong atptr;
4657         get_user_ual(atptr, ptr);
4658         ret = do_semctl(first, second, third, atptr);
4659         break;
4660     }
4661 
4662     case IPCOP_msgget:
4663         ret = get_errno(msgget(first, second));
4664         break;
4665 
4666     case IPCOP_msgsnd:
4667         ret = do_msgsnd(first, ptr, second, third);
4668         break;
4669 
4670     case IPCOP_msgctl:
4671         ret = do_msgctl(first, second, ptr);
4672         break;
4673 
4674     case IPCOP_msgrcv:
4675         switch (version) {
4676         case 0:
4677             {
4678                 struct target_ipc_kludge {
4679                     abi_long msgp;
4680                     abi_long msgtyp;
4681                 } *tmp;
4682 
4683                 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) {
4684                     ret = -TARGET_EFAULT;
4685                     break;
4686                 }
4687 
4688                 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third);
4689 
4690                 unlock_user_struct(tmp, ptr, 0);
4691                 break;
4692             }
4693         default:
4694             ret = do_msgrcv(first, ptr, second, fifth, third);
4695         }
4696         break;
4697 
4698     case IPCOP_shmat:
4699         switch (version) {
4700         default:
4701         {
4702             abi_ulong raddr;
4703             raddr = do_shmat(cpu_env, first, ptr, second);
4704             if (is_error(raddr))
4705                 return get_errno(raddr);
4706             if (put_user_ual(raddr, third))
4707                 return -TARGET_EFAULT;
4708             break;
4709         }
4710         case 1:
4711             ret = -TARGET_EINVAL;
4712             break;
4713         }
4714 	break;
4715     case IPCOP_shmdt:
4716         ret = do_shmdt(ptr);
4717 	break;
4718 
4719     case IPCOP_shmget:
4720 	/* IPC_* flag values are the same on all linux platforms */
4721 	ret = get_errno(shmget(first, second, third));
4722 	break;
4723 
4724 	/* IPC_* and SHM_* command values are the same on all linux platforms */
4725     case IPCOP_shmctl:
4726         ret = do_shmctl(first, second, ptr);
4727         break;
4728     default:
4729         qemu_log_mask(LOG_UNIMP, "Unsupported ipc call: %d (version %d)\n",
4730                       call, version);
4731 	ret = -TARGET_ENOSYS;
4732 	break;
4733     }
4734     return ret;
4735 }
4736 #endif
4737 
4738 /* kernel structure types definitions */
4739 
4740 #define STRUCT(name, ...) STRUCT_ ## name,
4741 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
4742 enum {
4743 #include "syscall_types.h"
4744 STRUCT_MAX
4745 };
4746 #undef STRUCT
4747 #undef STRUCT_SPECIAL
4748 
4749 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = {  __VA_ARGS__, TYPE_NULL };
4750 #define STRUCT_SPECIAL(name)
4751 #include "syscall_types.h"
4752 #undef STRUCT
4753 #undef STRUCT_SPECIAL
4754 
4755 #define MAX_STRUCT_SIZE 4096
4756 
4757 #ifdef CONFIG_FIEMAP
4758 /* So fiemap access checks don't overflow on 32 bit systems.
4759  * This is very slightly smaller than the limit imposed by
4760  * the underlying kernel.
4761  */
4762 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap))  \
4763                             / sizeof(struct fiemap_extent))
4764 
4765 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp,
4766                                        int fd, int cmd, abi_long arg)
4767 {
4768     /* The parameter for this ioctl is a struct fiemap followed
4769      * by an array of struct fiemap_extent whose size is set
4770      * in fiemap->fm_extent_count. The array is filled in by the
4771      * ioctl.
4772      */
4773     int target_size_in, target_size_out;
4774     struct fiemap *fm;
4775     const argtype *arg_type = ie->arg_type;
4776     const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) };
4777     void *argptr, *p;
4778     abi_long ret;
4779     int i, extent_size = thunk_type_size(extent_arg_type, 0);
4780     uint32_t outbufsz;
4781     int free_fm = 0;
4782 
4783     assert(arg_type[0] == TYPE_PTR);
4784     assert(ie->access == IOC_RW);
4785     arg_type++;
4786     target_size_in = thunk_type_size(arg_type, 0);
4787     argptr = lock_user(VERIFY_READ, arg, target_size_in, 1);
4788     if (!argptr) {
4789         return -TARGET_EFAULT;
4790     }
4791     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4792     unlock_user(argptr, arg, 0);
4793     fm = (struct fiemap *)buf_temp;
4794     if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) {
4795         return -TARGET_EINVAL;
4796     }
4797 
4798     outbufsz = sizeof (*fm) +
4799         (sizeof(struct fiemap_extent) * fm->fm_extent_count);
4800 
4801     if (outbufsz > MAX_STRUCT_SIZE) {
4802         /* We can't fit all the extents into the fixed size buffer.
4803          * Allocate one that is large enough and use it instead.
4804          */
4805         fm = g_try_malloc(outbufsz);
4806         if (!fm) {
4807             return -TARGET_ENOMEM;
4808         }
4809         memcpy(fm, buf_temp, sizeof(struct fiemap));
4810         free_fm = 1;
4811     }
4812     ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm));
4813     if (!is_error(ret)) {
4814         target_size_out = target_size_in;
4815         /* An extent_count of 0 means we were only counting the extents
4816          * so there are no structs to copy
4817          */
4818         if (fm->fm_extent_count != 0) {
4819             target_size_out += fm->fm_mapped_extents * extent_size;
4820         }
4821         argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0);
4822         if (!argptr) {
4823             ret = -TARGET_EFAULT;
4824         } else {
4825             /* Convert the struct fiemap */
4826             thunk_convert(argptr, fm, arg_type, THUNK_TARGET);
4827             if (fm->fm_extent_count != 0) {
4828                 p = argptr + target_size_in;
4829                 /* ...and then all the struct fiemap_extents */
4830                 for (i = 0; i < fm->fm_mapped_extents; i++) {
4831                     thunk_convert(p, &fm->fm_extents[i], extent_arg_type,
4832                                   THUNK_TARGET);
4833                     p += extent_size;
4834                 }
4835             }
4836             unlock_user(argptr, arg, target_size_out);
4837         }
4838     }
4839     if (free_fm) {
4840         g_free(fm);
4841     }
4842     return ret;
4843 }
4844 #endif
4845 
4846 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp,
4847                                 int fd, int cmd, abi_long arg)
4848 {
4849     const argtype *arg_type = ie->arg_type;
4850     int target_size;
4851     void *argptr;
4852     int ret;
4853     struct ifconf *host_ifconf;
4854     uint32_t outbufsz;
4855     const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) };
4856     const argtype ifreq_max_type[] = { MK_STRUCT(STRUCT_ifmap_ifreq) };
4857     int target_ifreq_size;
4858     int nb_ifreq;
4859     int free_buf = 0;
4860     int i;
4861     int target_ifc_len;
4862     abi_long target_ifc_buf;
4863     int host_ifc_len;
4864     char *host_ifc_buf;
4865 
4866     assert(arg_type[0] == TYPE_PTR);
4867     assert(ie->access == IOC_RW);
4868 
4869     arg_type++;
4870     target_size = thunk_type_size(arg_type, 0);
4871 
4872     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4873     if (!argptr)
4874         return -TARGET_EFAULT;
4875     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4876     unlock_user(argptr, arg, 0);
4877 
4878     host_ifconf = (struct ifconf *)(unsigned long)buf_temp;
4879     target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf;
4880     target_ifreq_size = thunk_type_size(ifreq_max_type, 0);
4881 
4882     if (target_ifc_buf != 0) {
4883         target_ifc_len = host_ifconf->ifc_len;
4884         nb_ifreq = target_ifc_len / target_ifreq_size;
4885         host_ifc_len = nb_ifreq * sizeof(struct ifreq);
4886 
4887         outbufsz = sizeof(*host_ifconf) + host_ifc_len;
4888         if (outbufsz > MAX_STRUCT_SIZE) {
4889             /*
4890              * We can't fit all the extents into the fixed size buffer.
4891              * Allocate one that is large enough and use it instead.
4892              */
4893             host_ifconf = g_try_malloc(outbufsz);
4894             if (!host_ifconf) {
4895                 return -TARGET_ENOMEM;
4896             }
4897             memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf));
4898             free_buf = 1;
4899         }
4900         host_ifc_buf = (char *)host_ifconf + sizeof(*host_ifconf);
4901 
4902         host_ifconf->ifc_len = host_ifc_len;
4903     } else {
4904       host_ifc_buf = NULL;
4905     }
4906     host_ifconf->ifc_buf = host_ifc_buf;
4907 
4908     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf));
4909     if (!is_error(ret)) {
4910 	/* convert host ifc_len to target ifc_len */
4911 
4912         nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq);
4913         target_ifc_len = nb_ifreq * target_ifreq_size;
4914         host_ifconf->ifc_len = target_ifc_len;
4915 
4916 	/* restore target ifc_buf */
4917 
4918         host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf;
4919 
4920 	/* copy struct ifconf to target user */
4921 
4922         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4923         if (!argptr)
4924             return -TARGET_EFAULT;
4925         thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET);
4926         unlock_user(argptr, arg, target_size);
4927 
4928         if (target_ifc_buf != 0) {
4929             /* copy ifreq[] to target user */
4930             argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0);
4931             for (i = 0; i < nb_ifreq ; i++) {
4932                 thunk_convert(argptr + i * target_ifreq_size,
4933                               host_ifc_buf + i * sizeof(struct ifreq),
4934                               ifreq_arg_type, THUNK_TARGET);
4935             }
4936             unlock_user(argptr, target_ifc_buf, target_ifc_len);
4937         }
4938     }
4939 
4940     if (free_buf) {
4941         g_free(host_ifconf);
4942     }
4943 
4944     return ret;
4945 }
4946 
4947 #if defined(CONFIG_USBFS)
4948 #if HOST_LONG_BITS > 64
4949 #error USBDEVFS thunks do not support >64 bit hosts yet.
4950 #endif
4951 struct live_urb {
4952     uint64_t target_urb_adr;
4953     uint64_t target_buf_adr;
4954     char *target_buf_ptr;
4955     struct usbdevfs_urb host_urb;
4956 };
4957 
4958 static GHashTable *usbdevfs_urb_hashtable(void)
4959 {
4960     static GHashTable *urb_hashtable;
4961 
4962     if (!urb_hashtable) {
4963         urb_hashtable = g_hash_table_new(g_int64_hash, g_int64_equal);
4964     }
4965     return urb_hashtable;
4966 }
4967 
4968 static void urb_hashtable_insert(struct live_urb *urb)
4969 {
4970     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4971     g_hash_table_insert(urb_hashtable, urb, urb);
4972 }
4973 
4974 static struct live_urb *urb_hashtable_lookup(uint64_t target_urb_adr)
4975 {
4976     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4977     return g_hash_table_lookup(urb_hashtable, &target_urb_adr);
4978 }
4979 
4980 static void urb_hashtable_remove(struct live_urb *urb)
4981 {
4982     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4983     g_hash_table_remove(urb_hashtable, urb);
4984 }
4985 
4986 static abi_long
4987 do_ioctl_usbdevfs_reapurb(const IOCTLEntry *ie, uint8_t *buf_temp,
4988                           int fd, int cmd, abi_long arg)
4989 {
4990     const argtype usbfsurb_arg_type[] = { MK_STRUCT(STRUCT_usbdevfs_urb) };
4991     const argtype ptrvoid_arg_type[] = { TYPE_PTRVOID, 0, 0 };
4992     struct live_urb *lurb;
4993     void *argptr;
4994     uint64_t hurb;
4995     int target_size;
4996     uintptr_t target_urb_adr;
4997     abi_long ret;
4998 
4999     target_size = thunk_type_size(usbfsurb_arg_type, THUNK_TARGET);
5000 
5001     memset(buf_temp, 0, sizeof(uint64_t));
5002     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5003     if (is_error(ret)) {
5004         return ret;
5005     }
5006 
5007     memcpy(&hurb, buf_temp, sizeof(uint64_t));
5008     lurb = (void *)((uintptr_t)hurb - offsetof(struct live_urb, host_urb));
5009     if (!lurb->target_urb_adr) {
5010         return -TARGET_EFAULT;
5011     }
5012     urb_hashtable_remove(lurb);
5013     unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr,
5014         lurb->host_urb.buffer_length);
5015     lurb->target_buf_ptr = NULL;
5016 
5017     /* restore the guest buffer pointer */
5018     lurb->host_urb.buffer = (void *)(uintptr_t)lurb->target_buf_adr;
5019 
5020     /* update the guest urb struct */
5021     argptr = lock_user(VERIFY_WRITE, lurb->target_urb_adr, target_size, 0);
5022     if (!argptr) {
5023         g_free(lurb);
5024         return -TARGET_EFAULT;
5025     }
5026     thunk_convert(argptr, &lurb->host_urb, usbfsurb_arg_type, THUNK_TARGET);
5027     unlock_user(argptr, lurb->target_urb_adr, target_size);
5028 
5029     target_size = thunk_type_size(ptrvoid_arg_type, THUNK_TARGET);
5030     /* write back the urb handle */
5031     argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5032     if (!argptr) {
5033         g_free(lurb);
5034         return -TARGET_EFAULT;
5035     }
5036 
5037     /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */
5038     target_urb_adr = lurb->target_urb_adr;
5039     thunk_convert(argptr, &target_urb_adr, ptrvoid_arg_type, THUNK_TARGET);
5040     unlock_user(argptr, arg, target_size);
5041 
5042     g_free(lurb);
5043     return ret;
5044 }
5045 
5046 static abi_long
5047 do_ioctl_usbdevfs_discardurb(const IOCTLEntry *ie,
5048                              uint8_t *buf_temp __attribute__((unused)),
5049                              int fd, int cmd, abi_long arg)
5050 {
5051     struct live_urb *lurb;
5052 
5053     /* map target address back to host URB with metadata. */
5054     lurb = urb_hashtable_lookup(arg);
5055     if (!lurb) {
5056         return -TARGET_EFAULT;
5057     }
5058     return get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
5059 }
5060 
5061 static abi_long
5062 do_ioctl_usbdevfs_submiturb(const IOCTLEntry *ie, uint8_t *buf_temp,
5063                             int fd, int cmd, abi_long arg)
5064 {
5065     const argtype *arg_type = ie->arg_type;
5066     int target_size;
5067     abi_long ret;
5068     void *argptr;
5069     int rw_dir;
5070     struct live_urb *lurb;
5071 
5072     /*
5073      * each submitted URB needs to map to a unique ID for the
5074      * kernel, and that unique ID needs to be a pointer to
5075      * host memory.  hence, we need to malloc for each URB.
5076      * isochronous transfers have a variable length struct.
5077      */
5078     arg_type++;
5079     target_size = thunk_type_size(arg_type, THUNK_TARGET);
5080 
5081     /* construct host copy of urb and metadata */
5082     lurb = g_try_new0(struct live_urb, 1);
5083     if (!lurb) {
5084         return -TARGET_ENOMEM;
5085     }
5086 
5087     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5088     if (!argptr) {
5089         g_free(lurb);
5090         return -TARGET_EFAULT;
5091     }
5092     thunk_convert(&lurb->host_urb, argptr, arg_type, THUNK_HOST);
5093     unlock_user(argptr, arg, 0);
5094 
5095     lurb->target_urb_adr = arg;
5096     lurb->target_buf_adr = (uintptr_t)lurb->host_urb.buffer;
5097 
5098     /* buffer space used depends on endpoint type so lock the entire buffer */
5099     /* control type urbs should check the buffer contents for true direction */
5100     rw_dir = lurb->host_urb.endpoint & USB_DIR_IN ? VERIFY_WRITE : VERIFY_READ;
5101     lurb->target_buf_ptr = lock_user(rw_dir, lurb->target_buf_adr,
5102         lurb->host_urb.buffer_length, 1);
5103     if (lurb->target_buf_ptr == NULL) {
5104         g_free(lurb);
5105         return -TARGET_EFAULT;
5106     }
5107 
5108     /* update buffer pointer in host copy */
5109     lurb->host_urb.buffer = lurb->target_buf_ptr;
5110 
5111     ret = get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
5112     if (is_error(ret)) {
5113         unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 0);
5114         g_free(lurb);
5115     } else {
5116         urb_hashtable_insert(lurb);
5117     }
5118 
5119     return ret;
5120 }
5121 #endif /* CONFIG_USBFS */
5122 
5123 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5124                             int cmd, abi_long arg)
5125 {
5126     void *argptr;
5127     struct dm_ioctl *host_dm;
5128     abi_long guest_data;
5129     uint32_t guest_data_size;
5130     int target_size;
5131     const argtype *arg_type = ie->arg_type;
5132     abi_long ret;
5133     void *big_buf = NULL;
5134     char *host_data;
5135 
5136     arg_type++;
5137     target_size = thunk_type_size(arg_type, 0);
5138     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5139     if (!argptr) {
5140         ret = -TARGET_EFAULT;
5141         goto out;
5142     }
5143     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5144     unlock_user(argptr, arg, 0);
5145 
5146     /* buf_temp is too small, so fetch things into a bigger buffer */
5147     big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2);
5148     memcpy(big_buf, buf_temp, target_size);
5149     buf_temp = big_buf;
5150     host_dm = big_buf;
5151 
5152     guest_data = arg + host_dm->data_start;
5153     if ((guest_data - arg) < 0) {
5154         ret = -TARGET_EINVAL;
5155         goto out;
5156     }
5157     guest_data_size = host_dm->data_size - host_dm->data_start;
5158     host_data = (char*)host_dm + host_dm->data_start;
5159 
5160     argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1);
5161     if (!argptr) {
5162         ret = -TARGET_EFAULT;
5163         goto out;
5164     }
5165 
5166     switch (ie->host_cmd) {
5167     case DM_REMOVE_ALL:
5168     case DM_LIST_DEVICES:
5169     case DM_DEV_CREATE:
5170     case DM_DEV_REMOVE:
5171     case DM_DEV_SUSPEND:
5172     case DM_DEV_STATUS:
5173     case DM_DEV_WAIT:
5174     case DM_TABLE_STATUS:
5175     case DM_TABLE_CLEAR:
5176     case DM_TABLE_DEPS:
5177     case DM_LIST_VERSIONS:
5178         /* no input data */
5179         break;
5180     case DM_DEV_RENAME:
5181     case DM_DEV_SET_GEOMETRY:
5182         /* data contains only strings */
5183         memcpy(host_data, argptr, guest_data_size);
5184         break;
5185     case DM_TARGET_MSG:
5186         memcpy(host_data, argptr, guest_data_size);
5187         *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr);
5188         break;
5189     case DM_TABLE_LOAD:
5190     {
5191         void *gspec = argptr;
5192         void *cur_data = host_data;
5193         const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5194         int spec_size = thunk_type_size(arg_type, 0);
5195         int i;
5196 
5197         for (i = 0; i < host_dm->target_count; i++) {
5198             struct dm_target_spec *spec = cur_data;
5199             uint32_t next;
5200             int slen;
5201 
5202             thunk_convert(spec, gspec, arg_type, THUNK_HOST);
5203             slen = strlen((char*)gspec + spec_size) + 1;
5204             next = spec->next;
5205             spec->next = sizeof(*spec) + slen;
5206             strcpy((char*)&spec[1], gspec + spec_size);
5207             gspec += next;
5208             cur_data += spec->next;
5209         }
5210         break;
5211     }
5212     default:
5213         ret = -TARGET_EINVAL;
5214         unlock_user(argptr, guest_data, 0);
5215         goto out;
5216     }
5217     unlock_user(argptr, guest_data, 0);
5218 
5219     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5220     if (!is_error(ret)) {
5221         guest_data = arg + host_dm->data_start;
5222         guest_data_size = host_dm->data_size - host_dm->data_start;
5223         argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0);
5224         switch (ie->host_cmd) {
5225         case DM_REMOVE_ALL:
5226         case DM_DEV_CREATE:
5227         case DM_DEV_REMOVE:
5228         case DM_DEV_RENAME:
5229         case DM_DEV_SUSPEND:
5230         case DM_DEV_STATUS:
5231         case DM_TABLE_LOAD:
5232         case DM_TABLE_CLEAR:
5233         case DM_TARGET_MSG:
5234         case DM_DEV_SET_GEOMETRY:
5235             /* no return data */
5236             break;
5237         case DM_LIST_DEVICES:
5238         {
5239             struct dm_name_list *nl = (void*)host_dm + host_dm->data_start;
5240             uint32_t remaining_data = guest_data_size;
5241             void *cur_data = argptr;
5242             const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) };
5243             int nl_size = 12; /* can't use thunk_size due to alignment */
5244 
5245             while (1) {
5246                 uint32_t next = nl->next;
5247                 if (next) {
5248                     nl->next = nl_size + (strlen(nl->name) + 1);
5249                 }
5250                 if (remaining_data < nl->next) {
5251                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5252                     break;
5253                 }
5254                 thunk_convert(cur_data, nl, arg_type, THUNK_TARGET);
5255                 strcpy(cur_data + nl_size, nl->name);
5256                 cur_data += nl->next;
5257                 remaining_data -= nl->next;
5258                 if (!next) {
5259                     break;
5260                 }
5261                 nl = (void*)nl + next;
5262             }
5263             break;
5264         }
5265         case DM_DEV_WAIT:
5266         case DM_TABLE_STATUS:
5267         {
5268             struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start;
5269             void *cur_data = argptr;
5270             const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5271             int spec_size = thunk_type_size(arg_type, 0);
5272             int i;
5273 
5274             for (i = 0; i < host_dm->target_count; i++) {
5275                 uint32_t next = spec->next;
5276                 int slen = strlen((char*)&spec[1]) + 1;
5277                 spec->next = (cur_data - argptr) + spec_size + slen;
5278                 if (guest_data_size < spec->next) {
5279                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5280                     break;
5281                 }
5282                 thunk_convert(cur_data, spec, arg_type, THUNK_TARGET);
5283                 strcpy(cur_data + spec_size, (char*)&spec[1]);
5284                 cur_data = argptr + spec->next;
5285                 spec = (void*)host_dm + host_dm->data_start + next;
5286             }
5287             break;
5288         }
5289         case DM_TABLE_DEPS:
5290         {
5291             void *hdata = (void*)host_dm + host_dm->data_start;
5292             int count = *(uint32_t*)hdata;
5293             uint64_t *hdev = hdata + 8;
5294             uint64_t *gdev = argptr + 8;
5295             int i;
5296 
5297             *(uint32_t*)argptr = tswap32(count);
5298             for (i = 0; i < count; i++) {
5299                 *gdev = tswap64(*hdev);
5300                 gdev++;
5301                 hdev++;
5302             }
5303             break;
5304         }
5305         case DM_LIST_VERSIONS:
5306         {
5307             struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start;
5308             uint32_t remaining_data = guest_data_size;
5309             void *cur_data = argptr;
5310             const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) };
5311             int vers_size = thunk_type_size(arg_type, 0);
5312 
5313             while (1) {
5314                 uint32_t next = vers->next;
5315                 if (next) {
5316                     vers->next = vers_size + (strlen(vers->name) + 1);
5317                 }
5318                 if (remaining_data < vers->next) {
5319                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5320                     break;
5321                 }
5322                 thunk_convert(cur_data, vers, arg_type, THUNK_TARGET);
5323                 strcpy(cur_data + vers_size, vers->name);
5324                 cur_data += vers->next;
5325                 remaining_data -= vers->next;
5326                 if (!next) {
5327                     break;
5328                 }
5329                 vers = (void*)vers + next;
5330             }
5331             break;
5332         }
5333         default:
5334             unlock_user(argptr, guest_data, 0);
5335             ret = -TARGET_EINVAL;
5336             goto out;
5337         }
5338         unlock_user(argptr, guest_data, guest_data_size);
5339 
5340         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5341         if (!argptr) {
5342             ret = -TARGET_EFAULT;
5343             goto out;
5344         }
5345         thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5346         unlock_user(argptr, arg, target_size);
5347     }
5348 out:
5349     g_free(big_buf);
5350     return ret;
5351 }
5352 
5353 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5354                                int cmd, abi_long arg)
5355 {
5356     void *argptr;
5357     int target_size;
5358     const argtype *arg_type = ie->arg_type;
5359     const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) };
5360     abi_long ret;
5361 
5362     struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp;
5363     struct blkpg_partition host_part;
5364 
5365     /* Read and convert blkpg */
5366     arg_type++;
5367     target_size = thunk_type_size(arg_type, 0);
5368     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5369     if (!argptr) {
5370         ret = -TARGET_EFAULT;
5371         goto out;
5372     }
5373     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5374     unlock_user(argptr, arg, 0);
5375 
5376     switch (host_blkpg->op) {
5377     case BLKPG_ADD_PARTITION:
5378     case BLKPG_DEL_PARTITION:
5379         /* payload is struct blkpg_partition */
5380         break;
5381     default:
5382         /* Unknown opcode */
5383         ret = -TARGET_EINVAL;
5384         goto out;
5385     }
5386 
5387     /* Read and convert blkpg->data */
5388     arg = (abi_long)(uintptr_t)host_blkpg->data;
5389     target_size = thunk_type_size(part_arg_type, 0);
5390     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5391     if (!argptr) {
5392         ret = -TARGET_EFAULT;
5393         goto out;
5394     }
5395     thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST);
5396     unlock_user(argptr, arg, 0);
5397 
5398     /* Swizzle the data pointer to our local copy and call! */
5399     host_blkpg->data = &host_part;
5400     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg));
5401 
5402 out:
5403     return ret;
5404 }
5405 
5406 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp,
5407                                 int fd, int cmd, abi_long arg)
5408 {
5409     const argtype *arg_type = ie->arg_type;
5410     const StructEntry *se;
5411     const argtype *field_types;
5412     const int *dst_offsets, *src_offsets;
5413     int target_size;
5414     void *argptr;
5415     abi_ulong *target_rt_dev_ptr = NULL;
5416     unsigned long *host_rt_dev_ptr = NULL;
5417     abi_long ret;
5418     int i;
5419 
5420     assert(ie->access == IOC_W);
5421     assert(*arg_type == TYPE_PTR);
5422     arg_type++;
5423     assert(*arg_type == TYPE_STRUCT);
5424     target_size = thunk_type_size(arg_type, 0);
5425     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5426     if (!argptr) {
5427         return -TARGET_EFAULT;
5428     }
5429     arg_type++;
5430     assert(*arg_type == (int)STRUCT_rtentry);
5431     se = struct_entries + *arg_type++;
5432     assert(se->convert[0] == NULL);
5433     /* convert struct here to be able to catch rt_dev string */
5434     field_types = se->field_types;
5435     dst_offsets = se->field_offsets[THUNK_HOST];
5436     src_offsets = se->field_offsets[THUNK_TARGET];
5437     for (i = 0; i < se->nb_fields; i++) {
5438         if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) {
5439             assert(*field_types == TYPE_PTRVOID);
5440             target_rt_dev_ptr = (abi_ulong *)(argptr + src_offsets[i]);
5441             host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]);
5442             if (*target_rt_dev_ptr != 0) {
5443                 *host_rt_dev_ptr = (unsigned long)lock_user_string(
5444                                                   tswapal(*target_rt_dev_ptr));
5445                 if (!*host_rt_dev_ptr) {
5446                     unlock_user(argptr, arg, 0);
5447                     return -TARGET_EFAULT;
5448                 }
5449             } else {
5450                 *host_rt_dev_ptr = 0;
5451             }
5452             field_types++;
5453             continue;
5454         }
5455         field_types = thunk_convert(buf_temp + dst_offsets[i],
5456                                     argptr + src_offsets[i],
5457                                     field_types, THUNK_HOST);
5458     }
5459     unlock_user(argptr, arg, 0);
5460 
5461     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5462 
5463     assert(host_rt_dev_ptr != NULL);
5464     assert(target_rt_dev_ptr != NULL);
5465     if (*host_rt_dev_ptr != 0) {
5466         unlock_user((void *)*host_rt_dev_ptr,
5467                     *target_rt_dev_ptr, 0);
5468     }
5469     return ret;
5470 }
5471 
5472 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp,
5473                                      int fd, int cmd, abi_long arg)
5474 {
5475     int sig = target_to_host_signal(arg);
5476     return get_errno(safe_ioctl(fd, ie->host_cmd, sig));
5477 }
5478 
5479 static abi_long do_ioctl_SIOCGSTAMP(const IOCTLEntry *ie, uint8_t *buf_temp,
5480                                     int fd, int cmd, abi_long arg)
5481 {
5482     struct timeval tv;
5483     abi_long ret;
5484 
5485     ret = get_errno(safe_ioctl(fd, SIOCGSTAMP, &tv));
5486     if (is_error(ret)) {
5487         return ret;
5488     }
5489 
5490     if (cmd == (int)TARGET_SIOCGSTAMP_OLD) {
5491         if (copy_to_user_timeval(arg, &tv)) {
5492             return -TARGET_EFAULT;
5493         }
5494     } else {
5495         if (copy_to_user_timeval64(arg, &tv)) {
5496             return -TARGET_EFAULT;
5497         }
5498     }
5499 
5500     return ret;
5501 }
5502 
5503 static abi_long do_ioctl_SIOCGSTAMPNS(const IOCTLEntry *ie, uint8_t *buf_temp,
5504                                       int fd, int cmd, abi_long arg)
5505 {
5506     struct timespec ts;
5507     abi_long ret;
5508 
5509     ret = get_errno(safe_ioctl(fd, SIOCGSTAMPNS, &ts));
5510     if (is_error(ret)) {
5511         return ret;
5512     }
5513 
5514     if (cmd == (int)TARGET_SIOCGSTAMPNS_OLD) {
5515         if (host_to_target_timespec(arg, &ts)) {
5516             return -TARGET_EFAULT;
5517         }
5518     } else{
5519         if (host_to_target_timespec64(arg, &ts)) {
5520             return -TARGET_EFAULT;
5521         }
5522     }
5523 
5524     return ret;
5525 }
5526 
5527 #ifdef TIOCGPTPEER
5528 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp,
5529                                      int fd, int cmd, abi_long arg)
5530 {
5531     int flags = target_to_host_bitmask(arg, fcntl_flags_tbl);
5532     return get_errno(safe_ioctl(fd, ie->host_cmd, flags));
5533 }
5534 #endif
5535 
5536 #ifdef HAVE_DRM_H
5537 
5538 static void unlock_drm_version(struct drm_version *host_ver,
5539                                struct target_drm_version *target_ver,
5540                                bool copy)
5541 {
5542     unlock_user(host_ver->name, target_ver->name,
5543                                 copy ? host_ver->name_len : 0);
5544     unlock_user(host_ver->date, target_ver->date,
5545                                 copy ? host_ver->date_len : 0);
5546     unlock_user(host_ver->desc, target_ver->desc,
5547                                 copy ? host_ver->desc_len : 0);
5548 }
5549 
5550 static inline abi_long target_to_host_drmversion(struct drm_version *host_ver,
5551                                           struct target_drm_version *target_ver)
5552 {
5553     memset(host_ver, 0, sizeof(*host_ver));
5554 
5555     __get_user(host_ver->name_len, &target_ver->name_len);
5556     if (host_ver->name_len) {
5557         host_ver->name = lock_user(VERIFY_WRITE, target_ver->name,
5558                                    target_ver->name_len, 0);
5559         if (!host_ver->name) {
5560             return -EFAULT;
5561         }
5562     }
5563 
5564     __get_user(host_ver->date_len, &target_ver->date_len);
5565     if (host_ver->date_len) {
5566         host_ver->date = lock_user(VERIFY_WRITE, target_ver->date,
5567                                    target_ver->date_len, 0);
5568         if (!host_ver->date) {
5569             goto err;
5570         }
5571     }
5572 
5573     __get_user(host_ver->desc_len, &target_ver->desc_len);
5574     if (host_ver->desc_len) {
5575         host_ver->desc = lock_user(VERIFY_WRITE, target_ver->desc,
5576                                    target_ver->desc_len, 0);
5577         if (!host_ver->desc) {
5578             goto err;
5579         }
5580     }
5581 
5582     return 0;
5583 err:
5584     unlock_drm_version(host_ver, target_ver, false);
5585     return -EFAULT;
5586 }
5587 
5588 static inline void host_to_target_drmversion(
5589                                           struct target_drm_version *target_ver,
5590                                           struct drm_version *host_ver)
5591 {
5592     __put_user(host_ver->version_major, &target_ver->version_major);
5593     __put_user(host_ver->version_minor, &target_ver->version_minor);
5594     __put_user(host_ver->version_patchlevel, &target_ver->version_patchlevel);
5595     __put_user(host_ver->name_len, &target_ver->name_len);
5596     __put_user(host_ver->date_len, &target_ver->date_len);
5597     __put_user(host_ver->desc_len, &target_ver->desc_len);
5598     unlock_drm_version(host_ver, target_ver, true);
5599 }
5600 
5601 static abi_long do_ioctl_drm(const IOCTLEntry *ie, uint8_t *buf_temp,
5602                              int fd, int cmd, abi_long arg)
5603 {
5604     struct drm_version *ver;
5605     struct target_drm_version *target_ver;
5606     abi_long ret;
5607 
5608     switch (ie->host_cmd) {
5609     case DRM_IOCTL_VERSION:
5610         if (!lock_user_struct(VERIFY_WRITE, target_ver, arg, 0)) {
5611             return -TARGET_EFAULT;
5612         }
5613         ver = (struct drm_version *)buf_temp;
5614         ret = target_to_host_drmversion(ver, target_ver);
5615         if (!is_error(ret)) {
5616             ret = get_errno(safe_ioctl(fd, ie->host_cmd, ver));
5617             if (is_error(ret)) {
5618                 unlock_drm_version(ver, target_ver, false);
5619             } else {
5620                 host_to_target_drmversion(target_ver, ver);
5621             }
5622         }
5623         unlock_user_struct(target_ver, arg, 0);
5624         return ret;
5625     }
5626     return -TARGET_ENOSYS;
5627 }
5628 
5629 static abi_long do_ioctl_drm_i915_getparam(const IOCTLEntry *ie,
5630                                            struct drm_i915_getparam *gparam,
5631                                            int fd, abi_long arg)
5632 {
5633     abi_long ret;
5634     int value;
5635     struct target_drm_i915_getparam *target_gparam;
5636 
5637     if (!lock_user_struct(VERIFY_READ, target_gparam, arg, 0)) {
5638         return -TARGET_EFAULT;
5639     }
5640 
5641     __get_user(gparam->param, &target_gparam->param);
5642     gparam->value = &value;
5643     ret = get_errno(safe_ioctl(fd, ie->host_cmd, gparam));
5644     put_user_s32(value, target_gparam->value);
5645 
5646     unlock_user_struct(target_gparam, arg, 0);
5647     return ret;
5648 }
5649 
5650 static abi_long do_ioctl_drm_i915(const IOCTLEntry *ie, uint8_t *buf_temp,
5651                                   int fd, int cmd, abi_long arg)
5652 {
5653     switch (ie->host_cmd) {
5654     case DRM_IOCTL_I915_GETPARAM:
5655         return do_ioctl_drm_i915_getparam(ie,
5656                                           (struct drm_i915_getparam *)buf_temp,
5657                                           fd, arg);
5658     default:
5659         return -TARGET_ENOSYS;
5660     }
5661 }
5662 
5663 #endif
5664 
5665 static abi_long do_ioctl_TUNSETTXFILTER(const IOCTLEntry *ie, uint8_t *buf_temp,
5666                                         int fd, int cmd, abi_long arg)
5667 {
5668     struct tun_filter *filter = (struct tun_filter *)buf_temp;
5669     struct tun_filter *target_filter;
5670     char *target_addr;
5671 
5672     assert(ie->access == IOC_W);
5673 
5674     target_filter = lock_user(VERIFY_READ, arg, sizeof(*target_filter), 1);
5675     if (!target_filter) {
5676         return -TARGET_EFAULT;
5677     }
5678     filter->flags = tswap16(target_filter->flags);
5679     filter->count = tswap16(target_filter->count);
5680     unlock_user(target_filter, arg, 0);
5681 
5682     if (filter->count) {
5683         if (offsetof(struct tun_filter, addr) + filter->count * ETH_ALEN >
5684             MAX_STRUCT_SIZE) {
5685             return -TARGET_EFAULT;
5686         }
5687 
5688         target_addr = lock_user(VERIFY_READ,
5689                                 arg + offsetof(struct tun_filter, addr),
5690                                 filter->count * ETH_ALEN, 1);
5691         if (!target_addr) {
5692             return -TARGET_EFAULT;
5693         }
5694         memcpy(filter->addr, target_addr, filter->count * ETH_ALEN);
5695         unlock_user(target_addr, arg + offsetof(struct tun_filter, addr), 0);
5696     }
5697 
5698     return get_errno(safe_ioctl(fd, ie->host_cmd, filter));
5699 }
5700 
5701 IOCTLEntry ioctl_entries[] = {
5702 #define IOCTL(cmd, access, ...) \
5703     { TARGET_ ## cmd, cmd, #cmd, access, 0, {  __VA_ARGS__ } },
5704 #define IOCTL_SPECIAL(cmd, access, dofn, ...)                      \
5705     { TARGET_ ## cmd, cmd, #cmd, access, dofn, {  __VA_ARGS__ } },
5706 #define IOCTL_IGNORE(cmd) \
5707     { TARGET_ ## cmd, 0, #cmd },
5708 #include "ioctls.h"
5709     { 0, 0, },
5710 };
5711 
5712 /* ??? Implement proper locking for ioctls.  */
5713 /* do_ioctl() Must return target values and target errnos. */
5714 static abi_long do_ioctl(int fd, int cmd, abi_long arg)
5715 {
5716     const IOCTLEntry *ie;
5717     const argtype *arg_type;
5718     abi_long ret;
5719     uint8_t buf_temp[MAX_STRUCT_SIZE];
5720     int target_size;
5721     void *argptr;
5722 
5723     ie = ioctl_entries;
5724     for(;;) {
5725         if (ie->target_cmd == 0) {
5726             qemu_log_mask(
5727                 LOG_UNIMP, "Unsupported ioctl: cmd=0x%04lx\n", (long)cmd);
5728             return -TARGET_ENOSYS;
5729         }
5730         if (ie->target_cmd == cmd)
5731             break;
5732         ie++;
5733     }
5734     arg_type = ie->arg_type;
5735     if (ie->do_ioctl) {
5736         return ie->do_ioctl(ie, buf_temp, fd, cmd, arg);
5737     } else if (!ie->host_cmd) {
5738         /* Some architectures define BSD ioctls in their headers
5739            that are not implemented in Linux.  */
5740         return -TARGET_ENOSYS;
5741     }
5742 
5743     switch(arg_type[0]) {
5744     case TYPE_NULL:
5745         /* no argument */
5746         ret = get_errno(safe_ioctl(fd, ie->host_cmd));
5747         break;
5748     case TYPE_PTRVOID:
5749     case TYPE_INT:
5750     case TYPE_LONG:
5751     case TYPE_ULONG:
5752         ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg));
5753         break;
5754     case TYPE_PTR:
5755         arg_type++;
5756         target_size = thunk_type_size(arg_type, 0);
5757         switch(ie->access) {
5758         case IOC_R:
5759             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5760             if (!is_error(ret)) {
5761                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5762                 if (!argptr)
5763                     return -TARGET_EFAULT;
5764                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5765                 unlock_user(argptr, arg, target_size);
5766             }
5767             break;
5768         case IOC_W:
5769             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5770             if (!argptr)
5771                 return -TARGET_EFAULT;
5772             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5773             unlock_user(argptr, arg, 0);
5774             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5775             break;
5776         default:
5777         case IOC_RW:
5778             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5779             if (!argptr)
5780                 return -TARGET_EFAULT;
5781             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5782             unlock_user(argptr, arg, 0);
5783             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5784             if (!is_error(ret)) {
5785                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5786                 if (!argptr)
5787                     return -TARGET_EFAULT;
5788                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5789                 unlock_user(argptr, arg, target_size);
5790             }
5791             break;
5792         }
5793         break;
5794     default:
5795         qemu_log_mask(LOG_UNIMP,
5796                       "Unsupported ioctl type: cmd=0x%04lx type=%d\n",
5797                       (long)cmd, arg_type[0]);
5798         ret = -TARGET_ENOSYS;
5799         break;
5800     }
5801     return ret;
5802 }
5803 
5804 static const bitmask_transtbl iflag_tbl[] = {
5805         { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK },
5806         { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT },
5807         { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR },
5808         { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK },
5809         { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK },
5810         { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP },
5811         { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR },
5812         { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR },
5813         { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL },
5814         { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC },
5815         { TARGET_IXON, TARGET_IXON, IXON, IXON },
5816         { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY },
5817         { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF },
5818         { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL },
5819         { TARGET_IUTF8, TARGET_IUTF8, IUTF8, IUTF8},
5820         { 0, 0, 0, 0 }
5821 };
5822 
5823 static const bitmask_transtbl oflag_tbl[] = {
5824 	{ TARGET_OPOST, TARGET_OPOST, OPOST, OPOST },
5825 	{ TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC },
5826 	{ TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR },
5827 	{ TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL },
5828 	{ TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR },
5829 	{ TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET },
5830 	{ TARGET_OFILL, TARGET_OFILL, OFILL, OFILL },
5831 	{ TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL },
5832 	{ TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 },
5833 	{ TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 },
5834 	{ TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 },
5835 	{ TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 },
5836 	{ TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 },
5837 	{ TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 },
5838 	{ TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 },
5839 	{ TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 },
5840 	{ TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 },
5841 	{ TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 },
5842 	{ TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 },
5843 	{ TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 },
5844 	{ TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 },
5845 	{ TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 },
5846 	{ TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 },
5847 	{ TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 },
5848 	{ 0, 0, 0, 0 }
5849 };
5850 
5851 static const bitmask_transtbl cflag_tbl[] = {
5852 	{ TARGET_CBAUD, TARGET_B0, CBAUD, B0 },
5853 	{ TARGET_CBAUD, TARGET_B50, CBAUD, B50 },
5854 	{ TARGET_CBAUD, TARGET_B75, CBAUD, B75 },
5855 	{ TARGET_CBAUD, TARGET_B110, CBAUD, B110 },
5856 	{ TARGET_CBAUD, TARGET_B134, CBAUD, B134 },
5857 	{ TARGET_CBAUD, TARGET_B150, CBAUD, B150 },
5858 	{ TARGET_CBAUD, TARGET_B200, CBAUD, B200 },
5859 	{ TARGET_CBAUD, TARGET_B300, CBAUD, B300 },
5860 	{ TARGET_CBAUD, TARGET_B600, CBAUD, B600 },
5861 	{ TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 },
5862 	{ TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 },
5863 	{ TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 },
5864 	{ TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 },
5865 	{ TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 },
5866 	{ TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 },
5867 	{ TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 },
5868 	{ TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 },
5869 	{ TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 },
5870 	{ TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 },
5871 	{ TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 },
5872 	{ TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 },
5873 	{ TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 },
5874 	{ TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 },
5875 	{ TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 },
5876 	{ TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB },
5877 	{ TARGET_CREAD, TARGET_CREAD, CREAD, CREAD },
5878 	{ TARGET_PARENB, TARGET_PARENB, PARENB, PARENB },
5879 	{ TARGET_PARODD, TARGET_PARODD, PARODD, PARODD },
5880 	{ TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL },
5881 	{ TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL },
5882 	{ TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS },
5883 	{ 0, 0, 0, 0 }
5884 };
5885 
5886 static const bitmask_transtbl lflag_tbl[] = {
5887   { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG },
5888   { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON },
5889   { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE },
5890   { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO },
5891   { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE },
5892   { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK },
5893   { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL },
5894   { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH },
5895   { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP },
5896   { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL },
5897   { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT },
5898   { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE },
5899   { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO },
5900   { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN },
5901   { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN },
5902   { TARGET_EXTPROC, TARGET_EXTPROC, EXTPROC, EXTPROC},
5903   { 0, 0, 0, 0 }
5904 };
5905 
5906 static void target_to_host_termios (void *dst, const void *src)
5907 {
5908     struct host_termios *host = dst;
5909     const struct target_termios *target = src;
5910 
5911     host->c_iflag =
5912         target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl);
5913     host->c_oflag =
5914         target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl);
5915     host->c_cflag =
5916         target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl);
5917     host->c_lflag =
5918         target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl);
5919     host->c_line = target->c_line;
5920 
5921     memset(host->c_cc, 0, sizeof(host->c_cc));
5922     host->c_cc[VINTR] = target->c_cc[TARGET_VINTR];
5923     host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT];
5924     host->c_cc[VERASE] = target->c_cc[TARGET_VERASE];
5925     host->c_cc[VKILL] = target->c_cc[TARGET_VKILL];
5926     host->c_cc[VEOF] = target->c_cc[TARGET_VEOF];
5927     host->c_cc[VTIME] = target->c_cc[TARGET_VTIME];
5928     host->c_cc[VMIN] = target->c_cc[TARGET_VMIN];
5929     host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC];
5930     host->c_cc[VSTART] = target->c_cc[TARGET_VSTART];
5931     host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP];
5932     host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP];
5933     host->c_cc[VEOL] = target->c_cc[TARGET_VEOL];
5934     host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT];
5935     host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD];
5936     host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE];
5937     host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT];
5938     host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2];
5939 }
5940 
5941 static void host_to_target_termios (void *dst, const void *src)
5942 {
5943     struct target_termios *target = dst;
5944     const struct host_termios *host = src;
5945 
5946     target->c_iflag =
5947         tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl));
5948     target->c_oflag =
5949         tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl));
5950     target->c_cflag =
5951         tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl));
5952     target->c_lflag =
5953         tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl));
5954     target->c_line = host->c_line;
5955 
5956     memset(target->c_cc, 0, sizeof(target->c_cc));
5957     target->c_cc[TARGET_VINTR] = host->c_cc[VINTR];
5958     target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT];
5959     target->c_cc[TARGET_VERASE] = host->c_cc[VERASE];
5960     target->c_cc[TARGET_VKILL] = host->c_cc[VKILL];
5961     target->c_cc[TARGET_VEOF] = host->c_cc[VEOF];
5962     target->c_cc[TARGET_VTIME] = host->c_cc[VTIME];
5963     target->c_cc[TARGET_VMIN] = host->c_cc[VMIN];
5964     target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC];
5965     target->c_cc[TARGET_VSTART] = host->c_cc[VSTART];
5966     target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP];
5967     target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP];
5968     target->c_cc[TARGET_VEOL] = host->c_cc[VEOL];
5969     target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT];
5970     target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD];
5971     target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE];
5972     target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT];
5973     target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2];
5974 }
5975 
5976 static const StructEntry struct_termios_def = {
5977     .convert = { host_to_target_termios, target_to_host_termios },
5978     .size = { sizeof(struct target_termios), sizeof(struct host_termios) },
5979     .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) },
5980     .print = print_termios,
5981 };
5982 
5983 static const bitmask_transtbl mmap_flags_tbl[] = {
5984     { TARGET_MAP_SHARED, TARGET_MAP_SHARED, MAP_SHARED, MAP_SHARED },
5985     { TARGET_MAP_PRIVATE, TARGET_MAP_PRIVATE, MAP_PRIVATE, MAP_PRIVATE },
5986     { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED },
5987     { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS,
5988       MAP_ANONYMOUS, MAP_ANONYMOUS },
5989     { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN,
5990       MAP_GROWSDOWN, MAP_GROWSDOWN },
5991     { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE,
5992       MAP_DENYWRITE, MAP_DENYWRITE },
5993     { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE,
5994       MAP_EXECUTABLE, MAP_EXECUTABLE },
5995     { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED },
5996     { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE,
5997       MAP_NORESERVE, MAP_NORESERVE },
5998     { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB },
5999     /* MAP_STACK had been ignored by the kernel for quite some time.
6000        Recognize it for the target insofar as we do not want to pass
6001        it through to the host.  */
6002     { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 },
6003     { 0, 0, 0, 0 }
6004 };
6005 
6006 /*
6007  * NOTE: TARGET_ABI32 is defined for TARGET_I386 (but not for TARGET_X86_64)
6008  *       TARGET_I386 is defined if TARGET_X86_64 is defined
6009  */
6010 #if defined(TARGET_I386)
6011 
6012 /* NOTE: there is really one LDT for all the threads */
6013 static uint8_t *ldt_table;
6014 
6015 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount)
6016 {
6017     int size;
6018     void *p;
6019 
6020     if (!ldt_table)
6021         return 0;
6022     size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE;
6023     if (size > bytecount)
6024         size = bytecount;
6025     p = lock_user(VERIFY_WRITE, ptr, size, 0);
6026     if (!p)
6027         return -TARGET_EFAULT;
6028     /* ??? Should this by byteswapped?  */
6029     memcpy(p, ldt_table, size);
6030     unlock_user(p, ptr, size);
6031     return size;
6032 }
6033 
6034 /* XXX: add locking support */
6035 static abi_long write_ldt(CPUX86State *env,
6036                           abi_ulong ptr, unsigned long bytecount, int oldmode)
6037 {
6038     struct target_modify_ldt_ldt_s ldt_info;
6039     struct target_modify_ldt_ldt_s *target_ldt_info;
6040     int seg_32bit, contents, read_exec_only, limit_in_pages;
6041     int seg_not_present, useable, lm;
6042     uint32_t *lp, entry_1, entry_2;
6043 
6044     if (bytecount != sizeof(ldt_info))
6045         return -TARGET_EINVAL;
6046     if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1))
6047         return -TARGET_EFAULT;
6048     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
6049     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
6050     ldt_info.limit = tswap32(target_ldt_info->limit);
6051     ldt_info.flags = tswap32(target_ldt_info->flags);
6052     unlock_user_struct(target_ldt_info, ptr, 0);
6053 
6054     if (ldt_info.entry_number >= TARGET_LDT_ENTRIES)
6055         return -TARGET_EINVAL;
6056     seg_32bit = ldt_info.flags & 1;
6057     contents = (ldt_info.flags >> 1) & 3;
6058     read_exec_only = (ldt_info.flags >> 3) & 1;
6059     limit_in_pages = (ldt_info.flags >> 4) & 1;
6060     seg_not_present = (ldt_info.flags >> 5) & 1;
6061     useable = (ldt_info.flags >> 6) & 1;
6062 #ifdef TARGET_ABI32
6063     lm = 0;
6064 #else
6065     lm = (ldt_info.flags >> 7) & 1;
6066 #endif
6067     if (contents == 3) {
6068         if (oldmode)
6069             return -TARGET_EINVAL;
6070         if (seg_not_present == 0)
6071             return -TARGET_EINVAL;
6072     }
6073     /* allocate the LDT */
6074     if (!ldt_table) {
6075         env->ldt.base = target_mmap(0,
6076                                     TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE,
6077                                     PROT_READ|PROT_WRITE,
6078                                     MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
6079         if (env->ldt.base == -1)
6080             return -TARGET_ENOMEM;
6081         memset(g2h_untagged(env->ldt.base), 0,
6082                TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE);
6083         env->ldt.limit = 0xffff;
6084         ldt_table = g2h_untagged(env->ldt.base);
6085     }
6086 
6087     /* NOTE: same code as Linux kernel */
6088     /* Allow LDTs to be cleared by the user. */
6089     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6090         if (oldmode ||
6091             (contents == 0		&&
6092              read_exec_only == 1	&&
6093              seg_32bit == 0		&&
6094              limit_in_pages == 0	&&
6095              seg_not_present == 1	&&
6096              useable == 0 )) {
6097             entry_1 = 0;
6098             entry_2 = 0;
6099             goto install;
6100         }
6101     }
6102 
6103     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6104         (ldt_info.limit & 0x0ffff);
6105     entry_2 = (ldt_info.base_addr & 0xff000000) |
6106         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6107         (ldt_info.limit & 0xf0000) |
6108         ((read_exec_only ^ 1) << 9) |
6109         (contents << 10) |
6110         ((seg_not_present ^ 1) << 15) |
6111         (seg_32bit << 22) |
6112         (limit_in_pages << 23) |
6113         (lm << 21) |
6114         0x7000;
6115     if (!oldmode)
6116         entry_2 |= (useable << 20);
6117 
6118     /* Install the new entry ...  */
6119 install:
6120     lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3));
6121     lp[0] = tswap32(entry_1);
6122     lp[1] = tswap32(entry_2);
6123     return 0;
6124 }
6125 
6126 /* specific and weird i386 syscalls */
6127 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr,
6128                               unsigned long bytecount)
6129 {
6130     abi_long ret;
6131 
6132     switch (func) {
6133     case 0:
6134         ret = read_ldt(ptr, bytecount);
6135         break;
6136     case 1:
6137         ret = write_ldt(env, ptr, bytecount, 1);
6138         break;
6139     case 0x11:
6140         ret = write_ldt(env, ptr, bytecount, 0);
6141         break;
6142     default:
6143         ret = -TARGET_ENOSYS;
6144         break;
6145     }
6146     return ret;
6147 }
6148 
6149 #if defined(TARGET_ABI32)
6150 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr)
6151 {
6152     uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6153     struct target_modify_ldt_ldt_s ldt_info;
6154     struct target_modify_ldt_ldt_s *target_ldt_info;
6155     int seg_32bit, contents, read_exec_only, limit_in_pages;
6156     int seg_not_present, useable, lm;
6157     uint32_t *lp, entry_1, entry_2;
6158     int i;
6159 
6160     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6161     if (!target_ldt_info)
6162         return -TARGET_EFAULT;
6163     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
6164     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
6165     ldt_info.limit = tswap32(target_ldt_info->limit);
6166     ldt_info.flags = tswap32(target_ldt_info->flags);
6167     if (ldt_info.entry_number == -1) {
6168         for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) {
6169             if (gdt_table[i] == 0) {
6170                 ldt_info.entry_number = i;
6171                 target_ldt_info->entry_number = tswap32(i);
6172                 break;
6173             }
6174         }
6175     }
6176     unlock_user_struct(target_ldt_info, ptr, 1);
6177 
6178     if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN ||
6179         ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX)
6180            return -TARGET_EINVAL;
6181     seg_32bit = ldt_info.flags & 1;
6182     contents = (ldt_info.flags >> 1) & 3;
6183     read_exec_only = (ldt_info.flags >> 3) & 1;
6184     limit_in_pages = (ldt_info.flags >> 4) & 1;
6185     seg_not_present = (ldt_info.flags >> 5) & 1;
6186     useable = (ldt_info.flags >> 6) & 1;
6187 #ifdef TARGET_ABI32
6188     lm = 0;
6189 #else
6190     lm = (ldt_info.flags >> 7) & 1;
6191 #endif
6192 
6193     if (contents == 3) {
6194         if (seg_not_present == 0)
6195             return -TARGET_EINVAL;
6196     }
6197 
6198     /* NOTE: same code as Linux kernel */
6199     /* Allow LDTs to be cleared by the user. */
6200     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6201         if ((contents == 0             &&
6202              read_exec_only == 1       &&
6203              seg_32bit == 0            &&
6204              limit_in_pages == 0       &&
6205              seg_not_present == 1      &&
6206              useable == 0 )) {
6207             entry_1 = 0;
6208             entry_2 = 0;
6209             goto install;
6210         }
6211     }
6212 
6213     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6214         (ldt_info.limit & 0x0ffff);
6215     entry_2 = (ldt_info.base_addr & 0xff000000) |
6216         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6217         (ldt_info.limit & 0xf0000) |
6218         ((read_exec_only ^ 1) << 9) |
6219         (contents << 10) |
6220         ((seg_not_present ^ 1) << 15) |
6221         (seg_32bit << 22) |
6222         (limit_in_pages << 23) |
6223         (useable << 20) |
6224         (lm << 21) |
6225         0x7000;
6226 
6227     /* Install the new entry ...  */
6228 install:
6229     lp = (uint32_t *)(gdt_table + ldt_info.entry_number);
6230     lp[0] = tswap32(entry_1);
6231     lp[1] = tswap32(entry_2);
6232     return 0;
6233 }
6234 
6235 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr)
6236 {
6237     struct target_modify_ldt_ldt_s *target_ldt_info;
6238     uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6239     uint32_t base_addr, limit, flags;
6240     int seg_32bit, contents, read_exec_only, limit_in_pages, idx;
6241     int seg_not_present, useable, lm;
6242     uint32_t *lp, entry_1, entry_2;
6243 
6244     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6245     if (!target_ldt_info)
6246         return -TARGET_EFAULT;
6247     idx = tswap32(target_ldt_info->entry_number);
6248     if (idx < TARGET_GDT_ENTRY_TLS_MIN ||
6249         idx > TARGET_GDT_ENTRY_TLS_MAX) {
6250         unlock_user_struct(target_ldt_info, ptr, 1);
6251         return -TARGET_EINVAL;
6252     }
6253     lp = (uint32_t *)(gdt_table + idx);
6254     entry_1 = tswap32(lp[0]);
6255     entry_2 = tswap32(lp[1]);
6256 
6257     read_exec_only = ((entry_2 >> 9) & 1) ^ 1;
6258     contents = (entry_2 >> 10) & 3;
6259     seg_not_present = ((entry_2 >> 15) & 1) ^ 1;
6260     seg_32bit = (entry_2 >> 22) & 1;
6261     limit_in_pages = (entry_2 >> 23) & 1;
6262     useable = (entry_2 >> 20) & 1;
6263 #ifdef TARGET_ABI32
6264     lm = 0;
6265 #else
6266     lm = (entry_2 >> 21) & 1;
6267 #endif
6268     flags = (seg_32bit << 0) | (contents << 1) |
6269         (read_exec_only << 3) | (limit_in_pages << 4) |
6270         (seg_not_present << 5) | (useable << 6) | (lm << 7);
6271     limit = (entry_1 & 0xffff) | (entry_2  & 0xf0000);
6272     base_addr = (entry_1 >> 16) |
6273         (entry_2 & 0xff000000) |
6274         ((entry_2 & 0xff) << 16);
6275     target_ldt_info->base_addr = tswapal(base_addr);
6276     target_ldt_info->limit = tswap32(limit);
6277     target_ldt_info->flags = tswap32(flags);
6278     unlock_user_struct(target_ldt_info, ptr, 1);
6279     return 0;
6280 }
6281 
6282 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6283 {
6284     return -TARGET_ENOSYS;
6285 }
6286 #else
6287 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6288 {
6289     abi_long ret = 0;
6290     abi_ulong val;
6291     int idx;
6292 
6293     switch(code) {
6294     case TARGET_ARCH_SET_GS:
6295     case TARGET_ARCH_SET_FS:
6296         if (code == TARGET_ARCH_SET_GS)
6297             idx = R_GS;
6298         else
6299             idx = R_FS;
6300         cpu_x86_load_seg(env, idx, 0);
6301         env->segs[idx].base = addr;
6302         break;
6303     case TARGET_ARCH_GET_GS:
6304     case TARGET_ARCH_GET_FS:
6305         if (code == TARGET_ARCH_GET_GS)
6306             idx = R_GS;
6307         else
6308             idx = R_FS;
6309         val = env->segs[idx].base;
6310         if (put_user(val, addr, abi_ulong))
6311             ret = -TARGET_EFAULT;
6312         break;
6313     default:
6314         ret = -TARGET_EINVAL;
6315         break;
6316     }
6317     return ret;
6318 }
6319 #endif /* defined(TARGET_ABI32 */
6320 #endif /* defined(TARGET_I386) */
6321 
6322 /*
6323  * These constants are generic.  Supply any that are missing from the host.
6324  */
6325 #ifndef PR_SET_NAME
6326 # define PR_SET_NAME    15
6327 # define PR_GET_NAME    16
6328 #endif
6329 #ifndef PR_SET_FP_MODE
6330 # define PR_SET_FP_MODE 45
6331 # define PR_GET_FP_MODE 46
6332 # define PR_FP_MODE_FR   (1 << 0)
6333 # define PR_FP_MODE_FRE  (1 << 1)
6334 #endif
6335 #ifndef PR_SVE_SET_VL
6336 # define PR_SVE_SET_VL  50
6337 # define PR_SVE_GET_VL  51
6338 # define PR_SVE_VL_LEN_MASK  0xffff
6339 # define PR_SVE_VL_INHERIT   (1 << 17)
6340 #endif
6341 #ifndef PR_PAC_RESET_KEYS
6342 # define PR_PAC_RESET_KEYS  54
6343 # define PR_PAC_APIAKEY   (1 << 0)
6344 # define PR_PAC_APIBKEY   (1 << 1)
6345 # define PR_PAC_APDAKEY   (1 << 2)
6346 # define PR_PAC_APDBKEY   (1 << 3)
6347 # define PR_PAC_APGAKEY   (1 << 4)
6348 #endif
6349 #ifndef PR_SET_TAGGED_ADDR_CTRL
6350 # define PR_SET_TAGGED_ADDR_CTRL 55
6351 # define PR_GET_TAGGED_ADDR_CTRL 56
6352 # define PR_TAGGED_ADDR_ENABLE  (1UL << 0)
6353 #endif
6354 #ifndef PR_MTE_TCF_SHIFT
6355 # define PR_MTE_TCF_SHIFT       1
6356 # define PR_MTE_TCF_NONE        (0UL << PR_MTE_TCF_SHIFT)
6357 # define PR_MTE_TCF_SYNC        (1UL << PR_MTE_TCF_SHIFT)
6358 # define PR_MTE_TCF_ASYNC       (2UL << PR_MTE_TCF_SHIFT)
6359 # define PR_MTE_TCF_MASK        (3UL << PR_MTE_TCF_SHIFT)
6360 # define PR_MTE_TAG_SHIFT       3
6361 # define PR_MTE_TAG_MASK        (0xffffUL << PR_MTE_TAG_SHIFT)
6362 #endif
6363 #ifndef PR_SET_IO_FLUSHER
6364 # define PR_SET_IO_FLUSHER 57
6365 # define PR_GET_IO_FLUSHER 58
6366 #endif
6367 #ifndef PR_SET_SYSCALL_USER_DISPATCH
6368 # define PR_SET_SYSCALL_USER_DISPATCH 59
6369 #endif
6370 #ifndef PR_SME_SET_VL
6371 # define PR_SME_SET_VL  63
6372 # define PR_SME_GET_VL  64
6373 # define PR_SME_VL_LEN_MASK  0xffff
6374 # define PR_SME_VL_INHERIT   (1 << 17)
6375 #endif
6376 
6377 #include "target_prctl.h"
6378 
6379 static abi_long do_prctl_inval0(CPUArchState *env)
6380 {
6381     return -TARGET_EINVAL;
6382 }
6383 
6384 static abi_long do_prctl_inval1(CPUArchState *env, abi_long arg2)
6385 {
6386     return -TARGET_EINVAL;
6387 }
6388 
6389 #ifndef do_prctl_get_fp_mode
6390 #define do_prctl_get_fp_mode do_prctl_inval0
6391 #endif
6392 #ifndef do_prctl_set_fp_mode
6393 #define do_prctl_set_fp_mode do_prctl_inval1
6394 #endif
6395 #ifndef do_prctl_sve_get_vl
6396 #define do_prctl_sve_get_vl do_prctl_inval0
6397 #endif
6398 #ifndef do_prctl_sve_set_vl
6399 #define do_prctl_sve_set_vl do_prctl_inval1
6400 #endif
6401 #ifndef do_prctl_reset_keys
6402 #define do_prctl_reset_keys do_prctl_inval1
6403 #endif
6404 #ifndef do_prctl_set_tagged_addr_ctrl
6405 #define do_prctl_set_tagged_addr_ctrl do_prctl_inval1
6406 #endif
6407 #ifndef do_prctl_get_tagged_addr_ctrl
6408 #define do_prctl_get_tagged_addr_ctrl do_prctl_inval0
6409 #endif
6410 #ifndef do_prctl_get_unalign
6411 #define do_prctl_get_unalign do_prctl_inval1
6412 #endif
6413 #ifndef do_prctl_set_unalign
6414 #define do_prctl_set_unalign do_prctl_inval1
6415 #endif
6416 #ifndef do_prctl_sme_get_vl
6417 #define do_prctl_sme_get_vl do_prctl_inval0
6418 #endif
6419 #ifndef do_prctl_sme_set_vl
6420 #define do_prctl_sme_set_vl do_prctl_inval1
6421 #endif
6422 
6423 static abi_long do_prctl(CPUArchState *env, abi_long option, abi_long arg2,
6424                          abi_long arg3, abi_long arg4, abi_long arg5)
6425 {
6426     abi_long ret;
6427 
6428     switch (option) {
6429     case PR_GET_PDEATHSIG:
6430         {
6431             int deathsig;
6432             ret = get_errno(prctl(PR_GET_PDEATHSIG, &deathsig,
6433                                   arg3, arg4, arg5));
6434             if (!is_error(ret) &&
6435                 put_user_s32(host_to_target_signal(deathsig), arg2)) {
6436                 return -TARGET_EFAULT;
6437             }
6438             return ret;
6439         }
6440     case PR_SET_PDEATHSIG:
6441         return get_errno(prctl(PR_SET_PDEATHSIG, target_to_host_signal(arg2),
6442                                arg3, arg4, arg5));
6443     case PR_GET_NAME:
6444         {
6445             void *name = lock_user(VERIFY_WRITE, arg2, 16, 1);
6446             if (!name) {
6447                 return -TARGET_EFAULT;
6448             }
6449             ret = get_errno(prctl(PR_GET_NAME, (uintptr_t)name,
6450                                   arg3, arg4, arg5));
6451             unlock_user(name, arg2, 16);
6452             return ret;
6453         }
6454     case PR_SET_NAME:
6455         {
6456             void *name = lock_user(VERIFY_READ, arg2, 16, 1);
6457             if (!name) {
6458                 return -TARGET_EFAULT;
6459             }
6460             ret = get_errno(prctl(PR_SET_NAME, (uintptr_t)name,
6461                                   arg3, arg4, arg5));
6462             unlock_user(name, arg2, 0);
6463             return ret;
6464         }
6465     case PR_GET_FP_MODE:
6466         return do_prctl_get_fp_mode(env);
6467     case PR_SET_FP_MODE:
6468         return do_prctl_set_fp_mode(env, arg2);
6469     case PR_SVE_GET_VL:
6470         return do_prctl_sve_get_vl(env);
6471     case PR_SVE_SET_VL:
6472         return do_prctl_sve_set_vl(env, arg2);
6473     case PR_SME_GET_VL:
6474         return do_prctl_sme_get_vl(env);
6475     case PR_SME_SET_VL:
6476         return do_prctl_sme_set_vl(env, arg2);
6477     case PR_PAC_RESET_KEYS:
6478         if (arg3 || arg4 || arg5) {
6479             return -TARGET_EINVAL;
6480         }
6481         return do_prctl_reset_keys(env, arg2);
6482     case PR_SET_TAGGED_ADDR_CTRL:
6483         if (arg3 || arg4 || arg5) {
6484             return -TARGET_EINVAL;
6485         }
6486         return do_prctl_set_tagged_addr_ctrl(env, arg2);
6487     case PR_GET_TAGGED_ADDR_CTRL:
6488         if (arg2 || arg3 || arg4 || arg5) {
6489             return -TARGET_EINVAL;
6490         }
6491         return do_prctl_get_tagged_addr_ctrl(env);
6492 
6493     case PR_GET_UNALIGN:
6494         return do_prctl_get_unalign(env, arg2);
6495     case PR_SET_UNALIGN:
6496         return do_prctl_set_unalign(env, arg2);
6497 
6498     case PR_CAP_AMBIENT:
6499     case PR_CAPBSET_READ:
6500     case PR_CAPBSET_DROP:
6501     case PR_GET_DUMPABLE:
6502     case PR_SET_DUMPABLE:
6503     case PR_GET_KEEPCAPS:
6504     case PR_SET_KEEPCAPS:
6505     case PR_GET_SECUREBITS:
6506     case PR_SET_SECUREBITS:
6507     case PR_GET_TIMING:
6508     case PR_SET_TIMING:
6509     case PR_GET_TIMERSLACK:
6510     case PR_SET_TIMERSLACK:
6511     case PR_MCE_KILL:
6512     case PR_MCE_KILL_GET:
6513     case PR_GET_NO_NEW_PRIVS:
6514     case PR_SET_NO_NEW_PRIVS:
6515     case PR_GET_IO_FLUSHER:
6516     case PR_SET_IO_FLUSHER:
6517         /* Some prctl options have no pointer arguments and we can pass on. */
6518         return get_errno(prctl(option, arg2, arg3, arg4, arg5));
6519 
6520     case PR_GET_CHILD_SUBREAPER:
6521     case PR_SET_CHILD_SUBREAPER:
6522     case PR_GET_SPECULATION_CTRL:
6523     case PR_SET_SPECULATION_CTRL:
6524     case PR_GET_TID_ADDRESS:
6525         /* TODO */
6526         return -TARGET_EINVAL;
6527 
6528     case PR_GET_FPEXC:
6529     case PR_SET_FPEXC:
6530         /* Was used for SPE on PowerPC. */
6531         return -TARGET_EINVAL;
6532 
6533     case PR_GET_ENDIAN:
6534     case PR_SET_ENDIAN:
6535     case PR_GET_FPEMU:
6536     case PR_SET_FPEMU:
6537     case PR_SET_MM:
6538     case PR_GET_SECCOMP:
6539     case PR_SET_SECCOMP:
6540     case PR_SET_SYSCALL_USER_DISPATCH:
6541     case PR_GET_THP_DISABLE:
6542     case PR_SET_THP_DISABLE:
6543     case PR_GET_TSC:
6544     case PR_SET_TSC:
6545         /* Disable to prevent the target disabling stuff we need. */
6546         return -TARGET_EINVAL;
6547 
6548     default:
6549         qemu_log_mask(LOG_UNIMP, "Unsupported prctl: " TARGET_ABI_FMT_ld "\n",
6550                       option);
6551         return -TARGET_EINVAL;
6552     }
6553 }
6554 
6555 #define NEW_STACK_SIZE 0x40000
6556 
6557 
6558 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER;
6559 typedef struct {
6560     CPUArchState *env;
6561     pthread_mutex_t mutex;
6562     pthread_cond_t cond;
6563     pthread_t thread;
6564     uint32_t tid;
6565     abi_ulong child_tidptr;
6566     abi_ulong parent_tidptr;
6567     sigset_t sigmask;
6568 } new_thread_info;
6569 
6570 static void *clone_func(void *arg)
6571 {
6572     new_thread_info *info = arg;
6573     CPUArchState *env;
6574     CPUState *cpu;
6575     TaskState *ts;
6576 
6577     rcu_register_thread();
6578     tcg_register_thread();
6579     env = info->env;
6580     cpu = env_cpu(env);
6581     thread_cpu = cpu;
6582     ts = (TaskState *)cpu->opaque;
6583     info->tid = sys_gettid();
6584     task_settid(ts);
6585     if (info->child_tidptr)
6586         put_user_u32(info->tid, info->child_tidptr);
6587     if (info->parent_tidptr)
6588         put_user_u32(info->tid, info->parent_tidptr);
6589     qemu_guest_random_seed_thread_part2(cpu->random_seed);
6590     /* Enable signals.  */
6591     sigprocmask(SIG_SETMASK, &info->sigmask, NULL);
6592     /* Signal to the parent that we're ready.  */
6593     pthread_mutex_lock(&info->mutex);
6594     pthread_cond_broadcast(&info->cond);
6595     pthread_mutex_unlock(&info->mutex);
6596     /* Wait until the parent has finished initializing the tls state.  */
6597     pthread_mutex_lock(&clone_lock);
6598     pthread_mutex_unlock(&clone_lock);
6599     cpu_loop(env);
6600     /* never exits */
6601     return NULL;
6602 }
6603 
6604 /* do_fork() Must return host values and target errnos (unlike most
6605    do_*() functions). */
6606 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp,
6607                    abi_ulong parent_tidptr, target_ulong newtls,
6608                    abi_ulong child_tidptr)
6609 {
6610     CPUState *cpu = env_cpu(env);
6611     int ret;
6612     TaskState *ts;
6613     CPUState *new_cpu;
6614     CPUArchState *new_env;
6615     sigset_t sigmask;
6616 
6617     flags &= ~CLONE_IGNORED_FLAGS;
6618 
6619     /* Emulate vfork() with fork() */
6620     if (flags & CLONE_VFORK)
6621         flags &= ~(CLONE_VFORK | CLONE_VM);
6622 
6623     if (flags & CLONE_VM) {
6624         TaskState *parent_ts = (TaskState *)cpu->opaque;
6625         new_thread_info info;
6626         pthread_attr_t attr;
6627 
6628         if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) ||
6629             (flags & CLONE_INVALID_THREAD_FLAGS)) {
6630             return -TARGET_EINVAL;
6631         }
6632 
6633         ts = g_new0(TaskState, 1);
6634         init_task_state(ts);
6635 
6636         /* Grab a mutex so that thread setup appears atomic.  */
6637         pthread_mutex_lock(&clone_lock);
6638 
6639         /*
6640          * If this is our first additional thread, we need to ensure we
6641          * generate code for parallel execution and flush old translations.
6642          * Do this now so that the copy gets CF_PARALLEL too.
6643          */
6644         if (!(cpu->tcg_cflags & CF_PARALLEL)) {
6645             cpu->tcg_cflags |= CF_PARALLEL;
6646             tb_flush(cpu);
6647         }
6648 
6649         /* we create a new CPU instance. */
6650         new_env = cpu_copy(env);
6651         /* Init regs that differ from the parent.  */
6652         cpu_clone_regs_child(new_env, newsp, flags);
6653         cpu_clone_regs_parent(env, flags);
6654         new_cpu = env_cpu(new_env);
6655         new_cpu->opaque = ts;
6656         ts->bprm = parent_ts->bprm;
6657         ts->info = parent_ts->info;
6658         ts->signal_mask = parent_ts->signal_mask;
6659 
6660         if (flags & CLONE_CHILD_CLEARTID) {
6661             ts->child_tidptr = child_tidptr;
6662         }
6663 
6664         if (flags & CLONE_SETTLS) {
6665             cpu_set_tls (new_env, newtls);
6666         }
6667 
6668         memset(&info, 0, sizeof(info));
6669         pthread_mutex_init(&info.mutex, NULL);
6670         pthread_mutex_lock(&info.mutex);
6671         pthread_cond_init(&info.cond, NULL);
6672         info.env = new_env;
6673         if (flags & CLONE_CHILD_SETTID) {
6674             info.child_tidptr = child_tidptr;
6675         }
6676         if (flags & CLONE_PARENT_SETTID) {
6677             info.parent_tidptr = parent_tidptr;
6678         }
6679 
6680         ret = pthread_attr_init(&attr);
6681         ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE);
6682         ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
6683         /* It is not safe to deliver signals until the child has finished
6684            initializing, so temporarily block all signals.  */
6685         sigfillset(&sigmask);
6686         sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask);
6687         cpu->random_seed = qemu_guest_random_seed_thread_part1();
6688 
6689         ret = pthread_create(&info.thread, &attr, clone_func, &info);
6690         /* TODO: Free new CPU state if thread creation failed.  */
6691 
6692         sigprocmask(SIG_SETMASK, &info.sigmask, NULL);
6693         pthread_attr_destroy(&attr);
6694         if (ret == 0) {
6695             /* Wait for the child to initialize.  */
6696             pthread_cond_wait(&info.cond, &info.mutex);
6697             ret = info.tid;
6698         } else {
6699             ret = -1;
6700         }
6701         pthread_mutex_unlock(&info.mutex);
6702         pthread_cond_destroy(&info.cond);
6703         pthread_mutex_destroy(&info.mutex);
6704         pthread_mutex_unlock(&clone_lock);
6705     } else {
6706         /* if no CLONE_VM, we consider it is a fork */
6707         if (flags & CLONE_INVALID_FORK_FLAGS) {
6708             return -TARGET_EINVAL;
6709         }
6710 
6711         /* We can't support custom termination signals */
6712         if ((flags & CSIGNAL) != TARGET_SIGCHLD) {
6713             return -TARGET_EINVAL;
6714         }
6715 
6716         if (block_signals()) {
6717             return -QEMU_ERESTARTSYS;
6718         }
6719 
6720         fork_start();
6721         ret = fork();
6722         if (ret == 0) {
6723             /* Child Process.  */
6724             cpu_clone_regs_child(env, newsp, flags);
6725             fork_end(1);
6726             /* There is a race condition here.  The parent process could
6727                theoretically read the TID in the child process before the child
6728                tid is set.  This would require using either ptrace
6729                (not implemented) or having *_tidptr to point at a shared memory
6730                mapping.  We can't repeat the spinlock hack used above because
6731                the child process gets its own copy of the lock.  */
6732             if (flags & CLONE_CHILD_SETTID)
6733                 put_user_u32(sys_gettid(), child_tidptr);
6734             if (flags & CLONE_PARENT_SETTID)
6735                 put_user_u32(sys_gettid(), parent_tidptr);
6736             ts = (TaskState *)cpu->opaque;
6737             if (flags & CLONE_SETTLS)
6738                 cpu_set_tls (env, newtls);
6739             if (flags & CLONE_CHILD_CLEARTID)
6740                 ts->child_tidptr = child_tidptr;
6741         } else {
6742             cpu_clone_regs_parent(env, flags);
6743             fork_end(0);
6744         }
6745     }
6746     return ret;
6747 }
6748 
6749 /* warning : doesn't handle linux specific flags... */
6750 static int target_to_host_fcntl_cmd(int cmd)
6751 {
6752     int ret;
6753 
6754     switch(cmd) {
6755     case TARGET_F_DUPFD:
6756     case TARGET_F_GETFD:
6757     case TARGET_F_SETFD:
6758     case TARGET_F_GETFL:
6759     case TARGET_F_SETFL:
6760     case TARGET_F_OFD_GETLK:
6761     case TARGET_F_OFD_SETLK:
6762     case TARGET_F_OFD_SETLKW:
6763         ret = cmd;
6764         break;
6765     case TARGET_F_GETLK:
6766         ret = F_GETLK64;
6767         break;
6768     case TARGET_F_SETLK:
6769         ret = F_SETLK64;
6770         break;
6771     case TARGET_F_SETLKW:
6772         ret = F_SETLKW64;
6773         break;
6774     case TARGET_F_GETOWN:
6775         ret = F_GETOWN;
6776         break;
6777     case TARGET_F_SETOWN:
6778         ret = F_SETOWN;
6779         break;
6780     case TARGET_F_GETSIG:
6781         ret = F_GETSIG;
6782         break;
6783     case TARGET_F_SETSIG:
6784         ret = F_SETSIG;
6785         break;
6786 #if TARGET_ABI_BITS == 32
6787     case TARGET_F_GETLK64:
6788         ret = F_GETLK64;
6789         break;
6790     case TARGET_F_SETLK64:
6791         ret = F_SETLK64;
6792         break;
6793     case TARGET_F_SETLKW64:
6794         ret = F_SETLKW64;
6795         break;
6796 #endif
6797     case TARGET_F_SETLEASE:
6798         ret = F_SETLEASE;
6799         break;
6800     case TARGET_F_GETLEASE:
6801         ret = F_GETLEASE;
6802         break;
6803 #ifdef F_DUPFD_CLOEXEC
6804     case TARGET_F_DUPFD_CLOEXEC:
6805         ret = F_DUPFD_CLOEXEC;
6806         break;
6807 #endif
6808     case TARGET_F_NOTIFY:
6809         ret = F_NOTIFY;
6810         break;
6811 #ifdef F_GETOWN_EX
6812     case TARGET_F_GETOWN_EX:
6813         ret = F_GETOWN_EX;
6814         break;
6815 #endif
6816 #ifdef F_SETOWN_EX
6817     case TARGET_F_SETOWN_EX:
6818         ret = F_SETOWN_EX;
6819         break;
6820 #endif
6821 #ifdef F_SETPIPE_SZ
6822     case TARGET_F_SETPIPE_SZ:
6823         ret = F_SETPIPE_SZ;
6824         break;
6825     case TARGET_F_GETPIPE_SZ:
6826         ret = F_GETPIPE_SZ;
6827         break;
6828 #endif
6829 #ifdef F_ADD_SEALS
6830     case TARGET_F_ADD_SEALS:
6831         ret = F_ADD_SEALS;
6832         break;
6833     case TARGET_F_GET_SEALS:
6834         ret = F_GET_SEALS;
6835         break;
6836 #endif
6837     default:
6838         ret = -TARGET_EINVAL;
6839         break;
6840     }
6841 
6842 #if defined(__powerpc64__)
6843     /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and
6844      * is not supported by kernel. The glibc fcntl call actually adjusts
6845      * them to 5, 6 and 7 before making the syscall(). Since we make the
6846      * syscall directly, adjust to what is supported by the kernel.
6847      */
6848     if (ret >= F_GETLK64 && ret <= F_SETLKW64) {
6849         ret -= F_GETLK64 - 5;
6850     }
6851 #endif
6852 
6853     return ret;
6854 }
6855 
6856 #define FLOCK_TRANSTBL \
6857     switch (type) { \
6858     TRANSTBL_CONVERT(F_RDLCK); \
6859     TRANSTBL_CONVERT(F_WRLCK); \
6860     TRANSTBL_CONVERT(F_UNLCK); \
6861     }
6862 
6863 static int target_to_host_flock(int type)
6864 {
6865 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a
6866     FLOCK_TRANSTBL
6867 #undef  TRANSTBL_CONVERT
6868     return -TARGET_EINVAL;
6869 }
6870 
6871 static int host_to_target_flock(int type)
6872 {
6873 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a
6874     FLOCK_TRANSTBL
6875 #undef  TRANSTBL_CONVERT
6876     /* if we don't know how to convert the value coming
6877      * from the host we copy to the target field as-is
6878      */
6879     return type;
6880 }
6881 
6882 static inline abi_long copy_from_user_flock(struct flock64 *fl,
6883                                             abi_ulong target_flock_addr)
6884 {
6885     struct target_flock *target_fl;
6886     int l_type;
6887 
6888     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6889         return -TARGET_EFAULT;
6890     }
6891 
6892     __get_user(l_type, &target_fl->l_type);
6893     l_type = target_to_host_flock(l_type);
6894     if (l_type < 0) {
6895         return l_type;
6896     }
6897     fl->l_type = l_type;
6898     __get_user(fl->l_whence, &target_fl->l_whence);
6899     __get_user(fl->l_start, &target_fl->l_start);
6900     __get_user(fl->l_len, &target_fl->l_len);
6901     __get_user(fl->l_pid, &target_fl->l_pid);
6902     unlock_user_struct(target_fl, target_flock_addr, 0);
6903     return 0;
6904 }
6905 
6906 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr,
6907                                           const struct flock64 *fl)
6908 {
6909     struct target_flock *target_fl;
6910     short l_type;
6911 
6912     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6913         return -TARGET_EFAULT;
6914     }
6915 
6916     l_type = host_to_target_flock(fl->l_type);
6917     __put_user(l_type, &target_fl->l_type);
6918     __put_user(fl->l_whence, &target_fl->l_whence);
6919     __put_user(fl->l_start, &target_fl->l_start);
6920     __put_user(fl->l_len, &target_fl->l_len);
6921     __put_user(fl->l_pid, &target_fl->l_pid);
6922     unlock_user_struct(target_fl, target_flock_addr, 1);
6923     return 0;
6924 }
6925 
6926 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr);
6927 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl);
6928 
6929 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
6930 struct target_oabi_flock64 {
6931     abi_short l_type;
6932     abi_short l_whence;
6933     abi_llong l_start;
6934     abi_llong l_len;
6935     abi_int   l_pid;
6936 } QEMU_PACKED;
6937 
6938 static inline abi_long copy_from_user_oabi_flock64(struct flock64 *fl,
6939                                                    abi_ulong target_flock_addr)
6940 {
6941     struct target_oabi_flock64 *target_fl;
6942     int l_type;
6943 
6944     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6945         return -TARGET_EFAULT;
6946     }
6947 
6948     __get_user(l_type, &target_fl->l_type);
6949     l_type = target_to_host_flock(l_type);
6950     if (l_type < 0) {
6951         return l_type;
6952     }
6953     fl->l_type = l_type;
6954     __get_user(fl->l_whence, &target_fl->l_whence);
6955     __get_user(fl->l_start, &target_fl->l_start);
6956     __get_user(fl->l_len, &target_fl->l_len);
6957     __get_user(fl->l_pid, &target_fl->l_pid);
6958     unlock_user_struct(target_fl, target_flock_addr, 0);
6959     return 0;
6960 }
6961 
6962 static inline abi_long copy_to_user_oabi_flock64(abi_ulong target_flock_addr,
6963                                                  const struct flock64 *fl)
6964 {
6965     struct target_oabi_flock64 *target_fl;
6966     short l_type;
6967 
6968     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6969         return -TARGET_EFAULT;
6970     }
6971 
6972     l_type = host_to_target_flock(fl->l_type);
6973     __put_user(l_type, &target_fl->l_type);
6974     __put_user(fl->l_whence, &target_fl->l_whence);
6975     __put_user(fl->l_start, &target_fl->l_start);
6976     __put_user(fl->l_len, &target_fl->l_len);
6977     __put_user(fl->l_pid, &target_fl->l_pid);
6978     unlock_user_struct(target_fl, target_flock_addr, 1);
6979     return 0;
6980 }
6981 #endif
6982 
6983 static inline abi_long copy_from_user_flock64(struct flock64 *fl,
6984                                               abi_ulong target_flock_addr)
6985 {
6986     struct target_flock64 *target_fl;
6987     int l_type;
6988 
6989     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6990         return -TARGET_EFAULT;
6991     }
6992 
6993     __get_user(l_type, &target_fl->l_type);
6994     l_type = target_to_host_flock(l_type);
6995     if (l_type < 0) {
6996         return l_type;
6997     }
6998     fl->l_type = l_type;
6999     __get_user(fl->l_whence, &target_fl->l_whence);
7000     __get_user(fl->l_start, &target_fl->l_start);
7001     __get_user(fl->l_len, &target_fl->l_len);
7002     __get_user(fl->l_pid, &target_fl->l_pid);
7003     unlock_user_struct(target_fl, target_flock_addr, 0);
7004     return 0;
7005 }
7006 
7007 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr,
7008                                             const struct flock64 *fl)
7009 {
7010     struct target_flock64 *target_fl;
7011     short l_type;
7012 
7013     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
7014         return -TARGET_EFAULT;
7015     }
7016 
7017     l_type = host_to_target_flock(fl->l_type);
7018     __put_user(l_type, &target_fl->l_type);
7019     __put_user(fl->l_whence, &target_fl->l_whence);
7020     __put_user(fl->l_start, &target_fl->l_start);
7021     __put_user(fl->l_len, &target_fl->l_len);
7022     __put_user(fl->l_pid, &target_fl->l_pid);
7023     unlock_user_struct(target_fl, target_flock_addr, 1);
7024     return 0;
7025 }
7026 
7027 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg)
7028 {
7029     struct flock64 fl64;
7030 #ifdef F_GETOWN_EX
7031     struct f_owner_ex fox;
7032     struct target_f_owner_ex *target_fox;
7033 #endif
7034     abi_long ret;
7035     int host_cmd = target_to_host_fcntl_cmd(cmd);
7036 
7037     if (host_cmd == -TARGET_EINVAL)
7038 	    return host_cmd;
7039 
7040     switch(cmd) {
7041     case TARGET_F_GETLK:
7042         ret = copy_from_user_flock(&fl64, arg);
7043         if (ret) {
7044             return ret;
7045         }
7046         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7047         if (ret == 0) {
7048             ret = copy_to_user_flock(arg, &fl64);
7049         }
7050         break;
7051 
7052     case TARGET_F_SETLK:
7053     case TARGET_F_SETLKW:
7054         ret = copy_from_user_flock(&fl64, arg);
7055         if (ret) {
7056             return ret;
7057         }
7058         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7059         break;
7060 
7061     case TARGET_F_GETLK64:
7062     case TARGET_F_OFD_GETLK:
7063         ret = copy_from_user_flock64(&fl64, arg);
7064         if (ret) {
7065             return ret;
7066         }
7067         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7068         if (ret == 0) {
7069             ret = copy_to_user_flock64(arg, &fl64);
7070         }
7071         break;
7072     case TARGET_F_SETLK64:
7073     case TARGET_F_SETLKW64:
7074     case TARGET_F_OFD_SETLK:
7075     case TARGET_F_OFD_SETLKW:
7076         ret = copy_from_user_flock64(&fl64, arg);
7077         if (ret) {
7078             return ret;
7079         }
7080         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7081         break;
7082 
7083     case TARGET_F_GETFL:
7084         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7085         if (ret >= 0) {
7086             ret = host_to_target_bitmask(ret, fcntl_flags_tbl);
7087         }
7088         break;
7089 
7090     case TARGET_F_SETFL:
7091         ret = get_errno(safe_fcntl(fd, host_cmd,
7092                                    target_to_host_bitmask(arg,
7093                                                           fcntl_flags_tbl)));
7094         break;
7095 
7096 #ifdef F_GETOWN_EX
7097     case TARGET_F_GETOWN_EX:
7098         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7099         if (ret >= 0) {
7100             if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0))
7101                 return -TARGET_EFAULT;
7102             target_fox->type = tswap32(fox.type);
7103             target_fox->pid = tswap32(fox.pid);
7104             unlock_user_struct(target_fox, arg, 1);
7105         }
7106         break;
7107 #endif
7108 
7109 #ifdef F_SETOWN_EX
7110     case TARGET_F_SETOWN_EX:
7111         if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1))
7112             return -TARGET_EFAULT;
7113         fox.type = tswap32(target_fox->type);
7114         fox.pid = tswap32(target_fox->pid);
7115         unlock_user_struct(target_fox, arg, 0);
7116         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7117         break;
7118 #endif
7119 
7120     case TARGET_F_SETSIG:
7121         ret = get_errno(safe_fcntl(fd, host_cmd, target_to_host_signal(arg)));
7122         break;
7123 
7124     case TARGET_F_GETSIG:
7125         ret = host_to_target_signal(get_errno(safe_fcntl(fd, host_cmd, arg)));
7126         break;
7127 
7128     case TARGET_F_SETOWN:
7129     case TARGET_F_GETOWN:
7130     case TARGET_F_SETLEASE:
7131     case TARGET_F_GETLEASE:
7132     case TARGET_F_SETPIPE_SZ:
7133     case TARGET_F_GETPIPE_SZ:
7134     case TARGET_F_ADD_SEALS:
7135     case TARGET_F_GET_SEALS:
7136         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7137         break;
7138 
7139     default:
7140         ret = get_errno(safe_fcntl(fd, cmd, arg));
7141         break;
7142     }
7143     return ret;
7144 }
7145 
7146 #ifdef USE_UID16
7147 
7148 static inline int high2lowuid(int uid)
7149 {
7150     if (uid > 65535)
7151         return 65534;
7152     else
7153         return uid;
7154 }
7155 
7156 static inline int high2lowgid(int gid)
7157 {
7158     if (gid > 65535)
7159         return 65534;
7160     else
7161         return gid;
7162 }
7163 
7164 static inline int low2highuid(int uid)
7165 {
7166     if ((int16_t)uid == -1)
7167         return -1;
7168     else
7169         return uid;
7170 }
7171 
7172 static inline int low2highgid(int gid)
7173 {
7174     if ((int16_t)gid == -1)
7175         return -1;
7176     else
7177         return gid;
7178 }
7179 static inline int tswapid(int id)
7180 {
7181     return tswap16(id);
7182 }
7183 
7184 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
7185 
7186 #else /* !USE_UID16 */
7187 static inline int high2lowuid(int uid)
7188 {
7189     return uid;
7190 }
7191 static inline int high2lowgid(int gid)
7192 {
7193     return gid;
7194 }
7195 static inline int low2highuid(int uid)
7196 {
7197     return uid;
7198 }
7199 static inline int low2highgid(int gid)
7200 {
7201     return gid;
7202 }
7203 static inline int tswapid(int id)
7204 {
7205     return tswap32(id);
7206 }
7207 
7208 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
7209 
7210 #endif /* USE_UID16 */
7211 
7212 /* We must do direct syscalls for setting UID/GID, because we want to
7213  * implement the Linux system call semantics of "change only for this thread",
7214  * not the libc/POSIX semantics of "change for all threads in process".
7215  * (See http://ewontfix.com/17/ for more details.)
7216  * We use the 32-bit version of the syscalls if present; if it is not
7217  * then either the host architecture supports 32-bit UIDs natively with
7218  * the standard syscall, or the 16-bit UID is the best we can do.
7219  */
7220 #ifdef __NR_setuid32
7221 #define __NR_sys_setuid __NR_setuid32
7222 #else
7223 #define __NR_sys_setuid __NR_setuid
7224 #endif
7225 #ifdef __NR_setgid32
7226 #define __NR_sys_setgid __NR_setgid32
7227 #else
7228 #define __NR_sys_setgid __NR_setgid
7229 #endif
7230 #ifdef __NR_setresuid32
7231 #define __NR_sys_setresuid __NR_setresuid32
7232 #else
7233 #define __NR_sys_setresuid __NR_setresuid
7234 #endif
7235 #ifdef __NR_setresgid32
7236 #define __NR_sys_setresgid __NR_setresgid32
7237 #else
7238 #define __NR_sys_setresgid __NR_setresgid
7239 #endif
7240 
7241 _syscall1(int, sys_setuid, uid_t, uid)
7242 _syscall1(int, sys_setgid, gid_t, gid)
7243 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
7244 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
7245 
7246 void syscall_init(void)
7247 {
7248     IOCTLEntry *ie;
7249     const argtype *arg_type;
7250     int size;
7251 
7252     thunk_init(STRUCT_MAX);
7253 
7254 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
7255 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
7256 #include "syscall_types.h"
7257 #undef STRUCT
7258 #undef STRUCT_SPECIAL
7259 
7260     /* we patch the ioctl size if necessary. We rely on the fact that
7261        no ioctl has all the bits at '1' in the size field */
7262     ie = ioctl_entries;
7263     while (ie->target_cmd != 0) {
7264         if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) ==
7265             TARGET_IOC_SIZEMASK) {
7266             arg_type = ie->arg_type;
7267             if (arg_type[0] != TYPE_PTR) {
7268                 fprintf(stderr, "cannot patch size for ioctl 0x%x\n",
7269                         ie->target_cmd);
7270                 exit(1);
7271             }
7272             arg_type++;
7273             size = thunk_type_size(arg_type, 0);
7274             ie->target_cmd = (ie->target_cmd &
7275                               ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) |
7276                 (size << TARGET_IOC_SIZESHIFT);
7277         }
7278 
7279         /* automatic consistency check if same arch */
7280 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
7281     (defined(__x86_64__) && defined(TARGET_X86_64))
7282         if (unlikely(ie->target_cmd != ie->host_cmd)) {
7283             fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
7284                     ie->name, ie->target_cmd, ie->host_cmd);
7285         }
7286 #endif
7287         ie++;
7288     }
7289 }
7290 
7291 #ifdef TARGET_NR_truncate64
7292 static inline abi_long target_truncate64(CPUArchState *cpu_env, const char *arg1,
7293                                          abi_long arg2,
7294                                          abi_long arg3,
7295                                          abi_long arg4)
7296 {
7297     if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) {
7298         arg2 = arg3;
7299         arg3 = arg4;
7300     }
7301     return get_errno(truncate64(arg1, target_offset64(arg2, arg3)));
7302 }
7303 #endif
7304 
7305 #ifdef TARGET_NR_ftruncate64
7306 static inline abi_long target_ftruncate64(CPUArchState *cpu_env, abi_long arg1,
7307                                           abi_long arg2,
7308                                           abi_long arg3,
7309                                           abi_long arg4)
7310 {
7311     if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) {
7312         arg2 = arg3;
7313         arg3 = arg4;
7314     }
7315     return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3)));
7316 }
7317 #endif
7318 
7319 #if defined(TARGET_NR_timer_settime) || \
7320     (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
7321 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_its,
7322                                                  abi_ulong target_addr)
7323 {
7324     if (target_to_host_timespec(&host_its->it_interval, target_addr +
7325                                 offsetof(struct target_itimerspec,
7326                                          it_interval)) ||
7327         target_to_host_timespec(&host_its->it_value, target_addr +
7328                                 offsetof(struct target_itimerspec,
7329                                          it_value))) {
7330         return -TARGET_EFAULT;
7331     }
7332 
7333     return 0;
7334 }
7335 #endif
7336 
7337 #if defined(TARGET_NR_timer_settime64) || \
7338     (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD))
7339 static inline abi_long target_to_host_itimerspec64(struct itimerspec *host_its,
7340                                                    abi_ulong target_addr)
7341 {
7342     if (target_to_host_timespec64(&host_its->it_interval, target_addr +
7343                                   offsetof(struct target__kernel_itimerspec,
7344                                            it_interval)) ||
7345         target_to_host_timespec64(&host_its->it_value, target_addr +
7346                                   offsetof(struct target__kernel_itimerspec,
7347                                            it_value))) {
7348         return -TARGET_EFAULT;
7349     }
7350 
7351     return 0;
7352 }
7353 #endif
7354 
7355 #if ((defined(TARGET_NR_timerfd_gettime) || \
7356       defined(TARGET_NR_timerfd_settime)) && defined(CONFIG_TIMERFD)) || \
7357       defined(TARGET_NR_timer_gettime) || defined(TARGET_NR_timer_settime)
7358 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr,
7359                                                  struct itimerspec *host_its)
7360 {
7361     if (host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7362                                                        it_interval),
7363                                 &host_its->it_interval) ||
7364         host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7365                                                        it_value),
7366                                 &host_its->it_value)) {
7367         return -TARGET_EFAULT;
7368     }
7369     return 0;
7370 }
7371 #endif
7372 
7373 #if ((defined(TARGET_NR_timerfd_gettime64) || \
7374       defined(TARGET_NR_timerfd_settime64)) && defined(CONFIG_TIMERFD)) || \
7375       defined(TARGET_NR_timer_gettime64) || defined(TARGET_NR_timer_settime64)
7376 static inline abi_long host_to_target_itimerspec64(abi_ulong target_addr,
7377                                                    struct itimerspec *host_its)
7378 {
7379     if (host_to_target_timespec64(target_addr +
7380                                   offsetof(struct target__kernel_itimerspec,
7381                                            it_interval),
7382                                   &host_its->it_interval) ||
7383         host_to_target_timespec64(target_addr +
7384                                   offsetof(struct target__kernel_itimerspec,
7385                                            it_value),
7386                                   &host_its->it_value)) {
7387         return -TARGET_EFAULT;
7388     }
7389     return 0;
7390 }
7391 #endif
7392 
7393 #if defined(TARGET_NR_adjtimex) || \
7394     (defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME))
7395 static inline abi_long target_to_host_timex(struct timex *host_tx,
7396                                             abi_long target_addr)
7397 {
7398     struct target_timex *target_tx;
7399 
7400     if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7401         return -TARGET_EFAULT;
7402     }
7403 
7404     __get_user(host_tx->modes, &target_tx->modes);
7405     __get_user(host_tx->offset, &target_tx->offset);
7406     __get_user(host_tx->freq, &target_tx->freq);
7407     __get_user(host_tx->maxerror, &target_tx->maxerror);
7408     __get_user(host_tx->esterror, &target_tx->esterror);
7409     __get_user(host_tx->status, &target_tx->status);
7410     __get_user(host_tx->constant, &target_tx->constant);
7411     __get_user(host_tx->precision, &target_tx->precision);
7412     __get_user(host_tx->tolerance, &target_tx->tolerance);
7413     __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7414     __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7415     __get_user(host_tx->tick, &target_tx->tick);
7416     __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7417     __get_user(host_tx->jitter, &target_tx->jitter);
7418     __get_user(host_tx->shift, &target_tx->shift);
7419     __get_user(host_tx->stabil, &target_tx->stabil);
7420     __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7421     __get_user(host_tx->calcnt, &target_tx->calcnt);
7422     __get_user(host_tx->errcnt, &target_tx->errcnt);
7423     __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7424     __get_user(host_tx->tai, &target_tx->tai);
7425 
7426     unlock_user_struct(target_tx, target_addr, 0);
7427     return 0;
7428 }
7429 
7430 static inline abi_long host_to_target_timex(abi_long target_addr,
7431                                             struct timex *host_tx)
7432 {
7433     struct target_timex *target_tx;
7434 
7435     if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7436         return -TARGET_EFAULT;
7437     }
7438 
7439     __put_user(host_tx->modes, &target_tx->modes);
7440     __put_user(host_tx->offset, &target_tx->offset);
7441     __put_user(host_tx->freq, &target_tx->freq);
7442     __put_user(host_tx->maxerror, &target_tx->maxerror);
7443     __put_user(host_tx->esterror, &target_tx->esterror);
7444     __put_user(host_tx->status, &target_tx->status);
7445     __put_user(host_tx->constant, &target_tx->constant);
7446     __put_user(host_tx->precision, &target_tx->precision);
7447     __put_user(host_tx->tolerance, &target_tx->tolerance);
7448     __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7449     __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7450     __put_user(host_tx->tick, &target_tx->tick);
7451     __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7452     __put_user(host_tx->jitter, &target_tx->jitter);
7453     __put_user(host_tx->shift, &target_tx->shift);
7454     __put_user(host_tx->stabil, &target_tx->stabil);
7455     __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7456     __put_user(host_tx->calcnt, &target_tx->calcnt);
7457     __put_user(host_tx->errcnt, &target_tx->errcnt);
7458     __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7459     __put_user(host_tx->tai, &target_tx->tai);
7460 
7461     unlock_user_struct(target_tx, target_addr, 1);
7462     return 0;
7463 }
7464 #endif
7465 
7466 
7467 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
7468 static inline abi_long target_to_host_timex64(struct timex *host_tx,
7469                                               abi_long target_addr)
7470 {
7471     struct target__kernel_timex *target_tx;
7472 
7473     if (copy_from_user_timeval64(&host_tx->time, target_addr +
7474                                  offsetof(struct target__kernel_timex,
7475                                           time))) {
7476         return -TARGET_EFAULT;
7477     }
7478 
7479     if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7480         return -TARGET_EFAULT;
7481     }
7482 
7483     __get_user(host_tx->modes, &target_tx->modes);
7484     __get_user(host_tx->offset, &target_tx->offset);
7485     __get_user(host_tx->freq, &target_tx->freq);
7486     __get_user(host_tx->maxerror, &target_tx->maxerror);
7487     __get_user(host_tx->esterror, &target_tx->esterror);
7488     __get_user(host_tx->status, &target_tx->status);
7489     __get_user(host_tx->constant, &target_tx->constant);
7490     __get_user(host_tx->precision, &target_tx->precision);
7491     __get_user(host_tx->tolerance, &target_tx->tolerance);
7492     __get_user(host_tx->tick, &target_tx->tick);
7493     __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7494     __get_user(host_tx->jitter, &target_tx->jitter);
7495     __get_user(host_tx->shift, &target_tx->shift);
7496     __get_user(host_tx->stabil, &target_tx->stabil);
7497     __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7498     __get_user(host_tx->calcnt, &target_tx->calcnt);
7499     __get_user(host_tx->errcnt, &target_tx->errcnt);
7500     __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7501     __get_user(host_tx->tai, &target_tx->tai);
7502 
7503     unlock_user_struct(target_tx, target_addr, 0);
7504     return 0;
7505 }
7506 
7507 static inline abi_long host_to_target_timex64(abi_long target_addr,
7508                                               struct timex *host_tx)
7509 {
7510     struct target__kernel_timex *target_tx;
7511 
7512    if (copy_to_user_timeval64(target_addr +
7513                               offsetof(struct target__kernel_timex, time),
7514                               &host_tx->time)) {
7515         return -TARGET_EFAULT;
7516     }
7517 
7518     if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7519         return -TARGET_EFAULT;
7520     }
7521 
7522     __put_user(host_tx->modes, &target_tx->modes);
7523     __put_user(host_tx->offset, &target_tx->offset);
7524     __put_user(host_tx->freq, &target_tx->freq);
7525     __put_user(host_tx->maxerror, &target_tx->maxerror);
7526     __put_user(host_tx->esterror, &target_tx->esterror);
7527     __put_user(host_tx->status, &target_tx->status);
7528     __put_user(host_tx->constant, &target_tx->constant);
7529     __put_user(host_tx->precision, &target_tx->precision);
7530     __put_user(host_tx->tolerance, &target_tx->tolerance);
7531     __put_user(host_tx->tick, &target_tx->tick);
7532     __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7533     __put_user(host_tx->jitter, &target_tx->jitter);
7534     __put_user(host_tx->shift, &target_tx->shift);
7535     __put_user(host_tx->stabil, &target_tx->stabil);
7536     __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7537     __put_user(host_tx->calcnt, &target_tx->calcnt);
7538     __put_user(host_tx->errcnt, &target_tx->errcnt);
7539     __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7540     __put_user(host_tx->tai, &target_tx->tai);
7541 
7542     unlock_user_struct(target_tx, target_addr, 1);
7543     return 0;
7544 }
7545 #endif
7546 
7547 #ifndef HAVE_SIGEV_NOTIFY_THREAD_ID
7548 #define sigev_notify_thread_id _sigev_un._tid
7549 #endif
7550 
7551 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp,
7552                                                abi_ulong target_addr)
7553 {
7554     struct target_sigevent *target_sevp;
7555 
7556     if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) {
7557         return -TARGET_EFAULT;
7558     }
7559 
7560     /* This union is awkward on 64 bit systems because it has a 32 bit
7561      * integer and a pointer in it; we follow the conversion approach
7562      * used for handling sigval types in signal.c so the guest should get
7563      * the correct value back even if we did a 64 bit byteswap and it's
7564      * using the 32 bit integer.
7565      */
7566     host_sevp->sigev_value.sival_ptr =
7567         (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr);
7568     host_sevp->sigev_signo =
7569         target_to_host_signal(tswap32(target_sevp->sigev_signo));
7570     host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify);
7571     host_sevp->sigev_notify_thread_id = tswap32(target_sevp->_sigev_un._tid);
7572 
7573     unlock_user_struct(target_sevp, target_addr, 1);
7574     return 0;
7575 }
7576 
7577 #if defined(TARGET_NR_mlockall)
7578 static inline int target_to_host_mlockall_arg(int arg)
7579 {
7580     int result = 0;
7581 
7582     if (arg & TARGET_MCL_CURRENT) {
7583         result |= MCL_CURRENT;
7584     }
7585     if (arg & TARGET_MCL_FUTURE) {
7586         result |= MCL_FUTURE;
7587     }
7588 #ifdef MCL_ONFAULT
7589     if (arg & TARGET_MCL_ONFAULT) {
7590         result |= MCL_ONFAULT;
7591     }
7592 #endif
7593 
7594     return result;
7595 }
7596 #endif
7597 
7598 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) ||     \
7599      defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) ||  \
7600      defined(TARGET_NR_newfstatat))
7601 static inline abi_long host_to_target_stat64(CPUArchState *cpu_env,
7602                                              abi_ulong target_addr,
7603                                              struct stat *host_st)
7604 {
7605 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
7606     if (cpu_env->eabi) {
7607         struct target_eabi_stat64 *target_st;
7608 
7609         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7610             return -TARGET_EFAULT;
7611         memset(target_st, 0, sizeof(struct target_eabi_stat64));
7612         __put_user(host_st->st_dev, &target_st->st_dev);
7613         __put_user(host_st->st_ino, &target_st->st_ino);
7614 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7615         __put_user(host_st->st_ino, &target_st->__st_ino);
7616 #endif
7617         __put_user(host_st->st_mode, &target_st->st_mode);
7618         __put_user(host_st->st_nlink, &target_st->st_nlink);
7619         __put_user(host_st->st_uid, &target_st->st_uid);
7620         __put_user(host_st->st_gid, &target_st->st_gid);
7621         __put_user(host_st->st_rdev, &target_st->st_rdev);
7622         __put_user(host_st->st_size, &target_st->st_size);
7623         __put_user(host_st->st_blksize, &target_st->st_blksize);
7624         __put_user(host_st->st_blocks, &target_st->st_blocks);
7625         __put_user(host_st->st_atime, &target_st->target_st_atime);
7626         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7627         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7628 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7629         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7630         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7631         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7632 #endif
7633         unlock_user_struct(target_st, target_addr, 1);
7634     } else
7635 #endif
7636     {
7637 #if defined(TARGET_HAS_STRUCT_STAT64)
7638         struct target_stat64 *target_st;
7639 #else
7640         struct target_stat *target_st;
7641 #endif
7642 
7643         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7644             return -TARGET_EFAULT;
7645         memset(target_st, 0, sizeof(*target_st));
7646         __put_user(host_st->st_dev, &target_st->st_dev);
7647         __put_user(host_st->st_ino, &target_st->st_ino);
7648 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7649         __put_user(host_st->st_ino, &target_st->__st_ino);
7650 #endif
7651         __put_user(host_st->st_mode, &target_st->st_mode);
7652         __put_user(host_st->st_nlink, &target_st->st_nlink);
7653         __put_user(host_st->st_uid, &target_st->st_uid);
7654         __put_user(host_st->st_gid, &target_st->st_gid);
7655         __put_user(host_st->st_rdev, &target_st->st_rdev);
7656         /* XXX: better use of kernel struct */
7657         __put_user(host_st->st_size, &target_st->st_size);
7658         __put_user(host_st->st_blksize, &target_st->st_blksize);
7659         __put_user(host_st->st_blocks, &target_st->st_blocks);
7660         __put_user(host_st->st_atime, &target_st->target_st_atime);
7661         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7662         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7663 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7664         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7665         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7666         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7667 #endif
7668         unlock_user_struct(target_st, target_addr, 1);
7669     }
7670 
7671     return 0;
7672 }
7673 #endif
7674 
7675 #if defined(TARGET_NR_statx) && defined(__NR_statx)
7676 static inline abi_long host_to_target_statx(struct target_statx *host_stx,
7677                                             abi_ulong target_addr)
7678 {
7679     struct target_statx *target_stx;
7680 
7681     if (!lock_user_struct(VERIFY_WRITE, target_stx, target_addr,  0)) {
7682         return -TARGET_EFAULT;
7683     }
7684     memset(target_stx, 0, sizeof(*target_stx));
7685 
7686     __put_user(host_stx->stx_mask, &target_stx->stx_mask);
7687     __put_user(host_stx->stx_blksize, &target_stx->stx_blksize);
7688     __put_user(host_stx->stx_attributes, &target_stx->stx_attributes);
7689     __put_user(host_stx->stx_nlink, &target_stx->stx_nlink);
7690     __put_user(host_stx->stx_uid, &target_stx->stx_uid);
7691     __put_user(host_stx->stx_gid, &target_stx->stx_gid);
7692     __put_user(host_stx->stx_mode, &target_stx->stx_mode);
7693     __put_user(host_stx->stx_ino, &target_stx->stx_ino);
7694     __put_user(host_stx->stx_size, &target_stx->stx_size);
7695     __put_user(host_stx->stx_blocks, &target_stx->stx_blocks);
7696     __put_user(host_stx->stx_attributes_mask, &target_stx->stx_attributes_mask);
7697     __put_user(host_stx->stx_atime.tv_sec, &target_stx->stx_atime.tv_sec);
7698     __put_user(host_stx->stx_atime.tv_nsec, &target_stx->stx_atime.tv_nsec);
7699     __put_user(host_stx->stx_btime.tv_sec, &target_stx->stx_btime.tv_sec);
7700     __put_user(host_stx->stx_btime.tv_nsec, &target_stx->stx_btime.tv_nsec);
7701     __put_user(host_stx->stx_ctime.tv_sec, &target_stx->stx_ctime.tv_sec);
7702     __put_user(host_stx->stx_ctime.tv_nsec, &target_stx->stx_ctime.tv_nsec);
7703     __put_user(host_stx->stx_mtime.tv_sec, &target_stx->stx_mtime.tv_sec);
7704     __put_user(host_stx->stx_mtime.tv_nsec, &target_stx->stx_mtime.tv_nsec);
7705     __put_user(host_stx->stx_rdev_major, &target_stx->stx_rdev_major);
7706     __put_user(host_stx->stx_rdev_minor, &target_stx->stx_rdev_minor);
7707     __put_user(host_stx->stx_dev_major, &target_stx->stx_dev_major);
7708     __put_user(host_stx->stx_dev_minor, &target_stx->stx_dev_minor);
7709 
7710     unlock_user_struct(target_stx, target_addr, 1);
7711 
7712     return 0;
7713 }
7714 #endif
7715 
7716 static int do_sys_futex(int *uaddr, int op, int val,
7717                          const struct timespec *timeout, int *uaddr2,
7718                          int val3)
7719 {
7720 #if HOST_LONG_BITS == 64
7721 #if defined(__NR_futex)
7722     /* always a 64-bit time_t, it doesn't define _time64 version  */
7723     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7724 
7725 #endif
7726 #else /* HOST_LONG_BITS == 64 */
7727 #if defined(__NR_futex_time64)
7728     if (sizeof(timeout->tv_sec) == 8) {
7729         /* _time64 function on 32bit arch */
7730         return sys_futex_time64(uaddr, op, val, timeout, uaddr2, val3);
7731     }
7732 #endif
7733 #if defined(__NR_futex)
7734     /* old function on 32bit arch */
7735     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7736 #endif
7737 #endif /* HOST_LONG_BITS == 64 */
7738     g_assert_not_reached();
7739 }
7740 
7741 static int do_safe_futex(int *uaddr, int op, int val,
7742                          const struct timespec *timeout, int *uaddr2,
7743                          int val3)
7744 {
7745 #if HOST_LONG_BITS == 64
7746 #if defined(__NR_futex)
7747     /* always a 64-bit time_t, it doesn't define _time64 version  */
7748     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7749 #endif
7750 #else /* HOST_LONG_BITS == 64 */
7751 #if defined(__NR_futex_time64)
7752     if (sizeof(timeout->tv_sec) == 8) {
7753         /* _time64 function on 32bit arch */
7754         return get_errno(safe_futex_time64(uaddr, op, val, timeout, uaddr2,
7755                                            val3));
7756     }
7757 #endif
7758 #if defined(__NR_futex)
7759     /* old function on 32bit arch */
7760     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7761 #endif
7762 #endif /* HOST_LONG_BITS == 64 */
7763     return -TARGET_ENOSYS;
7764 }
7765 
7766 /* ??? Using host futex calls even when target atomic operations
7767    are not really atomic probably breaks things.  However implementing
7768    futexes locally would make futexes shared between multiple processes
7769    tricky.  However they're probably useless because guest atomic
7770    operations won't work either.  */
7771 #if defined(TARGET_NR_futex) || defined(TARGET_NR_futex_time64)
7772 static int do_futex(CPUState *cpu, bool time64, target_ulong uaddr,
7773                     int op, int val, target_ulong timeout,
7774                     target_ulong uaddr2, int val3)
7775 {
7776     struct timespec ts, *pts = NULL;
7777     void *haddr2 = NULL;
7778     int base_op;
7779 
7780     /* We assume FUTEX_* constants are the same on both host and target. */
7781 #ifdef FUTEX_CMD_MASK
7782     base_op = op & FUTEX_CMD_MASK;
7783 #else
7784     base_op = op;
7785 #endif
7786     switch (base_op) {
7787     case FUTEX_WAIT:
7788     case FUTEX_WAIT_BITSET:
7789         val = tswap32(val);
7790         break;
7791     case FUTEX_WAIT_REQUEUE_PI:
7792         val = tswap32(val);
7793         haddr2 = g2h(cpu, uaddr2);
7794         break;
7795     case FUTEX_LOCK_PI:
7796     case FUTEX_LOCK_PI2:
7797         break;
7798     case FUTEX_WAKE:
7799     case FUTEX_WAKE_BITSET:
7800     case FUTEX_TRYLOCK_PI:
7801     case FUTEX_UNLOCK_PI:
7802         timeout = 0;
7803         break;
7804     case FUTEX_FD:
7805         val = target_to_host_signal(val);
7806         timeout = 0;
7807         break;
7808     case FUTEX_CMP_REQUEUE:
7809     case FUTEX_CMP_REQUEUE_PI:
7810         val3 = tswap32(val3);
7811         /* fall through */
7812     case FUTEX_REQUEUE:
7813     case FUTEX_WAKE_OP:
7814         /*
7815          * For these, the 4th argument is not TIMEOUT, but VAL2.
7816          * But the prototype of do_safe_futex takes a pointer, so
7817          * insert casts to satisfy the compiler.  We do not need
7818          * to tswap VAL2 since it's not compared to guest memory.
7819           */
7820         pts = (struct timespec *)(uintptr_t)timeout;
7821         timeout = 0;
7822         haddr2 = g2h(cpu, uaddr2);
7823         break;
7824     default:
7825         return -TARGET_ENOSYS;
7826     }
7827     if (timeout) {
7828         pts = &ts;
7829         if (time64
7830             ? target_to_host_timespec64(pts, timeout)
7831             : target_to_host_timespec(pts, timeout)) {
7832             return -TARGET_EFAULT;
7833         }
7834     }
7835     return do_safe_futex(g2h(cpu, uaddr), op, val, pts, haddr2, val3);
7836 }
7837 #endif
7838 
7839 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7840 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname,
7841                                      abi_long handle, abi_long mount_id,
7842                                      abi_long flags)
7843 {
7844     struct file_handle *target_fh;
7845     struct file_handle *fh;
7846     int mid = 0;
7847     abi_long ret;
7848     char *name;
7849     unsigned int size, total_size;
7850 
7851     if (get_user_s32(size, handle)) {
7852         return -TARGET_EFAULT;
7853     }
7854 
7855     name = lock_user_string(pathname);
7856     if (!name) {
7857         return -TARGET_EFAULT;
7858     }
7859 
7860     total_size = sizeof(struct file_handle) + size;
7861     target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0);
7862     if (!target_fh) {
7863         unlock_user(name, pathname, 0);
7864         return -TARGET_EFAULT;
7865     }
7866 
7867     fh = g_malloc0(total_size);
7868     fh->handle_bytes = size;
7869 
7870     ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags));
7871     unlock_user(name, pathname, 0);
7872 
7873     /* man name_to_handle_at(2):
7874      * Other than the use of the handle_bytes field, the caller should treat
7875      * the file_handle structure as an opaque data type
7876      */
7877 
7878     memcpy(target_fh, fh, total_size);
7879     target_fh->handle_bytes = tswap32(fh->handle_bytes);
7880     target_fh->handle_type = tswap32(fh->handle_type);
7881     g_free(fh);
7882     unlock_user(target_fh, handle, total_size);
7883 
7884     if (put_user_s32(mid, mount_id)) {
7885         return -TARGET_EFAULT;
7886     }
7887 
7888     return ret;
7889 
7890 }
7891 #endif
7892 
7893 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7894 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle,
7895                                      abi_long flags)
7896 {
7897     struct file_handle *target_fh;
7898     struct file_handle *fh;
7899     unsigned int size, total_size;
7900     abi_long ret;
7901 
7902     if (get_user_s32(size, handle)) {
7903         return -TARGET_EFAULT;
7904     }
7905 
7906     total_size = sizeof(struct file_handle) + size;
7907     target_fh = lock_user(VERIFY_READ, handle, total_size, 1);
7908     if (!target_fh) {
7909         return -TARGET_EFAULT;
7910     }
7911 
7912     fh = g_memdup(target_fh, total_size);
7913     fh->handle_bytes = size;
7914     fh->handle_type = tswap32(target_fh->handle_type);
7915 
7916     ret = get_errno(open_by_handle_at(mount_fd, fh,
7917                     target_to_host_bitmask(flags, fcntl_flags_tbl)));
7918 
7919     g_free(fh);
7920 
7921     unlock_user(target_fh, handle, total_size);
7922 
7923     return ret;
7924 }
7925 #endif
7926 
7927 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
7928 
7929 static abi_long do_signalfd4(int fd, abi_long mask, int flags)
7930 {
7931     int host_flags;
7932     target_sigset_t *target_mask;
7933     sigset_t host_mask;
7934     abi_long ret;
7935 
7936     if (flags & ~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC)) {
7937         return -TARGET_EINVAL;
7938     }
7939     if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) {
7940         return -TARGET_EFAULT;
7941     }
7942 
7943     target_to_host_sigset(&host_mask, target_mask);
7944 
7945     host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
7946 
7947     ret = get_errno(signalfd(fd, &host_mask, host_flags));
7948     if (ret >= 0) {
7949         fd_trans_register(ret, &target_signalfd_trans);
7950     }
7951 
7952     unlock_user_struct(target_mask, mask, 0);
7953 
7954     return ret;
7955 }
7956 #endif
7957 
7958 /* Map host to target signal numbers for the wait family of syscalls.
7959    Assume all other status bits are the same.  */
7960 int host_to_target_waitstatus(int status)
7961 {
7962     if (WIFSIGNALED(status)) {
7963         return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f);
7964     }
7965     if (WIFSTOPPED(status)) {
7966         return (host_to_target_signal(WSTOPSIG(status)) << 8)
7967                | (status & 0xff);
7968     }
7969     return status;
7970 }
7971 
7972 static int open_self_cmdline(CPUArchState *cpu_env, int fd)
7973 {
7974     CPUState *cpu = env_cpu(cpu_env);
7975     struct linux_binprm *bprm = ((TaskState *)cpu->opaque)->bprm;
7976     int i;
7977 
7978     for (i = 0; i < bprm->argc; i++) {
7979         size_t len = strlen(bprm->argv[i]) + 1;
7980 
7981         if (write(fd, bprm->argv[i], len) != len) {
7982             return -1;
7983         }
7984     }
7985 
7986     return 0;
7987 }
7988 
7989 static int open_self_maps(CPUArchState *cpu_env, int fd)
7990 {
7991     CPUState *cpu = env_cpu(cpu_env);
7992     TaskState *ts = cpu->opaque;
7993     GSList *map_info = read_self_maps();
7994     GSList *s;
7995     int count;
7996 
7997     for (s = map_info; s; s = g_slist_next(s)) {
7998         MapInfo *e = (MapInfo *) s->data;
7999 
8000         if (h2g_valid(e->start)) {
8001             unsigned long min = e->start;
8002             unsigned long max = e->end;
8003             int flags = page_get_flags(h2g(min));
8004             const char *path;
8005 
8006             max = h2g_valid(max - 1) ?
8007                 max : (uintptr_t) g2h_untagged(GUEST_ADDR_MAX) + 1;
8008 
8009             if (page_check_range(h2g(min), max - min, flags) == -1) {
8010                 continue;
8011             }
8012 
8013 #ifdef TARGET_HPPA
8014             if (h2g(max) == ts->info->stack_limit) {
8015 #else
8016             if (h2g(min) == ts->info->stack_limit) {
8017 #endif
8018                 path = "[stack]";
8019             } else {
8020                 path = e->path;
8021             }
8022 
8023             count = dprintf(fd, TARGET_ABI_FMT_ptr "-" TARGET_ABI_FMT_ptr
8024                             " %c%c%c%c %08" PRIx64 " %s %"PRId64,
8025                             h2g(min), h2g(max - 1) + 1,
8026                             (flags & PAGE_READ) ? 'r' : '-',
8027                             (flags & PAGE_WRITE_ORG) ? 'w' : '-',
8028                             (flags & PAGE_EXEC) ? 'x' : '-',
8029                             e->is_priv ? 'p' : 's',
8030                             (uint64_t) e->offset, e->dev, e->inode);
8031             if (path) {
8032                 dprintf(fd, "%*s%s\n", 73 - count, "", path);
8033             } else {
8034                 dprintf(fd, "\n");
8035             }
8036         }
8037     }
8038 
8039     free_self_maps(map_info);
8040 
8041 #ifdef TARGET_VSYSCALL_PAGE
8042     /*
8043      * We only support execution from the vsyscall page.
8044      * This is as if CONFIG_LEGACY_VSYSCALL_XONLY=y from v5.3.
8045      */
8046     count = dprintf(fd, TARGET_FMT_lx "-" TARGET_FMT_lx
8047                     " --xp 00000000 00:00 0",
8048                     TARGET_VSYSCALL_PAGE, TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE);
8049     dprintf(fd, "%*s%s\n", 73 - count, "",  "[vsyscall]");
8050 #endif
8051 
8052     return 0;
8053 }
8054 
8055 static int open_self_stat(CPUArchState *cpu_env, int fd)
8056 {
8057     CPUState *cpu = env_cpu(cpu_env);
8058     TaskState *ts = cpu->opaque;
8059     g_autoptr(GString) buf = g_string_new(NULL);
8060     int i;
8061 
8062     for (i = 0; i < 44; i++) {
8063         if (i == 0) {
8064             /* pid */
8065             g_string_printf(buf, FMT_pid " ", getpid());
8066         } else if (i == 1) {
8067             /* app name */
8068             gchar *bin = g_strrstr(ts->bprm->argv[0], "/");
8069             bin = bin ? bin + 1 : ts->bprm->argv[0];
8070             g_string_printf(buf, "(%.15s) ", bin);
8071         } else if (i == 3) {
8072             /* ppid */
8073             g_string_printf(buf, FMT_pid " ", getppid());
8074         } else if (i == 21) {
8075             /* starttime */
8076             g_string_printf(buf, "%" PRIu64 " ", ts->start_boottime);
8077         } else if (i == 27) {
8078             /* stack bottom */
8079             g_string_printf(buf, TARGET_ABI_FMT_ld " ", ts->info->start_stack);
8080         } else {
8081             /* for the rest, there is MasterCard */
8082             g_string_printf(buf, "0%c", i == 43 ? '\n' : ' ');
8083         }
8084 
8085         if (write(fd, buf->str, buf->len) != buf->len) {
8086             return -1;
8087         }
8088     }
8089 
8090     return 0;
8091 }
8092 
8093 static int open_self_auxv(CPUArchState *cpu_env, int fd)
8094 {
8095     CPUState *cpu = env_cpu(cpu_env);
8096     TaskState *ts = cpu->opaque;
8097     abi_ulong auxv = ts->info->saved_auxv;
8098     abi_ulong len = ts->info->auxv_len;
8099     char *ptr;
8100 
8101     /*
8102      * Auxiliary vector is stored in target process stack.
8103      * read in whole auxv vector and copy it to file
8104      */
8105     ptr = lock_user(VERIFY_READ, auxv, len, 0);
8106     if (ptr != NULL) {
8107         while (len > 0) {
8108             ssize_t r;
8109             r = write(fd, ptr, len);
8110             if (r <= 0) {
8111                 break;
8112             }
8113             len -= r;
8114             ptr += r;
8115         }
8116         lseek(fd, 0, SEEK_SET);
8117         unlock_user(ptr, auxv, len);
8118     }
8119 
8120     return 0;
8121 }
8122 
8123 static int is_proc_myself(const char *filename, const char *entry)
8124 {
8125     if (!strncmp(filename, "/proc/", strlen("/proc/"))) {
8126         filename += strlen("/proc/");
8127         if (!strncmp(filename, "self/", strlen("self/"))) {
8128             filename += strlen("self/");
8129         } else if (*filename >= '1' && *filename <= '9') {
8130             char myself[80];
8131             snprintf(myself, sizeof(myself), "%d/", getpid());
8132             if (!strncmp(filename, myself, strlen(myself))) {
8133                 filename += strlen(myself);
8134             } else {
8135                 return 0;
8136             }
8137         } else {
8138             return 0;
8139         }
8140         if (!strcmp(filename, entry)) {
8141             return 1;
8142         }
8143     }
8144     return 0;
8145 }
8146 
8147 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN || \
8148     defined(TARGET_SPARC) || defined(TARGET_M68K) || defined(TARGET_HPPA)
8149 static int is_proc(const char *filename, const char *entry)
8150 {
8151     return strcmp(filename, entry) == 0;
8152 }
8153 #endif
8154 
8155 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8156 static int open_net_route(CPUArchState *cpu_env, int fd)
8157 {
8158     FILE *fp;
8159     char *line = NULL;
8160     size_t len = 0;
8161     ssize_t read;
8162 
8163     fp = fopen("/proc/net/route", "r");
8164     if (fp == NULL) {
8165         return -1;
8166     }
8167 
8168     /* read header */
8169 
8170     read = getline(&line, &len, fp);
8171     dprintf(fd, "%s", line);
8172 
8173     /* read routes */
8174 
8175     while ((read = getline(&line, &len, fp)) != -1) {
8176         char iface[16];
8177         uint32_t dest, gw, mask;
8178         unsigned int flags, refcnt, use, metric, mtu, window, irtt;
8179         int fields;
8180 
8181         fields = sscanf(line,
8182                         "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8183                         iface, &dest, &gw, &flags, &refcnt, &use, &metric,
8184                         &mask, &mtu, &window, &irtt);
8185         if (fields != 11) {
8186             continue;
8187         }
8188         dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8189                 iface, tswap32(dest), tswap32(gw), flags, refcnt, use,
8190                 metric, tswap32(mask), mtu, window, irtt);
8191     }
8192 
8193     free(line);
8194     fclose(fp);
8195 
8196     return 0;
8197 }
8198 #endif
8199 
8200 #if defined(TARGET_SPARC)
8201 static int open_cpuinfo(CPUArchState *cpu_env, int fd)
8202 {
8203     dprintf(fd, "type\t\t: sun4u\n");
8204     return 0;
8205 }
8206 #endif
8207 
8208 #if defined(TARGET_HPPA)
8209 static int open_cpuinfo(CPUArchState *cpu_env, int fd)
8210 {
8211     dprintf(fd, "cpu family\t: PA-RISC 1.1e\n");
8212     dprintf(fd, "cpu\t\t: PA7300LC (PCX-L2)\n");
8213     dprintf(fd, "capabilities\t: os32\n");
8214     dprintf(fd, "model\t\t: 9000/778/B160L\n");
8215     dprintf(fd, "model name\t: Merlin L2 160 QEMU (9000/778/B160L)\n");
8216     return 0;
8217 }
8218 #endif
8219 
8220 #if defined(TARGET_M68K)
8221 static int open_hardware(CPUArchState *cpu_env, int fd)
8222 {
8223     dprintf(fd, "Model:\t\tqemu-m68k\n");
8224     return 0;
8225 }
8226 #endif
8227 
8228 static int do_openat(CPUArchState *cpu_env, int dirfd, const char *pathname, int flags, mode_t mode)
8229 {
8230     struct fake_open {
8231         const char *filename;
8232         int (*fill)(CPUArchState *cpu_env, int fd);
8233         int (*cmp)(const char *s1, const char *s2);
8234     };
8235     const struct fake_open *fake_open;
8236     static const struct fake_open fakes[] = {
8237         { "maps", open_self_maps, is_proc_myself },
8238         { "stat", open_self_stat, is_proc_myself },
8239         { "auxv", open_self_auxv, is_proc_myself },
8240         { "cmdline", open_self_cmdline, is_proc_myself },
8241 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8242         { "/proc/net/route", open_net_route, is_proc },
8243 #endif
8244 #if defined(TARGET_SPARC) || defined(TARGET_HPPA)
8245         { "/proc/cpuinfo", open_cpuinfo, is_proc },
8246 #endif
8247 #if defined(TARGET_M68K)
8248         { "/proc/hardware", open_hardware, is_proc },
8249 #endif
8250         { NULL, NULL, NULL }
8251     };
8252 
8253     if (is_proc_myself(pathname, "exe")) {
8254         int execfd = qemu_getauxval(AT_EXECFD);
8255         return execfd ? execfd : safe_openat(dirfd, exec_path, flags, mode);
8256     }
8257 
8258     for (fake_open = fakes; fake_open->filename; fake_open++) {
8259         if (fake_open->cmp(pathname, fake_open->filename)) {
8260             break;
8261         }
8262     }
8263 
8264     if (fake_open->filename) {
8265         const char *tmpdir;
8266         char filename[PATH_MAX];
8267         int fd, r;
8268 
8269         fd = memfd_create("qemu-open", 0);
8270         if (fd < 0) {
8271             if (errno != ENOSYS) {
8272                 return fd;
8273             }
8274             /* create temporary file to map stat to */
8275             tmpdir = getenv("TMPDIR");
8276             if (!tmpdir)
8277                 tmpdir = "/tmp";
8278             snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir);
8279             fd = mkstemp(filename);
8280             if (fd < 0) {
8281                 return fd;
8282             }
8283             unlink(filename);
8284         }
8285 
8286         if ((r = fake_open->fill(cpu_env, fd))) {
8287             int e = errno;
8288             close(fd);
8289             errno = e;
8290             return r;
8291         }
8292         lseek(fd, 0, SEEK_SET);
8293 
8294         return fd;
8295     }
8296 
8297     return safe_openat(dirfd, path(pathname), flags, mode);
8298 }
8299 
8300 #define TIMER_MAGIC 0x0caf0000
8301 #define TIMER_MAGIC_MASK 0xffff0000
8302 
8303 /* Convert QEMU provided timer ID back to internal 16bit index format */
8304 static target_timer_t get_timer_id(abi_long arg)
8305 {
8306     target_timer_t timerid = arg;
8307 
8308     if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) {
8309         return -TARGET_EINVAL;
8310     }
8311 
8312     timerid &= 0xffff;
8313 
8314     if (timerid >= ARRAY_SIZE(g_posix_timers)) {
8315         return -TARGET_EINVAL;
8316     }
8317 
8318     return timerid;
8319 }
8320 
8321 static int target_to_host_cpu_mask(unsigned long *host_mask,
8322                                    size_t host_size,
8323                                    abi_ulong target_addr,
8324                                    size_t target_size)
8325 {
8326     unsigned target_bits = sizeof(abi_ulong) * 8;
8327     unsigned host_bits = sizeof(*host_mask) * 8;
8328     abi_ulong *target_mask;
8329     unsigned i, j;
8330 
8331     assert(host_size >= target_size);
8332 
8333     target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1);
8334     if (!target_mask) {
8335         return -TARGET_EFAULT;
8336     }
8337     memset(host_mask, 0, host_size);
8338 
8339     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8340         unsigned bit = i * target_bits;
8341         abi_ulong val;
8342 
8343         __get_user(val, &target_mask[i]);
8344         for (j = 0; j < target_bits; j++, bit++) {
8345             if (val & (1UL << j)) {
8346                 host_mask[bit / host_bits] |= 1UL << (bit % host_bits);
8347             }
8348         }
8349     }
8350 
8351     unlock_user(target_mask, target_addr, 0);
8352     return 0;
8353 }
8354 
8355 static int host_to_target_cpu_mask(const unsigned long *host_mask,
8356                                    size_t host_size,
8357                                    abi_ulong target_addr,
8358                                    size_t target_size)
8359 {
8360     unsigned target_bits = sizeof(abi_ulong) * 8;
8361     unsigned host_bits = sizeof(*host_mask) * 8;
8362     abi_ulong *target_mask;
8363     unsigned i, j;
8364 
8365     assert(host_size >= target_size);
8366 
8367     target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0);
8368     if (!target_mask) {
8369         return -TARGET_EFAULT;
8370     }
8371 
8372     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8373         unsigned bit = i * target_bits;
8374         abi_ulong val = 0;
8375 
8376         for (j = 0; j < target_bits; j++, bit++) {
8377             if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) {
8378                 val |= 1UL << j;
8379             }
8380         }
8381         __put_user(val, &target_mask[i]);
8382     }
8383 
8384     unlock_user(target_mask, target_addr, target_size);
8385     return 0;
8386 }
8387 
8388 #ifdef TARGET_NR_getdents
8389 static int do_getdents(abi_long dirfd, abi_long arg2, abi_long count)
8390 {
8391     g_autofree void *hdirp = NULL;
8392     void *tdirp;
8393     int hlen, hoff, toff;
8394     int hreclen, treclen;
8395     off64_t prev_diroff = 0;
8396 
8397     hdirp = g_try_malloc(count);
8398     if (!hdirp) {
8399         return -TARGET_ENOMEM;
8400     }
8401 
8402 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8403     hlen = sys_getdents(dirfd, hdirp, count);
8404 #else
8405     hlen = sys_getdents64(dirfd, hdirp, count);
8406 #endif
8407 
8408     hlen = get_errno(hlen);
8409     if (is_error(hlen)) {
8410         return hlen;
8411     }
8412 
8413     tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8414     if (!tdirp) {
8415         return -TARGET_EFAULT;
8416     }
8417 
8418     for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8419 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8420         struct linux_dirent *hde = hdirp + hoff;
8421 #else
8422         struct linux_dirent64 *hde = hdirp + hoff;
8423 #endif
8424         struct target_dirent *tde = tdirp + toff;
8425         int namelen;
8426         uint8_t type;
8427 
8428         namelen = strlen(hde->d_name);
8429         hreclen = hde->d_reclen;
8430         treclen = offsetof(struct target_dirent, d_name) + namelen + 2;
8431         treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent));
8432 
8433         if (toff + treclen > count) {
8434             /*
8435              * If the host struct is smaller than the target struct, or
8436              * requires less alignment and thus packs into less space,
8437              * then the host can return more entries than we can pass
8438              * on to the guest.
8439              */
8440             if (toff == 0) {
8441                 toff = -TARGET_EINVAL; /* result buffer is too small */
8442                 break;
8443             }
8444             /*
8445              * Return what we have, resetting the file pointer to the
8446              * location of the first record not returned.
8447              */
8448             lseek64(dirfd, prev_diroff, SEEK_SET);
8449             break;
8450         }
8451 
8452         prev_diroff = hde->d_off;
8453         tde->d_ino = tswapal(hde->d_ino);
8454         tde->d_off = tswapal(hde->d_off);
8455         tde->d_reclen = tswap16(treclen);
8456         memcpy(tde->d_name, hde->d_name, namelen + 1);
8457 
8458         /*
8459          * The getdents type is in what was formerly a padding byte at the
8460          * end of the structure.
8461          */
8462 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8463         type = *((uint8_t *)hde + hreclen - 1);
8464 #else
8465         type = hde->d_type;
8466 #endif
8467         *((uint8_t *)tde + treclen - 1) = type;
8468     }
8469 
8470     unlock_user(tdirp, arg2, toff);
8471     return toff;
8472 }
8473 #endif /* TARGET_NR_getdents */
8474 
8475 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
8476 static int do_getdents64(abi_long dirfd, abi_long arg2, abi_long count)
8477 {
8478     g_autofree void *hdirp = NULL;
8479     void *tdirp;
8480     int hlen, hoff, toff;
8481     int hreclen, treclen;
8482     off64_t prev_diroff = 0;
8483 
8484     hdirp = g_try_malloc(count);
8485     if (!hdirp) {
8486         return -TARGET_ENOMEM;
8487     }
8488 
8489     hlen = get_errno(sys_getdents64(dirfd, hdirp, count));
8490     if (is_error(hlen)) {
8491         return hlen;
8492     }
8493 
8494     tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8495     if (!tdirp) {
8496         return -TARGET_EFAULT;
8497     }
8498 
8499     for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8500         struct linux_dirent64 *hde = hdirp + hoff;
8501         struct target_dirent64 *tde = tdirp + toff;
8502         int namelen;
8503 
8504         namelen = strlen(hde->d_name) + 1;
8505         hreclen = hde->d_reclen;
8506         treclen = offsetof(struct target_dirent64, d_name) + namelen;
8507         treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent64));
8508 
8509         if (toff + treclen > count) {
8510             /*
8511              * If the host struct is smaller than the target struct, or
8512              * requires less alignment and thus packs into less space,
8513              * then the host can return more entries than we can pass
8514              * on to the guest.
8515              */
8516             if (toff == 0) {
8517                 toff = -TARGET_EINVAL; /* result buffer is too small */
8518                 break;
8519             }
8520             /*
8521              * Return what we have, resetting the file pointer to the
8522              * location of the first record not returned.
8523              */
8524             lseek64(dirfd, prev_diroff, SEEK_SET);
8525             break;
8526         }
8527 
8528         prev_diroff = hde->d_off;
8529         tde->d_ino = tswap64(hde->d_ino);
8530         tde->d_off = tswap64(hde->d_off);
8531         tde->d_reclen = tswap16(treclen);
8532         tde->d_type = hde->d_type;
8533         memcpy(tde->d_name, hde->d_name, namelen);
8534     }
8535 
8536     unlock_user(tdirp, arg2, toff);
8537     return toff;
8538 }
8539 #endif /* TARGET_NR_getdents64 */
8540 
8541 #if defined(TARGET_NR_pivot_root) && defined(__NR_pivot_root)
8542 _syscall2(int, pivot_root, const char *, new_root, const char *, put_old)
8543 #endif
8544 
8545 /* This is an internal helper for do_syscall so that it is easier
8546  * to have a single return point, so that actions, such as logging
8547  * of syscall results, can be performed.
8548  * All errnos that do_syscall() returns must be -TARGET_<errcode>.
8549  */
8550 static abi_long do_syscall1(CPUArchState *cpu_env, int num, abi_long arg1,
8551                             abi_long arg2, abi_long arg3, abi_long arg4,
8552                             abi_long arg5, abi_long arg6, abi_long arg7,
8553                             abi_long arg8)
8554 {
8555     CPUState *cpu = env_cpu(cpu_env);
8556     abi_long ret;
8557 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \
8558     || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \
8559     || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \
8560     || defined(TARGET_NR_statx)
8561     struct stat st;
8562 #endif
8563 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \
8564     || defined(TARGET_NR_fstatfs)
8565     struct statfs stfs;
8566 #endif
8567     void *p;
8568 
8569     switch(num) {
8570     case TARGET_NR_exit:
8571         /* In old applications this may be used to implement _exit(2).
8572            However in threaded applications it is used for thread termination,
8573            and _exit_group is used for application termination.
8574            Do thread termination if we have more then one thread.  */
8575 
8576         if (block_signals()) {
8577             return -QEMU_ERESTARTSYS;
8578         }
8579 
8580         pthread_mutex_lock(&clone_lock);
8581 
8582         if (CPU_NEXT(first_cpu)) {
8583             TaskState *ts = cpu->opaque;
8584 
8585             object_property_set_bool(OBJECT(cpu), "realized", false, NULL);
8586             object_unref(OBJECT(cpu));
8587             /*
8588              * At this point the CPU should be unrealized and removed
8589              * from cpu lists. We can clean-up the rest of the thread
8590              * data without the lock held.
8591              */
8592 
8593             pthread_mutex_unlock(&clone_lock);
8594 
8595             if (ts->child_tidptr) {
8596                 put_user_u32(0, ts->child_tidptr);
8597                 do_sys_futex(g2h(cpu, ts->child_tidptr),
8598                              FUTEX_WAKE, INT_MAX, NULL, NULL, 0);
8599             }
8600             thread_cpu = NULL;
8601             g_free(ts);
8602             rcu_unregister_thread();
8603             pthread_exit(NULL);
8604         }
8605 
8606         pthread_mutex_unlock(&clone_lock);
8607         preexit_cleanup(cpu_env, arg1);
8608         _exit(arg1);
8609         return 0; /* avoid warning */
8610     case TARGET_NR_read:
8611         if (arg2 == 0 && arg3 == 0) {
8612             return get_errno(safe_read(arg1, 0, 0));
8613         } else {
8614             if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
8615                 return -TARGET_EFAULT;
8616             ret = get_errno(safe_read(arg1, p, arg3));
8617             if (ret >= 0 &&
8618                 fd_trans_host_to_target_data(arg1)) {
8619                 ret = fd_trans_host_to_target_data(arg1)(p, ret);
8620             }
8621             unlock_user(p, arg2, ret);
8622         }
8623         return ret;
8624     case TARGET_NR_write:
8625         if (arg2 == 0 && arg3 == 0) {
8626             return get_errno(safe_write(arg1, 0, 0));
8627         }
8628         if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
8629             return -TARGET_EFAULT;
8630         if (fd_trans_target_to_host_data(arg1)) {
8631             void *copy = g_malloc(arg3);
8632             memcpy(copy, p, arg3);
8633             ret = fd_trans_target_to_host_data(arg1)(copy, arg3);
8634             if (ret >= 0) {
8635                 ret = get_errno(safe_write(arg1, copy, ret));
8636             }
8637             g_free(copy);
8638         } else {
8639             ret = get_errno(safe_write(arg1, p, arg3));
8640         }
8641         unlock_user(p, arg2, 0);
8642         return ret;
8643 
8644 #ifdef TARGET_NR_open
8645     case TARGET_NR_open:
8646         if (!(p = lock_user_string(arg1)))
8647             return -TARGET_EFAULT;
8648         ret = get_errno(do_openat(cpu_env, AT_FDCWD, p,
8649                                   target_to_host_bitmask(arg2, fcntl_flags_tbl),
8650                                   arg3));
8651         fd_trans_unregister(ret);
8652         unlock_user(p, arg1, 0);
8653         return ret;
8654 #endif
8655     case TARGET_NR_openat:
8656         if (!(p = lock_user_string(arg2)))
8657             return -TARGET_EFAULT;
8658         ret = get_errno(do_openat(cpu_env, arg1, p,
8659                                   target_to_host_bitmask(arg3, fcntl_flags_tbl),
8660                                   arg4));
8661         fd_trans_unregister(ret);
8662         unlock_user(p, arg2, 0);
8663         return ret;
8664 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
8665     case TARGET_NR_name_to_handle_at:
8666         ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5);
8667         return ret;
8668 #endif
8669 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
8670     case TARGET_NR_open_by_handle_at:
8671         ret = do_open_by_handle_at(arg1, arg2, arg3);
8672         fd_trans_unregister(ret);
8673         return ret;
8674 #endif
8675 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
8676     case TARGET_NR_pidfd_open:
8677         return get_errno(pidfd_open(arg1, arg2));
8678 #endif
8679 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
8680     case TARGET_NR_pidfd_send_signal:
8681         {
8682             siginfo_t uinfo;
8683 
8684             p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
8685             if (!p) {
8686                 return -TARGET_EFAULT;
8687             }
8688             target_to_host_siginfo(&uinfo, p);
8689             unlock_user(p, arg3, 0);
8690             ret = get_errno(pidfd_send_signal(arg1, target_to_host_signal(arg2),
8691                 &uinfo, arg4));
8692         }
8693         return ret;
8694 #endif
8695 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
8696     case TARGET_NR_pidfd_getfd:
8697         return get_errno(pidfd_getfd(arg1, arg2, arg3));
8698 #endif
8699     case TARGET_NR_close:
8700         fd_trans_unregister(arg1);
8701         return get_errno(close(arg1));
8702 
8703     case TARGET_NR_brk:
8704         return do_brk(arg1);
8705 #ifdef TARGET_NR_fork
8706     case TARGET_NR_fork:
8707         return get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0));
8708 #endif
8709 #ifdef TARGET_NR_waitpid
8710     case TARGET_NR_waitpid:
8711         {
8712             int status;
8713             ret = get_errno(safe_wait4(arg1, &status, arg3, 0));
8714             if (!is_error(ret) && arg2 && ret
8715                 && put_user_s32(host_to_target_waitstatus(status), arg2))
8716                 return -TARGET_EFAULT;
8717         }
8718         return ret;
8719 #endif
8720 #ifdef TARGET_NR_waitid
8721     case TARGET_NR_waitid:
8722         {
8723             siginfo_t info;
8724             info.si_pid = 0;
8725             ret = get_errno(safe_waitid(arg1, arg2, &info, arg4, NULL));
8726             if (!is_error(ret) && arg3 && info.si_pid != 0) {
8727                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0)))
8728                     return -TARGET_EFAULT;
8729                 host_to_target_siginfo(p, &info);
8730                 unlock_user(p, arg3, sizeof(target_siginfo_t));
8731             }
8732         }
8733         return ret;
8734 #endif
8735 #ifdef TARGET_NR_creat /* not on alpha */
8736     case TARGET_NR_creat:
8737         if (!(p = lock_user_string(arg1)))
8738             return -TARGET_EFAULT;
8739         ret = get_errno(creat(p, arg2));
8740         fd_trans_unregister(ret);
8741         unlock_user(p, arg1, 0);
8742         return ret;
8743 #endif
8744 #ifdef TARGET_NR_link
8745     case TARGET_NR_link:
8746         {
8747             void * p2;
8748             p = lock_user_string(arg1);
8749             p2 = lock_user_string(arg2);
8750             if (!p || !p2)
8751                 ret = -TARGET_EFAULT;
8752             else
8753                 ret = get_errno(link(p, p2));
8754             unlock_user(p2, arg2, 0);
8755             unlock_user(p, arg1, 0);
8756         }
8757         return ret;
8758 #endif
8759 #if defined(TARGET_NR_linkat)
8760     case TARGET_NR_linkat:
8761         {
8762             void * p2 = NULL;
8763             if (!arg2 || !arg4)
8764                 return -TARGET_EFAULT;
8765             p  = lock_user_string(arg2);
8766             p2 = lock_user_string(arg4);
8767             if (!p || !p2)
8768                 ret = -TARGET_EFAULT;
8769             else
8770                 ret = get_errno(linkat(arg1, p, arg3, p2, arg5));
8771             unlock_user(p, arg2, 0);
8772             unlock_user(p2, arg4, 0);
8773         }
8774         return ret;
8775 #endif
8776 #ifdef TARGET_NR_unlink
8777     case TARGET_NR_unlink:
8778         if (!(p = lock_user_string(arg1)))
8779             return -TARGET_EFAULT;
8780         ret = get_errno(unlink(p));
8781         unlock_user(p, arg1, 0);
8782         return ret;
8783 #endif
8784 #if defined(TARGET_NR_unlinkat)
8785     case TARGET_NR_unlinkat:
8786         if (!(p = lock_user_string(arg2)))
8787             return -TARGET_EFAULT;
8788         ret = get_errno(unlinkat(arg1, p, arg3));
8789         unlock_user(p, arg2, 0);
8790         return ret;
8791 #endif
8792     case TARGET_NR_execve:
8793         {
8794             char **argp, **envp;
8795             int argc, envc;
8796             abi_ulong gp;
8797             abi_ulong guest_argp;
8798             abi_ulong guest_envp;
8799             abi_ulong addr;
8800             char **q;
8801 
8802             argc = 0;
8803             guest_argp = arg2;
8804             for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) {
8805                 if (get_user_ual(addr, gp))
8806                     return -TARGET_EFAULT;
8807                 if (!addr)
8808                     break;
8809                 argc++;
8810             }
8811             envc = 0;
8812             guest_envp = arg3;
8813             for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) {
8814                 if (get_user_ual(addr, gp))
8815                     return -TARGET_EFAULT;
8816                 if (!addr)
8817                     break;
8818                 envc++;
8819             }
8820 
8821             argp = g_new0(char *, argc + 1);
8822             envp = g_new0(char *, envc + 1);
8823 
8824             for (gp = guest_argp, q = argp; gp;
8825                   gp += sizeof(abi_ulong), q++) {
8826                 if (get_user_ual(addr, gp))
8827                     goto execve_efault;
8828                 if (!addr)
8829                     break;
8830                 if (!(*q = lock_user_string(addr)))
8831                     goto execve_efault;
8832             }
8833             *q = NULL;
8834 
8835             for (gp = guest_envp, q = envp; gp;
8836                   gp += sizeof(abi_ulong), q++) {
8837                 if (get_user_ual(addr, gp))
8838                     goto execve_efault;
8839                 if (!addr)
8840                     break;
8841                 if (!(*q = lock_user_string(addr)))
8842                     goto execve_efault;
8843             }
8844             *q = NULL;
8845 
8846             if (!(p = lock_user_string(arg1)))
8847                 goto execve_efault;
8848             /* Although execve() is not an interruptible syscall it is
8849              * a special case where we must use the safe_syscall wrapper:
8850              * if we allow a signal to happen before we make the host
8851              * syscall then we will 'lose' it, because at the point of
8852              * execve the process leaves QEMU's control. So we use the
8853              * safe syscall wrapper to ensure that we either take the
8854              * signal as a guest signal, or else it does not happen
8855              * before the execve completes and makes it the other
8856              * program's problem.
8857              */
8858             ret = get_errno(safe_execve(p, argp, envp));
8859             unlock_user(p, arg1, 0);
8860 
8861             goto execve_end;
8862 
8863         execve_efault:
8864             ret = -TARGET_EFAULT;
8865 
8866         execve_end:
8867             for (gp = guest_argp, q = argp; *q;
8868                   gp += sizeof(abi_ulong), q++) {
8869                 if (get_user_ual(addr, gp)
8870                     || !addr)
8871                     break;
8872                 unlock_user(*q, addr, 0);
8873             }
8874             for (gp = guest_envp, q = envp; *q;
8875                   gp += sizeof(abi_ulong), q++) {
8876                 if (get_user_ual(addr, gp)
8877                     || !addr)
8878                     break;
8879                 unlock_user(*q, addr, 0);
8880             }
8881 
8882             g_free(argp);
8883             g_free(envp);
8884         }
8885         return ret;
8886     case TARGET_NR_chdir:
8887         if (!(p = lock_user_string(arg1)))
8888             return -TARGET_EFAULT;
8889         ret = get_errno(chdir(p));
8890         unlock_user(p, arg1, 0);
8891         return ret;
8892 #ifdef TARGET_NR_time
8893     case TARGET_NR_time:
8894         {
8895             time_t host_time;
8896             ret = get_errno(time(&host_time));
8897             if (!is_error(ret)
8898                 && arg1
8899                 && put_user_sal(host_time, arg1))
8900                 return -TARGET_EFAULT;
8901         }
8902         return ret;
8903 #endif
8904 #ifdef TARGET_NR_mknod
8905     case TARGET_NR_mknod:
8906         if (!(p = lock_user_string(arg1)))
8907             return -TARGET_EFAULT;
8908         ret = get_errno(mknod(p, arg2, arg3));
8909         unlock_user(p, arg1, 0);
8910         return ret;
8911 #endif
8912 #if defined(TARGET_NR_mknodat)
8913     case TARGET_NR_mknodat:
8914         if (!(p = lock_user_string(arg2)))
8915             return -TARGET_EFAULT;
8916         ret = get_errno(mknodat(arg1, p, arg3, arg4));
8917         unlock_user(p, arg2, 0);
8918         return ret;
8919 #endif
8920 #ifdef TARGET_NR_chmod
8921     case TARGET_NR_chmod:
8922         if (!(p = lock_user_string(arg1)))
8923             return -TARGET_EFAULT;
8924         ret = get_errno(chmod(p, arg2));
8925         unlock_user(p, arg1, 0);
8926         return ret;
8927 #endif
8928 #ifdef TARGET_NR_lseek
8929     case TARGET_NR_lseek:
8930         return get_errno(lseek(arg1, arg2, arg3));
8931 #endif
8932 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
8933     /* Alpha specific */
8934     case TARGET_NR_getxpid:
8935         cpu_env->ir[IR_A4] = getppid();
8936         return get_errno(getpid());
8937 #endif
8938 #ifdef TARGET_NR_getpid
8939     case TARGET_NR_getpid:
8940         return get_errno(getpid());
8941 #endif
8942     case TARGET_NR_mount:
8943         {
8944             /* need to look at the data field */
8945             void *p2, *p3;
8946 
8947             if (arg1) {
8948                 p = lock_user_string(arg1);
8949                 if (!p) {
8950                     return -TARGET_EFAULT;
8951                 }
8952             } else {
8953                 p = NULL;
8954             }
8955 
8956             p2 = lock_user_string(arg2);
8957             if (!p2) {
8958                 if (arg1) {
8959                     unlock_user(p, arg1, 0);
8960                 }
8961                 return -TARGET_EFAULT;
8962             }
8963 
8964             if (arg3) {
8965                 p3 = lock_user_string(arg3);
8966                 if (!p3) {
8967                     if (arg1) {
8968                         unlock_user(p, arg1, 0);
8969                     }
8970                     unlock_user(p2, arg2, 0);
8971                     return -TARGET_EFAULT;
8972                 }
8973             } else {
8974                 p3 = NULL;
8975             }
8976 
8977             /* FIXME - arg5 should be locked, but it isn't clear how to
8978              * do that since it's not guaranteed to be a NULL-terminated
8979              * string.
8980              */
8981             if (!arg5) {
8982                 ret = mount(p, p2, p3, (unsigned long)arg4, NULL);
8983             } else {
8984                 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(cpu, arg5));
8985             }
8986             ret = get_errno(ret);
8987 
8988             if (arg1) {
8989                 unlock_user(p, arg1, 0);
8990             }
8991             unlock_user(p2, arg2, 0);
8992             if (arg3) {
8993                 unlock_user(p3, arg3, 0);
8994             }
8995         }
8996         return ret;
8997 #if defined(TARGET_NR_umount) || defined(TARGET_NR_oldumount)
8998 #if defined(TARGET_NR_umount)
8999     case TARGET_NR_umount:
9000 #endif
9001 #if defined(TARGET_NR_oldumount)
9002     case TARGET_NR_oldumount:
9003 #endif
9004         if (!(p = lock_user_string(arg1)))
9005             return -TARGET_EFAULT;
9006         ret = get_errno(umount(p));
9007         unlock_user(p, arg1, 0);
9008         return ret;
9009 #endif
9010 #ifdef TARGET_NR_stime /* not on alpha */
9011     case TARGET_NR_stime:
9012         {
9013             struct timespec ts;
9014             ts.tv_nsec = 0;
9015             if (get_user_sal(ts.tv_sec, arg1)) {
9016                 return -TARGET_EFAULT;
9017             }
9018             return get_errno(clock_settime(CLOCK_REALTIME, &ts));
9019         }
9020 #endif
9021 #ifdef TARGET_NR_alarm /* not on alpha */
9022     case TARGET_NR_alarm:
9023         return alarm(arg1);
9024 #endif
9025 #ifdef TARGET_NR_pause /* not on alpha */
9026     case TARGET_NR_pause:
9027         if (!block_signals()) {
9028             sigsuspend(&((TaskState *)cpu->opaque)->signal_mask);
9029         }
9030         return -TARGET_EINTR;
9031 #endif
9032 #ifdef TARGET_NR_utime
9033     case TARGET_NR_utime:
9034         {
9035             struct utimbuf tbuf, *host_tbuf;
9036             struct target_utimbuf *target_tbuf;
9037             if (arg2) {
9038                 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1))
9039                     return -TARGET_EFAULT;
9040                 tbuf.actime = tswapal(target_tbuf->actime);
9041                 tbuf.modtime = tswapal(target_tbuf->modtime);
9042                 unlock_user_struct(target_tbuf, arg2, 0);
9043                 host_tbuf = &tbuf;
9044             } else {
9045                 host_tbuf = NULL;
9046             }
9047             if (!(p = lock_user_string(arg1)))
9048                 return -TARGET_EFAULT;
9049             ret = get_errno(utime(p, host_tbuf));
9050             unlock_user(p, arg1, 0);
9051         }
9052         return ret;
9053 #endif
9054 #ifdef TARGET_NR_utimes
9055     case TARGET_NR_utimes:
9056         {
9057             struct timeval *tvp, tv[2];
9058             if (arg2) {
9059                 if (copy_from_user_timeval(&tv[0], arg2)
9060                     || copy_from_user_timeval(&tv[1],
9061                                               arg2 + sizeof(struct target_timeval)))
9062                     return -TARGET_EFAULT;
9063                 tvp = tv;
9064             } else {
9065                 tvp = NULL;
9066             }
9067             if (!(p = lock_user_string(arg1)))
9068                 return -TARGET_EFAULT;
9069             ret = get_errno(utimes(p, tvp));
9070             unlock_user(p, arg1, 0);
9071         }
9072         return ret;
9073 #endif
9074 #if defined(TARGET_NR_futimesat)
9075     case TARGET_NR_futimesat:
9076         {
9077             struct timeval *tvp, tv[2];
9078             if (arg3) {
9079                 if (copy_from_user_timeval(&tv[0], arg3)
9080                     || copy_from_user_timeval(&tv[1],
9081                                               arg3 + sizeof(struct target_timeval)))
9082                     return -TARGET_EFAULT;
9083                 tvp = tv;
9084             } else {
9085                 tvp = NULL;
9086             }
9087             if (!(p = lock_user_string(arg2))) {
9088                 return -TARGET_EFAULT;
9089             }
9090             ret = get_errno(futimesat(arg1, path(p), tvp));
9091             unlock_user(p, arg2, 0);
9092         }
9093         return ret;
9094 #endif
9095 #ifdef TARGET_NR_access
9096     case TARGET_NR_access:
9097         if (!(p = lock_user_string(arg1))) {
9098             return -TARGET_EFAULT;
9099         }
9100         ret = get_errno(access(path(p), arg2));
9101         unlock_user(p, arg1, 0);
9102         return ret;
9103 #endif
9104 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
9105     case TARGET_NR_faccessat:
9106         if (!(p = lock_user_string(arg2))) {
9107             return -TARGET_EFAULT;
9108         }
9109         ret = get_errno(faccessat(arg1, p, arg3, 0));
9110         unlock_user(p, arg2, 0);
9111         return ret;
9112 #endif
9113 #ifdef TARGET_NR_nice /* not on alpha */
9114     case TARGET_NR_nice:
9115         return get_errno(nice(arg1));
9116 #endif
9117     case TARGET_NR_sync:
9118         sync();
9119         return 0;
9120 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS)
9121     case TARGET_NR_syncfs:
9122         return get_errno(syncfs(arg1));
9123 #endif
9124     case TARGET_NR_kill:
9125         return get_errno(safe_kill(arg1, target_to_host_signal(arg2)));
9126 #ifdef TARGET_NR_rename
9127     case TARGET_NR_rename:
9128         {
9129             void *p2;
9130             p = lock_user_string(arg1);
9131             p2 = lock_user_string(arg2);
9132             if (!p || !p2)
9133                 ret = -TARGET_EFAULT;
9134             else
9135                 ret = get_errno(rename(p, p2));
9136             unlock_user(p2, arg2, 0);
9137             unlock_user(p, arg1, 0);
9138         }
9139         return ret;
9140 #endif
9141 #if defined(TARGET_NR_renameat)
9142     case TARGET_NR_renameat:
9143         {
9144             void *p2;
9145             p  = lock_user_string(arg2);
9146             p2 = lock_user_string(arg4);
9147             if (!p || !p2)
9148                 ret = -TARGET_EFAULT;
9149             else
9150                 ret = get_errno(renameat(arg1, p, arg3, p2));
9151             unlock_user(p2, arg4, 0);
9152             unlock_user(p, arg2, 0);
9153         }
9154         return ret;
9155 #endif
9156 #if defined(TARGET_NR_renameat2)
9157     case TARGET_NR_renameat2:
9158         {
9159             void *p2;
9160             p  = lock_user_string(arg2);
9161             p2 = lock_user_string(arg4);
9162             if (!p || !p2) {
9163                 ret = -TARGET_EFAULT;
9164             } else {
9165                 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5));
9166             }
9167             unlock_user(p2, arg4, 0);
9168             unlock_user(p, arg2, 0);
9169         }
9170         return ret;
9171 #endif
9172 #ifdef TARGET_NR_mkdir
9173     case TARGET_NR_mkdir:
9174         if (!(p = lock_user_string(arg1)))
9175             return -TARGET_EFAULT;
9176         ret = get_errno(mkdir(p, arg2));
9177         unlock_user(p, arg1, 0);
9178         return ret;
9179 #endif
9180 #if defined(TARGET_NR_mkdirat)
9181     case TARGET_NR_mkdirat:
9182         if (!(p = lock_user_string(arg2)))
9183             return -TARGET_EFAULT;
9184         ret = get_errno(mkdirat(arg1, p, arg3));
9185         unlock_user(p, arg2, 0);
9186         return ret;
9187 #endif
9188 #ifdef TARGET_NR_rmdir
9189     case TARGET_NR_rmdir:
9190         if (!(p = lock_user_string(arg1)))
9191             return -TARGET_EFAULT;
9192         ret = get_errno(rmdir(p));
9193         unlock_user(p, arg1, 0);
9194         return ret;
9195 #endif
9196     case TARGET_NR_dup:
9197         ret = get_errno(dup(arg1));
9198         if (ret >= 0) {
9199             fd_trans_dup(arg1, ret);
9200         }
9201         return ret;
9202 #ifdef TARGET_NR_pipe
9203     case TARGET_NR_pipe:
9204         return do_pipe(cpu_env, arg1, 0, 0);
9205 #endif
9206 #ifdef TARGET_NR_pipe2
9207     case TARGET_NR_pipe2:
9208         return do_pipe(cpu_env, arg1,
9209                        target_to_host_bitmask(arg2, fcntl_flags_tbl), 1);
9210 #endif
9211     case TARGET_NR_times:
9212         {
9213             struct target_tms *tmsp;
9214             struct tms tms;
9215             ret = get_errno(times(&tms));
9216             if (arg1) {
9217                 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0);
9218                 if (!tmsp)
9219                     return -TARGET_EFAULT;
9220                 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime));
9221                 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime));
9222                 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime));
9223                 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime));
9224             }
9225             if (!is_error(ret))
9226                 ret = host_to_target_clock_t(ret);
9227         }
9228         return ret;
9229     case TARGET_NR_acct:
9230         if (arg1 == 0) {
9231             ret = get_errno(acct(NULL));
9232         } else {
9233             if (!(p = lock_user_string(arg1))) {
9234                 return -TARGET_EFAULT;
9235             }
9236             ret = get_errno(acct(path(p)));
9237             unlock_user(p, arg1, 0);
9238         }
9239         return ret;
9240 #ifdef TARGET_NR_umount2
9241     case TARGET_NR_umount2:
9242         if (!(p = lock_user_string(arg1)))
9243             return -TARGET_EFAULT;
9244         ret = get_errno(umount2(p, arg2));
9245         unlock_user(p, arg1, 0);
9246         return ret;
9247 #endif
9248     case TARGET_NR_ioctl:
9249         return do_ioctl(arg1, arg2, arg3);
9250 #ifdef TARGET_NR_fcntl
9251     case TARGET_NR_fcntl:
9252         return do_fcntl(arg1, arg2, arg3);
9253 #endif
9254     case TARGET_NR_setpgid:
9255         return get_errno(setpgid(arg1, arg2));
9256     case TARGET_NR_umask:
9257         return get_errno(umask(arg1));
9258     case TARGET_NR_chroot:
9259         if (!(p = lock_user_string(arg1)))
9260             return -TARGET_EFAULT;
9261         ret = get_errno(chroot(p));
9262         unlock_user(p, arg1, 0);
9263         return ret;
9264 #ifdef TARGET_NR_dup2
9265     case TARGET_NR_dup2:
9266         ret = get_errno(dup2(arg1, arg2));
9267         if (ret >= 0) {
9268             fd_trans_dup(arg1, arg2);
9269         }
9270         return ret;
9271 #endif
9272 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
9273     case TARGET_NR_dup3:
9274     {
9275         int host_flags;
9276 
9277         if ((arg3 & ~TARGET_O_CLOEXEC) != 0) {
9278             return -EINVAL;
9279         }
9280         host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl);
9281         ret = get_errno(dup3(arg1, arg2, host_flags));
9282         if (ret >= 0) {
9283             fd_trans_dup(arg1, arg2);
9284         }
9285         return ret;
9286     }
9287 #endif
9288 #ifdef TARGET_NR_getppid /* not on alpha */
9289     case TARGET_NR_getppid:
9290         return get_errno(getppid());
9291 #endif
9292 #ifdef TARGET_NR_getpgrp
9293     case TARGET_NR_getpgrp:
9294         return get_errno(getpgrp());
9295 #endif
9296     case TARGET_NR_setsid:
9297         return get_errno(setsid());
9298 #ifdef TARGET_NR_sigaction
9299     case TARGET_NR_sigaction:
9300         {
9301 #if defined(TARGET_MIPS)
9302 	    struct target_sigaction act, oact, *pact, *old_act;
9303 
9304 	    if (arg2) {
9305                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9306                     return -TARGET_EFAULT;
9307 		act._sa_handler = old_act->_sa_handler;
9308 		target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]);
9309 		act.sa_flags = old_act->sa_flags;
9310 		unlock_user_struct(old_act, arg2, 0);
9311 		pact = &act;
9312 	    } else {
9313 		pact = NULL;
9314 	    }
9315 
9316         ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9317 
9318 	    if (!is_error(ret) && arg3) {
9319                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9320                     return -TARGET_EFAULT;
9321 		old_act->_sa_handler = oact._sa_handler;
9322 		old_act->sa_flags = oact.sa_flags;
9323 		old_act->sa_mask.sig[0] = oact.sa_mask.sig[0];
9324 		old_act->sa_mask.sig[1] = 0;
9325 		old_act->sa_mask.sig[2] = 0;
9326 		old_act->sa_mask.sig[3] = 0;
9327 		unlock_user_struct(old_act, arg3, 1);
9328 	    }
9329 #else
9330             struct target_old_sigaction *old_act;
9331             struct target_sigaction act, oact, *pact;
9332             if (arg2) {
9333                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9334                     return -TARGET_EFAULT;
9335                 act._sa_handler = old_act->_sa_handler;
9336                 target_siginitset(&act.sa_mask, old_act->sa_mask);
9337                 act.sa_flags = old_act->sa_flags;
9338 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9339                 act.sa_restorer = old_act->sa_restorer;
9340 #endif
9341                 unlock_user_struct(old_act, arg2, 0);
9342                 pact = &act;
9343             } else {
9344                 pact = NULL;
9345             }
9346             ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9347             if (!is_error(ret) && arg3) {
9348                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9349                     return -TARGET_EFAULT;
9350                 old_act->_sa_handler = oact._sa_handler;
9351                 old_act->sa_mask = oact.sa_mask.sig[0];
9352                 old_act->sa_flags = oact.sa_flags;
9353 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9354                 old_act->sa_restorer = oact.sa_restorer;
9355 #endif
9356                 unlock_user_struct(old_act, arg3, 1);
9357             }
9358 #endif
9359         }
9360         return ret;
9361 #endif
9362     case TARGET_NR_rt_sigaction:
9363         {
9364             /*
9365              * For Alpha and SPARC this is a 5 argument syscall, with
9366              * a 'restorer' parameter which must be copied into the
9367              * sa_restorer field of the sigaction struct.
9368              * For Alpha that 'restorer' is arg5; for SPARC it is arg4,
9369              * and arg5 is the sigsetsize.
9370              */
9371 #if defined(TARGET_ALPHA)
9372             target_ulong sigsetsize = arg4;
9373             target_ulong restorer = arg5;
9374 #elif defined(TARGET_SPARC)
9375             target_ulong restorer = arg4;
9376             target_ulong sigsetsize = arg5;
9377 #else
9378             target_ulong sigsetsize = arg4;
9379             target_ulong restorer = 0;
9380 #endif
9381             struct target_sigaction *act = NULL;
9382             struct target_sigaction *oact = NULL;
9383 
9384             if (sigsetsize != sizeof(target_sigset_t)) {
9385                 return -TARGET_EINVAL;
9386             }
9387             if (arg2 && !lock_user_struct(VERIFY_READ, act, arg2, 1)) {
9388                 return -TARGET_EFAULT;
9389             }
9390             if (arg3 && !lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) {
9391                 ret = -TARGET_EFAULT;
9392             } else {
9393                 ret = get_errno(do_sigaction(arg1, act, oact, restorer));
9394                 if (oact) {
9395                     unlock_user_struct(oact, arg3, 1);
9396                 }
9397             }
9398             if (act) {
9399                 unlock_user_struct(act, arg2, 0);
9400             }
9401         }
9402         return ret;
9403 #ifdef TARGET_NR_sgetmask /* not on alpha */
9404     case TARGET_NR_sgetmask:
9405         {
9406             sigset_t cur_set;
9407             abi_ulong target_set;
9408             ret = do_sigprocmask(0, NULL, &cur_set);
9409             if (!ret) {
9410                 host_to_target_old_sigset(&target_set, &cur_set);
9411                 ret = target_set;
9412             }
9413         }
9414         return ret;
9415 #endif
9416 #ifdef TARGET_NR_ssetmask /* not on alpha */
9417     case TARGET_NR_ssetmask:
9418         {
9419             sigset_t set, oset;
9420             abi_ulong target_set = arg1;
9421             target_to_host_old_sigset(&set, &target_set);
9422             ret = do_sigprocmask(SIG_SETMASK, &set, &oset);
9423             if (!ret) {
9424                 host_to_target_old_sigset(&target_set, &oset);
9425                 ret = target_set;
9426             }
9427         }
9428         return ret;
9429 #endif
9430 #ifdef TARGET_NR_sigprocmask
9431     case TARGET_NR_sigprocmask:
9432         {
9433 #if defined(TARGET_ALPHA)
9434             sigset_t set, oldset;
9435             abi_ulong mask;
9436             int how;
9437 
9438             switch (arg1) {
9439             case TARGET_SIG_BLOCK:
9440                 how = SIG_BLOCK;
9441                 break;
9442             case TARGET_SIG_UNBLOCK:
9443                 how = SIG_UNBLOCK;
9444                 break;
9445             case TARGET_SIG_SETMASK:
9446                 how = SIG_SETMASK;
9447                 break;
9448             default:
9449                 return -TARGET_EINVAL;
9450             }
9451             mask = arg2;
9452             target_to_host_old_sigset(&set, &mask);
9453 
9454             ret = do_sigprocmask(how, &set, &oldset);
9455             if (!is_error(ret)) {
9456                 host_to_target_old_sigset(&mask, &oldset);
9457                 ret = mask;
9458                 cpu_env->ir[IR_V0] = 0; /* force no error */
9459             }
9460 #else
9461             sigset_t set, oldset, *set_ptr;
9462             int how;
9463 
9464             if (arg2) {
9465                 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1);
9466                 if (!p) {
9467                     return -TARGET_EFAULT;
9468                 }
9469                 target_to_host_old_sigset(&set, p);
9470                 unlock_user(p, arg2, 0);
9471                 set_ptr = &set;
9472                 switch (arg1) {
9473                 case TARGET_SIG_BLOCK:
9474                     how = SIG_BLOCK;
9475                     break;
9476                 case TARGET_SIG_UNBLOCK:
9477                     how = SIG_UNBLOCK;
9478                     break;
9479                 case TARGET_SIG_SETMASK:
9480                     how = SIG_SETMASK;
9481                     break;
9482                 default:
9483                     return -TARGET_EINVAL;
9484                 }
9485             } else {
9486                 how = 0;
9487                 set_ptr = NULL;
9488             }
9489             ret = do_sigprocmask(how, set_ptr, &oldset);
9490             if (!is_error(ret) && arg3) {
9491                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
9492                     return -TARGET_EFAULT;
9493                 host_to_target_old_sigset(p, &oldset);
9494                 unlock_user(p, arg3, sizeof(target_sigset_t));
9495             }
9496 #endif
9497         }
9498         return ret;
9499 #endif
9500     case TARGET_NR_rt_sigprocmask:
9501         {
9502             int how = arg1;
9503             sigset_t set, oldset, *set_ptr;
9504 
9505             if (arg4 != sizeof(target_sigset_t)) {
9506                 return -TARGET_EINVAL;
9507             }
9508 
9509             if (arg2) {
9510                 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1);
9511                 if (!p) {
9512                     return -TARGET_EFAULT;
9513                 }
9514                 target_to_host_sigset(&set, p);
9515                 unlock_user(p, arg2, 0);
9516                 set_ptr = &set;
9517                 switch(how) {
9518                 case TARGET_SIG_BLOCK:
9519                     how = SIG_BLOCK;
9520                     break;
9521                 case TARGET_SIG_UNBLOCK:
9522                     how = SIG_UNBLOCK;
9523                     break;
9524                 case TARGET_SIG_SETMASK:
9525                     how = SIG_SETMASK;
9526                     break;
9527                 default:
9528                     return -TARGET_EINVAL;
9529                 }
9530             } else {
9531                 how = 0;
9532                 set_ptr = NULL;
9533             }
9534             ret = do_sigprocmask(how, set_ptr, &oldset);
9535             if (!is_error(ret) && arg3) {
9536                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
9537                     return -TARGET_EFAULT;
9538                 host_to_target_sigset(p, &oldset);
9539                 unlock_user(p, arg3, sizeof(target_sigset_t));
9540             }
9541         }
9542         return ret;
9543 #ifdef TARGET_NR_sigpending
9544     case TARGET_NR_sigpending:
9545         {
9546             sigset_t set;
9547             ret = get_errno(sigpending(&set));
9548             if (!is_error(ret)) {
9549                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
9550                     return -TARGET_EFAULT;
9551                 host_to_target_old_sigset(p, &set);
9552                 unlock_user(p, arg1, sizeof(target_sigset_t));
9553             }
9554         }
9555         return ret;
9556 #endif
9557     case TARGET_NR_rt_sigpending:
9558         {
9559             sigset_t set;
9560 
9561             /* Yes, this check is >, not != like most. We follow the kernel's
9562              * logic and it does it like this because it implements
9563              * NR_sigpending through the same code path, and in that case
9564              * the old_sigset_t is smaller in size.
9565              */
9566             if (arg2 > sizeof(target_sigset_t)) {
9567                 return -TARGET_EINVAL;
9568             }
9569 
9570             ret = get_errno(sigpending(&set));
9571             if (!is_error(ret)) {
9572                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
9573                     return -TARGET_EFAULT;
9574                 host_to_target_sigset(p, &set);
9575                 unlock_user(p, arg1, sizeof(target_sigset_t));
9576             }
9577         }
9578         return ret;
9579 #ifdef TARGET_NR_sigsuspend
9580     case TARGET_NR_sigsuspend:
9581         {
9582             sigset_t *set;
9583 
9584 #if defined(TARGET_ALPHA)
9585             TaskState *ts = cpu->opaque;
9586             /* target_to_host_old_sigset will bswap back */
9587             abi_ulong mask = tswapal(arg1);
9588             set = &ts->sigsuspend_mask;
9589             target_to_host_old_sigset(set, &mask);
9590 #else
9591             ret = process_sigsuspend_mask(&set, arg1, sizeof(target_sigset_t));
9592             if (ret != 0) {
9593                 return ret;
9594             }
9595 #endif
9596             ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE));
9597             finish_sigsuspend_mask(ret);
9598         }
9599         return ret;
9600 #endif
9601     case TARGET_NR_rt_sigsuspend:
9602         {
9603             sigset_t *set;
9604 
9605             ret = process_sigsuspend_mask(&set, arg1, arg2);
9606             if (ret != 0) {
9607                 return ret;
9608             }
9609             ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE));
9610             finish_sigsuspend_mask(ret);
9611         }
9612         return ret;
9613 #ifdef TARGET_NR_rt_sigtimedwait
9614     case TARGET_NR_rt_sigtimedwait:
9615         {
9616             sigset_t set;
9617             struct timespec uts, *puts;
9618             siginfo_t uinfo;
9619 
9620             if (arg4 != sizeof(target_sigset_t)) {
9621                 return -TARGET_EINVAL;
9622             }
9623 
9624             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
9625                 return -TARGET_EFAULT;
9626             target_to_host_sigset(&set, p);
9627             unlock_user(p, arg1, 0);
9628             if (arg3) {
9629                 puts = &uts;
9630                 if (target_to_host_timespec(puts, arg3)) {
9631                     return -TARGET_EFAULT;
9632                 }
9633             } else {
9634                 puts = NULL;
9635             }
9636             ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
9637                                                  SIGSET_T_SIZE));
9638             if (!is_error(ret)) {
9639                 if (arg2) {
9640                     p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t),
9641                                   0);
9642                     if (!p) {
9643                         return -TARGET_EFAULT;
9644                     }
9645                     host_to_target_siginfo(p, &uinfo);
9646                     unlock_user(p, arg2, sizeof(target_siginfo_t));
9647                 }
9648                 ret = host_to_target_signal(ret);
9649             }
9650         }
9651         return ret;
9652 #endif
9653 #ifdef TARGET_NR_rt_sigtimedwait_time64
9654     case TARGET_NR_rt_sigtimedwait_time64:
9655         {
9656             sigset_t set;
9657             struct timespec uts, *puts;
9658             siginfo_t uinfo;
9659 
9660             if (arg4 != sizeof(target_sigset_t)) {
9661                 return -TARGET_EINVAL;
9662             }
9663 
9664             p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1);
9665             if (!p) {
9666                 return -TARGET_EFAULT;
9667             }
9668             target_to_host_sigset(&set, p);
9669             unlock_user(p, arg1, 0);
9670             if (arg3) {
9671                 puts = &uts;
9672                 if (target_to_host_timespec64(puts, arg3)) {
9673                     return -TARGET_EFAULT;
9674                 }
9675             } else {
9676                 puts = NULL;
9677             }
9678             ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
9679                                                  SIGSET_T_SIZE));
9680             if (!is_error(ret)) {
9681                 if (arg2) {
9682                     p = lock_user(VERIFY_WRITE, arg2,
9683                                   sizeof(target_siginfo_t), 0);
9684                     if (!p) {
9685                         return -TARGET_EFAULT;
9686                     }
9687                     host_to_target_siginfo(p, &uinfo);
9688                     unlock_user(p, arg2, sizeof(target_siginfo_t));
9689                 }
9690                 ret = host_to_target_signal(ret);
9691             }
9692         }
9693         return ret;
9694 #endif
9695     case TARGET_NR_rt_sigqueueinfo:
9696         {
9697             siginfo_t uinfo;
9698 
9699             p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
9700             if (!p) {
9701                 return -TARGET_EFAULT;
9702             }
9703             target_to_host_siginfo(&uinfo, p);
9704             unlock_user(p, arg3, 0);
9705             ret = get_errno(sys_rt_sigqueueinfo(arg1, target_to_host_signal(arg2), &uinfo));
9706         }
9707         return ret;
9708     case TARGET_NR_rt_tgsigqueueinfo:
9709         {
9710             siginfo_t uinfo;
9711 
9712             p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1);
9713             if (!p) {
9714                 return -TARGET_EFAULT;
9715             }
9716             target_to_host_siginfo(&uinfo, p);
9717             unlock_user(p, arg4, 0);
9718             ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, target_to_host_signal(arg3), &uinfo));
9719         }
9720         return ret;
9721 #ifdef TARGET_NR_sigreturn
9722     case TARGET_NR_sigreturn:
9723         if (block_signals()) {
9724             return -QEMU_ERESTARTSYS;
9725         }
9726         return do_sigreturn(cpu_env);
9727 #endif
9728     case TARGET_NR_rt_sigreturn:
9729         if (block_signals()) {
9730             return -QEMU_ERESTARTSYS;
9731         }
9732         return do_rt_sigreturn(cpu_env);
9733     case TARGET_NR_sethostname:
9734         if (!(p = lock_user_string(arg1)))
9735             return -TARGET_EFAULT;
9736         ret = get_errno(sethostname(p, arg2));
9737         unlock_user(p, arg1, 0);
9738         return ret;
9739 #ifdef TARGET_NR_setrlimit
9740     case TARGET_NR_setrlimit:
9741         {
9742             int resource = target_to_host_resource(arg1);
9743             struct target_rlimit *target_rlim;
9744             struct rlimit rlim;
9745             if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1))
9746                 return -TARGET_EFAULT;
9747             rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur);
9748             rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max);
9749             unlock_user_struct(target_rlim, arg2, 0);
9750             /*
9751              * If we just passed through resource limit settings for memory then
9752              * they would also apply to QEMU's own allocations, and QEMU will
9753              * crash or hang or die if its allocations fail. Ideally we would
9754              * track the guest allocations in QEMU and apply the limits ourselves.
9755              * For now, just tell the guest the call succeeded but don't actually
9756              * limit anything.
9757              */
9758             if (resource != RLIMIT_AS &&
9759                 resource != RLIMIT_DATA &&
9760                 resource != RLIMIT_STACK) {
9761                 return get_errno(setrlimit(resource, &rlim));
9762             } else {
9763                 return 0;
9764             }
9765         }
9766 #endif
9767 #ifdef TARGET_NR_getrlimit
9768     case TARGET_NR_getrlimit:
9769         {
9770             int resource = target_to_host_resource(arg1);
9771             struct target_rlimit *target_rlim;
9772             struct rlimit rlim;
9773 
9774             ret = get_errno(getrlimit(resource, &rlim));
9775             if (!is_error(ret)) {
9776                 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
9777                     return -TARGET_EFAULT;
9778                 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
9779                 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
9780                 unlock_user_struct(target_rlim, arg2, 1);
9781             }
9782         }
9783         return ret;
9784 #endif
9785     case TARGET_NR_getrusage:
9786         {
9787             struct rusage rusage;
9788             ret = get_errno(getrusage(arg1, &rusage));
9789             if (!is_error(ret)) {
9790                 ret = host_to_target_rusage(arg2, &rusage);
9791             }
9792         }
9793         return ret;
9794 #if defined(TARGET_NR_gettimeofday)
9795     case TARGET_NR_gettimeofday:
9796         {
9797             struct timeval tv;
9798             struct timezone tz;
9799 
9800             ret = get_errno(gettimeofday(&tv, &tz));
9801             if (!is_error(ret)) {
9802                 if (arg1 && copy_to_user_timeval(arg1, &tv)) {
9803                     return -TARGET_EFAULT;
9804                 }
9805                 if (arg2 && copy_to_user_timezone(arg2, &tz)) {
9806                     return -TARGET_EFAULT;
9807                 }
9808             }
9809         }
9810         return ret;
9811 #endif
9812 #if defined(TARGET_NR_settimeofday)
9813     case TARGET_NR_settimeofday:
9814         {
9815             struct timeval tv, *ptv = NULL;
9816             struct timezone tz, *ptz = NULL;
9817 
9818             if (arg1) {
9819                 if (copy_from_user_timeval(&tv, arg1)) {
9820                     return -TARGET_EFAULT;
9821                 }
9822                 ptv = &tv;
9823             }
9824 
9825             if (arg2) {
9826                 if (copy_from_user_timezone(&tz, arg2)) {
9827                     return -TARGET_EFAULT;
9828                 }
9829                 ptz = &tz;
9830             }
9831 
9832             return get_errno(settimeofday(ptv, ptz));
9833         }
9834 #endif
9835 #if defined(TARGET_NR_select)
9836     case TARGET_NR_select:
9837 #if defined(TARGET_WANT_NI_OLD_SELECT)
9838         /* some architectures used to have old_select here
9839          * but now ENOSYS it.
9840          */
9841         ret = -TARGET_ENOSYS;
9842 #elif defined(TARGET_WANT_OLD_SYS_SELECT)
9843         ret = do_old_select(arg1);
9844 #else
9845         ret = do_select(arg1, arg2, arg3, arg4, arg5);
9846 #endif
9847         return ret;
9848 #endif
9849 #ifdef TARGET_NR_pselect6
9850     case TARGET_NR_pselect6:
9851         return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, false);
9852 #endif
9853 #ifdef TARGET_NR_pselect6_time64
9854     case TARGET_NR_pselect6_time64:
9855         return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, true);
9856 #endif
9857 #ifdef TARGET_NR_symlink
9858     case TARGET_NR_symlink:
9859         {
9860             void *p2;
9861             p = lock_user_string(arg1);
9862             p2 = lock_user_string(arg2);
9863             if (!p || !p2)
9864                 ret = -TARGET_EFAULT;
9865             else
9866                 ret = get_errno(symlink(p, p2));
9867             unlock_user(p2, arg2, 0);
9868             unlock_user(p, arg1, 0);
9869         }
9870         return ret;
9871 #endif
9872 #if defined(TARGET_NR_symlinkat)
9873     case TARGET_NR_symlinkat:
9874         {
9875             void *p2;
9876             p  = lock_user_string(arg1);
9877             p2 = lock_user_string(arg3);
9878             if (!p || !p2)
9879                 ret = -TARGET_EFAULT;
9880             else
9881                 ret = get_errno(symlinkat(p, arg2, p2));
9882             unlock_user(p2, arg3, 0);
9883             unlock_user(p, arg1, 0);
9884         }
9885         return ret;
9886 #endif
9887 #ifdef TARGET_NR_readlink
9888     case TARGET_NR_readlink:
9889         {
9890             void *p2;
9891             p = lock_user_string(arg1);
9892             p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0);
9893             if (!p || !p2) {
9894                 ret = -TARGET_EFAULT;
9895             } else if (!arg3) {
9896                 /* Short circuit this for the magic exe check. */
9897                 ret = -TARGET_EINVAL;
9898             } else if (is_proc_myself((const char *)p, "exe")) {
9899                 char real[PATH_MAX], *temp;
9900                 temp = realpath(exec_path, real);
9901                 /* Return value is # of bytes that we wrote to the buffer. */
9902                 if (temp == NULL) {
9903                     ret = get_errno(-1);
9904                 } else {
9905                     /* Don't worry about sign mismatch as earlier mapping
9906                      * logic would have thrown a bad address error. */
9907                     ret = MIN(strlen(real), arg3);
9908                     /* We cannot NUL terminate the string. */
9909                     memcpy(p2, real, ret);
9910                 }
9911             } else {
9912                 ret = get_errno(readlink(path(p), p2, arg3));
9913             }
9914             unlock_user(p2, arg2, ret);
9915             unlock_user(p, arg1, 0);
9916         }
9917         return ret;
9918 #endif
9919 #if defined(TARGET_NR_readlinkat)
9920     case TARGET_NR_readlinkat:
9921         {
9922             void *p2;
9923             p  = lock_user_string(arg2);
9924             p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0);
9925             if (!p || !p2) {
9926                 ret = -TARGET_EFAULT;
9927             } else if (!arg4) {
9928                 /* Short circuit this for the magic exe check. */
9929                 ret = -TARGET_EINVAL;
9930             } else if (is_proc_myself((const char *)p, "exe")) {
9931                 char real[PATH_MAX], *temp;
9932                 temp = realpath(exec_path, real);
9933                 /* Return value is # of bytes that we wrote to the buffer. */
9934                 if (temp == NULL) {
9935                     ret = get_errno(-1);
9936                 } else {
9937                     /* Don't worry about sign mismatch as earlier mapping
9938                      * logic would have thrown a bad address error. */
9939                     ret = MIN(strlen(real), arg4);
9940                     /* We cannot NUL terminate the string. */
9941                     memcpy(p2, real, ret);
9942                 }
9943             } else {
9944                 ret = get_errno(readlinkat(arg1, path(p), p2, arg4));
9945             }
9946             unlock_user(p2, arg3, ret);
9947             unlock_user(p, arg2, 0);
9948         }
9949         return ret;
9950 #endif
9951 #ifdef TARGET_NR_swapon
9952     case TARGET_NR_swapon:
9953         if (!(p = lock_user_string(arg1)))
9954             return -TARGET_EFAULT;
9955         ret = get_errno(swapon(p, arg2));
9956         unlock_user(p, arg1, 0);
9957         return ret;
9958 #endif
9959     case TARGET_NR_reboot:
9960         if (arg3 == LINUX_REBOOT_CMD_RESTART2) {
9961            /* arg4 must be ignored in all other cases */
9962            p = lock_user_string(arg4);
9963            if (!p) {
9964                return -TARGET_EFAULT;
9965            }
9966            ret = get_errno(reboot(arg1, arg2, arg3, p));
9967            unlock_user(p, arg4, 0);
9968         } else {
9969            ret = get_errno(reboot(arg1, arg2, arg3, NULL));
9970         }
9971         return ret;
9972 #ifdef TARGET_NR_mmap
9973     case TARGET_NR_mmap:
9974 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
9975     (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
9976     defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
9977     || defined(TARGET_S390X)
9978         {
9979             abi_ulong *v;
9980             abi_ulong v1, v2, v3, v4, v5, v6;
9981             if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1)))
9982                 return -TARGET_EFAULT;
9983             v1 = tswapal(v[0]);
9984             v2 = tswapal(v[1]);
9985             v3 = tswapal(v[2]);
9986             v4 = tswapal(v[3]);
9987             v5 = tswapal(v[4]);
9988             v6 = tswapal(v[5]);
9989             unlock_user(v, arg1, 0);
9990             ret = get_errno(target_mmap(v1, v2, v3,
9991                                         target_to_host_bitmask(v4, mmap_flags_tbl),
9992                                         v5, v6));
9993         }
9994 #else
9995         /* mmap pointers are always untagged */
9996         ret = get_errno(target_mmap(arg1, arg2, arg3,
9997                                     target_to_host_bitmask(arg4, mmap_flags_tbl),
9998                                     arg5,
9999                                     arg6));
10000 #endif
10001         return ret;
10002 #endif
10003 #ifdef TARGET_NR_mmap2
10004     case TARGET_NR_mmap2:
10005 #ifndef MMAP_SHIFT
10006 #define MMAP_SHIFT 12
10007 #endif
10008         ret = target_mmap(arg1, arg2, arg3,
10009                           target_to_host_bitmask(arg4, mmap_flags_tbl),
10010                           arg5, arg6 << MMAP_SHIFT);
10011         return get_errno(ret);
10012 #endif
10013     case TARGET_NR_munmap:
10014         arg1 = cpu_untagged_addr(cpu, arg1);
10015         return get_errno(target_munmap(arg1, arg2));
10016     case TARGET_NR_mprotect:
10017         arg1 = cpu_untagged_addr(cpu, arg1);
10018         {
10019             TaskState *ts = cpu->opaque;
10020             /* Special hack to detect libc making the stack executable.  */
10021             if ((arg3 & PROT_GROWSDOWN)
10022                 && arg1 >= ts->info->stack_limit
10023                 && arg1 <= ts->info->start_stack) {
10024                 arg3 &= ~PROT_GROWSDOWN;
10025                 arg2 = arg2 + arg1 - ts->info->stack_limit;
10026                 arg1 = ts->info->stack_limit;
10027             }
10028         }
10029         return get_errno(target_mprotect(arg1, arg2, arg3));
10030 #ifdef TARGET_NR_mremap
10031     case TARGET_NR_mremap:
10032         arg1 = cpu_untagged_addr(cpu, arg1);
10033         /* mremap new_addr (arg5) is always untagged */
10034         return get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5));
10035 #endif
10036         /* ??? msync/mlock/munlock are broken for softmmu.  */
10037 #ifdef TARGET_NR_msync
10038     case TARGET_NR_msync:
10039         return get_errno(msync(g2h(cpu, arg1), arg2, arg3));
10040 #endif
10041 #ifdef TARGET_NR_mlock
10042     case TARGET_NR_mlock:
10043         return get_errno(mlock(g2h(cpu, arg1), arg2));
10044 #endif
10045 #ifdef TARGET_NR_munlock
10046     case TARGET_NR_munlock:
10047         return get_errno(munlock(g2h(cpu, arg1), arg2));
10048 #endif
10049 #ifdef TARGET_NR_mlockall
10050     case TARGET_NR_mlockall:
10051         return get_errno(mlockall(target_to_host_mlockall_arg(arg1)));
10052 #endif
10053 #ifdef TARGET_NR_munlockall
10054     case TARGET_NR_munlockall:
10055         return get_errno(munlockall());
10056 #endif
10057 #ifdef TARGET_NR_truncate
10058     case TARGET_NR_truncate:
10059         if (!(p = lock_user_string(arg1)))
10060             return -TARGET_EFAULT;
10061         ret = get_errno(truncate(p, arg2));
10062         unlock_user(p, arg1, 0);
10063         return ret;
10064 #endif
10065 #ifdef TARGET_NR_ftruncate
10066     case TARGET_NR_ftruncate:
10067         return get_errno(ftruncate(arg1, arg2));
10068 #endif
10069     case TARGET_NR_fchmod:
10070         return get_errno(fchmod(arg1, arg2));
10071 #if defined(TARGET_NR_fchmodat)
10072     case TARGET_NR_fchmodat:
10073         if (!(p = lock_user_string(arg2)))
10074             return -TARGET_EFAULT;
10075         ret = get_errno(fchmodat(arg1, p, arg3, 0));
10076         unlock_user(p, arg2, 0);
10077         return ret;
10078 #endif
10079     case TARGET_NR_getpriority:
10080         /* Note that negative values are valid for getpriority, so we must
10081            differentiate based on errno settings.  */
10082         errno = 0;
10083         ret = getpriority(arg1, arg2);
10084         if (ret == -1 && errno != 0) {
10085             return -host_to_target_errno(errno);
10086         }
10087 #ifdef TARGET_ALPHA
10088         /* Return value is the unbiased priority.  Signal no error.  */
10089         cpu_env->ir[IR_V0] = 0;
10090 #else
10091         /* Return value is a biased priority to avoid negative numbers.  */
10092         ret = 20 - ret;
10093 #endif
10094         return ret;
10095     case TARGET_NR_setpriority:
10096         return get_errno(setpriority(arg1, arg2, arg3));
10097 #ifdef TARGET_NR_statfs
10098     case TARGET_NR_statfs:
10099         if (!(p = lock_user_string(arg1))) {
10100             return -TARGET_EFAULT;
10101         }
10102         ret = get_errno(statfs(path(p), &stfs));
10103         unlock_user(p, arg1, 0);
10104     convert_statfs:
10105         if (!is_error(ret)) {
10106             struct target_statfs *target_stfs;
10107 
10108             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0))
10109                 return -TARGET_EFAULT;
10110             __put_user(stfs.f_type, &target_stfs->f_type);
10111             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10112             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10113             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10114             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10115             __put_user(stfs.f_files, &target_stfs->f_files);
10116             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10117             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10118             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10119             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10120             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10121 #ifdef _STATFS_F_FLAGS
10122             __put_user(stfs.f_flags, &target_stfs->f_flags);
10123 #else
10124             __put_user(0, &target_stfs->f_flags);
10125 #endif
10126             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10127             unlock_user_struct(target_stfs, arg2, 1);
10128         }
10129         return ret;
10130 #endif
10131 #ifdef TARGET_NR_fstatfs
10132     case TARGET_NR_fstatfs:
10133         ret = get_errno(fstatfs(arg1, &stfs));
10134         goto convert_statfs;
10135 #endif
10136 #ifdef TARGET_NR_statfs64
10137     case TARGET_NR_statfs64:
10138         if (!(p = lock_user_string(arg1))) {
10139             return -TARGET_EFAULT;
10140         }
10141         ret = get_errno(statfs(path(p), &stfs));
10142         unlock_user(p, arg1, 0);
10143     convert_statfs64:
10144         if (!is_error(ret)) {
10145             struct target_statfs64 *target_stfs;
10146 
10147             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0))
10148                 return -TARGET_EFAULT;
10149             __put_user(stfs.f_type, &target_stfs->f_type);
10150             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10151             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10152             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10153             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10154             __put_user(stfs.f_files, &target_stfs->f_files);
10155             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10156             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10157             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10158             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10159             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10160 #ifdef _STATFS_F_FLAGS
10161             __put_user(stfs.f_flags, &target_stfs->f_flags);
10162 #else
10163             __put_user(0, &target_stfs->f_flags);
10164 #endif
10165             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10166             unlock_user_struct(target_stfs, arg3, 1);
10167         }
10168         return ret;
10169     case TARGET_NR_fstatfs64:
10170         ret = get_errno(fstatfs(arg1, &stfs));
10171         goto convert_statfs64;
10172 #endif
10173 #ifdef TARGET_NR_socketcall
10174     case TARGET_NR_socketcall:
10175         return do_socketcall(arg1, arg2);
10176 #endif
10177 #ifdef TARGET_NR_accept
10178     case TARGET_NR_accept:
10179         return do_accept4(arg1, arg2, arg3, 0);
10180 #endif
10181 #ifdef TARGET_NR_accept4
10182     case TARGET_NR_accept4:
10183         return do_accept4(arg1, arg2, arg3, arg4);
10184 #endif
10185 #ifdef TARGET_NR_bind
10186     case TARGET_NR_bind:
10187         return do_bind(arg1, arg2, arg3);
10188 #endif
10189 #ifdef TARGET_NR_connect
10190     case TARGET_NR_connect:
10191         return do_connect(arg1, arg2, arg3);
10192 #endif
10193 #ifdef TARGET_NR_getpeername
10194     case TARGET_NR_getpeername:
10195         return do_getpeername(arg1, arg2, arg3);
10196 #endif
10197 #ifdef TARGET_NR_getsockname
10198     case TARGET_NR_getsockname:
10199         return do_getsockname(arg1, arg2, arg3);
10200 #endif
10201 #ifdef TARGET_NR_getsockopt
10202     case TARGET_NR_getsockopt:
10203         return do_getsockopt(arg1, arg2, arg3, arg4, arg5);
10204 #endif
10205 #ifdef TARGET_NR_listen
10206     case TARGET_NR_listen:
10207         return get_errno(listen(arg1, arg2));
10208 #endif
10209 #ifdef TARGET_NR_recv
10210     case TARGET_NR_recv:
10211         return do_recvfrom(arg1, arg2, arg3, arg4, 0, 0);
10212 #endif
10213 #ifdef TARGET_NR_recvfrom
10214     case TARGET_NR_recvfrom:
10215         return do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6);
10216 #endif
10217 #ifdef TARGET_NR_recvmsg
10218     case TARGET_NR_recvmsg:
10219         return do_sendrecvmsg(arg1, arg2, arg3, 0);
10220 #endif
10221 #ifdef TARGET_NR_send
10222     case TARGET_NR_send:
10223         return do_sendto(arg1, arg2, arg3, arg4, 0, 0);
10224 #endif
10225 #ifdef TARGET_NR_sendmsg
10226     case TARGET_NR_sendmsg:
10227         return do_sendrecvmsg(arg1, arg2, arg3, 1);
10228 #endif
10229 #ifdef TARGET_NR_sendmmsg
10230     case TARGET_NR_sendmmsg:
10231         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1);
10232 #endif
10233 #ifdef TARGET_NR_recvmmsg
10234     case TARGET_NR_recvmmsg:
10235         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0);
10236 #endif
10237 #ifdef TARGET_NR_sendto
10238     case TARGET_NR_sendto:
10239         return do_sendto(arg1, arg2, arg3, arg4, arg5, arg6);
10240 #endif
10241 #ifdef TARGET_NR_shutdown
10242     case TARGET_NR_shutdown:
10243         return get_errno(shutdown(arg1, arg2));
10244 #endif
10245 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
10246     case TARGET_NR_getrandom:
10247         p = lock_user(VERIFY_WRITE, arg1, arg2, 0);
10248         if (!p) {
10249             return -TARGET_EFAULT;
10250         }
10251         ret = get_errno(getrandom(p, arg2, arg3));
10252         unlock_user(p, arg1, ret);
10253         return ret;
10254 #endif
10255 #ifdef TARGET_NR_socket
10256     case TARGET_NR_socket:
10257         return do_socket(arg1, arg2, arg3);
10258 #endif
10259 #ifdef TARGET_NR_socketpair
10260     case TARGET_NR_socketpair:
10261         return do_socketpair(arg1, arg2, arg3, arg4);
10262 #endif
10263 #ifdef TARGET_NR_setsockopt
10264     case TARGET_NR_setsockopt:
10265         return do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5);
10266 #endif
10267 #if defined(TARGET_NR_syslog)
10268     case TARGET_NR_syslog:
10269         {
10270             int len = arg2;
10271 
10272             switch (arg1) {
10273             case TARGET_SYSLOG_ACTION_CLOSE:         /* Close log */
10274             case TARGET_SYSLOG_ACTION_OPEN:          /* Open log */
10275             case TARGET_SYSLOG_ACTION_CLEAR:         /* Clear ring buffer */
10276             case TARGET_SYSLOG_ACTION_CONSOLE_OFF:   /* Disable logging */
10277             case TARGET_SYSLOG_ACTION_CONSOLE_ON:    /* Enable logging */
10278             case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */
10279             case TARGET_SYSLOG_ACTION_SIZE_UNREAD:   /* Number of chars */
10280             case TARGET_SYSLOG_ACTION_SIZE_BUFFER:   /* Size of the buffer */
10281                 return get_errno(sys_syslog((int)arg1, NULL, (int)arg3));
10282             case TARGET_SYSLOG_ACTION_READ:          /* Read from log */
10283             case TARGET_SYSLOG_ACTION_READ_CLEAR:    /* Read/clear msgs */
10284             case TARGET_SYSLOG_ACTION_READ_ALL:      /* Read last messages */
10285                 {
10286                     if (len < 0) {
10287                         return -TARGET_EINVAL;
10288                     }
10289                     if (len == 0) {
10290                         return 0;
10291                     }
10292                     p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10293                     if (!p) {
10294                         return -TARGET_EFAULT;
10295                     }
10296                     ret = get_errno(sys_syslog((int)arg1, p, (int)arg3));
10297                     unlock_user(p, arg2, arg3);
10298                 }
10299                 return ret;
10300             default:
10301                 return -TARGET_EINVAL;
10302             }
10303         }
10304         break;
10305 #endif
10306     case TARGET_NR_setitimer:
10307         {
10308             struct itimerval value, ovalue, *pvalue;
10309 
10310             if (arg2) {
10311                 pvalue = &value;
10312                 if (copy_from_user_timeval(&pvalue->it_interval, arg2)
10313                     || copy_from_user_timeval(&pvalue->it_value,
10314                                               arg2 + sizeof(struct target_timeval)))
10315                     return -TARGET_EFAULT;
10316             } else {
10317                 pvalue = NULL;
10318             }
10319             ret = get_errno(setitimer(arg1, pvalue, &ovalue));
10320             if (!is_error(ret) && arg3) {
10321                 if (copy_to_user_timeval(arg3,
10322                                          &ovalue.it_interval)
10323                     || copy_to_user_timeval(arg3 + sizeof(struct target_timeval),
10324                                             &ovalue.it_value))
10325                     return -TARGET_EFAULT;
10326             }
10327         }
10328         return ret;
10329     case TARGET_NR_getitimer:
10330         {
10331             struct itimerval value;
10332 
10333             ret = get_errno(getitimer(arg1, &value));
10334             if (!is_error(ret) && arg2) {
10335                 if (copy_to_user_timeval(arg2,
10336                                          &value.it_interval)
10337                     || copy_to_user_timeval(arg2 + sizeof(struct target_timeval),
10338                                             &value.it_value))
10339                     return -TARGET_EFAULT;
10340             }
10341         }
10342         return ret;
10343 #ifdef TARGET_NR_stat
10344     case TARGET_NR_stat:
10345         if (!(p = lock_user_string(arg1))) {
10346             return -TARGET_EFAULT;
10347         }
10348         ret = get_errno(stat(path(p), &st));
10349         unlock_user(p, arg1, 0);
10350         goto do_stat;
10351 #endif
10352 #ifdef TARGET_NR_lstat
10353     case TARGET_NR_lstat:
10354         if (!(p = lock_user_string(arg1))) {
10355             return -TARGET_EFAULT;
10356         }
10357         ret = get_errno(lstat(path(p), &st));
10358         unlock_user(p, arg1, 0);
10359         goto do_stat;
10360 #endif
10361 #ifdef TARGET_NR_fstat
10362     case TARGET_NR_fstat:
10363         {
10364             ret = get_errno(fstat(arg1, &st));
10365 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
10366         do_stat:
10367 #endif
10368             if (!is_error(ret)) {
10369                 struct target_stat *target_st;
10370 
10371                 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0))
10372                     return -TARGET_EFAULT;
10373                 memset(target_st, 0, sizeof(*target_st));
10374                 __put_user(st.st_dev, &target_st->st_dev);
10375                 __put_user(st.st_ino, &target_st->st_ino);
10376                 __put_user(st.st_mode, &target_st->st_mode);
10377                 __put_user(st.st_uid, &target_st->st_uid);
10378                 __put_user(st.st_gid, &target_st->st_gid);
10379                 __put_user(st.st_nlink, &target_st->st_nlink);
10380                 __put_user(st.st_rdev, &target_st->st_rdev);
10381                 __put_user(st.st_size, &target_st->st_size);
10382                 __put_user(st.st_blksize, &target_st->st_blksize);
10383                 __put_user(st.st_blocks, &target_st->st_blocks);
10384                 __put_user(st.st_atime, &target_st->target_st_atime);
10385                 __put_user(st.st_mtime, &target_st->target_st_mtime);
10386                 __put_user(st.st_ctime, &target_st->target_st_ctime);
10387 #if defined(HAVE_STRUCT_STAT_ST_ATIM) && defined(TARGET_STAT_HAVE_NSEC)
10388                 __put_user(st.st_atim.tv_nsec,
10389                            &target_st->target_st_atime_nsec);
10390                 __put_user(st.st_mtim.tv_nsec,
10391                            &target_st->target_st_mtime_nsec);
10392                 __put_user(st.st_ctim.tv_nsec,
10393                            &target_st->target_st_ctime_nsec);
10394 #endif
10395                 unlock_user_struct(target_st, arg2, 1);
10396             }
10397         }
10398         return ret;
10399 #endif
10400     case TARGET_NR_vhangup:
10401         return get_errno(vhangup());
10402 #ifdef TARGET_NR_syscall
10403     case TARGET_NR_syscall:
10404         return do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5,
10405                           arg6, arg7, arg8, 0);
10406 #endif
10407 #if defined(TARGET_NR_wait4)
10408     case TARGET_NR_wait4:
10409         {
10410             int status;
10411             abi_long status_ptr = arg2;
10412             struct rusage rusage, *rusage_ptr;
10413             abi_ulong target_rusage = arg4;
10414             abi_long rusage_err;
10415             if (target_rusage)
10416                 rusage_ptr = &rusage;
10417             else
10418                 rusage_ptr = NULL;
10419             ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr));
10420             if (!is_error(ret)) {
10421                 if (status_ptr && ret) {
10422                     status = host_to_target_waitstatus(status);
10423                     if (put_user_s32(status, status_ptr))
10424                         return -TARGET_EFAULT;
10425                 }
10426                 if (target_rusage) {
10427                     rusage_err = host_to_target_rusage(target_rusage, &rusage);
10428                     if (rusage_err) {
10429                         ret = rusage_err;
10430                     }
10431                 }
10432             }
10433         }
10434         return ret;
10435 #endif
10436 #ifdef TARGET_NR_swapoff
10437     case TARGET_NR_swapoff:
10438         if (!(p = lock_user_string(arg1)))
10439             return -TARGET_EFAULT;
10440         ret = get_errno(swapoff(p));
10441         unlock_user(p, arg1, 0);
10442         return ret;
10443 #endif
10444     case TARGET_NR_sysinfo:
10445         {
10446             struct target_sysinfo *target_value;
10447             struct sysinfo value;
10448             ret = get_errno(sysinfo(&value));
10449             if (!is_error(ret) && arg1)
10450             {
10451                 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0))
10452                     return -TARGET_EFAULT;
10453                 __put_user(value.uptime, &target_value->uptime);
10454                 __put_user(value.loads[0], &target_value->loads[0]);
10455                 __put_user(value.loads[1], &target_value->loads[1]);
10456                 __put_user(value.loads[2], &target_value->loads[2]);
10457                 __put_user(value.totalram, &target_value->totalram);
10458                 __put_user(value.freeram, &target_value->freeram);
10459                 __put_user(value.sharedram, &target_value->sharedram);
10460                 __put_user(value.bufferram, &target_value->bufferram);
10461                 __put_user(value.totalswap, &target_value->totalswap);
10462                 __put_user(value.freeswap, &target_value->freeswap);
10463                 __put_user(value.procs, &target_value->procs);
10464                 __put_user(value.totalhigh, &target_value->totalhigh);
10465                 __put_user(value.freehigh, &target_value->freehigh);
10466                 __put_user(value.mem_unit, &target_value->mem_unit);
10467                 unlock_user_struct(target_value, arg1, 1);
10468             }
10469         }
10470         return ret;
10471 #ifdef TARGET_NR_ipc
10472     case TARGET_NR_ipc:
10473         return do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6);
10474 #endif
10475 #ifdef TARGET_NR_semget
10476     case TARGET_NR_semget:
10477         return get_errno(semget(arg1, arg2, arg3));
10478 #endif
10479 #ifdef TARGET_NR_semop
10480     case TARGET_NR_semop:
10481         return do_semtimedop(arg1, arg2, arg3, 0, false);
10482 #endif
10483 #ifdef TARGET_NR_semtimedop
10484     case TARGET_NR_semtimedop:
10485         return do_semtimedop(arg1, arg2, arg3, arg4, false);
10486 #endif
10487 #ifdef TARGET_NR_semtimedop_time64
10488     case TARGET_NR_semtimedop_time64:
10489         return do_semtimedop(arg1, arg2, arg3, arg4, true);
10490 #endif
10491 #ifdef TARGET_NR_semctl
10492     case TARGET_NR_semctl:
10493         return do_semctl(arg1, arg2, arg3, arg4);
10494 #endif
10495 #ifdef TARGET_NR_msgctl
10496     case TARGET_NR_msgctl:
10497         return do_msgctl(arg1, arg2, arg3);
10498 #endif
10499 #ifdef TARGET_NR_msgget
10500     case TARGET_NR_msgget:
10501         return get_errno(msgget(arg1, arg2));
10502 #endif
10503 #ifdef TARGET_NR_msgrcv
10504     case TARGET_NR_msgrcv:
10505         return do_msgrcv(arg1, arg2, arg3, arg4, arg5);
10506 #endif
10507 #ifdef TARGET_NR_msgsnd
10508     case TARGET_NR_msgsnd:
10509         return do_msgsnd(arg1, arg2, arg3, arg4);
10510 #endif
10511 #ifdef TARGET_NR_shmget
10512     case TARGET_NR_shmget:
10513         return get_errno(shmget(arg1, arg2, arg3));
10514 #endif
10515 #ifdef TARGET_NR_shmctl
10516     case TARGET_NR_shmctl:
10517         return do_shmctl(arg1, arg2, arg3);
10518 #endif
10519 #ifdef TARGET_NR_shmat
10520     case TARGET_NR_shmat:
10521         return do_shmat(cpu_env, arg1, arg2, arg3);
10522 #endif
10523 #ifdef TARGET_NR_shmdt
10524     case TARGET_NR_shmdt:
10525         return do_shmdt(arg1);
10526 #endif
10527     case TARGET_NR_fsync:
10528         return get_errno(fsync(arg1));
10529     case TARGET_NR_clone:
10530         /* Linux manages to have three different orderings for its
10531          * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
10532          * match the kernel's CONFIG_CLONE_* settings.
10533          * Microblaze is further special in that it uses a sixth
10534          * implicit argument to clone for the TLS pointer.
10535          */
10536 #if defined(TARGET_MICROBLAZE)
10537         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5));
10538 #elif defined(TARGET_CLONE_BACKWARDS)
10539         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5));
10540 #elif defined(TARGET_CLONE_BACKWARDS2)
10541         ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4));
10542 #else
10543         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4));
10544 #endif
10545         return ret;
10546 #ifdef __NR_exit_group
10547         /* new thread calls */
10548     case TARGET_NR_exit_group:
10549         preexit_cleanup(cpu_env, arg1);
10550         return get_errno(exit_group(arg1));
10551 #endif
10552     case TARGET_NR_setdomainname:
10553         if (!(p = lock_user_string(arg1)))
10554             return -TARGET_EFAULT;
10555         ret = get_errno(setdomainname(p, arg2));
10556         unlock_user(p, arg1, 0);
10557         return ret;
10558     case TARGET_NR_uname:
10559         /* no need to transcode because we use the linux syscall */
10560         {
10561             struct new_utsname * buf;
10562 
10563             if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0))
10564                 return -TARGET_EFAULT;
10565             ret = get_errno(sys_uname(buf));
10566             if (!is_error(ret)) {
10567                 /* Overwrite the native machine name with whatever is being
10568                    emulated. */
10569                 g_strlcpy(buf->machine, cpu_to_uname_machine(cpu_env),
10570                           sizeof(buf->machine));
10571                 /* Allow the user to override the reported release.  */
10572                 if (qemu_uname_release && *qemu_uname_release) {
10573                     g_strlcpy(buf->release, qemu_uname_release,
10574                               sizeof(buf->release));
10575                 }
10576             }
10577             unlock_user_struct(buf, arg1, 1);
10578         }
10579         return ret;
10580 #ifdef TARGET_I386
10581     case TARGET_NR_modify_ldt:
10582         return do_modify_ldt(cpu_env, arg1, arg2, arg3);
10583 #if !defined(TARGET_X86_64)
10584     case TARGET_NR_vm86:
10585         return do_vm86(cpu_env, arg1, arg2);
10586 #endif
10587 #endif
10588 #if defined(TARGET_NR_adjtimex)
10589     case TARGET_NR_adjtimex:
10590         {
10591             struct timex host_buf;
10592 
10593             if (target_to_host_timex(&host_buf, arg1) != 0) {
10594                 return -TARGET_EFAULT;
10595             }
10596             ret = get_errno(adjtimex(&host_buf));
10597             if (!is_error(ret)) {
10598                 if (host_to_target_timex(arg1, &host_buf) != 0) {
10599                     return -TARGET_EFAULT;
10600                 }
10601             }
10602         }
10603         return ret;
10604 #endif
10605 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)
10606     case TARGET_NR_clock_adjtime:
10607         {
10608             struct timex htx, *phtx = &htx;
10609 
10610             if (target_to_host_timex(phtx, arg2) != 0) {
10611                 return -TARGET_EFAULT;
10612             }
10613             ret = get_errno(clock_adjtime(arg1, phtx));
10614             if (!is_error(ret) && phtx) {
10615                 if (host_to_target_timex(arg2, phtx) != 0) {
10616                     return -TARGET_EFAULT;
10617                 }
10618             }
10619         }
10620         return ret;
10621 #endif
10622 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
10623     case TARGET_NR_clock_adjtime64:
10624         {
10625             struct timex htx;
10626 
10627             if (target_to_host_timex64(&htx, arg2) != 0) {
10628                 return -TARGET_EFAULT;
10629             }
10630             ret = get_errno(clock_adjtime(arg1, &htx));
10631             if (!is_error(ret) && host_to_target_timex64(arg2, &htx)) {
10632                     return -TARGET_EFAULT;
10633             }
10634         }
10635         return ret;
10636 #endif
10637     case TARGET_NR_getpgid:
10638         return get_errno(getpgid(arg1));
10639     case TARGET_NR_fchdir:
10640         return get_errno(fchdir(arg1));
10641     case TARGET_NR_personality:
10642         return get_errno(personality(arg1));
10643 #ifdef TARGET_NR__llseek /* Not on alpha */
10644     case TARGET_NR__llseek:
10645         {
10646             int64_t res;
10647 #if !defined(__NR_llseek)
10648             res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5);
10649             if (res == -1) {
10650                 ret = get_errno(res);
10651             } else {
10652                 ret = 0;
10653             }
10654 #else
10655             ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5));
10656 #endif
10657             if ((ret == 0) && put_user_s64(res, arg4)) {
10658                 return -TARGET_EFAULT;
10659             }
10660         }
10661         return ret;
10662 #endif
10663 #ifdef TARGET_NR_getdents
10664     case TARGET_NR_getdents:
10665         return do_getdents(arg1, arg2, arg3);
10666 #endif /* TARGET_NR_getdents */
10667 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
10668     case TARGET_NR_getdents64:
10669         return do_getdents64(arg1, arg2, arg3);
10670 #endif /* TARGET_NR_getdents64 */
10671 #if defined(TARGET_NR__newselect)
10672     case TARGET_NR__newselect:
10673         return do_select(arg1, arg2, arg3, arg4, arg5);
10674 #endif
10675 #ifdef TARGET_NR_poll
10676     case TARGET_NR_poll:
10677         return do_ppoll(arg1, arg2, arg3, arg4, arg5, false, false);
10678 #endif
10679 #ifdef TARGET_NR_ppoll
10680     case TARGET_NR_ppoll:
10681         return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, false);
10682 #endif
10683 #ifdef TARGET_NR_ppoll_time64
10684     case TARGET_NR_ppoll_time64:
10685         return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, true);
10686 #endif
10687     case TARGET_NR_flock:
10688         /* NOTE: the flock constant seems to be the same for every
10689            Linux platform */
10690         return get_errno(safe_flock(arg1, arg2));
10691     case TARGET_NR_readv:
10692         {
10693             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
10694             if (vec != NULL) {
10695                 ret = get_errno(safe_readv(arg1, vec, arg3));
10696                 unlock_iovec(vec, arg2, arg3, 1);
10697             } else {
10698                 ret = -host_to_target_errno(errno);
10699             }
10700         }
10701         return ret;
10702     case TARGET_NR_writev:
10703         {
10704             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
10705             if (vec != NULL) {
10706                 ret = get_errno(safe_writev(arg1, vec, arg3));
10707                 unlock_iovec(vec, arg2, arg3, 0);
10708             } else {
10709                 ret = -host_to_target_errno(errno);
10710             }
10711         }
10712         return ret;
10713 #if defined(TARGET_NR_preadv)
10714     case TARGET_NR_preadv:
10715         {
10716             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
10717             if (vec != NULL) {
10718                 unsigned long low, high;
10719 
10720                 target_to_host_low_high(arg4, arg5, &low, &high);
10721                 ret = get_errno(safe_preadv(arg1, vec, arg3, low, high));
10722                 unlock_iovec(vec, arg2, arg3, 1);
10723             } else {
10724                 ret = -host_to_target_errno(errno);
10725            }
10726         }
10727         return ret;
10728 #endif
10729 #if defined(TARGET_NR_pwritev)
10730     case TARGET_NR_pwritev:
10731         {
10732             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
10733             if (vec != NULL) {
10734                 unsigned long low, high;
10735 
10736                 target_to_host_low_high(arg4, arg5, &low, &high);
10737                 ret = get_errno(safe_pwritev(arg1, vec, arg3, low, high));
10738                 unlock_iovec(vec, arg2, arg3, 0);
10739             } else {
10740                 ret = -host_to_target_errno(errno);
10741            }
10742         }
10743         return ret;
10744 #endif
10745     case TARGET_NR_getsid:
10746         return get_errno(getsid(arg1));
10747 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
10748     case TARGET_NR_fdatasync:
10749         return get_errno(fdatasync(arg1));
10750 #endif
10751     case TARGET_NR_sched_getaffinity:
10752         {
10753             unsigned int mask_size;
10754             unsigned long *mask;
10755 
10756             /*
10757              * sched_getaffinity needs multiples of ulong, so need to take
10758              * care of mismatches between target ulong and host ulong sizes.
10759              */
10760             if (arg2 & (sizeof(abi_ulong) - 1)) {
10761                 return -TARGET_EINVAL;
10762             }
10763             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
10764 
10765             mask = alloca(mask_size);
10766             memset(mask, 0, mask_size);
10767             ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask));
10768 
10769             if (!is_error(ret)) {
10770                 if (ret > arg2) {
10771                     /* More data returned than the caller's buffer will fit.
10772                      * This only happens if sizeof(abi_long) < sizeof(long)
10773                      * and the caller passed us a buffer holding an odd number
10774                      * of abi_longs. If the host kernel is actually using the
10775                      * extra 4 bytes then fail EINVAL; otherwise we can just
10776                      * ignore them and only copy the interesting part.
10777                      */
10778                     int numcpus = sysconf(_SC_NPROCESSORS_CONF);
10779                     if (numcpus > arg2 * 8) {
10780                         return -TARGET_EINVAL;
10781                     }
10782                     ret = arg2;
10783                 }
10784 
10785                 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) {
10786                     return -TARGET_EFAULT;
10787                 }
10788             }
10789         }
10790         return ret;
10791     case TARGET_NR_sched_setaffinity:
10792         {
10793             unsigned int mask_size;
10794             unsigned long *mask;
10795 
10796             /*
10797              * sched_setaffinity needs multiples of ulong, so need to take
10798              * care of mismatches between target ulong and host ulong sizes.
10799              */
10800             if (arg2 & (sizeof(abi_ulong) - 1)) {
10801                 return -TARGET_EINVAL;
10802             }
10803             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
10804             mask = alloca(mask_size);
10805 
10806             ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2);
10807             if (ret) {
10808                 return ret;
10809             }
10810 
10811             return get_errno(sys_sched_setaffinity(arg1, mask_size, mask));
10812         }
10813     case TARGET_NR_getcpu:
10814         {
10815             unsigned cpu, node;
10816             ret = get_errno(sys_getcpu(arg1 ? &cpu : NULL,
10817                                        arg2 ? &node : NULL,
10818                                        NULL));
10819             if (is_error(ret)) {
10820                 return ret;
10821             }
10822             if (arg1 && put_user_u32(cpu, arg1)) {
10823                 return -TARGET_EFAULT;
10824             }
10825             if (arg2 && put_user_u32(node, arg2)) {
10826                 return -TARGET_EFAULT;
10827             }
10828         }
10829         return ret;
10830     case TARGET_NR_sched_setparam:
10831         {
10832             struct target_sched_param *target_schp;
10833             struct sched_param schp;
10834 
10835             if (arg2 == 0) {
10836                 return -TARGET_EINVAL;
10837             }
10838             if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1)) {
10839                 return -TARGET_EFAULT;
10840             }
10841             schp.sched_priority = tswap32(target_schp->sched_priority);
10842             unlock_user_struct(target_schp, arg2, 0);
10843             return get_errno(sys_sched_setparam(arg1, &schp));
10844         }
10845     case TARGET_NR_sched_getparam:
10846         {
10847             struct target_sched_param *target_schp;
10848             struct sched_param schp;
10849 
10850             if (arg2 == 0) {
10851                 return -TARGET_EINVAL;
10852             }
10853             ret = get_errno(sys_sched_getparam(arg1, &schp));
10854             if (!is_error(ret)) {
10855                 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0)) {
10856                     return -TARGET_EFAULT;
10857                 }
10858                 target_schp->sched_priority = tswap32(schp.sched_priority);
10859                 unlock_user_struct(target_schp, arg2, 1);
10860             }
10861         }
10862         return ret;
10863     case TARGET_NR_sched_setscheduler:
10864         {
10865             struct target_sched_param *target_schp;
10866             struct sched_param schp;
10867             if (arg3 == 0) {
10868                 return -TARGET_EINVAL;
10869             }
10870             if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1)) {
10871                 return -TARGET_EFAULT;
10872             }
10873             schp.sched_priority = tswap32(target_schp->sched_priority);
10874             unlock_user_struct(target_schp, arg3, 0);
10875             return get_errno(sys_sched_setscheduler(arg1, arg2, &schp));
10876         }
10877     case TARGET_NR_sched_getscheduler:
10878         return get_errno(sys_sched_getscheduler(arg1));
10879     case TARGET_NR_sched_getattr:
10880         {
10881             struct target_sched_attr *target_scha;
10882             struct sched_attr scha;
10883             if (arg2 == 0) {
10884                 return -TARGET_EINVAL;
10885             }
10886             if (arg3 > sizeof(scha)) {
10887                 arg3 = sizeof(scha);
10888             }
10889             ret = get_errno(sys_sched_getattr(arg1, &scha, arg3, arg4));
10890             if (!is_error(ret)) {
10891                 target_scha = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10892                 if (!target_scha) {
10893                     return -TARGET_EFAULT;
10894                 }
10895                 target_scha->size = tswap32(scha.size);
10896                 target_scha->sched_policy = tswap32(scha.sched_policy);
10897                 target_scha->sched_flags = tswap64(scha.sched_flags);
10898                 target_scha->sched_nice = tswap32(scha.sched_nice);
10899                 target_scha->sched_priority = tswap32(scha.sched_priority);
10900                 target_scha->sched_runtime = tswap64(scha.sched_runtime);
10901                 target_scha->sched_deadline = tswap64(scha.sched_deadline);
10902                 target_scha->sched_period = tswap64(scha.sched_period);
10903                 if (scha.size > offsetof(struct sched_attr, sched_util_min)) {
10904                     target_scha->sched_util_min = tswap32(scha.sched_util_min);
10905                     target_scha->sched_util_max = tswap32(scha.sched_util_max);
10906                 }
10907                 unlock_user(target_scha, arg2, arg3);
10908             }
10909             return ret;
10910         }
10911     case TARGET_NR_sched_setattr:
10912         {
10913             struct target_sched_attr *target_scha;
10914             struct sched_attr scha;
10915             uint32_t size;
10916             int zeroed;
10917             if (arg2 == 0) {
10918                 return -TARGET_EINVAL;
10919             }
10920             if (get_user_u32(size, arg2)) {
10921                 return -TARGET_EFAULT;
10922             }
10923             if (!size) {
10924                 size = offsetof(struct target_sched_attr, sched_util_min);
10925             }
10926             if (size < offsetof(struct target_sched_attr, sched_util_min)) {
10927                 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
10928                     return -TARGET_EFAULT;
10929                 }
10930                 return -TARGET_E2BIG;
10931             }
10932 
10933             zeroed = check_zeroed_user(arg2, sizeof(struct target_sched_attr), size);
10934             if (zeroed < 0) {
10935                 return zeroed;
10936             } else if (zeroed == 0) {
10937                 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
10938                     return -TARGET_EFAULT;
10939                 }
10940                 return -TARGET_E2BIG;
10941             }
10942             if (size > sizeof(struct target_sched_attr)) {
10943                 size = sizeof(struct target_sched_attr);
10944             }
10945 
10946             target_scha = lock_user(VERIFY_READ, arg2, size, 1);
10947             if (!target_scha) {
10948                 return -TARGET_EFAULT;
10949             }
10950             scha.size = size;
10951             scha.sched_policy = tswap32(target_scha->sched_policy);
10952             scha.sched_flags = tswap64(target_scha->sched_flags);
10953             scha.sched_nice = tswap32(target_scha->sched_nice);
10954             scha.sched_priority = tswap32(target_scha->sched_priority);
10955             scha.sched_runtime = tswap64(target_scha->sched_runtime);
10956             scha.sched_deadline = tswap64(target_scha->sched_deadline);
10957             scha.sched_period = tswap64(target_scha->sched_period);
10958             if (size > offsetof(struct target_sched_attr, sched_util_min)) {
10959                 scha.sched_util_min = tswap32(target_scha->sched_util_min);
10960                 scha.sched_util_max = tswap32(target_scha->sched_util_max);
10961             }
10962             unlock_user(target_scha, arg2, 0);
10963             return get_errno(sys_sched_setattr(arg1, &scha, arg3));
10964         }
10965     case TARGET_NR_sched_yield:
10966         return get_errno(sched_yield());
10967     case TARGET_NR_sched_get_priority_max:
10968         return get_errno(sched_get_priority_max(arg1));
10969     case TARGET_NR_sched_get_priority_min:
10970         return get_errno(sched_get_priority_min(arg1));
10971 #ifdef TARGET_NR_sched_rr_get_interval
10972     case TARGET_NR_sched_rr_get_interval:
10973         {
10974             struct timespec ts;
10975             ret = get_errno(sched_rr_get_interval(arg1, &ts));
10976             if (!is_error(ret)) {
10977                 ret = host_to_target_timespec(arg2, &ts);
10978             }
10979         }
10980         return ret;
10981 #endif
10982 #ifdef TARGET_NR_sched_rr_get_interval_time64
10983     case TARGET_NR_sched_rr_get_interval_time64:
10984         {
10985             struct timespec ts;
10986             ret = get_errno(sched_rr_get_interval(arg1, &ts));
10987             if (!is_error(ret)) {
10988                 ret = host_to_target_timespec64(arg2, &ts);
10989             }
10990         }
10991         return ret;
10992 #endif
10993 #if defined(TARGET_NR_nanosleep)
10994     case TARGET_NR_nanosleep:
10995         {
10996             struct timespec req, rem;
10997             target_to_host_timespec(&req, arg1);
10998             ret = get_errno(safe_nanosleep(&req, &rem));
10999             if (is_error(ret) && arg2) {
11000                 host_to_target_timespec(arg2, &rem);
11001             }
11002         }
11003         return ret;
11004 #endif
11005     case TARGET_NR_prctl:
11006         return do_prctl(cpu_env, arg1, arg2, arg3, arg4, arg5);
11007         break;
11008 #ifdef TARGET_NR_arch_prctl
11009     case TARGET_NR_arch_prctl:
11010         return do_arch_prctl(cpu_env, arg1, arg2);
11011 #endif
11012 #ifdef TARGET_NR_pread64
11013     case TARGET_NR_pread64:
11014         if (regpairs_aligned(cpu_env, num)) {
11015             arg4 = arg5;
11016             arg5 = arg6;
11017         }
11018         if (arg2 == 0 && arg3 == 0) {
11019             /* Special-case NULL buffer and zero length, which should succeed */
11020             p = 0;
11021         } else {
11022             p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11023             if (!p) {
11024                 return -TARGET_EFAULT;
11025             }
11026         }
11027         ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5)));
11028         unlock_user(p, arg2, ret);
11029         return ret;
11030     case TARGET_NR_pwrite64:
11031         if (regpairs_aligned(cpu_env, num)) {
11032             arg4 = arg5;
11033             arg5 = arg6;
11034         }
11035         if (arg2 == 0 && arg3 == 0) {
11036             /* Special-case NULL buffer and zero length, which should succeed */
11037             p = 0;
11038         } else {
11039             p = lock_user(VERIFY_READ, arg2, arg3, 1);
11040             if (!p) {
11041                 return -TARGET_EFAULT;
11042             }
11043         }
11044         ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5)));
11045         unlock_user(p, arg2, 0);
11046         return ret;
11047 #endif
11048     case TARGET_NR_getcwd:
11049         if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0)))
11050             return -TARGET_EFAULT;
11051         ret = get_errno(sys_getcwd1(p, arg2));
11052         unlock_user(p, arg1, ret);
11053         return ret;
11054     case TARGET_NR_capget:
11055     case TARGET_NR_capset:
11056     {
11057         struct target_user_cap_header *target_header;
11058         struct target_user_cap_data *target_data = NULL;
11059         struct __user_cap_header_struct header;
11060         struct __user_cap_data_struct data[2];
11061         struct __user_cap_data_struct *dataptr = NULL;
11062         int i, target_datalen;
11063         int data_items = 1;
11064 
11065         if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) {
11066             return -TARGET_EFAULT;
11067         }
11068         header.version = tswap32(target_header->version);
11069         header.pid = tswap32(target_header->pid);
11070 
11071         if (header.version != _LINUX_CAPABILITY_VERSION) {
11072             /* Version 2 and up takes pointer to two user_data structs */
11073             data_items = 2;
11074         }
11075 
11076         target_datalen = sizeof(*target_data) * data_items;
11077 
11078         if (arg2) {
11079             if (num == TARGET_NR_capget) {
11080                 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0);
11081             } else {
11082                 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1);
11083             }
11084             if (!target_data) {
11085                 unlock_user_struct(target_header, arg1, 0);
11086                 return -TARGET_EFAULT;
11087             }
11088 
11089             if (num == TARGET_NR_capset) {
11090                 for (i = 0; i < data_items; i++) {
11091                     data[i].effective = tswap32(target_data[i].effective);
11092                     data[i].permitted = tswap32(target_data[i].permitted);
11093                     data[i].inheritable = tswap32(target_data[i].inheritable);
11094                 }
11095             }
11096 
11097             dataptr = data;
11098         }
11099 
11100         if (num == TARGET_NR_capget) {
11101             ret = get_errno(capget(&header, dataptr));
11102         } else {
11103             ret = get_errno(capset(&header, dataptr));
11104         }
11105 
11106         /* The kernel always updates version for both capget and capset */
11107         target_header->version = tswap32(header.version);
11108         unlock_user_struct(target_header, arg1, 1);
11109 
11110         if (arg2) {
11111             if (num == TARGET_NR_capget) {
11112                 for (i = 0; i < data_items; i++) {
11113                     target_data[i].effective = tswap32(data[i].effective);
11114                     target_data[i].permitted = tswap32(data[i].permitted);
11115                     target_data[i].inheritable = tswap32(data[i].inheritable);
11116                 }
11117                 unlock_user(target_data, arg2, target_datalen);
11118             } else {
11119                 unlock_user(target_data, arg2, 0);
11120             }
11121         }
11122         return ret;
11123     }
11124     case TARGET_NR_sigaltstack:
11125         return do_sigaltstack(arg1, arg2, cpu_env);
11126 
11127 #ifdef CONFIG_SENDFILE
11128 #ifdef TARGET_NR_sendfile
11129     case TARGET_NR_sendfile:
11130     {
11131         off_t *offp = NULL;
11132         off_t off;
11133         if (arg3) {
11134             ret = get_user_sal(off, arg3);
11135             if (is_error(ret)) {
11136                 return ret;
11137             }
11138             offp = &off;
11139         }
11140         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11141         if (!is_error(ret) && arg3) {
11142             abi_long ret2 = put_user_sal(off, arg3);
11143             if (is_error(ret2)) {
11144                 ret = ret2;
11145             }
11146         }
11147         return ret;
11148     }
11149 #endif
11150 #ifdef TARGET_NR_sendfile64
11151     case TARGET_NR_sendfile64:
11152     {
11153         off_t *offp = NULL;
11154         off_t off;
11155         if (arg3) {
11156             ret = get_user_s64(off, arg3);
11157             if (is_error(ret)) {
11158                 return ret;
11159             }
11160             offp = &off;
11161         }
11162         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11163         if (!is_error(ret) && arg3) {
11164             abi_long ret2 = put_user_s64(off, arg3);
11165             if (is_error(ret2)) {
11166                 ret = ret2;
11167             }
11168         }
11169         return ret;
11170     }
11171 #endif
11172 #endif
11173 #ifdef TARGET_NR_vfork
11174     case TARGET_NR_vfork:
11175         return get_errno(do_fork(cpu_env,
11176                          CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD,
11177                          0, 0, 0, 0));
11178 #endif
11179 #ifdef TARGET_NR_ugetrlimit
11180     case TARGET_NR_ugetrlimit:
11181     {
11182 	struct rlimit rlim;
11183 	int resource = target_to_host_resource(arg1);
11184 	ret = get_errno(getrlimit(resource, &rlim));
11185 	if (!is_error(ret)) {
11186 	    struct target_rlimit *target_rlim;
11187             if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
11188                 return -TARGET_EFAULT;
11189 	    target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
11190 	    target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
11191             unlock_user_struct(target_rlim, arg2, 1);
11192 	}
11193         return ret;
11194     }
11195 #endif
11196 #ifdef TARGET_NR_truncate64
11197     case TARGET_NR_truncate64:
11198         if (!(p = lock_user_string(arg1)))
11199             return -TARGET_EFAULT;
11200 	ret = target_truncate64(cpu_env, p, arg2, arg3, arg4);
11201         unlock_user(p, arg1, 0);
11202         return ret;
11203 #endif
11204 #ifdef TARGET_NR_ftruncate64
11205     case TARGET_NR_ftruncate64:
11206         return target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4);
11207 #endif
11208 #ifdef TARGET_NR_stat64
11209     case TARGET_NR_stat64:
11210         if (!(p = lock_user_string(arg1))) {
11211             return -TARGET_EFAULT;
11212         }
11213         ret = get_errno(stat(path(p), &st));
11214         unlock_user(p, arg1, 0);
11215         if (!is_error(ret))
11216             ret = host_to_target_stat64(cpu_env, arg2, &st);
11217         return ret;
11218 #endif
11219 #ifdef TARGET_NR_lstat64
11220     case TARGET_NR_lstat64:
11221         if (!(p = lock_user_string(arg1))) {
11222             return -TARGET_EFAULT;
11223         }
11224         ret = get_errno(lstat(path(p), &st));
11225         unlock_user(p, arg1, 0);
11226         if (!is_error(ret))
11227             ret = host_to_target_stat64(cpu_env, arg2, &st);
11228         return ret;
11229 #endif
11230 #ifdef TARGET_NR_fstat64
11231     case TARGET_NR_fstat64:
11232         ret = get_errno(fstat(arg1, &st));
11233         if (!is_error(ret))
11234             ret = host_to_target_stat64(cpu_env, arg2, &st);
11235         return ret;
11236 #endif
11237 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
11238 #ifdef TARGET_NR_fstatat64
11239     case TARGET_NR_fstatat64:
11240 #endif
11241 #ifdef TARGET_NR_newfstatat
11242     case TARGET_NR_newfstatat:
11243 #endif
11244         if (!(p = lock_user_string(arg2))) {
11245             return -TARGET_EFAULT;
11246         }
11247         ret = get_errno(fstatat(arg1, path(p), &st, arg4));
11248         unlock_user(p, arg2, 0);
11249         if (!is_error(ret))
11250             ret = host_to_target_stat64(cpu_env, arg3, &st);
11251         return ret;
11252 #endif
11253 #if defined(TARGET_NR_statx)
11254     case TARGET_NR_statx:
11255         {
11256             struct target_statx *target_stx;
11257             int dirfd = arg1;
11258             int flags = arg3;
11259 
11260             p = lock_user_string(arg2);
11261             if (p == NULL) {
11262                 return -TARGET_EFAULT;
11263             }
11264 #if defined(__NR_statx)
11265             {
11266                 /*
11267                  * It is assumed that struct statx is architecture independent.
11268                  */
11269                 struct target_statx host_stx;
11270                 int mask = arg4;
11271 
11272                 ret = get_errno(sys_statx(dirfd, p, flags, mask, &host_stx));
11273                 if (!is_error(ret)) {
11274                     if (host_to_target_statx(&host_stx, arg5) != 0) {
11275                         unlock_user(p, arg2, 0);
11276                         return -TARGET_EFAULT;
11277                     }
11278                 }
11279 
11280                 if (ret != -TARGET_ENOSYS) {
11281                     unlock_user(p, arg2, 0);
11282                     return ret;
11283                 }
11284             }
11285 #endif
11286             ret = get_errno(fstatat(dirfd, path(p), &st, flags));
11287             unlock_user(p, arg2, 0);
11288 
11289             if (!is_error(ret)) {
11290                 if (!lock_user_struct(VERIFY_WRITE, target_stx, arg5, 0)) {
11291                     return -TARGET_EFAULT;
11292                 }
11293                 memset(target_stx, 0, sizeof(*target_stx));
11294                 __put_user(major(st.st_dev), &target_stx->stx_dev_major);
11295                 __put_user(minor(st.st_dev), &target_stx->stx_dev_minor);
11296                 __put_user(st.st_ino, &target_stx->stx_ino);
11297                 __put_user(st.st_mode, &target_stx->stx_mode);
11298                 __put_user(st.st_uid, &target_stx->stx_uid);
11299                 __put_user(st.st_gid, &target_stx->stx_gid);
11300                 __put_user(st.st_nlink, &target_stx->stx_nlink);
11301                 __put_user(major(st.st_rdev), &target_stx->stx_rdev_major);
11302                 __put_user(minor(st.st_rdev), &target_stx->stx_rdev_minor);
11303                 __put_user(st.st_size, &target_stx->stx_size);
11304                 __put_user(st.st_blksize, &target_stx->stx_blksize);
11305                 __put_user(st.st_blocks, &target_stx->stx_blocks);
11306                 __put_user(st.st_atime, &target_stx->stx_atime.tv_sec);
11307                 __put_user(st.st_mtime, &target_stx->stx_mtime.tv_sec);
11308                 __put_user(st.st_ctime, &target_stx->stx_ctime.tv_sec);
11309                 unlock_user_struct(target_stx, arg5, 1);
11310             }
11311         }
11312         return ret;
11313 #endif
11314 #ifdef TARGET_NR_lchown
11315     case TARGET_NR_lchown:
11316         if (!(p = lock_user_string(arg1)))
11317             return -TARGET_EFAULT;
11318         ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3)));
11319         unlock_user(p, arg1, 0);
11320         return ret;
11321 #endif
11322 #ifdef TARGET_NR_getuid
11323     case TARGET_NR_getuid:
11324         return get_errno(high2lowuid(getuid()));
11325 #endif
11326 #ifdef TARGET_NR_getgid
11327     case TARGET_NR_getgid:
11328         return get_errno(high2lowgid(getgid()));
11329 #endif
11330 #ifdef TARGET_NR_geteuid
11331     case TARGET_NR_geteuid:
11332         return get_errno(high2lowuid(geteuid()));
11333 #endif
11334 #ifdef TARGET_NR_getegid
11335     case TARGET_NR_getegid:
11336         return get_errno(high2lowgid(getegid()));
11337 #endif
11338     case TARGET_NR_setreuid:
11339         return get_errno(setreuid(low2highuid(arg1), low2highuid(arg2)));
11340     case TARGET_NR_setregid:
11341         return get_errno(setregid(low2highgid(arg1), low2highgid(arg2)));
11342     case TARGET_NR_getgroups:
11343         {
11344             int gidsetsize = arg1;
11345             target_id *target_grouplist;
11346             gid_t *grouplist;
11347             int i;
11348 
11349             grouplist = alloca(gidsetsize * sizeof(gid_t));
11350             ret = get_errno(getgroups(gidsetsize, grouplist));
11351             if (gidsetsize == 0)
11352                 return ret;
11353             if (!is_error(ret)) {
11354                 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * sizeof(target_id), 0);
11355                 if (!target_grouplist)
11356                     return -TARGET_EFAULT;
11357                 for(i = 0;i < ret; i++)
11358                     target_grouplist[i] = tswapid(high2lowgid(grouplist[i]));
11359                 unlock_user(target_grouplist, arg2, gidsetsize * sizeof(target_id));
11360             }
11361         }
11362         return ret;
11363     case TARGET_NR_setgroups:
11364         {
11365             int gidsetsize = arg1;
11366             target_id *target_grouplist;
11367             gid_t *grouplist = NULL;
11368             int i;
11369             if (gidsetsize) {
11370                 grouplist = alloca(gidsetsize * sizeof(gid_t));
11371                 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * sizeof(target_id), 1);
11372                 if (!target_grouplist) {
11373                     return -TARGET_EFAULT;
11374                 }
11375                 for (i = 0; i < gidsetsize; i++) {
11376                     grouplist[i] = low2highgid(tswapid(target_grouplist[i]));
11377                 }
11378                 unlock_user(target_grouplist, arg2, 0);
11379             }
11380             return get_errno(setgroups(gidsetsize, grouplist));
11381         }
11382     case TARGET_NR_fchown:
11383         return get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3)));
11384 #if defined(TARGET_NR_fchownat)
11385     case TARGET_NR_fchownat:
11386         if (!(p = lock_user_string(arg2)))
11387             return -TARGET_EFAULT;
11388         ret = get_errno(fchownat(arg1, p, low2highuid(arg3),
11389                                  low2highgid(arg4), arg5));
11390         unlock_user(p, arg2, 0);
11391         return ret;
11392 #endif
11393 #ifdef TARGET_NR_setresuid
11394     case TARGET_NR_setresuid:
11395         return get_errno(sys_setresuid(low2highuid(arg1),
11396                                        low2highuid(arg2),
11397                                        low2highuid(arg3)));
11398 #endif
11399 #ifdef TARGET_NR_getresuid
11400     case TARGET_NR_getresuid:
11401         {
11402             uid_t ruid, euid, suid;
11403             ret = get_errno(getresuid(&ruid, &euid, &suid));
11404             if (!is_error(ret)) {
11405                 if (put_user_id(high2lowuid(ruid), arg1)
11406                     || put_user_id(high2lowuid(euid), arg2)
11407                     || put_user_id(high2lowuid(suid), arg3))
11408                     return -TARGET_EFAULT;
11409             }
11410         }
11411         return ret;
11412 #endif
11413 #ifdef TARGET_NR_getresgid
11414     case TARGET_NR_setresgid:
11415         return get_errno(sys_setresgid(low2highgid(arg1),
11416                                        low2highgid(arg2),
11417                                        low2highgid(arg3)));
11418 #endif
11419 #ifdef TARGET_NR_getresgid
11420     case TARGET_NR_getresgid:
11421         {
11422             gid_t rgid, egid, sgid;
11423             ret = get_errno(getresgid(&rgid, &egid, &sgid));
11424             if (!is_error(ret)) {
11425                 if (put_user_id(high2lowgid(rgid), arg1)
11426                     || put_user_id(high2lowgid(egid), arg2)
11427                     || put_user_id(high2lowgid(sgid), arg3))
11428                     return -TARGET_EFAULT;
11429             }
11430         }
11431         return ret;
11432 #endif
11433 #ifdef TARGET_NR_chown
11434     case TARGET_NR_chown:
11435         if (!(p = lock_user_string(arg1)))
11436             return -TARGET_EFAULT;
11437         ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3)));
11438         unlock_user(p, arg1, 0);
11439         return ret;
11440 #endif
11441     case TARGET_NR_setuid:
11442         return get_errno(sys_setuid(low2highuid(arg1)));
11443     case TARGET_NR_setgid:
11444         return get_errno(sys_setgid(low2highgid(arg1)));
11445     case TARGET_NR_setfsuid:
11446         return get_errno(setfsuid(arg1));
11447     case TARGET_NR_setfsgid:
11448         return get_errno(setfsgid(arg1));
11449 
11450 #ifdef TARGET_NR_lchown32
11451     case TARGET_NR_lchown32:
11452         if (!(p = lock_user_string(arg1)))
11453             return -TARGET_EFAULT;
11454         ret = get_errno(lchown(p, arg2, arg3));
11455         unlock_user(p, arg1, 0);
11456         return ret;
11457 #endif
11458 #ifdef TARGET_NR_getuid32
11459     case TARGET_NR_getuid32:
11460         return get_errno(getuid());
11461 #endif
11462 
11463 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
11464    /* Alpha specific */
11465     case TARGET_NR_getxuid:
11466          {
11467             uid_t euid;
11468             euid=geteuid();
11469             cpu_env->ir[IR_A4]=euid;
11470          }
11471         return get_errno(getuid());
11472 #endif
11473 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
11474    /* Alpha specific */
11475     case TARGET_NR_getxgid:
11476          {
11477             uid_t egid;
11478             egid=getegid();
11479             cpu_env->ir[IR_A4]=egid;
11480          }
11481         return get_errno(getgid());
11482 #endif
11483 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
11484     /* Alpha specific */
11485     case TARGET_NR_osf_getsysinfo:
11486         ret = -TARGET_EOPNOTSUPP;
11487         switch (arg1) {
11488           case TARGET_GSI_IEEE_FP_CONTROL:
11489             {
11490                 uint64_t fpcr = cpu_alpha_load_fpcr(cpu_env);
11491                 uint64_t swcr = cpu_env->swcr;
11492 
11493                 swcr &= ~SWCR_STATUS_MASK;
11494                 swcr |= (fpcr >> 35) & SWCR_STATUS_MASK;
11495 
11496                 if (put_user_u64 (swcr, arg2))
11497                         return -TARGET_EFAULT;
11498                 ret = 0;
11499             }
11500             break;
11501 
11502           /* case GSI_IEEE_STATE_AT_SIGNAL:
11503              -- Not implemented in linux kernel.
11504              case GSI_UACPROC:
11505              -- Retrieves current unaligned access state; not much used.
11506              case GSI_PROC_TYPE:
11507              -- Retrieves implver information; surely not used.
11508              case GSI_GET_HWRPB:
11509              -- Grabs a copy of the HWRPB; surely not used.
11510           */
11511         }
11512         return ret;
11513 #endif
11514 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
11515     /* Alpha specific */
11516     case TARGET_NR_osf_setsysinfo:
11517         ret = -TARGET_EOPNOTSUPP;
11518         switch (arg1) {
11519           case TARGET_SSI_IEEE_FP_CONTROL:
11520             {
11521                 uint64_t swcr, fpcr;
11522 
11523                 if (get_user_u64 (swcr, arg2)) {
11524                     return -TARGET_EFAULT;
11525                 }
11526 
11527                 /*
11528                  * The kernel calls swcr_update_status to update the
11529                  * status bits from the fpcr at every point that it
11530                  * could be queried.  Therefore, we store the status
11531                  * bits only in FPCR.
11532                  */
11533                 cpu_env->swcr = swcr & (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK);
11534 
11535                 fpcr = cpu_alpha_load_fpcr(cpu_env);
11536                 fpcr &= ((uint64_t)FPCR_DYN_MASK << 32);
11537                 fpcr |= alpha_ieee_swcr_to_fpcr(swcr);
11538                 cpu_alpha_store_fpcr(cpu_env, fpcr);
11539                 ret = 0;
11540             }
11541             break;
11542 
11543           case TARGET_SSI_IEEE_RAISE_EXCEPTION:
11544             {
11545                 uint64_t exc, fpcr, fex;
11546 
11547                 if (get_user_u64(exc, arg2)) {
11548                     return -TARGET_EFAULT;
11549                 }
11550                 exc &= SWCR_STATUS_MASK;
11551                 fpcr = cpu_alpha_load_fpcr(cpu_env);
11552 
11553                 /* Old exceptions are not signaled.  */
11554                 fex = alpha_ieee_fpcr_to_swcr(fpcr);
11555                 fex = exc & ~fex;
11556                 fex >>= SWCR_STATUS_TO_EXCSUM_SHIFT;
11557                 fex &= (cpu_env)->swcr;
11558 
11559                 /* Update the hardware fpcr.  */
11560                 fpcr |= alpha_ieee_swcr_to_fpcr(exc);
11561                 cpu_alpha_store_fpcr(cpu_env, fpcr);
11562 
11563                 if (fex) {
11564                     int si_code = TARGET_FPE_FLTUNK;
11565                     target_siginfo_t info;
11566 
11567                     if (fex & SWCR_TRAP_ENABLE_DNO) {
11568                         si_code = TARGET_FPE_FLTUND;
11569                     }
11570                     if (fex & SWCR_TRAP_ENABLE_INE) {
11571                         si_code = TARGET_FPE_FLTRES;
11572                     }
11573                     if (fex & SWCR_TRAP_ENABLE_UNF) {
11574                         si_code = TARGET_FPE_FLTUND;
11575                     }
11576                     if (fex & SWCR_TRAP_ENABLE_OVF) {
11577                         si_code = TARGET_FPE_FLTOVF;
11578                     }
11579                     if (fex & SWCR_TRAP_ENABLE_DZE) {
11580                         si_code = TARGET_FPE_FLTDIV;
11581                     }
11582                     if (fex & SWCR_TRAP_ENABLE_INV) {
11583                         si_code = TARGET_FPE_FLTINV;
11584                     }
11585 
11586                     info.si_signo = SIGFPE;
11587                     info.si_errno = 0;
11588                     info.si_code = si_code;
11589                     info._sifields._sigfault._addr = (cpu_env)->pc;
11590                     queue_signal(cpu_env, info.si_signo,
11591                                  QEMU_SI_FAULT, &info);
11592                 }
11593                 ret = 0;
11594             }
11595             break;
11596 
11597           /* case SSI_NVPAIRS:
11598              -- Used with SSIN_UACPROC to enable unaligned accesses.
11599              case SSI_IEEE_STATE_AT_SIGNAL:
11600              case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
11601              -- Not implemented in linux kernel
11602           */
11603         }
11604         return ret;
11605 #endif
11606 #ifdef TARGET_NR_osf_sigprocmask
11607     /* Alpha specific.  */
11608     case TARGET_NR_osf_sigprocmask:
11609         {
11610             abi_ulong mask;
11611             int how;
11612             sigset_t set, oldset;
11613 
11614             switch(arg1) {
11615             case TARGET_SIG_BLOCK:
11616                 how = SIG_BLOCK;
11617                 break;
11618             case TARGET_SIG_UNBLOCK:
11619                 how = SIG_UNBLOCK;
11620                 break;
11621             case TARGET_SIG_SETMASK:
11622                 how = SIG_SETMASK;
11623                 break;
11624             default:
11625                 return -TARGET_EINVAL;
11626             }
11627             mask = arg2;
11628             target_to_host_old_sigset(&set, &mask);
11629             ret = do_sigprocmask(how, &set, &oldset);
11630             if (!ret) {
11631                 host_to_target_old_sigset(&mask, &oldset);
11632                 ret = mask;
11633             }
11634         }
11635         return ret;
11636 #endif
11637 
11638 #ifdef TARGET_NR_getgid32
11639     case TARGET_NR_getgid32:
11640         return get_errno(getgid());
11641 #endif
11642 #ifdef TARGET_NR_geteuid32
11643     case TARGET_NR_geteuid32:
11644         return get_errno(geteuid());
11645 #endif
11646 #ifdef TARGET_NR_getegid32
11647     case TARGET_NR_getegid32:
11648         return get_errno(getegid());
11649 #endif
11650 #ifdef TARGET_NR_setreuid32
11651     case TARGET_NR_setreuid32:
11652         return get_errno(setreuid(arg1, arg2));
11653 #endif
11654 #ifdef TARGET_NR_setregid32
11655     case TARGET_NR_setregid32:
11656         return get_errno(setregid(arg1, arg2));
11657 #endif
11658 #ifdef TARGET_NR_getgroups32
11659     case TARGET_NR_getgroups32:
11660         {
11661             int gidsetsize = arg1;
11662             uint32_t *target_grouplist;
11663             gid_t *grouplist;
11664             int i;
11665 
11666             grouplist = alloca(gidsetsize * sizeof(gid_t));
11667             ret = get_errno(getgroups(gidsetsize, grouplist));
11668             if (gidsetsize == 0)
11669                 return ret;
11670             if (!is_error(ret)) {
11671                 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * 4, 0);
11672                 if (!target_grouplist) {
11673                     return -TARGET_EFAULT;
11674                 }
11675                 for(i = 0;i < ret; i++)
11676                     target_grouplist[i] = tswap32(grouplist[i]);
11677                 unlock_user(target_grouplist, arg2, gidsetsize * 4);
11678             }
11679         }
11680         return ret;
11681 #endif
11682 #ifdef TARGET_NR_setgroups32
11683     case TARGET_NR_setgroups32:
11684         {
11685             int gidsetsize = arg1;
11686             uint32_t *target_grouplist;
11687             gid_t *grouplist;
11688             int i;
11689 
11690             grouplist = alloca(gidsetsize * sizeof(gid_t));
11691             target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * 4, 1);
11692             if (!target_grouplist) {
11693                 return -TARGET_EFAULT;
11694             }
11695             for(i = 0;i < gidsetsize; i++)
11696                 grouplist[i] = tswap32(target_grouplist[i]);
11697             unlock_user(target_grouplist, arg2, 0);
11698             return get_errno(setgroups(gidsetsize, grouplist));
11699         }
11700 #endif
11701 #ifdef TARGET_NR_fchown32
11702     case TARGET_NR_fchown32:
11703         return get_errno(fchown(arg1, arg2, arg3));
11704 #endif
11705 #ifdef TARGET_NR_setresuid32
11706     case TARGET_NR_setresuid32:
11707         return get_errno(sys_setresuid(arg1, arg2, arg3));
11708 #endif
11709 #ifdef TARGET_NR_getresuid32
11710     case TARGET_NR_getresuid32:
11711         {
11712             uid_t ruid, euid, suid;
11713             ret = get_errno(getresuid(&ruid, &euid, &suid));
11714             if (!is_error(ret)) {
11715                 if (put_user_u32(ruid, arg1)
11716                     || put_user_u32(euid, arg2)
11717                     || put_user_u32(suid, arg3))
11718                     return -TARGET_EFAULT;
11719             }
11720         }
11721         return ret;
11722 #endif
11723 #ifdef TARGET_NR_setresgid32
11724     case TARGET_NR_setresgid32:
11725         return get_errno(sys_setresgid(arg1, arg2, arg3));
11726 #endif
11727 #ifdef TARGET_NR_getresgid32
11728     case TARGET_NR_getresgid32:
11729         {
11730             gid_t rgid, egid, sgid;
11731             ret = get_errno(getresgid(&rgid, &egid, &sgid));
11732             if (!is_error(ret)) {
11733                 if (put_user_u32(rgid, arg1)
11734                     || put_user_u32(egid, arg2)
11735                     || put_user_u32(sgid, arg3))
11736                     return -TARGET_EFAULT;
11737             }
11738         }
11739         return ret;
11740 #endif
11741 #ifdef TARGET_NR_chown32
11742     case TARGET_NR_chown32:
11743         if (!(p = lock_user_string(arg1)))
11744             return -TARGET_EFAULT;
11745         ret = get_errno(chown(p, arg2, arg3));
11746         unlock_user(p, arg1, 0);
11747         return ret;
11748 #endif
11749 #ifdef TARGET_NR_setuid32
11750     case TARGET_NR_setuid32:
11751         return get_errno(sys_setuid(arg1));
11752 #endif
11753 #ifdef TARGET_NR_setgid32
11754     case TARGET_NR_setgid32:
11755         return get_errno(sys_setgid(arg1));
11756 #endif
11757 #ifdef TARGET_NR_setfsuid32
11758     case TARGET_NR_setfsuid32:
11759         return get_errno(setfsuid(arg1));
11760 #endif
11761 #ifdef TARGET_NR_setfsgid32
11762     case TARGET_NR_setfsgid32:
11763         return get_errno(setfsgid(arg1));
11764 #endif
11765 #ifdef TARGET_NR_mincore
11766     case TARGET_NR_mincore:
11767         {
11768             void *a = lock_user(VERIFY_READ, arg1, arg2, 0);
11769             if (!a) {
11770                 return -TARGET_ENOMEM;
11771             }
11772             p = lock_user_string(arg3);
11773             if (!p) {
11774                 ret = -TARGET_EFAULT;
11775             } else {
11776                 ret = get_errno(mincore(a, arg2, p));
11777                 unlock_user(p, arg3, ret);
11778             }
11779             unlock_user(a, arg1, 0);
11780         }
11781         return ret;
11782 #endif
11783 #ifdef TARGET_NR_arm_fadvise64_64
11784     case TARGET_NR_arm_fadvise64_64:
11785         /* arm_fadvise64_64 looks like fadvise64_64 but
11786          * with different argument order: fd, advice, offset, len
11787          * rather than the usual fd, offset, len, advice.
11788          * Note that offset and len are both 64-bit so appear as
11789          * pairs of 32-bit registers.
11790          */
11791         ret = posix_fadvise(arg1, target_offset64(arg3, arg4),
11792                             target_offset64(arg5, arg6), arg2);
11793         return -host_to_target_errno(ret);
11794 #endif
11795 
11796 #if TARGET_ABI_BITS == 32
11797 
11798 #ifdef TARGET_NR_fadvise64_64
11799     case TARGET_NR_fadvise64_64:
11800 #if defined(TARGET_PPC) || defined(TARGET_XTENSA)
11801         /* 6 args: fd, advice, offset (high, low), len (high, low) */
11802         ret = arg2;
11803         arg2 = arg3;
11804         arg3 = arg4;
11805         arg4 = arg5;
11806         arg5 = arg6;
11807         arg6 = ret;
11808 #else
11809         /* 6 args: fd, offset (high, low), len (high, low), advice */
11810         if (regpairs_aligned(cpu_env, num)) {
11811             /* offset is in (3,4), len in (5,6) and advice in 7 */
11812             arg2 = arg3;
11813             arg3 = arg4;
11814             arg4 = arg5;
11815             arg5 = arg6;
11816             arg6 = arg7;
11817         }
11818 #endif
11819         ret = posix_fadvise(arg1, target_offset64(arg2, arg3),
11820                             target_offset64(arg4, arg5), arg6);
11821         return -host_to_target_errno(ret);
11822 #endif
11823 
11824 #ifdef TARGET_NR_fadvise64
11825     case TARGET_NR_fadvise64:
11826         /* 5 args: fd, offset (high, low), len, advice */
11827         if (regpairs_aligned(cpu_env, num)) {
11828             /* offset is in (3,4), len in 5 and advice in 6 */
11829             arg2 = arg3;
11830             arg3 = arg4;
11831             arg4 = arg5;
11832             arg5 = arg6;
11833         }
11834         ret = posix_fadvise(arg1, target_offset64(arg2, arg3), arg4, arg5);
11835         return -host_to_target_errno(ret);
11836 #endif
11837 
11838 #else /* not a 32-bit ABI */
11839 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
11840 #ifdef TARGET_NR_fadvise64_64
11841     case TARGET_NR_fadvise64_64:
11842 #endif
11843 #ifdef TARGET_NR_fadvise64
11844     case TARGET_NR_fadvise64:
11845 #endif
11846 #ifdef TARGET_S390X
11847         switch (arg4) {
11848         case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */
11849         case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */
11850         case 6: arg4 = POSIX_FADV_DONTNEED; break;
11851         case 7: arg4 = POSIX_FADV_NOREUSE; break;
11852         default: break;
11853         }
11854 #endif
11855         return -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4));
11856 #endif
11857 #endif /* end of 64-bit ABI fadvise handling */
11858 
11859 #ifdef TARGET_NR_madvise
11860     case TARGET_NR_madvise:
11861         return target_madvise(arg1, arg2, arg3);
11862 #endif
11863 #ifdef TARGET_NR_fcntl64
11864     case TARGET_NR_fcntl64:
11865     {
11866         int cmd;
11867         struct flock64 fl;
11868         from_flock64_fn *copyfrom = copy_from_user_flock64;
11869         to_flock64_fn *copyto = copy_to_user_flock64;
11870 
11871 #ifdef TARGET_ARM
11872         if (!cpu_env->eabi) {
11873             copyfrom = copy_from_user_oabi_flock64;
11874             copyto = copy_to_user_oabi_flock64;
11875         }
11876 #endif
11877 
11878         cmd = target_to_host_fcntl_cmd(arg2);
11879         if (cmd == -TARGET_EINVAL) {
11880             return cmd;
11881         }
11882 
11883         switch(arg2) {
11884         case TARGET_F_GETLK64:
11885             ret = copyfrom(&fl, arg3);
11886             if (ret) {
11887                 break;
11888             }
11889             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
11890             if (ret == 0) {
11891                 ret = copyto(arg3, &fl);
11892             }
11893 	    break;
11894 
11895         case TARGET_F_SETLK64:
11896         case TARGET_F_SETLKW64:
11897             ret = copyfrom(&fl, arg3);
11898             if (ret) {
11899                 break;
11900             }
11901             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
11902 	    break;
11903         default:
11904             ret = do_fcntl(arg1, arg2, arg3);
11905             break;
11906         }
11907         return ret;
11908     }
11909 #endif
11910 #ifdef TARGET_NR_cacheflush
11911     case TARGET_NR_cacheflush:
11912         /* self-modifying code is handled automatically, so nothing needed */
11913         return 0;
11914 #endif
11915 #ifdef TARGET_NR_getpagesize
11916     case TARGET_NR_getpagesize:
11917         return TARGET_PAGE_SIZE;
11918 #endif
11919     case TARGET_NR_gettid:
11920         return get_errno(sys_gettid());
11921 #ifdef TARGET_NR_readahead
11922     case TARGET_NR_readahead:
11923 #if TARGET_ABI_BITS == 32
11924         if (regpairs_aligned(cpu_env, num)) {
11925             arg2 = arg3;
11926             arg3 = arg4;
11927             arg4 = arg5;
11928         }
11929         ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4));
11930 #else
11931         ret = get_errno(readahead(arg1, arg2, arg3));
11932 #endif
11933         return ret;
11934 #endif
11935 #ifdef CONFIG_ATTR
11936 #ifdef TARGET_NR_setxattr
11937     case TARGET_NR_listxattr:
11938     case TARGET_NR_llistxattr:
11939     {
11940         void *p, *b = 0;
11941         if (arg2) {
11942             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11943             if (!b) {
11944                 return -TARGET_EFAULT;
11945             }
11946         }
11947         p = lock_user_string(arg1);
11948         if (p) {
11949             if (num == TARGET_NR_listxattr) {
11950                 ret = get_errno(listxattr(p, b, arg3));
11951             } else {
11952                 ret = get_errno(llistxattr(p, b, arg3));
11953             }
11954         } else {
11955             ret = -TARGET_EFAULT;
11956         }
11957         unlock_user(p, arg1, 0);
11958         unlock_user(b, arg2, arg3);
11959         return ret;
11960     }
11961     case TARGET_NR_flistxattr:
11962     {
11963         void *b = 0;
11964         if (arg2) {
11965             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11966             if (!b) {
11967                 return -TARGET_EFAULT;
11968             }
11969         }
11970         ret = get_errno(flistxattr(arg1, b, arg3));
11971         unlock_user(b, arg2, arg3);
11972         return ret;
11973     }
11974     case TARGET_NR_setxattr:
11975     case TARGET_NR_lsetxattr:
11976         {
11977             void *p, *n, *v = 0;
11978             if (arg3) {
11979                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
11980                 if (!v) {
11981                     return -TARGET_EFAULT;
11982                 }
11983             }
11984             p = lock_user_string(arg1);
11985             n = lock_user_string(arg2);
11986             if (p && n) {
11987                 if (num == TARGET_NR_setxattr) {
11988                     ret = get_errno(setxattr(p, n, v, arg4, arg5));
11989                 } else {
11990                     ret = get_errno(lsetxattr(p, n, v, arg4, arg5));
11991                 }
11992             } else {
11993                 ret = -TARGET_EFAULT;
11994             }
11995             unlock_user(p, arg1, 0);
11996             unlock_user(n, arg2, 0);
11997             unlock_user(v, arg3, 0);
11998         }
11999         return ret;
12000     case TARGET_NR_fsetxattr:
12001         {
12002             void *n, *v = 0;
12003             if (arg3) {
12004                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
12005                 if (!v) {
12006                     return -TARGET_EFAULT;
12007                 }
12008             }
12009             n = lock_user_string(arg2);
12010             if (n) {
12011                 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5));
12012             } else {
12013                 ret = -TARGET_EFAULT;
12014             }
12015             unlock_user(n, arg2, 0);
12016             unlock_user(v, arg3, 0);
12017         }
12018         return ret;
12019     case TARGET_NR_getxattr:
12020     case TARGET_NR_lgetxattr:
12021         {
12022             void *p, *n, *v = 0;
12023             if (arg3) {
12024                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12025                 if (!v) {
12026                     return -TARGET_EFAULT;
12027                 }
12028             }
12029             p = lock_user_string(arg1);
12030             n = lock_user_string(arg2);
12031             if (p && n) {
12032                 if (num == TARGET_NR_getxattr) {
12033                     ret = get_errno(getxattr(p, n, v, arg4));
12034                 } else {
12035                     ret = get_errno(lgetxattr(p, n, v, arg4));
12036                 }
12037             } else {
12038                 ret = -TARGET_EFAULT;
12039             }
12040             unlock_user(p, arg1, 0);
12041             unlock_user(n, arg2, 0);
12042             unlock_user(v, arg3, arg4);
12043         }
12044         return ret;
12045     case TARGET_NR_fgetxattr:
12046         {
12047             void *n, *v = 0;
12048             if (arg3) {
12049                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12050                 if (!v) {
12051                     return -TARGET_EFAULT;
12052                 }
12053             }
12054             n = lock_user_string(arg2);
12055             if (n) {
12056                 ret = get_errno(fgetxattr(arg1, n, v, arg4));
12057             } else {
12058                 ret = -TARGET_EFAULT;
12059             }
12060             unlock_user(n, arg2, 0);
12061             unlock_user(v, arg3, arg4);
12062         }
12063         return ret;
12064     case TARGET_NR_removexattr:
12065     case TARGET_NR_lremovexattr:
12066         {
12067             void *p, *n;
12068             p = lock_user_string(arg1);
12069             n = lock_user_string(arg2);
12070             if (p && n) {
12071                 if (num == TARGET_NR_removexattr) {
12072                     ret = get_errno(removexattr(p, n));
12073                 } else {
12074                     ret = get_errno(lremovexattr(p, n));
12075                 }
12076             } else {
12077                 ret = -TARGET_EFAULT;
12078             }
12079             unlock_user(p, arg1, 0);
12080             unlock_user(n, arg2, 0);
12081         }
12082         return ret;
12083     case TARGET_NR_fremovexattr:
12084         {
12085             void *n;
12086             n = lock_user_string(arg2);
12087             if (n) {
12088                 ret = get_errno(fremovexattr(arg1, n));
12089             } else {
12090                 ret = -TARGET_EFAULT;
12091             }
12092             unlock_user(n, arg2, 0);
12093         }
12094         return ret;
12095 #endif
12096 #endif /* CONFIG_ATTR */
12097 #ifdef TARGET_NR_set_thread_area
12098     case TARGET_NR_set_thread_area:
12099 #if defined(TARGET_MIPS)
12100       cpu_env->active_tc.CP0_UserLocal = arg1;
12101       return 0;
12102 #elif defined(TARGET_CRIS)
12103       if (arg1 & 0xff)
12104           ret = -TARGET_EINVAL;
12105       else {
12106           cpu_env->pregs[PR_PID] = arg1;
12107           ret = 0;
12108       }
12109       return ret;
12110 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
12111       return do_set_thread_area(cpu_env, arg1);
12112 #elif defined(TARGET_M68K)
12113       {
12114           TaskState *ts = cpu->opaque;
12115           ts->tp_value = arg1;
12116           return 0;
12117       }
12118 #else
12119       return -TARGET_ENOSYS;
12120 #endif
12121 #endif
12122 #ifdef TARGET_NR_get_thread_area
12123     case TARGET_NR_get_thread_area:
12124 #if defined(TARGET_I386) && defined(TARGET_ABI32)
12125         return do_get_thread_area(cpu_env, arg1);
12126 #elif defined(TARGET_M68K)
12127         {
12128             TaskState *ts = cpu->opaque;
12129             return ts->tp_value;
12130         }
12131 #else
12132         return -TARGET_ENOSYS;
12133 #endif
12134 #endif
12135 #ifdef TARGET_NR_getdomainname
12136     case TARGET_NR_getdomainname:
12137         return -TARGET_ENOSYS;
12138 #endif
12139 
12140 #ifdef TARGET_NR_clock_settime
12141     case TARGET_NR_clock_settime:
12142     {
12143         struct timespec ts;
12144 
12145         ret = target_to_host_timespec(&ts, arg2);
12146         if (!is_error(ret)) {
12147             ret = get_errno(clock_settime(arg1, &ts));
12148         }
12149         return ret;
12150     }
12151 #endif
12152 #ifdef TARGET_NR_clock_settime64
12153     case TARGET_NR_clock_settime64:
12154     {
12155         struct timespec ts;
12156 
12157         ret = target_to_host_timespec64(&ts, arg2);
12158         if (!is_error(ret)) {
12159             ret = get_errno(clock_settime(arg1, &ts));
12160         }
12161         return ret;
12162     }
12163 #endif
12164 #ifdef TARGET_NR_clock_gettime
12165     case TARGET_NR_clock_gettime:
12166     {
12167         struct timespec ts;
12168         ret = get_errno(clock_gettime(arg1, &ts));
12169         if (!is_error(ret)) {
12170             ret = host_to_target_timespec(arg2, &ts);
12171         }
12172         return ret;
12173     }
12174 #endif
12175 #ifdef TARGET_NR_clock_gettime64
12176     case TARGET_NR_clock_gettime64:
12177     {
12178         struct timespec ts;
12179         ret = get_errno(clock_gettime(arg1, &ts));
12180         if (!is_error(ret)) {
12181             ret = host_to_target_timespec64(arg2, &ts);
12182         }
12183         return ret;
12184     }
12185 #endif
12186 #ifdef TARGET_NR_clock_getres
12187     case TARGET_NR_clock_getres:
12188     {
12189         struct timespec ts;
12190         ret = get_errno(clock_getres(arg1, &ts));
12191         if (!is_error(ret)) {
12192             host_to_target_timespec(arg2, &ts);
12193         }
12194         return ret;
12195     }
12196 #endif
12197 #ifdef TARGET_NR_clock_getres_time64
12198     case TARGET_NR_clock_getres_time64:
12199     {
12200         struct timespec ts;
12201         ret = get_errno(clock_getres(arg1, &ts));
12202         if (!is_error(ret)) {
12203             host_to_target_timespec64(arg2, &ts);
12204         }
12205         return ret;
12206     }
12207 #endif
12208 #ifdef TARGET_NR_clock_nanosleep
12209     case TARGET_NR_clock_nanosleep:
12210     {
12211         struct timespec ts;
12212         if (target_to_host_timespec(&ts, arg3)) {
12213             return -TARGET_EFAULT;
12214         }
12215         ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12216                                              &ts, arg4 ? &ts : NULL));
12217         /*
12218          * if the call is interrupted by a signal handler, it fails
12219          * with error -TARGET_EINTR and if arg4 is not NULL and arg2 is not
12220          * TIMER_ABSTIME, it returns the remaining unslept time in arg4.
12221          */
12222         if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12223             host_to_target_timespec(arg4, &ts)) {
12224               return -TARGET_EFAULT;
12225         }
12226 
12227         return ret;
12228     }
12229 #endif
12230 #ifdef TARGET_NR_clock_nanosleep_time64
12231     case TARGET_NR_clock_nanosleep_time64:
12232     {
12233         struct timespec ts;
12234 
12235         if (target_to_host_timespec64(&ts, arg3)) {
12236             return -TARGET_EFAULT;
12237         }
12238 
12239         ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12240                                              &ts, arg4 ? &ts : NULL));
12241 
12242         if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12243             host_to_target_timespec64(arg4, &ts)) {
12244             return -TARGET_EFAULT;
12245         }
12246         return ret;
12247     }
12248 #endif
12249 
12250 #if defined(TARGET_NR_set_tid_address)
12251     case TARGET_NR_set_tid_address:
12252     {
12253         TaskState *ts = cpu->opaque;
12254         ts->child_tidptr = arg1;
12255         /* do not call host set_tid_address() syscall, instead return tid() */
12256         return get_errno(sys_gettid());
12257     }
12258 #endif
12259 
12260     case TARGET_NR_tkill:
12261         return get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2)));
12262 
12263     case TARGET_NR_tgkill:
12264         return get_errno(safe_tgkill((int)arg1, (int)arg2,
12265                          target_to_host_signal(arg3)));
12266 
12267 #ifdef TARGET_NR_set_robust_list
12268     case TARGET_NR_set_robust_list:
12269     case TARGET_NR_get_robust_list:
12270         /* The ABI for supporting robust futexes has userspace pass
12271          * the kernel a pointer to a linked list which is updated by
12272          * userspace after the syscall; the list is walked by the kernel
12273          * when the thread exits. Since the linked list in QEMU guest
12274          * memory isn't a valid linked list for the host and we have
12275          * no way to reliably intercept the thread-death event, we can't
12276          * support these. Silently return ENOSYS so that guest userspace
12277          * falls back to a non-robust futex implementation (which should
12278          * be OK except in the corner case of the guest crashing while
12279          * holding a mutex that is shared with another process via
12280          * shared memory).
12281          */
12282         return -TARGET_ENOSYS;
12283 #endif
12284 
12285 #if defined(TARGET_NR_utimensat)
12286     case TARGET_NR_utimensat:
12287         {
12288             struct timespec *tsp, ts[2];
12289             if (!arg3) {
12290                 tsp = NULL;
12291             } else {
12292                 if (target_to_host_timespec(ts, arg3)) {
12293                     return -TARGET_EFAULT;
12294                 }
12295                 if (target_to_host_timespec(ts + 1, arg3 +
12296                                             sizeof(struct target_timespec))) {
12297                     return -TARGET_EFAULT;
12298                 }
12299                 tsp = ts;
12300             }
12301             if (!arg2)
12302                 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12303             else {
12304                 if (!(p = lock_user_string(arg2))) {
12305                     return -TARGET_EFAULT;
12306                 }
12307                 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12308                 unlock_user(p, arg2, 0);
12309             }
12310         }
12311         return ret;
12312 #endif
12313 #ifdef TARGET_NR_utimensat_time64
12314     case TARGET_NR_utimensat_time64:
12315         {
12316             struct timespec *tsp, ts[2];
12317             if (!arg3) {
12318                 tsp = NULL;
12319             } else {
12320                 if (target_to_host_timespec64(ts, arg3)) {
12321                     return -TARGET_EFAULT;
12322                 }
12323                 if (target_to_host_timespec64(ts + 1, arg3 +
12324                                      sizeof(struct target__kernel_timespec))) {
12325                     return -TARGET_EFAULT;
12326                 }
12327                 tsp = ts;
12328             }
12329             if (!arg2)
12330                 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12331             else {
12332                 p = lock_user_string(arg2);
12333                 if (!p) {
12334                     return -TARGET_EFAULT;
12335                 }
12336                 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12337                 unlock_user(p, arg2, 0);
12338             }
12339         }
12340         return ret;
12341 #endif
12342 #ifdef TARGET_NR_futex
12343     case TARGET_NR_futex:
12344         return do_futex(cpu, false, arg1, arg2, arg3, arg4, arg5, arg6);
12345 #endif
12346 #ifdef TARGET_NR_futex_time64
12347     case TARGET_NR_futex_time64:
12348         return do_futex(cpu, true, arg1, arg2, arg3, arg4, arg5, arg6);
12349 #endif
12350 #ifdef CONFIG_INOTIFY
12351 #if defined(TARGET_NR_inotify_init)
12352     case TARGET_NR_inotify_init:
12353         ret = get_errno(inotify_init());
12354         if (ret >= 0) {
12355             fd_trans_register(ret, &target_inotify_trans);
12356         }
12357         return ret;
12358 #endif
12359 #if defined(TARGET_NR_inotify_init1) && defined(CONFIG_INOTIFY1)
12360     case TARGET_NR_inotify_init1:
12361         ret = get_errno(inotify_init1(target_to_host_bitmask(arg1,
12362                                           fcntl_flags_tbl)));
12363         if (ret >= 0) {
12364             fd_trans_register(ret, &target_inotify_trans);
12365         }
12366         return ret;
12367 #endif
12368 #if defined(TARGET_NR_inotify_add_watch)
12369     case TARGET_NR_inotify_add_watch:
12370         p = lock_user_string(arg2);
12371         ret = get_errno(inotify_add_watch(arg1, path(p), arg3));
12372         unlock_user(p, arg2, 0);
12373         return ret;
12374 #endif
12375 #if defined(TARGET_NR_inotify_rm_watch)
12376     case TARGET_NR_inotify_rm_watch:
12377         return get_errno(inotify_rm_watch(arg1, arg2));
12378 #endif
12379 #endif
12380 
12381 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
12382     case TARGET_NR_mq_open:
12383         {
12384             struct mq_attr posix_mq_attr;
12385             struct mq_attr *pposix_mq_attr;
12386             int host_flags;
12387 
12388             host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl);
12389             pposix_mq_attr = NULL;
12390             if (arg4) {
12391                 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) {
12392                     return -TARGET_EFAULT;
12393                 }
12394                 pposix_mq_attr = &posix_mq_attr;
12395             }
12396             p = lock_user_string(arg1 - 1);
12397             if (!p) {
12398                 return -TARGET_EFAULT;
12399             }
12400             ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr));
12401             unlock_user (p, arg1, 0);
12402         }
12403         return ret;
12404 
12405     case TARGET_NR_mq_unlink:
12406         p = lock_user_string(arg1 - 1);
12407         if (!p) {
12408             return -TARGET_EFAULT;
12409         }
12410         ret = get_errno(mq_unlink(p));
12411         unlock_user (p, arg1, 0);
12412         return ret;
12413 
12414 #ifdef TARGET_NR_mq_timedsend
12415     case TARGET_NR_mq_timedsend:
12416         {
12417             struct timespec ts;
12418 
12419             p = lock_user (VERIFY_READ, arg2, arg3, 1);
12420             if (arg5 != 0) {
12421                 if (target_to_host_timespec(&ts, arg5)) {
12422                     return -TARGET_EFAULT;
12423                 }
12424                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12425                 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
12426                     return -TARGET_EFAULT;
12427                 }
12428             } else {
12429                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12430             }
12431             unlock_user (p, arg2, arg3);
12432         }
12433         return ret;
12434 #endif
12435 #ifdef TARGET_NR_mq_timedsend_time64
12436     case TARGET_NR_mq_timedsend_time64:
12437         {
12438             struct timespec ts;
12439 
12440             p = lock_user(VERIFY_READ, arg2, arg3, 1);
12441             if (arg5 != 0) {
12442                 if (target_to_host_timespec64(&ts, arg5)) {
12443                     return -TARGET_EFAULT;
12444                 }
12445                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12446                 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
12447                     return -TARGET_EFAULT;
12448                 }
12449             } else {
12450                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12451             }
12452             unlock_user(p, arg2, arg3);
12453         }
12454         return ret;
12455 #endif
12456 
12457 #ifdef TARGET_NR_mq_timedreceive
12458     case TARGET_NR_mq_timedreceive:
12459         {
12460             struct timespec ts;
12461             unsigned int prio;
12462 
12463             p = lock_user (VERIFY_READ, arg2, arg3, 1);
12464             if (arg5 != 0) {
12465                 if (target_to_host_timespec(&ts, arg5)) {
12466                     return -TARGET_EFAULT;
12467                 }
12468                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12469                                                      &prio, &ts));
12470                 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
12471                     return -TARGET_EFAULT;
12472                 }
12473             } else {
12474                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12475                                                      &prio, NULL));
12476             }
12477             unlock_user (p, arg2, arg3);
12478             if (arg4 != 0)
12479                 put_user_u32(prio, arg4);
12480         }
12481         return ret;
12482 #endif
12483 #ifdef TARGET_NR_mq_timedreceive_time64
12484     case TARGET_NR_mq_timedreceive_time64:
12485         {
12486             struct timespec ts;
12487             unsigned int prio;
12488 
12489             p = lock_user(VERIFY_READ, arg2, arg3, 1);
12490             if (arg5 != 0) {
12491                 if (target_to_host_timespec64(&ts, arg5)) {
12492                     return -TARGET_EFAULT;
12493                 }
12494                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12495                                                      &prio, &ts));
12496                 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
12497                     return -TARGET_EFAULT;
12498                 }
12499             } else {
12500                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12501                                                      &prio, NULL));
12502             }
12503             unlock_user(p, arg2, arg3);
12504             if (arg4 != 0) {
12505                 put_user_u32(prio, arg4);
12506             }
12507         }
12508         return ret;
12509 #endif
12510 
12511     /* Not implemented for now... */
12512 /*     case TARGET_NR_mq_notify: */
12513 /*         break; */
12514 
12515     case TARGET_NR_mq_getsetattr:
12516         {
12517             struct mq_attr posix_mq_attr_in, posix_mq_attr_out;
12518             ret = 0;
12519             if (arg2 != 0) {
12520                 copy_from_user_mq_attr(&posix_mq_attr_in, arg2);
12521                 ret = get_errno(mq_setattr(arg1, &posix_mq_attr_in,
12522                                            &posix_mq_attr_out));
12523             } else if (arg3 != 0) {
12524                 ret = get_errno(mq_getattr(arg1, &posix_mq_attr_out));
12525             }
12526             if (ret == 0 && arg3 != 0) {
12527                 copy_to_user_mq_attr(arg3, &posix_mq_attr_out);
12528             }
12529         }
12530         return ret;
12531 #endif
12532 
12533 #ifdef CONFIG_SPLICE
12534 #ifdef TARGET_NR_tee
12535     case TARGET_NR_tee:
12536         {
12537             ret = get_errno(tee(arg1,arg2,arg3,arg4));
12538         }
12539         return ret;
12540 #endif
12541 #ifdef TARGET_NR_splice
12542     case TARGET_NR_splice:
12543         {
12544             loff_t loff_in, loff_out;
12545             loff_t *ploff_in = NULL, *ploff_out = NULL;
12546             if (arg2) {
12547                 if (get_user_u64(loff_in, arg2)) {
12548                     return -TARGET_EFAULT;
12549                 }
12550                 ploff_in = &loff_in;
12551             }
12552             if (arg4) {
12553                 if (get_user_u64(loff_out, arg4)) {
12554                     return -TARGET_EFAULT;
12555                 }
12556                 ploff_out = &loff_out;
12557             }
12558             ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6));
12559             if (arg2) {
12560                 if (put_user_u64(loff_in, arg2)) {
12561                     return -TARGET_EFAULT;
12562                 }
12563             }
12564             if (arg4) {
12565                 if (put_user_u64(loff_out, arg4)) {
12566                     return -TARGET_EFAULT;
12567                 }
12568             }
12569         }
12570         return ret;
12571 #endif
12572 #ifdef TARGET_NR_vmsplice
12573 	case TARGET_NR_vmsplice:
12574         {
12575             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
12576             if (vec != NULL) {
12577                 ret = get_errno(vmsplice(arg1, vec, arg3, arg4));
12578                 unlock_iovec(vec, arg2, arg3, 0);
12579             } else {
12580                 ret = -host_to_target_errno(errno);
12581             }
12582         }
12583         return ret;
12584 #endif
12585 #endif /* CONFIG_SPLICE */
12586 #ifdef CONFIG_EVENTFD
12587 #if defined(TARGET_NR_eventfd)
12588     case TARGET_NR_eventfd:
12589         ret = get_errno(eventfd(arg1, 0));
12590         if (ret >= 0) {
12591             fd_trans_register(ret, &target_eventfd_trans);
12592         }
12593         return ret;
12594 #endif
12595 #if defined(TARGET_NR_eventfd2)
12596     case TARGET_NR_eventfd2:
12597     {
12598         int host_flags = arg2 & (~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC));
12599         if (arg2 & TARGET_O_NONBLOCK) {
12600             host_flags |= O_NONBLOCK;
12601         }
12602         if (arg2 & TARGET_O_CLOEXEC) {
12603             host_flags |= O_CLOEXEC;
12604         }
12605         ret = get_errno(eventfd(arg1, host_flags));
12606         if (ret >= 0) {
12607             fd_trans_register(ret, &target_eventfd_trans);
12608         }
12609         return ret;
12610     }
12611 #endif
12612 #endif /* CONFIG_EVENTFD  */
12613 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
12614     case TARGET_NR_fallocate:
12615 #if TARGET_ABI_BITS == 32
12616         ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4),
12617                                   target_offset64(arg5, arg6)));
12618 #else
12619         ret = get_errno(fallocate(arg1, arg2, arg3, arg4));
12620 #endif
12621         return ret;
12622 #endif
12623 #if defined(CONFIG_SYNC_FILE_RANGE)
12624 #if defined(TARGET_NR_sync_file_range)
12625     case TARGET_NR_sync_file_range:
12626 #if TARGET_ABI_BITS == 32
12627 #if defined(TARGET_MIPS)
12628         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
12629                                         target_offset64(arg5, arg6), arg7));
12630 #else
12631         ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3),
12632                                         target_offset64(arg4, arg5), arg6));
12633 #endif /* !TARGET_MIPS */
12634 #else
12635         ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4));
12636 #endif
12637         return ret;
12638 #endif
12639 #if defined(TARGET_NR_sync_file_range2) || \
12640     defined(TARGET_NR_arm_sync_file_range)
12641 #if defined(TARGET_NR_sync_file_range2)
12642     case TARGET_NR_sync_file_range2:
12643 #endif
12644 #if defined(TARGET_NR_arm_sync_file_range)
12645     case TARGET_NR_arm_sync_file_range:
12646 #endif
12647         /* This is like sync_file_range but the arguments are reordered */
12648 #if TARGET_ABI_BITS == 32
12649         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
12650                                         target_offset64(arg5, arg6), arg2));
12651 #else
12652         ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2));
12653 #endif
12654         return ret;
12655 #endif
12656 #endif
12657 #if defined(TARGET_NR_signalfd4)
12658     case TARGET_NR_signalfd4:
12659         return do_signalfd4(arg1, arg2, arg4);
12660 #endif
12661 #if defined(TARGET_NR_signalfd)
12662     case TARGET_NR_signalfd:
12663         return do_signalfd4(arg1, arg2, 0);
12664 #endif
12665 #if defined(CONFIG_EPOLL)
12666 #if defined(TARGET_NR_epoll_create)
12667     case TARGET_NR_epoll_create:
12668         return get_errno(epoll_create(arg1));
12669 #endif
12670 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
12671     case TARGET_NR_epoll_create1:
12672         return get_errno(epoll_create1(target_to_host_bitmask(arg1, fcntl_flags_tbl)));
12673 #endif
12674 #if defined(TARGET_NR_epoll_ctl)
12675     case TARGET_NR_epoll_ctl:
12676     {
12677         struct epoll_event ep;
12678         struct epoll_event *epp = 0;
12679         if (arg4) {
12680             if (arg2 != EPOLL_CTL_DEL) {
12681                 struct target_epoll_event *target_ep;
12682                 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) {
12683                     return -TARGET_EFAULT;
12684                 }
12685                 ep.events = tswap32(target_ep->events);
12686                 /*
12687                  * The epoll_data_t union is just opaque data to the kernel,
12688                  * so we transfer all 64 bits across and need not worry what
12689                  * actual data type it is.
12690                  */
12691                 ep.data.u64 = tswap64(target_ep->data.u64);
12692                 unlock_user_struct(target_ep, arg4, 0);
12693             }
12694             /*
12695              * before kernel 2.6.9, EPOLL_CTL_DEL operation required a
12696              * non-null pointer, even though this argument is ignored.
12697              *
12698              */
12699             epp = &ep;
12700         }
12701         return get_errno(epoll_ctl(arg1, arg2, arg3, epp));
12702     }
12703 #endif
12704 
12705 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
12706 #if defined(TARGET_NR_epoll_wait)
12707     case TARGET_NR_epoll_wait:
12708 #endif
12709 #if defined(TARGET_NR_epoll_pwait)
12710     case TARGET_NR_epoll_pwait:
12711 #endif
12712     {
12713         struct target_epoll_event *target_ep;
12714         struct epoll_event *ep;
12715         int epfd = arg1;
12716         int maxevents = arg3;
12717         int timeout = arg4;
12718 
12719         if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) {
12720             return -TARGET_EINVAL;
12721         }
12722 
12723         target_ep = lock_user(VERIFY_WRITE, arg2,
12724                               maxevents * sizeof(struct target_epoll_event), 1);
12725         if (!target_ep) {
12726             return -TARGET_EFAULT;
12727         }
12728 
12729         ep = g_try_new(struct epoll_event, maxevents);
12730         if (!ep) {
12731             unlock_user(target_ep, arg2, 0);
12732             return -TARGET_ENOMEM;
12733         }
12734 
12735         switch (num) {
12736 #if defined(TARGET_NR_epoll_pwait)
12737         case TARGET_NR_epoll_pwait:
12738         {
12739             sigset_t *set = NULL;
12740 
12741             if (arg5) {
12742                 ret = process_sigsuspend_mask(&set, arg5, arg6);
12743                 if (ret != 0) {
12744                     break;
12745                 }
12746             }
12747 
12748             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
12749                                              set, SIGSET_T_SIZE));
12750 
12751             if (set) {
12752                 finish_sigsuspend_mask(ret);
12753             }
12754             break;
12755         }
12756 #endif
12757 #if defined(TARGET_NR_epoll_wait)
12758         case TARGET_NR_epoll_wait:
12759             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
12760                                              NULL, 0));
12761             break;
12762 #endif
12763         default:
12764             ret = -TARGET_ENOSYS;
12765         }
12766         if (!is_error(ret)) {
12767             int i;
12768             for (i = 0; i < ret; i++) {
12769                 target_ep[i].events = tswap32(ep[i].events);
12770                 target_ep[i].data.u64 = tswap64(ep[i].data.u64);
12771             }
12772             unlock_user(target_ep, arg2,
12773                         ret * sizeof(struct target_epoll_event));
12774         } else {
12775             unlock_user(target_ep, arg2, 0);
12776         }
12777         g_free(ep);
12778         return ret;
12779     }
12780 #endif
12781 #endif
12782 #ifdef TARGET_NR_prlimit64
12783     case TARGET_NR_prlimit64:
12784     {
12785         /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
12786         struct target_rlimit64 *target_rnew, *target_rold;
12787         struct host_rlimit64 rnew, rold, *rnewp = 0;
12788         int resource = target_to_host_resource(arg2);
12789 
12790         if (arg3 && (resource != RLIMIT_AS &&
12791                      resource != RLIMIT_DATA &&
12792                      resource != RLIMIT_STACK)) {
12793             if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) {
12794                 return -TARGET_EFAULT;
12795             }
12796             rnew.rlim_cur = tswap64(target_rnew->rlim_cur);
12797             rnew.rlim_max = tswap64(target_rnew->rlim_max);
12798             unlock_user_struct(target_rnew, arg3, 0);
12799             rnewp = &rnew;
12800         }
12801 
12802         ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0));
12803         if (!is_error(ret) && arg4) {
12804             if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) {
12805                 return -TARGET_EFAULT;
12806             }
12807             target_rold->rlim_cur = tswap64(rold.rlim_cur);
12808             target_rold->rlim_max = tswap64(rold.rlim_max);
12809             unlock_user_struct(target_rold, arg4, 1);
12810         }
12811         return ret;
12812     }
12813 #endif
12814 #ifdef TARGET_NR_gethostname
12815     case TARGET_NR_gethostname:
12816     {
12817         char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0);
12818         if (name) {
12819             ret = get_errno(gethostname(name, arg2));
12820             unlock_user(name, arg1, arg2);
12821         } else {
12822             ret = -TARGET_EFAULT;
12823         }
12824         return ret;
12825     }
12826 #endif
12827 #ifdef TARGET_NR_atomic_cmpxchg_32
12828     case TARGET_NR_atomic_cmpxchg_32:
12829     {
12830         /* should use start_exclusive from main.c */
12831         abi_ulong mem_value;
12832         if (get_user_u32(mem_value, arg6)) {
12833             target_siginfo_t info;
12834             info.si_signo = SIGSEGV;
12835             info.si_errno = 0;
12836             info.si_code = TARGET_SEGV_MAPERR;
12837             info._sifields._sigfault._addr = arg6;
12838             queue_signal(cpu_env, info.si_signo, QEMU_SI_FAULT, &info);
12839             ret = 0xdeadbeef;
12840 
12841         }
12842         if (mem_value == arg2)
12843             put_user_u32(arg1, arg6);
12844         return mem_value;
12845     }
12846 #endif
12847 #ifdef TARGET_NR_atomic_barrier
12848     case TARGET_NR_atomic_barrier:
12849         /* Like the kernel implementation and the
12850            qemu arm barrier, no-op this? */
12851         return 0;
12852 #endif
12853 
12854 #ifdef TARGET_NR_timer_create
12855     case TARGET_NR_timer_create:
12856     {
12857         /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
12858 
12859         struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL;
12860 
12861         int clkid = arg1;
12862         int timer_index = next_free_host_timer();
12863 
12864         if (timer_index < 0) {
12865             ret = -TARGET_EAGAIN;
12866         } else {
12867             timer_t *phtimer = g_posix_timers  + timer_index;
12868 
12869             if (arg2) {
12870                 phost_sevp = &host_sevp;
12871                 ret = target_to_host_sigevent(phost_sevp, arg2);
12872                 if (ret != 0) {
12873                     free_host_timer_slot(timer_index);
12874                     return ret;
12875                 }
12876             }
12877 
12878             ret = get_errno(timer_create(clkid, phost_sevp, phtimer));
12879             if (ret) {
12880                 free_host_timer_slot(timer_index);
12881             } else {
12882                 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) {
12883                     timer_delete(*phtimer);
12884                     free_host_timer_slot(timer_index);
12885                     return -TARGET_EFAULT;
12886                 }
12887             }
12888         }
12889         return ret;
12890     }
12891 #endif
12892 
12893 #ifdef TARGET_NR_timer_settime
12894     case TARGET_NR_timer_settime:
12895     {
12896         /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
12897          * struct itimerspec * old_value */
12898         target_timer_t timerid = get_timer_id(arg1);
12899 
12900         if (timerid < 0) {
12901             ret = timerid;
12902         } else if (arg3 == 0) {
12903             ret = -TARGET_EINVAL;
12904         } else {
12905             timer_t htimer = g_posix_timers[timerid];
12906             struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
12907 
12908             if (target_to_host_itimerspec(&hspec_new, arg3)) {
12909                 return -TARGET_EFAULT;
12910             }
12911             ret = get_errno(
12912                           timer_settime(htimer, arg2, &hspec_new, &hspec_old));
12913             if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) {
12914                 return -TARGET_EFAULT;
12915             }
12916         }
12917         return ret;
12918     }
12919 #endif
12920 
12921 #ifdef TARGET_NR_timer_settime64
12922     case TARGET_NR_timer_settime64:
12923     {
12924         target_timer_t timerid = get_timer_id(arg1);
12925 
12926         if (timerid < 0) {
12927             ret = timerid;
12928         } else if (arg3 == 0) {
12929             ret = -TARGET_EINVAL;
12930         } else {
12931             timer_t htimer = g_posix_timers[timerid];
12932             struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
12933 
12934             if (target_to_host_itimerspec64(&hspec_new, arg3)) {
12935                 return -TARGET_EFAULT;
12936             }
12937             ret = get_errno(
12938                           timer_settime(htimer, arg2, &hspec_new, &hspec_old));
12939             if (arg4 && host_to_target_itimerspec64(arg4, &hspec_old)) {
12940                 return -TARGET_EFAULT;
12941             }
12942         }
12943         return ret;
12944     }
12945 #endif
12946 
12947 #ifdef TARGET_NR_timer_gettime
12948     case TARGET_NR_timer_gettime:
12949     {
12950         /* args: timer_t timerid, struct itimerspec *curr_value */
12951         target_timer_t timerid = get_timer_id(arg1);
12952 
12953         if (timerid < 0) {
12954             ret = timerid;
12955         } else if (!arg2) {
12956             ret = -TARGET_EFAULT;
12957         } else {
12958             timer_t htimer = g_posix_timers[timerid];
12959             struct itimerspec hspec;
12960             ret = get_errno(timer_gettime(htimer, &hspec));
12961 
12962             if (host_to_target_itimerspec(arg2, &hspec)) {
12963                 ret = -TARGET_EFAULT;
12964             }
12965         }
12966         return ret;
12967     }
12968 #endif
12969 
12970 #ifdef TARGET_NR_timer_gettime64
12971     case TARGET_NR_timer_gettime64:
12972     {
12973         /* args: timer_t timerid, struct itimerspec64 *curr_value */
12974         target_timer_t timerid = get_timer_id(arg1);
12975 
12976         if (timerid < 0) {
12977             ret = timerid;
12978         } else if (!arg2) {
12979             ret = -TARGET_EFAULT;
12980         } else {
12981             timer_t htimer = g_posix_timers[timerid];
12982             struct itimerspec hspec;
12983             ret = get_errno(timer_gettime(htimer, &hspec));
12984 
12985             if (host_to_target_itimerspec64(arg2, &hspec)) {
12986                 ret = -TARGET_EFAULT;
12987             }
12988         }
12989         return ret;
12990     }
12991 #endif
12992 
12993 #ifdef TARGET_NR_timer_getoverrun
12994     case TARGET_NR_timer_getoverrun:
12995     {
12996         /* args: timer_t timerid */
12997         target_timer_t timerid = get_timer_id(arg1);
12998 
12999         if (timerid < 0) {
13000             ret = timerid;
13001         } else {
13002             timer_t htimer = g_posix_timers[timerid];
13003             ret = get_errno(timer_getoverrun(htimer));
13004         }
13005         return ret;
13006     }
13007 #endif
13008 
13009 #ifdef TARGET_NR_timer_delete
13010     case TARGET_NR_timer_delete:
13011     {
13012         /* args: timer_t timerid */
13013         target_timer_t timerid = get_timer_id(arg1);
13014 
13015         if (timerid < 0) {
13016             ret = timerid;
13017         } else {
13018             timer_t htimer = g_posix_timers[timerid];
13019             ret = get_errno(timer_delete(htimer));
13020             free_host_timer_slot(timerid);
13021         }
13022         return ret;
13023     }
13024 #endif
13025 
13026 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
13027     case TARGET_NR_timerfd_create:
13028         return get_errno(timerfd_create(arg1,
13029                           target_to_host_bitmask(arg2, fcntl_flags_tbl)));
13030 #endif
13031 
13032 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
13033     case TARGET_NR_timerfd_gettime:
13034         {
13035             struct itimerspec its_curr;
13036 
13037             ret = get_errno(timerfd_gettime(arg1, &its_curr));
13038 
13039             if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) {
13040                 return -TARGET_EFAULT;
13041             }
13042         }
13043         return ret;
13044 #endif
13045 
13046 #if defined(TARGET_NR_timerfd_gettime64) && defined(CONFIG_TIMERFD)
13047     case TARGET_NR_timerfd_gettime64:
13048         {
13049             struct itimerspec its_curr;
13050 
13051             ret = get_errno(timerfd_gettime(arg1, &its_curr));
13052 
13053             if (arg2 && host_to_target_itimerspec64(arg2, &its_curr)) {
13054                 return -TARGET_EFAULT;
13055             }
13056         }
13057         return ret;
13058 #endif
13059 
13060 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
13061     case TARGET_NR_timerfd_settime:
13062         {
13063             struct itimerspec its_new, its_old, *p_new;
13064 
13065             if (arg3) {
13066                 if (target_to_host_itimerspec(&its_new, arg3)) {
13067                     return -TARGET_EFAULT;
13068                 }
13069                 p_new = &its_new;
13070             } else {
13071                 p_new = NULL;
13072             }
13073 
13074             ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13075 
13076             if (arg4 && host_to_target_itimerspec(arg4, &its_old)) {
13077                 return -TARGET_EFAULT;
13078             }
13079         }
13080         return ret;
13081 #endif
13082 
13083 #if defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)
13084     case TARGET_NR_timerfd_settime64:
13085         {
13086             struct itimerspec its_new, its_old, *p_new;
13087 
13088             if (arg3) {
13089                 if (target_to_host_itimerspec64(&its_new, arg3)) {
13090                     return -TARGET_EFAULT;
13091                 }
13092                 p_new = &its_new;
13093             } else {
13094                 p_new = NULL;
13095             }
13096 
13097             ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13098 
13099             if (arg4 && host_to_target_itimerspec64(arg4, &its_old)) {
13100                 return -TARGET_EFAULT;
13101             }
13102         }
13103         return ret;
13104 #endif
13105 
13106 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
13107     case TARGET_NR_ioprio_get:
13108         return get_errno(ioprio_get(arg1, arg2));
13109 #endif
13110 
13111 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
13112     case TARGET_NR_ioprio_set:
13113         return get_errno(ioprio_set(arg1, arg2, arg3));
13114 #endif
13115 
13116 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
13117     case TARGET_NR_setns:
13118         return get_errno(setns(arg1, arg2));
13119 #endif
13120 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
13121     case TARGET_NR_unshare:
13122         return get_errno(unshare(arg1));
13123 #endif
13124 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
13125     case TARGET_NR_kcmp:
13126         return get_errno(kcmp(arg1, arg2, arg3, arg4, arg5));
13127 #endif
13128 #ifdef TARGET_NR_swapcontext
13129     case TARGET_NR_swapcontext:
13130         /* PowerPC specific.  */
13131         return do_swapcontext(cpu_env, arg1, arg2, arg3);
13132 #endif
13133 #ifdef TARGET_NR_memfd_create
13134     case TARGET_NR_memfd_create:
13135         p = lock_user_string(arg1);
13136         if (!p) {
13137             return -TARGET_EFAULT;
13138         }
13139         ret = get_errno(memfd_create(p, arg2));
13140         fd_trans_unregister(ret);
13141         unlock_user(p, arg1, 0);
13142         return ret;
13143 #endif
13144 #if defined TARGET_NR_membarrier && defined __NR_membarrier
13145     case TARGET_NR_membarrier:
13146         return get_errno(membarrier(arg1, arg2));
13147 #endif
13148 
13149 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
13150     case TARGET_NR_copy_file_range:
13151         {
13152             loff_t inoff, outoff;
13153             loff_t *pinoff = NULL, *poutoff = NULL;
13154 
13155             if (arg2) {
13156                 if (get_user_u64(inoff, arg2)) {
13157                     return -TARGET_EFAULT;
13158                 }
13159                 pinoff = &inoff;
13160             }
13161             if (arg4) {
13162                 if (get_user_u64(outoff, arg4)) {
13163                     return -TARGET_EFAULT;
13164                 }
13165                 poutoff = &outoff;
13166             }
13167             /* Do not sign-extend the count parameter. */
13168             ret = get_errno(safe_copy_file_range(arg1, pinoff, arg3, poutoff,
13169                                                  (abi_ulong)arg5, arg6));
13170             if (!is_error(ret) && ret > 0) {
13171                 if (arg2) {
13172                     if (put_user_u64(inoff, arg2)) {
13173                         return -TARGET_EFAULT;
13174                     }
13175                 }
13176                 if (arg4) {
13177                     if (put_user_u64(outoff, arg4)) {
13178                         return -TARGET_EFAULT;
13179                     }
13180                 }
13181             }
13182         }
13183         return ret;
13184 #endif
13185 
13186 #if defined(TARGET_NR_pivot_root)
13187     case TARGET_NR_pivot_root:
13188         {
13189             void *p2;
13190             p = lock_user_string(arg1); /* new_root */
13191             p2 = lock_user_string(arg2); /* put_old */
13192             if (!p || !p2) {
13193                 ret = -TARGET_EFAULT;
13194             } else {
13195                 ret = get_errno(pivot_root(p, p2));
13196             }
13197             unlock_user(p2, arg2, 0);
13198             unlock_user(p, arg1, 0);
13199         }
13200         return ret;
13201 #endif
13202 
13203     default:
13204         qemu_log_mask(LOG_UNIMP, "Unsupported syscall: %d\n", num);
13205         return -TARGET_ENOSYS;
13206     }
13207     return ret;
13208 }
13209 
13210 abi_long do_syscall(CPUArchState *cpu_env, int num, abi_long arg1,
13211                     abi_long arg2, abi_long arg3, abi_long arg4,
13212                     abi_long arg5, abi_long arg6, abi_long arg7,
13213                     abi_long arg8)
13214 {
13215     CPUState *cpu = env_cpu(cpu_env);
13216     abi_long ret;
13217 
13218 #ifdef DEBUG_ERESTARTSYS
13219     /* Debug-only code for exercising the syscall-restart code paths
13220      * in the per-architecture cpu main loops: restart every syscall
13221      * the guest makes once before letting it through.
13222      */
13223     {
13224         static bool flag;
13225         flag = !flag;
13226         if (flag) {
13227             return -QEMU_ERESTARTSYS;
13228         }
13229     }
13230 #endif
13231 
13232     record_syscall_start(cpu, num, arg1,
13233                          arg2, arg3, arg4, arg5, arg6, arg7, arg8);
13234 
13235     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13236         print_syscall(cpu_env, num, arg1, arg2, arg3, arg4, arg5, arg6);
13237     }
13238 
13239     ret = do_syscall1(cpu_env, num, arg1, arg2, arg3, arg4,
13240                       arg5, arg6, arg7, arg8);
13241 
13242     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13243         print_syscall_ret(cpu_env, num, ret, arg1, arg2,
13244                           arg3, arg4, arg5, arg6);
13245     }
13246 
13247     record_syscall_return(cpu, num, ret);
13248     return ret;
13249 }
13250