xref: /openbmc/qemu/linux-user/syscall.c (revision eef0bae3)
1 /*
2  *  Linux syscalls
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
23 #include "qemu/memfd.h"
24 #include "qemu/queue.h"
25 #include "qemu/plugin.h"
26 #include "tcg/startup.h"
27 #include "target_mman.h"
28 #include "exec/page-protection.h"
29 #include <elf.h>
30 #include <endian.h>
31 #include <grp.h>
32 #include <sys/ipc.h>
33 #include <sys/msg.h>
34 #include <sys/wait.h>
35 #include <sys/mount.h>
36 #include <sys/file.h>
37 #include <sys/fsuid.h>
38 #include <sys/personality.h>
39 #include <sys/prctl.h>
40 #include <sys/resource.h>
41 #include <sys/swap.h>
42 #include <linux/capability.h>
43 #include <sched.h>
44 #include <sys/timex.h>
45 #include <sys/socket.h>
46 #include <linux/sockios.h>
47 #include <sys/un.h>
48 #include <sys/uio.h>
49 #include <poll.h>
50 #include <sys/times.h>
51 #include <sys/shm.h>
52 #include <sys/sem.h>
53 #include <sys/statfs.h>
54 #include <utime.h>
55 #include <sys/sysinfo.h>
56 #include <sys/signalfd.h>
57 //#include <sys/user.h>
58 #include <netinet/in.h>
59 #include <netinet/ip.h>
60 #include <netinet/tcp.h>
61 #include <netinet/udp.h>
62 #include <linux/wireless.h>
63 #include <linux/icmp.h>
64 #include <linux/icmpv6.h>
65 #include <linux/if_tun.h>
66 #include <linux/in6.h>
67 #include <linux/errqueue.h>
68 #include <linux/random.h>
69 #ifdef CONFIG_TIMERFD
70 #include <sys/timerfd.h>
71 #endif
72 #ifdef CONFIG_EVENTFD
73 #include <sys/eventfd.h>
74 #endif
75 #ifdef CONFIG_EPOLL
76 #include <sys/epoll.h>
77 #endif
78 #ifdef CONFIG_ATTR
79 #include "qemu/xattr.h"
80 #endif
81 #ifdef CONFIG_SENDFILE
82 #include <sys/sendfile.h>
83 #endif
84 #ifdef HAVE_SYS_KCOV_H
85 #include <sys/kcov.h>
86 #endif
87 
88 #define termios host_termios
89 #define winsize host_winsize
90 #define termio host_termio
91 #define sgttyb host_sgttyb /* same as target */
92 #define tchars host_tchars /* same as target */
93 #define ltchars host_ltchars /* same as target */
94 
95 #include <linux/termios.h>
96 #include <linux/unistd.h>
97 #include <linux/cdrom.h>
98 #include <linux/hdreg.h>
99 #include <linux/soundcard.h>
100 #include <linux/kd.h>
101 #include <linux/mtio.h>
102 #include <linux/fs.h>
103 #include <linux/fd.h>
104 #if defined(CONFIG_FIEMAP)
105 #include <linux/fiemap.h>
106 #endif
107 #include <linux/fb.h>
108 #if defined(CONFIG_USBFS)
109 #include <linux/usbdevice_fs.h>
110 #include <linux/usb/ch9.h>
111 #endif
112 #include <linux/vt.h>
113 #include <linux/dm-ioctl.h>
114 #include <linux/reboot.h>
115 #include <linux/route.h>
116 #include <linux/filter.h>
117 #include <linux/blkpg.h>
118 #include <netpacket/packet.h>
119 #include <linux/netlink.h>
120 #include <linux/if_alg.h>
121 #include <linux/rtc.h>
122 #include <sound/asound.h>
123 #ifdef HAVE_BTRFS_H
124 #include <linux/btrfs.h>
125 #endif
126 #ifdef HAVE_DRM_H
127 #include <libdrm/drm.h>
128 #include <libdrm/i915_drm.h>
129 #endif
130 #include "linux_loop.h"
131 #include "uname.h"
132 
133 #include "qemu.h"
134 #include "user-internals.h"
135 #include "strace.h"
136 #include "signal-common.h"
137 #include "loader.h"
138 #include "user-mmap.h"
139 #include "user/safe-syscall.h"
140 #include "qemu/guest-random.h"
141 #include "qemu/selfmap.h"
142 #include "user/syscall-trace.h"
143 #include "special-errno.h"
144 #include "qapi/error.h"
145 #include "fd-trans.h"
146 #include "cpu_loop-common.h"
147 
148 #ifndef CLONE_IO
149 #define CLONE_IO                0x80000000      /* Clone io context */
150 #endif
151 
152 /* We can't directly call the host clone syscall, because this will
153  * badly confuse libc (breaking mutexes, for example). So we must
154  * divide clone flags into:
155  *  * flag combinations that look like pthread_create()
156  *  * flag combinations that look like fork()
157  *  * flags we can implement within QEMU itself
158  *  * flags we can't support and will return an error for
159  */
160 /* For thread creation, all these flags must be present; for
161  * fork, none must be present.
162  */
163 #define CLONE_THREAD_FLAGS                              \
164     (CLONE_VM | CLONE_FS | CLONE_FILES |                \
165      CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
166 
167 /* These flags are ignored:
168  * CLONE_DETACHED is now ignored by the kernel;
169  * CLONE_IO is just an optimisation hint to the I/O scheduler
170  */
171 #define CLONE_IGNORED_FLAGS                     \
172     (CLONE_DETACHED | CLONE_IO)
173 
174 #ifndef CLONE_PIDFD
175 # define CLONE_PIDFD 0x00001000
176 #endif
177 
178 /* Flags for fork which we can implement within QEMU itself */
179 #define CLONE_OPTIONAL_FORK_FLAGS               \
180     (CLONE_SETTLS | CLONE_PARENT_SETTID | CLONE_PIDFD | \
181      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
182 
183 /* Flags for thread creation which we can implement within QEMU itself */
184 #define CLONE_OPTIONAL_THREAD_FLAGS                             \
185     (CLONE_SETTLS | CLONE_PARENT_SETTID |                       \
186      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
187 
188 #define CLONE_INVALID_FORK_FLAGS                                        \
189     (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
190 
191 #define CLONE_INVALID_THREAD_FLAGS                                      \
192     (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS |     \
193        CLONE_IGNORED_FLAGS))
194 
195 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits
196  * have almost all been allocated. We cannot support any of
197  * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
198  * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
199  * The checks against the invalid thread masks above will catch these.
200  * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
201  */
202 
203 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
204  * once. This exercises the codepaths for restart.
205  */
206 //#define DEBUG_ERESTARTSYS
207 
208 //#include <linux/msdos_fs.h>
209 #define VFAT_IOCTL_READDIR_BOTH \
210     _IOC(_IOC_READ, 'r', 1, (sizeof(struct linux_dirent) + 256) * 2)
211 #define VFAT_IOCTL_READDIR_SHORT \
212     _IOC(_IOC_READ, 'r', 2, (sizeof(struct linux_dirent) + 256) * 2)
213 
214 #undef _syscall0
215 #undef _syscall1
216 #undef _syscall2
217 #undef _syscall3
218 #undef _syscall4
219 #undef _syscall5
220 #undef _syscall6
221 
222 #define _syscall0(type,name)		\
223 static type name (void)			\
224 {					\
225 	return syscall(__NR_##name);	\
226 }
227 
228 #define _syscall1(type,name,type1,arg1)		\
229 static type name (type1 arg1)			\
230 {						\
231 	return syscall(__NR_##name, arg1);	\
232 }
233 
234 #define _syscall2(type,name,type1,arg1,type2,arg2)	\
235 static type name (type1 arg1,type2 arg2)		\
236 {							\
237 	return syscall(__NR_##name, arg1, arg2);	\
238 }
239 
240 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3)	\
241 static type name (type1 arg1,type2 arg2,type3 arg3)		\
242 {								\
243 	return syscall(__NR_##name, arg1, arg2, arg3);		\
244 }
245 
246 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4)	\
247 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4)			\
248 {										\
249 	return syscall(__NR_##name, arg1, arg2, arg3, arg4);			\
250 }
251 
252 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
253 		  type5,arg5)							\
254 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5)	\
255 {										\
256 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5);		\
257 }
258 
259 
260 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
261 		  type5,arg5,type6,arg6)					\
262 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5,	\
263                   type6 arg6)							\
264 {										\
265 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6);	\
266 }
267 
268 
269 #define __NR_sys_uname __NR_uname
270 #define __NR_sys_getcwd1 __NR_getcwd
271 #define __NR_sys_getdents __NR_getdents
272 #define __NR_sys_getdents64 __NR_getdents64
273 #define __NR_sys_getpriority __NR_getpriority
274 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
275 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo
276 #define __NR_sys_syslog __NR_syslog
277 #if defined(__NR_futex)
278 # define __NR_sys_futex __NR_futex
279 #endif
280 #if defined(__NR_futex_time64)
281 # define __NR_sys_futex_time64 __NR_futex_time64
282 #endif
283 #define __NR_sys_statx __NR_statx
284 
285 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__)
286 #define __NR__llseek __NR_lseek
287 #endif
288 
289 /* Newer kernel ports have llseek() instead of _llseek() */
290 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
291 #define TARGET_NR__llseek TARGET_NR_llseek
292 #endif
293 
294 /* some platforms need to mask more bits than just TARGET_O_NONBLOCK */
295 #ifndef TARGET_O_NONBLOCK_MASK
296 #define TARGET_O_NONBLOCK_MASK TARGET_O_NONBLOCK
297 #endif
298 
299 #define __NR_sys_gettid __NR_gettid
300 _syscall0(int, sys_gettid)
301 
302 /* For the 64-bit guest on 32-bit host case we must emulate
303  * getdents using getdents64, because otherwise the host
304  * might hand us back more dirent records than we can fit
305  * into the guest buffer after structure format conversion.
306  * Otherwise we emulate getdents with getdents if the host has it.
307  */
308 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS
309 #define EMULATE_GETDENTS_WITH_GETDENTS
310 #endif
311 
312 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS)
313 _syscall3(int, sys_getdents, unsigned int, fd, struct linux_dirent *, dirp, unsigned int, count);
314 #endif
315 #if (defined(TARGET_NR_getdents) && \
316       !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \
317     (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
318 _syscall3(int, sys_getdents64, unsigned int, fd, struct linux_dirent64 *, dirp, unsigned int, count);
319 #endif
320 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
321 _syscall5(int, _llseek,  unsigned int,  fd, unsigned long, hi, unsigned long, lo,
322           loff_t *, res, unsigned int, wh);
323 #endif
324 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo)
325 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig,
326           siginfo_t *, uinfo)
327 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len)
328 #ifdef __NR_exit_group
329 _syscall1(int,exit_group,int,error_code)
330 #endif
331 #if defined(__NR_close_range) && defined(TARGET_NR_close_range)
332 #define __NR_sys_close_range __NR_close_range
333 _syscall3(int,sys_close_range,int,first,int,last,int,flags)
334 #ifndef CLOSE_RANGE_CLOEXEC
335 #define CLOSE_RANGE_CLOEXEC     (1U << 2)
336 #endif
337 #endif
338 #if defined(__NR_futex)
339 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val,
340           const struct timespec *,timeout,int *,uaddr2,int,val3)
341 #endif
342 #if defined(__NR_futex_time64)
343 _syscall6(int,sys_futex_time64,int *,uaddr,int,op,int,val,
344           const struct timespec *,timeout,int *,uaddr2,int,val3)
345 #endif
346 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
347 _syscall2(int, pidfd_open, pid_t, pid, unsigned int, flags);
348 #endif
349 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
350 _syscall4(int, pidfd_send_signal, int, pidfd, int, sig, siginfo_t *, info,
351                              unsigned int, flags);
352 #endif
353 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
354 _syscall3(int, pidfd_getfd, int, pidfd, int, targetfd, unsigned int, flags);
355 #endif
356 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
357 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len,
358           unsigned long *, user_mask_ptr);
359 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
360 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len,
361           unsigned long *, user_mask_ptr);
362 /* sched_attr is not defined in glibc */
363 struct sched_attr {
364     uint32_t size;
365     uint32_t sched_policy;
366     uint64_t sched_flags;
367     int32_t sched_nice;
368     uint32_t sched_priority;
369     uint64_t sched_runtime;
370     uint64_t sched_deadline;
371     uint64_t sched_period;
372     uint32_t sched_util_min;
373     uint32_t sched_util_max;
374 };
375 #define __NR_sys_sched_getattr __NR_sched_getattr
376 _syscall4(int, sys_sched_getattr, pid_t, pid, struct sched_attr *, attr,
377           unsigned int, size, unsigned int, flags);
378 #define __NR_sys_sched_setattr __NR_sched_setattr
379 _syscall3(int, sys_sched_setattr, pid_t, pid, struct sched_attr *, attr,
380           unsigned int, flags);
381 #define __NR_sys_sched_getscheduler __NR_sched_getscheduler
382 _syscall1(int, sys_sched_getscheduler, pid_t, pid);
383 #define __NR_sys_sched_setscheduler __NR_sched_setscheduler
384 _syscall3(int, sys_sched_setscheduler, pid_t, pid, int, policy,
385           const struct sched_param *, param);
386 #define __NR_sys_sched_getparam __NR_sched_getparam
387 _syscall2(int, sys_sched_getparam, pid_t, pid,
388           struct sched_param *, param);
389 #define __NR_sys_sched_setparam __NR_sched_setparam
390 _syscall2(int, sys_sched_setparam, pid_t, pid,
391           const struct sched_param *, param);
392 #define __NR_sys_getcpu __NR_getcpu
393 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache);
394 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd,
395           void *, arg);
396 _syscall2(int, capget, struct __user_cap_header_struct *, header,
397           struct __user_cap_data_struct *, data);
398 _syscall2(int, capset, struct __user_cap_header_struct *, header,
399           struct __user_cap_data_struct *, data);
400 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
401 _syscall2(int, ioprio_get, int, which, int, who)
402 #endif
403 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
404 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio)
405 #endif
406 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
407 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags)
408 #endif
409 
410 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
411 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type,
412           unsigned long, idx1, unsigned long, idx2)
413 #endif
414 
415 /*
416  * It is assumed that struct statx is architecture independent.
417  */
418 #if defined(TARGET_NR_statx) && defined(__NR_statx)
419 _syscall5(int, sys_statx, int, dirfd, const char *, pathname, int, flags,
420           unsigned int, mask, struct target_statx *, statxbuf)
421 #endif
422 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier)
423 _syscall2(int, membarrier, int, cmd, int, flags)
424 #endif
425 
426 static const bitmask_transtbl fcntl_flags_tbl[] = {
427   { TARGET_O_ACCMODE,   TARGET_O_WRONLY,    O_ACCMODE,   O_WRONLY,    },
428   { TARGET_O_ACCMODE,   TARGET_O_RDWR,      O_ACCMODE,   O_RDWR,      },
429   { TARGET_O_CREAT,     TARGET_O_CREAT,     O_CREAT,     O_CREAT,     },
430   { TARGET_O_EXCL,      TARGET_O_EXCL,      O_EXCL,      O_EXCL,      },
431   { TARGET_O_NOCTTY,    TARGET_O_NOCTTY,    O_NOCTTY,    O_NOCTTY,    },
432   { TARGET_O_TRUNC,     TARGET_O_TRUNC,     O_TRUNC,     O_TRUNC,     },
433   { TARGET_O_APPEND,    TARGET_O_APPEND,    O_APPEND,    O_APPEND,    },
434   { TARGET_O_NONBLOCK,  TARGET_O_NONBLOCK,  O_NONBLOCK,  O_NONBLOCK,  },
435   { TARGET_O_SYNC,      TARGET_O_DSYNC,     O_SYNC,      O_DSYNC,     },
436   { TARGET_O_SYNC,      TARGET_O_SYNC,      O_SYNC,      O_SYNC,      },
437   { TARGET_FASYNC,      TARGET_FASYNC,      FASYNC,      FASYNC,      },
438   { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, },
439   { TARGET_O_NOFOLLOW,  TARGET_O_NOFOLLOW,  O_NOFOLLOW,  O_NOFOLLOW,  },
440 #if defined(O_DIRECT)
441   { TARGET_O_DIRECT,    TARGET_O_DIRECT,    O_DIRECT,    O_DIRECT,    },
442 #endif
443 #if defined(O_NOATIME)
444   { TARGET_O_NOATIME,   TARGET_O_NOATIME,   O_NOATIME,   O_NOATIME    },
445 #endif
446 #if defined(O_CLOEXEC)
447   { TARGET_O_CLOEXEC,   TARGET_O_CLOEXEC,   O_CLOEXEC,   O_CLOEXEC    },
448 #endif
449 #if defined(O_PATH)
450   { TARGET_O_PATH,      TARGET_O_PATH,      O_PATH,      O_PATH       },
451 #endif
452 #if defined(O_TMPFILE)
453   { TARGET_O_TMPFILE,   TARGET_O_TMPFILE,   O_TMPFILE,   O_TMPFILE    },
454 #endif
455   /* Don't terminate the list prematurely on 64-bit host+guest.  */
456 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
457   { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, },
458 #endif
459 };
460 
461 _syscall2(int, sys_getcwd1, char *, buf, size_t, size)
462 
463 #if defined(TARGET_NR_utimensat) || defined(TARGET_NR_utimensat_time64)
464 #if defined(__NR_utimensat)
465 #define __NR_sys_utimensat __NR_utimensat
466 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname,
467           const struct timespec *,tsp,int,flags)
468 #else
469 static int sys_utimensat(int dirfd, const char *pathname,
470                          const struct timespec times[2], int flags)
471 {
472     errno = ENOSYS;
473     return -1;
474 }
475 #endif
476 #endif /* TARGET_NR_utimensat */
477 
478 #ifdef TARGET_NR_renameat2
479 #if defined(__NR_renameat2)
480 #define __NR_sys_renameat2 __NR_renameat2
481 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd,
482           const char *, new, unsigned int, flags)
483 #else
484 static int sys_renameat2(int oldfd, const char *old,
485                          int newfd, const char *new, int flags)
486 {
487     if (flags == 0) {
488         return renameat(oldfd, old, newfd, new);
489     }
490     errno = ENOSYS;
491     return -1;
492 }
493 #endif
494 #endif /* TARGET_NR_renameat2 */
495 
496 #ifdef CONFIG_INOTIFY
497 #include <sys/inotify.h>
498 #else
499 /* Userspace can usually survive runtime without inotify */
500 #undef TARGET_NR_inotify_init
501 #undef TARGET_NR_inotify_init1
502 #undef TARGET_NR_inotify_add_watch
503 #undef TARGET_NR_inotify_rm_watch
504 #endif /* CONFIG_INOTIFY  */
505 
506 #if defined(TARGET_NR_prlimit64)
507 #ifndef __NR_prlimit64
508 # define __NR_prlimit64 -1
509 #endif
510 #define __NR_sys_prlimit64 __NR_prlimit64
511 /* The glibc rlimit structure may not be that used by the underlying syscall */
512 struct host_rlimit64 {
513     uint64_t rlim_cur;
514     uint64_t rlim_max;
515 };
516 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource,
517           const struct host_rlimit64 *, new_limit,
518           struct host_rlimit64 *, old_limit)
519 #endif
520 
521 
522 #if defined(TARGET_NR_timer_create)
523 /* Maximum of 32 active POSIX timers allowed at any one time. */
524 #define GUEST_TIMER_MAX 32
525 static timer_t g_posix_timers[GUEST_TIMER_MAX];
526 static int g_posix_timer_allocated[GUEST_TIMER_MAX];
527 
528 static inline int next_free_host_timer(void)
529 {
530     int k;
531     for (k = 0; k < ARRAY_SIZE(g_posix_timer_allocated); k++) {
532         if (qatomic_xchg(g_posix_timer_allocated + k, 1) == 0) {
533             return k;
534         }
535     }
536     return -1;
537 }
538 
539 static inline void free_host_timer_slot(int id)
540 {
541     qatomic_store_release(g_posix_timer_allocated + id, 0);
542 }
543 #endif
544 
545 static inline int host_to_target_errno(int host_errno)
546 {
547     switch (host_errno) {
548 #define E(X)  case X: return TARGET_##X;
549 #include "errnos.c.inc"
550 #undef E
551     default:
552         return host_errno;
553     }
554 }
555 
556 static inline int target_to_host_errno(int target_errno)
557 {
558     switch (target_errno) {
559 #define E(X)  case TARGET_##X: return X;
560 #include "errnos.c.inc"
561 #undef E
562     default:
563         return target_errno;
564     }
565 }
566 
567 abi_long get_errno(abi_long ret)
568 {
569     if (ret == -1)
570         return -host_to_target_errno(errno);
571     else
572         return ret;
573 }
574 
575 const char *target_strerror(int err)
576 {
577     if (err == QEMU_ERESTARTSYS) {
578         return "To be restarted";
579     }
580     if (err == QEMU_ESIGRETURN) {
581         return "Successful exit from sigreturn";
582     }
583 
584     return strerror(target_to_host_errno(err));
585 }
586 
587 static int check_zeroed_user(abi_long addr, size_t ksize, size_t usize)
588 {
589     int i;
590     uint8_t b;
591     if (usize <= ksize) {
592         return 1;
593     }
594     for (i = ksize; i < usize; i++) {
595         if (get_user_u8(b, addr + i)) {
596             return -TARGET_EFAULT;
597         }
598         if (b != 0) {
599             return 0;
600         }
601     }
602     return 1;
603 }
604 
605 #define safe_syscall0(type, name) \
606 static type safe_##name(void) \
607 { \
608     return safe_syscall(__NR_##name); \
609 }
610 
611 #define safe_syscall1(type, name, type1, arg1) \
612 static type safe_##name(type1 arg1) \
613 { \
614     return safe_syscall(__NR_##name, arg1); \
615 }
616 
617 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
618 static type safe_##name(type1 arg1, type2 arg2) \
619 { \
620     return safe_syscall(__NR_##name, arg1, arg2); \
621 }
622 
623 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
624 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
625 { \
626     return safe_syscall(__NR_##name, arg1, arg2, arg3); \
627 }
628 
629 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
630     type4, arg4) \
631 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
632 { \
633     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
634 }
635 
636 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
637     type4, arg4, type5, arg5) \
638 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
639     type5 arg5) \
640 { \
641     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
642 }
643 
644 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
645     type4, arg4, type5, arg5, type6, arg6) \
646 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
647     type5 arg5, type6 arg6) \
648 { \
649     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
650 }
651 
652 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count)
653 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count)
654 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \
655               int, flags, mode_t, mode)
656 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid)
657 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \
658               struct rusage *, rusage)
659 #endif
660 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \
661               int, options, struct rusage *, rusage)
662 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp)
663 safe_syscall5(int, execveat, int, dirfd, const char *, filename,
664               char **, argv, char **, envp, int, flags)
665 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
666     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
667 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \
668               fd_set *, exceptfds, struct timespec *, timeout, void *, sig)
669 #endif
670 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_ppoll_time64)
671 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds,
672               struct timespec *, tsp, const sigset_t *, sigmask,
673               size_t, sigsetsize)
674 #endif
675 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events,
676               int, maxevents, int, timeout, const sigset_t *, sigmask,
677               size_t, sigsetsize)
678 #if defined(__NR_futex)
679 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \
680               const struct timespec *,timeout,int *,uaddr2,int,val3)
681 #endif
682 #if defined(__NR_futex_time64)
683 safe_syscall6(int,futex_time64,int *,uaddr,int,op,int,val, \
684               const struct timespec *,timeout,int *,uaddr2,int,val3)
685 #endif
686 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize)
687 safe_syscall2(int, kill, pid_t, pid, int, sig)
688 safe_syscall2(int, tkill, int, tid, int, sig)
689 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig)
690 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt)
691 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt)
692 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt,
693               unsigned long, pos_l, unsigned long, pos_h)
694 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt,
695               unsigned long, pos_l, unsigned long, pos_h)
696 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr,
697               socklen_t, addrlen)
698 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len,
699               int, flags, const struct sockaddr *, addr, socklen_t, addrlen)
700 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len,
701               int, flags, struct sockaddr *, addr, socklen_t *, addrlen)
702 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags)
703 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags)
704 safe_syscall2(int, flock, int, fd, int, operation)
705 #if defined(TARGET_NR_rt_sigtimedwait) || defined(TARGET_NR_rt_sigtimedwait_time64)
706 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo,
707               const struct timespec *, uts, size_t, sigsetsize)
708 #endif
709 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len,
710               int, flags)
711 #if defined(TARGET_NR_nanosleep)
712 safe_syscall2(int, nanosleep, const struct timespec *, req,
713               struct timespec *, rem)
714 #endif
715 #if defined(TARGET_NR_clock_nanosleep) || \
716     defined(TARGET_NR_clock_nanosleep_time64)
717 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags,
718               const struct timespec *, req, struct timespec *, rem)
719 #endif
720 #ifdef __NR_ipc
721 #ifdef __s390x__
722 safe_syscall5(int, ipc, int, call, long, first, long, second, long, third,
723               void *, ptr)
724 #else
725 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third,
726               void *, ptr, long, fifth)
727 #endif
728 #endif
729 #ifdef __NR_msgsnd
730 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz,
731               int, flags)
732 #endif
733 #ifdef __NR_msgrcv
734 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz,
735               long, msgtype, int, flags)
736 #endif
737 #ifdef __NR_semtimedop
738 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops,
739               unsigned, nsops, const struct timespec *, timeout)
740 #endif
741 #if defined(TARGET_NR_mq_timedsend) || \
742     defined(TARGET_NR_mq_timedsend_time64)
743 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr,
744               size_t, len, unsigned, prio, const struct timespec *, timeout)
745 #endif
746 #if defined(TARGET_NR_mq_timedreceive) || \
747     defined(TARGET_NR_mq_timedreceive_time64)
748 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr,
749               size_t, len, unsigned *, prio, const struct timespec *, timeout)
750 #endif
751 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
752 safe_syscall6(ssize_t, copy_file_range, int, infd, loff_t *, pinoff,
753               int, outfd, loff_t *, poutoff, size_t, length,
754               unsigned int, flags)
755 #endif
756 
757 /* We do ioctl like this rather than via safe_syscall3 to preserve the
758  * "third argument might be integer or pointer or not present" behaviour of
759  * the libc function.
760  */
761 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
762 /* Similarly for fcntl. Note that callers must always:
763  *  pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
764  *  use the flock64 struct rather than unsuffixed flock
765  * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
766  */
767 #ifdef __NR_fcntl64
768 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
769 #else
770 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
771 #endif
772 
773 static inline int host_to_target_sock_type(int host_type)
774 {
775     int target_type;
776 
777     switch (host_type & 0xf /* SOCK_TYPE_MASK */) {
778     case SOCK_DGRAM:
779         target_type = TARGET_SOCK_DGRAM;
780         break;
781     case SOCK_STREAM:
782         target_type = TARGET_SOCK_STREAM;
783         break;
784     default:
785         target_type = host_type & 0xf /* SOCK_TYPE_MASK */;
786         break;
787     }
788 
789 #if defined(SOCK_CLOEXEC)
790     if (host_type & SOCK_CLOEXEC) {
791         target_type |= TARGET_SOCK_CLOEXEC;
792     }
793 #endif
794 
795 #if defined(SOCK_NONBLOCK)
796     if (host_type & SOCK_NONBLOCK) {
797         target_type |= TARGET_SOCK_NONBLOCK;
798     }
799 #endif
800 
801     return target_type;
802 }
803 
804 static abi_ulong target_brk, initial_target_brk;
805 
806 void target_set_brk(abi_ulong new_brk)
807 {
808     target_brk = TARGET_PAGE_ALIGN(new_brk);
809     initial_target_brk = target_brk;
810 }
811 
812 /* do_brk() must return target values and target errnos. */
813 abi_long do_brk(abi_ulong brk_val)
814 {
815     abi_long mapped_addr;
816     abi_ulong new_brk;
817     abi_ulong old_brk;
818 
819     /* brk pointers are always untagged */
820 
821     /* do not allow to shrink below initial brk value */
822     if (brk_val < initial_target_brk) {
823         return target_brk;
824     }
825 
826     new_brk = TARGET_PAGE_ALIGN(brk_val);
827     old_brk = TARGET_PAGE_ALIGN(target_brk);
828 
829     /* new and old target_brk might be on the same page */
830     if (new_brk == old_brk) {
831         target_brk = brk_val;
832         return target_brk;
833     }
834 
835     /* Release heap if necessary */
836     if (new_brk < old_brk) {
837         target_munmap(new_brk, old_brk - new_brk);
838 
839         target_brk = brk_val;
840         return target_brk;
841     }
842 
843     mapped_addr = target_mmap(old_brk, new_brk - old_brk,
844                               PROT_READ | PROT_WRITE,
845                               MAP_FIXED_NOREPLACE | MAP_ANON | MAP_PRIVATE,
846                               -1, 0);
847 
848     if (mapped_addr == old_brk) {
849         target_brk = brk_val;
850         return target_brk;
851     }
852 
853 #if defined(TARGET_ALPHA)
854     /* We (partially) emulate OSF/1 on Alpha, which requires we
855        return a proper errno, not an unchanged brk value.  */
856     return -TARGET_ENOMEM;
857 #endif
858     /* For everything else, return the previous break. */
859     return target_brk;
860 }
861 
862 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
863     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
864 static inline abi_long copy_from_user_fdset(fd_set *fds,
865                                             abi_ulong target_fds_addr,
866                                             int n)
867 {
868     int i, nw, j, k;
869     abi_ulong b, *target_fds;
870 
871     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
872     if (!(target_fds = lock_user(VERIFY_READ,
873                                  target_fds_addr,
874                                  sizeof(abi_ulong) * nw,
875                                  1)))
876         return -TARGET_EFAULT;
877 
878     FD_ZERO(fds);
879     k = 0;
880     for (i = 0; i < nw; i++) {
881         /* grab the abi_ulong */
882         __get_user(b, &target_fds[i]);
883         for (j = 0; j < TARGET_ABI_BITS; j++) {
884             /* check the bit inside the abi_ulong */
885             if ((b >> j) & 1)
886                 FD_SET(k, fds);
887             k++;
888         }
889     }
890 
891     unlock_user(target_fds, target_fds_addr, 0);
892 
893     return 0;
894 }
895 
896 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr,
897                                                  abi_ulong target_fds_addr,
898                                                  int n)
899 {
900     if (target_fds_addr) {
901         if (copy_from_user_fdset(fds, target_fds_addr, n))
902             return -TARGET_EFAULT;
903         *fds_ptr = fds;
904     } else {
905         *fds_ptr = NULL;
906     }
907     return 0;
908 }
909 
910 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr,
911                                           const fd_set *fds,
912                                           int n)
913 {
914     int i, nw, j, k;
915     abi_long v;
916     abi_ulong *target_fds;
917 
918     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
919     if (!(target_fds = lock_user(VERIFY_WRITE,
920                                  target_fds_addr,
921                                  sizeof(abi_ulong) * nw,
922                                  0)))
923         return -TARGET_EFAULT;
924 
925     k = 0;
926     for (i = 0; i < nw; i++) {
927         v = 0;
928         for (j = 0; j < TARGET_ABI_BITS; j++) {
929             v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j);
930             k++;
931         }
932         __put_user(v, &target_fds[i]);
933     }
934 
935     unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw);
936 
937     return 0;
938 }
939 #endif
940 
941 #if defined(__alpha__)
942 #define HOST_HZ 1024
943 #else
944 #define HOST_HZ 100
945 #endif
946 
947 static inline abi_long host_to_target_clock_t(long ticks)
948 {
949 #if HOST_HZ == TARGET_HZ
950     return ticks;
951 #else
952     return ((int64_t)ticks * TARGET_HZ) / HOST_HZ;
953 #endif
954 }
955 
956 static inline abi_long host_to_target_rusage(abi_ulong target_addr,
957                                              const struct rusage *rusage)
958 {
959     struct target_rusage *target_rusage;
960 
961     if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0))
962         return -TARGET_EFAULT;
963     target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec);
964     target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec);
965     target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec);
966     target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec);
967     target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss);
968     target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss);
969     target_rusage->ru_idrss = tswapal(rusage->ru_idrss);
970     target_rusage->ru_isrss = tswapal(rusage->ru_isrss);
971     target_rusage->ru_minflt = tswapal(rusage->ru_minflt);
972     target_rusage->ru_majflt = tswapal(rusage->ru_majflt);
973     target_rusage->ru_nswap = tswapal(rusage->ru_nswap);
974     target_rusage->ru_inblock = tswapal(rusage->ru_inblock);
975     target_rusage->ru_oublock = tswapal(rusage->ru_oublock);
976     target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd);
977     target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv);
978     target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals);
979     target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw);
980     target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw);
981     unlock_user_struct(target_rusage, target_addr, 1);
982 
983     return 0;
984 }
985 
986 #ifdef TARGET_NR_setrlimit
987 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim)
988 {
989     abi_ulong target_rlim_swap;
990     rlim_t result;
991 
992     target_rlim_swap = tswapal(target_rlim);
993     if (target_rlim_swap == TARGET_RLIM_INFINITY)
994         return RLIM_INFINITY;
995 
996     result = target_rlim_swap;
997     if (target_rlim_swap != (rlim_t)result)
998         return RLIM_INFINITY;
999 
1000     return result;
1001 }
1002 #endif
1003 
1004 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit)
1005 static inline abi_ulong host_to_target_rlim(rlim_t rlim)
1006 {
1007     abi_ulong target_rlim_swap;
1008     abi_ulong result;
1009 
1010     if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim)
1011         target_rlim_swap = TARGET_RLIM_INFINITY;
1012     else
1013         target_rlim_swap = rlim;
1014     result = tswapal(target_rlim_swap);
1015 
1016     return result;
1017 }
1018 #endif
1019 
1020 static inline int target_to_host_resource(int code)
1021 {
1022     switch (code) {
1023     case TARGET_RLIMIT_AS:
1024         return RLIMIT_AS;
1025     case TARGET_RLIMIT_CORE:
1026         return RLIMIT_CORE;
1027     case TARGET_RLIMIT_CPU:
1028         return RLIMIT_CPU;
1029     case TARGET_RLIMIT_DATA:
1030         return RLIMIT_DATA;
1031     case TARGET_RLIMIT_FSIZE:
1032         return RLIMIT_FSIZE;
1033     case TARGET_RLIMIT_LOCKS:
1034         return RLIMIT_LOCKS;
1035     case TARGET_RLIMIT_MEMLOCK:
1036         return RLIMIT_MEMLOCK;
1037     case TARGET_RLIMIT_MSGQUEUE:
1038         return RLIMIT_MSGQUEUE;
1039     case TARGET_RLIMIT_NICE:
1040         return RLIMIT_NICE;
1041     case TARGET_RLIMIT_NOFILE:
1042         return RLIMIT_NOFILE;
1043     case TARGET_RLIMIT_NPROC:
1044         return RLIMIT_NPROC;
1045     case TARGET_RLIMIT_RSS:
1046         return RLIMIT_RSS;
1047     case TARGET_RLIMIT_RTPRIO:
1048         return RLIMIT_RTPRIO;
1049 #ifdef RLIMIT_RTTIME
1050     case TARGET_RLIMIT_RTTIME:
1051         return RLIMIT_RTTIME;
1052 #endif
1053     case TARGET_RLIMIT_SIGPENDING:
1054         return RLIMIT_SIGPENDING;
1055     case TARGET_RLIMIT_STACK:
1056         return RLIMIT_STACK;
1057     default:
1058         return code;
1059     }
1060 }
1061 
1062 static inline abi_long copy_from_user_timeval(struct timeval *tv,
1063                                               abi_ulong target_tv_addr)
1064 {
1065     struct target_timeval *target_tv;
1066 
1067     if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1068         return -TARGET_EFAULT;
1069     }
1070 
1071     __get_user(tv->tv_sec, &target_tv->tv_sec);
1072     __get_user(tv->tv_usec, &target_tv->tv_usec);
1073 
1074     unlock_user_struct(target_tv, target_tv_addr, 0);
1075 
1076     return 0;
1077 }
1078 
1079 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr,
1080                                             const struct timeval *tv)
1081 {
1082     struct target_timeval *target_tv;
1083 
1084     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1085         return -TARGET_EFAULT;
1086     }
1087 
1088     __put_user(tv->tv_sec, &target_tv->tv_sec);
1089     __put_user(tv->tv_usec, &target_tv->tv_usec);
1090 
1091     unlock_user_struct(target_tv, target_tv_addr, 1);
1092 
1093     return 0;
1094 }
1095 
1096 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
1097 static inline abi_long copy_from_user_timeval64(struct timeval *tv,
1098                                                 abi_ulong target_tv_addr)
1099 {
1100     struct target__kernel_sock_timeval *target_tv;
1101 
1102     if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1103         return -TARGET_EFAULT;
1104     }
1105 
1106     __get_user(tv->tv_sec, &target_tv->tv_sec);
1107     __get_user(tv->tv_usec, &target_tv->tv_usec);
1108 
1109     unlock_user_struct(target_tv, target_tv_addr, 0);
1110 
1111     return 0;
1112 }
1113 #endif
1114 
1115 static inline abi_long copy_to_user_timeval64(abi_ulong target_tv_addr,
1116                                               const struct timeval *tv)
1117 {
1118     struct target__kernel_sock_timeval *target_tv;
1119 
1120     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1121         return -TARGET_EFAULT;
1122     }
1123 
1124     __put_user(tv->tv_sec, &target_tv->tv_sec);
1125     __put_user(tv->tv_usec, &target_tv->tv_usec);
1126 
1127     unlock_user_struct(target_tv, target_tv_addr, 1);
1128 
1129     return 0;
1130 }
1131 
1132 #if defined(TARGET_NR_futex) || \
1133     defined(TARGET_NR_rt_sigtimedwait) || \
1134     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \
1135     defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \
1136     defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \
1137     defined(TARGET_NR_mq_timedreceive) || defined(TARGET_NR_ipc) || \
1138     defined(TARGET_NR_semop) || defined(TARGET_NR_semtimedop) || \
1139     defined(TARGET_NR_timer_settime) || \
1140     (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
1141 static inline abi_long target_to_host_timespec(struct timespec *host_ts,
1142                                                abi_ulong target_addr)
1143 {
1144     struct target_timespec *target_ts;
1145 
1146     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1147         return -TARGET_EFAULT;
1148     }
1149     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1150     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1151     unlock_user_struct(target_ts, target_addr, 0);
1152     return 0;
1153 }
1154 #endif
1155 
1156 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64) || \
1157     defined(TARGET_NR_timer_settime64) || \
1158     defined(TARGET_NR_mq_timedsend_time64) || \
1159     defined(TARGET_NR_mq_timedreceive_time64) || \
1160     (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) || \
1161     defined(TARGET_NR_clock_nanosleep_time64) || \
1162     defined(TARGET_NR_rt_sigtimedwait_time64) || \
1163     defined(TARGET_NR_utimensat) || \
1164     defined(TARGET_NR_utimensat_time64) || \
1165     defined(TARGET_NR_semtimedop_time64) || \
1166     defined(TARGET_NR_pselect6_time64) || defined(TARGET_NR_ppoll_time64)
1167 static inline abi_long target_to_host_timespec64(struct timespec *host_ts,
1168                                                  abi_ulong target_addr)
1169 {
1170     struct target__kernel_timespec *target_ts;
1171 
1172     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1173         return -TARGET_EFAULT;
1174     }
1175     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1176     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1177     /* in 32bit mode, this drops the padding */
1178     host_ts->tv_nsec = (long)(abi_long)host_ts->tv_nsec;
1179     unlock_user_struct(target_ts, target_addr, 0);
1180     return 0;
1181 }
1182 #endif
1183 
1184 static inline abi_long host_to_target_timespec(abi_ulong target_addr,
1185                                                struct timespec *host_ts)
1186 {
1187     struct target_timespec *target_ts;
1188 
1189     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1190         return -TARGET_EFAULT;
1191     }
1192     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1193     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1194     unlock_user_struct(target_ts, target_addr, 1);
1195     return 0;
1196 }
1197 
1198 static inline abi_long host_to_target_timespec64(abi_ulong target_addr,
1199                                                  struct timespec *host_ts)
1200 {
1201     struct target__kernel_timespec *target_ts;
1202 
1203     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1204         return -TARGET_EFAULT;
1205     }
1206     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1207     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1208     unlock_user_struct(target_ts, target_addr, 1);
1209     return 0;
1210 }
1211 
1212 #if defined(TARGET_NR_gettimeofday)
1213 static inline abi_long copy_to_user_timezone(abi_ulong target_tz_addr,
1214                                              struct timezone *tz)
1215 {
1216     struct target_timezone *target_tz;
1217 
1218     if (!lock_user_struct(VERIFY_WRITE, target_tz, target_tz_addr, 1)) {
1219         return -TARGET_EFAULT;
1220     }
1221 
1222     __put_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1223     __put_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1224 
1225     unlock_user_struct(target_tz, target_tz_addr, 1);
1226 
1227     return 0;
1228 }
1229 #endif
1230 
1231 #if defined(TARGET_NR_settimeofday)
1232 static inline abi_long copy_from_user_timezone(struct timezone *tz,
1233                                                abi_ulong target_tz_addr)
1234 {
1235     struct target_timezone *target_tz;
1236 
1237     if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) {
1238         return -TARGET_EFAULT;
1239     }
1240 
1241     __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1242     __get_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1243 
1244     unlock_user_struct(target_tz, target_tz_addr, 0);
1245 
1246     return 0;
1247 }
1248 #endif
1249 
1250 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1251 #include <mqueue.h>
1252 
1253 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr,
1254                                               abi_ulong target_mq_attr_addr)
1255 {
1256     struct target_mq_attr *target_mq_attr;
1257 
1258     if (!lock_user_struct(VERIFY_READ, target_mq_attr,
1259                           target_mq_attr_addr, 1))
1260         return -TARGET_EFAULT;
1261 
1262     __get_user(attr->mq_flags, &target_mq_attr->mq_flags);
1263     __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1264     __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1265     __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1266 
1267     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0);
1268 
1269     return 0;
1270 }
1271 
1272 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr,
1273                                             const struct mq_attr *attr)
1274 {
1275     struct target_mq_attr *target_mq_attr;
1276 
1277     if (!lock_user_struct(VERIFY_WRITE, target_mq_attr,
1278                           target_mq_attr_addr, 0))
1279         return -TARGET_EFAULT;
1280 
1281     __put_user(attr->mq_flags, &target_mq_attr->mq_flags);
1282     __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1283     __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1284     __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1285 
1286     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1);
1287 
1288     return 0;
1289 }
1290 #endif
1291 
1292 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1293 /* do_select() must return target values and target errnos. */
1294 static abi_long do_select(int n,
1295                           abi_ulong rfd_addr, abi_ulong wfd_addr,
1296                           abi_ulong efd_addr, abi_ulong target_tv_addr)
1297 {
1298     fd_set rfds, wfds, efds;
1299     fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1300     struct timeval tv;
1301     struct timespec ts, *ts_ptr;
1302     abi_long ret;
1303 
1304     ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1305     if (ret) {
1306         return ret;
1307     }
1308     ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1309     if (ret) {
1310         return ret;
1311     }
1312     ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1313     if (ret) {
1314         return ret;
1315     }
1316 
1317     if (target_tv_addr) {
1318         if (copy_from_user_timeval(&tv, target_tv_addr))
1319             return -TARGET_EFAULT;
1320         ts.tv_sec = tv.tv_sec;
1321         ts.tv_nsec = tv.tv_usec * 1000;
1322         ts_ptr = &ts;
1323     } else {
1324         ts_ptr = NULL;
1325     }
1326 
1327     ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1328                                   ts_ptr, NULL));
1329 
1330     if (!is_error(ret)) {
1331         if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
1332             return -TARGET_EFAULT;
1333         if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
1334             return -TARGET_EFAULT;
1335         if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
1336             return -TARGET_EFAULT;
1337 
1338         if (target_tv_addr) {
1339             tv.tv_sec = ts.tv_sec;
1340             tv.tv_usec = ts.tv_nsec / 1000;
1341             if (copy_to_user_timeval(target_tv_addr, &tv)) {
1342                 return -TARGET_EFAULT;
1343             }
1344         }
1345     }
1346 
1347     return ret;
1348 }
1349 
1350 #if defined(TARGET_WANT_OLD_SYS_SELECT)
1351 static abi_long do_old_select(abi_ulong arg1)
1352 {
1353     struct target_sel_arg_struct *sel;
1354     abi_ulong inp, outp, exp, tvp;
1355     long nsel;
1356 
1357     if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) {
1358         return -TARGET_EFAULT;
1359     }
1360 
1361     nsel = tswapal(sel->n);
1362     inp = tswapal(sel->inp);
1363     outp = tswapal(sel->outp);
1364     exp = tswapal(sel->exp);
1365     tvp = tswapal(sel->tvp);
1366 
1367     unlock_user_struct(sel, arg1, 0);
1368 
1369     return do_select(nsel, inp, outp, exp, tvp);
1370 }
1371 #endif
1372 #endif
1373 
1374 #if defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
1375 static abi_long do_pselect6(abi_long arg1, abi_long arg2, abi_long arg3,
1376                             abi_long arg4, abi_long arg5, abi_long arg6,
1377                             bool time64)
1378 {
1379     abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr;
1380     fd_set rfds, wfds, efds;
1381     fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1382     struct timespec ts, *ts_ptr;
1383     abi_long ret;
1384 
1385     /*
1386      * The 6th arg is actually two args smashed together,
1387      * so we cannot use the C library.
1388      */
1389     struct {
1390         sigset_t *set;
1391         size_t size;
1392     } sig, *sig_ptr;
1393 
1394     abi_ulong arg_sigset, arg_sigsize, *arg7;
1395 
1396     n = arg1;
1397     rfd_addr = arg2;
1398     wfd_addr = arg3;
1399     efd_addr = arg4;
1400     ts_addr = arg5;
1401 
1402     ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1403     if (ret) {
1404         return ret;
1405     }
1406     ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1407     if (ret) {
1408         return ret;
1409     }
1410     ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1411     if (ret) {
1412         return ret;
1413     }
1414 
1415     /*
1416      * This takes a timespec, and not a timeval, so we cannot
1417      * use the do_select() helper ...
1418      */
1419     if (ts_addr) {
1420         if (time64) {
1421             if (target_to_host_timespec64(&ts, ts_addr)) {
1422                 return -TARGET_EFAULT;
1423             }
1424         } else {
1425             if (target_to_host_timespec(&ts, ts_addr)) {
1426                 return -TARGET_EFAULT;
1427             }
1428         }
1429             ts_ptr = &ts;
1430     } else {
1431         ts_ptr = NULL;
1432     }
1433 
1434     /* Extract the two packed args for the sigset */
1435     sig_ptr = NULL;
1436     if (arg6) {
1437         arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1);
1438         if (!arg7) {
1439             return -TARGET_EFAULT;
1440         }
1441         arg_sigset = tswapal(arg7[0]);
1442         arg_sigsize = tswapal(arg7[1]);
1443         unlock_user(arg7, arg6, 0);
1444 
1445         if (arg_sigset) {
1446             ret = process_sigsuspend_mask(&sig.set, arg_sigset, arg_sigsize);
1447             if (ret != 0) {
1448                 return ret;
1449             }
1450             sig_ptr = &sig;
1451             sig.size = SIGSET_T_SIZE;
1452         }
1453     }
1454 
1455     ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1456                                   ts_ptr, sig_ptr));
1457 
1458     if (sig_ptr) {
1459         finish_sigsuspend_mask(ret);
1460     }
1461 
1462     if (!is_error(ret)) {
1463         if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) {
1464             return -TARGET_EFAULT;
1465         }
1466         if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) {
1467             return -TARGET_EFAULT;
1468         }
1469         if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) {
1470             return -TARGET_EFAULT;
1471         }
1472         if (time64) {
1473             if (ts_addr && host_to_target_timespec64(ts_addr, &ts)) {
1474                 return -TARGET_EFAULT;
1475             }
1476         } else {
1477             if (ts_addr && host_to_target_timespec(ts_addr, &ts)) {
1478                 return -TARGET_EFAULT;
1479             }
1480         }
1481     }
1482     return ret;
1483 }
1484 #endif
1485 
1486 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) || \
1487     defined(TARGET_NR_ppoll_time64)
1488 static abi_long do_ppoll(abi_long arg1, abi_long arg2, abi_long arg3,
1489                          abi_long arg4, abi_long arg5, bool ppoll, bool time64)
1490 {
1491     struct target_pollfd *target_pfd;
1492     unsigned int nfds = arg2;
1493     struct pollfd *pfd;
1494     unsigned int i;
1495     abi_long ret;
1496 
1497     pfd = NULL;
1498     target_pfd = NULL;
1499     if (nfds) {
1500         if (nfds > (INT_MAX / sizeof(struct target_pollfd))) {
1501             return -TARGET_EINVAL;
1502         }
1503         target_pfd = lock_user(VERIFY_WRITE, arg1,
1504                                sizeof(struct target_pollfd) * nfds, 1);
1505         if (!target_pfd) {
1506             return -TARGET_EFAULT;
1507         }
1508 
1509         pfd = alloca(sizeof(struct pollfd) * nfds);
1510         for (i = 0; i < nfds; i++) {
1511             pfd[i].fd = tswap32(target_pfd[i].fd);
1512             pfd[i].events = tswap16(target_pfd[i].events);
1513         }
1514     }
1515     if (ppoll) {
1516         struct timespec _timeout_ts, *timeout_ts = &_timeout_ts;
1517         sigset_t *set = NULL;
1518 
1519         if (arg3) {
1520             if (time64) {
1521                 if (target_to_host_timespec64(timeout_ts, arg3)) {
1522                     unlock_user(target_pfd, arg1, 0);
1523                     return -TARGET_EFAULT;
1524                 }
1525             } else {
1526                 if (target_to_host_timespec(timeout_ts, arg3)) {
1527                     unlock_user(target_pfd, arg1, 0);
1528                     return -TARGET_EFAULT;
1529                 }
1530             }
1531         } else {
1532             timeout_ts = NULL;
1533         }
1534 
1535         if (arg4) {
1536             ret = process_sigsuspend_mask(&set, arg4, arg5);
1537             if (ret != 0) {
1538                 unlock_user(target_pfd, arg1, 0);
1539                 return ret;
1540             }
1541         }
1542 
1543         ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts,
1544                                    set, SIGSET_T_SIZE));
1545 
1546         if (set) {
1547             finish_sigsuspend_mask(ret);
1548         }
1549         if (!is_error(ret) && arg3) {
1550             if (time64) {
1551                 if (host_to_target_timespec64(arg3, timeout_ts)) {
1552                     return -TARGET_EFAULT;
1553                 }
1554             } else {
1555                 if (host_to_target_timespec(arg3, timeout_ts)) {
1556                     return -TARGET_EFAULT;
1557                 }
1558             }
1559         }
1560     } else {
1561           struct timespec ts, *pts;
1562 
1563           if (arg3 >= 0) {
1564               /* Convert ms to secs, ns */
1565               ts.tv_sec = arg3 / 1000;
1566               ts.tv_nsec = (arg3 % 1000) * 1000000LL;
1567               pts = &ts;
1568           } else {
1569               /* -ve poll() timeout means "infinite" */
1570               pts = NULL;
1571           }
1572           ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0));
1573     }
1574 
1575     if (!is_error(ret)) {
1576         for (i = 0; i < nfds; i++) {
1577             target_pfd[i].revents = tswap16(pfd[i].revents);
1578         }
1579     }
1580     unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds);
1581     return ret;
1582 }
1583 #endif
1584 
1585 static abi_long do_pipe(CPUArchState *cpu_env, abi_ulong pipedes,
1586                         int flags, int is_pipe2)
1587 {
1588     int host_pipe[2];
1589     abi_long ret;
1590     ret = pipe2(host_pipe, flags);
1591 
1592     if (is_error(ret))
1593         return get_errno(ret);
1594 
1595     /* Several targets have special calling conventions for the original
1596        pipe syscall, but didn't replicate this into the pipe2 syscall.  */
1597     if (!is_pipe2) {
1598 #if defined(TARGET_ALPHA)
1599         cpu_env->ir[IR_A4] = host_pipe[1];
1600         return host_pipe[0];
1601 #elif defined(TARGET_MIPS)
1602         cpu_env->active_tc.gpr[3] = host_pipe[1];
1603         return host_pipe[0];
1604 #elif defined(TARGET_SH4)
1605         cpu_env->gregs[1] = host_pipe[1];
1606         return host_pipe[0];
1607 #elif defined(TARGET_SPARC)
1608         cpu_env->regwptr[1] = host_pipe[1];
1609         return host_pipe[0];
1610 #endif
1611     }
1612 
1613     if (put_user_s32(host_pipe[0], pipedes)
1614         || put_user_s32(host_pipe[1], pipedes + sizeof(abi_int)))
1615         return -TARGET_EFAULT;
1616     return get_errno(ret);
1617 }
1618 
1619 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr,
1620                                                abi_ulong target_addr,
1621                                                socklen_t len)
1622 {
1623     const socklen_t unix_maxlen = sizeof (struct sockaddr_un);
1624     sa_family_t sa_family;
1625     struct target_sockaddr *target_saddr;
1626 
1627     if (fd_trans_target_to_host_addr(fd)) {
1628         return fd_trans_target_to_host_addr(fd)(addr, target_addr, len);
1629     }
1630 
1631     target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
1632     if (!target_saddr)
1633         return -TARGET_EFAULT;
1634 
1635     sa_family = tswap16(target_saddr->sa_family);
1636 
1637     /* Oops. The caller might send a incomplete sun_path; sun_path
1638      * must be terminated by \0 (see the manual page), but
1639      * unfortunately it is quite common to specify sockaddr_un
1640      * length as "strlen(x->sun_path)" while it should be
1641      * "strlen(...) + 1". We'll fix that here if needed.
1642      * Linux kernel has a similar feature.
1643      */
1644 
1645     if (sa_family == AF_UNIX) {
1646         if (len < unix_maxlen && len > 0) {
1647             char *cp = (char*)target_saddr;
1648 
1649             if ( cp[len-1] && !cp[len] )
1650                 len++;
1651         }
1652         if (len > unix_maxlen)
1653             len = unix_maxlen;
1654     }
1655 
1656     memcpy(addr, target_saddr, len);
1657     addr->sa_family = sa_family;
1658     if (sa_family == AF_NETLINK) {
1659         struct sockaddr_nl *nladdr;
1660 
1661         nladdr = (struct sockaddr_nl *)addr;
1662         nladdr->nl_pid = tswap32(nladdr->nl_pid);
1663         nladdr->nl_groups = tswap32(nladdr->nl_groups);
1664     } else if (sa_family == AF_PACKET) {
1665 	struct target_sockaddr_ll *lladdr;
1666 
1667 	lladdr = (struct target_sockaddr_ll *)addr;
1668 	lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex);
1669 	lladdr->sll_hatype = tswap16(lladdr->sll_hatype);
1670     } else if (sa_family == AF_INET6) {
1671         struct sockaddr_in6 *in6addr;
1672 
1673         in6addr = (struct sockaddr_in6 *)addr;
1674         in6addr->sin6_scope_id = tswap32(in6addr->sin6_scope_id);
1675     }
1676     unlock_user(target_saddr, target_addr, 0);
1677 
1678     return 0;
1679 }
1680 
1681 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr,
1682                                                struct sockaddr *addr,
1683                                                socklen_t len)
1684 {
1685     struct target_sockaddr *target_saddr;
1686 
1687     if (len == 0) {
1688         return 0;
1689     }
1690     assert(addr);
1691 
1692     target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0);
1693     if (!target_saddr)
1694         return -TARGET_EFAULT;
1695     memcpy(target_saddr, addr, len);
1696     if (len >= offsetof(struct target_sockaddr, sa_family) +
1697         sizeof(target_saddr->sa_family)) {
1698         target_saddr->sa_family = tswap16(addr->sa_family);
1699     }
1700     if (addr->sa_family == AF_NETLINK &&
1701         len >= sizeof(struct target_sockaddr_nl)) {
1702         struct target_sockaddr_nl *target_nl =
1703                (struct target_sockaddr_nl *)target_saddr;
1704         target_nl->nl_pid = tswap32(target_nl->nl_pid);
1705         target_nl->nl_groups = tswap32(target_nl->nl_groups);
1706     } else if (addr->sa_family == AF_PACKET) {
1707         struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr;
1708         target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex);
1709         target_ll->sll_hatype = tswap16(target_ll->sll_hatype);
1710     } else if (addr->sa_family == AF_INET6 &&
1711                len >= sizeof(struct target_sockaddr_in6)) {
1712         struct target_sockaddr_in6 *target_in6 =
1713                (struct target_sockaddr_in6 *)target_saddr;
1714         target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id);
1715     }
1716     unlock_user(target_saddr, target_addr, len);
1717 
1718     return 0;
1719 }
1720 
1721 static inline abi_long target_to_host_cmsg(struct msghdr *msgh,
1722                                            struct target_msghdr *target_msgh)
1723 {
1724     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1725     abi_long msg_controllen;
1726     abi_ulong target_cmsg_addr;
1727     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1728     socklen_t space = 0;
1729 
1730     msg_controllen = tswapal(target_msgh->msg_controllen);
1731     if (msg_controllen < sizeof (struct target_cmsghdr))
1732         goto the_end;
1733     target_cmsg_addr = tswapal(target_msgh->msg_control);
1734     target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1);
1735     target_cmsg_start = target_cmsg;
1736     if (!target_cmsg)
1737         return -TARGET_EFAULT;
1738 
1739     while (cmsg && target_cmsg) {
1740         void *data = CMSG_DATA(cmsg);
1741         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1742 
1743         int len = tswapal(target_cmsg->cmsg_len)
1744             - sizeof(struct target_cmsghdr);
1745 
1746         space += CMSG_SPACE(len);
1747         if (space > msgh->msg_controllen) {
1748             space -= CMSG_SPACE(len);
1749             /* This is a QEMU bug, since we allocated the payload
1750              * area ourselves (unlike overflow in host-to-target
1751              * conversion, which is just the guest giving us a buffer
1752              * that's too small). It can't happen for the payload types
1753              * we currently support; if it becomes an issue in future
1754              * we would need to improve our allocation strategy to
1755              * something more intelligent than "twice the size of the
1756              * target buffer we're reading from".
1757              */
1758             qemu_log_mask(LOG_UNIMP,
1759                           ("Unsupported ancillary data %d/%d: "
1760                            "unhandled msg size\n"),
1761                           tswap32(target_cmsg->cmsg_level),
1762                           tswap32(target_cmsg->cmsg_type));
1763             break;
1764         }
1765 
1766         if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) {
1767             cmsg->cmsg_level = SOL_SOCKET;
1768         } else {
1769             cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level);
1770         }
1771         cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type);
1772         cmsg->cmsg_len = CMSG_LEN(len);
1773 
1774         if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
1775             int *fd = (int *)data;
1776             int *target_fd = (int *)target_data;
1777             int i, numfds = len / sizeof(int);
1778 
1779             for (i = 0; i < numfds; i++) {
1780                 __get_user(fd[i], target_fd + i);
1781             }
1782         } else if (cmsg->cmsg_level == SOL_SOCKET
1783                &&  cmsg->cmsg_type == SCM_CREDENTIALS) {
1784             struct ucred *cred = (struct ucred *)data;
1785             struct target_ucred *target_cred =
1786                 (struct target_ucred *)target_data;
1787 
1788             __get_user(cred->pid, &target_cred->pid);
1789             __get_user(cred->uid, &target_cred->uid);
1790             __get_user(cred->gid, &target_cred->gid);
1791         } else if (cmsg->cmsg_level == SOL_ALG) {
1792             uint32_t *dst = (uint32_t *)data;
1793 
1794             memcpy(dst, target_data, len);
1795             /* fix endianness of first 32-bit word */
1796             if (len >= sizeof(uint32_t)) {
1797                 *dst = tswap32(*dst);
1798             }
1799         } else {
1800             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
1801                           cmsg->cmsg_level, cmsg->cmsg_type);
1802             memcpy(data, target_data, len);
1803         }
1804 
1805         cmsg = CMSG_NXTHDR(msgh, cmsg);
1806         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1807                                          target_cmsg_start);
1808     }
1809     unlock_user(target_cmsg, target_cmsg_addr, 0);
1810  the_end:
1811     msgh->msg_controllen = space;
1812     return 0;
1813 }
1814 
1815 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh,
1816                                            struct msghdr *msgh)
1817 {
1818     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1819     abi_long msg_controllen;
1820     abi_ulong target_cmsg_addr;
1821     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1822     socklen_t space = 0;
1823 
1824     msg_controllen = tswapal(target_msgh->msg_controllen);
1825     if (msg_controllen < sizeof (struct target_cmsghdr))
1826         goto the_end;
1827     target_cmsg_addr = tswapal(target_msgh->msg_control);
1828     target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0);
1829     target_cmsg_start = target_cmsg;
1830     if (!target_cmsg)
1831         return -TARGET_EFAULT;
1832 
1833     while (cmsg && target_cmsg) {
1834         void *data = CMSG_DATA(cmsg);
1835         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1836 
1837         int len = cmsg->cmsg_len - sizeof(struct cmsghdr);
1838         int tgt_len, tgt_space;
1839 
1840         /* We never copy a half-header but may copy half-data;
1841          * this is Linux's behaviour in put_cmsg(). Note that
1842          * truncation here is a guest problem (which we report
1843          * to the guest via the CTRUNC bit), unlike truncation
1844          * in target_to_host_cmsg, which is a QEMU bug.
1845          */
1846         if (msg_controllen < sizeof(struct target_cmsghdr)) {
1847             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1848             break;
1849         }
1850 
1851         if (cmsg->cmsg_level == SOL_SOCKET) {
1852             target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET);
1853         } else {
1854             target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level);
1855         }
1856         target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type);
1857 
1858         /* Payload types which need a different size of payload on
1859          * the target must adjust tgt_len here.
1860          */
1861         tgt_len = len;
1862         switch (cmsg->cmsg_level) {
1863         case SOL_SOCKET:
1864             switch (cmsg->cmsg_type) {
1865             case SO_TIMESTAMP:
1866                 tgt_len = sizeof(struct target_timeval);
1867                 break;
1868             default:
1869                 break;
1870             }
1871             break;
1872         default:
1873             break;
1874         }
1875 
1876         if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) {
1877             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1878             tgt_len = msg_controllen - sizeof(struct target_cmsghdr);
1879         }
1880 
1881         /* We must now copy-and-convert len bytes of payload
1882          * into tgt_len bytes of destination space. Bear in mind
1883          * that in both source and destination we may be dealing
1884          * with a truncated value!
1885          */
1886         switch (cmsg->cmsg_level) {
1887         case SOL_SOCKET:
1888             switch (cmsg->cmsg_type) {
1889             case SCM_RIGHTS:
1890             {
1891                 int *fd = (int *)data;
1892                 int *target_fd = (int *)target_data;
1893                 int i, numfds = tgt_len / sizeof(int);
1894 
1895                 for (i = 0; i < numfds; i++) {
1896                     __put_user(fd[i], target_fd + i);
1897                 }
1898                 break;
1899             }
1900             case SO_TIMESTAMP:
1901             {
1902                 struct timeval *tv = (struct timeval *)data;
1903                 struct target_timeval *target_tv =
1904                     (struct target_timeval *)target_data;
1905 
1906                 if (len != sizeof(struct timeval) ||
1907                     tgt_len != sizeof(struct target_timeval)) {
1908                     goto unimplemented;
1909                 }
1910 
1911                 /* copy struct timeval to target */
1912                 __put_user(tv->tv_sec, &target_tv->tv_sec);
1913                 __put_user(tv->tv_usec, &target_tv->tv_usec);
1914                 break;
1915             }
1916             case SCM_CREDENTIALS:
1917             {
1918                 struct ucred *cred = (struct ucred *)data;
1919                 struct target_ucred *target_cred =
1920                     (struct target_ucred *)target_data;
1921 
1922                 __put_user(cred->pid, &target_cred->pid);
1923                 __put_user(cred->uid, &target_cred->uid);
1924                 __put_user(cred->gid, &target_cred->gid);
1925                 break;
1926             }
1927             default:
1928                 goto unimplemented;
1929             }
1930             break;
1931 
1932         case SOL_IP:
1933             switch (cmsg->cmsg_type) {
1934             case IP_TTL:
1935             {
1936                 uint32_t *v = (uint32_t *)data;
1937                 uint32_t *t_int = (uint32_t *)target_data;
1938 
1939                 if (len != sizeof(uint32_t) ||
1940                     tgt_len != sizeof(uint32_t)) {
1941                     goto unimplemented;
1942                 }
1943                 __put_user(*v, t_int);
1944                 break;
1945             }
1946             case IP_RECVERR:
1947             {
1948                 struct errhdr_t {
1949                    struct sock_extended_err ee;
1950                    struct sockaddr_in offender;
1951                 };
1952                 struct errhdr_t *errh = (struct errhdr_t *)data;
1953                 struct errhdr_t *target_errh =
1954                     (struct errhdr_t *)target_data;
1955 
1956                 if (len != sizeof(struct errhdr_t) ||
1957                     tgt_len != sizeof(struct errhdr_t)) {
1958                     goto unimplemented;
1959                 }
1960                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
1961                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
1962                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
1963                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
1964                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
1965                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
1966                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
1967                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
1968                     (void *) &errh->offender, sizeof(errh->offender));
1969                 break;
1970             }
1971             default:
1972                 goto unimplemented;
1973             }
1974             break;
1975 
1976         case SOL_IPV6:
1977             switch (cmsg->cmsg_type) {
1978             case IPV6_HOPLIMIT:
1979             {
1980                 uint32_t *v = (uint32_t *)data;
1981                 uint32_t *t_int = (uint32_t *)target_data;
1982 
1983                 if (len != sizeof(uint32_t) ||
1984                     tgt_len != sizeof(uint32_t)) {
1985                     goto unimplemented;
1986                 }
1987                 __put_user(*v, t_int);
1988                 break;
1989             }
1990             case IPV6_RECVERR:
1991             {
1992                 struct errhdr6_t {
1993                    struct sock_extended_err ee;
1994                    struct sockaddr_in6 offender;
1995                 };
1996                 struct errhdr6_t *errh = (struct errhdr6_t *)data;
1997                 struct errhdr6_t *target_errh =
1998                     (struct errhdr6_t *)target_data;
1999 
2000                 if (len != sizeof(struct errhdr6_t) ||
2001                     tgt_len != sizeof(struct errhdr6_t)) {
2002                     goto unimplemented;
2003                 }
2004                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
2005                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
2006                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
2007                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
2008                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
2009                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
2010                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
2011                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
2012                     (void *) &errh->offender, sizeof(errh->offender));
2013                 break;
2014             }
2015             default:
2016                 goto unimplemented;
2017             }
2018             break;
2019 
2020         default:
2021         unimplemented:
2022             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
2023                           cmsg->cmsg_level, cmsg->cmsg_type);
2024             memcpy(target_data, data, MIN(len, tgt_len));
2025             if (tgt_len > len) {
2026                 memset(target_data + len, 0, tgt_len - len);
2027             }
2028         }
2029 
2030         target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len));
2031         tgt_space = TARGET_CMSG_SPACE(tgt_len);
2032         if (msg_controllen < tgt_space) {
2033             tgt_space = msg_controllen;
2034         }
2035         msg_controllen -= tgt_space;
2036         space += tgt_space;
2037         cmsg = CMSG_NXTHDR(msgh, cmsg);
2038         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
2039                                          target_cmsg_start);
2040     }
2041     unlock_user(target_cmsg, target_cmsg_addr, space);
2042  the_end:
2043     target_msgh->msg_controllen = tswapal(space);
2044     return 0;
2045 }
2046 
2047 /* do_setsockopt() Must return target values and target errnos. */
2048 static abi_long do_setsockopt(int sockfd, int level, int optname,
2049                               abi_ulong optval_addr, socklen_t optlen)
2050 {
2051     abi_long ret;
2052     int val;
2053 
2054     switch(level) {
2055     case SOL_TCP:
2056     case SOL_UDP:
2057         /* TCP and UDP options all take an 'int' value.  */
2058         if (optlen < sizeof(uint32_t))
2059             return -TARGET_EINVAL;
2060 
2061         if (get_user_u32(val, optval_addr))
2062             return -TARGET_EFAULT;
2063         ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2064         break;
2065     case SOL_IP:
2066         switch(optname) {
2067         case IP_TOS:
2068         case IP_TTL:
2069         case IP_HDRINCL:
2070         case IP_ROUTER_ALERT:
2071         case IP_RECVOPTS:
2072         case IP_RETOPTS:
2073         case IP_PKTINFO:
2074         case IP_MTU_DISCOVER:
2075         case IP_RECVERR:
2076         case IP_RECVTTL:
2077         case IP_RECVTOS:
2078 #ifdef IP_FREEBIND
2079         case IP_FREEBIND:
2080 #endif
2081         case IP_MULTICAST_TTL:
2082         case IP_MULTICAST_LOOP:
2083             val = 0;
2084             if (optlen >= sizeof(uint32_t)) {
2085                 if (get_user_u32(val, optval_addr))
2086                     return -TARGET_EFAULT;
2087             } else if (optlen >= 1) {
2088                 if (get_user_u8(val, optval_addr))
2089                     return -TARGET_EFAULT;
2090             }
2091             ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2092             break;
2093         case IP_ADD_MEMBERSHIP:
2094         case IP_DROP_MEMBERSHIP:
2095         {
2096             struct ip_mreqn ip_mreq;
2097             struct target_ip_mreqn *target_smreqn;
2098 
2099             QEMU_BUILD_BUG_ON(sizeof(struct ip_mreq) !=
2100                               sizeof(struct target_ip_mreq));
2101 
2102             if (optlen < sizeof (struct target_ip_mreq) ||
2103                 optlen > sizeof (struct target_ip_mreqn)) {
2104                 return -TARGET_EINVAL;
2105             }
2106 
2107             target_smreqn = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2108             if (!target_smreqn) {
2109                 return -TARGET_EFAULT;
2110             }
2111             ip_mreq.imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr;
2112             ip_mreq.imr_address.s_addr = target_smreqn->imr_address.s_addr;
2113             if (optlen == sizeof(struct target_ip_mreqn)) {
2114                 ip_mreq.imr_ifindex = tswapal(target_smreqn->imr_ifindex);
2115                 optlen = sizeof(struct ip_mreqn);
2116             }
2117             unlock_user(target_smreqn, optval_addr, 0);
2118 
2119             ret = get_errno(setsockopt(sockfd, level, optname, &ip_mreq, optlen));
2120             break;
2121         }
2122         case IP_BLOCK_SOURCE:
2123         case IP_UNBLOCK_SOURCE:
2124         case IP_ADD_SOURCE_MEMBERSHIP:
2125         case IP_DROP_SOURCE_MEMBERSHIP:
2126         {
2127             struct ip_mreq_source *ip_mreq_source;
2128 
2129             if (optlen != sizeof (struct target_ip_mreq_source))
2130                 return -TARGET_EINVAL;
2131 
2132             ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2133             if (!ip_mreq_source) {
2134                 return -TARGET_EFAULT;
2135             }
2136             ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen));
2137             unlock_user (ip_mreq_source, optval_addr, 0);
2138             break;
2139         }
2140         default:
2141             goto unimplemented;
2142         }
2143         break;
2144     case SOL_IPV6:
2145         switch (optname) {
2146         case IPV6_MTU_DISCOVER:
2147         case IPV6_MTU:
2148         case IPV6_V6ONLY:
2149         case IPV6_RECVPKTINFO:
2150         case IPV6_UNICAST_HOPS:
2151         case IPV6_MULTICAST_HOPS:
2152         case IPV6_MULTICAST_LOOP:
2153         case IPV6_RECVERR:
2154         case IPV6_RECVHOPLIMIT:
2155         case IPV6_2292HOPLIMIT:
2156         case IPV6_CHECKSUM:
2157         case IPV6_ADDRFORM:
2158         case IPV6_2292PKTINFO:
2159         case IPV6_RECVTCLASS:
2160         case IPV6_RECVRTHDR:
2161         case IPV6_2292RTHDR:
2162         case IPV6_RECVHOPOPTS:
2163         case IPV6_2292HOPOPTS:
2164         case IPV6_RECVDSTOPTS:
2165         case IPV6_2292DSTOPTS:
2166         case IPV6_TCLASS:
2167         case IPV6_ADDR_PREFERENCES:
2168 #ifdef IPV6_RECVPATHMTU
2169         case IPV6_RECVPATHMTU:
2170 #endif
2171 #ifdef IPV6_TRANSPARENT
2172         case IPV6_TRANSPARENT:
2173 #endif
2174 #ifdef IPV6_FREEBIND
2175         case IPV6_FREEBIND:
2176 #endif
2177 #ifdef IPV6_RECVORIGDSTADDR
2178         case IPV6_RECVORIGDSTADDR:
2179 #endif
2180             val = 0;
2181             if (optlen < sizeof(uint32_t)) {
2182                 return -TARGET_EINVAL;
2183             }
2184             if (get_user_u32(val, optval_addr)) {
2185                 return -TARGET_EFAULT;
2186             }
2187             ret = get_errno(setsockopt(sockfd, level, optname,
2188                                        &val, sizeof(val)));
2189             break;
2190         case IPV6_PKTINFO:
2191         {
2192             struct in6_pktinfo pki;
2193 
2194             if (optlen < sizeof(pki)) {
2195                 return -TARGET_EINVAL;
2196             }
2197 
2198             if (copy_from_user(&pki, optval_addr, sizeof(pki))) {
2199                 return -TARGET_EFAULT;
2200             }
2201 
2202             pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex);
2203 
2204             ret = get_errno(setsockopt(sockfd, level, optname,
2205                                        &pki, sizeof(pki)));
2206             break;
2207         }
2208         case IPV6_ADD_MEMBERSHIP:
2209         case IPV6_DROP_MEMBERSHIP:
2210         {
2211             struct ipv6_mreq ipv6mreq;
2212 
2213             if (optlen < sizeof(ipv6mreq)) {
2214                 return -TARGET_EINVAL;
2215             }
2216 
2217             if (copy_from_user(&ipv6mreq, optval_addr, sizeof(ipv6mreq))) {
2218                 return -TARGET_EFAULT;
2219             }
2220 
2221             ipv6mreq.ipv6mr_interface = tswap32(ipv6mreq.ipv6mr_interface);
2222 
2223             ret = get_errno(setsockopt(sockfd, level, optname,
2224                                        &ipv6mreq, sizeof(ipv6mreq)));
2225             break;
2226         }
2227         default:
2228             goto unimplemented;
2229         }
2230         break;
2231     case SOL_ICMPV6:
2232         switch (optname) {
2233         case ICMPV6_FILTER:
2234         {
2235             struct icmp6_filter icmp6f;
2236 
2237             if (optlen > sizeof(icmp6f)) {
2238                 optlen = sizeof(icmp6f);
2239             }
2240 
2241             if (copy_from_user(&icmp6f, optval_addr, optlen)) {
2242                 return -TARGET_EFAULT;
2243             }
2244 
2245             for (val = 0; val < 8; val++) {
2246                 icmp6f.data[val] = tswap32(icmp6f.data[val]);
2247             }
2248 
2249             ret = get_errno(setsockopt(sockfd, level, optname,
2250                                        &icmp6f, optlen));
2251             break;
2252         }
2253         default:
2254             goto unimplemented;
2255         }
2256         break;
2257     case SOL_RAW:
2258         switch (optname) {
2259         case ICMP_FILTER:
2260         case IPV6_CHECKSUM:
2261             /* those take an u32 value */
2262             if (optlen < sizeof(uint32_t)) {
2263                 return -TARGET_EINVAL;
2264             }
2265 
2266             if (get_user_u32(val, optval_addr)) {
2267                 return -TARGET_EFAULT;
2268             }
2269             ret = get_errno(setsockopt(sockfd, level, optname,
2270                                        &val, sizeof(val)));
2271             break;
2272 
2273         default:
2274             goto unimplemented;
2275         }
2276         break;
2277 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE)
2278     case SOL_ALG:
2279         switch (optname) {
2280         case ALG_SET_KEY:
2281         {
2282             char *alg_key = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2283             if (!alg_key) {
2284                 return -TARGET_EFAULT;
2285             }
2286             ret = get_errno(setsockopt(sockfd, level, optname,
2287                                        alg_key, optlen));
2288             unlock_user(alg_key, optval_addr, optlen);
2289             break;
2290         }
2291         case ALG_SET_AEAD_AUTHSIZE:
2292         {
2293             ret = get_errno(setsockopt(sockfd, level, optname,
2294                                        NULL, optlen));
2295             break;
2296         }
2297         default:
2298             goto unimplemented;
2299         }
2300         break;
2301 #endif
2302     case TARGET_SOL_SOCKET:
2303         switch (optname) {
2304         case TARGET_SO_RCVTIMEO:
2305         case TARGET_SO_SNDTIMEO:
2306         {
2307                 struct timeval tv;
2308 
2309                 if (optlen != sizeof(struct target_timeval)) {
2310                     return -TARGET_EINVAL;
2311                 }
2312 
2313                 if (copy_from_user_timeval(&tv, optval_addr)) {
2314                     return -TARGET_EFAULT;
2315                 }
2316 
2317                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
2318                                 optname == TARGET_SO_RCVTIMEO ?
2319                                     SO_RCVTIMEO : SO_SNDTIMEO,
2320                                 &tv, sizeof(tv)));
2321                 return ret;
2322         }
2323         case TARGET_SO_ATTACH_FILTER:
2324         {
2325                 struct target_sock_fprog *tfprog;
2326                 struct target_sock_filter *tfilter;
2327                 struct sock_fprog fprog;
2328                 struct sock_filter *filter;
2329                 int i;
2330 
2331                 if (optlen != sizeof(*tfprog)) {
2332                     return -TARGET_EINVAL;
2333                 }
2334                 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) {
2335                     return -TARGET_EFAULT;
2336                 }
2337                 if (!lock_user_struct(VERIFY_READ, tfilter,
2338                                       tswapal(tfprog->filter), 0)) {
2339                     unlock_user_struct(tfprog, optval_addr, 1);
2340                     return -TARGET_EFAULT;
2341                 }
2342 
2343                 fprog.len = tswap16(tfprog->len);
2344                 filter = g_try_new(struct sock_filter, fprog.len);
2345                 if (filter == NULL) {
2346                     unlock_user_struct(tfilter, tfprog->filter, 1);
2347                     unlock_user_struct(tfprog, optval_addr, 1);
2348                     return -TARGET_ENOMEM;
2349                 }
2350                 for (i = 0; i < fprog.len; i++) {
2351                     filter[i].code = tswap16(tfilter[i].code);
2352                     filter[i].jt = tfilter[i].jt;
2353                     filter[i].jf = tfilter[i].jf;
2354                     filter[i].k = tswap32(tfilter[i].k);
2355                 }
2356                 fprog.filter = filter;
2357 
2358                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
2359                                 SO_ATTACH_FILTER, &fprog, sizeof(fprog)));
2360                 g_free(filter);
2361 
2362                 unlock_user_struct(tfilter, tfprog->filter, 1);
2363                 unlock_user_struct(tfprog, optval_addr, 1);
2364                 return ret;
2365         }
2366 	case TARGET_SO_BINDTODEVICE:
2367 	{
2368 		char *dev_ifname, *addr_ifname;
2369 
2370 		if (optlen > IFNAMSIZ - 1) {
2371 		    optlen = IFNAMSIZ - 1;
2372 		}
2373 		dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2374 		if (!dev_ifname) {
2375 		    return -TARGET_EFAULT;
2376 		}
2377 		optname = SO_BINDTODEVICE;
2378 		addr_ifname = alloca(IFNAMSIZ);
2379 		memcpy(addr_ifname, dev_ifname, optlen);
2380 		addr_ifname[optlen] = 0;
2381 		ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2382                                            addr_ifname, optlen));
2383 		unlock_user (dev_ifname, optval_addr, 0);
2384 		return ret;
2385 	}
2386         case TARGET_SO_LINGER:
2387         {
2388                 struct linger lg;
2389                 struct target_linger *tlg;
2390 
2391                 if (optlen != sizeof(struct target_linger)) {
2392                     return -TARGET_EINVAL;
2393                 }
2394                 if (!lock_user_struct(VERIFY_READ, tlg, optval_addr, 1)) {
2395                     return -TARGET_EFAULT;
2396                 }
2397                 __get_user(lg.l_onoff, &tlg->l_onoff);
2398                 __get_user(lg.l_linger, &tlg->l_linger);
2399                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, SO_LINGER,
2400                                 &lg, sizeof(lg)));
2401                 unlock_user_struct(tlg, optval_addr, 0);
2402                 return ret;
2403         }
2404             /* Options with 'int' argument.  */
2405         case TARGET_SO_DEBUG:
2406 		optname = SO_DEBUG;
2407 		break;
2408         case TARGET_SO_REUSEADDR:
2409 		optname = SO_REUSEADDR;
2410 		break;
2411 #ifdef SO_REUSEPORT
2412         case TARGET_SO_REUSEPORT:
2413                 optname = SO_REUSEPORT;
2414                 break;
2415 #endif
2416         case TARGET_SO_TYPE:
2417 		optname = SO_TYPE;
2418 		break;
2419         case TARGET_SO_ERROR:
2420 		optname = SO_ERROR;
2421 		break;
2422         case TARGET_SO_DONTROUTE:
2423 		optname = SO_DONTROUTE;
2424 		break;
2425         case TARGET_SO_BROADCAST:
2426 		optname = SO_BROADCAST;
2427 		break;
2428         case TARGET_SO_SNDBUF:
2429 		optname = SO_SNDBUF;
2430 		break;
2431         case TARGET_SO_SNDBUFFORCE:
2432                 optname = SO_SNDBUFFORCE;
2433                 break;
2434         case TARGET_SO_RCVBUF:
2435 		optname = SO_RCVBUF;
2436 		break;
2437         case TARGET_SO_RCVBUFFORCE:
2438                 optname = SO_RCVBUFFORCE;
2439                 break;
2440         case TARGET_SO_KEEPALIVE:
2441 		optname = SO_KEEPALIVE;
2442 		break;
2443         case TARGET_SO_OOBINLINE:
2444 		optname = SO_OOBINLINE;
2445 		break;
2446         case TARGET_SO_NO_CHECK:
2447 		optname = SO_NO_CHECK;
2448 		break;
2449         case TARGET_SO_PRIORITY:
2450 		optname = SO_PRIORITY;
2451 		break;
2452 #ifdef SO_BSDCOMPAT
2453         case TARGET_SO_BSDCOMPAT:
2454 		optname = SO_BSDCOMPAT;
2455 		break;
2456 #endif
2457         case TARGET_SO_PASSCRED:
2458 		optname = SO_PASSCRED;
2459 		break;
2460         case TARGET_SO_PASSSEC:
2461                 optname = SO_PASSSEC;
2462                 break;
2463         case TARGET_SO_TIMESTAMP:
2464 		optname = SO_TIMESTAMP;
2465 		break;
2466         case TARGET_SO_RCVLOWAT:
2467 		optname = SO_RCVLOWAT;
2468 		break;
2469         default:
2470             goto unimplemented;
2471         }
2472 	if (optlen < sizeof(uint32_t))
2473             return -TARGET_EINVAL;
2474 
2475 	if (get_user_u32(val, optval_addr))
2476             return -TARGET_EFAULT;
2477 	ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val)));
2478         break;
2479 #ifdef SOL_NETLINK
2480     case SOL_NETLINK:
2481         switch (optname) {
2482         case NETLINK_PKTINFO:
2483         case NETLINK_ADD_MEMBERSHIP:
2484         case NETLINK_DROP_MEMBERSHIP:
2485         case NETLINK_BROADCAST_ERROR:
2486         case NETLINK_NO_ENOBUFS:
2487 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2488         case NETLINK_LISTEN_ALL_NSID:
2489         case NETLINK_CAP_ACK:
2490 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2491 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2492         case NETLINK_EXT_ACK:
2493 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2494 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2495         case NETLINK_GET_STRICT_CHK:
2496 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2497             break;
2498         default:
2499             goto unimplemented;
2500         }
2501         val = 0;
2502         if (optlen < sizeof(uint32_t)) {
2503             return -TARGET_EINVAL;
2504         }
2505         if (get_user_u32(val, optval_addr)) {
2506             return -TARGET_EFAULT;
2507         }
2508         ret = get_errno(setsockopt(sockfd, SOL_NETLINK, optname, &val,
2509                                    sizeof(val)));
2510         break;
2511 #endif /* SOL_NETLINK */
2512     default:
2513     unimplemented:
2514         qemu_log_mask(LOG_UNIMP, "Unsupported setsockopt level=%d optname=%d\n",
2515                       level, optname);
2516         ret = -TARGET_ENOPROTOOPT;
2517     }
2518     return ret;
2519 }
2520 
2521 /* do_getsockopt() Must return target values and target errnos. */
2522 static abi_long do_getsockopt(int sockfd, int level, int optname,
2523                               abi_ulong optval_addr, abi_ulong optlen)
2524 {
2525     abi_long ret;
2526     int len, val;
2527     socklen_t lv;
2528 
2529     switch(level) {
2530     case TARGET_SOL_SOCKET:
2531         level = SOL_SOCKET;
2532         switch (optname) {
2533         /* These don't just return a single integer */
2534         case TARGET_SO_PEERNAME:
2535             goto unimplemented;
2536         case TARGET_SO_RCVTIMEO: {
2537             struct timeval tv;
2538             socklen_t tvlen;
2539 
2540             optname = SO_RCVTIMEO;
2541 
2542 get_timeout:
2543             if (get_user_u32(len, optlen)) {
2544                 return -TARGET_EFAULT;
2545             }
2546             if (len < 0) {
2547                 return -TARGET_EINVAL;
2548             }
2549 
2550             tvlen = sizeof(tv);
2551             ret = get_errno(getsockopt(sockfd, level, optname,
2552                                        &tv, &tvlen));
2553             if (ret < 0) {
2554                 return ret;
2555             }
2556             if (len > sizeof(struct target_timeval)) {
2557                 len = sizeof(struct target_timeval);
2558             }
2559             if (copy_to_user_timeval(optval_addr, &tv)) {
2560                 return -TARGET_EFAULT;
2561             }
2562             if (put_user_u32(len, optlen)) {
2563                 return -TARGET_EFAULT;
2564             }
2565             break;
2566         }
2567         case TARGET_SO_SNDTIMEO:
2568             optname = SO_SNDTIMEO;
2569             goto get_timeout;
2570         case TARGET_SO_PEERCRED: {
2571             struct ucred cr;
2572             socklen_t crlen;
2573             struct target_ucred *tcr;
2574 
2575             if (get_user_u32(len, optlen)) {
2576                 return -TARGET_EFAULT;
2577             }
2578             if (len < 0) {
2579                 return -TARGET_EINVAL;
2580             }
2581 
2582             crlen = sizeof(cr);
2583             ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED,
2584                                        &cr, &crlen));
2585             if (ret < 0) {
2586                 return ret;
2587             }
2588             if (len > crlen) {
2589                 len = crlen;
2590             }
2591             if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) {
2592                 return -TARGET_EFAULT;
2593             }
2594             __put_user(cr.pid, &tcr->pid);
2595             __put_user(cr.uid, &tcr->uid);
2596             __put_user(cr.gid, &tcr->gid);
2597             unlock_user_struct(tcr, optval_addr, 1);
2598             if (put_user_u32(len, optlen)) {
2599                 return -TARGET_EFAULT;
2600             }
2601             break;
2602         }
2603         case TARGET_SO_PEERSEC: {
2604             char *name;
2605 
2606             if (get_user_u32(len, optlen)) {
2607                 return -TARGET_EFAULT;
2608             }
2609             if (len < 0) {
2610                 return -TARGET_EINVAL;
2611             }
2612             name = lock_user(VERIFY_WRITE, optval_addr, len, 0);
2613             if (!name) {
2614                 return -TARGET_EFAULT;
2615             }
2616             lv = len;
2617             ret = get_errno(getsockopt(sockfd, level, SO_PEERSEC,
2618                                        name, &lv));
2619             if (put_user_u32(lv, optlen)) {
2620                 ret = -TARGET_EFAULT;
2621             }
2622             unlock_user(name, optval_addr, lv);
2623             break;
2624         }
2625         case TARGET_SO_LINGER:
2626         {
2627             struct linger lg;
2628             socklen_t lglen;
2629             struct target_linger *tlg;
2630 
2631             if (get_user_u32(len, optlen)) {
2632                 return -TARGET_EFAULT;
2633             }
2634             if (len < 0) {
2635                 return -TARGET_EINVAL;
2636             }
2637 
2638             lglen = sizeof(lg);
2639             ret = get_errno(getsockopt(sockfd, level, SO_LINGER,
2640                                        &lg, &lglen));
2641             if (ret < 0) {
2642                 return ret;
2643             }
2644             if (len > lglen) {
2645                 len = lglen;
2646             }
2647             if (!lock_user_struct(VERIFY_WRITE, tlg, optval_addr, 0)) {
2648                 return -TARGET_EFAULT;
2649             }
2650             __put_user(lg.l_onoff, &tlg->l_onoff);
2651             __put_user(lg.l_linger, &tlg->l_linger);
2652             unlock_user_struct(tlg, optval_addr, 1);
2653             if (put_user_u32(len, optlen)) {
2654                 return -TARGET_EFAULT;
2655             }
2656             break;
2657         }
2658         /* Options with 'int' argument.  */
2659         case TARGET_SO_DEBUG:
2660             optname = SO_DEBUG;
2661             goto int_case;
2662         case TARGET_SO_REUSEADDR:
2663             optname = SO_REUSEADDR;
2664             goto int_case;
2665 #ifdef SO_REUSEPORT
2666         case TARGET_SO_REUSEPORT:
2667             optname = SO_REUSEPORT;
2668             goto int_case;
2669 #endif
2670         case TARGET_SO_TYPE:
2671             optname = SO_TYPE;
2672             goto int_case;
2673         case TARGET_SO_ERROR:
2674             optname = SO_ERROR;
2675             goto int_case;
2676         case TARGET_SO_DONTROUTE:
2677             optname = SO_DONTROUTE;
2678             goto int_case;
2679         case TARGET_SO_BROADCAST:
2680             optname = SO_BROADCAST;
2681             goto int_case;
2682         case TARGET_SO_SNDBUF:
2683             optname = SO_SNDBUF;
2684             goto int_case;
2685         case TARGET_SO_RCVBUF:
2686             optname = SO_RCVBUF;
2687             goto int_case;
2688         case TARGET_SO_KEEPALIVE:
2689             optname = SO_KEEPALIVE;
2690             goto int_case;
2691         case TARGET_SO_OOBINLINE:
2692             optname = SO_OOBINLINE;
2693             goto int_case;
2694         case TARGET_SO_NO_CHECK:
2695             optname = SO_NO_CHECK;
2696             goto int_case;
2697         case TARGET_SO_PRIORITY:
2698             optname = SO_PRIORITY;
2699             goto int_case;
2700 #ifdef SO_BSDCOMPAT
2701         case TARGET_SO_BSDCOMPAT:
2702             optname = SO_BSDCOMPAT;
2703             goto int_case;
2704 #endif
2705         case TARGET_SO_PASSCRED:
2706             optname = SO_PASSCRED;
2707             goto int_case;
2708         case TARGET_SO_TIMESTAMP:
2709             optname = SO_TIMESTAMP;
2710             goto int_case;
2711         case TARGET_SO_RCVLOWAT:
2712             optname = SO_RCVLOWAT;
2713             goto int_case;
2714         case TARGET_SO_ACCEPTCONN:
2715             optname = SO_ACCEPTCONN;
2716             goto int_case;
2717         case TARGET_SO_PROTOCOL:
2718             optname = SO_PROTOCOL;
2719             goto int_case;
2720         case TARGET_SO_DOMAIN:
2721             optname = SO_DOMAIN;
2722             goto int_case;
2723         default:
2724             goto int_case;
2725         }
2726         break;
2727     case SOL_TCP:
2728     case SOL_UDP:
2729         /* TCP and UDP options all take an 'int' value.  */
2730     int_case:
2731         if (get_user_u32(len, optlen))
2732             return -TARGET_EFAULT;
2733         if (len < 0)
2734             return -TARGET_EINVAL;
2735         lv = sizeof(lv);
2736         ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2737         if (ret < 0)
2738             return ret;
2739         switch (optname) {
2740         case SO_TYPE:
2741             val = host_to_target_sock_type(val);
2742             break;
2743         case SO_ERROR:
2744             val = host_to_target_errno(val);
2745             break;
2746         }
2747         if (len > lv)
2748             len = lv;
2749         if (len == 4) {
2750             if (put_user_u32(val, optval_addr))
2751                 return -TARGET_EFAULT;
2752         } else {
2753             if (put_user_u8(val, optval_addr))
2754                 return -TARGET_EFAULT;
2755         }
2756         if (put_user_u32(len, optlen))
2757             return -TARGET_EFAULT;
2758         break;
2759     case SOL_IP:
2760         switch(optname) {
2761         case IP_TOS:
2762         case IP_TTL:
2763         case IP_HDRINCL:
2764         case IP_ROUTER_ALERT:
2765         case IP_RECVOPTS:
2766         case IP_RETOPTS:
2767         case IP_PKTINFO:
2768         case IP_MTU_DISCOVER:
2769         case IP_RECVERR:
2770         case IP_RECVTOS:
2771 #ifdef IP_FREEBIND
2772         case IP_FREEBIND:
2773 #endif
2774         case IP_MULTICAST_TTL:
2775         case IP_MULTICAST_LOOP:
2776             if (get_user_u32(len, optlen))
2777                 return -TARGET_EFAULT;
2778             if (len < 0)
2779                 return -TARGET_EINVAL;
2780             lv = sizeof(lv);
2781             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2782             if (ret < 0)
2783                 return ret;
2784             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2785                 len = 1;
2786                 if (put_user_u32(len, optlen)
2787                     || put_user_u8(val, optval_addr))
2788                     return -TARGET_EFAULT;
2789             } else {
2790                 if (len > sizeof(int))
2791                     len = sizeof(int);
2792                 if (put_user_u32(len, optlen)
2793                     || put_user_u32(val, optval_addr))
2794                     return -TARGET_EFAULT;
2795             }
2796             break;
2797         default:
2798             ret = -TARGET_ENOPROTOOPT;
2799             break;
2800         }
2801         break;
2802     case SOL_IPV6:
2803         switch (optname) {
2804         case IPV6_MTU_DISCOVER:
2805         case IPV6_MTU:
2806         case IPV6_V6ONLY:
2807         case IPV6_RECVPKTINFO:
2808         case IPV6_UNICAST_HOPS:
2809         case IPV6_MULTICAST_HOPS:
2810         case IPV6_MULTICAST_LOOP:
2811         case IPV6_RECVERR:
2812         case IPV6_RECVHOPLIMIT:
2813         case IPV6_2292HOPLIMIT:
2814         case IPV6_CHECKSUM:
2815         case IPV6_ADDRFORM:
2816         case IPV6_2292PKTINFO:
2817         case IPV6_RECVTCLASS:
2818         case IPV6_RECVRTHDR:
2819         case IPV6_2292RTHDR:
2820         case IPV6_RECVHOPOPTS:
2821         case IPV6_2292HOPOPTS:
2822         case IPV6_RECVDSTOPTS:
2823         case IPV6_2292DSTOPTS:
2824         case IPV6_TCLASS:
2825         case IPV6_ADDR_PREFERENCES:
2826 #ifdef IPV6_RECVPATHMTU
2827         case IPV6_RECVPATHMTU:
2828 #endif
2829 #ifdef IPV6_TRANSPARENT
2830         case IPV6_TRANSPARENT:
2831 #endif
2832 #ifdef IPV6_FREEBIND
2833         case IPV6_FREEBIND:
2834 #endif
2835 #ifdef IPV6_RECVORIGDSTADDR
2836         case IPV6_RECVORIGDSTADDR:
2837 #endif
2838             if (get_user_u32(len, optlen))
2839                 return -TARGET_EFAULT;
2840             if (len < 0)
2841                 return -TARGET_EINVAL;
2842             lv = sizeof(lv);
2843             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2844             if (ret < 0)
2845                 return ret;
2846             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2847                 len = 1;
2848                 if (put_user_u32(len, optlen)
2849                     || put_user_u8(val, optval_addr))
2850                     return -TARGET_EFAULT;
2851             } else {
2852                 if (len > sizeof(int))
2853                     len = sizeof(int);
2854                 if (put_user_u32(len, optlen)
2855                     || put_user_u32(val, optval_addr))
2856                     return -TARGET_EFAULT;
2857             }
2858             break;
2859         default:
2860             ret = -TARGET_ENOPROTOOPT;
2861             break;
2862         }
2863         break;
2864 #ifdef SOL_NETLINK
2865     case SOL_NETLINK:
2866         switch (optname) {
2867         case NETLINK_PKTINFO:
2868         case NETLINK_BROADCAST_ERROR:
2869         case NETLINK_NO_ENOBUFS:
2870 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2871         case NETLINK_LISTEN_ALL_NSID:
2872         case NETLINK_CAP_ACK:
2873 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2874 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2875         case NETLINK_EXT_ACK:
2876 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2877 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2878         case NETLINK_GET_STRICT_CHK:
2879 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2880             if (get_user_u32(len, optlen)) {
2881                 return -TARGET_EFAULT;
2882             }
2883             if (len != sizeof(val)) {
2884                 return -TARGET_EINVAL;
2885             }
2886             lv = len;
2887             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2888             if (ret < 0) {
2889                 return ret;
2890             }
2891             if (put_user_u32(lv, optlen)
2892                 || put_user_u32(val, optval_addr)) {
2893                 return -TARGET_EFAULT;
2894             }
2895             break;
2896 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2897         case NETLINK_LIST_MEMBERSHIPS:
2898         {
2899             uint32_t *results;
2900             int i;
2901             if (get_user_u32(len, optlen)) {
2902                 return -TARGET_EFAULT;
2903             }
2904             if (len < 0) {
2905                 return -TARGET_EINVAL;
2906             }
2907             results = lock_user(VERIFY_WRITE, optval_addr, len, 1);
2908             if (!results && len > 0) {
2909                 return -TARGET_EFAULT;
2910             }
2911             lv = len;
2912             ret = get_errno(getsockopt(sockfd, level, optname, results, &lv));
2913             if (ret < 0) {
2914                 unlock_user(results, optval_addr, 0);
2915                 return ret;
2916             }
2917             /* swap host endianness to target endianness. */
2918             for (i = 0; i < (len / sizeof(uint32_t)); i++) {
2919                 results[i] = tswap32(results[i]);
2920             }
2921             if (put_user_u32(lv, optlen)) {
2922                 return -TARGET_EFAULT;
2923             }
2924             unlock_user(results, optval_addr, 0);
2925             break;
2926         }
2927 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2928         default:
2929             goto unimplemented;
2930         }
2931         break;
2932 #endif /* SOL_NETLINK */
2933     default:
2934     unimplemented:
2935         qemu_log_mask(LOG_UNIMP,
2936                       "getsockopt level=%d optname=%d not yet supported\n",
2937                       level, optname);
2938         ret = -TARGET_EOPNOTSUPP;
2939         break;
2940     }
2941     return ret;
2942 }
2943 
2944 /* Convert target low/high pair representing file offset into the host
2945  * low/high pair. This function doesn't handle offsets bigger than 64 bits
2946  * as the kernel doesn't handle them either.
2947  */
2948 static void target_to_host_low_high(abi_ulong tlow,
2949                                     abi_ulong thigh,
2950                                     unsigned long *hlow,
2951                                     unsigned long *hhigh)
2952 {
2953     uint64_t off = tlow |
2954         ((unsigned long long)thigh << TARGET_LONG_BITS / 2) <<
2955         TARGET_LONG_BITS / 2;
2956 
2957     *hlow = off;
2958     *hhigh = (off >> HOST_LONG_BITS / 2) >> HOST_LONG_BITS / 2;
2959 }
2960 
2961 static struct iovec *lock_iovec(int type, abi_ulong target_addr,
2962                                 abi_ulong count, int copy)
2963 {
2964     struct target_iovec *target_vec;
2965     struct iovec *vec;
2966     abi_ulong total_len, max_len;
2967     int i;
2968     int err = 0;
2969     bool bad_address = false;
2970 
2971     if (count == 0) {
2972         errno = 0;
2973         return NULL;
2974     }
2975     if (count > IOV_MAX) {
2976         errno = EINVAL;
2977         return NULL;
2978     }
2979 
2980     vec = g_try_new0(struct iovec, count);
2981     if (vec == NULL) {
2982         errno = ENOMEM;
2983         return NULL;
2984     }
2985 
2986     target_vec = lock_user(VERIFY_READ, target_addr,
2987                            count * sizeof(struct target_iovec), 1);
2988     if (target_vec == NULL) {
2989         err = EFAULT;
2990         goto fail2;
2991     }
2992 
2993     /* ??? If host page size > target page size, this will result in a
2994        value larger than what we can actually support.  */
2995     max_len = 0x7fffffff & TARGET_PAGE_MASK;
2996     total_len = 0;
2997 
2998     for (i = 0; i < count; i++) {
2999         abi_ulong base = tswapal(target_vec[i].iov_base);
3000         abi_long len = tswapal(target_vec[i].iov_len);
3001 
3002         if (len < 0) {
3003             err = EINVAL;
3004             goto fail;
3005         } else if (len == 0) {
3006             /* Zero length pointer is ignored.  */
3007             vec[i].iov_base = 0;
3008         } else {
3009             vec[i].iov_base = lock_user(type, base, len, copy);
3010             /* If the first buffer pointer is bad, this is a fault.  But
3011              * subsequent bad buffers will result in a partial write; this
3012              * is realized by filling the vector with null pointers and
3013              * zero lengths. */
3014             if (!vec[i].iov_base) {
3015                 if (i == 0) {
3016                     err = EFAULT;
3017                     goto fail;
3018                 } else {
3019                     bad_address = true;
3020                 }
3021             }
3022             if (bad_address) {
3023                 len = 0;
3024             }
3025             if (len > max_len - total_len) {
3026                 len = max_len - total_len;
3027             }
3028         }
3029         vec[i].iov_len = len;
3030         total_len += len;
3031     }
3032 
3033     unlock_user(target_vec, target_addr, 0);
3034     return vec;
3035 
3036  fail:
3037     while (--i >= 0) {
3038         if (tswapal(target_vec[i].iov_len) > 0) {
3039             unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0);
3040         }
3041     }
3042     unlock_user(target_vec, target_addr, 0);
3043  fail2:
3044     g_free(vec);
3045     errno = err;
3046     return NULL;
3047 }
3048 
3049 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr,
3050                          abi_ulong count, int copy)
3051 {
3052     struct target_iovec *target_vec;
3053     int i;
3054 
3055     target_vec = lock_user(VERIFY_READ, target_addr,
3056                            count * sizeof(struct target_iovec), 1);
3057     if (target_vec) {
3058         for (i = 0; i < count; i++) {
3059             abi_ulong base = tswapal(target_vec[i].iov_base);
3060             abi_long len = tswapal(target_vec[i].iov_len);
3061             if (len < 0) {
3062                 break;
3063             }
3064             unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0);
3065         }
3066         unlock_user(target_vec, target_addr, 0);
3067     }
3068 
3069     g_free(vec);
3070 }
3071 
3072 static inline int target_to_host_sock_type(int *type)
3073 {
3074     int host_type = 0;
3075     int target_type = *type;
3076 
3077     switch (target_type & TARGET_SOCK_TYPE_MASK) {
3078     case TARGET_SOCK_DGRAM:
3079         host_type = SOCK_DGRAM;
3080         break;
3081     case TARGET_SOCK_STREAM:
3082         host_type = SOCK_STREAM;
3083         break;
3084     default:
3085         host_type = target_type & TARGET_SOCK_TYPE_MASK;
3086         break;
3087     }
3088     if (target_type & TARGET_SOCK_CLOEXEC) {
3089 #if defined(SOCK_CLOEXEC)
3090         host_type |= SOCK_CLOEXEC;
3091 #else
3092         return -TARGET_EINVAL;
3093 #endif
3094     }
3095     if (target_type & TARGET_SOCK_NONBLOCK) {
3096 #if defined(SOCK_NONBLOCK)
3097         host_type |= SOCK_NONBLOCK;
3098 #elif !defined(O_NONBLOCK)
3099         return -TARGET_EINVAL;
3100 #endif
3101     }
3102     *type = host_type;
3103     return 0;
3104 }
3105 
3106 /* Try to emulate socket type flags after socket creation.  */
3107 static int sock_flags_fixup(int fd, int target_type)
3108 {
3109 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
3110     if (target_type & TARGET_SOCK_NONBLOCK) {
3111         int flags = fcntl(fd, F_GETFL);
3112         if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) {
3113             close(fd);
3114             return -TARGET_EINVAL;
3115         }
3116     }
3117 #endif
3118     return fd;
3119 }
3120 
3121 /* do_socket() Must return target values and target errnos. */
3122 static abi_long do_socket(int domain, int type, int protocol)
3123 {
3124     int target_type = type;
3125     int ret;
3126 
3127     ret = target_to_host_sock_type(&type);
3128     if (ret) {
3129         return ret;
3130     }
3131 
3132     if (domain == PF_NETLINK && !(
3133 #ifdef CONFIG_RTNETLINK
3134          protocol == NETLINK_ROUTE ||
3135 #endif
3136          protocol == NETLINK_KOBJECT_UEVENT ||
3137          protocol == NETLINK_AUDIT)) {
3138         return -TARGET_EPROTONOSUPPORT;
3139     }
3140 
3141     if (domain == AF_PACKET ||
3142         (domain == AF_INET && type == SOCK_PACKET)) {
3143         protocol = tswap16(protocol);
3144     }
3145 
3146     ret = get_errno(socket(domain, type, protocol));
3147     if (ret >= 0) {
3148         ret = sock_flags_fixup(ret, target_type);
3149         if (type == SOCK_PACKET) {
3150             /* Manage an obsolete case :
3151              * if socket type is SOCK_PACKET, bind by name
3152              */
3153             fd_trans_register(ret, &target_packet_trans);
3154         } else if (domain == PF_NETLINK) {
3155             switch (protocol) {
3156 #ifdef CONFIG_RTNETLINK
3157             case NETLINK_ROUTE:
3158                 fd_trans_register(ret, &target_netlink_route_trans);
3159                 break;
3160 #endif
3161             case NETLINK_KOBJECT_UEVENT:
3162                 /* nothing to do: messages are strings */
3163                 break;
3164             case NETLINK_AUDIT:
3165                 fd_trans_register(ret, &target_netlink_audit_trans);
3166                 break;
3167             default:
3168                 g_assert_not_reached();
3169             }
3170         }
3171     }
3172     return ret;
3173 }
3174 
3175 /* do_bind() Must return target values and target errnos. */
3176 static abi_long do_bind(int sockfd, abi_ulong target_addr,
3177                         socklen_t addrlen)
3178 {
3179     void *addr;
3180     abi_long ret;
3181 
3182     if ((int)addrlen < 0) {
3183         return -TARGET_EINVAL;
3184     }
3185 
3186     addr = alloca(addrlen+1);
3187 
3188     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3189     if (ret)
3190         return ret;
3191 
3192     return get_errno(bind(sockfd, addr, addrlen));
3193 }
3194 
3195 /* do_connect() Must return target values and target errnos. */
3196 static abi_long do_connect(int sockfd, abi_ulong target_addr,
3197                            socklen_t addrlen)
3198 {
3199     void *addr;
3200     abi_long ret;
3201 
3202     if ((int)addrlen < 0) {
3203         return -TARGET_EINVAL;
3204     }
3205 
3206     addr = alloca(addrlen+1);
3207 
3208     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3209     if (ret)
3210         return ret;
3211 
3212     return get_errno(safe_connect(sockfd, addr, addrlen));
3213 }
3214 
3215 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
3216 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp,
3217                                       int flags, int send)
3218 {
3219     abi_long ret, len;
3220     struct msghdr msg;
3221     abi_ulong count;
3222     struct iovec *vec;
3223     abi_ulong target_vec;
3224 
3225     if (msgp->msg_name) {
3226         msg.msg_namelen = tswap32(msgp->msg_namelen);
3227         msg.msg_name = alloca(msg.msg_namelen+1);
3228         ret = target_to_host_sockaddr(fd, msg.msg_name,
3229                                       tswapal(msgp->msg_name),
3230                                       msg.msg_namelen);
3231         if (ret == -TARGET_EFAULT) {
3232             /* For connected sockets msg_name and msg_namelen must
3233              * be ignored, so returning EFAULT immediately is wrong.
3234              * Instead, pass a bad msg_name to the host kernel, and
3235              * let it decide whether to return EFAULT or not.
3236              */
3237             msg.msg_name = (void *)-1;
3238         } else if (ret) {
3239             goto out2;
3240         }
3241     } else {
3242         msg.msg_name = NULL;
3243         msg.msg_namelen = 0;
3244     }
3245     msg.msg_controllen = 2 * tswapal(msgp->msg_controllen);
3246     msg.msg_control = alloca(msg.msg_controllen);
3247     memset(msg.msg_control, 0, msg.msg_controllen);
3248 
3249     msg.msg_flags = tswap32(msgp->msg_flags);
3250 
3251     count = tswapal(msgp->msg_iovlen);
3252     target_vec = tswapal(msgp->msg_iov);
3253 
3254     if (count > IOV_MAX) {
3255         /* sendrcvmsg returns a different errno for this condition than
3256          * readv/writev, so we must catch it here before lock_iovec() does.
3257          */
3258         ret = -TARGET_EMSGSIZE;
3259         goto out2;
3260     }
3261 
3262     vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE,
3263                      target_vec, count, send);
3264     if (vec == NULL) {
3265         ret = -host_to_target_errno(errno);
3266         /* allow sending packet without any iov, e.g. with MSG_MORE flag */
3267         if (!send || ret) {
3268             goto out2;
3269         }
3270     }
3271     msg.msg_iovlen = count;
3272     msg.msg_iov = vec;
3273 
3274     if (send) {
3275         if (fd_trans_target_to_host_data(fd)) {
3276             void *host_msg;
3277 
3278             host_msg = g_malloc(msg.msg_iov->iov_len);
3279             memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len);
3280             ret = fd_trans_target_to_host_data(fd)(host_msg,
3281                                                    msg.msg_iov->iov_len);
3282             if (ret >= 0) {
3283                 msg.msg_iov->iov_base = host_msg;
3284                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3285             }
3286             g_free(host_msg);
3287         } else {
3288             ret = target_to_host_cmsg(&msg, msgp);
3289             if (ret == 0) {
3290                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3291             }
3292         }
3293     } else {
3294         ret = get_errno(safe_recvmsg(fd, &msg, flags));
3295         if (!is_error(ret)) {
3296             len = ret;
3297             if (fd_trans_host_to_target_data(fd)) {
3298                 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base,
3299                                                MIN(msg.msg_iov->iov_len, len));
3300             }
3301             if (!is_error(ret)) {
3302                 ret = host_to_target_cmsg(msgp, &msg);
3303             }
3304             if (!is_error(ret)) {
3305                 msgp->msg_namelen = tswap32(msg.msg_namelen);
3306                 msgp->msg_flags = tswap32(msg.msg_flags);
3307                 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) {
3308                     ret = host_to_target_sockaddr(tswapal(msgp->msg_name),
3309                                     msg.msg_name, msg.msg_namelen);
3310                     if (ret) {
3311                         goto out;
3312                     }
3313                 }
3314 
3315                 ret = len;
3316             }
3317         }
3318     }
3319 
3320 out:
3321     if (vec) {
3322         unlock_iovec(vec, target_vec, count, !send);
3323     }
3324 out2:
3325     return ret;
3326 }
3327 
3328 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg,
3329                                int flags, int send)
3330 {
3331     abi_long ret;
3332     struct target_msghdr *msgp;
3333 
3334     if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE,
3335                           msgp,
3336                           target_msg,
3337                           send ? 1 : 0)) {
3338         return -TARGET_EFAULT;
3339     }
3340     ret = do_sendrecvmsg_locked(fd, msgp, flags, send);
3341     unlock_user_struct(msgp, target_msg, send ? 0 : 1);
3342     return ret;
3343 }
3344 
3345 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
3346  * so it might not have this *mmsg-specific flag either.
3347  */
3348 #ifndef MSG_WAITFORONE
3349 #define MSG_WAITFORONE 0x10000
3350 #endif
3351 
3352 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec,
3353                                 unsigned int vlen, unsigned int flags,
3354                                 int send)
3355 {
3356     struct target_mmsghdr *mmsgp;
3357     abi_long ret = 0;
3358     int i;
3359 
3360     if (vlen > UIO_MAXIOV) {
3361         vlen = UIO_MAXIOV;
3362     }
3363 
3364     mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1);
3365     if (!mmsgp) {
3366         return -TARGET_EFAULT;
3367     }
3368 
3369     for (i = 0; i < vlen; i++) {
3370         ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send);
3371         if (is_error(ret)) {
3372             break;
3373         }
3374         mmsgp[i].msg_len = tswap32(ret);
3375         /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3376         if (flags & MSG_WAITFORONE) {
3377             flags |= MSG_DONTWAIT;
3378         }
3379     }
3380 
3381     unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i);
3382 
3383     /* Return number of datagrams sent if we sent any at all;
3384      * otherwise return the error.
3385      */
3386     if (i) {
3387         return i;
3388     }
3389     return ret;
3390 }
3391 
3392 /* do_accept4() Must return target values and target errnos. */
3393 static abi_long do_accept4(int fd, abi_ulong target_addr,
3394                            abi_ulong target_addrlen_addr, int flags)
3395 {
3396     socklen_t addrlen, ret_addrlen;
3397     void *addr;
3398     abi_long ret;
3399     int host_flags;
3400 
3401     if (flags & ~(TARGET_SOCK_CLOEXEC | TARGET_SOCK_NONBLOCK)) {
3402         return -TARGET_EINVAL;
3403     }
3404 
3405     host_flags = 0;
3406     if (flags & TARGET_SOCK_NONBLOCK) {
3407         host_flags |= SOCK_NONBLOCK;
3408     }
3409     if (flags & TARGET_SOCK_CLOEXEC) {
3410         host_flags |= SOCK_CLOEXEC;
3411     }
3412 
3413     if (target_addr == 0) {
3414         return get_errno(safe_accept4(fd, NULL, NULL, host_flags));
3415     }
3416 
3417     /* linux returns EFAULT if addrlen pointer is invalid */
3418     if (get_user_u32(addrlen, target_addrlen_addr))
3419         return -TARGET_EFAULT;
3420 
3421     if ((int)addrlen < 0) {
3422         return -TARGET_EINVAL;
3423     }
3424 
3425     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3426         return -TARGET_EFAULT;
3427     }
3428 
3429     addr = alloca(addrlen);
3430 
3431     ret_addrlen = addrlen;
3432     ret = get_errno(safe_accept4(fd, addr, &ret_addrlen, host_flags));
3433     if (!is_error(ret)) {
3434         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3435         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3436             ret = -TARGET_EFAULT;
3437         }
3438     }
3439     return ret;
3440 }
3441 
3442 /* do_getpeername() Must return target values and target errnos. */
3443 static abi_long do_getpeername(int fd, abi_ulong target_addr,
3444                                abi_ulong target_addrlen_addr)
3445 {
3446     socklen_t addrlen, ret_addrlen;
3447     void *addr;
3448     abi_long ret;
3449 
3450     if (get_user_u32(addrlen, target_addrlen_addr))
3451         return -TARGET_EFAULT;
3452 
3453     if ((int)addrlen < 0) {
3454         return -TARGET_EINVAL;
3455     }
3456 
3457     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3458         return -TARGET_EFAULT;
3459     }
3460 
3461     addr = alloca(addrlen);
3462 
3463     ret_addrlen = addrlen;
3464     ret = get_errno(getpeername(fd, addr, &ret_addrlen));
3465     if (!is_error(ret)) {
3466         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3467         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3468             ret = -TARGET_EFAULT;
3469         }
3470     }
3471     return ret;
3472 }
3473 
3474 /* do_getsockname() Must return target values and target errnos. */
3475 static abi_long do_getsockname(int fd, abi_ulong target_addr,
3476                                abi_ulong target_addrlen_addr)
3477 {
3478     socklen_t addrlen, ret_addrlen;
3479     void *addr;
3480     abi_long ret;
3481 
3482     if (get_user_u32(addrlen, target_addrlen_addr))
3483         return -TARGET_EFAULT;
3484 
3485     if ((int)addrlen < 0) {
3486         return -TARGET_EINVAL;
3487     }
3488 
3489     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3490         return -TARGET_EFAULT;
3491     }
3492 
3493     addr = alloca(addrlen);
3494 
3495     ret_addrlen = addrlen;
3496     ret = get_errno(getsockname(fd, addr, &ret_addrlen));
3497     if (!is_error(ret)) {
3498         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3499         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3500             ret = -TARGET_EFAULT;
3501         }
3502     }
3503     return ret;
3504 }
3505 
3506 /* do_socketpair() Must return target values and target errnos. */
3507 static abi_long do_socketpair(int domain, int type, int protocol,
3508                               abi_ulong target_tab_addr)
3509 {
3510     int tab[2];
3511     abi_long ret;
3512 
3513     target_to_host_sock_type(&type);
3514 
3515     ret = get_errno(socketpair(domain, type, protocol, tab));
3516     if (!is_error(ret)) {
3517         if (put_user_s32(tab[0], target_tab_addr)
3518             || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0])))
3519             ret = -TARGET_EFAULT;
3520     }
3521     return ret;
3522 }
3523 
3524 /* do_sendto() Must return target values and target errnos. */
3525 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags,
3526                           abi_ulong target_addr, socklen_t addrlen)
3527 {
3528     void *addr;
3529     void *host_msg;
3530     void *copy_msg = NULL;
3531     abi_long ret;
3532 
3533     if ((int)addrlen < 0) {
3534         return -TARGET_EINVAL;
3535     }
3536 
3537     host_msg = lock_user(VERIFY_READ, msg, len, 1);
3538     if (!host_msg)
3539         return -TARGET_EFAULT;
3540     if (fd_trans_target_to_host_data(fd)) {
3541         copy_msg = host_msg;
3542         host_msg = g_malloc(len);
3543         memcpy(host_msg, copy_msg, len);
3544         ret = fd_trans_target_to_host_data(fd)(host_msg, len);
3545         if (ret < 0) {
3546             goto fail;
3547         }
3548     }
3549     if (target_addr) {
3550         addr = alloca(addrlen+1);
3551         ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen);
3552         if (ret) {
3553             goto fail;
3554         }
3555         ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen));
3556     } else {
3557         ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0));
3558     }
3559 fail:
3560     if (copy_msg) {
3561         g_free(host_msg);
3562         host_msg = copy_msg;
3563     }
3564     unlock_user(host_msg, msg, 0);
3565     return ret;
3566 }
3567 
3568 /* do_recvfrom() Must return target values and target errnos. */
3569 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags,
3570                             abi_ulong target_addr,
3571                             abi_ulong target_addrlen)
3572 {
3573     socklen_t addrlen, ret_addrlen;
3574     void *addr;
3575     void *host_msg;
3576     abi_long ret;
3577 
3578     if (!msg) {
3579         host_msg = NULL;
3580     } else {
3581         host_msg = lock_user(VERIFY_WRITE, msg, len, 0);
3582         if (!host_msg) {
3583             return -TARGET_EFAULT;
3584         }
3585     }
3586     if (target_addr) {
3587         if (get_user_u32(addrlen, target_addrlen)) {
3588             ret = -TARGET_EFAULT;
3589             goto fail;
3590         }
3591         if ((int)addrlen < 0) {
3592             ret = -TARGET_EINVAL;
3593             goto fail;
3594         }
3595         addr = alloca(addrlen);
3596         ret_addrlen = addrlen;
3597         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags,
3598                                       addr, &ret_addrlen));
3599     } else {
3600         addr = NULL; /* To keep compiler quiet.  */
3601         addrlen = 0; /* To keep compiler quiet.  */
3602         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0));
3603     }
3604     if (!is_error(ret)) {
3605         if (fd_trans_host_to_target_data(fd)) {
3606             abi_long trans;
3607             trans = fd_trans_host_to_target_data(fd)(host_msg, MIN(ret, len));
3608             if (is_error(trans)) {
3609                 ret = trans;
3610                 goto fail;
3611             }
3612         }
3613         if (target_addr) {
3614             host_to_target_sockaddr(target_addr, addr,
3615                                     MIN(addrlen, ret_addrlen));
3616             if (put_user_u32(ret_addrlen, target_addrlen)) {
3617                 ret = -TARGET_EFAULT;
3618                 goto fail;
3619             }
3620         }
3621         unlock_user(host_msg, msg, len);
3622     } else {
3623 fail:
3624         unlock_user(host_msg, msg, 0);
3625     }
3626     return ret;
3627 }
3628 
3629 #ifdef TARGET_NR_socketcall
3630 /* do_socketcall() must return target values and target errnos. */
3631 static abi_long do_socketcall(int num, abi_ulong vptr)
3632 {
3633     static const unsigned nargs[] = { /* number of arguments per operation */
3634         [TARGET_SYS_SOCKET] = 3,      /* domain, type, protocol */
3635         [TARGET_SYS_BIND] = 3,        /* fd, addr, addrlen */
3636         [TARGET_SYS_CONNECT] = 3,     /* fd, addr, addrlen */
3637         [TARGET_SYS_LISTEN] = 2,      /* fd, backlog */
3638         [TARGET_SYS_ACCEPT] = 3,      /* fd, addr, addrlen */
3639         [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */
3640         [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */
3641         [TARGET_SYS_SOCKETPAIR] = 4,  /* domain, type, protocol, tab */
3642         [TARGET_SYS_SEND] = 4,        /* fd, msg, len, flags */
3643         [TARGET_SYS_RECV] = 4,        /* fd, msg, len, flags */
3644         [TARGET_SYS_SENDTO] = 6,      /* fd, msg, len, flags, addr, addrlen */
3645         [TARGET_SYS_RECVFROM] = 6,    /* fd, msg, len, flags, addr, addrlen */
3646         [TARGET_SYS_SHUTDOWN] = 2,    /* fd, how */
3647         [TARGET_SYS_SETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3648         [TARGET_SYS_GETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3649         [TARGET_SYS_SENDMSG] = 3,     /* fd, msg, flags */
3650         [TARGET_SYS_RECVMSG] = 3,     /* fd, msg, flags */
3651         [TARGET_SYS_ACCEPT4] = 4,     /* fd, addr, addrlen, flags */
3652         [TARGET_SYS_RECVMMSG] = 4,    /* fd, msgvec, vlen, flags */
3653         [TARGET_SYS_SENDMMSG] = 4,    /* fd, msgvec, vlen, flags */
3654     };
3655     abi_long a[6]; /* max 6 args */
3656     unsigned i;
3657 
3658     /* check the range of the first argument num */
3659     /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */
3660     if (num < 1 || num > TARGET_SYS_SENDMMSG) {
3661         return -TARGET_EINVAL;
3662     }
3663     /* ensure we have space for args */
3664     if (nargs[num] > ARRAY_SIZE(a)) {
3665         return -TARGET_EINVAL;
3666     }
3667     /* collect the arguments in a[] according to nargs[] */
3668     for (i = 0; i < nargs[num]; ++i) {
3669         if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) {
3670             return -TARGET_EFAULT;
3671         }
3672     }
3673     /* now when we have the args, invoke the appropriate underlying function */
3674     switch (num) {
3675     case TARGET_SYS_SOCKET: /* domain, type, protocol */
3676         return do_socket(a[0], a[1], a[2]);
3677     case TARGET_SYS_BIND: /* sockfd, addr, addrlen */
3678         return do_bind(a[0], a[1], a[2]);
3679     case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */
3680         return do_connect(a[0], a[1], a[2]);
3681     case TARGET_SYS_LISTEN: /* sockfd, backlog */
3682         return get_errno(listen(a[0], a[1]));
3683     case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */
3684         return do_accept4(a[0], a[1], a[2], 0);
3685     case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */
3686         return do_getsockname(a[0], a[1], a[2]);
3687     case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */
3688         return do_getpeername(a[0], a[1], a[2]);
3689     case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */
3690         return do_socketpair(a[0], a[1], a[2], a[3]);
3691     case TARGET_SYS_SEND: /* sockfd, msg, len, flags */
3692         return do_sendto(a[0], a[1], a[2], a[3], 0, 0);
3693     case TARGET_SYS_RECV: /* sockfd, msg, len, flags */
3694         return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0);
3695     case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */
3696         return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]);
3697     case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */
3698         return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]);
3699     case TARGET_SYS_SHUTDOWN: /* sockfd, how */
3700         return get_errno(shutdown(a[0], a[1]));
3701     case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3702         return do_setsockopt(a[0], a[1], a[2], a[3], a[4]);
3703     case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3704         return do_getsockopt(a[0], a[1], a[2], a[3], a[4]);
3705     case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */
3706         return do_sendrecvmsg(a[0], a[1], a[2], 1);
3707     case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */
3708         return do_sendrecvmsg(a[0], a[1], a[2], 0);
3709     case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */
3710         return do_accept4(a[0], a[1], a[2], a[3]);
3711     case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */
3712         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0);
3713     case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */
3714         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1);
3715     default:
3716         qemu_log_mask(LOG_UNIMP, "Unsupported socketcall: %d\n", num);
3717         return -TARGET_EINVAL;
3718     }
3719 }
3720 #endif
3721 
3722 #ifndef TARGET_SEMID64_DS
3723 /* asm-generic version of this struct */
3724 struct target_semid64_ds
3725 {
3726   struct target_ipc_perm sem_perm;
3727   abi_ulong sem_otime;
3728 #if TARGET_ABI_BITS == 32
3729   abi_ulong __unused1;
3730 #endif
3731   abi_ulong sem_ctime;
3732 #if TARGET_ABI_BITS == 32
3733   abi_ulong __unused2;
3734 #endif
3735   abi_ulong sem_nsems;
3736   abi_ulong __unused3;
3737   abi_ulong __unused4;
3738 };
3739 #endif
3740 
3741 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip,
3742                                                abi_ulong target_addr)
3743 {
3744     struct target_ipc_perm *target_ip;
3745     struct target_semid64_ds *target_sd;
3746 
3747     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3748         return -TARGET_EFAULT;
3749     target_ip = &(target_sd->sem_perm);
3750     host_ip->__key = tswap32(target_ip->__key);
3751     host_ip->uid = tswap32(target_ip->uid);
3752     host_ip->gid = tswap32(target_ip->gid);
3753     host_ip->cuid = tswap32(target_ip->cuid);
3754     host_ip->cgid = tswap32(target_ip->cgid);
3755 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3756     host_ip->mode = tswap32(target_ip->mode);
3757 #else
3758     host_ip->mode = tswap16(target_ip->mode);
3759 #endif
3760 #if defined(TARGET_PPC)
3761     host_ip->__seq = tswap32(target_ip->__seq);
3762 #else
3763     host_ip->__seq = tswap16(target_ip->__seq);
3764 #endif
3765     unlock_user_struct(target_sd, target_addr, 0);
3766     return 0;
3767 }
3768 
3769 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr,
3770                                                struct ipc_perm *host_ip)
3771 {
3772     struct target_ipc_perm *target_ip;
3773     struct target_semid64_ds *target_sd;
3774 
3775     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3776         return -TARGET_EFAULT;
3777     target_ip = &(target_sd->sem_perm);
3778     target_ip->__key = tswap32(host_ip->__key);
3779     target_ip->uid = tswap32(host_ip->uid);
3780     target_ip->gid = tswap32(host_ip->gid);
3781     target_ip->cuid = tswap32(host_ip->cuid);
3782     target_ip->cgid = tswap32(host_ip->cgid);
3783 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3784     target_ip->mode = tswap32(host_ip->mode);
3785 #else
3786     target_ip->mode = tswap16(host_ip->mode);
3787 #endif
3788 #if defined(TARGET_PPC)
3789     target_ip->__seq = tswap32(host_ip->__seq);
3790 #else
3791     target_ip->__seq = tswap16(host_ip->__seq);
3792 #endif
3793     unlock_user_struct(target_sd, target_addr, 1);
3794     return 0;
3795 }
3796 
3797 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd,
3798                                                abi_ulong target_addr)
3799 {
3800     struct target_semid64_ds *target_sd;
3801 
3802     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3803         return -TARGET_EFAULT;
3804     if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr))
3805         return -TARGET_EFAULT;
3806     host_sd->sem_nsems = tswapal(target_sd->sem_nsems);
3807     host_sd->sem_otime = tswapal(target_sd->sem_otime);
3808     host_sd->sem_ctime = tswapal(target_sd->sem_ctime);
3809     unlock_user_struct(target_sd, target_addr, 0);
3810     return 0;
3811 }
3812 
3813 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr,
3814                                                struct semid_ds *host_sd)
3815 {
3816     struct target_semid64_ds *target_sd;
3817 
3818     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3819         return -TARGET_EFAULT;
3820     if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm)))
3821         return -TARGET_EFAULT;
3822     target_sd->sem_nsems = tswapal(host_sd->sem_nsems);
3823     target_sd->sem_otime = tswapal(host_sd->sem_otime);
3824     target_sd->sem_ctime = tswapal(host_sd->sem_ctime);
3825     unlock_user_struct(target_sd, target_addr, 1);
3826     return 0;
3827 }
3828 
3829 struct target_seminfo {
3830     int semmap;
3831     int semmni;
3832     int semmns;
3833     int semmnu;
3834     int semmsl;
3835     int semopm;
3836     int semume;
3837     int semusz;
3838     int semvmx;
3839     int semaem;
3840 };
3841 
3842 static inline abi_long host_to_target_seminfo(abi_ulong target_addr,
3843                                               struct seminfo *host_seminfo)
3844 {
3845     struct target_seminfo *target_seminfo;
3846     if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0))
3847         return -TARGET_EFAULT;
3848     __put_user(host_seminfo->semmap, &target_seminfo->semmap);
3849     __put_user(host_seminfo->semmni, &target_seminfo->semmni);
3850     __put_user(host_seminfo->semmns, &target_seminfo->semmns);
3851     __put_user(host_seminfo->semmnu, &target_seminfo->semmnu);
3852     __put_user(host_seminfo->semmsl, &target_seminfo->semmsl);
3853     __put_user(host_seminfo->semopm, &target_seminfo->semopm);
3854     __put_user(host_seminfo->semume, &target_seminfo->semume);
3855     __put_user(host_seminfo->semusz, &target_seminfo->semusz);
3856     __put_user(host_seminfo->semvmx, &target_seminfo->semvmx);
3857     __put_user(host_seminfo->semaem, &target_seminfo->semaem);
3858     unlock_user_struct(target_seminfo, target_addr, 1);
3859     return 0;
3860 }
3861 
3862 union semun {
3863 	int val;
3864 	struct semid_ds *buf;
3865 	unsigned short *array;
3866 	struct seminfo *__buf;
3867 };
3868 
3869 union target_semun {
3870 	int val;
3871 	abi_ulong buf;
3872 	abi_ulong array;
3873 	abi_ulong __buf;
3874 };
3875 
3876 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array,
3877                                                abi_ulong target_addr)
3878 {
3879     int nsems;
3880     unsigned short *array;
3881     union semun semun;
3882     struct semid_ds semid_ds;
3883     int i, ret;
3884 
3885     semun.buf = &semid_ds;
3886 
3887     ret = semctl(semid, 0, IPC_STAT, semun);
3888     if (ret == -1)
3889         return get_errno(ret);
3890 
3891     nsems = semid_ds.sem_nsems;
3892 
3893     *host_array = g_try_new(unsigned short, nsems);
3894     if (!*host_array) {
3895         return -TARGET_ENOMEM;
3896     }
3897     array = lock_user(VERIFY_READ, target_addr,
3898                       nsems*sizeof(unsigned short), 1);
3899     if (!array) {
3900         g_free(*host_array);
3901         return -TARGET_EFAULT;
3902     }
3903 
3904     for(i=0; i<nsems; i++) {
3905         __get_user((*host_array)[i], &array[i]);
3906     }
3907     unlock_user(array, target_addr, 0);
3908 
3909     return 0;
3910 }
3911 
3912 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr,
3913                                                unsigned short **host_array)
3914 {
3915     int nsems;
3916     unsigned short *array;
3917     union semun semun;
3918     struct semid_ds semid_ds;
3919     int i, ret;
3920 
3921     semun.buf = &semid_ds;
3922 
3923     ret = semctl(semid, 0, IPC_STAT, semun);
3924     if (ret == -1)
3925         return get_errno(ret);
3926 
3927     nsems = semid_ds.sem_nsems;
3928 
3929     array = lock_user(VERIFY_WRITE, target_addr,
3930                       nsems*sizeof(unsigned short), 0);
3931     if (!array)
3932         return -TARGET_EFAULT;
3933 
3934     for(i=0; i<nsems; i++) {
3935         __put_user((*host_array)[i], &array[i]);
3936     }
3937     g_free(*host_array);
3938     unlock_user(array, target_addr, 1);
3939 
3940     return 0;
3941 }
3942 
3943 static inline abi_long do_semctl(int semid, int semnum, int cmd,
3944                                  abi_ulong target_arg)
3945 {
3946     union target_semun target_su = { .buf = target_arg };
3947     union semun arg;
3948     struct semid_ds dsarg;
3949     unsigned short *array = NULL;
3950     struct seminfo seminfo;
3951     abi_long ret = -TARGET_EINVAL;
3952     abi_long err;
3953     cmd &= 0xff;
3954 
3955     switch( cmd ) {
3956 	case GETVAL:
3957 	case SETVAL:
3958             /* In 64 bit cross-endian situations, we will erroneously pick up
3959              * the wrong half of the union for the "val" element.  To rectify
3960              * this, the entire 8-byte structure is byteswapped, followed by
3961 	     * a swap of the 4 byte val field. In other cases, the data is
3962 	     * already in proper host byte order. */
3963 	    if (sizeof(target_su.val) != (sizeof(target_su.buf))) {
3964 		target_su.buf = tswapal(target_su.buf);
3965 		arg.val = tswap32(target_su.val);
3966 	    } else {
3967 		arg.val = target_su.val;
3968 	    }
3969             ret = get_errno(semctl(semid, semnum, cmd, arg));
3970             break;
3971 	case GETALL:
3972 	case SETALL:
3973             err = target_to_host_semarray(semid, &array, target_su.array);
3974             if (err)
3975                 return err;
3976             arg.array = array;
3977             ret = get_errno(semctl(semid, semnum, cmd, arg));
3978             err = host_to_target_semarray(semid, target_su.array, &array);
3979             if (err)
3980                 return err;
3981             break;
3982 	case IPC_STAT:
3983 	case IPC_SET:
3984 	case SEM_STAT:
3985             err = target_to_host_semid_ds(&dsarg, target_su.buf);
3986             if (err)
3987                 return err;
3988             arg.buf = &dsarg;
3989             ret = get_errno(semctl(semid, semnum, cmd, arg));
3990             err = host_to_target_semid_ds(target_su.buf, &dsarg);
3991             if (err)
3992                 return err;
3993             break;
3994 	case IPC_INFO:
3995 	case SEM_INFO:
3996             arg.__buf = &seminfo;
3997             ret = get_errno(semctl(semid, semnum, cmd, arg));
3998             err = host_to_target_seminfo(target_su.__buf, &seminfo);
3999             if (err)
4000                 return err;
4001             break;
4002 	case IPC_RMID:
4003 	case GETPID:
4004 	case GETNCNT:
4005 	case GETZCNT:
4006             ret = get_errno(semctl(semid, semnum, cmd, NULL));
4007             break;
4008     }
4009 
4010     return ret;
4011 }
4012 
4013 struct target_sembuf {
4014     unsigned short sem_num;
4015     short sem_op;
4016     short sem_flg;
4017 };
4018 
4019 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf,
4020                                              abi_ulong target_addr,
4021                                              unsigned nsops)
4022 {
4023     struct target_sembuf *target_sembuf;
4024     int i;
4025 
4026     target_sembuf = lock_user(VERIFY_READ, target_addr,
4027                               nsops*sizeof(struct target_sembuf), 1);
4028     if (!target_sembuf)
4029         return -TARGET_EFAULT;
4030 
4031     for(i=0; i<nsops; i++) {
4032         __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num);
4033         __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op);
4034         __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg);
4035     }
4036 
4037     unlock_user(target_sembuf, target_addr, 0);
4038 
4039     return 0;
4040 }
4041 
4042 #if defined(TARGET_NR_ipc) || defined(TARGET_NR_semop) || \
4043     defined(TARGET_NR_semtimedop) || defined(TARGET_NR_semtimedop_time64)
4044 
4045 /*
4046  * This macro is required to handle the s390 variants, which passes the
4047  * arguments in a different order than default.
4048  */
4049 #ifdef __s390x__
4050 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4051   (__nsops), (__timeout), (__sops)
4052 #else
4053 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4054   (__nsops), 0, (__sops), (__timeout)
4055 #endif
4056 
4057 static inline abi_long do_semtimedop(int semid,
4058                                      abi_long ptr,
4059                                      unsigned nsops,
4060                                      abi_long timeout, bool time64)
4061 {
4062     struct sembuf *sops;
4063     struct timespec ts, *pts = NULL;
4064     abi_long ret;
4065 
4066     if (timeout) {
4067         pts = &ts;
4068         if (time64) {
4069             if (target_to_host_timespec64(pts, timeout)) {
4070                 return -TARGET_EFAULT;
4071             }
4072         } else {
4073             if (target_to_host_timespec(pts, timeout)) {
4074                 return -TARGET_EFAULT;
4075             }
4076         }
4077     }
4078 
4079     if (nsops > TARGET_SEMOPM) {
4080         return -TARGET_E2BIG;
4081     }
4082 
4083     sops = g_new(struct sembuf, nsops);
4084 
4085     if (target_to_host_sembuf(sops, ptr, nsops)) {
4086         g_free(sops);
4087         return -TARGET_EFAULT;
4088     }
4089 
4090     ret = -TARGET_ENOSYS;
4091 #ifdef __NR_semtimedop
4092     ret = get_errno(safe_semtimedop(semid, sops, nsops, pts));
4093 #endif
4094 #ifdef __NR_ipc
4095     if (ret == -TARGET_ENOSYS) {
4096         ret = get_errno(safe_ipc(IPCOP_semtimedop, semid,
4097                                  SEMTIMEDOP_IPC_ARGS(nsops, sops, (long)pts)));
4098     }
4099 #endif
4100     g_free(sops);
4101     return ret;
4102 }
4103 #endif
4104 
4105 struct target_msqid_ds
4106 {
4107     struct target_ipc_perm msg_perm;
4108     abi_ulong msg_stime;
4109 #if TARGET_ABI_BITS == 32
4110     abi_ulong __unused1;
4111 #endif
4112     abi_ulong msg_rtime;
4113 #if TARGET_ABI_BITS == 32
4114     abi_ulong __unused2;
4115 #endif
4116     abi_ulong msg_ctime;
4117 #if TARGET_ABI_BITS == 32
4118     abi_ulong __unused3;
4119 #endif
4120     abi_ulong __msg_cbytes;
4121     abi_ulong msg_qnum;
4122     abi_ulong msg_qbytes;
4123     abi_ulong msg_lspid;
4124     abi_ulong msg_lrpid;
4125     abi_ulong __unused4;
4126     abi_ulong __unused5;
4127 };
4128 
4129 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md,
4130                                                abi_ulong target_addr)
4131 {
4132     struct target_msqid_ds *target_md;
4133 
4134     if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1))
4135         return -TARGET_EFAULT;
4136     if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr))
4137         return -TARGET_EFAULT;
4138     host_md->msg_stime = tswapal(target_md->msg_stime);
4139     host_md->msg_rtime = tswapal(target_md->msg_rtime);
4140     host_md->msg_ctime = tswapal(target_md->msg_ctime);
4141     host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes);
4142     host_md->msg_qnum = tswapal(target_md->msg_qnum);
4143     host_md->msg_qbytes = tswapal(target_md->msg_qbytes);
4144     host_md->msg_lspid = tswapal(target_md->msg_lspid);
4145     host_md->msg_lrpid = tswapal(target_md->msg_lrpid);
4146     unlock_user_struct(target_md, target_addr, 0);
4147     return 0;
4148 }
4149 
4150 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr,
4151                                                struct msqid_ds *host_md)
4152 {
4153     struct target_msqid_ds *target_md;
4154 
4155     if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0))
4156         return -TARGET_EFAULT;
4157     if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm)))
4158         return -TARGET_EFAULT;
4159     target_md->msg_stime = tswapal(host_md->msg_stime);
4160     target_md->msg_rtime = tswapal(host_md->msg_rtime);
4161     target_md->msg_ctime = tswapal(host_md->msg_ctime);
4162     target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes);
4163     target_md->msg_qnum = tswapal(host_md->msg_qnum);
4164     target_md->msg_qbytes = tswapal(host_md->msg_qbytes);
4165     target_md->msg_lspid = tswapal(host_md->msg_lspid);
4166     target_md->msg_lrpid = tswapal(host_md->msg_lrpid);
4167     unlock_user_struct(target_md, target_addr, 1);
4168     return 0;
4169 }
4170 
4171 struct target_msginfo {
4172     int msgpool;
4173     int msgmap;
4174     int msgmax;
4175     int msgmnb;
4176     int msgmni;
4177     int msgssz;
4178     int msgtql;
4179     unsigned short int msgseg;
4180 };
4181 
4182 static inline abi_long host_to_target_msginfo(abi_ulong target_addr,
4183                                               struct msginfo *host_msginfo)
4184 {
4185     struct target_msginfo *target_msginfo;
4186     if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0))
4187         return -TARGET_EFAULT;
4188     __put_user(host_msginfo->msgpool, &target_msginfo->msgpool);
4189     __put_user(host_msginfo->msgmap, &target_msginfo->msgmap);
4190     __put_user(host_msginfo->msgmax, &target_msginfo->msgmax);
4191     __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb);
4192     __put_user(host_msginfo->msgmni, &target_msginfo->msgmni);
4193     __put_user(host_msginfo->msgssz, &target_msginfo->msgssz);
4194     __put_user(host_msginfo->msgtql, &target_msginfo->msgtql);
4195     __put_user(host_msginfo->msgseg, &target_msginfo->msgseg);
4196     unlock_user_struct(target_msginfo, target_addr, 1);
4197     return 0;
4198 }
4199 
4200 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr)
4201 {
4202     struct msqid_ds dsarg;
4203     struct msginfo msginfo;
4204     abi_long ret = -TARGET_EINVAL;
4205 
4206     cmd &= 0xff;
4207 
4208     switch (cmd) {
4209     case IPC_STAT:
4210     case IPC_SET:
4211     case MSG_STAT:
4212         if (target_to_host_msqid_ds(&dsarg,ptr))
4213             return -TARGET_EFAULT;
4214         ret = get_errno(msgctl(msgid, cmd, &dsarg));
4215         if (host_to_target_msqid_ds(ptr,&dsarg))
4216             return -TARGET_EFAULT;
4217         break;
4218     case IPC_RMID:
4219         ret = get_errno(msgctl(msgid, cmd, NULL));
4220         break;
4221     case IPC_INFO:
4222     case MSG_INFO:
4223         ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo));
4224         if (host_to_target_msginfo(ptr, &msginfo))
4225             return -TARGET_EFAULT;
4226         break;
4227     }
4228 
4229     return ret;
4230 }
4231 
4232 struct target_msgbuf {
4233     abi_long mtype;
4234     char	mtext[1];
4235 };
4236 
4237 static inline abi_long do_msgsnd(int msqid, abi_long msgp,
4238                                  ssize_t msgsz, int msgflg)
4239 {
4240     struct target_msgbuf *target_mb;
4241     struct msgbuf *host_mb;
4242     abi_long ret = 0;
4243 
4244     if (msgsz < 0) {
4245         return -TARGET_EINVAL;
4246     }
4247 
4248     if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0))
4249         return -TARGET_EFAULT;
4250     host_mb = g_try_malloc(msgsz + sizeof(long));
4251     if (!host_mb) {
4252         unlock_user_struct(target_mb, msgp, 0);
4253         return -TARGET_ENOMEM;
4254     }
4255     host_mb->mtype = (abi_long) tswapal(target_mb->mtype);
4256     memcpy(host_mb->mtext, target_mb->mtext, msgsz);
4257     ret = -TARGET_ENOSYS;
4258 #ifdef __NR_msgsnd
4259     ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg));
4260 #endif
4261 #ifdef __NR_ipc
4262     if (ret == -TARGET_ENOSYS) {
4263 #ifdef __s390x__
4264         ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4265                                  host_mb));
4266 #else
4267         ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4268                                  host_mb, 0));
4269 #endif
4270     }
4271 #endif
4272     g_free(host_mb);
4273     unlock_user_struct(target_mb, msgp, 0);
4274 
4275     return ret;
4276 }
4277 
4278 #ifdef __NR_ipc
4279 #if defined(__sparc__)
4280 /* SPARC for msgrcv it does not use the kludge on final 2 arguments.  */
4281 #define MSGRCV_ARGS(__msgp, __msgtyp) __msgp, __msgtyp
4282 #elif defined(__s390x__)
4283 /* The s390 sys_ipc variant has only five parameters.  */
4284 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4285     ((long int[]){(long int)__msgp, __msgtyp})
4286 #else
4287 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4288     ((long int[]){(long int)__msgp, __msgtyp}), 0
4289 #endif
4290 #endif
4291 
4292 static inline abi_long do_msgrcv(int msqid, abi_long msgp,
4293                                  ssize_t msgsz, abi_long msgtyp,
4294                                  int msgflg)
4295 {
4296     struct target_msgbuf *target_mb;
4297     char *target_mtext;
4298     struct msgbuf *host_mb;
4299     abi_long ret = 0;
4300 
4301     if (msgsz < 0) {
4302         return -TARGET_EINVAL;
4303     }
4304 
4305     if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0))
4306         return -TARGET_EFAULT;
4307 
4308     host_mb = g_try_malloc(msgsz + sizeof(long));
4309     if (!host_mb) {
4310         ret = -TARGET_ENOMEM;
4311         goto end;
4312     }
4313     ret = -TARGET_ENOSYS;
4314 #ifdef __NR_msgrcv
4315     ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg));
4316 #endif
4317 #ifdef __NR_ipc
4318     if (ret == -TARGET_ENOSYS) {
4319         ret = get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv), msqid, msgsz,
4320                         msgflg, MSGRCV_ARGS(host_mb, msgtyp)));
4321     }
4322 #endif
4323 
4324     if (ret > 0) {
4325         abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong);
4326         target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0);
4327         if (!target_mtext) {
4328             ret = -TARGET_EFAULT;
4329             goto end;
4330         }
4331         memcpy(target_mb->mtext, host_mb->mtext, ret);
4332         unlock_user(target_mtext, target_mtext_addr, ret);
4333     }
4334 
4335     target_mb->mtype = tswapal(host_mb->mtype);
4336 
4337 end:
4338     if (target_mb)
4339         unlock_user_struct(target_mb, msgp, 1);
4340     g_free(host_mb);
4341     return ret;
4342 }
4343 
4344 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd,
4345                                                abi_ulong target_addr)
4346 {
4347     struct target_shmid_ds *target_sd;
4348 
4349     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
4350         return -TARGET_EFAULT;
4351     if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr))
4352         return -TARGET_EFAULT;
4353     __get_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4354     __get_user(host_sd->shm_atime, &target_sd->shm_atime);
4355     __get_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4356     __get_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4357     __get_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4358     __get_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4359     __get_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4360     unlock_user_struct(target_sd, target_addr, 0);
4361     return 0;
4362 }
4363 
4364 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr,
4365                                                struct shmid_ds *host_sd)
4366 {
4367     struct target_shmid_ds *target_sd;
4368 
4369     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
4370         return -TARGET_EFAULT;
4371     if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm)))
4372         return -TARGET_EFAULT;
4373     __put_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4374     __put_user(host_sd->shm_atime, &target_sd->shm_atime);
4375     __put_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4376     __put_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4377     __put_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4378     __put_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4379     __put_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4380     unlock_user_struct(target_sd, target_addr, 1);
4381     return 0;
4382 }
4383 
4384 struct  target_shminfo {
4385     abi_ulong shmmax;
4386     abi_ulong shmmin;
4387     abi_ulong shmmni;
4388     abi_ulong shmseg;
4389     abi_ulong shmall;
4390 };
4391 
4392 static inline abi_long host_to_target_shminfo(abi_ulong target_addr,
4393                                               struct shminfo *host_shminfo)
4394 {
4395     struct target_shminfo *target_shminfo;
4396     if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0))
4397         return -TARGET_EFAULT;
4398     __put_user(host_shminfo->shmmax, &target_shminfo->shmmax);
4399     __put_user(host_shminfo->shmmin, &target_shminfo->shmmin);
4400     __put_user(host_shminfo->shmmni, &target_shminfo->shmmni);
4401     __put_user(host_shminfo->shmseg, &target_shminfo->shmseg);
4402     __put_user(host_shminfo->shmall, &target_shminfo->shmall);
4403     unlock_user_struct(target_shminfo, target_addr, 1);
4404     return 0;
4405 }
4406 
4407 struct target_shm_info {
4408     int used_ids;
4409     abi_ulong shm_tot;
4410     abi_ulong shm_rss;
4411     abi_ulong shm_swp;
4412     abi_ulong swap_attempts;
4413     abi_ulong swap_successes;
4414 };
4415 
4416 static inline abi_long host_to_target_shm_info(abi_ulong target_addr,
4417                                                struct shm_info *host_shm_info)
4418 {
4419     struct target_shm_info *target_shm_info;
4420     if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0))
4421         return -TARGET_EFAULT;
4422     __put_user(host_shm_info->used_ids, &target_shm_info->used_ids);
4423     __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot);
4424     __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss);
4425     __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp);
4426     __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts);
4427     __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes);
4428     unlock_user_struct(target_shm_info, target_addr, 1);
4429     return 0;
4430 }
4431 
4432 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf)
4433 {
4434     struct shmid_ds dsarg;
4435     struct shminfo shminfo;
4436     struct shm_info shm_info;
4437     abi_long ret = -TARGET_EINVAL;
4438 
4439     cmd &= 0xff;
4440 
4441     switch(cmd) {
4442     case IPC_STAT:
4443     case IPC_SET:
4444     case SHM_STAT:
4445         if (target_to_host_shmid_ds(&dsarg, buf))
4446             return -TARGET_EFAULT;
4447         ret = get_errno(shmctl(shmid, cmd, &dsarg));
4448         if (host_to_target_shmid_ds(buf, &dsarg))
4449             return -TARGET_EFAULT;
4450         break;
4451     case IPC_INFO:
4452         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo));
4453         if (host_to_target_shminfo(buf, &shminfo))
4454             return -TARGET_EFAULT;
4455         break;
4456     case SHM_INFO:
4457         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info));
4458         if (host_to_target_shm_info(buf, &shm_info))
4459             return -TARGET_EFAULT;
4460         break;
4461     case IPC_RMID:
4462     case SHM_LOCK:
4463     case SHM_UNLOCK:
4464         ret = get_errno(shmctl(shmid, cmd, NULL));
4465         break;
4466     }
4467 
4468     return ret;
4469 }
4470 
4471 #ifdef TARGET_NR_ipc
4472 /* ??? This only works with linear mappings.  */
4473 /* do_ipc() must return target values and target errnos. */
4474 static abi_long do_ipc(CPUArchState *cpu_env,
4475                        unsigned int call, abi_long first,
4476                        abi_long second, abi_long third,
4477                        abi_long ptr, abi_long fifth)
4478 {
4479     int version;
4480     abi_long ret = 0;
4481 
4482     version = call >> 16;
4483     call &= 0xffff;
4484 
4485     switch (call) {
4486     case IPCOP_semop:
4487         ret = do_semtimedop(first, ptr, second, 0, false);
4488         break;
4489     case IPCOP_semtimedop:
4490     /*
4491      * The s390 sys_ipc variant has only five parameters instead of six
4492      * (as for default variant) and the only difference is the handling of
4493      * SEMTIMEDOP where on s390 the third parameter is used as a pointer
4494      * to a struct timespec where the generic variant uses fifth parameter.
4495      */
4496 #if defined(TARGET_S390X)
4497         ret = do_semtimedop(first, ptr, second, third, TARGET_ABI_BITS == 64);
4498 #else
4499         ret = do_semtimedop(first, ptr, second, fifth, TARGET_ABI_BITS == 64);
4500 #endif
4501         break;
4502 
4503     case IPCOP_semget:
4504         ret = get_errno(semget(first, second, third));
4505         break;
4506 
4507     case IPCOP_semctl: {
4508         /* The semun argument to semctl is passed by value, so dereference the
4509          * ptr argument. */
4510         abi_ulong atptr;
4511         get_user_ual(atptr, ptr);
4512         ret = do_semctl(first, second, third, atptr);
4513         break;
4514     }
4515 
4516     case IPCOP_msgget:
4517         ret = get_errno(msgget(first, second));
4518         break;
4519 
4520     case IPCOP_msgsnd:
4521         ret = do_msgsnd(first, ptr, second, third);
4522         break;
4523 
4524     case IPCOP_msgctl:
4525         ret = do_msgctl(first, second, ptr);
4526         break;
4527 
4528     case IPCOP_msgrcv:
4529         switch (version) {
4530         case 0:
4531             {
4532                 struct target_ipc_kludge {
4533                     abi_long msgp;
4534                     abi_long msgtyp;
4535                 } *tmp;
4536 
4537                 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) {
4538                     ret = -TARGET_EFAULT;
4539                     break;
4540                 }
4541 
4542                 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third);
4543 
4544                 unlock_user_struct(tmp, ptr, 0);
4545                 break;
4546             }
4547         default:
4548             ret = do_msgrcv(first, ptr, second, fifth, third);
4549         }
4550         break;
4551 
4552     case IPCOP_shmat:
4553         switch (version) {
4554         default:
4555         {
4556             abi_ulong raddr;
4557             raddr = target_shmat(cpu_env, first, ptr, second);
4558             if (is_error(raddr))
4559                 return get_errno(raddr);
4560             if (put_user_ual(raddr, third))
4561                 return -TARGET_EFAULT;
4562             break;
4563         }
4564         case 1:
4565             ret = -TARGET_EINVAL;
4566             break;
4567         }
4568 	break;
4569     case IPCOP_shmdt:
4570         ret = target_shmdt(ptr);
4571 	break;
4572 
4573     case IPCOP_shmget:
4574 	/* IPC_* flag values are the same on all linux platforms */
4575 	ret = get_errno(shmget(first, second, third));
4576 	break;
4577 
4578 	/* IPC_* and SHM_* command values are the same on all linux platforms */
4579     case IPCOP_shmctl:
4580         ret = do_shmctl(first, second, ptr);
4581         break;
4582     default:
4583         qemu_log_mask(LOG_UNIMP, "Unsupported ipc call: %d (version %d)\n",
4584                       call, version);
4585 	ret = -TARGET_ENOSYS;
4586 	break;
4587     }
4588     return ret;
4589 }
4590 #endif
4591 
4592 /* kernel structure types definitions */
4593 
4594 #define STRUCT(name, ...) STRUCT_ ## name,
4595 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
4596 enum {
4597 #include "syscall_types.h"
4598 STRUCT_MAX
4599 };
4600 #undef STRUCT
4601 #undef STRUCT_SPECIAL
4602 
4603 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = {  __VA_ARGS__, TYPE_NULL };
4604 #define STRUCT_SPECIAL(name)
4605 #include "syscall_types.h"
4606 #undef STRUCT
4607 #undef STRUCT_SPECIAL
4608 
4609 #define MAX_STRUCT_SIZE 4096
4610 
4611 #ifdef CONFIG_FIEMAP
4612 /* So fiemap access checks don't overflow on 32 bit systems.
4613  * This is very slightly smaller than the limit imposed by
4614  * the underlying kernel.
4615  */
4616 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap))  \
4617                             / sizeof(struct fiemap_extent))
4618 
4619 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp,
4620                                        int fd, int cmd, abi_long arg)
4621 {
4622     /* The parameter for this ioctl is a struct fiemap followed
4623      * by an array of struct fiemap_extent whose size is set
4624      * in fiemap->fm_extent_count. The array is filled in by the
4625      * ioctl.
4626      */
4627     int target_size_in, target_size_out;
4628     struct fiemap *fm;
4629     const argtype *arg_type = ie->arg_type;
4630     const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) };
4631     void *argptr, *p;
4632     abi_long ret;
4633     int i, extent_size = thunk_type_size(extent_arg_type, 0);
4634     uint32_t outbufsz;
4635     int free_fm = 0;
4636 
4637     assert(arg_type[0] == TYPE_PTR);
4638     assert(ie->access == IOC_RW);
4639     arg_type++;
4640     target_size_in = thunk_type_size(arg_type, 0);
4641     argptr = lock_user(VERIFY_READ, arg, target_size_in, 1);
4642     if (!argptr) {
4643         return -TARGET_EFAULT;
4644     }
4645     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4646     unlock_user(argptr, arg, 0);
4647     fm = (struct fiemap *)buf_temp;
4648     if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) {
4649         return -TARGET_EINVAL;
4650     }
4651 
4652     outbufsz = sizeof (*fm) +
4653         (sizeof(struct fiemap_extent) * fm->fm_extent_count);
4654 
4655     if (outbufsz > MAX_STRUCT_SIZE) {
4656         /* We can't fit all the extents into the fixed size buffer.
4657          * Allocate one that is large enough and use it instead.
4658          */
4659         fm = g_try_malloc(outbufsz);
4660         if (!fm) {
4661             return -TARGET_ENOMEM;
4662         }
4663         memcpy(fm, buf_temp, sizeof(struct fiemap));
4664         free_fm = 1;
4665     }
4666     ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm));
4667     if (!is_error(ret)) {
4668         target_size_out = target_size_in;
4669         /* An extent_count of 0 means we were only counting the extents
4670          * so there are no structs to copy
4671          */
4672         if (fm->fm_extent_count != 0) {
4673             target_size_out += fm->fm_mapped_extents * extent_size;
4674         }
4675         argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0);
4676         if (!argptr) {
4677             ret = -TARGET_EFAULT;
4678         } else {
4679             /* Convert the struct fiemap */
4680             thunk_convert(argptr, fm, arg_type, THUNK_TARGET);
4681             if (fm->fm_extent_count != 0) {
4682                 p = argptr + target_size_in;
4683                 /* ...and then all the struct fiemap_extents */
4684                 for (i = 0; i < fm->fm_mapped_extents; i++) {
4685                     thunk_convert(p, &fm->fm_extents[i], extent_arg_type,
4686                                   THUNK_TARGET);
4687                     p += extent_size;
4688                 }
4689             }
4690             unlock_user(argptr, arg, target_size_out);
4691         }
4692     }
4693     if (free_fm) {
4694         g_free(fm);
4695     }
4696     return ret;
4697 }
4698 #endif
4699 
4700 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp,
4701                                 int fd, int cmd, abi_long arg)
4702 {
4703     const argtype *arg_type = ie->arg_type;
4704     int target_size;
4705     void *argptr;
4706     int ret;
4707     struct ifconf *host_ifconf;
4708     uint32_t outbufsz;
4709     const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) };
4710     const argtype ifreq_max_type[] = { MK_STRUCT(STRUCT_ifmap_ifreq) };
4711     int target_ifreq_size;
4712     int nb_ifreq;
4713     int free_buf = 0;
4714     int i;
4715     int target_ifc_len;
4716     abi_long target_ifc_buf;
4717     int host_ifc_len;
4718     char *host_ifc_buf;
4719 
4720     assert(arg_type[0] == TYPE_PTR);
4721     assert(ie->access == IOC_RW);
4722 
4723     arg_type++;
4724     target_size = thunk_type_size(arg_type, 0);
4725 
4726     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4727     if (!argptr)
4728         return -TARGET_EFAULT;
4729     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4730     unlock_user(argptr, arg, 0);
4731 
4732     host_ifconf = (struct ifconf *)(unsigned long)buf_temp;
4733     target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf;
4734     target_ifreq_size = thunk_type_size(ifreq_max_type, 0);
4735 
4736     if (target_ifc_buf != 0) {
4737         target_ifc_len = host_ifconf->ifc_len;
4738         nb_ifreq = target_ifc_len / target_ifreq_size;
4739         host_ifc_len = nb_ifreq * sizeof(struct ifreq);
4740 
4741         outbufsz = sizeof(*host_ifconf) + host_ifc_len;
4742         if (outbufsz > MAX_STRUCT_SIZE) {
4743             /*
4744              * We can't fit all the extents into the fixed size buffer.
4745              * Allocate one that is large enough and use it instead.
4746              */
4747             host_ifconf = g_try_malloc(outbufsz);
4748             if (!host_ifconf) {
4749                 return -TARGET_ENOMEM;
4750             }
4751             memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf));
4752             free_buf = 1;
4753         }
4754         host_ifc_buf = (char *)host_ifconf + sizeof(*host_ifconf);
4755 
4756         host_ifconf->ifc_len = host_ifc_len;
4757     } else {
4758       host_ifc_buf = NULL;
4759     }
4760     host_ifconf->ifc_buf = host_ifc_buf;
4761 
4762     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf));
4763     if (!is_error(ret)) {
4764 	/* convert host ifc_len to target ifc_len */
4765 
4766         nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq);
4767         target_ifc_len = nb_ifreq * target_ifreq_size;
4768         host_ifconf->ifc_len = target_ifc_len;
4769 
4770 	/* restore target ifc_buf */
4771 
4772         host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf;
4773 
4774 	/* copy struct ifconf to target user */
4775 
4776         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4777         if (!argptr)
4778             return -TARGET_EFAULT;
4779         thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET);
4780         unlock_user(argptr, arg, target_size);
4781 
4782         if (target_ifc_buf != 0) {
4783             /* copy ifreq[] to target user */
4784             argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0);
4785             for (i = 0; i < nb_ifreq ; i++) {
4786                 thunk_convert(argptr + i * target_ifreq_size,
4787                               host_ifc_buf + i * sizeof(struct ifreq),
4788                               ifreq_arg_type, THUNK_TARGET);
4789             }
4790             unlock_user(argptr, target_ifc_buf, target_ifc_len);
4791         }
4792     }
4793 
4794     if (free_buf) {
4795         g_free(host_ifconf);
4796     }
4797 
4798     return ret;
4799 }
4800 
4801 #if defined(CONFIG_USBFS)
4802 #if HOST_LONG_BITS > 64
4803 #error USBDEVFS thunks do not support >64 bit hosts yet.
4804 #endif
4805 struct live_urb {
4806     uint64_t target_urb_adr;
4807     uint64_t target_buf_adr;
4808     char *target_buf_ptr;
4809     struct usbdevfs_urb host_urb;
4810 };
4811 
4812 static GHashTable *usbdevfs_urb_hashtable(void)
4813 {
4814     static GHashTable *urb_hashtable;
4815 
4816     if (!urb_hashtable) {
4817         urb_hashtable = g_hash_table_new(g_int64_hash, g_int64_equal);
4818     }
4819     return urb_hashtable;
4820 }
4821 
4822 static void urb_hashtable_insert(struct live_urb *urb)
4823 {
4824     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4825     g_hash_table_insert(urb_hashtable, urb, urb);
4826 }
4827 
4828 static struct live_urb *urb_hashtable_lookup(uint64_t target_urb_adr)
4829 {
4830     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4831     return g_hash_table_lookup(urb_hashtable, &target_urb_adr);
4832 }
4833 
4834 static void urb_hashtable_remove(struct live_urb *urb)
4835 {
4836     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4837     g_hash_table_remove(urb_hashtable, urb);
4838 }
4839 
4840 static abi_long
4841 do_ioctl_usbdevfs_reapurb(const IOCTLEntry *ie, uint8_t *buf_temp,
4842                           int fd, int cmd, abi_long arg)
4843 {
4844     const argtype usbfsurb_arg_type[] = { MK_STRUCT(STRUCT_usbdevfs_urb) };
4845     const argtype ptrvoid_arg_type[] = { TYPE_PTRVOID, 0, 0 };
4846     struct live_urb *lurb;
4847     void *argptr;
4848     uint64_t hurb;
4849     int target_size;
4850     uintptr_t target_urb_adr;
4851     abi_long ret;
4852 
4853     target_size = thunk_type_size(usbfsurb_arg_type, THUNK_TARGET);
4854 
4855     memset(buf_temp, 0, sizeof(uint64_t));
4856     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
4857     if (is_error(ret)) {
4858         return ret;
4859     }
4860 
4861     memcpy(&hurb, buf_temp, sizeof(uint64_t));
4862     lurb = (void *)((uintptr_t)hurb - offsetof(struct live_urb, host_urb));
4863     if (!lurb->target_urb_adr) {
4864         return -TARGET_EFAULT;
4865     }
4866     urb_hashtable_remove(lurb);
4867     unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr,
4868         lurb->host_urb.buffer_length);
4869     lurb->target_buf_ptr = NULL;
4870 
4871     /* restore the guest buffer pointer */
4872     lurb->host_urb.buffer = (void *)(uintptr_t)lurb->target_buf_adr;
4873 
4874     /* update the guest urb struct */
4875     argptr = lock_user(VERIFY_WRITE, lurb->target_urb_adr, target_size, 0);
4876     if (!argptr) {
4877         g_free(lurb);
4878         return -TARGET_EFAULT;
4879     }
4880     thunk_convert(argptr, &lurb->host_urb, usbfsurb_arg_type, THUNK_TARGET);
4881     unlock_user(argptr, lurb->target_urb_adr, target_size);
4882 
4883     target_size = thunk_type_size(ptrvoid_arg_type, THUNK_TARGET);
4884     /* write back the urb handle */
4885     argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4886     if (!argptr) {
4887         g_free(lurb);
4888         return -TARGET_EFAULT;
4889     }
4890 
4891     /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */
4892     target_urb_adr = lurb->target_urb_adr;
4893     thunk_convert(argptr, &target_urb_adr, ptrvoid_arg_type, THUNK_TARGET);
4894     unlock_user(argptr, arg, target_size);
4895 
4896     g_free(lurb);
4897     return ret;
4898 }
4899 
4900 static abi_long
4901 do_ioctl_usbdevfs_discardurb(const IOCTLEntry *ie,
4902                              uint8_t *buf_temp __attribute__((unused)),
4903                              int fd, int cmd, abi_long arg)
4904 {
4905     struct live_urb *lurb;
4906 
4907     /* map target address back to host URB with metadata. */
4908     lurb = urb_hashtable_lookup(arg);
4909     if (!lurb) {
4910         return -TARGET_EFAULT;
4911     }
4912     return get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
4913 }
4914 
4915 static abi_long
4916 do_ioctl_usbdevfs_submiturb(const IOCTLEntry *ie, uint8_t *buf_temp,
4917                             int fd, int cmd, abi_long arg)
4918 {
4919     const argtype *arg_type = ie->arg_type;
4920     int target_size;
4921     abi_long ret;
4922     void *argptr;
4923     int rw_dir;
4924     struct live_urb *lurb;
4925 
4926     /*
4927      * each submitted URB needs to map to a unique ID for the
4928      * kernel, and that unique ID needs to be a pointer to
4929      * host memory.  hence, we need to malloc for each URB.
4930      * isochronous transfers have a variable length struct.
4931      */
4932     arg_type++;
4933     target_size = thunk_type_size(arg_type, THUNK_TARGET);
4934 
4935     /* construct host copy of urb and metadata */
4936     lurb = g_try_new0(struct live_urb, 1);
4937     if (!lurb) {
4938         return -TARGET_ENOMEM;
4939     }
4940 
4941     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4942     if (!argptr) {
4943         g_free(lurb);
4944         return -TARGET_EFAULT;
4945     }
4946     thunk_convert(&lurb->host_urb, argptr, arg_type, THUNK_HOST);
4947     unlock_user(argptr, arg, 0);
4948 
4949     lurb->target_urb_adr = arg;
4950     lurb->target_buf_adr = (uintptr_t)lurb->host_urb.buffer;
4951 
4952     /* buffer space used depends on endpoint type so lock the entire buffer */
4953     /* control type urbs should check the buffer contents for true direction */
4954     rw_dir = lurb->host_urb.endpoint & USB_DIR_IN ? VERIFY_WRITE : VERIFY_READ;
4955     lurb->target_buf_ptr = lock_user(rw_dir, lurb->target_buf_adr,
4956         lurb->host_urb.buffer_length, 1);
4957     if (lurb->target_buf_ptr == NULL) {
4958         g_free(lurb);
4959         return -TARGET_EFAULT;
4960     }
4961 
4962     /* update buffer pointer in host copy */
4963     lurb->host_urb.buffer = lurb->target_buf_ptr;
4964 
4965     ret = get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
4966     if (is_error(ret)) {
4967         unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 0);
4968         g_free(lurb);
4969     } else {
4970         urb_hashtable_insert(lurb);
4971     }
4972 
4973     return ret;
4974 }
4975 #endif /* CONFIG_USBFS */
4976 
4977 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
4978                             int cmd, abi_long arg)
4979 {
4980     void *argptr;
4981     struct dm_ioctl *host_dm;
4982     abi_long guest_data;
4983     uint32_t guest_data_size;
4984     int target_size;
4985     const argtype *arg_type = ie->arg_type;
4986     abi_long ret;
4987     void *big_buf = NULL;
4988     char *host_data;
4989 
4990     arg_type++;
4991     target_size = thunk_type_size(arg_type, 0);
4992     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4993     if (!argptr) {
4994         ret = -TARGET_EFAULT;
4995         goto out;
4996     }
4997     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4998     unlock_user(argptr, arg, 0);
4999 
5000     /* buf_temp is too small, so fetch things into a bigger buffer */
5001     big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2);
5002     memcpy(big_buf, buf_temp, target_size);
5003     buf_temp = big_buf;
5004     host_dm = big_buf;
5005 
5006     guest_data = arg + host_dm->data_start;
5007     if ((guest_data - arg) < 0) {
5008         ret = -TARGET_EINVAL;
5009         goto out;
5010     }
5011     guest_data_size = host_dm->data_size - host_dm->data_start;
5012     host_data = (char*)host_dm + host_dm->data_start;
5013 
5014     argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1);
5015     if (!argptr) {
5016         ret = -TARGET_EFAULT;
5017         goto out;
5018     }
5019 
5020     switch (ie->host_cmd) {
5021     case DM_REMOVE_ALL:
5022     case DM_LIST_DEVICES:
5023     case DM_DEV_CREATE:
5024     case DM_DEV_REMOVE:
5025     case DM_DEV_SUSPEND:
5026     case DM_DEV_STATUS:
5027     case DM_DEV_WAIT:
5028     case DM_TABLE_STATUS:
5029     case DM_TABLE_CLEAR:
5030     case DM_TABLE_DEPS:
5031     case DM_LIST_VERSIONS:
5032         /* no input data */
5033         break;
5034     case DM_DEV_RENAME:
5035     case DM_DEV_SET_GEOMETRY:
5036         /* data contains only strings */
5037         memcpy(host_data, argptr, guest_data_size);
5038         break;
5039     case DM_TARGET_MSG:
5040         memcpy(host_data, argptr, guest_data_size);
5041         *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr);
5042         break;
5043     case DM_TABLE_LOAD:
5044     {
5045         void *gspec = argptr;
5046         void *cur_data = host_data;
5047         const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5048         int spec_size = thunk_type_size(dm_arg_type, 0);
5049         int i;
5050 
5051         for (i = 0; i < host_dm->target_count; i++) {
5052             struct dm_target_spec *spec = cur_data;
5053             uint32_t next;
5054             int slen;
5055 
5056             thunk_convert(spec, gspec, dm_arg_type, THUNK_HOST);
5057             slen = strlen((char*)gspec + spec_size) + 1;
5058             next = spec->next;
5059             spec->next = sizeof(*spec) + slen;
5060             strcpy((char*)&spec[1], gspec + spec_size);
5061             gspec += next;
5062             cur_data += spec->next;
5063         }
5064         break;
5065     }
5066     default:
5067         ret = -TARGET_EINVAL;
5068         unlock_user(argptr, guest_data, 0);
5069         goto out;
5070     }
5071     unlock_user(argptr, guest_data, 0);
5072 
5073     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5074     if (!is_error(ret)) {
5075         guest_data = arg + host_dm->data_start;
5076         guest_data_size = host_dm->data_size - host_dm->data_start;
5077         argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0);
5078         switch (ie->host_cmd) {
5079         case DM_REMOVE_ALL:
5080         case DM_DEV_CREATE:
5081         case DM_DEV_REMOVE:
5082         case DM_DEV_RENAME:
5083         case DM_DEV_SUSPEND:
5084         case DM_DEV_STATUS:
5085         case DM_TABLE_LOAD:
5086         case DM_TABLE_CLEAR:
5087         case DM_TARGET_MSG:
5088         case DM_DEV_SET_GEOMETRY:
5089             /* no return data */
5090             break;
5091         case DM_LIST_DEVICES:
5092         {
5093             struct dm_name_list *nl = (void*)host_dm + host_dm->data_start;
5094             uint32_t remaining_data = guest_data_size;
5095             void *cur_data = argptr;
5096             const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) };
5097             int nl_size = 12; /* can't use thunk_size due to alignment */
5098 
5099             while (1) {
5100                 uint32_t next = nl->next;
5101                 if (next) {
5102                     nl->next = nl_size + (strlen(nl->name) + 1);
5103                 }
5104                 if (remaining_data < nl->next) {
5105                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5106                     break;
5107                 }
5108                 thunk_convert(cur_data, nl, dm_arg_type, THUNK_TARGET);
5109                 strcpy(cur_data + nl_size, nl->name);
5110                 cur_data += nl->next;
5111                 remaining_data -= nl->next;
5112                 if (!next) {
5113                     break;
5114                 }
5115                 nl = (void*)nl + next;
5116             }
5117             break;
5118         }
5119         case DM_DEV_WAIT:
5120         case DM_TABLE_STATUS:
5121         {
5122             struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start;
5123             void *cur_data = argptr;
5124             const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5125             int spec_size = thunk_type_size(dm_arg_type, 0);
5126             int i;
5127 
5128             for (i = 0; i < host_dm->target_count; i++) {
5129                 uint32_t next = spec->next;
5130                 int slen = strlen((char*)&spec[1]) + 1;
5131                 spec->next = (cur_data - argptr) + spec_size + slen;
5132                 if (guest_data_size < spec->next) {
5133                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5134                     break;
5135                 }
5136                 thunk_convert(cur_data, spec, dm_arg_type, THUNK_TARGET);
5137                 strcpy(cur_data + spec_size, (char*)&spec[1]);
5138                 cur_data = argptr + spec->next;
5139                 spec = (void*)host_dm + host_dm->data_start + next;
5140             }
5141             break;
5142         }
5143         case DM_TABLE_DEPS:
5144         {
5145             void *hdata = (void*)host_dm + host_dm->data_start;
5146             int count = *(uint32_t*)hdata;
5147             uint64_t *hdev = hdata + 8;
5148             uint64_t *gdev = argptr + 8;
5149             int i;
5150 
5151             *(uint32_t*)argptr = tswap32(count);
5152             for (i = 0; i < count; i++) {
5153                 *gdev = tswap64(*hdev);
5154                 gdev++;
5155                 hdev++;
5156             }
5157             break;
5158         }
5159         case DM_LIST_VERSIONS:
5160         {
5161             struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start;
5162             uint32_t remaining_data = guest_data_size;
5163             void *cur_data = argptr;
5164             const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) };
5165             int vers_size = thunk_type_size(dm_arg_type, 0);
5166 
5167             while (1) {
5168                 uint32_t next = vers->next;
5169                 if (next) {
5170                     vers->next = vers_size + (strlen(vers->name) + 1);
5171                 }
5172                 if (remaining_data < vers->next) {
5173                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5174                     break;
5175                 }
5176                 thunk_convert(cur_data, vers, dm_arg_type, THUNK_TARGET);
5177                 strcpy(cur_data + vers_size, vers->name);
5178                 cur_data += vers->next;
5179                 remaining_data -= vers->next;
5180                 if (!next) {
5181                     break;
5182                 }
5183                 vers = (void*)vers + next;
5184             }
5185             break;
5186         }
5187         default:
5188             unlock_user(argptr, guest_data, 0);
5189             ret = -TARGET_EINVAL;
5190             goto out;
5191         }
5192         unlock_user(argptr, guest_data, guest_data_size);
5193 
5194         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5195         if (!argptr) {
5196             ret = -TARGET_EFAULT;
5197             goto out;
5198         }
5199         thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5200         unlock_user(argptr, arg, target_size);
5201     }
5202 out:
5203     g_free(big_buf);
5204     return ret;
5205 }
5206 
5207 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5208                                int cmd, abi_long arg)
5209 {
5210     void *argptr;
5211     int target_size;
5212     const argtype *arg_type = ie->arg_type;
5213     const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) };
5214     abi_long ret;
5215 
5216     struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp;
5217     struct blkpg_partition host_part;
5218 
5219     /* Read and convert blkpg */
5220     arg_type++;
5221     target_size = thunk_type_size(arg_type, 0);
5222     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5223     if (!argptr) {
5224         ret = -TARGET_EFAULT;
5225         goto out;
5226     }
5227     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5228     unlock_user(argptr, arg, 0);
5229 
5230     switch (host_blkpg->op) {
5231     case BLKPG_ADD_PARTITION:
5232     case BLKPG_DEL_PARTITION:
5233         /* payload is struct blkpg_partition */
5234         break;
5235     default:
5236         /* Unknown opcode */
5237         ret = -TARGET_EINVAL;
5238         goto out;
5239     }
5240 
5241     /* Read and convert blkpg->data */
5242     arg = (abi_long)(uintptr_t)host_blkpg->data;
5243     target_size = thunk_type_size(part_arg_type, 0);
5244     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5245     if (!argptr) {
5246         ret = -TARGET_EFAULT;
5247         goto out;
5248     }
5249     thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST);
5250     unlock_user(argptr, arg, 0);
5251 
5252     /* Swizzle the data pointer to our local copy and call! */
5253     host_blkpg->data = &host_part;
5254     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg));
5255 
5256 out:
5257     return ret;
5258 }
5259 
5260 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp,
5261                                 int fd, int cmd, abi_long arg)
5262 {
5263     const argtype *arg_type = ie->arg_type;
5264     const StructEntry *se;
5265     const argtype *field_types;
5266     const int *dst_offsets, *src_offsets;
5267     int target_size;
5268     void *argptr;
5269     abi_ulong *target_rt_dev_ptr = NULL;
5270     unsigned long *host_rt_dev_ptr = NULL;
5271     abi_long ret;
5272     int i;
5273 
5274     assert(ie->access == IOC_W);
5275     assert(*arg_type == TYPE_PTR);
5276     arg_type++;
5277     assert(*arg_type == TYPE_STRUCT);
5278     target_size = thunk_type_size(arg_type, 0);
5279     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5280     if (!argptr) {
5281         return -TARGET_EFAULT;
5282     }
5283     arg_type++;
5284     assert(*arg_type == (int)STRUCT_rtentry);
5285     se = struct_entries + *arg_type++;
5286     assert(se->convert[0] == NULL);
5287     /* convert struct here to be able to catch rt_dev string */
5288     field_types = se->field_types;
5289     dst_offsets = se->field_offsets[THUNK_HOST];
5290     src_offsets = se->field_offsets[THUNK_TARGET];
5291     for (i = 0; i < se->nb_fields; i++) {
5292         if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) {
5293             assert(*field_types == TYPE_PTRVOID);
5294             target_rt_dev_ptr = argptr + src_offsets[i];
5295             host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]);
5296             if (*target_rt_dev_ptr != 0) {
5297                 *host_rt_dev_ptr = (unsigned long)lock_user_string(
5298                                                   tswapal(*target_rt_dev_ptr));
5299                 if (!*host_rt_dev_ptr) {
5300                     unlock_user(argptr, arg, 0);
5301                     return -TARGET_EFAULT;
5302                 }
5303             } else {
5304                 *host_rt_dev_ptr = 0;
5305             }
5306             field_types++;
5307             continue;
5308         }
5309         field_types = thunk_convert(buf_temp + dst_offsets[i],
5310                                     argptr + src_offsets[i],
5311                                     field_types, THUNK_HOST);
5312     }
5313     unlock_user(argptr, arg, 0);
5314 
5315     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5316 
5317     assert(host_rt_dev_ptr != NULL);
5318     assert(target_rt_dev_ptr != NULL);
5319     if (*host_rt_dev_ptr != 0) {
5320         unlock_user((void *)*host_rt_dev_ptr,
5321                     *target_rt_dev_ptr, 0);
5322     }
5323     return ret;
5324 }
5325 
5326 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp,
5327                                      int fd, int cmd, abi_long arg)
5328 {
5329     int sig = target_to_host_signal(arg);
5330     return get_errno(safe_ioctl(fd, ie->host_cmd, sig));
5331 }
5332 
5333 static abi_long do_ioctl_SIOCGSTAMP(const IOCTLEntry *ie, uint8_t *buf_temp,
5334                                     int fd, int cmd, abi_long arg)
5335 {
5336     struct timeval tv;
5337     abi_long ret;
5338 
5339     ret = get_errno(safe_ioctl(fd, SIOCGSTAMP, &tv));
5340     if (is_error(ret)) {
5341         return ret;
5342     }
5343 
5344     if (cmd == (int)TARGET_SIOCGSTAMP_OLD) {
5345         if (copy_to_user_timeval(arg, &tv)) {
5346             return -TARGET_EFAULT;
5347         }
5348     } else {
5349         if (copy_to_user_timeval64(arg, &tv)) {
5350             return -TARGET_EFAULT;
5351         }
5352     }
5353 
5354     return ret;
5355 }
5356 
5357 static abi_long do_ioctl_SIOCGSTAMPNS(const IOCTLEntry *ie, uint8_t *buf_temp,
5358                                       int fd, int cmd, abi_long arg)
5359 {
5360     struct timespec ts;
5361     abi_long ret;
5362 
5363     ret = get_errno(safe_ioctl(fd, SIOCGSTAMPNS, &ts));
5364     if (is_error(ret)) {
5365         return ret;
5366     }
5367 
5368     if (cmd == (int)TARGET_SIOCGSTAMPNS_OLD) {
5369         if (host_to_target_timespec(arg, &ts)) {
5370             return -TARGET_EFAULT;
5371         }
5372     } else{
5373         if (host_to_target_timespec64(arg, &ts)) {
5374             return -TARGET_EFAULT;
5375         }
5376     }
5377 
5378     return ret;
5379 }
5380 
5381 #ifdef TIOCGPTPEER
5382 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp,
5383                                      int fd, int cmd, abi_long arg)
5384 {
5385     int flags = target_to_host_bitmask(arg, fcntl_flags_tbl);
5386     return get_errno(safe_ioctl(fd, ie->host_cmd, flags));
5387 }
5388 #endif
5389 
5390 #ifdef HAVE_DRM_H
5391 
5392 static void unlock_drm_version(struct drm_version *host_ver,
5393                                struct target_drm_version *target_ver,
5394                                bool copy)
5395 {
5396     unlock_user(host_ver->name, target_ver->name,
5397                                 copy ? host_ver->name_len : 0);
5398     unlock_user(host_ver->date, target_ver->date,
5399                                 copy ? host_ver->date_len : 0);
5400     unlock_user(host_ver->desc, target_ver->desc,
5401                                 copy ? host_ver->desc_len : 0);
5402 }
5403 
5404 static inline abi_long target_to_host_drmversion(struct drm_version *host_ver,
5405                                           struct target_drm_version *target_ver)
5406 {
5407     memset(host_ver, 0, sizeof(*host_ver));
5408 
5409     __get_user(host_ver->name_len, &target_ver->name_len);
5410     if (host_ver->name_len) {
5411         host_ver->name = lock_user(VERIFY_WRITE, target_ver->name,
5412                                    target_ver->name_len, 0);
5413         if (!host_ver->name) {
5414             return -EFAULT;
5415         }
5416     }
5417 
5418     __get_user(host_ver->date_len, &target_ver->date_len);
5419     if (host_ver->date_len) {
5420         host_ver->date = lock_user(VERIFY_WRITE, target_ver->date,
5421                                    target_ver->date_len, 0);
5422         if (!host_ver->date) {
5423             goto err;
5424         }
5425     }
5426 
5427     __get_user(host_ver->desc_len, &target_ver->desc_len);
5428     if (host_ver->desc_len) {
5429         host_ver->desc = lock_user(VERIFY_WRITE, target_ver->desc,
5430                                    target_ver->desc_len, 0);
5431         if (!host_ver->desc) {
5432             goto err;
5433         }
5434     }
5435 
5436     return 0;
5437 err:
5438     unlock_drm_version(host_ver, target_ver, false);
5439     return -EFAULT;
5440 }
5441 
5442 static inline void host_to_target_drmversion(
5443                                           struct target_drm_version *target_ver,
5444                                           struct drm_version *host_ver)
5445 {
5446     __put_user(host_ver->version_major, &target_ver->version_major);
5447     __put_user(host_ver->version_minor, &target_ver->version_minor);
5448     __put_user(host_ver->version_patchlevel, &target_ver->version_patchlevel);
5449     __put_user(host_ver->name_len, &target_ver->name_len);
5450     __put_user(host_ver->date_len, &target_ver->date_len);
5451     __put_user(host_ver->desc_len, &target_ver->desc_len);
5452     unlock_drm_version(host_ver, target_ver, true);
5453 }
5454 
5455 static abi_long do_ioctl_drm(const IOCTLEntry *ie, uint8_t *buf_temp,
5456                              int fd, int cmd, abi_long arg)
5457 {
5458     struct drm_version *ver;
5459     struct target_drm_version *target_ver;
5460     abi_long ret;
5461 
5462     switch (ie->host_cmd) {
5463     case DRM_IOCTL_VERSION:
5464         if (!lock_user_struct(VERIFY_WRITE, target_ver, arg, 0)) {
5465             return -TARGET_EFAULT;
5466         }
5467         ver = (struct drm_version *)buf_temp;
5468         ret = target_to_host_drmversion(ver, target_ver);
5469         if (!is_error(ret)) {
5470             ret = get_errno(safe_ioctl(fd, ie->host_cmd, ver));
5471             if (is_error(ret)) {
5472                 unlock_drm_version(ver, target_ver, false);
5473             } else {
5474                 host_to_target_drmversion(target_ver, ver);
5475             }
5476         }
5477         unlock_user_struct(target_ver, arg, 0);
5478         return ret;
5479     }
5480     return -TARGET_ENOSYS;
5481 }
5482 
5483 static abi_long do_ioctl_drm_i915_getparam(const IOCTLEntry *ie,
5484                                            struct drm_i915_getparam *gparam,
5485                                            int fd, abi_long arg)
5486 {
5487     abi_long ret;
5488     int value;
5489     struct target_drm_i915_getparam *target_gparam;
5490 
5491     if (!lock_user_struct(VERIFY_READ, target_gparam, arg, 0)) {
5492         return -TARGET_EFAULT;
5493     }
5494 
5495     __get_user(gparam->param, &target_gparam->param);
5496     gparam->value = &value;
5497     ret = get_errno(safe_ioctl(fd, ie->host_cmd, gparam));
5498     put_user_s32(value, target_gparam->value);
5499 
5500     unlock_user_struct(target_gparam, arg, 0);
5501     return ret;
5502 }
5503 
5504 static abi_long do_ioctl_drm_i915(const IOCTLEntry *ie, uint8_t *buf_temp,
5505                                   int fd, int cmd, abi_long arg)
5506 {
5507     switch (ie->host_cmd) {
5508     case DRM_IOCTL_I915_GETPARAM:
5509         return do_ioctl_drm_i915_getparam(ie,
5510                                           (struct drm_i915_getparam *)buf_temp,
5511                                           fd, arg);
5512     default:
5513         return -TARGET_ENOSYS;
5514     }
5515 }
5516 
5517 #endif
5518 
5519 static abi_long do_ioctl_TUNSETTXFILTER(const IOCTLEntry *ie, uint8_t *buf_temp,
5520                                         int fd, int cmd, abi_long arg)
5521 {
5522     struct tun_filter *filter = (struct tun_filter *)buf_temp;
5523     struct tun_filter *target_filter;
5524     char *target_addr;
5525 
5526     assert(ie->access == IOC_W);
5527 
5528     target_filter = lock_user(VERIFY_READ, arg, sizeof(*target_filter), 1);
5529     if (!target_filter) {
5530         return -TARGET_EFAULT;
5531     }
5532     filter->flags = tswap16(target_filter->flags);
5533     filter->count = tswap16(target_filter->count);
5534     unlock_user(target_filter, arg, 0);
5535 
5536     if (filter->count) {
5537         if (offsetof(struct tun_filter, addr) + filter->count * ETH_ALEN >
5538             MAX_STRUCT_SIZE) {
5539             return -TARGET_EFAULT;
5540         }
5541 
5542         target_addr = lock_user(VERIFY_READ,
5543                                 arg + offsetof(struct tun_filter, addr),
5544                                 filter->count * ETH_ALEN, 1);
5545         if (!target_addr) {
5546             return -TARGET_EFAULT;
5547         }
5548         memcpy(filter->addr, target_addr, filter->count * ETH_ALEN);
5549         unlock_user(target_addr, arg + offsetof(struct tun_filter, addr), 0);
5550     }
5551 
5552     return get_errno(safe_ioctl(fd, ie->host_cmd, filter));
5553 }
5554 
5555 IOCTLEntry ioctl_entries[] = {
5556 #define IOCTL(cmd, access, ...) \
5557     { TARGET_ ## cmd, cmd, #cmd, access, 0, {  __VA_ARGS__ } },
5558 #define IOCTL_SPECIAL(cmd, access, dofn, ...)                      \
5559     { TARGET_ ## cmd, cmd, #cmd, access, dofn, {  __VA_ARGS__ } },
5560 #define IOCTL_IGNORE(cmd) \
5561     { TARGET_ ## cmd, 0, #cmd },
5562 #include "ioctls.h"
5563     { 0, 0, },
5564 };
5565 
5566 /* ??? Implement proper locking for ioctls.  */
5567 /* do_ioctl() Must return target values and target errnos. */
5568 static abi_long do_ioctl(int fd, int cmd, abi_long arg)
5569 {
5570     const IOCTLEntry *ie;
5571     const argtype *arg_type;
5572     abi_long ret;
5573     uint8_t buf_temp[MAX_STRUCT_SIZE];
5574     int target_size;
5575     void *argptr;
5576 
5577     ie = ioctl_entries;
5578     for(;;) {
5579         if (ie->target_cmd == 0) {
5580             qemu_log_mask(
5581                 LOG_UNIMP, "Unsupported ioctl: cmd=0x%04lx\n", (long)cmd);
5582             return -TARGET_ENOTTY;
5583         }
5584         if (ie->target_cmd == cmd)
5585             break;
5586         ie++;
5587     }
5588     arg_type = ie->arg_type;
5589     if (ie->do_ioctl) {
5590         return ie->do_ioctl(ie, buf_temp, fd, cmd, arg);
5591     } else if (!ie->host_cmd) {
5592         /* Some architectures define BSD ioctls in their headers
5593            that are not implemented in Linux.  */
5594         return -TARGET_ENOTTY;
5595     }
5596 
5597     switch(arg_type[0]) {
5598     case TYPE_NULL:
5599         /* no argument */
5600         ret = get_errno(safe_ioctl(fd, ie->host_cmd));
5601         break;
5602     case TYPE_PTRVOID:
5603     case TYPE_INT:
5604     case TYPE_LONG:
5605     case TYPE_ULONG:
5606         ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg));
5607         break;
5608     case TYPE_PTR:
5609         arg_type++;
5610         target_size = thunk_type_size(arg_type, 0);
5611         switch(ie->access) {
5612         case IOC_R:
5613             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5614             if (!is_error(ret)) {
5615                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5616                 if (!argptr)
5617                     return -TARGET_EFAULT;
5618                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5619                 unlock_user(argptr, arg, target_size);
5620             }
5621             break;
5622         case IOC_W:
5623             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5624             if (!argptr)
5625                 return -TARGET_EFAULT;
5626             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5627             unlock_user(argptr, arg, 0);
5628             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5629             break;
5630         default:
5631         case IOC_RW:
5632             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5633             if (!argptr)
5634                 return -TARGET_EFAULT;
5635             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5636             unlock_user(argptr, arg, 0);
5637             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5638             if (!is_error(ret)) {
5639                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5640                 if (!argptr)
5641                     return -TARGET_EFAULT;
5642                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5643                 unlock_user(argptr, arg, target_size);
5644             }
5645             break;
5646         }
5647         break;
5648     default:
5649         qemu_log_mask(LOG_UNIMP,
5650                       "Unsupported ioctl type: cmd=0x%04lx type=%d\n",
5651                       (long)cmd, arg_type[0]);
5652         ret = -TARGET_ENOTTY;
5653         break;
5654     }
5655     return ret;
5656 }
5657 
5658 static const bitmask_transtbl iflag_tbl[] = {
5659         { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK },
5660         { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT },
5661         { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR },
5662         { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK },
5663         { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK },
5664         { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP },
5665         { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR },
5666         { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR },
5667         { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL },
5668         { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC },
5669         { TARGET_IXON, TARGET_IXON, IXON, IXON },
5670         { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY },
5671         { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF },
5672         { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL },
5673         { TARGET_IUTF8, TARGET_IUTF8, IUTF8, IUTF8},
5674 };
5675 
5676 static const bitmask_transtbl oflag_tbl[] = {
5677 	{ TARGET_OPOST, TARGET_OPOST, OPOST, OPOST },
5678 	{ TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC },
5679 	{ TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR },
5680 	{ TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL },
5681 	{ TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR },
5682 	{ TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET },
5683 	{ TARGET_OFILL, TARGET_OFILL, OFILL, OFILL },
5684 	{ TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL },
5685 	{ TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 },
5686 	{ TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 },
5687 	{ TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 },
5688 	{ TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 },
5689 	{ TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 },
5690 	{ TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 },
5691 	{ TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 },
5692 	{ TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 },
5693 	{ TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 },
5694 	{ TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 },
5695 	{ TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 },
5696 	{ TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 },
5697 	{ TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 },
5698 	{ TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 },
5699 	{ TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 },
5700 	{ TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 },
5701 };
5702 
5703 static const bitmask_transtbl cflag_tbl[] = {
5704 	{ TARGET_CBAUD, TARGET_B0, CBAUD, B0 },
5705 	{ TARGET_CBAUD, TARGET_B50, CBAUD, B50 },
5706 	{ TARGET_CBAUD, TARGET_B75, CBAUD, B75 },
5707 	{ TARGET_CBAUD, TARGET_B110, CBAUD, B110 },
5708 	{ TARGET_CBAUD, TARGET_B134, CBAUD, B134 },
5709 	{ TARGET_CBAUD, TARGET_B150, CBAUD, B150 },
5710 	{ TARGET_CBAUD, TARGET_B200, CBAUD, B200 },
5711 	{ TARGET_CBAUD, TARGET_B300, CBAUD, B300 },
5712 	{ TARGET_CBAUD, TARGET_B600, CBAUD, B600 },
5713 	{ TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 },
5714 	{ TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 },
5715 	{ TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 },
5716 	{ TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 },
5717 	{ TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 },
5718 	{ TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 },
5719 	{ TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 },
5720 	{ TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 },
5721 	{ TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 },
5722 	{ TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 },
5723 	{ TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 },
5724 	{ TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 },
5725 	{ TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 },
5726 	{ TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 },
5727 	{ TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 },
5728 	{ TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB },
5729 	{ TARGET_CREAD, TARGET_CREAD, CREAD, CREAD },
5730 	{ TARGET_PARENB, TARGET_PARENB, PARENB, PARENB },
5731 	{ TARGET_PARODD, TARGET_PARODD, PARODD, PARODD },
5732 	{ TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL },
5733 	{ TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL },
5734 	{ TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS },
5735 };
5736 
5737 static const bitmask_transtbl lflag_tbl[] = {
5738   { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG },
5739   { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON },
5740   { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE },
5741   { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO },
5742   { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE },
5743   { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK },
5744   { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL },
5745   { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH },
5746   { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP },
5747   { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL },
5748   { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT },
5749   { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE },
5750   { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO },
5751   { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN },
5752   { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN },
5753   { TARGET_EXTPROC, TARGET_EXTPROC, EXTPROC, EXTPROC},
5754 };
5755 
5756 static void target_to_host_termios (void *dst, const void *src)
5757 {
5758     struct host_termios *host = dst;
5759     const struct target_termios *target = src;
5760 
5761     host->c_iflag =
5762         target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl);
5763     host->c_oflag =
5764         target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl);
5765     host->c_cflag =
5766         target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl);
5767     host->c_lflag =
5768         target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl);
5769     host->c_line = target->c_line;
5770 
5771     memset(host->c_cc, 0, sizeof(host->c_cc));
5772     host->c_cc[VINTR] = target->c_cc[TARGET_VINTR];
5773     host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT];
5774     host->c_cc[VERASE] = target->c_cc[TARGET_VERASE];
5775     host->c_cc[VKILL] = target->c_cc[TARGET_VKILL];
5776     host->c_cc[VEOF] = target->c_cc[TARGET_VEOF];
5777     host->c_cc[VTIME] = target->c_cc[TARGET_VTIME];
5778     host->c_cc[VMIN] = target->c_cc[TARGET_VMIN];
5779     host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC];
5780     host->c_cc[VSTART] = target->c_cc[TARGET_VSTART];
5781     host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP];
5782     host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP];
5783     host->c_cc[VEOL] = target->c_cc[TARGET_VEOL];
5784     host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT];
5785     host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD];
5786     host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE];
5787     host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT];
5788     host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2];
5789 }
5790 
5791 static void host_to_target_termios (void *dst, const void *src)
5792 {
5793     struct target_termios *target = dst;
5794     const struct host_termios *host = src;
5795 
5796     target->c_iflag =
5797         tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl));
5798     target->c_oflag =
5799         tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl));
5800     target->c_cflag =
5801         tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl));
5802     target->c_lflag =
5803         tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl));
5804     target->c_line = host->c_line;
5805 
5806     memset(target->c_cc, 0, sizeof(target->c_cc));
5807     target->c_cc[TARGET_VINTR] = host->c_cc[VINTR];
5808     target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT];
5809     target->c_cc[TARGET_VERASE] = host->c_cc[VERASE];
5810     target->c_cc[TARGET_VKILL] = host->c_cc[VKILL];
5811     target->c_cc[TARGET_VEOF] = host->c_cc[VEOF];
5812     target->c_cc[TARGET_VTIME] = host->c_cc[VTIME];
5813     target->c_cc[TARGET_VMIN] = host->c_cc[VMIN];
5814     target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC];
5815     target->c_cc[TARGET_VSTART] = host->c_cc[VSTART];
5816     target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP];
5817     target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP];
5818     target->c_cc[TARGET_VEOL] = host->c_cc[VEOL];
5819     target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT];
5820     target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD];
5821     target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE];
5822     target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT];
5823     target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2];
5824 }
5825 
5826 static const StructEntry struct_termios_def = {
5827     .convert = { host_to_target_termios, target_to_host_termios },
5828     .size = { sizeof(struct target_termios), sizeof(struct host_termios) },
5829     .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) },
5830     .print = print_termios,
5831 };
5832 
5833 /* If the host does not provide these bits, they may be safely discarded. */
5834 #ifndef MAP_SYNC
5835 #define MAP_SYNC 0
5836 #endif
5837 #ifndef MAP_UNINITIALIZED
5838 #define MAP_UNINITIALIZED 0
5839 #endif
5840 
5841 static const bitmask_transtbl mmap_flags_tbl[] = {
5842     { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED },
5843     { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS,
5844       MAP_ANONYMOUS, MAP_ANONYMOUS },
5845     { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN,
5846       MAP_GROWSDOWN, MAP_GROWSDOWN },
5847     { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE,
5848       MAP_DENYWRITE, MAP_DENYWRITE },
5849     { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE,
5850       MAP_EXECUTABLE, MAP_EXECUTABLE },
5851     { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED },
5852     { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE,
5853       MAP_NORESERVE, MAP_NORESERVE },
5854     { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB },
5855     /* MAP_STACK had been ignored by the kernel for quite some time.
5856        Recognize it for the target insofar as we do not want to pass
5857        it through to the host.  */
5858     { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 },
5859     { TARGET_MAP_NONBLOCK, TARGET_MAP_NONBLOCK, MAP_NONBLOCK, MAP_NONBLOCK },
5860     { TARGET_MAP_POPULATE, TARGET_MAP_POPULATE, MAP_POPULATE, MAP_POPULATE },
5861     { TARGET_MAP_FIXED_NOREPLACE, TARGET_MAP_FIXED_NOREPLACE,
5862       MAP_FIXED_NOREPLACE, MAP_FIXED_NOREPLACE },
5863     { TARGET_MAP_UNINITIALIZED, TARGET_MAP_UNINITIALIZED,
5864       MAP_UNINITIALIZED, MAP_UNINITIALIZED },
5865 };
5866 
5867 /*
5868  * Arrange for legacy / undefined architecture specific flags to be
5869  * ignored by mmap handling code.
5870  */
5871 #ifndef TARGET_MAP_32BIT
5872 #define TARGET_MAP_32BIT 0
5873 #endif
5874 #ifndef TARGET_MAP_HUGE_2MB
5875 #define TARGET_MAP_HUGE_2MB 0
5876 #endif
5877 #ifndef TARGET_MAP_HUGE_1GB
5878 #define TARGET_MAP_HUGE_1GB 0
5879 #endif
5880 
5881 static abi_long do_mmap(abi_ulong addr, abi_ulong len, int prot,
5882                         int target_flags, int fd, off_t offset)
5883 {
5884     /*
5885      * The historical set of flags that all mmap types implicitly support.
5886      */
5887     enum {
5888         TARGET_LEGACY_MAP_MASK = TARGET_MAP_SHARED
5889                                | TARGET_MAP_PRIVATE
5890                                | TARGET_MAP_FIXED
5891                                | TARGET_MAP_ANONYMOUS
5892                                | TARGET_MAP_DENYWRITE
5893                                | TARGET_MAP_EXECUTABLE
5894                                | TARGET_MAP_UNINITIALIZED
5895                                | TARGET_MAP_GROWSDOWN
5896                                | TARGET_MAP_LOCKED
5897                                | TARGET_MAP_NORESERVE
5898                                | TARGET_MAP_POPULATE
5899                                | TARGET_MAP_NONBLOCK
5900                                | TARGET_MAP_STACK
5901                                | TARGET_MAP_HUGETLB
5902                                | TARGET_MAP_32BIT
5903                                | TARGET_MAP_HUGE_2MB
5904                                | TARGET_MAP_HUGE_1GB
5905     };
5906     int host_flags;
5907 
5908     switch (target_flags & TARGET_MAP_TYPE) {
5909     case TARGET_MAP_PRIVATE:
5910         host_flags = MAP_PRIVATE;
5911         break;
5912     case TARGET_MAP_SHARED:
5913         host_flags = MAP_SHARED;
5914         break;
5915     case TARGET_MAP_SHARED_VALIDATE:
5916         /*
5917          * MAP_SYNC is only supported for MAP_SHARED_VALIDATE, and is
5918          * therefore omitted from mmap_flags_tbl and TARGET_LEGACY_MAP_MASK.
5919          */
5920         if (target_flags & ~(TARGET_LEGACY_MAP_MASK | TARGET_MAP_SYNC)) {
5921             return -TARGET_EOPNOTSUPP;
5922         }
5923         host_flags = MAP_SHARED_VALIDATE;
5924         if (target_flags & TARGET_MAP_SYNC) {
5925             host_flags |= MAP_SYNC;
5926         }
5927         break;
5928     default:
5929         return -TARGET_EINVAL;
5930     }
5931     host_flags |= target_to_host_bitmask(target_flags, mmap_flags_tbl);
5932 
5933     return get_errno(target_mmap(addr, len, prot, host_flags, fd, offset));
5934 }
5935 
5936 /*
5937  * NOTE: TARGET_ABI32 is defined for TARGET_I386 (but not for TARGET_X86_64)
5938  *       TARGET_I386 is defined if TARGET_X86_64 is defined
5939  */
5940 #if defined(TARGET_I386)
5941 
5942 /* NOTE: there is really one LDT for all the threads */
5943 static uint8_t *ldt_table;
5944 
5945 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount)
5946 {
5947     int size;
5948     void *p;
5949 
5950     if (!ldt_table)
5951         return 0;
5952     size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE;
5953     if (size > bytecount)
5954         size = bytecount;
5955     p = lock_user(VERIFY_WRITE, ptr, size, 0);
5956     if (!p)
5957         return -TARGET_EFAULT;
5958     /* ??? Should this by byteswapped?  */
5959     memcpy(p, ldt_table, size);
5960     unlock_user(p, ptr, size);
5961     return size;
5962 }
5963 
5964 /* XXX: add locking support */
5965 static abi_long write_ldt(CPUX86State *env,
5966                           abi_ulong ptr, unsigned long bytecount, int oldmode)
5967 {
5968     struct target_modify_ldt_ldt_s ldt_info;
5969     struct target_modify_ldt_ldt_s *target_ldt_info;
5970     int seg_32bit, contents, read_exec_only, limit_in_pages;
5971     int seg_not_present, useable, lm;
5972     uint32_t *lp, entry_1, entry_2;
5973 
5974     if (bytecount != sizeof(ldt_info))
5975         return -TARGET_EINVAL;
5976     if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1))
5977         return -TARGET_EFAULT;
5978     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
5979     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
5980     ldt_info.limit = tswap32(target_ldt_info->limit);
5981     ldt_info.flags = tswap32(target_ldt_info->flags);
5982     unlock_user_struct(target_ldt_info, ptr, 0);
5983 
5984     if (ldt_info.entry_number >= TARGET_LDT_ENTRIES)
5985         return -TARGET_EINVAL;
5986     seg_32bit = ldt_info.flags & 1;
5987     contents = (ldt_info.flags >> 1) & 3;
5988     read_exec_only = (ldt_info.flags >> 3) & 1;
5989     limit_in_pages = (ldt_info.flags >> 4) & 1;
5990     seg_not_present = (ldt_info.flags >> 5) & 1;
5991     useable = (ldt_info.flags >> 6) & 1;
5992 #ifdef TARGET_ABI32
5993     lm = 0;
5994 #else
5995     lm = (ldt_info.flags >> 7) & 1;
5996 #endif
5997     if (contents == 3) {
5998         if (oldmode)
5999             return -TARGET_EINVAL;
6000         if (seg_not_present == 0)
6001             return -TARGET_EINVAL;
6002     }
6003     /* allocate the LDT */
6004     if (!ldt_table) {
6005         env->ldt.base = target_mmap(0,
6006                                     TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE,
6007                                     PROT_READ|PROT_WRITE,
6008                                     MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
6009         if (env->ldt.base == -1)
6010             return -TARGET_ENOMEM;
6011         memset(g2h_untagged(env->ldt.base), 0,
6012                TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE);
6013         env->ldt.limit = 0xffff;
6014         ldt_table = g2h_untagged(env->ldt.base);
6015     }
6016 
6017     /* NOTE: same code as Linux kernel */
6018     /* Allow LDTs to be cleared by the user. */
6019     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6020         if (oldmode ||
6021             (contents == 0		&&
6022              read_exec_only == 1	&&
6023              seg_32bit == 0		&&
6024              limit_in_pages == 0	&&
6025              seg_not_present == 1	&&
6026              useable == 0 )) {
6027             entry_1 = 0;
6028             entry_2 = 0;
6029             goto install;
6030         }
6031     }
6032 
6033     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6034         (ldt_info.limit & 0x0ffff);
6035     entry_2 = (ldt_info.base_addr & 0xff000000) |
6036         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6037         (ldt_info.limit & 0xf0000) |
6038         ((read_exec_only ^ 1) << 9) |
6039         (contents << 10) |
6040         ((seg_not_present ^ 1) << 15) |
6041         (seg_32bit << 22) |
6042         (limit_in_pages << 23) |
6043         (lm << 21) |
6044         0x7000;
6045     if (!oldmode)
6046         entry_2 |= (useable << 20);
6047 
6048     /* Install the new entry ...  */
6049 install:
6050     lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3));
6051     lp[0] = tswap32(entry_1);
6052     lp[1] = tswap32(entry_2);
6053     return 0;
6054 }
6055 
6056 /* specific and weird i386 syscalls */
6057 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr,
6058                               unsigned long bytecount)
6059 {
6060     abi_long ret;
6061 
6062     switch (func) {
6063     case 0:
6064         ret = read_ldt(ptr, bytecount);
6065         break;
6066     case 1:
6067         ret = write_ldt(env, ptr, bytecount, 1);
6068         break;
6069     case 0x11:
6070         ret = write_ldt(env, ptr, bytecount, 0);
6071         break;
6072     default:
6073         ret = -TARGET_ENOSYS;
6074         break;
6075     }
6076     return ret;
6077 }
6078 
6079 #if defined(TARGET_ABI32)
6080 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr)
6081 {
6082     uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6083     struct target_modify_ldt_ldt_s ldt_info;
6084     struct target_modify_ldt_ldt_s *target_ldt_info;
6085     int seg_32bit, contents, read_exec_only, limit_in_pages;
6086     int seg_not_present, useable, lm;
6087     uint32_t *lp, entry_1, entry_2;
6088     int i;
6089 
6090     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6091     if (!target_ldt_info)
6092         return -TARGET_EFAULT;
6093     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
6094     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
6095     ldt_info.limit = tswap32(target_ldt_info->limit);
6096     ldt_info.flags = tswap32(target_ldt_info->flags);
6097     if (ldt_info.entry_number == -1) {
6098         for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) {
6099             if (gdt_table[i] == 0) {
6100                 ldt_info.entry_number = i;
6101                 target_ldt_info->entry_number = tswap32(i);
6102                 break;
6103             }
6104         }
6105     }
6106     unlock_user_struct(target_ldt_info, ptr, 1);
6107 
6108     if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN ||
6109         ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX)
6110            return -TARGET_EINVAL;
6111     seg_32bit = ldt_info.flags & 1;
6112     contents = (ldt_info.flags >> 1) & 3;
6113     read_exec_only = (ldt_info.flags >> 3) & 1;
6114     limit_in_pages = (ldt_info.flags >> 4) & 1;
6115     seg_not_present = (ldt_info.flags >> 5) & 1;
6116     useable = (ldt_info.flags >> 6) & 1;
6117 #ifdef TARGET_ABI32
6118     lm = 0;
6119 #else
6120     lm = (ldt_info.flags >> 7) & 1;
6121 #endif
6122 
6123     if (contents == 3) {
6124         if (seg_not_present == 0)
6125             return -TARGET_EINVAL;
6126     }
6127 
6128     /* NOTE: same code as Linux kernel */
6129     /* Allow LDTs to be cleared by the user. */
6130     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6131         if ((contents == 0             &&
6132              read_exec_only == 1       &&
6133              seg_32bit == 0            &&
6134              limit_in_pages == 0       &&
6135              seg_not_present == 1      &&
6136              useable == 0 )) {
6137             entry_1 = 0;
6138             entry_2 = 0;
6139             goto install;
6140         }
6141     }
6142 
6143     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6144         (ldt_info.limit & 0x0ffff);
6145     entry_2 = (ldt_info.base_addr & 0xff000000) |
6146         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6147         (ldt_info.limit & 0xf0000) |
6148         ((read_exec_only ^ 1) << 9) |
6149         (contents << 10) |
6150         ((seg_not_present ^ 1) << 15) |
6151         (seg_32bit << 22) |
6152         (limit_in_pages << 23) |
6153         (useable << 20) |
6154         (lm << 21) |
6155         0x7000;
6156 
6157     /* Install the new entry ...  */
6158 install:
6159     lp = (uint32_t *)(gdt_table + ldt_info.entry_number);
6160     lp[0] = tswap32(entry_1);
6161     lp[1] = tswap32(entry_2);
6162     return 0;
6163 }
6164 
6165 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr)
6166 {
6167     struct target_modify_ldt_ldt_s *target_ldt_info;
6168     uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6169     uint32_t base_addr, limit, flags;
6170     int seg_32bit, contents, read_exec_only, limit_in_pages, idx;
6171     int seg_not_present, useable, lm;
6172     uint32_t *lp, entry_1, entry_2;
6173 
6174     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6175     if (!target_ldt_info)
6176         return -TARGET_EFAULT;
6177     idx = tswap32(target_ldt_info->entry_number);
6178     if (idx < TARGET_GDT_ENTRY_TLS_MIN ||
6179         idx > TARGET_GDT_ENTRY_TLS_MAX) {
6180         unlock_user_struct(target_ldt_info, ptr, 1);
6181         return -TARGET_EINVAL;
6182     }
6183     lp = (uint32_t *)(gdt_table + idx);
6184     entry_1 = tswap32(lp[0]);
6185     entry_2 = tswap32(lp[1]);
6186 
6187     read_exec_only = ((entry_2 >> 9) & 1) ^ 1;
6188     contents = (entry_2 >> 10) & 3;
6189     seg_not_present = ((entry_2 >> 15) & 1) ^ 1;
6190     seg_32bit = (entry_2 >> 22) & 1;
6191     limit_in_pages = (entry_2 >> 23) & 1;
6192     useable = (entry_2 >> 20) & 1;
6193 #ifdef TARGET_ABI32
6194     lm = 0;
6195 #else
6196     lm = (entry_2 >> 21) & 1;
6197 #endif
6198     flags = (seg_32bit << 0) | (contents << 1) |
6199         (read_exec_only << 3) | (limit_in_pages << 4) |
6200         (seg_not_present << 5) | (useable << 6) | (lm << 7);
6201     limit = (entry_1 & 0xffff) | (entry_2  & 0xf0000);
6202     base_addr = (entry_1 >> 16) |
6203         (entry_2 & 0xff000000) |
6204         ((entry_2 & 0xff) << 16);
6205     target_ldt_info->base_addr = tswapal(base_addr);
6206     target_ldt_info->limit = tswap32(limit);
6207     target_ldt_info->flags = tswap32(flags);
6208     unlock_user_struct(target_ldt_info, ptr, 1);
6209     return 0;
6210 }
6211 
6212 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6213 {
6214     return -TARGET_ENOSYS;
6215 }
6216 #else
6217 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6218 {
6219     abi_long ret = 0;
6220     abi_ulong val;
6221     int idx;
6222 
6223     switch(code) {
6224     case TARGET_ARCH_SET_GS:
6225     case TARGET_ARCH_SET_FS:
6226         if (code == TARGET_ARCH_SET_GS)
6227             idx = R_GS;
6228         else
6229             idx = R_FS;
6230         cpu_x86_load_seg(env, idx, 0);
6231         env->segs[idx].base = addr;
6232         break;
6233     case TARGET_ARCH_GET_GS:
6234     case TARGET_ARCH_GET_FS:
6235         if (code == TARGET_ARCH_GET_GS)
6236             idx = R_GS;
6237         else
6238             idx = R_FS;
6239         val = env->segs[idx].base;
6240         if (put_user(val, addr, abi_ulong))
6241             ret = -TARGET_EFAULT;
6242         break;
6243     default:
6244         ret = -TARGET_EINVAL;
6245         break;
6246     }
6247     return ret;
6248 }
6249 #endif /* defined(TARGET_ABI32 */
6250 #endif /* defined(TARGET_I386) */
6251 
6252 /*
6253  * These constants are generic.  Supply any that are missing from the host.
6254  */
6255 #ifndef PR_SET_NAME
6256 # define PR_SET_NAME    15
6257 # define PR_GET_NAME    16
6258 #endif
6259 #ifndef PR_SET_FP_MODE
6260 # define PR_SET_FP_MODE 45
6261 # define PR_GET_FP_MODE 46
6262 # define PR_FP_MODE_FR   (1 << 0)
6263 # define PR_FP_MODE_FRE  (1 << 1)
6264 #endif
6265 #ifndef PR_SVE_SET_VL
6266 # define PR_SVE_SET_VL  50
6267 # define PR_SVE_GET_VL  51
6268 # define PR_SVE_VL_LEN_MASK  0xffff
6269 # define PR_SVE_VL_INHERIT   (1 << 17)
6270 #endif
6271 #ifndef PR_PAC_RESET_KEYS
6272 # define PR_PAC_RESET_KEYS  54
6273 # define PR_PAC_APIAKEY   (1 << 0)
6274 # define PR_PAC_APIBKEY   (1 << 1)
6275 # define PR_PAC_APDAKEY   (1 << 2)
6276 # define PR_PAC_APDBKEY   (1 << 3)
6277 # define PR_PAC_APGAKEY   (1 << 4)
6278 #endif
6279 #ifndef PR_SET_TAGGED_ADDR_CTRL
6280 # define PR_SET_TAGGED_ADDR_CTRL 55
6281 # define PR_GET_TAGGED_ADDR_CTRL 56
6282 # define PR_TAGGED_ADDR_ENABLE  (1UL << 0)
6283 #endif
6284 #ifndef PR_MTE_TCF_SHIFT
6285 # define PR_MTE_TCF_SHIFT       1
6286 # define PR_MTE_TCF_NONE        (0UL << PR_MTE_TCF_SHIFT)
6287 # define PR_MTE_TCF_SYNC        (1UL << PR_MTE_TCF_SHIFT)
6288 # define PR_MTE_TCF_ASYNC       (2UL << PR_MTE_TCF_SHIFT)
6289 # define PR_MTE_TCF_MASK        (3UL << PR_MTE_TCF_SHIFT)
6290 # define PR_MTE_TAG_SHIFT       3
6291 # define PR_MTE_TAG_MASK        (0xffffUL << PR_MTE_TAG_SHIFT)
6292 #endif
6293 #ifndef PR_SET_IO_FLUSHER
6294 # define PR_SET_IO_FLUSHER 57
6295 # define PR_GET_IO_FLUSHER 58
6296 #endif
6297 #ifndef PR_SET_SYSCALL_USER_DISPATCH
6298 # define PR_SET_SYSCALL_USER_DISPATCH 59
6299 #endif
6300 #ifndef PR_SME_SET_VL
6301 # define PR_SME_SET_VL  63
6302 # define PR_SME_GET_VL  64
6303 # define PR_SME_VL_LEN_MASK  0xffff
6304 # define PR_SME_VL_INHERIT   (1 << 17)
6305 #endif
6306 
6307 #include "target_prctl.h"
6308 
6309 static abi_long do_prctl_inval0(CPUArchState *env)
6310 {
6311     return -TARGET_EINVAL;
6312 }
6313 
6314 static abi_long do_prctl_inval1(CPUArchState *env, abi_long arg2)
6315 {
6316     return -TARGET_EINVAL;
6317 }
6318 
6319 #ifndef do_prctl_get_fp_mode
6320 #define do_prctl_get_fp_mode do_prctl_inval0
6321 #endif
6322 #ifndef do_prctl_set_fp_mode
6323 #define do_prctl_set_fp_mode do_prctl_inval1
6324 #endif
6325 #ifndef do_prctl_sve_get_vl
6326 #define do_prctl_sve_get_vl do_prctl_inval0
6327 #endif
6328 #ifndef do_prctl_sve_set_vl
6329 #define do_prctl_sve_set_vl do_prctl_inval1
6330 #endif
6331 #ifndef do_prctl_reset_keys
6332 #define do_prctl_reset_keys do_prctl_inval1
6333 #endif
6334 #ifndef do_prctl_set_tagged_addr_ctrl
6335 #define do_prctl_set_tagged_addr_ctrl do_prctl_inval1
6336 #endif
6337 #ifndef do_prctl_get_tagged_addr_ctrl
6338 #define do_prctl_get_tagged_addr_ctrl do_prctl_inval0
6339 #endif
6340 #ifndef do_prctl_get_unalign
6341 #define do_prctl_get_unalign do_prctl_inval1
6342 #endif
6343 #ifndef do_prctl_set_unalign
6344 #define do_prctl_set_unalign do_prctl_inval1
6345 #endif
6346 #ifndef do_prctl_sme_get_vl
6347 #define do_prctl_sme_get_vl do_prctl_inval0
6348 #endif
6349 #ifndef do_prctl_sme_set_vl
6350 #define do_prctl_sme_set_vl do_prctl_inval1
6351 #endif
6352 
6353 static abi_long do_prctl(CPUArchState *env, abi_long option, abi_long arg2,
6354                          abi_long arg3, abi_long arg4, abi_long arg5)
6355 {
6356     abi_long ret;
6357 
6358     switch (option) {
6359     case PR_GET_PDEATHSIG:
6360         {
6361             int deathsig;
6362             ret = get_errno(prctl(PR_GET_PDEATHSIG, &deathsig,
6363                                   arg3, arg4, arg5));
6364             if (!is_error(ret) &&
6365                 put_user_s32(host_to_target_signal(deathsig), arg2)) {
6366                 return -TARGET_EFAULT;
6367             }
6368             return ret;
6369         }
6370     case PR_SET_PDEATHSIG:
6371         return get_errno(prctl(PR_SET_PDEATHSIG, target_to_host_signal(arg2),
6372                                arg3, arg4, arg5));
6373     case PR_GET_NAME:
6374         {
6375             void *name = lock_user(VERIFY_WRITE, arg2, 16, 1);
6376             if (!name) {
6377                 return -TARGET_EFAULT;
6378             }
6379             ret = get_errno(prctl(PR_GET_NAME, (uintptr_t)name,
6380                                   arg3, arg4, arg5));
6381             unlock_user(name, arg2, 16);
6382             return ret;
6383         }
6384     case PR_SET_NAME:
6385         {
6386             void *name = lock_user(VERIFY_READ, arg2, 16, 1);
6387             if (!name) {
6388                 return -TARGET_EFAULT;
6389             }
6390             ret = get_errno(prctl(PR_SET_NAME, (uintptr_t)name,
6391                                   arg3, arg4, arg5));
6392             unlock_user(name, arg2, 0);
6393             return ret;
6394         }
6395     case PR_GET_FP_MODE:
6396         return do_prctl_get_fp_mode(env);
6397     case PR_SET_FP_MODE:
6398         return do_prctl_set_fp_mode(env, arg2);
6399     case PR_SVE_GET_VL:
6400         return do_prctl_sve_get_vl(env);
6401     case PR_SVE_SET_VL:
6402         return do_prctl_sve_set_vl(env, arg2);
6403     case PR_SME_GET_VL:
6404         return do_prctl_sme_get_vl(env);
6405     case PR_SME_SET_VL:
6406         return do_prctl_sme_set_vl(env, arg2);
6407     case PR_PAC_RESET_KEYS:
6408         if (arg3 || arg4 || arg5) {
6409             return -TARGET_EINVAL;
6410         }
6411         return do_prctl_reset_keys(env, arg2);
6412     case PR_SET_TAGGED_ADDR_CTRL:
6413         if (arg3 || arg4 || arg5) {
6414             return -TARGET_EINVAL;
6415         }
6416         return do_prctl_set_tagged_addr_ctrl(env, arg2);
6417     case PR_GET_TAGGED_ADDR_CTRL:
6418         if (arg2 || arg3 || arg4 || arg5) {
6419             return -TARGET_EINVAL;
6420         }
6421         return do_prctl_get_tagged_addr_ctrl(env);
6422 
6423     case PR_GET_UNALIGN:
6424         return do_prctl_get_unalign(env, arg2);
6425     case PR_SET_UNALIGN:
6426         return do_prctl_set_unalign(env, arg2);
6427 
6428     case PR_CAP_AMBIENT:
6429     case PR_CAPBSET_READ:
6430     case PR_CAPBSET_DROP:
6431     case PR_GET_DUMPABLE:
6432     case PR_SET_DUMPABLE:
6433     case PR_GET_KEEPCAPS:
6434     case PR_SET_KEEPCAPS:
6435     case PR_GET_SECUREBITS:
6436     case PR_SET_SECUREBITS:
6437     case PR_GET_TIMING:
6438     case PR_SET_TIMING:
6439     case PR_GET_TIMERSLACK:
6440     case PR_SET_TIMERSLACK:
6441     case PR_MCE_KILL:
6442     case PR_MCE_KILL_GET:
6443     case PR_GET_NO_NEW_PRIVS:
6444     case PR_SET_NO_NEW_PRIVS:
6445     case PR_GET_IO_FLUSHER:
6446     case PR_SET_IO_FLUSHER:
6447     case PR_SET_CHILD_SUBREAPER:
6448     case PR_GET_SPECULATION_CTRL:
6449     case PR_SET_SPECULATION_CTRL:
6450         /* Some prctl options have no pointer arguments and we can pass on. */
6451         return get_errno(prctl(option, arg2, arg3, arg4, arg5));
6452 
6453     case PR_GET_CHILD_SUBREAPER:
6454         {
6455             int val;
6456             ret = get_errno(prctl(PR_GET_CHILD_SUBREAPER, &val,
6457                                   arg3, arg4, arg5));
6458             if (!is_error(ret) && put_user_s32(val, arg2)) {
6459                 return -TARGET_EFAULT;
6460             }
6461             return ret;
6462         }
6463 
6464     case PR_GET_TID_ADDRESS:
6465         {
6466             TaskState *ts = get_task_state(env_cpu(env));
6467             return put_user_ual(ts->child_tidptr, arg2);
6468         }
6469 
6470     case PR_GET_FPEXC:
6471     case PR_SET_FPEXC:
6472         /* Was used for SPE on PowerPC. */
6473         return -TARGET_EINVAL;
6474 
6475     case PR_GET_ENDIAN:
6476     case PR_SET_ENDIAN:
6477     case PR_GET_FPEMU:
6478     case PR_SET_FPEMU:
6479     case PR_SET_MM:
6480     case PR_GET_SECCOMP:
6481     case PR_SET_SECCOMP:
6482     case PR_SET_SYSCALL_USER_DISPATCH:
6483     case PR_GET_THP_DISABLE:
6484     case PR_SET_THP_DISABLE:
6485     case PR_GET_TSC:
6486     case PR_SET_TSC:
6487         /* Disable to prevent the target disabling stuff we need. */
6488         return -TARGET_EINVAL;
6489 
6490     default:
6491         qemu_log_mask(LOG_UNIMP, "Unsupported prctl: " TARGET_ABI_FMT_ld "\n",
6492                       option);
6493         return -TARGET_EINVAL;
6494     }
6495 }
6496 
6497 #define NEW_STACK_SIZE 0x40000
6498 
6499 
6500 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER;
6501 typedef struct {
6502     CPUArchState *env;
6503     pthread_mutex_t mutex;
6504     pthread_cond_t cond;
6505     pthread_t thread;
6506     uint32_t tid;
6507     abi_ulong child_tidptr;
6508     abi_ulong parent_tidptr;
6509     sigset_t sigmask;
6510 } new_thread_info;
6511 
6512 static void *clone_func(void *arg)
6513 {
6514     new_thread_info *info = arg;
6515     CPUArchState *env;
6516     CPUState *cpu;
6517     TaskState *ts;
6518 
6519     rcu_register_thread();
6520     tcg_register_thread();
6521     env = info->env;
6522     cpu = env_cpu(env);
6523     thread_cpu = cpu;
6524     ts = get_task_state(cpu);
6525     info->tid = sys_gettid();
6526     task_settid(ts);
6527     if (info->child_tidptr)
6528         put_user_u32(info->tid, info->child_tidptr);
6529     if (info->parent_tidptr)
6530         put_user_u32(info->tid, info->parent_tidptr);
6531     qemu_guest_random_seed_thread_part2(cpu->random_seed);
6532     /* Enable signals.  */
6533     sigprocmask(SIG_SETMASK, &info->sigmask, NULL);
6534     /* Signal to the parent that we're ready.  */
6535     pthread_mutex_lock(&info->mutex);
6536     pthread_cond_broadcast(&info->cond);
6537     pthread_mutex_unlock(&info->mutex);
6538     /* Wait until the parent has finished initializing the tls state.  */
6539     pthread_mutex_lock(&clone_lock);
6540     pthread_mutex_unlock(&clone_lock);
6541     cpu_loop(env);
6542     /* never exits */
6543     return NULL;
6544 }
6545 
6546 /* do_fork() Must return host values and target errnos (unlike most
6547    do_*() functions). */
6548 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp,
6549                    abi_ulong parent_tidptr, target_ulong newtls,
6550                    abi_ulong child_tidptr)
6551 {
6552     CPUState *cpu = env_cpu(env);
6553     int ret;
6554     TaskState *ts;
6555     CPUState *new_cpu;
6556     CPUArchState *new_env;
6557     sigset_t sigmask;
6558 
6559     flags &= ~CLONE_IGNORED_FLAGS;
6560 
6561     /* Emulate vfork() with fork() */
6562     if (flags & CLONE_VFORK)
6563         flags &= ~(CLONE_VFORK | CLONE_VM);
6564 
6565     if (flags & CLONE_VM) {
6566         TaskState *parent_ts = get_task_state(cpu);
6567         new_thread_info info;
6568         pthread_attr_t attr;
6569 
6570         if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) ||
6571             (flags & CLONE_INVALID_THREAD_FLAGS)) {
6572             return -TARGET_EINVAL;
6573         }
6574 
6575         ts = g_new0(TaskState, 1);
6576         init_task_state(ts);
6577 
6578         /* Grab a mutex so that thread setup appears atomic.  */
6579         pthread_mutex_lock(&clone_lock);
6580 
6581         /*
6582          * If this is our first additional thread, we need to ensure we
6583          * generate code for parallel execution and flush old translations.
6584          * Do this now so that the copy gets CF_PARALLEL too.
6585          */
6586         if (!tcg_cflags_has(cpu, CF_PARALLEL)) {
6587             tcg_cflags_set(cpu, CF_PARALLEL);
6588             tb_flush(cpu);
6589         }
6590 
6591         /* we create a new CPU instance. */
6592         new_env = cpu_copy(env);
6593         /* Init regs that differ from the parent.  */
6594         cpu_clone_regs_child(new_env, newsp, flags);
6595         cpu_clone_regs_parent(env, flags);
6596         new_cpu = env_cpu(new_env);
6597         new_cpu->opaque = ts;
6598         ts->bprm = parent_ts->bprm;
6599         ts->info = parent_ts->info;
6600         ts->signal_mask = parent_ts->signal_mask;
6601 
6602         if (flags & CLONE_CHILD_CLEARTID) {
6603             ts->child_tidptr = child_tidptr;
6604         }
6605 
6606         if (flags & CLONE_SETTLS) {
6607             cpu_set_tls (new_env, newtls);
6608         }
6609 
6610         memset(&info, 0, sizeof(info));
6611         pthread_mutex_init(&info.mutex, NULL);
6612         pthread_mutex_lock(&info.mutex);
6613         pthread_cond_init(&info.cond, NULL);
6614         info.env = new_env;
6615         if (flags & CLONE_CHILD_SETTID) {
6616             info.child_tidptr = child_tidptr;
6617         }
6618         if (flags & CLONE_PARENT_SETTID) {
6619             info.parent_tidptr = parent_tidptr;
6620         }
6621 
6622         ret = pthread_attr_init(&attr);
6623         ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE);
6624         ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
6625         /* It is not safe to deliver signals until the child has finished
6626            initializing, so temporarily block all signals.  */
6627         sigfillset(&sigmask);
6628         sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask);
6629         cpu->random_seed = qemu_guest_random_seed_thread_part1();
6630 
6631         ret = pthread_create(&info.thread, &attr, clone_func, &info);
6632         /* TODO: Free new CPU state if thread creation failed.  */
6633 
6634         sigprocmask(SIG_SETMASK, &info.sigmask, NULL);
6635         pthread_attr_destroy(&attr);
6636         if (ret == 0) {
6637             /* Wait for the child to initialize.  */
6638             pthread_cond_wait(&info.cond, &info.mutex);
6639             ret = info.tid;
6640         } else {
6641             ret = -1;
6642         }
6643         pthread_mutex_unlock(&info.mutex);
6644         pthread_cond_destroy(&info.cond);
6645         pthread_mutex_destroy(&info.mutex);
6646         pthread_mutex_unlock(&clone_lock);
6647     } else {
6648         /* if no CLONE_VM, we consider it is a fork */
6649         if (flags & CLONE_INVALID_FORK_FLAGS) {
6650             return -TARGET_EINVAL;
6651         }
6652 
6653         /* We can't support custom termination signals */
6654         if ((flags & CSIGNAL) != TARGET_SIGCHLD) {
6655             return -TARGET_EINVAL;
6656         }
6657 
6658 #if !defined(__NR_pidfd_open) || !defined(TARGET_NR_pidfd_open)
6659         if (flags & CLONE_PIDFD) {
6660             return -TARGET_EINVAL;
6661         }
6662 #endif
6663 
6664         /* Can not allow CLONE_PIDFD with CLONE_PARENT_SETTID */
6665         if ((flags & CLONE_PIDFD) && (flags & CLONE_PARENT_SETTID)) {
6666             return -TARGET_EINVAL;
6667         }
6668 
6669         if (block_signals()) {
6670             return -QEMU_ERESTARTSYS;
6671         }
6672 
6673         fork_start();
6674         ret = fork();
6675         if (ret == 0) {
6676             /* Child Process.  */
6677             cpu_clone_regs_child(env, newsp, flags);
6678             fork_end(ret);
6679             /* There is a race condition here.  The parent process could
6680                theoretically read the TID in the child process before the child
6681                tid is set.  This would require using either ptrace
6682                (not implemented) or having *_tidptr to point at a shared memory
6683                mapping.  We can't repeat the spinlock hack used above because
6684                the child process gets its own copy of the lock.  */
6685             if (flags & CLONE_CHILD_SETTID)
6686                 put_user_u32(sys_gettid(), child_tidptr);
6687             if (flags & CLONE_PARENT_SETTID)
6688                 put_user_u32(sys_gettid(), parent_tidptr);
6689             ts = get_task_state(cpu);
6690             if (flags & CLONE_SETTLS)
6691                 cpu_set_tls (env, newtls);
6692             if (flags & CLONE_CHILD_CLEARTID)
6693                 ts->child_tidptr = child_tidptr;
6694         } else {
6695             cpu_clone_regs_parent(env, flags);
6696             if (flags & CLONE_PIDFD) {
6697                 int pid_fd = 0;
6698 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
6699                 int pid_child = ret;
6700                 pid_fd = pidfd_open(pid_child, 0);
6701                 if (pid_fd >= 0) {
6702                         fcntl(pid_fd, F_SETFD, fcntl(pid_fd, F_GETFL)
6703                                                | FD_CLOEXEC);
6704                 } else {
6705                         pid_fd = 0;
6706                 }
6707 #endif
6708                 put_user_u32(pid_fd, parent_tidptr);
6709             }
6710             fork_end(ret);
6711         }
6712         g_assert(!cpu_in_exclusive_context(cpu));
6713     }
6714     return ret;
6715 }
6716 
6717 /* warning : doesn't handle linux specific flags... */
6718 static int target_to_host_fcntl_cmd(int cmd)
6719 {
6720     int ret;
6721 
6722     switch(cmd) {
6723     case TARGET_F_DUPFD:
6724     case TARGET_F_GETFD:
6725     case TARGET_F_SETFD:
6726     case TARGET_F_GETFL:
6727     case TARGET_F_SETFL:
6728     case TARGET_F_OFD_GETLK:
6729     case TARGET_F_OFD_SETLK:
6730     case TARGET_F_OFD_SETLKW:
6731         ret = cmd;
6732         break;
6733     case TARGET_F_GETLK:
6734         ret = F_GETLK64;
6735         break;
6736     case TARGET_F_SETLK:
6737         ret = F_SETLK64;
6738         break;
6739     case TARGET_F_SETLKW:
6740         ret = F_SETLKW64;
6741         break;
6742     case TARGET_F_GETOWN:
6743         ret = F_GETOWN;
6744         break;
6745     case TARGET_F_SETOWN:
6746         ret = F_SETOWN;
6747         break;
6748     case TARGET_F_GETSIG:
6749         ret = F_GETSIG;
6750         break;
6751     case TARGET_F_SETSIG:
6752         ret = F_SETSIG;
6753         break;
6754 #if TARGET_ABI_BITS == 32
6755     case TARGET_F_GETLK64:
6756         ret = F_GETLK64;
6757         break;
6758     case TARGET_F_SETLK64:
6759         ret = F_SETLK64;
6760         break;
6761     case TARGET_F_SETLKW64:
6762         ret = F_SETLKW64;
6763         break;
6764 #endif
6765     case TARGET_F_SETLEASE:
6766         ret = F_SETLEASE;
6767         break;
6768     case TARGET_F_GETLEASE:
6769         ret = F_GETLEASE;
6770         break;
6771 #ifdef F_DUPFD_CLOEXEC
6772     case TARGET_F_DUPFD_CLOEXEC:
6773         ret = F_DUPFD_CLOEXEC;
6774         break;
6775 #endif
6776     case TARGET_F_NOTIFY:
6777         ret = F_NOTIFY;
6778         break;
6779 #ifdef F_GETOWN_EX
6780     case TARGET_F_GETOWN_EX:
6781         ret = F_GETOWN_EX;
6782         break;
6783 #endif
6784 #ifdef F_SETOWN_EX
6785     case TARGET_F_SETOWN_EX:
6786         ret = F_SETOWN_EX;
6787         break;
6788 #endif
6789 #ifdef F_SETPIPE_SZ
6790     case TARGET_F_SETPIPE_SZ:
6791         ret = F_SETPIPE_SZ;
6792         break;
6793     case TARGET_F_GETPIPE_SZ:
6794         ret = F_GETPIPE_SZ;
6795         break;
6796 #endif
6797 #ifdef F_ADD_SEALS
6798     case TARGET_F_ADD_SEALS:
6799         ret = F_ADD_SEALS;
6800         break;
6801     case TARGET_F_GET_SEALS:
6802         ret = F_GET_SEALS;
6803         break;
6804 #endif
6805     default:
6806         ret = -TARGET_EINVAL;
6807         break;
6808     }
6809 
6810 #if defined(__powerpc64__)
6811     /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and
6812      * is not supported by kernel. The glibc fcntl call actually adjusts
6813      * them to 5, 6 and 7 before making the syscall(). Since we make the
6814      * syscall directly, adjust to what is supported by the kernel.
6815      */
6816     if (ret >= F_GETLK64 && ret <= F_SETLKW64) {
6817         ret -= F_GETLK64 - 5;
6818     }
6819 #endif
6820 
6821     return ret;
6822 }
6823 
6824 #define FLOCK_TRANSTBL \
6825     switch (type) { \
6826     TRANSTBL_CONVERT(F_RDLCK); \
6827     TRANSTBL_CONVERT(F_WRLCK); \
6828     TRANSTBL_CONVERT(F_UNLCK); \
6829     }
6830 
6831 static int target_to_host_flock(int type)
6832 {
6833 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a
6834     FLOCK_TRANSTBL
6835 #undef  TRANSTBL_CONVERT
6836     return -TARGET_EINVAL;
6837 }
6838 
6839 static int host_to_target_flock(int type)
6840 {
6841 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a
6842     FLOCK_TRANSTBL
6843 #undef  TRANSTBL_CONVERT
6844     /* if we don't know how to convert the value coming
6845      * from the host we copy to the target field as-is
6846      */
6847     return type;
6848 }
6849 
6850 static inline abi_long copy_from_user_flock(struct flock64 *fl,
6851                                             abi_ulong target_flock_addr)
6852 {
6853     struct target_flock *target_fl;
6854     int l_type;
6855 
6856     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6857         return -TARGET_EFAULT;
6858     }
6859 
6860     __get_user(l_type, &target_fl->l_type);
6861     l_type = target_to_host_flock(l_type);
6862     if (l_type < 0) {
6863         return l_type;
6864     }
6865     fl->l_type = l_type;
6866     __get_user(fl->l_whence, &target_fl->l_whence);
6867     __get_user(fl->l_start, &target_fl->l_start);
6868     __get_user(fl->l_len, &target_fl->l_len);
6869     __get_user(fl->l_pid, &target_fl->l_pid);
6870     unlock_user_struct(target_fl, target_flock_addr, 0);
6871     return 0;
6872 }
6873 
6874 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr,
6875                                           const struct flock64 *fl)
6876 {
6877     struct target_flock *target_fl;
6878     short l_type;
6879 
6880     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6881         return -TARGET_EFAULT;
6882     }
6883 
6884     l_type = host_to_target_flock(fl->l_type);
6885     __put_user(l_type, &target_fl->l_type);
6886     __put_user(fl->l_whence, &target_fl->l_whence);
6887     __put_user(fl->l_start, &target_fl->l_start);
6888     __put_user(fl->l_len, &target_fl->l_len);
6889     __put_user(fl->l_pid, &target_fl->l_pid);
6890     unlock_user_struct(target_fl, target_flock_addr, 1);
6891     return 0;
6892 }
6893 
6894 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr);
6895 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl);
6896 
6897 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
6898 struct target_oabi_flock64 {
6899     abi_short l_type;
6900     abi_short l_whence;
6901     abi_llong l_start;
6902     abi_llong l_len;
6903     abi_int   l_pid;
6904 } QEMU_PACKED;
6905 
6906 static inline abi_long copy_from_user_oabi_flock64(struct flock64 *fl,
6907                                                    abi_ulong target_flock_addr)
6908 {
6909     struct target_oabi_flock64 *target_fl;
6910     int l_type;
6911 
6912     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6913         return -TARGET_EFAULT;
6914     }
6915 
6916     __get_user(l_type, &target_fl->l_type);
6917     l_type = target_to_host_flock(l_type);
6918     if (l_type < 0) {
6919         return l_type;
6920     }
6921     fl->l_type = l_type;
6922     __get_user(fl->l_whence, &target_fl->l_whence);
6923     __get_user(fl->l_start, &target_fl->l_start);
6924     __get_user(fl->l_len, &target_fl->l_len);
6925     __get_user(fl->l_pid, &target_fl->l_pid);
6926     unlock_user_struct(target_fl, target_flock_addr, 0);
6927     return 0;
6928 }
6929 
6930 static inline abi_long copy_to_user_oabi_flock64(abi_ulong target_flock_addr,
6931                                                  const struct flock64 *fl)
6932 {
6933     struct target_oabi_flock64 *target_fl;
6934     short l_type;
6935 
6936     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6937         return -TARGET_EFAULT;
6938     }
6939 
6940     l_type = host_to_target_flock(fl->l_type);
6941     __put_user(l_type, &target_fl->l_type);
6942     __put_user(fl->l_whence, &target_fl->l_whence);
6943     __put_user(fl->l_start, &target_fl->l_start);
6944     __put_user(fl->l_len, &target_fl->l_len);
6945     __put_user(fl->l_pid, &target_fl->l_pid);
6946     unlock_user_struct(target_fl, target_flock_addr, 1);
6947     return 0;
6948 }
6949 #endif
6950 
6951 static inline abi_long copy_from_user_flock64(struct flock64 *fl,
6952                                               abi_ulong target_flock_addr)
6953 {
6954     struct target_flock64 *target_fl;
6955     int l_type;
6956 
6957     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6958         return -TARGET_EFAULT;
6959     }
6960 
6961     __get_user(l_type, &target_fl->l_type);
6962     l_type = target_to_host_flock(l_type);
6963     if (l_type < 0) {
6964         return l_type;
6965     }
6966     fl->l_type = l_type;
6967     __get_user(fl->l_whence, &target_fl->l_whence);
6968     __get_user(fl->l_start, &target_fl->l_start);
6969     __get_user(fl->l_len, &target_fl->l_len);
6970     __get_user(fl->l_pid, &target_fl->l_pid);
6971     unlock_user_struct(target_fl, target_flock_addr, 0);
6972     return 0;
6973 }
6974 
6975 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr,
6976                                             const struct flock64 *fl)
6977 {
6978     struct target_flock64 *target_fl;
6979     short l_type;
6980 
6981     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6982         return -TARGET_EFAULT;
6983     }
6984 
6985     l_type = host_to_target_flock(fl->l_type);
6986     __put_user(l_type, &target_fl->l_type);
6987     __put_user(fl->l_whence, &target_fl->l_whence);
6988     __put_user(fl->l_start, &target_fl->l_start);
6989     __put_user(fl->l_len, &target_fl->l_len);
6990     __put_user(fl->l_pid, &target_fl->l_pid);
6991     unlock_user_struct(target_fl, target_flock_addr, 1);
6992     return 0;
6993 }
6994 
6995 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg)
6996 {
6997     struct flock64 fl64;
6998 #ifdef F_GETOWN_EX
6999     struct f_owner_ex fox;
7000     struct target_f_owner_ex *target_fox;
7001 #endif
7002     abi_long ret;
7003     int host_cmd = target_to_host_fcntl_cmd(cmd);
7004 
7005     if (host_cmd == -TARGET_EINVAL)
7006 	    return host_cmd;
7007 
7008     switch(cmd) {
7009     case TARGET_F_GETLK:
7010         ret = copy_from_user_flock(&fl64, arg);
7011         if (ret) {
7012             return ret;
7013         }
7014         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7015         if (ret == 0) {
7016             ret = copy_to_user_flock(arg, &fl64);
7017         }
7018         break;
7019 
7020     case TARGET_F_SETLK:
7021     case TARGET_F_SETLKW:
7022         ret = copy_from_user_flock(&fl64, arg);
7023         if (ret) {
7024             return ret;
7025         }
7026         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7027         break;
7028 
7029     case TARGET_F_GETLK64:
7030     case TARGET_F_OFD_GETLK:
7031         ret = copy_from_user_flock64(&fl64, arg);
7032         if (ret) {
7033             return ret;
7034         }
7035         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7036         if (ret == 0) {
7037             ret = copy_to_user_flock64(arg, &fl64);
7038         }
7039         break;
7040     case TARGET_F_SETLK64:
7041     case TARGET_F_SETLKW64:
7042     case TARGET_F_OFD_SETLK:
7043     case TARGET_F_OFD_SETLKW:
7044         ret = copy_from_user_flock64(&fl64, arg);
7045         if (ret) {
7046             return ret;
7047         }
7048         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7049         break;
7050 
7051     case TARGET_F_GETFL:
7052         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7053         if (ret >= 0) {
7054             ret = host_to_target_bitmask(ret, fcntl_flags_tbl);
7055             /* tell 32-bit guests it uses largefile on 64-bit hosts: */
7056             if (O_LARGEFILE == 0 && HOST_LONG_BITS == 64) {
7057                 ret |= TARGET_O_LARGEFILE;
7058             }
7059         }
7060         break;
7061 
7062     case TARGET_F_SETFL:
7063         ret = get_errno(safe_fcntl(fd, host_cmd,
7064                                    target_to_host_bitmask(arg,
7065                                                           fcntl_flags_tbl)));
7066         break;
7067 
7068 #ifdef F_GETOWN_EX
7069     case TARGET_F_GETOWN_EX:
7070         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7071         if (ret >= 0) {
7072             if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0))
7073                 return -TARGET_EFAULT;
7074             target_fox->type = tswap32(fox.type);
7075             target_fox->pid = tswap32(fox.pid);
7076             unlock_user_struct(target_fox, arg, 1);
7077         }
7078         break;
7079 #endif
7080 
7081 #ifdef F_SETOWN_EX
7082     case TARGET_F_SETOWN_EX:
7083         if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1))
7084             return -TARGET_EFAULT;
7085         fox.type = tswap32(target_fox->type);
7086         fox.pid = tswap32(target_fox->pid);
7087         unlock_user_struct(target_fox, arg, 0);
7088         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7089         break;
7090 #endif
7091 
7092     case TARGET_F_SETSIG:
7093         ret = get_errno(safe_fcntl(fd, host_cmd, target_to_host_signal(arg)));
7094         break;
7095 
7096     case TARGET_F_GETSIG:
7097         ret = host_to_target_signal(get_errno(safe_fcntl(fd, host_cmd, arg)));
7098         break;
7099 
7100     case TARGET_F_SETOWN:
7101     case TARGET_F_GETOWN:
7102     case TARGET_F_SETLEASE:
7103     case TARGET_F_GETLEASE:
7104     case TARGET_F_SETPIPE_SZ:
7105     case TARGET_F_GETPIPE_SZ:
7106     case TARGET_F_ADD_SEALS:
7107     case TARGET_F_GET_SEALS:
7108         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7109         break;
7110 
7111     default:
7112         ret = get_errno(safe_fcntl(fd, cmd, arg));
7113         break;
7114     }
7115     return ret;
7116 }
7117 
7118 #ifdef USE_UID16
7119 
7120 static inline int high2lowuid(int uid)
7121 {
7122     if (uid > 65535)
7123         return 65534;
7124     else
7125         return uid;
7126 }
7127 
7128 static inline int high2lowgid(int gid)
7129 {
7130     if (gid > 65535)
7131         return 65534;
7132     else
7133         return gid;
7134 }
7135 
7136 static inline int low2highuid(int uid)
7137 {
7138     if ((int16_t)uid == -1)
7139         return -1;
7140     else
7141         return uid;
7142 }
7143 
7144 static inline int low2highgid(int gid)
7145 {
7146     if ((int16_t)gid == -1)
7147         return -1;
7148     else
7149         return gid;
7150 }
7151 static inline int tswapid(int id)
7152 {
7153     return tswap16(id);
7154 }
7155 
7156 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
7157 
7158 #else /* !USE_UID16 */
7159 static inline int high2lowuid(int uid)
7160 {
7161     return uid;
7162 }
7163 static inline int high2lowgid(int gid)
7164 {
7165     return gid;
7166 }
7167 static inline int low2highuid(int uid)
7168 {
7169     return uid;
7170 }
7171 static inline int low2highgid(int gid)
7172 {
7173     return gid;
7174 }
7175 static inline int tswapid(int id)
7176 {
7177     return tswap32(id);
7178 }
7179 
7180 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
7181 
7182 #endif /* USE_UID16 */
7183 
7184 /* We must do direct syscalls for setting UID/GID, because we want to
7185  * implement the Linux system call semantics of "change only for this thread",
7186  * not the libc/POSIX semantics of "change for all threads in process".
7187  * (See http://ewontfix.com/17/ for more details.)
7188  * We use the 32-bit version of the syscalls if present; if it is not
7189  * then either the host architecture supports 32-bit UIDs natively with
7190  * the standard syscall, or the 16-bit UID is the best we can do.
7191  */
7192 #ifdef __NR_setuid32
7193 #define __NR_sys_setuid __NR_setuid32
7194 #else
7195 #define __NR_sys_setuid __NR_setuid
7196 #endif
7197 #ifdef __NR_setgid32
7198 #define __NR_sys_setgid __NR_setgid32
7199 #else
7200 #define __NR_sys_setgid __NR_setgid
7201 #endif
7202 #ifdef __NR_setresuid32
7203 #define __NR_sys_setresuid __NR_setresuid32
7204 #else
7205 #define __NR_sys_setresuid __NR_setresuid
7206 #endif
7207 #ifdef __NR_setresgid32
7208 #define __NR_sys_setresgid __NR_setresgid32
7209 #else
7210 #define __NR_sys_setresgid __NR_setresgid
7211 #endif
7212 
7213 _syscall1(int, sys_setuid, uid_t, uid)
7214 _syscall1(int, sys_setgid, gid_t, gid)
7215 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
7216 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
7217 
7218 void syscall_init(void)
7219 {
7220     IOCTLEntry *ie;
7221     const argtype *arg_type;
7222     int size;
7223 
7224     thunk_init(STRUCT_MAX);
7225 
7226 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
7227 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
7228 #include "syscall_types.h"
7229 #undef STRUCT
7230 #undef STRUCT_SPECIAL
7231 
7232     /* we patch the ioctl size if necessary. We rely on the fact that
7233        no ioctl has all the bits at '1' in the size field */
7234     ie = ioctl_entries;
7235     while (ie->target_cmd != 0) {
7236         if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) ==
7237             TARGET_IOC_SIZEMASK) {
7238             arg_type = ie->arg_type;
7239             if (arg_type[0] != TYPE_PTR) {
7240                 fprintf(stderr, "cannot patch size for ioctl 0x%x\n",
7241                         ie->target_cmd);
7242                 exit(1);
7243             }
7244             arg_type++;
7245             size = thunk_type_size(arg_type, 0);
7246             ie->target_cmd = (ie->target_cmd &
7247                               ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) |
7248                 (size << TARGET_IOC_SIZESHIFT);
7249         }
7250 
7251         /* automatic consistency check if same arch */
7252 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
7253     (defined(__x86_64__) && defined(TARGET_X86_64))
7254         if (unlikely(ie->target_cmd != ie->host_cmd)) {
7255             fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
7256                     ie->name, ie->target_cmd, ie->host_cmd);
7257         }
7258 #endif
7259         ie++;
7260     }
7261 }
7262 
7263 #ifdef TARGET_NR_truncate64
7264 static inline abi_long target_truncate64(CPUArchState *cpu_env, const char *arg1,
7265                                          abi_long arg2,
7266                                          abi_long arg3,
7267                                          abi_long arg4)
7268 {
7269     if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) {
7270         arg2 = arg3;
7271         arg3 = arg4;
7272     }
7273     return get_errno(truncate64(arg1, target_offset64(arg2, arg3)));
7274 }
7275 #endif
7276 
7277 #ifdef TARGET_NR_ftruncate64
7278 static inline abi_long target_ftruncate64(CPUArchState *cpu_env, abi_long arg1,
7279                                           abi_long arg2,
7280                                           abi_long arg3,
7281                                           abi_long arg4)
7282 {
7283     if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) {
7284         arg2 = arg3;
7285         arg3 = arg4;
7286     }
7287     return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3)));
7288 }
7289 #endif
7290 
7291 #if defined(TARGET_NR_timer_settime) || \
7292     (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
7293 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_its,
7294                                                  abi_ulong target_addr)
7295 {
7296     if (target_to_host_timespec(&host_its->it_interval, target_addr +
7297                                 offsetof(struct target_itimerspec,
7298                                          it_interval)) ||
7299         target_to_host_timespec(&host_its->it_value, target_addr +
7300                                 offsetof(struct target_itimerspec,
7301                                          it_value))) {
7302         return -TARGET_EFAULT;
7303     }
7304 
7305     return 0;
7306 }
7307 #endif
7308 
7309 #if defined(TARGET_NR_timer_settime64) || \
7310     (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD))
7311 static inline abi_long target_to_host_itimerspec64(struct itimerspec *host_its,
7312                                                    abi_ulong target_addr)
7313 {
7314     if (target_to_host_timespec64(&host_its->it_interval, target_addr +
7315                                   offsetof(struct target__kernel_itimerspec,
7316                                            it_interval)) ||
7317         target_to_host_timespec64(&host_its->it_value, target_addr +
7318                                   offsetof(struct target__kernel_itimerspec,
7319                                            it_value))) {
7320         return -TARGET_EFAULT;
7321     }
7322 
7323     return 0;
7324 }
7325 #endif
7326 
7327 #if ((defined(TARGET_NR_timerfd_gettime) || \
7328       defined(TARGET_NR_timerfd_settime)) && defined(CONFIG_TIMERFD)) || \
7329       defined(TARGET_NR_timer_gettime) || defined(TARGET_NR_timer_settime)
7330 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr,
7331                                                  struct itimerspec *host_its)
7332 {
7333     if (host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7334                                                        it_interval),
7335                                 &host_its->it_interval) ||
7336         host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7337                                                        it_value),
7338                                 &host_its->it_value)) {
7339         return -TARGET_EFAULT;
7340     }
7341     return 0;
7342 }
7343 #endif
7344 
7345 #if ((defined(TARGET_NR_timerfd_gettime64) || \
7346       defined(TARGET_NR_timerfd_settime64)) && defined(CONFIG_TIMERFD)) || \
7347       defined(TARGET_NR_timer_gettime64) || defined(TARGET_NR_timer_settime64)
7348 static inline abi_long host_to_target_itimerspec64(abi_ulong target_addr,
7349                                                    struct itimerspec *host_its)
7350 {
7351     if (host_to_target_timespec64(target_addr +
7352                                   offsetof(struct target__kernel_itimerspec,
7353                                            it_interval),
7354                                   &host_its->it_interval) ||
7355         host_to_target_timespec64(target_addr +
7356                                   offsetof(struct target__kernel_itimerspec,
7357                                            it_value),
7358                                   &host_its->it_value)) {
7359         return -TARGET_EFAULT;
7360     }
7361     return 0;
7362 }
7363 #endif
7364 
7365 #if defined(TARGET_NR_adjtimex) || \
7366     (defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME))
7367 static inline abi_long target_to_host_timex(struct timex *host_tx,
7368                                             abi_long target_addr)
7369 {
7370     struct target_timex *target_tx;
7371 
7372     if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7373         return -TARGET_EFAULT;
7374     }
7375 
7376     __get_user(host_tx->modes, &target_tx->modes);
7377     __get_user(host_tx->offset, &target_tx->offset);
7378     __get_user(host_tx->freq, &target_tx->freq);
7379     __get_user(host_tx->maxerror, &target_tx->maxerror);
7380     __get_user(host_tx->esterror, &target_tx->esterror);
7381     __get_user(host_tx->status, &target_tx->status);
7382     __get_user(host_tx->constant, &target_tx->constant);
7383     __get_user(host_tx->precision, &target_tx->precision);
7384     __get_user(host_tx->tolerance, &target_tx->tolerance);
7385     __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7386     __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7387     __get_user(host_tx->tick, &target_tx->tick);
7388     __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7389     __get_user(host_tx->jitter, &target_tx->jitter);
7390     __get_user(host_tx->shift, &target_tx->shift);
7391     __get_user(host_tx->stabil, &target_tx->stabil);
7392     __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7393     __get_user(host_tx->calcnt, &target_tx->calcnt);
7394     __get_user(host_tx->errcnt, &target_tx->errcnt);
7395     __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7396     __get_user(host_tx->tai, &target_tx->tai);
7397 
7398     unlock_user_struct(target_tx, target_addr, 0);
7399     return 0;
7400 }
7401 
7402 static inline abi_long host_to_target_timex(abi_long target_addr,
7403                                             struct timex *host_tx)
7404 {
7405     struct target_timex *target_tx;
7406 
7407     if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7408         return -TARGET_EFAULT;
7409     }
7410 
7411     __put_user(host_tx->modes, &target_tx->modes);
7412     __put_user(host_tx->offset, &target_tx->offset);
7413     __put_user(host_tx->freq, &target_tx->freq);
7414     __put_user(host_tx->maxerror, &target_tx->maxerror);
7415     __put_user(host_tx->esterror, &target_tx->esterror);
7416     __put_user(host_tx->status, &target_tx->status);
7417     __put_user(host_tx->constant, &target_tx->constant);
7418     __put_user(host_tx->precision, &target_tx->precision);
7419     __put_user(host_tx->tolerance, &target_tx->tolerance);
7420     __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7421     __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7422     __put_user(host_tx->tick, &target_tx->tick);
7423     __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7424     __put_user(host_tx->jitter, &target_tx->jitter);
7425     __put_user(host_tx->shift, &target_tx->shift);
7426     __put_user(host_tx->stabil, &target_tx->stabil);
7427     __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7428     __put_user(host_tx->calcnt, &target_tx->calcnt);
7429     __put_user(host_tx->errcnt, &target_tx->errcnt);
7430     __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7431     __put_user(host_tx->tai, &target_tx->tai);
7432 
7433     unlock_user_struct(target_tx, target_addr, 1);
7434     return 0;
7435 }
7436 #endif
7437 
7438 
7439 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
7440 static inline abi_long target_to_host_timex64(struct timex *host_tx,
7441                                               abi_long target_addr)
7442 {
7443     struct target__kernel_timex *target_tx;
7444 
7445     if (copy_from_user_timeval64(&host_tx->time, target_addr +
7446                                  offsetof(struct target__kernel_timex,
7447                                           time))) {
7448         return -TARGET_EFAULT;
7449     }
7450 
7451     if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7452         return -TARGET_EFAULT;
7453     }
7454 
7455     __get_user(host_tx->modes, &target_tx->modes);
7456     __get_user(host_tx->offset, &target_tx->offset);
7457     __get_user(host_tx->freq, &target_tx->freq);
7458     __get_user(host_tx->maxerror, &target_tx->maxerror);
7459     __get_user(host_tx->esterror, &target_tx->esterror);
7460     __get_user(host_tx->status, &target_tx->status);
7461     __get_user(host_tx->constant, &target_tx->constant);
7462     __get_user(host_tx->precision, &target_tx->precision);
7463     __get_user(host_tx->tolerance, &target_tx->tolerance);
7464     __get_user(host_tx->tick, &target_tx->tick);
7465     __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7466     __get_user(host_tx->jitter, &target_tx->jitter);
7467     __get_user(host_tx->shift, &target_tx->shift);
7468     __get_user(host_tx->stabil, &target_tx->stabil);
7469     __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7470     __get_user(host_tx->calcnt, &target_tx->calcnt);
7471     __get_user(host_tx->errcnt, &target_tx->errcnt);
7472     __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7473     __get_user(host_tx->tai, &target_tx->tai);
7474 
7475     unlock_user_struct(target_tx, target_addr, 0);
7476     return 0;
7477 }
7478 
7479 static inline abi_long host_to_target_timex64(abi_long target_addr,
7480                                               struct timex *host_tx)
7481 {
7482     struct target__kernel_timex *target_tx;
7483 
7484    if (copy_to_user_timeval64(target_addr +
7485                               offsetof(struct target__kernel_timex, time),
7486                               &host_tx->time)) {
7487         return -TARGET_EFAULT;
7488     }
7489 
7490     if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7491         return -TARGET_EFAULT;
7492     }
7493 
7494     __put_user(host_tx->modes, &target_tx->modes);
7495     __put_user(host_tx->offset, &target_tx->offset);
7496     __put_user(host_tx->freq, &target_tx->freq);
7497     __put_user(host_tx->maxerror, &target_tx->maxerror);
7498     __put_user(host_tx->esterror, &target_tx->esterror);
7499     __put_user(host_tx->status, &target_tx->status);
7500     __put_user(host_tx->constant, &target_tx->constant);
7501     __put_user(host_tx->precision, &target_tx->precision);
7502     __put_user(host_tx->tolerance, &target_tx->tolerance);
7503     __put_user(host_tx->tick, &target_tx->tick);
7504     __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7505     __put_user(host_tx->jitter, &target_tx->jitter);
7506     __put_user(host_tx->shift, &target_tx->shift);
7507     __put_user(host_tx->stabil, &target_tx->stabil);
7508     __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7509     __put_user(host_tx->calcnt, &target_tx->calcnt);
7510     __put_user(host_tx->errcnt, &target_tx->errcnt);
7511     __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7512     __put_user(host_tx->tai, &target_tx->tai);
7513 
7514     unlock_user_struct(target_tx, target_addr, 1);
7515     return 0;
7516 }
7517 #endif
7518 
7519 #ifndef HAVE_SIGEV_NOTIFY_THREAD_ID
7520 #define sigev_notify_thread_id _sigev_un._tid
7521 #endif
7522 
7523 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp,
7524                                                abi_ulong target_addr)
7525 {
7526     struct target_sigevent *target_sevp;
7527 
7528     if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) {
7529         return -TARGET_EFAULT;
7530     }
7531 
7532     /* This union is awkward on 64 bit systems because it has a 32 bit
7533      * integer and a pointer in it; we follow the conversion approach
7534      * used for handling sigval types in signal.c so the guest should get
7535      * the correct value back even if we did a 64 bit byteswap and it's
7536      * using the 32 bit integer.
7537      */
7538     host_sevp->sigev_value.sival_ptr =
7539         (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr);
7540     host_sevp->sigev_signo =
7541         target_to_host_signal(tswap32(target_sevp->sigev_signo));
7542     host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify);
7543     host_sevp->sigev_notify_thread_id = tswap32(target_sevp->_sigev_un._tid);
7544 
7545     unlock_user_struct(target_sevp, target_addr, 1);
7546     return 0;
7547 }
7548 
7549 #if defined(TARGET_NR_mlockall)
7550 static inline int target_to_host_mlockall_arg(int arg)
7551 {
7552     int result = 0;
7553 
7554     if (arg & TARGET_MCL_CURRENT) {
7555         result |= MCL_CURRENT;
7556     }
7557     if (arg & TARGET_MCL_FUTURE) {
7558         result |= MCL_FUTURE;
7559     }
7560 #ifdef MCL_ONFAULT
7561     if (arg & TARGET_MCL_ONFAULT) {
7562         result |= MCL_ONFAULT;
7563     }
7564 #endif
7565 
7566     return result;
7567 }
7568 #endif
7569 
7570 static inline int target_to_host_msync_arg(abi_long arg)
7571 {
7572     return ((arg & TARGET_MS_ASYNC) ? MS_ASYNC : 0) |
7573            ((arg & TARGET_MS_INVALIDATE) ? MS_INVALIDATE : 0) |
7574            ((arg & TARGET_MS_SYNC) ? MS_SYNC : 0) |
7575            (arg & ~(TARGET_MS_ASYNC | TARGET_MS_INVALIDATE | TARGET_MS_SYNC));
7576 }
7577 
7578 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) ||     \
7579      defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) ||  \
7580      defined(TARGET_NR_newfstatat))
7581 static inline abi_long host_to_target_stat64(CPUArchState *cpu_env,
7582                                              abi_ulong target_addr,
7583                                              struct stat *host_st)
7584 {
7585 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
7586     if (cpu_env->eabi) {
7587         struct target_eabi_stat64 *target_st;
7588 
7589         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7590             return -TARGET_EFAULT;
7591         memset(target_st, 0, sizeof(struct target_eabi_stat64));
7592         __put_user(host_st->st_dev, &target_st->st_dev);
7593         __put_user(host_st->st_ino, &target_st->st_ino);
7594 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7595         __put_user(host_st->st_ino, &target_st->__st_ino);
7596 #endif
7597         __put_user(host_st->st_mode, &target_st->st_mode);
7598         __put_user(host_st->st_nlink, &target_st->st_nlink);
7599         __put_user(host_st->st_uid, &target_st->st_uid);
7600         __put_user(host_st->st_gid, &target_st->st_gid);
7601         __put_user(host_st->st_rdev, &target_st->st_rdev);
7602         __put_user(host_st->st_size, &target_st->st_size);
7603         __put_user(host_st->st_blksize, &target_st->st_blksize);
7604         __put_user(host_st->st_blocks, &target_st->st_blocks);
7605         __put_user(host_st->st_atime, &target_st->target_st_atime);
7606         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7607         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7608 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7609         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7610         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7611         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7612 #endif
7613         unlock_user_struct(target_st, target_addr, 1);
7614     } else
7615 #endif
7616     {
7617 #if defined(TARGET_HAS_STRUCT_STAT64)
7618         struct target_stat64 *target_st;
7619 #else
7620         struct target_stat *target_st;
7621 #endif
7622 
7623         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7624             return -TARGET_EFAULT;
7625         memset(target_st, 0, sizeof(*target_st));
7626         __put_user(host_st->st_dev, &target_st->st_dev);
7627         __put_user(host_st->st_ino, &target_st->st_ino);
7628 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7629         __put_user(host_st->st_ino, &target_st->__st_ino);
7630 #endif
7631         __put_user(host_st->st_mode, &target_st->st_mode);
7632         __put_user(host_st->st_nlink, &target_st->st_nlink);
7633         __put_user(host_st->st_uid, &target_st->st_uid);
7634         __put_user(host_st->st_gid, &target_st->st_gid);
7635         __put_user(host_st->st_rdev, &target_st->st_rdev);
7636         /* XXX: better use of kernel struct */
7637         __put_user(host_st->st_size, &target_st->st_size);
7638         __put_user(host_st->st_blksize, &target_st->st_blksize);
7639         __put_user(host_st->st_blocks, &target_st->st_blocks);
7640         __put_user(host_st->st_atime, &target_st->target_st_atime);
7641         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7642         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7643 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7644         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7645         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7646         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7647 #endif
7648         unlock_user_struct(target_st, target_addr, 1);
7649     }
7650 
7651     return 0;
7652 }
7653 #endif
7654 
7655 #if defined(TARGET_NR_statx) && defined(__NR_statx)
7656 static inline abi_long host_to_target_statx(struct target_statx *host_stx,
7657                                             abi_ulong target_addr)
7658 {
7659     struct target_statx *target_stx;
7660 
7661     if (!lock_user_struct(VERIFY_WRITE, target_stx, target_addr,  0)) {
7662         return -TARGET_EFAULT;
7663     }
7664     memset(target_stx, 0, sizeof(*target_stx));
7665 
7666     __put_user(host_stx->stx_mask, &target_stx->stx_mask);
7667     __put_user(host_stx->stx_blksize, &target_stx->stx_blksize);
7668     __put_user(host_stx->stx_attributes, &target_stx->stx_attributes);
7669     __put_user(host_stx->stx_nlink, &target_stx->stx_nlink);
7670     __put_user(host_stx->stx_uid, &target_stx->stx_uid);
7671     __put_user(host_stx->stx_gid, &target_stx->stx_gid);
7672     __put_user(host_stx->stx_mode, &target_stx->stx_mode);
7673     __put_user(host_stx->stx_ino, &target_stx->stx_ino);
7674     __put_user(host_stx->stx_size, &target_stx->stx_size);
7675     __put_user(host_stx->stx_blocks, &target_stx->stx_blocks);
7676     __put_user(host_stx->stx_attributes_mask, &target_stx->stx_attributes_mask);
7677     __put_user(host_stx->stx_atime.tv_sec, &target_stx->stx_atime.tv_sec);
7678     __put_user(host_stx->stx_atime.tv_nsec, &target_stx->stx_atime.tv_nsec);
7679     __put_user(host_stx->stx_btime.tv_sec, &target_stx->stx_btime.tv_sec);
7680     __put_user(host_stx->stx_btime.tv_nsec, &target_stx->stx_btime.tv_nsec);
7681     __put_user(host_stx->stx_ctime.tv_sec, &target_stx->stx_ctime.tv_sec);
7682     __put_user(host_stx->stx_ctime.tv_nsec, &target_stx->stx_ctime.tv_nsec);
7683     __put_user(host_stx->stx_mtime.tv_sec, &target_stx->stx_mtime.tv_sec);
7684     __put_user(host_stx->stx_mtime.tv_nsec, &target_stx->stx_mtime.tv_nsec);
7685     __put_user(host_stx->stx_rdev_major, &target_stx->stx_rdev_major);
7686     __put_user(host_stx->stx_rdev_minor, &target_stx->stx_rdev_minor);
7687     __put_user(host_stx->stx_dev_major, &target_stx->stx_dev_major);
7688     __put_user(host_stx->stx_dev_minor, &target_stx->stx_dev_minor);
7689 
7690     unlock_user_struct(target_stx, target_addr, 1);
7691 
7692     return 0;
7693 }
7694 #endif
7695 
7696 static int do_sys_futex(int *uaddr, int op, int val,
7697                          const struct timespec *timeout, int *uaddr2,
7698                          int val3)
7699 {
7700 #if HOST_LONG_BITS == 64
7701 #if defined(__NR_futex)
7702     /* always a 64-bit time_t, it doesn't define _time64 version  */
7703     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7704 
7705 #endif
7706 #else /* HOST_LONG_BITS == 64 */
7707 #if defined(__NR_futex_time64)
7708     if (sizeof(timeout->tv_sec) == 8) {
7709         /* _time64 function on 32bit arch */
7710         return sys_futex_time64(uaddr, op, val, timeout, uaddr2, val3);
7711     }
7712 #endif
7713 #if defined(__NR_futex)
7714     /* old function on 32bit arch */
7715     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7716 #endif
7717 #endif /* HOST_LONG_BITS == 64 */
7718     g_assert_not_reached();
7719 }
7720 
7721 static int do_safe_futex(int *uaddr, int op, int val,
7722                          const struct timespec *timeout, int *uaddr2,
7723                          int val3)
7724 {
7725 #if HOST_LONG_BITS == 64
7726 #if defined(__NR_futex)
7727     /* always a 64-bit time_t, it doesn't define _time64 version  */
7728     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7729 #endif
7730 #else /* HOST_LONG_BITS == 64 */
7731 #if defined(__NR_futex_time64)
7732     if (sizeof(timeout->tv_sec) == 8) {
7733         /* _time64 function on 32bit arch */
7734         return get_errno(safe_futex_time64(uaddr, op, val, timeout, uaddr2,
7735                                            val3));
7736     }
7737 #endif
7738 #if defined(__NR_futex)
7739     /* old function on 32bit arch */
7740     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7741 #endif
7742 #endif /* HOST_LONG_BITS == 64 */
7743     return -TARGET_ENOSYS;
7744 }
7745 
7746 /* ??? Using host futex calls even when target atomic operations
7747    are not really atomic probably breaks things.  However implementing
7748    futexes locally would make futexes shared between multiple processes
7749    tricky.  However they're probably useless because guest atomic
7750    operations won't work either.  */
7751 #if defined(TARGET_NR_futex) || defined(TARGET_NR_futex_time64)
7752 static int do_futex(CPUState *cpu, bool time64, target_ulong uaddr,
7753                     int op, int val, target_ulong timeout,
7754                     target_ulong uaddr2, int val3)
7755 {
7756     struct timespec ts, *pts = NULL;
7757     void *haddr2 = NULL;
7758     int base_op;
7759 
7760     /* We assume FUTEX_* constants are the same on both host and target. */
7761 #ifdef FUTEX_CMD_MASK
7762     base_op = op & FUTEX_CMD_MASK;
7763 #else
7764     base_op = op;
7765 #endif
7766     switch (base_op) {
7767     case FUTEX_WAIT:
7768     case FUTEX_WAIT_BITSET:
7769         val = tswap32(val);
7770         break;
7771     case FUTEX_WAIT_REQUEUE_PI:
7772         val = tswap32(val);
7773         haddr2 = g2h(cpu, uaddr2);
7774         break;
7775     case FUTEX_LOCK_PI:
7776     case FUTEX_LOCK_PI2:
7777         break;
7778     case FUTEX_WAKE:
7779     case FUTEX_WAKE_BITSET:
7780     case FUTEX_TRYLOCK_PI:
7781     case FUTEX_UNLOCK_PI:
7782         timeout = 0;
7783         break;
7784     case FUTEX_FD:
7785         val = target_to_host_signal(val);
7786         timeout = 0;
7787         break;
7788     case FUTEX_CMP_REQUEUE:
7789     case FUTEX_CMP_REQUEUE_PI:
7790         val3 = tswap32(val3);
7791         /* fall through */
7792     case FUTEX_REQUEUE:
7793     case FUTEX_WAKE_OP:
7794         /*
7795          * For these, the 4th argument is not TIMEOUT, but VAL2.
7796          * But the prototype of do_safe_futex takes a pointer, so
7797          * insert casts to satisfy the compiler.  We do not need
7798          * to tswap VAL2 since it's not compared to guest memory.
7799           */
7800         pts = (struct timespec *)(uintptr_t)timeout;
7801         timeout = 0;
7802         haddr2 = g2h(cpu, uaddr2);
7803         break;
7804     default:
7805         return -TARGET_ENOSYS;
7806     }
7807     if (timeout) {
7808         pts = &ts;
7809         if (time64
7810             ? target_to_host_timespec64(pts, timeout)
7811             : target_to_host_timespec(pts, timeout)) {
7812             return -TARGET_EFAULT;
7813         }
7814     }
7815     return do_safe_futex(g2h(cpu, uaddr), op, val, pts, haddr2, val3);
7816 }
7817 #endif
7818 
7819 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7820 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname,
7821                                      abi_long handle, abi_long mount_id,
7822                                      abi_long flags)
7823 {
7824     struct file_handle *target_fh;
7825     struct file_handle *fh;
7826     int mid = 0;
7827     abi_long ret;
7828     char *name;
7829     unsigned int size, total_size;
7830 
7831     if (get_user_s32(size, handle)) {
7832         return -TARGET_EFAULT;
7833     }
7834 
7835     name = lock_user_string(pathname);
7836     if (!name) {
7837         return -TARGET_EFAULT;
7838     }
7839 
7840     total_size = sizeof(struct file_handle) + size;
7841     target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0);
7842     if (!target_fh) {
7843         unlock_user(name, pathname, 0);
7844         return -TARGET_EFAULT;
7845     }
7846 
7847     fh = g_malloc0(total_size);
7848     fh->handle_bytes = size;
7849 
7850     ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags));
7851     unlock_user(name, pathname, 0);
7852 
7853     /* man name_to_handle_at(2):
7854      * Other than the use of the handle_bytes field, the caller should treat
7855      * the file_handle structure as an opaque data type
7856      */
7857 
7858     memcpy(target_fh, fh, total_size);
7859     target_fh->handle_bytes = tswap32(fh->handle_bytes);
7860     target_fh->handle_type = tswap32(fh->handle_type);
7861     g_free(fh);
7862     unlock_user(target_fh, handle, total_size);
7863 
7864     if (put_user_s32(mid, mount_id)) {
7865         return -TARGET_EFAULT;
7866     }
7867 
7868     return ret;
7869 
7870 }
7871 #endif
7872 
7873 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7874 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle,
7875                                      abi_long flags)
7876 {
7877     struct file_handle *target_fh;
7878     struct file_handle *fh;
7879     unsigned int size, total_size;
7880     abi_long ret;
7881 
7882     if (get_user_s32(size, handle)) {
7883         return -TARGET_EFAULT;
7884     }
7885 
7886     total_size = sizeof(struct file_handle) + size;
7887     target_fh = lock_user(VERIFY_READ, handle, total_size, 1);
7888     if (!target_fh) {
7889         return -TARGET_EFAULT;
7890     }
7891 
7892     fh = g_memdup(target_fh, total_size);
7893     fh->handle_bytes = size;
7894     fh->handle_type = tswap32(target_fh->handle_type);
7895 
7896     ret = get_errno(open_by_handle_at(mount_fd, fh,
7897                     target_to_host_bitmask(flags, fcntl_flags_tbl)));
7898 
7899     g_free(fh);
7900 
7901     unlock_user(target_fh, handle, total_size);
7902 
7903     return ret;
7904 }
7905 #endif
7906 
7907 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
7908 
7909 static abi_long do_signalfd4(int fd, abi_long mask, int flags)
7910 {
7911     int host_flags;
7912     target_sigset_t *target_mask;
7913     sigset_t host_mask;
7914     abi_long ret;
7915 
7916     if (flags & ~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC)) {
7917         return -TARGET_EINVAL;
7918     }
7919     if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) {
7920         return -TARGET_EFAULT;
7921     }
7922 
7923     target_to_host_sigset(&host_mask, target_mask);
7924 
7925     host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
7926 
7927     ret = get_errno(signalfd(fd, &host_mask, host_flags));
7928     if (ret >= 0) {
7929         fd_trans_register(ret, &target_signalfd_trans);
7930     }
7931 
7932     unlock_user_struct(target_mask, mask, 0);
7933 
7934     return ret;
7935 }
7936 #endif
7937 
7938 /* Map host to target signal numbers for the wait family of syscalls.
7939    Assume all other status bits are the same.  */
7940 int host_to_target_waitstatus(int status)
7941 {
7942     if (WIFSIGNALED(status)) {
7943         return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f);
7944     }
7945     if (WIFSTOPPED(status)) {
7946         return (host_to_target_signal(WSTOPSIG(status)) << 8)
7947                | (status & 0xff);
7948     }
7949     return status;
7950 }
7951 
7952 static int open_self_cmdline(CPUArchState *cpu_env, int fd)
7953 {
7954     CPUState *cpu = env_cpu(cpu_env);
7955     struct linux_binprm *bprm = get_task_state(cpu)->bprm;
7956     int i;
7957 
7958     for (i = 0; i < bprm->argc; i++) {
7959         size_t len = strlen(bprm->argv[i]) + 1;
7960 
7961         if (write(fd, bprm->argv[i], len) != len) {
7962             return -1;
7963         }
7964     }
7965 
7966     return 0;
7967 }
7968 
7969 struct open_self_maps_data {
7970     TaskState *ts;
7971     IntervalTreeRoot *host_maps;
7972     int fd;
7973     bool smaps;
7974 };
7975 
7976 /*
7977  * Subroutine to output one line of /proc/self/maps,
7978  * or one region of /proc/self/smaps.
7979  */
7980 
7981 #ifdef TARGET_HPPA
7982 # define test_stack(S, E, L)  (E == L)
7983 #else
7984 # define test_stack(S, E, L)  (S == L)
7985 #endif
7986 
7987 static void open_self_maps_4(const struct open_self_maps_data *d,
7988                              const MapInfo *mi, abi_ptr start,
7989                              abi_ptr end, unsigned flags)
7990 {
7991     const struct image_info *info = d->ts->info;
7992     const char *path = mi->path;
7993     uint64_t offset;
7994     int fd = d->fd;
7995     int count;
7996 
7997     if (test_stack(start, end, info->stack_limit)) {
7998         path = "[stack]";
7999     } else if (start == info->brk) {
8000         path = "[heap]";
8001     } else if (start == info->vdso) {
8002         path = "[vdso]";
8003 #ifdef TARGET_X86_64
8004     } else if (start == TARGET_VSYSCALL_PAGE) {
8005         path = "[vsyscall]";
8006 #endif
8007     }
8008 
8009     /* Except null device (MAP_ANON), adjust offset for this fragment. */
8010     offset = mi->offset;
8011     if (mi->dev) {
8012         uintptr_t hstart = (uintptr_t)g2h_untagged(start);
8013         offset += hstart - mi->itree.start;
8014     }
8015 
8016     count = dprintf(fd, TARGET_ABI_FMT_ptr "-" TARGET_ABI_FMT_ptr
8017                     " %c%c%c%c %08" PRIx64 " %02x:%02x %"PRId64,
8018                     start, end,
8019                     (flags & PAGE_READ) ? 'r' : '-',
8020                     (flags & PAGE_WRITE_ORG) ? 'w' : '-',
8021                     (flags & PAGE_EXEC) ? 'x' : '-',
8022                     mi->is_priv ? 'p' : 's',
8023                     offset, major(mi->dev), minor(mi->dev),
8024                     (uint64_t)mi->inode);
8025     if (path) {
8026         dprintf(fd, "%*s%s\n", 73 - count, "", path);
8027     } else {
8028         dprintf(fd, "\n");
8029     }
8030 
8031     if (d->smaps) {
8032         unsigned long size = end - start;
8033         unsigned long page_size_kb = TARGET_PAGE_SIZE >> 10;
8034         unsigned long size_kb = size >> 10;
8035 
8036         dprintf(fd, "Size:                  %lu kB\n"
8037                 "KernelPageSize:        %lu kB\n"
8038                 "MMUPageSize:           %lu kB\n"
8039                 "Rss:                   0 kB\n"
8040                 "Pss:                   0 kB\n"
8041                 "Pss_Dirty:             0 kB\n"
8042                 "Shared_Clean:          0 kB\n"
8043                 "Shared_Dirty:          0 kB\n"
8044                 "Private_Clean:         0 kB\n"
8045                 "Private_Dirty:         0 kB\n"
8046                 "Referenced:            0 kB\n"
8047                 "Anonymous:             %lu kB\n"
8048                 "LazyFree:              0 kB\n"
8049                 "AnonHugePages:         0 kB\n"
8050                 "ShmemPmdMapped:        0 kB\n"
8051                 "FilePmdMapped:         0 kB\n"
8052                 "Shared_Hugetlb:        0 kB\n"
8053                 "Private_Hugetlb:       0 kB\n"
8054                 "Swap:                  0 kB\n"
8055                 "SwapPss:               0 kB\n"
8056                 "Locked:                0 kB\n"
8057                 "THPeligible:    0\n"
8058                 "VmFlags:%s%s%s%s%s%s%s%s\n",
8059                 size_kb, page_size_kb, page_size_kb,
8060                 (flags & PAGE_ANON ? size_kb : 0),
8061                 (flags & PAGE_READ) ? " rd" : "",
8062                 (flags & PAGE_WRITE_ORG) ? " wr" : "",
8063                 (flags & PAGE_EXEC) ? " ex" : "",
8064                 mi->is_priv ? "" : " sh",
8065                 (flags & PAGE_READ) ? " mr" : "",
8066                 (flags & PAGE_WRITE_ORG) ? " mw" : "",
8067                 (flags & PAGE_EXEC) ? " me" : "",
8068                 mi->is_priv ? "" : " ms");
8069     }
8070 }
8071 
8072 /*
8073  * Callback for walk_memory_regions, when read_self_maps() fails.
8074  * Proceed without the benefit of host /proc/self/maps cross-check.
8075  */
8076 static int open_self_maps_3(void *opaque, target_ulong guest_start,
8077                             target_ulong guest_end, unsigned long flags)
8078 {
8079     static const MapInfo mi = { .is_priv = true };
8080 
8081     open_self_maps_4(opaque, &mi, guest_start, guest_end, flags);
8082     return 0;
8083 }
8084 
8085 /*
8086  * Callback for walk_memory_regions, when read_self_maps() succeeds.
8087  */
8088 static int open_self_maps_2(void *opaque, target_ulong guest_start,
8089                             target_ulong guest_end, unsigned long flags)
8090 {
8091     const struct open_self_maps_data *d = opaque;
8092     uintptr_t host_start = (uintptr_t)g2h_untagged(guest_start);
8093     uintptr_t host_last = (uintptr_t)g2h_untagged(guest_end - 1);
8094 
8095 #ifdef TARGET_X86_64
8096     /*
8097      * Because of the extremely high position of the page within the guest
8098      * virtual address space, this is not backed by host memory at all.
8099      * Therefore the loop below would fail.  This is the only instance
8100      * of not having host backing memory.
8101      */
8102     if (guest_start == TARGET_VSYSCALL_PAGE) {
8103         return open_self_maps_3(opaque, guest_start, guest_end, flags);
8104     }
8105 #endif
8106 
8107     while (1) {
8108         IntervalTreeNode *n =
8109             interval_tree_iter_first(d->host_maps, host_start, host_start);
8110         MapInfo *mi = container_of(n, MapInfo, itree);
8111         uintptr_t this_hlast = MIN(host_last, n->last);
8112         target_ulong this_gend = h2g(this_hlast) + 1;
8113 
8114         open_self_maps_4(d, mi, guest_start, this_gend, flags);
8115 
8116         if (this_hlast == host_last) {
8117             return 0;
8118         }
8119         host_start = this_hlast + 1;
8120         guest_start = h2g(host_start);
8121     }
8122 }
8123 
8124 static int open_self_maps_1(CPUArchState *env, int fd, bool smaps)
8125 {
8126     struct open_self_maps_data d = {
8127         .ts = get_task_state(env_cpu(env)),
8128         .host_maps = read_self_maps(),
8129         .fd = fd,
8130         .smaps = smaps
8131     };
8132 
8133     if (d.host_maps) {
8134         walk_memory_regions(&d, open_self_maps_2);
8135         free_self_maps(d.host_maps);
8136     } else {
8137         walk_memory_regions(&d, open_self_maps_3);
8138     }
8139     return 0;
8140 }
8141 
8142 static int open_self_maps(CPUArchState *cpu_env, int fd)
8143 {
8144     return open_self_maps_1(cpu_env, fd, false);
8145 }
8146 
8147 static int open_self_smaps(CPUArchState *cpu_env, int fd)
8148 {
8149     return open_self_maps_1(cpu_env, fd, true);
8150 }
8151 
8152 static int open_self_stat(CPUArchState *cpu_env, int fd)
8153 {
8154     CPUState *cpu = env_cpu(cpu_env);
8155     TaskState *ts = get_task_state(cpu);
8156     g_autoptr(GString) buf = g_string_new(NULL);
8157     int i;
8158 
8159     for (i = 0; i < 44; i++) {
8160         if (i == 0) {
8161             /* pid */
8162             g_string_printf(buf, FMT_pid " ", getpid());
8163         } else if (i == 1) {
8164             /* app name */
8165             gchar *bin = g_strrstr(ts->bprm->argv[0], "/");
8166             bin = bin ? bin + 1 : ts->bprm->argv[0];
8167             g_string_printf(buf, "(%.15s) ", bin);
8168         } else if (i == 2) {
8169             /* task state */
8170             g_string_assign(buf, "R "); /* we are running right now */
8171         } else if (i == 3) {
8172             /* ppid */
8173             g_string_printf(buf, FMT_pid " ", getppid());
8174         } else if (i == 21) {
8175             /* starttime */
8176             g_string_printf(buf, "%" PRIu64 " ", ts->start_boottime);
8177         } else if (i == 27) {
8178             /* stack bottom */
8179             g_string_printf(buf, TARGET_ABI_FMT_ld " ", ts->info->start_stack);
8180         } else {
8181             /* for the rest, there is MasterCard */
8182             g_string_printf(buf, "0%c", i == 43 ? '\n' : ' ');
8183         }
8184 
8185         if (write(fd, buf->str, buf->len) != buf->len) {
8186             return -1;
8187         }
8188     }
8189 
8190     return 0;
8191 }
8192 
8193 static int open_self_auxv(CPUArchState *cpu_env, int fd)
8194 {
8195     CPUState *cpu = env_cpu(cpu_env);
8196     TaskState *ts = get_task_state(cpu);
8197     abi_ulong auxv = ts->info->saved_auxv;
8198     abi_ulong len = ts->info->auxv_len;
8199     char *ptr;
8200 
8201     /*
8202      * Auxiliary vector is stored in target process stack.
8203      * read in whole auxv vector and copy it to file
8204      */
8205     ptr = lock_user(VERIFY_READ, auxv, len, 0);
8206     if (ptr != NULL) {
8207         while (len > 0) {
8208             ssize_t r;
8209             r = write(fd, ptr, len);
8210             if (r <= 0) {
8211                 break;
8212             }
8213             len -= r;
8214             ptr += r;
8215         }
8216         lseek(fd, 0, SEEK_SET);
8217         unlock_user(ptr, auxv, len);
8218     }
8219 
8220     return 0;
8221 }
8222 
8223 static int is_proc_myself(const char *filename, const char *entry)
8224 {
8225     if (!strncmp(filename, "/proc/", strlen("/proc/"))) {
8226         filename += strlen("/proc/");
8227         if (!strncmp(filename, "self/", strlen("self/"))) {
8228             filename += strlen("self/");
8229         } else if (*filename >= '1' && *filename <= '9') {
8230             char myself[80];
8231             snprintf(myself, sizeof(myself), "%d/", getpid());
8232             if (!strncmp(filename, myself, strlen(myself))) {
8233                 filename += strlen(myself);
8234             } else {
8235                 return 0;
8236             }
8237         } else {
8238             return 0;
8239         }
8240         if (!strcmp(filename, entry)) {
8241             return 1;
8242         }
8243     }
8244     return 0;
8245 }
8246 
8247 static void excp_dump_file(FILE *logfile, CPUArchState *env,
8248                       const char *fmt, int code)
8249 {
8250     if (logfile) {
8251         CPUState *cs = env_cpu(env);
8252 
8253         fprintf(logfile, fmt, code);
8254         fprintf(logfile, "Failing executable: %s\n", exec_path);
8255         cpu_dump_state(cs, logfile, 0);
8256         open_self_maps(env, fileno(logfile));
8257     }
8258 }
8259 
8260 void target_exception_dump(CPUArchState *env, const char *fmt, int code)
8261 {
8262     /* dump to console */
8263     excp_dump_file(stderr, env, fmt, code);
8264 
8265     /* dump to log file */
8266     if (qemu_log_separate()) {
8267         FILE *logfile = qemu_log_trylock();
8268 
8269         excp_dump_file(logfile, env, fmt, code);
8270         qemu_log_unlock(logfile);
8271     }
8272 }
8273 
8274 #include "target_proc.h"
8275 
8276 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN || \
8277     defined(HAVE_ARCH_PROC_CPUINFO) || \
8278     defined(HAVE_ARCH_PROC_HARDWARE)
8279 static int is_proc(const char *filename, const char *entry)
8280 {
8281     return strcmp(filename, entry) == 0;
8282 }
8283 #endif
8284 
8285 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8286 static int open_net_route(CPUArchState *cpu_env, int fd)
8287 {
8288     FILE *fp;
8289     char *line = NULL;
8290     size_t len = 0;
8291     ssize_t read;
8292 
8293     fp = fopen("/proc/net/route", "r");
8294     if (fp == NULL) {
8295         return -1;
8296     }
8297 
8298     /* read header */
8299 
8300     read = getline(&line, &len, fp);
8301     dprintf(fd, "%s", line);
8302 
8303     /* read routes */
8304 
8305     while ((read = getline(&line, &len, fp)) != -1) {
8306         char iface[16];
8307         uint32_t dest, gw, mask;
8308         unsigned int flags, refcnt, use, metric, mtu, window, irtt;
8309         int fields;
8310 
8311         fields = sscanf(line,
8312                         "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8313                         iface, &dest, &gw, &flags, &refcnt, &use, &metric,
8314                         &mask, &mtu, &window, &irtt);
8315         if (fields != 11) {
8316             continue;
8317         }
8318         dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8319                 iface, tswap32(dest), tswap32(gw), flags, refcnt, use,
8320                 metric, tswap32(mask), mtu, window, irtt);
8321     }
8322 
8323     free(line);
8324     fclose(fp);
8325 
8326     return 0;
8327 }
8328 #endif
8329 
8330 int do_guest_openat(CPUArchState *cpu_env, int dirfd, const char *fname,
8331                     int flags, mode_t mode, bool safe)
8332 {
8333     g_autofree char *proc_name = NULL;
8334     const char *pathname;
8335     struct fake_open {
8336         const char *filename;
8337         int (*fill)(CPUArchState *cpu_env, int fd);
8338         int (*cmp)(const char *s1, const char *s2);
8339     };
8340     const struct fake_open *fake_open;
8341     static const struct fake_open fakes[] = {
8342         { "maps", open_self_maps, is_proc_myself },
8343         { "smaps", open_self_smaps, is_proc_myself },
8344         { "stat", open_self_stat, is_proc_myself },
8345         { "auxv", open_self_auxv, is_proc_myself },
8346         { "cmdline", open_self_cmdline, is_proc_myself },
8347 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8348         { "/proc/net/route", open_net_route, is_proc },
8349 #endif
8350 #if defined(HAVE_ARCH_PROC_CPUINFO)
8351         { "/proc/cpuinfo", open_cpuinfo, is_proc },
8352 #endif
8353 #if defined(HAVE_ARCH_PROC_HARDWARE)
8354         { "/proc/hardware", open_hardware, is_proc },
8355 #endif
8356         { NULL, NULL, NULL }
8357     };
8358 
8359     /* if this is a file from /proc/ filesystem, expand full name */
8360     proc_name = realpath(fname, NULL);
8361     if (proc_name && strncmp(proc_name, "/proc/", 6) == 0) {
8362         pathname = proc_name;
8363     } else {
8364         pathname = fname;
8365     }
8366 
8367     if (is_proc_myself(pathname, "exe")) {
8368         if (safe) {
8369             return safe_openat(dirfd, exec_path, flags, mode);
8370         } else {
8371             return openat(dirfd, exec_path, flags, mode);
8372         }
8373     }
8374 
8375     for (fake_open = fakes; fake_open->filename; fake_open++) {
8376         if (fake_open->cmp(pathname, fake_open->filename)) {
8377             break;
8378         }
8379     }
8380 
8381     if (fake_open->filename) {
8382         const char *tmpdir;
8383         char filename[PATH_MAX];
8384         int fd, r;
8385 
8386         fd = memfd_create("qemu-open", 0);
8387         if (fd < 0) {
8388             if (errno != ENOSYS) {
8389                 return fd;
8390             }
8391             /* create temporary file to map stat to */
8392             tmpdir = getenv("TMPDIR");
8393             if (!tmpdir)
8394                 tmpdir = "/tmp";
8395             snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir);
8396             fd = mkstemp(filename);
8397             if (fd < 0) {
8398                 return fd;
8399             }
8400             unlink(filename);
8401         }
8402 
8403         if ((r = fake_open->fill(cpu_env, fd))) {
8404             int e = errno;
8405             close(fd);
8406             errno = e;
8407             return r;
8408         }
8409         lseek(fd, 0, SEEK_SET);
8410 
8411         return fd;
8412     }
8413 
8414     if (safe) {
8415         return safe_openat(dirfd, path(pathname), flags, mode);
8416     } else {
8417         return openat(dirfd, path(pathname), flags, mode);
8418     }
8419 }
8420 
8421 ssize_t do_guest_readlink(const char *pathname, char *buf, size_t bufsiz)
8422 {
8423     ssize_t ret;
8424 
8425     if (!pathname || !buf) {
8426         errno = EFAULT;
8427         return -1;
8428     }
8429 
8430     if (!bufsiz) {
8431         /* Short circuit this for the magic exe check. */
8432         errno = EINVAL;
8433         return -1;
8434     }
8435 
8436     if (is_proc_myself((const char *)pathname, "exe")) {
8437         /*
8438          * Don't worry about sign mismatch as earlier mapping
8439          * logic would have thrown a bad address error.
8440          */
8441         ret = MIN(strlen(exec_path), bufsiz);
8442         /* We cannot NUL terminate the string. */
8443         memcpy(buf, exec_path, ret);
8444     } else {
8445         ret = readlink(path(pathname), buf, bufsiz);
8446     }
8447 
8448     return ret;
8449 }
8450 
8451 static int do_execv(CPUArchState *cpu_env, int dirfd,
8452                     abi_long pathname, abi_long guest_argp,
8453                     abi_long guest_envp, int flags, bool is_execveat)
8454 {
8455     int ret;
8456     char **argp, **envp;
8457     int argc, envc;
8458     abi_ulong gp;
8459     abi_ulong addr;
8460     char **q;
8461     void *p;
8462 
8463     argc = 0;
8464 
8465     for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) {
8466         if (get_user_ual(addr, gp)) {
8467             return -TARGET_EFAULT;
8468         }
8469         if (!addr) {
8470             break;
8471         }
8472         argc++;
8473     }
8474     envc = 0;
8475     for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) {
8476         if (get_user_ual(addr, gp)) {
8477             return -TARGET_EFAULT;
8478         }
8479         if (!addr) {
8480             break;
8481         }
8482         envc++;
8483     }
8484 
8485     argp = g_new0(char *, argc + 1);
8486     envp = g_new0(char *, envc + 1);
8487 
8488     for (gp = guest_argp, q = argp; gp; gp += sizeof(abi_ulong), q++) {
8489         if (get_user_ual(addr, gp)) {
8490             goto execve_efault;
8491         }
8492         if (!addr) {
8493             break;
8494         }
8495         *q = lock_user_string(addr);
8496         if (!*q) {
8497             goto execve_efault;
8498         }
8499     }
8500     *q = NULL;
8501 
8502     for (gp = guest_envp, q = envp; gp; gp += sizeof(abi_ulong), q++) {
8503         if (get_user_ual(addr, gp)) {
8504             goto execve_efault;
8505         }
8506         if (!addr) {
8507             break;
8508         }
8509         *q = lock_user_string(addr);
8510         if (!*q) {
8511             goto execve_efault;
8512         }
8513     }
8514     *q = NULL;
8515 
8516     /*
8517      * Although execve() is not an interruptible syscall it is
8518      * a special case where we must use the safe_syscall wrapper:
8519      * if we allow a signal to happen before we make the host
8520      * syscall then we will 'lose' it, because at the point of
8521      * execve the process leaves QEMU's control. So we use the
8522      * safe syscall wrapper to ensure that we either take the
8523      * signal as a guest signal, or else it does not happen
8524      * before the execve completes and makes it the other
8525      * program's problem.
8526      */
8527     p = lock_user_string(pathname);
8528     if (!p) {
8529         goto execve_efault;
8530     }
8531 
8532     const char *exe = p;
8533     if (is_proc_myself(p, "exe")) {
8534         exe = exec_path;
8535     }
8536     ret = is_execveat
8537         ? safe_execveat(dirfd, exe, argp, envp, flags)
8538         : safe_execve(exe, argp, envp);
8539     ret = get_errno(ret);
8540 
8541     unlock_user(p, pathname, 0);
8542 
8543     goto execve_end;
8544 
8545 execve_efault:
8546     ret = -TARGET_EFAULT;
8547 
8548 execve_end:
8549     for (gp = guest_argp, q = argp; *q; gp += sizeof(abi_ulong), q++) {
8550         if (get_user_ual(addr, gp) || !addr) {
8551             break;
8552         }
8553         unlock_user(*q, addr, 0);
8554     }
8555     for (gp = guest_envp, q = envp; *q; gp += sizeof(abi_ulong), q++) {
8556         if (get_user_ual(addr, gp) || !addr) {
8557             break;
8558         }
8559         unlock_user(*q, addr, 0);
8560     }
8561 
8562     g_free(argp);
8563     g_free(envp);
8564     return ret;
8565 }
8566 
8567 #define TIMER_MAGIC 0x0caf0000
8568 #define TIMER_MAGIC_MASK 0xffff0000
8569 
8570 /* Convert QEMU provided timer ID back to internal 16bit index format */
8571 static target_timer_t get_timer_id(abi_long arg)
8572 {
8573     target_timer_t timerid = arg;
8574 
8575     if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) {
8576         return -TARGET_EINVAL;
8577     }
8578 
8579     timerid &= 0xffff;
8580 
8581     if (timerid >= ARRAY_SIZE(g_posix_timers)) {
8582         return -TARGET_EINVAL;
8583     }
8584 
8585     return timerid;
8586 }
8587 
8588 static int target_to_host_cpu_mask(unsigned long *host_mask,
8589                                    size_t host_size,
8590                                    abi_ulong target_addr,
8591                                    size_t target_size)
8592 {
8593     unsigned target_bits = sizeof(abi_ulong) * 8;
8594     unsigned host_bits = sizeof(*host_mask) * 8;
8595     abi_ulong *target_mask;
8596     unsigned i, j;
8597 
8598     assert(host_size >= target_size);
8599 
8600     target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1);
8601     if (!target_mask) {
8602         return -TARGET_EFAULT;
8603     }
8604     memset(host_mask, 0, host_size);
8605 
8606     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8607         unsigned bit = i * target_bits;
8608         abi_ulong val;
8609 
8610         __get_user(val, &target_mask[i]);
8611         for (j = 0; j < target_bits; j++, bit++) {
8612             if (val & (1UL << j)) {
8613                 host_mask[bit / host_bits] |= 1UL << (bit % host_bits);
8614             }
8615         }
8616     }
8617 
8618     unlock_user(target_mask, target_addr, 0);
8619     return 0;
8620 }
8621 
8622 static int host_to_target_cpu_mask(const unsigned long *host_mask,
8623                                    size_t host_size,
8624                                    abi_ulong target_addr,
8625                                    size_t target_size)
8626 {
8627     unsigned target_bits = sizeof(abi_ulong) * 8;
8628     unsigned host_bits = sizeof(*host_mask) * 8;
8629     abi_ulong *target_mask;
8630     unsigned i, j;
8631 
8632     assert(host_size >= target_size);
8633 
8634     target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0);
8635     if (!target_mask) {
8636         return -TARGET_EFAULT;
8637     }
8638 
8639     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8640         unsigned bit = i * target_bits;
8641         abi_ulong val = 0;
8642 
8643         for (j = 0; j < target_bits; j++, bit++) {
8644             if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) {
8645                 val |= 1UL << j;
8646             }
8647         }
8648         __put_user(val, &target_mask[i]);
8649     }
8650 
8651     unlock_user(target_mask, target_addr, target_size);
8652     return 0;
8653 }
8654 
8655 #ifdef TARGET_NR_getdents
8656 static int do_getdents(abi_long dirfd, abi_long arg2, abi_long count)
8657 {
8658     g_autofree void *hdirp = NULL;
8659     void *tdirp;
8660     int hlen, hoff, toff;
8661     int hreclen, treclen;
8662     off64_t prev_diroff = 0;
8663 
8664     hdirp = g_try_malloc(count);
8665     if (!hdirp) {
8666         return -TARGET_ENOMEM;
8667     }
8668 
8669 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8670     hlen = sys_getdents(dirfd, hdirp, count);
8671 #else
8672     hlen = sys_getdents64(dirfd, hdirp, count);
8673 #endif
8674 
8675     hlen = get_errno(hlen);
8676     if (is_error(hlen)) {
8677         return hlen;
8678     }
8679 
8680     tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8681     if (!tdirp) {
8682         return -TARGET_EFAULT;
8683     }
8684 
8685     for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8686 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8687         struct linux_dirent *hde = hdirp + hoff;
8688 #else
8689         struct linux_dirent64 *hde = hdirp + hoff;
8690 #endif
8691         struct target_dirent *tde = tdirp + toff;
8692         int namelen;
8693         uint8_t type;
8694 
8695         namelen = strlen(hde->d_name);
8696         hreclen = hde->d_reclen;
8697         treclen = offsetof(struct target_dirent, d_name) + namelen + 2;
8698         treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent));
8699 
8700         if (toff + treclen > count) {
8701             /*
8702              * If the host struct is smaller than the target struct, or
8703              * requires less alignment and thus packs into less space,
8704              * then the host can return more entries than we can pass
8705              * on to the guest.
8706              */
8707             if (toff == 0) {
8708                 toff = -TARGET_EINVAL; /* result buffer is too small */
8709                 break;
8710             }
8711             /*
8712              * Return what we have, resetting the file pointer to the
8713              * location of the first record not returned.
8714              */
8715             lseek64(dirfd, prev_diroff, SEEK_SET);
8716             break;
8717         }
8718 
8719         prev_diroff = hde->d_off;
8720         tde->d_ino = tswapal(hde->d_ino);
8721         tde->d_off = tswapal(hde->d_off);
8722         tde->d_reclen = tswap16(treclen);
8723         memcpy(tde->d_name, hde->d_name, namelen + 1);
8724 
8725         /*
8726          * The getdents type is in what was formerly a padding byte at the
8727          * end of the structure.
8728          */
8729 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8730         type = *((uint8_t *)hde + hreclen - 1);
8731 #else
8732         type = hde->d_type;
8733 #endif
8734         *((uint8_t *)tde + treclen - 1) = type;
8735     }
8736 
8737     unlock_user(tdirp, arg2, toff);
8738     return toff;
8739 }
8740 #endif /* TARGET_NR_getdents */
8741 
8742 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
8743 static int do_getdents64(abi_long dirfd, abi_long arg2, abi_long count)
8744 {
8745     g_autofree void *hdirp = NULL;
8746     void *tdirp;
8747     int hlen, hoff, toff;
8748     int hreclen, treclen;
8749     off64_t prev_diroff = 0;
8750 
8751     hdirp = g_try_malloc(count);
8752     if (!hdirp) {
8753         return -TARGET_ENOMEM;
8754     }
8755 
8756     hlen = get_errno(sys_getdents64(dirfd, hdirp, count));
8757     if (is_error(hlen)) {
8758         return hlen;
8759     }
8760 
8761     tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8762     if (!tdirp) {
8763         return -TARGET_EFAULT;
8764     }
8765 
8766     for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8767         struct linux_dirent64 *hde = hdirp + hoff;
8768         struct target_dirent64 *tde = tdirp + toff;
8769         int namelen;
8770 
8771         namelen = strlen(hde->d_name) + 1;
8772         hreclen = hde->d_reclen;
8773         treclen = offsetof(struct target_dirent64, d_name) + namelen;
8774         treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent64));
8775 
8776         if (toff + treclen > count) {
8777             /*
8778              * If the host struct is smaller than the target struct, or
8779              * requires less alignment and thus packs into less space,
8780              * then the host can return more entries than we can pass
8781              * on to the guest.
8782              */
8783             if (toff == 0) {
8784                 toff = -TARGET_EINVAL; /* result buffer is too small */
8785                 break;
8786             }
8787             /*
8788              * Return what we have, resetting the file pointer to the
8789              * location of the first record not returned.
8790              */
8791             lseek64(dirfd, prev_diroff, SEEK_SET);
8792             break;
8793         }
8794 
8795         prev_diroff = hde->d_off;
8796         tde->d_ino = tswap64(hde->d_ino);
8797         tde->d_off = tswap64(hde->d_off);
8798         tde->d_reclen = tswap16(treclen);
8799         tde->d_type = hde->d_type;
8800         memcpy(tde->d_name, hde->d_name, namelen);
8801     }
8802 
8803     unlock_user(tdirp, arg2, toff);
8804     return toff;
8805 }
8806 #endif /* TARGET_NR_getdents64 */
8807 
8808 #if defined(TARGET_NR_riscv_hwprobe)
8809 
8810 #define RISCV_HWPROBE_KEY_MVENDORID     0
8811 #define RISCV_HWPROBE_KEY_MARCHID       1
8812 #define RISCV_HWPROBE_KEY_MIMPID        2
8813 
8814 #define RISCV_HWPROBE_KEY_BASE_BEHAVIOR 3
8815 #define     RISCV_HWPROBE_BASE_BEHAVIOR_IMA (1 << 0)
8816 
8817 #define RISCV_HWPROBE_KEY_IMA_EXT_0         4
8818 #define     RISCV_HWPROBE_IMA_FD            (1 << 0)
8819 #define     RISCV_HWPROBE_IMA_C             (1 << 1)
8820 #define     RISCV_HWPROBE_IMA_V             (1 << 2)
8821 #define     RISCV_HWPROBE_EXT_ZBA           (1 << 3)
8822 #define     RISCV_HWPROBE_EXT_ZBB           (1 << 4)
8823 #define     RISCV_HWPROBE_EXT_ZBS           (1 << 5)
8824 #define     RISCV_HWPROBE_EXT_ZICBOZ        (1 << 6)
8825 #define     RISCV_HWPROBE_EXT_ZBC           (1 << 7)
8826 #define     RISCV_HWPROBE_EXT_ZBKB          (1 << 8)
8827 #define     RISCV_HWPROBE_EXT_ZBKC          (1 << 9)
8828 #define     RISCV_HWPROBE_EXT_ZBKX          (1 << 10)
8829 #define     RISCV_HWPROBE_EXT_ZKND          (1 << 11)
8830 #define     RISCV_HWPROBE_EXT_ZKNE          (1 << 12)
8831 #define     RISCV_HWPROBE_EXT_ZKNH          (1 << 13)
8832 #define     RISCV_HWPROBE_EXT_ZKSED         (1 << 14)
8833 #define     RISCV_HWPROBE_EXT_ZKSH          (1 << 15)
8834 #define     RISCV_HWPROBE_EXT_ZKT           (1 << 16)
8835 #define     RISCV_HWPROBE_EXT_ZVBB          (1 << 17)
8836 #define     RISCV_HWPROBE_EXT_ZVBC          (1 << 18)
8837 #define     RISCV_HWPROBE_EXT_ZVKB          (1 << 19)
8838 #define     RISCV_HWPROBE_EXT_ZVKG          (1 << 20)
8839 #define     RISCV_HWPROBE_EXT_ZVKNED        (1 << 21)
8840 #define     RISCV_HWPROBE_EXT_ZVKNHA        (1 << 22)
8841 #define     RISCV_HWPROBE_EXT_ZVKNHB        (1 << 23)
8842 #define     RISCV_HWPROBE_EXT_ZVKSED        (1 << 24)
8843 #define     RISCV_HWPROBE_EXT_ZVKSH         (1 << 25)
8844 #define     RISCV_HWPROBE_EXT_ZVKT          (1 << 26)
8845 #define     RISCV_HWPROBE_EXT_ZFH           (1 << 27)
8846 #define     RISCV_HWPROBE_EXT_ZFHMIN        (1 << 28)
8847 #define     RISCV_HWPROBE_EXT_ZIHINTNTL     (1 << 29)
8848 #define     RISCV_HWPROBE_EXT_ZVFH          (1 << 30)
8849 #define     RISCV_HWPROBE_EXT_ZVFHMIN       (1 << 31)
8850 #define     RISCV_HWPROBE_EXT_ZFA           (1ULL << 32)
8851 #define     RISCV_HWPROBE_EXT_ZTSO          (1ULL << 33)
8852 #define     RISCV_HWPROBE_EXT_ZACAS         (1ULL << 34)
8853 #define     RISCV_HWPROBE_EXT_ZICOND        (1ULL << 35)
8854 
8855 #define RISCV_HWPROBE_KEY_CPUPERF_0     5
8856 #define     RISCV_HWPROBE_MISALIGNED_UNKNOWN     (0 << 0)
8857 #define     RISCV_HWPROBE_MISALIGNED_EMULATED    (1 << 0)
8858 #define     RISCV_HWPROBE_MISALIGNED_SLOW        (2 << 0)
8859 #define     RISCV_HWPROBE_MISALIGNED_FAST        (3 << 0)
8860 #define     RISCV_HWPROBE_MISALIGNED_UNSUPPORTED (4 << 0)
8861 #define     RISCV_HWPROBE_MISALIGNED_MASK        (7 << 0)
8862 
8863 #define RISCV_HWPROBE_KEY_ZICBOZ_BLOCK_SIZE 6
8864 
8865 struct riscv_hwprobe {
8866     abi_llong  key;
8867     abi_ullong value;
8868 };
8869 
8870 static void risc_hwprobe_fill_pairs(CPURISCVState *env,
8871                                     struct riscv_hwprobe *pair,
8872                                     size_t pair_count)
8873 {
8874     const RISCVCPUConfig *cfg = riscv_cpu_cfg(env);
8875 
8876     for (; pair_count > 0; pair_count--, pair++) {
8877         abi_llong key;
8878         abi_ullong value;
8879         __put_user(0, &pair->value);
8880         __get_user(key, &pair->key);
8881         switch (key) {
8882         case RISCV_HWPROBE_KEY_MVENDORID:
8883             __put_user(cfg->mvendorid, &pair->value);
8884             break;
8885         case RISCV_HWPROBE_KEY_MARCHID:
8886             __put_user(cfg->marchid, &pair->value);
8887             break;
8888         case RISCV_HWPROBE_KEY_MIMPID:
8889             __put_user(cfg->mimpid, &pair->value);
8890             break;
8891         case RISCV_HWPROBE_KEY_BASE_BEHAVIOR:
8892             value = riscv_has_ext(env, RVI) &&
8893                     riscv_has_ext(env, RVM) &&
8894                     riscv_has_ext(env, RVA) ?
8895                     RISCV_HWPROBE_BASE_BEHAVIOR_IMA : 0;
8896             __put_user(value, &pair->value);
8897             break;
8898         case RISCV_HWPROBE_KEY_IMA_EXT_0:
8899             value = riscv_has_ext(env, RVF) &&
8900                     riscv_has_ext(env, RVD) ?
8901                     RISCV_HWPROBE_IMA_FD : 0;
8902             value |= riscv_has_ext(env, RVC) ?
8903                      RISCV_HWPROBE_IMA_C : 0;
8904             value |= riscv_has_ext(env, RVV) ?
8905                      RISCV_HWPROBE_IMA_V : 0;
8906             value |= cfg->ext_zba ?
8907                      RISCV_HWPROBE_EXT_ZBA : 0;
8908             value |= cfg->ext_zbb ?
8909                      RISCV_HWPROBE_EXT_ZBB : 0;
8910             value |= cfg->ext_zbs ?
8911                      RISCV_HWPROBE_EXT_ZBS : 0;
8912             value |= cfg->ext_zicboz ?
8913                      RISCV_HWPROBE_EXT_ZICBOZ : 0;
8914             value |= cfg->ext_zbc ?
8915                      RISCV_HWPROBE_EXT_ZBC : 0;
8916             value |= cfg->ext_zbkb ?
8917                      RISCV_HWPROBE_EXT_ZBKB : 0;
8918             value |= cfg->ext_zbkc ?
8919                      RISCV_HWPROBE_EXT_ZBKC : 0;
8920             value |= cfg->ext_zbkx ?
8921                      RISCV_HWPROBE_EXT_ZBKX : 0;
8922             value |= cfg->ext_zknd ?
8923                      RISCV_HWPROBE_EXT_ZKND : 0;
8924             value |= cfg->ext_zkne ?
8925                      RISCV_HWPROBE_EXT_ZKNE : 0;
8926             value |= cfg->ext_zknh ?
8927                      RISCV_HWPROBE_EXT_ZKNH : 0;
8928             value |= cfg->ext_zksed ?
8929                      RISCV_HWPROBE_EXT_ZKSED : 0;
8930             value |= cfg->ext_zksh ?
8931                      RISCV_HWPROBE_EXT_ZKSH : 0;
8932             value |= cfg->ext_zkt ?
8933                      RISCV_HWPROBE_EXT_ZKT : 0;
8934             value |= cfg->ext_zvbb ?
8935                      RISCV_HWPROBE_EXT_ZVBB : 0;
8936             value |= cfg->ext_zvbc ?
8937                      RISCV_HWPROBE_EXT_ZVBC : 0;
8938             value |= cfg->ext_zvkb ?
8939                      RISCV_HWPROBE_EXT_ZVKB : 0;
8940             value |= cfg->ext_zvkg ?
8941                      RISCV_HWPROBE_EXT_ZVKG : 0;
8942             value |= cfg->ext_zvkned ?
8943                      RISCV_HWPROBE_EXT_ZVKNED : 0;
8944             value |= cfg->ext_zvknha ?
8945                      RISCV_HWPROBE_EXT_ZVKNHA : 0;
8946             value |= cfg->ext_zvknhb ?
8947                      RISCV_HWPROBE_EXT_ZVKNHB : 0;
8948             value |= cfg->ext_zvksed ?
8949                      RISCV_HWPROBE_EXT_ZVKSED : 0;
8950             value |= cfg->ext_zvksh ?
8951                      RISCV_HWPROBE_EXT_ZVKSH : 0;
8952             value |= cfg->ext_zvkt ?
8953                      RISCV_HWPROBE_EXT_ZVKT : 0;
8954             value |= cfg->ext_zfh ?
8955                      RISCV_HWPROBE_EXT_ZFH : 0;
8956             value |= cfg->ext_zfhmin ?
8957                      RISCV_HWPROBE_EXT_ZFHMIN : 0;
8958             value |= cfg->ext_zihintntl ?
8959                      RISCV_HWPROBE_EXT_ZIHINTNTL : 0;
8960             value |= cfg->ext_zvfh ?
8961                      RISCV_HWPROBE_EXT_ZVFH : 0;
8962             value |= cfg->ext_zvfhmin ?
8963                      RISCV_HWPROBE_EXT_ZVFHMIN : 0;
8964             value |= cfg->ext_zfa ?
8965                      RISCV_HWPROBE_EXT_ZFA : 0;
8966             value |= cfg->ext_ztso ?
8967                      RISCV_HWPROBE_EXT_ZTSO : 0;
8968             value |= cfg->ext_zacas ?
8969                      RISCV_HWPROBE_EXT_ZACAS : 0;
8970             value |= cfg->ext_zicond ?
8971                      RISCV_HWPROBE_EXT_ZICOND : 0;
8972             __put_user(value, &pair->value);
8973             break;
8974         case RISCV_HWPROBE_KEY_CPUPERF_0:
8975             __put_user(RISCV_HWPROBE_MISALIGNED_FAST, &pair->value);
8976             break;
8977         case RISCV_HWPROBE_KEY_ZICBOZ_BLOCK_SIZE:
8978             value = cfg->ext_zicboz ? cfg->cboz_blocksize : 0;
8979             __put_user(value, &pair->value);
8980             break;
8981         default:
8982             __put_user(-1, &pair->key);
8983             break;
8984         }
8985     }
8986 }
8987 
8988 static int cpu_set_valid(abi_long arg3, abi_long arg4)
8989 {
8990     int ret, i, tmp;
8991     size_t host_mask_size, target_mask_size;
8992     unsigned long *host_mask;
8993 
8994     /*
8995      * cpu_set_t represent CPU masks as bit masks of type unsigned long *.
8996      * arg3 contains the cpu count.
8997      */
8998     tmp = (8 * sizeof(abi_ulong));
8999     target_mask_size = ((arg3 + tmp - 1) / tmp) * sizeof(abi_ulong);
9000     host_mask_size = (target_mask_size + (sizeof(*host_mask) - 1)) &
9001                      ~(sizeof(*host_mask) - 1);
9002 
9003     host_mask = alloca(host_mask_size);
9004 
9005     ret = target_to_host_cpu_mask(host_mask, host_mask_size,
9006                                   arg4, target_mask_size);
9007     if (ret != 0) {
9008         return ret;
9009     }
9010 
9011     for (i = 0 ; i < host_mask_size / sizeof(*host_mask); i++) {
9012         if (host_mask[i] != 0) {
9013             return 0;
9014         }
9015     }
9016     return -TARGET_EINVAL;
9017 }
9018 
9019 static abi_long do_riscv_hwprobe(CPUArchState *cpu_env, abi_long arg1,
9020                                  abi_long arg2, abi_long arg3,
9021                                  abi_long arg4, abi_long arg5)
9022 {
9023     int ret;
9024     struct riscv_hwprobe *host_pairs;
9025 
9026     /* flags must be 0 */
9027     if (arg5 != 0) {
9028         return -TARGET_EINVAL;
9029     }
9030 
9031     /* check cpu_set */
9032     if (arg3 != 0) {
9033         ret = cpu_set_valid(arg3, arg4);
9034         if (ret != 0) {
9035             return ret;
9036         }
9037     } else if (arg4 != 0) {
9038         return -TARGET_EINVAL;
9039     }
9040 
9041     /* no pairs */
9042     if (arg2 == 0) {
9043         return 0;
9044     }
9045 
9046     host_pairs = lock_user(VERIFY_WRITE, arg1,
9047                            sizeof(*host_pairs) * (size_t)arg2, 0);
9048     if (host_pairs == NULL) {
9049         return -TARGET_EFAULT;
9050     }
9051     risc_hwprobe_fill_pairs(cpu_env, host_pairs, arg2);
9052     unlock_user(host_pairs, arg1, sizeof(*host_pairs) * (size_t)arg2);
9053     return 0;
9054 }
9055 #endif /* TARGET_NR_riscv_hwprobe */
9056 
9057 #if defined(TARGET_NR_pivot_root) && defined(__NR_pivot_root)
9058 _syscall2(int, pivot_root, const char *, new_root, const char *, put_old)
9059 #endif
9060 
9061 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree)
9062 #define __NR_sys_open_tree __NR_open_tree
9063 _syscall3(int, sys_open_tree, int, __dfd, const char *, __filename,
9064           unsigned int, __flags)
9065 #endif
9066 
9067 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount)
9068 #define __NR_sys_move_mount __NR_move_mount
9069 _syscall5(int, sys_move_mount, int, __from_dfd, const char *, __from_pathname,
9070            int, __to_dfd, const char *, __to_pathname, unsigned int, flag)
9071 #endif
9072 
9073 /* This is an internal helper for do_syscall so that it is easier
9074  * to have a single return point, so that actions, such as logging
9075  * of syscall results, can be performed.
9076  * All errnos that do_syscall() returns must be -TARGET_<errcode>.
9077  */
9078 static abi_long do_syscall1(CPUArchState *cpu_env, int num, abi_long arg1,
9079                             abi_long arg2, abi_long arg3, abi_long arg4,
9080                             abi_long arg5, abi_long arg6, abi_long arg7,
9081                             abi_long arg8)
9082 {
9083     CPUState *cpu = env_cpu(cpu_env);
9084     abi_long ret;
9085 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \
9086     || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \
9087     || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \
9088     || defined(TARGET_NR_statx)
9089     struct stat st;
9090 #endif
9091 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \
9092     || defined(TARGET_NR_fstatfs)
9093     struct statfs stfs;
9094 #endif
9095     void *p;
9096 
9097     switch(num) {
9098     case TARGET_NR_exit:
9099         /* In old applications this may be used to implement _exit(2).
9100            However in threaded applications it is used for thread termination,
9101            and _exit_group is used for application termination.
9102            Do thread termination if we have more then one thread.  */
9103 
9104         if (block_signals()) {
9105             return -QEMU_ERESTARTSYS;
9106         }
9107 
9108         pthread_mutex_lock(&clone_lock);
9109 
9110         if (CPU_NEXT(first_cpu)) {
9111             TaskState *ts = get_task_state(cpu);
9112 
9113             if (ts->child_tidptr) {
9114                 put_user_u32(0, ts->child_tidptr);
9115                 do_sys_futex(g2h(cpu, ts->child_tidptr),
9116                              FUTEX_WAKE, INT_MAX, NULL, NULL, 0);
9117             }
9118 
9119             object_unparent(OBJECT(cpu));
9120             object_unref(OBJECT(cpu));
9121             /*
9122              * At this point the CPU should be unrealized and removed
9123              * from cpu lists. We can clean-up the rest of the thread
9124              * data without the lock held.
9125              */
9126 
9127             pthread_mutex_unlock(&clone_lock);
9128 
9129             thread_cpu = NULL;
9130             g_free(ts);
9131             rcu_unregister_thread();
9132             pthread_exit(NULL);
9133         }
9134 
9135         pthread_mutex_unlock(&clone_lock);
9136         preexit_cleanup(cpu_env, arg1);
9137         _exit(arg1);
9138         return 0; /* avoid warning */
9139     case TARGET_NR_read:
9140         if (arg2 == 0 && arg3 == 0) {
9141             return get_errno(safe_read(arg1, 0, 0));
9142         } else {
9143             if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
9144                 return -TARGET_EFAULT;
9145             ret = get_errno(safe_read(arg1, p, arg3));
9146             if (ret >= 0 &&
9147                 fd_trans_host_to_target_data(arg1)) {
9148                 ret = fd_trans_host_to_target_data(arg1)(p, ret);
9149             }
9150             unlock_user(p, arg2, ret);
9151         }
9152         return ret;
9153     case TARGET_NR_write:
9154         if (arg2 == 0 && arg3 == 0) {
9155             return get_errno(safe_write(arg1, 0, 0));
9156         }
9157         if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
9158             return -TARGET_EFAULT;
9159         if (fd_trans_target_to_host_data(arg1)) {
9160             void *copy = g_malloc(arg3);
9161             memcpy(copy, p, arg3);
9162             ret = fd_trans_target_to_host_data(arg1)(copy, arg3);
9163             if (ret >= 0) {
9164                 ret = get_errno(safe_write(arg1, copy, ret));
9165             }
9166             g_free(copy);
9167         } else {
9168             ret = get_errno(safe_write(arg1, p, arg3));
9169         }
9170         unlock_user(p, arg2, 0);
9171         return ret;
9172 
9173 #ifdef TARGET_NR_open
9174     case TARGET_NR_open:
9175         if (!(p = lock_user_string(arg1)))
9176             return -TARGET_EFAULT;
9177         ret = get_errno(do_guest_openat(cpu_env, AT_FDCWD, p,
9178                                   target_to_host_bitmask(arg2, fcntl_flags_tbl),
9179                                   arg3, true));
9180         fd_trans_unregister(ret);
9181         unlock_user(p, arg1, 0);
9182         return ret;
9183 #endif
9184     case TARGET_NR_openat:
9185         if (!(p = lock_user_string(arg2)))
9186             return -TARGET_EFAULT;
9187         ret = get_errno(do_guest_openat(cpu_env, arg1, p,
9188                                   target_to_host_bitmask(arg3, fcntl_flags_tbl),
9189                                   arg4, true));
9190         fd_trans_unregister(ret);
9191         unlock_user(p, arg2, 0);
9192         return ret;
9193 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
9194     case TARGET_NR_name_to_handle_at:
9195         ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5);
9196         return ret;
9197 #endif
9198 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
9199     case TARGET_NR_open_by_handle_at:
9200         ret = do_open_by_handle_at(arg1, arg2, arg3);
9201         fd_trans_unregister(ret);
9202         return ret;
9203 #endif
9204 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
9205     case TARGET_NR_pidfd_open:
9206         return get_errno(pidfd_open(arg1, arg2));
9207 #endif
9208 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
9209     case TARGET_NR_pidfd_send_signal:
9210         {
9211             siginfo_t uinfo, *puinfo;
9212 
9213             if (arg3) {
9214                 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
9215                 if (!p) {
9216                     return -TARGET_EFAULT;
9217                  }
9218                  target_to_host_siginfo(&uinfo, p);
9219                  unlock_user(p, arg3, 0);
9220                  puinfo = &uinfo;
9221             } else {
9222                  puinfo = NULL;
9223             }
9224             ret = get_errno(pidfd_send_signal(arg1, target_to_host_signal(arg2),
9225                                               puinfo, arg4));
9226         }
9227         return ret;
9228 #endif
9229 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
9230     case TARGET_NR_pidfd_getfd:
9231         return get_errno(pidfd_getfd(arg1, arg2, arg3));
9232 #endif
9233     case TARGET_NR_close:
9234         fd_trans_unregister(arg1);
9235         return get_errno(close(arg1));
9236 #if defined(__NR_close_range) && defined(TARGET_NR_close_range)
9237     case TARGET_NR_close_range:
9238         ret = get_errno(sys_close_range(arg1, arg2, arg3));
9239         if (ret == 0 && !(arg3 & CLOSE_RANGE_CLOEXEC)) {
9240             abi_long fd, maxfd;
9241             maxfd = MIN(arg2, target_fd_max);
9242             for (fd = arg1; fd < maxfd; fd++) {
9243                 fd_trans_unregister(fd);
9244             }
9245         }
9246         return ret;
9247 #endif
9248 
9249     case TARGET_NR_brk:
9250         return do_brk(arg1);
9251 #ifdef TARGET_NR_fork
9252     case TARGET_NR_fork:
9253         return get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0));
9254 #endif
9255 #ifdef TARGET_NR_waitpid
9256     case TARGET_NR_waitpid:
9257         {
9258             int status;
9259             ret = get_errno(safe_wait4(arg1, &status, arg3, 0));
9260             if (!is_error(ret) && arg2 && ret
9261                 && put_user_s32(host_to_target_waitstatus(status), arg2))
9262                 return -TARGET_EFAULT;
9263         }
9264         return ret;
9265 #endif
9266 #ifdef TARGET_NR_waitid
9267     case TARGET_NR_waitid:
9268         {
9269             struct rusage ru;
9270             siginfo_t info;
9271 
9272             ret = get_errno(safe_waitid(arg1, arg2, (arg3 ? &info : NULL),
9273                                         arg4, (arg5 ? &ru : NULL)));
9274             if (!is_error(ret)) {
9275                 if (arg3) {
9276                     p = lock_user(VERIFY_WRITE, arg3,
9277                                   sizeof(target_siginfo_t), 0);
9278                     if (!p) {
9279                         return -TARGET_EFAULT;
9280                     }
9281                     host_to_target_siginfo(p, &info);
9282                     unlock_user(p, arg3, sizeof(target_siginfo_t));
9283                 }
9284                 if (arg5 && host_to_target_rusage(arg5, &ru)) {
9285                     return -TARGET_EFAULT;
9286                 }
9287             }
9288         }
9289         return ret;
9290 #endif
9291 #ifdef TARGET_NR_creat /* not on alpha */
9292     case TARGET_NR_creat:
9293         if (!(p = lock_user_string(arg1)))
9294             return -TARGET_EFAULT;
9295         ret = get_errno(creat(p, arg2));
9296         fd_trans_unregister(ret);
9297         unlock_user(p, arg1, 0);
9298         return ret;
9299 #endif
9300 #ifdef TARGET_NR_link
9301     case TARGET_NR_link:
9302         {
9303             void * p2;
9304             p = lock_user_string(arg1);
9305             p2 = lock_user_string(arg2);
9306             if (!p || !p2)
9307                 ret = -TARGET_EFAULT;
9308             else
9309                 ret = get_errno(link(p, p2));
9310             unlock_user(p2, arg2, 0);
9311             unlock_user(p, arg1, 0);
9312         }
9313         return ret;
9314 #endif
9315 #if defined(TARGET_NR_linkat)
9316     case TARGET_NR_linkat:
9317         {
9318             void * p2 = NULL;
9319             if (!arg2 || !arg4)
9320                 return -TARGET_EFAULT;
9321             p  = lock_user_string(arg2);
9322             p2 = lock_user_string(arg4);
9323             if (!p || !p2)
9324                 ret = -TARGET_EFAULT;
9325             else
9326                 ret = get_errno(linkat(arg1, p, arg3, p2, arg5));
9327             unlock_user(p, arg2, 0);
9328             unlock_user(p2, arg4, 0);
9329         }
9330         return ret;
9331 #endif
9332 #ifdef TARGET_NR_unlink
9333     case TARGET_NR_unlink:
9334         if (!(p = lock_user_string(arg1)))
9335             return -TARGET_EFAULT;
9336         ret = get_errno(unlink(p));
9337         unlock_user(p, arg1, 0);
9338         return ret;
9339 #endif
9340 #if defined(TARGET_NR_unlinkat)
9341     case TARGET_NR_unlinkat:
9342         if (!(p = lock_user_string(arg2)))
9343             return -TARGET_EFAULT;
9344         ret = get_errno(unlinkat(arg1, p, arg3));
9345         unlock_user(p, arg2, 0);
9346         return ret;
9347 #endif
9348     case TARGET_NR_execveat:
9349         return do_execv(cpu_env, arg1, arg2, arg3, arg4, arg5, true);
9350     case TARGET_NR_execve:
9351         return do_execv(cpu_env, AT_FDCWD, arg1, arg2, arg3, 0, false);
9352     case TARGET_NR_chdir:
9353         if (!(p = lock_user_string(arg1)))
9354             return -TARGET_EFAULT;
9355         ret = get_errno(chdir(p));
9356         unlock_user(p, arg1, 0);
9357         return ret;
9358 #ifdef TARGET_NR_time
9359     case TARGET_NR_time:
9360         {
9361             time_t host_time;
9362             ret = get_errno(time(&host_time));
9363             if (!is_error(ret)
9364                 && arg1
9365                 && put_user_sal(host_time, arg1))
9366                 return -TARGET_EFAULT;
9367         }
9368         return ret;
9369 #endif
9370 #ifdef TARGET_NR_mknod
9371     case TARGET_NR_mknod:
9372         if (!(p = lock_user_string(arg1)))
9373             return -TARGET_EFAULT;
9374         ret = get_errno(mknod(p, arg2, arg3));
9375         unlock_user(p, arg1, 0);
9376         return ret;
9377 #endif
9378 #if defined(TARGET_NR_mknodat)
9379     case TARGET_NR_mknodat:
9380         if (!(p = lock_user_string(arg2)))
9381             return -TARGET_EFAULT;
9382         ret = get_errno(mknodat(arg1, p, arg3, arg4));
9383         unlock_user(p, arg2, 0);
9384         return ret;
9385 #endif
9386 #ifdef TARGET_NR_chmod
9387     case TARGET_NR_chmod:
9388         if (!(p = lock_user_string(arg1)))
9389             return -TARGET_EFAULT;
9390         ret = get_errno(chmod(p, arg2));
9391         unlock_user(p, arg1, 0);
9392         return ret;
9393 #endif
9394 #ifdef TARGET_NR_lseek
9395     case TARGET_NR_lseek:
9396         return get_errno(lseek(arg1, arg2, arg3));
9397 #endif
9398 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
9399     /* Alpha specific */
9400     case TARGET_NR_getxpid:
9401         cpu_env->ir[IR_A4] = getppid();
9402         return get_errno(getpid());
9403 #endif
9404 #ifdef TARGET_NR_getpid
9405     case TARGET_NR_getpid:
9406         return get_errno(getpid());
9407 #endif
9408     case TARGET_NR_mount:
9409         {
9410             /* need to look at the data field */
9411             void *p2, *p3;
9412 
9413             if (arg1) {
9414                 p = lock_user_string(arg1);
9415                 if (!p) {
9416                     return -TARGET_EFAULT;
9417                 }
9418             } else {
9419                 p = NULL;
9420             }
9421 
9422             p2 = lock_user_string(arg2);
9423             if (!p2) {
9424                 if (arg1) {
9425                     unlock_user(p, arg1, 0);
9426                 }
9427                 return -TARGET_EFAULT;
9428             }
9429 
9430             if (arg3) {
9431                 p3 = lock_user_string(arg3);
9432                 if (!p3) {
9433                     if (arg1) {
9434                         unlock_user(p, arg1, 0);
9435                     }
9436                     unlock_user(p2, arg2, 0);
9437                     return -TARGET_EFAULT;
9438                 }
9439             } else {
9440                 p3 = NULL;
9441             }
9442 
9443             /* FIXME - arg5 should be locked, but it isn't clear how to
9444              * do that since it's not guaranteed to be a NULL-terminated
9445              * string.
9446              */
9447             if (!arg5) {
9448                 ret = mount(p, p2, p3, (unsigned long)arg4, NULL);
9449             } else {
9450                 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(cpu, arg5));
9451             }
9452             ret = get_errno(ret);
9453 
9454             if (arg1) {
9455                 unlock_user(p, arg1, 0);
9456             }
9457             unlock_user(p2, arg2, 0);
9458             if (arg3) {
9459                 unlock_user(p3, arg3, 0);
9460             }
9461         }
9462         return ret;
9463 #if defined(TARGET_NR_umount) || defined(TARGET_NR_oldumount)
9464 #if defined(TARGET_NR_umount)
9465     case TARGET_NR_umount:
9466 #endif
9467 #if defined(TARGET_NR_oldumount)
9468     case TARGET_NR_oldumount:
9469 #endif
9470         if (!(p = lock_user_string(arg1)))
9471             return -TARGET_EFAULT;
9472         ret = get_errno(umount(p));
9473         unlock_user(p, arg1, 0);
9474         return ret;
9475 #endif
9476 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount)
9477     case TARGET_NR_move_mount:
9478         {
9479             void *p2, *p4;
9480 
9481             if (!arg2 || !arg4) {
9482                 return -TARGET_EFAULT;
9483             }
9484 
9485             p2 = lock_user_string(arg2);
9486             if (!p2) {
9487                 return -TARGET_EFAULT;
9488             }
9489 
9490             p4 = lock_user_string(arg4);
9491             if (!p4) {
9492                 unlock_user(p2, arg2, 0);
9493                 return -TARGET_EFAULT;
9494             }
9495             ret = get_errno(sys_move_mount(arg1, p2, arg3, p4, arg5));
9496 
9497             unlock_user(p2, arg2, 0);
9498             unlock_user(p4, arg4, 0);
9499 
9500             return ret;
9501         }
9502 #endif
9503 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree)
9504     case TARGET_NR_open_tree:
9505         {
9506             void *p2;
9507             int host_flags;
9508 
9509             if (!arg2) {
9510                 return -TARGET_EFAULT;
9511             }
9512 
9513             p2 = lock_user_string(arg2);
9514             if (!p2) {
9515                 return -TARGET_EFAULT;
9516             }
9517 
9518             host_flags = arg3 & ~TARGET_O_CLOEXEC;
9519             if (arg3 & TARGET_O_CLOEXEC) {
9520                 host_flags |= O_CLOEXEC;
9521             }
9522 
9523             ret = get_errno(sys_open_tree(arg1, p2, host_flags));
9524 
9525             unlock_user(p2, arg2, 0);
9526 
9527             return ret;
9528         }
9529 #endif
9530 #ifdef TARGET_NR_stime /* not on alpha */
9531     case TARGET_NR_stime:
9532         {
9533             struct timespec ts;
9534             ts.tv_nsec = 0;
9535             if (get_user_sal(ts.tv_sec, arg1)) {
9536                 return -TARGET_EFAULT;
9537             }
9538             return get_errno(clock_settime(CLOCK_REALTIME, &ts));
9539         }
9540 #endif
9541 #ifdef TARGET_NR_alarm /* not on alpha */
9542     case TARGET_NR_alarm:
9543         return alarm(arg1);
9544 #endif
9545 #ifdef TARGET_NR_pause /* not on alpha */
9546     case TARGET_NR_pause:
9547         if (!block_signals()) {
9548             sigsuspend(&get_task_state(cpu)->signal_mask);
9549         }
9550         return -TARGET_EINTR;
9551 #endif
9552 #ifdef TARGET_NR_utime
9553     case TARGET_NR_utime:
9554         {
9555             struct utimbuf tbuf, *host_tbuf;
9556             struct target_utimbuf *target_tbuf;
9557             if (arg2) {
9558                 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1))
9559                     return -TARGET_EFAULT;
9560                 tbuf.actime = tswapal(target_tbuf->actime);
9561                 tbuf.modtime = tswapal(target_tbuf->modtime);
9562                 unlock_user_struct(target_tbuf, arg2, 0);
9563                 host_tbuf = &tbuf;
9564             } else {
9565                 host_tbuf = NULL;
9566             }
9567             if (!(p = lock_user_string(arg1)))
9568                 return -TARGET_EFAULT;
9569             ret = get_errno(utime(p, host_tbuf));
9570             unlock_user(p, arg1, 0);
9571         }
9572         return ret;
9573 #endif
9574 #ifdef TARGET_NR_utimes
9575     case TARGET_NR_utimes:
9576         {
9577             struct timeval *tvp, tv[2];
9578             if (arg2) {
9579                 if (copy_from_user_timeval(&tv[0], arg2)
9580                     || copy_from_user_timeval(&tv[1],
9581                                               arg2 + sizeof(struct target_timeval)))
9582                     return -TARGET_EFAULT;
9583                 tvp = tv;
9584             } else {
9585                 tvp = NULL;
9586             }
9587             if (!(p = lock_user_string(arg1)))
9588                 return -TARGET_EFAULT;
9589             ret = get_errno(utimes(p, tvp));
9590             unlock_user(p, arg1, 0);
9591         }
9592         return ret;
9593 #endif
9594 #if defined(TARGET_NR_futimesat)
9595     case TARGET_NR_futimesat:
9596         {
9597             struct timeval *tvp, tv[2];
9598             if (arg3) {
9599                 if (copy_from_user_timeval(&tv[0], arg3)
9600                     || copy_from_user_timeval(&tv[1],
9601                                               arg3 + sizeof(struct target_timeval)))
9602                     return -TARGET_EFAULT;
9603                 tvp = tv;
9604             } else {
9605                 tvp = NULL;
9606             }
9607             if (!(p = lock_user_string(arg2))) {
9608                 return -TARGET_EFAULT;
9609             }
9610             ret = get_errno(futimesat(arg1, path(p), tvp));
9611             unlock_user(p, arg2, 0);
9612         }
9613         return ret;
9614 #endif
9615 #ifdef TARGET_NR_access
9616     case TARGET_NR_access:
9617         if (!(p = lock_user_string(arg1))) {
9618             return -TARGET_EFAULT;
9619         }
9620         ret = get_errno(access(path(p), arg2));
9621         unlock_user(p, arg1, 0);
9622         return ret;
9623 #endif
9624 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
9625     case TARGET_NR_faccessat:
9626         if (!(p = lock_user_string(arg2))) {
9627             return -TARGET_EFAULT;
9628         }
9629         ret = get_errno(faccessat(arg1, p, arg3, 0));
9630         unlock_user(p, arg2, 0);
9631         return ret;
9632 #endif
9633 #if defined(TARGET_NR_faccessat2)
9634     case TARGET_NR_faccessat2:
9635         if (!(p = lock_user_string(arg2))) {
9636             return -TARGET_EFAULT;
9637         }
9638         ret = get_errno(faccessat(arg1, p, arg3, arg4));
9639         unlock_user(p, arg2, 0);
9640         return ret;
9641 #endif
9642 #ifdef TARGET_NR_nice /* not on alpha */
9643     case TARGET_NR_nice:
9644         return get_errno(nice(arg1));
9645 #endif
9646     case TARGET_NR_sync:
9647         sync();
9648         return 0;
9649 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS)
9650     case TARGET_NR_syncfs:
9651         return get_errno(syncfs(arg1));
9652 #endif
9653     case TARGET_NR_kill:
9654         return get_errno(safe_kill(arg1, target_to_host_signal(arg2)));
9655 #ifdef TARGET_NR_rename
9656     case TARGET_NR_rename:
9657         {
9658             void *p2;
9659             p = lock_user_string(arg1);
9660             p2 = lock_user_string(arg2);
9661             if (!p || !p2)
9662                 ret = -TARGET_EFAULT;
9663             else
9664                 ret = get_errno(rename(p, p2));
9665             unlock_user(p2, arg2, 0);
9666             unlock_user(p, arg1, 0);
9667         }
9668         return ret;
9669 #endif
9670 #if defined(TARGET_NR_renameat)
9671     case TARGET_NR_renameat:
9672         {
9673             void *p2;
9674             p  = lock_user_string(arg2);
9675             p2 = lock_user_string(arg4);
9676             if (!p || !p2)
9677                 ret = -TARGET_EFAULT;
9678             else
9679                 ret = get_errno(renameat(arg1, p, arg3, p2));
9680             unlock_user(p2, arg4, 0);
9681             unlock_user(p, arg2, 0);
9682         }
9683         return ret;
9684 #endif
9685 #if defined(TARGET_NR_renameat2)
9686     case TARGET_NR_renameat2:
9687         {
9688             void *p2;
9689             p  = lock_user_string(arg2);
9690             p2 = lock_user_string(arg4);
9691             if (!p || !p2) {
9692                 ret = -TARGET_EFAULT;
9693             } else {
9694                 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5));
9695             }
9696             unlock_user(p2, arg4, 0);
9697             unlock_user(p, arg2, 0);
9698         }
9699         return ret;
9700 #endif
9701 #ifdef TARGET_NR_mkdir
9702     case TARGET_NR_mkdir:
9703         if (!(p = lock_user_string(arg1)))
9704             return -TARGET_EFAULT;
9705         ret = get_errno(mkdir(p, arg2));
9706         unlock_user(p, arg1, 0);
9707         return ret;
9708 #endif
9709 #if defined(TARGET_NR_mkdirat)
9710     case TARGET_NR_mkdirat:
9711         if (!(p = lock_user_string(arg2)))
9712             return -TARGET_EFAULT;
9713         ret = get_errno(mkdirat(arg1, p, arg3));
9714         unlock_user(p, arg2, 0);
9715         return ret;
9716 #endif
9717 #ifdef TARGET_NR_rmdir
9718     case TARGET_NR_rmdir:
9719         if (!(p = lock_user_string(arg1)))
9720             return -TARGET_EFAULT;
9721         ret = get_errno(rmdir(p));
9722         unlock_user(p, arg1, 0);
9723         return ret;
9724 #endif
9725     case TARGET_NR_dup:
9726         ret = get_errno(dup(arg1));
9727         if (ret >= 0) {
9728             fd_trans_dup(arg1, ret);
9729         }
9730         return ret;
9731 #ifdef TARGET_NR_pipe
9732     case TARGET_NR_pipe:
9733         return do_pipe(cpu_env, arg1, 0, 0);
9734 #endif
9735 #ifdef TARGET_NR_pipe2
9736     case TARGET_NR_pipe2:
9737         return do_pipe(cpu_env, arg1,
9738                        target_to_host_bitmask(arg2, fcntl_flags_tbl), 1);
9739 #endif
9740     case TARGET_NR_times:
9741         {
9742             struct target_tms *tmsp;
9743             struct tms tms;
9744             ret = get_errno(times(&tms));
9745             if (arg1) {
9746                 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0);
9747                 if (!tmsp)
9748                     return -TARGET_EFAULT;
9749                 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime));
9750                 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime));
9751                 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime));
9752                 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime));
9753             }
9754             if (!is_error(ret))
9755                 ret = host_to_target_clock_t(ret);
9756         }
9757         return ret;
9758     case TARGET_NR_acct:
9759         if (arg1 == 0) {
9760             ret = get_errno(acct(NULL));
9761         } else {
9762             if (!(p = lock_user_string(arg1))) {
9763                 return -TARGET_EFAULT;
9764             }
9765             ret = get_errno(acct(path(p)));
9766             unlock_user(p, arg1, 0);
9767         }
9768         return ret;
9769 #ifdef TARGET_NR_umount2
9770     case TARGET_NR_umount2:
9771         if (!(p = lock_user_string(arg1)))
9772             return -TARGET_EFAULT;
9773         ret = get_errno(umount2(p, arg2));
9774         unlock_user(p, arg1, 0);
9775         return ret;
9776 #endif
9777     case TARGET_NR_ioctl:
9778         return do_ioctl(arg1, arg2, arg3);
9779 #ifdef TARGET_NR_fcntl
9780     case TARGET_NR_fcntl:
9781         return do_fcntl(arg1, arg2, arg3);
9782 #endif
9783     case TARGET_NR_setpgid:
9784         return get_errno(setpgid(arg1, arg2));
9785     case TARGET_NR_umask:
9786         return get_errno(umask(arg1));
9787     case TARGET_NR_chroot:
9788         if (!(p = lock_user_string(arg1)))
9789             return -TARGET_EFAULT;
9790         ret = get_errno(chroot(p));
9791         unlock_user(p, arg1, 0);
9792         return ret;
9793 #ifdef TARGET_NR_dup2
9794     case TARGET_NR_dup2:
9795         ret = get_errno(dup2(arg1, arg2));
9796         if (ret >= 0) {
9797             fd_trans_dup(arg1, arg2);
9798         }
9799         return ret;
9800 #endif
9801 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
9802     case TARGET_NR_dup3:
9803     {
9804         int host_flags;
9805 
9806         if ((arg3 & ~TARGET_O_CLOEXEC) != 0) {
9807             return -EINVAL;
9808         }
9809         host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl);
9810         ret = get_errno(dup3(arg1, arg2, host_flags));
9811         if (ret >= 0) {
9812             fd_trans_dup(arg1, arg2);
9813         }
9814         return ret;
9815     }
9816 #endif
9817 #ifdef TARGET_NR_getppid /* not on alpha */
9818     case TARGET_NR_getppid:
9819         return get_errno(getppid());
9820 #endif
9821 #ifdef TARGET_NR_getpgrp
9822     case TARGET_NR_getpgrp:
9823         return get_errno(getpgrp());
9824 #endif
9825     case TARGET_NR_setsid:
9826         return get_errno(setsid());
9827 #ifdef TARGET_NR_sigaction
9828     case TARGET_NR_sigaction:
9829         {
9830 #if defined(TARGET_MIPS)
9831 	    struct target_sigaction act, oact, *pact, *old_act;
9832 
9833 	    if (arg2) {
9834                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9835                     return -TARGET_EFAULT;
9836 		act._sa_handler = old_act->_sa_handler;
9837 		target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]);
9838 		act.sa_flags = old_act->sa_flags;
9839 		unlock_user_struct(old_act, arg2, 0);
9840 		pact = &act;
9841 	    } else {
9842 		pact = NULL;
9843 	    }
9844 
9845         ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9846 
9847 	    if (!is_error(ret) && arg3) {
9848                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9849                     return -TARGET_EFAULT;
9850 		old_act->_sa_handler = oact._sa_handler;
9851 		old_act->sa_flags = oact.sa_flags;
9852 		old_act->sa_mask.sig[0] = oact.sa_mask.sig[0];
9853 		old_act->sa_mask.sig[1] = 0;
9854 		old_act->sa_mask.sig[2] = 0;
9855 		old_act->sa_mask.sig[3] = 0;
9856 		unlock_user_struct(old_act, arg3, 1);
9857 	    }
9858 #else
9859             struct target_old_sigaction *old_act;
9860             struct target_sigaction act, oact, *pact;
9861             if (arg2) {
9862                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9863                     return -TARGET_EFAULT;
9864                 act._sa_handler = old_act->_sa_handler;
9865                 target_siginitset(&act.sa_mask, old_act->sa_mask);
9866                 act.sa_flags = old_act->sa_flags;
9867 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9868                 act.sa_restorer = old_act->sa_restorer;
9869 #endif
9870                 unlock_user_struct(old_act, arg2, 0);
9871                 pact = &act;
9872             } else {
9873                 pact = NULL;
9874             }
9875             ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9876             if (!is_error(ret) && arg3) {
9877                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9878                     return -TARGET_EFAULT;
9879                 old_act->_sa_handler = oact._sa_handler;
9880                 old_act->sa_mask = oact.sa_mask.sig[0];
9881                 old_act->sa_flags = oact.sa_flags;
9882 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9883                 old_act->sa_restorer = oact.sa_restorer;
9884 #endif
9885                 unlock_user_struct(old_act, arg3, 1);
9886             }
9887 #endif
9888         }
9889         return ret;
9890 #endif
9891     case TARGET_NR_rt_sigaction:
9892         {
9893             /*
9894              * For Alpha and SPARC this is a 5 argument syscall, with
9895              * a 'restorer' parameter which must be copied into the
9896              * sa_restorer field of the sigaction struct.
9897              * For Alpha that 'restorer' is arg5; for SPARC it is arg4,
9898              * and arg5 is the sigsetsize.
9899              */
9900 #if defined(TARGET_ALPHA)
9901             target_ulong sigsetsize = arg4;
9902             target_ulong restorer = arg5;
9903 #elif defined(TARGET_SPARC)
9904             target_ulong restorer = arg4;
9905             target_ulong sigsetsize = arg5;
9906 #else
9907             target_ulong sigsetsize = arg4;
9908             target_ulong restorer = 0;
9909 #endif
9910             struct target_sigaction *act = NULL;
9911             struct target_sigaction *oact = NULL;
9912 
9913             if (sigsetsize != sizeof(target_sigset_t)) {
9914                 return -TARGET_EINVAL;
9915             }
9916             if (arg2 && !lock_user_struct(VERIFY_READ, act, arg2, 1)) {
9917                 return -TARGET_EFAULT;
9918             }
9919             if (arg3 && !lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) {
9920                 ret = -TARGET_EFAULT;
9921             } else {
9922                 ret = get_errno(do_sigaction(arg1, act, oact, restorer));
9923                 if (oact) {
9924                     unlock_user_struct(oact, arg3, 1);
9925                 }
9926             }
9927             if (act) {
9928                 unlock_user_struct(act, arg2, 0);
9929             }
9930         }
9931         return ret;
9932 #ifdef TARGET_NR_sgetmask /* not on alpha */
9933     case TARGET_NR_sgetmask:
9934         {
9935             sigset_t cur_set;
9936             abi_ulong target_set;
9937             ret = do_sigprocmask(0, NULL, &cur_set);
9938             if (!ret) {
9939                 host_to_target_old_sigset(&target_set, &cur_set);
9940                 ret = target_set;
9941             }
9942         }
9943         return ret;
9944 #endif
9945 #ifdef TARGET_NR_ssetmask /* not on alpha */
9946     case TARGET_NR_ssetmask:
9947         {
9948             sigset_t set, oset;
9949             abi_ulong target_set = arg1;
9950             target_to_host_old_sigset(&set, &target_set);
9951             ret = do_sigprocmask(SIG_SETMASK, &set, &oset);
9952             if (!ret) {
9953                 host_to_target_old_sigset(&target_set, &oset);
9954                 ret = target_set;
9955             }
9956         }
9957         return ret;
9958 #endif
9959 #ifdef TARGET_NR_sigprocmask
9960     case TARGET_NR_sigprocmask:
9961         {
9962 #if defined(TARGET_ALPHA)
9963             sigset_t set, oldset;
9964             abi_ulong mask;
9965             int how;
9966 
9967             switch (arg1) {
9968             case TARGET_SIG_BLOCK:
9969                 how = SIG_BLOCK;
9970                 break;
9971             case TARGET_SIG_UNBLOCK:
9972                 how = SIG_UNBLOCK;
9973                 break;
9974             case TARGET_SIG_SETMASK:
9975                 how = SIG_SETMASK;
9976                 break;
9977             default:
9978                 return -TARGET_EINVAL;
9979             }
9980             mask = arg2;
9981             target_to_host_old_sigset(&set, &mask);
9982 
9983             ret = do_sigprocmask(how, &set, &oldset);
9984             if (!is_error(ret)) {
9985                 host_to_target_old_sigset(&mask, &oldset);
9986                 ret = mask;
9987                 cpu_env->ir[IR_V0] = 0; /* force no error */
9988             }
9989 #else
9990             sigset_t set, oldset, *set_ptr;
9991             int how;
9992 
9993             if (arg2) {
9994                 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1);
9995                 if (!p) {
9996                     return -TARGET_EFAULT;
9997                 }
9998                 target_to_host_old_sigset(&set, p);
9999                 unlock_user(p, arg2, 0);
10000                 set_ptr = &set;
10001                 switch (arg1) {
10002                 case TARGET_SIG_BLOCK:
10003                     how = SIG_BLOCK;
10004                     break;
10005                 case TARGET_SIG_UNBLOCK:
10006                     how = SIG_UNBLOCK;
10007                     break;
10008                 case TARGET_SIG_SETMASK:
10009                     how = SIG_SETMASK;
10010                     break;
10011                 default:
10012                     return -TARGET_EINVAL;
10013                 }
10014             } else {
10015                 how = 0;
10016                 set_ptr = NULL;
10017             }
10018             ret = do_sigprocmask(how, set_ptr, &oldset);
10019             if (!is_error(ret) && arg3) {
10020                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
10021                     return -TARGET_EFAULT;
10022                 host_to_target_old_sigset(p, &oldset);
10023                 unlock_user(p, arg3, sizeof(target_sigset_t));
10024             }
10025 #endif
10026         }
10027         return ret;
10028 #endif
10029     case TARGET_NR_rt_sigprocmask:
10030         {
10031             int how = arg1;
10032             sigset_t set, oldset, *set_ptr;
10033 
10034             if (arg4 != sizeof(target_sigset_t)) {
10035                 return -TARGET_EINVAL;
10036             }
10037 
10038             if (arg2) {
10039                 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1);
10040                 if (!p) {
10041                     return -TARGET_EFAULT;
10042                 }
10043                 target_to_host_sigset(&set, p);
10044                 unlock_user(p, arg2, 0);
10045                 set_ptr = &set;
10046                 switch(how) {
10047                 case TARGET_SIG_BLOCK:
10048                     how = SIG_BLOCK;
10049                     break;
10050                 case TARGET_SIG_UNBLOCK:
10051                     how = SIG_UNBLOCK;
10052                     break;
10053                 case TARGET_SIG_SETMASK:
10054                     how = SIG_SETMASK;
10055                     break;
10056                 default:
10057                     return -TARGET_EINVAL;
10058                 }
10059             } else {
10060                 how = 0;
10061                 set_ptr = NULL;
10062             }
10063             ret = do_sigprocmask(how, set_ptr, &oldset);
10064             if (!is_error(ret) && arg3) {
10065                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
10066                     return -TARGET_EFAULT;
10067                 host_to_target_sigset(p, &oldset);
10068                 unlock_user(p, arg3, sizeof(target_sigset_t));
10069             }
10070         }
10071         return ret;
10072 #ifdef TARGET_NR_sigpending
10073     case TARGET_NR_sigpending:
10074         {
10075             sigset_t set;
10076             ret = get_errno(sigpending(&set));
10077             if (!is_error(ret)) {
10078                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
10079                     return -TARGET_EFAULT;
10080                 host_to_target_old_sigset(p, &set);
10081                 unlock_user(p, arg1, sizeof(target_sigset_t));
10082             }
10083         }
10084         return ret;
10085 #endif
10086     case TARGET_NR_rt_sigpending:
10087         {
10088             sigset_t set;
10089 
10090             /* Yes, this check is >, not != like most. We follow the kernel's
10091              * logic and it does it like this because it implements
10092              * NR_sigpending through the same code path, and in that case
10093              * the old_sigset_t is smaller in size.
10094              */
10095             if (arg2 > sizeof(target_sigset_t)) {
10096                 return -TARGET_EINVAL;
10097             }
10098 
10099             ret = get_errno(sigpending(&set));
10100             if (!is_error(ret)) {
10101                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
10102                     return -TARGET_EFAULT;
10103                 host_to_target_sigset(p, &set);
10104                 unlock_user(p, arg1, sizeof(target_sigset_t));
10105             }
10106         }
10107         return ret;
10108 #ifdef TARGET_NR_sigsuspend
10109     case TARGET_NR_sigsuspend:
10110         {
10111             sigset_t *set;
10112 
10113 #if defined(TARGET_ALPHA)
10114             TaskState *ts = get_task_state(cpu);
10115             /* target_to_host_old_sigset will bswap back */
10116             abi_ulong mask = tswapal(arg1);
10117             set = &ts->sigsuspend_mask;
10118             target_to_host_old_sigset(set, &mask);
10119 #else
10120             ret = process_sigsuspend_mask(&set, arg1, sizeof(target_sigset_t));
10121             if (ret != 0) {
10122                 return ret;
10123             }
10124 #endif
10125             ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE));
10126             finish_sigsuspend_mask(ret);
10127         }
10128         return ret;
10129 #endif
10130     case TARGET_NR_rt_sigsuspend:
10131         {
10132             sigset_t *set;
10133 
10134             ret = process_sigsuspend_mask(&set, arg1, arg2);
10135             if (ret != 0) {
10136                 return ret;
10137             }
10138             ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE));
10139             finish_sigsuspend_mask(ret);
10140         }
10141         return ret;
10142 #ifdef TARGET_NR_rt_sigtimedwait
10143     case TARGET_NR_rt_sigtimedwait:
10144         {
10145             sigset_t set;
10146             struct timespec uts, *puts;
10147             siginfo_t uinfo;
10148 
10149             if (arg4 != sizeof(target_sigset_t)) {
10150                 return -TARGET_EINVAL;
10151             }
10152 
10153             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
10154                 return -TARGET_EFAULT;
10155             target_to_host_sigset(&set, p);
10156             unlock_user(p, arg1, 0);
10157             if (arg3) {
10158                 puts = &uts;
10159                 if (target_to_host_timespec(puts, arg3)) {
10160                     return -TARGET_EFAULT;
10161                 }
10162             } else {
10163                 puts = NULL;
10164             }
10165             ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
10166                                                  SIGSET_T_SIZE));
10167             if (!is_error(ret)) {
10168                 if (arg2) {
10169                     p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t),
10170                                   0);
10171                     if (!p) {
10172                         return -TARGET_EFAULT;
10173                     }
10174                     host_to_target_siginfo(p, &uinfo);
10175                     unlock_user(p, arg2, sizeof(target_siginfo_t));
10176                 }
10177                 ret = host_to_target_signal(ret);
10178             }
10179         }
10180         return ret;
10181 #endif
10182 #ifdef TARGET_NR_rt_sigtimedwait_time64
10183     case TARGET_NR_rt_sigtimedwait_time64:
10184         {
10185             sigset_t set;
10186             struct timespec uts, *puts;
10187             siginfo_t uinfo;
10188 
10189             if (arg4 != sizeof(target_sigset_t)) {
10190                 return -TARGET_EINVAL;
10191             }
10192 
10193             p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1);
10194             if (!p) {
10195                 return -TARGET_EFAULT;
10196             }
10197             target_to_host_sigset(&set, p);
10198             unlock_user(p, arg1, 0);
10199             if (arg3) {
10200                 puts = &uts;
10201                 if (target_to_host_timespec64(puts, arg3)) {
10202                     return -TARGET_EFAULT;
10203                 }
10204             } else {
10205                 puts = NULL;
10206             }
10207             ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
10208                                                  SIGSET_T_SIZE));
10209             if (!is_error(ret)) {
10210                 if (arg2) {
10211                     p = lock_user(VERIFY_WRITE, arg2,
10212                                   sizeof(target_siginfo_t), 0);
10213                     if (!p) {
10214                         return -TARGET_EFAULT;
10215                     }
10216                     host_to_target_siginfo(p, &uinfo);
10217                     unlock_user(p, arg2, sizeof(target_siginfo_t));
10218                 }
10219                 ret = host_to_target_signal(ret);
10220             }
10221         }
10222         return ret;
10223 #endif
10224     case TARGET_NR_rt_sigqueueinfo:
10225         {
10226             siginfo_t uinfo;
10227 
10228             p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
10229             if (!p) {
10230                 return -TARGET_EFAULT;
10231             }
10232             target_to_host_siginfo(&uinfo, p);
10233             unlock_user(p, arg3, 0);
10234             ret = get_errno(sys_rt_sigqueueinfo(arg1, target_to_host_signal(arg2), &uinfo));
10235         }
10236         return ret;
10237     case TARGET_NR_rt_tgsigqueueinfo:
10238         {
10239             siginfo_t uinfo;
10240 
10241             p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1);
10242             if (!p) {
10243                 return -TARGET_EFAULT;
10244             }
10245             target_to_host_siginfo(&uinfo, p);
10246             unlock_user(p, arg4, 0);
10247             ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, target_to_host_signal(arg3), &uinfo));
10248         }
10249         return ret;
10250 #ifdef TARGET_NR_sigreturn
10251     case TARGET_NR_sigreturn:
10252         if (block_signals()) {
10253             return -QEMU_ERESTARTSYS;
10254         }
10255         return do_sigreturn(cpu_env);
10256 #endif
10257     case TARGET_NR_rt_sigreturn:
10258         if (block_signals()) {
10259             return -QEMU_ERESTARTSYS;
10260         }
10261         return do_rt_sigreturn(cpu_env);
10262     case TARGET_NR_sethostname:
10263         if (!(p = lock_user_string(arg1)))
10264             return -TARGET_EFAULT;
10265         ret = get_errno(sethostname(p, arg2));
10266         unlock_user(p, arg1, 0);
10267         return ret;
10268 #ifdef TARGET_NR_setrlimit
10269     case TARGET_NR_setrlimit:
10270         {
10271             int resource = target_to_host_resource(arg1);
10272             struct target_rlimit *target_rlim;
10273             struct rlimit rlim;
10274             if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1))
10275                 return -TARGET_EFAULT;
10276             rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur);
10277             rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max);
10278             unlock_user_struct(target_rlim, arg2, 0);
10279             /*
10280              * If we just passed through resource limit settings for memory then
10281              * they would also apply to QEMU's own allocations, and QEMU will
10282              * crash or hang or die if its allocations fail. Ideally we would
10283              * track the guest allocations in QEMU and apply the limits ourselves.
10284              * For now, just tell the guest the call succeeded but don't actually
10285              * limit anything.
10286              */
10287             if (resource != RLIMIT_AS &&
10288                 resource != RLIMIT_DATA &&
10289                 resource != RLIMIT_STACK) {
10290                 return get_errno(setrlimit(resource, &rlim));
10291             } else {
10292                 return 0;
10293             }
10294         }
10295 #endif
10296 #ifdef TARGET_NR_getrlimit
10297     case TARGET_NR_getrlimit:
10298         {
10299             int resource = target_to_host_resource(arg1);
10300             struct target_rlimit *target_rlim;
10301             struct rlimit rlim;
10302 
10303             ret = get_errno(getrlimit(resource, &rlim));
10304             if (!is_error(ret)) {
10305                 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
10306                     return -TARGET_EFAULT;
10307                 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
10308                 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
10309                 unlock_user_struct(target_rlim, arg2, 1);
10310             }
10311         }
10312         return ret;
10313 #endif
10314     case TARGET_NR_getrusage:
10315         {
10316             struct rusage rusage;
10317             ret = get_errno(getrusage(arg1, &rusage));
10318             if (!is_error(ret)) {
10319                 ret = host_to_target_rusage(arg2, &rusage);
10320             }
10321         }
10322         return ret;
10323 #if defined(TARGET_NR_gettimeofday)
10324     case TARGET_NR_gettimeofday:
10325         {
10326             struct timeval tv;
10327             struct timezone tz;
10328 
10329             ret = get_errno(gettimeofday(&tv, &tz));
10330             if (!is_error(ret)) {
10331                 if (arg1 && copy_to_user_timeval(arg1, &tv)) {
10332                     return -TARGET_EFAULT;
10333                 }
10334                 if (arg2 && copy_to_user_timezone(arg2, &tz)) {
10335                     return -TARGET_EFAULT;
10336                 }
10337             }
10338         }
10339         return ret;
10340 #endif
10341 #if defined(TARGET_NR_settimeofday)
10342     case TARGET_NR_settimeofday:
10343         {
10344             struct timeval tv, *ptv = NULL;
10345             struct timezone tz, *ptz = NULL;
10346 
10347             if (arg1) {
10348                 if (copy_from_user_timeval(&tv, arg1)) {
10349                     return -TARGET_EFAULT;
10350                 }
10351                 ptv = &tv;
10352             }
10353 
10354             if (arg2) {
10355                 if (copy_from_user_timezone(&tz, arg2)) {
10356                     return -TARGET_EFAULT;
10357                 }
10358                 ptz = &tz;
10359             }
10360 
10361             return get_errno(settimeofday(ptv, ptz));
10362         }
10363 #endif
10364 #if defined(TARGET_NR_select)
10365     case TARGET_NR_select:
10366 #if defined(TARGET_WANT_NI_OLD_SELECT)
10367         /* some architectures used to have old_select here
10368          * but now ENOSYS it.
10369          */
10370         ret = -TARGET_ENOSYS;
10371 #elif defined(TARGET_WANT_OLD_SYS_SELECT)
10372         ret = do_old_select(arg1);
10373 #else
10374         ret = do_select(arg1, arg2, arg3, arg4, arg5);
10375 #endif
10376         return ret;
10377 #endif
10378 #ifdef TARGET_NR_pselect6
10379     case TARGET_NR_pselect6:
10380         return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, false);
10381 #endif
10382 #ifdef TARGET_NR_pselect6_time64
10383     case TARGET_NR_pselect6_time64:
10384         return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, true);
10385 #endif
10386 #ifdef TARGET_NR_symlink
10387     case TARGET_NR_symlink:
10388         {
10389             void *p2;
10390             p = lock_user_string(arg1);
10391             p2 = lock_user_string(arg2);
10392             if (!p || !p2)
10393                 ret = -TARGET_EFAULT;
10394             else
10395                 ret = get_errno(symlink(p, p2));
10396             unlock_user(p2, arg2, 0);
10397             unlock_user(p, arg1, 0);
10398         }
10399         return ret;
10400 #endif
10401 #if defined(TARGET_NR_symlinkat)
10402     case TARGET_NR_symlinkat:
10403         {
10404             void *p2;
10405             p  = lock_user_string(arg1);
10406             p2 = lock_user_string(arg3);
10407             if (!p || !p2)
10408                 ret = -TARGET_EFAULT;
10409             else
10410                 ret = get_errno(symlinkat(p, arg2, p2));
10411             unlock_user(p2, arg3, 0);
10412             unlock_user(p, arg1, 0);
10413         }
10414         return ret;
10415 #endif
10416 #ifdef TARGET_NR_readlink
10417     case TARGET_NR_readlink:
10418         {
10419             void *p2;
10420             p = lock_user_string(arg1);
10421             p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10422             ret = get_errno(do_guest_readlink(p, p2, arg3));
10423             unlock_user(p2, arg2, ret);
10424             unlock_user(p, arg1, 0);
10425         }
10426         return ret;
10427 #endif
10428 #if defined(TARGET_NR_readlinkat)
10429     case TARGET_NR_readlinkat:
10430         {
10431             void *p2;
10432             p  = lock_user_string(arg2);
10433             p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0);
10434             if (!p || !p2) {
10435                 ret = -TARGET_EFAULT;
10436             } else if (!arg4) {
10437                 /* Short circuit this for the magic exe check. */
10438                 ret = -TARGET_EINVAL;
10439             } else if (is_proc_myself((const char *)p, "exe")) {
10440                 /*
10441                  * Don't worry about sign mismatch as earlier mapping
10442                  * logic would have thrown a bad address error.
10443                  */
10444                 ret = MIN(strlen(exec_path), arg4);
10445                 /* We cannot NUL terminate the string. */
10446                 memcpy(p2, exec_path, ret);
10447             } else {
10448                 ret = get_errno(readlinkat(arg1, path(p), p2, arg4));
10449             }
10450             unlock_user(p2, arg3, ret);
10451             unlock_user(p, arg2, 0);
10452         }
10453         return ret;
10454 #endif
10455 #ifdef TARGET_NR_swapon
10456     case TARGET_NR_swapon:
10457         if (!(p = lock_user_string(arg1)))
10458             return -TARGET_EFAULT;
10459         ret = get_errno(swapon(p, arg2));
10460         unlock_user(p, arg1, 0);
10461         return ret;
10462 #endif
10463     case TARGET_NR_reboot:
10464         if (arg3 == LINUX_REBOOT_CMD_RESTART2) {
10465            /* arg4 must be ignored in all other cases */
10466            p = lock_user_string(arg4);
10467            if (!p) {
10468                return -TARGET_EFAULT;
10469            }
10470            ret = get_errno(reboot(arg1, arg2, arg3, p));
10471            unlock_user(p, arg4, 0);
10472         } else {
10473            ret = get_errno(reboot(arg1, arg2, arg3, NULL));
10474         }
10475         return ret;
10476 #ifdef TARGET_NR_mmap
10477     case TARGET_NR_mmap:
10478 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
10479     (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
10480     defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
10481     || defined(TARGET_S390X)
10482         {
10483             abi_ulong *v;
10484             abi_ulong v1, v2, v3, v4, v5, v6;
10485             if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1)))
10486                 return -TARGET_EFAULT;
10487             v1 = tswapal(v[0]);
10488             v2 = tswapal(v[1]);
10489             v3 = tswapal(v[2]);
10490             v4 = tswapal(v[3]);
10491             v5 = tswapal(v[4]);
10492             v6 = tswapal(v[5]);
10493             unlock_user(v, arg1, 0);
10494             return do_mmap(v1, v2, v3, v4, v5, v6);
10495         }
10496 #else
10497         /* mmap pointers are always untagged */
10498         return do_mmap(arg1, arg2, arg3, arg4, arg5, arg6);
10499 #endif
10500 #endif
10501 #ifdef TARGET_NR_mmap2
10502     case TARGET_NR_mmap2:
10503 #ifndef MMAP_SHIFT
10504 #define MMAP_SHIFT 12
10505 #endif
10506         return do_mmap(arg1, arg2, arg3, arg4, arg5,
10507                        (off_t)(abi_ulong)arg6 << MMAP_SHIFT);
10508 #endif
10509     case TARGET_NR_munmap:
10510         arg1 = cpu_untagged_addr(cpu, arg1);
10511         return get_errno(target_munmap(arg1, arg2));
10512     case TARGET_NR_mprotect:
10513         arg1 = cpu_untagged_addr(cpu, arg1);
10514         {
10515             TaskState *ts = get_task_state(cpu);
10516             /* Special hack to detect libc making the stack executable.  */
10517             if ((arg3 & PROT_GROWSDOWN)
10518                 && arg1 >= ts->info->stack_limit
10519                 && arg1 <= ts->info->start_stack) {
10520                 arg3 &= ~PROT_GROWSDOWN;
10521                 arg2 = arg2 + arg1 - ts->info->stack_limit;
10522                 arg1 = ts->info->stack_limit;
10523             }
10524         }
10525         return get_errno(target_mprotect(arg1, arg2, arg3));
10526 #ifdef TARGET_NR_mremap
10527     case TARGET_NR_mremap:
10528         arg1 = cpu_untagged_addr(cpu, arg1);
10529         /* mremap new_addr (arg5) is always untagged */
10530         return get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5));
10531 #endif
10532         /* ??? msync/mlock/munlock are broken for softmmu.  */
10533 #ifdef TARGET_NR_msync
10534     case TARGET_NR_msync:
10535         return get_errno(msync(g2h(cpu, arg1), arg2,
10536                                target_to_host_msync_arg(arg3)));
10537 #endif
10538 #ifdef TARGET_NR_mlock
10539     case TARGET_NR_mlock:
10540         return get_errno(mlock(g2h(cpu, arg1), arg2));
10541 #endif
10542 #ifdef TARGET_NR_munlock
10543     case TARGET_NR_munlock:
10544         return get_errno(munlock(g2h(cpu, arg1), arg2));
10545 #endif
10546 #ifdef TARGET_NR_mlockall
10547     case TARGET_NR_mlockall:
10548         return get_errno(mlockall(target_to_host_mlockall_arg(arg1)));
10549 #endif
10550 #ifdef TARGET_NR_munlockall
10551     case TARGET_NR_munlockall:
10552         return get_errno(munlockall());
10553 #endif
10554 #ifdef TARGET_NR_truncate
10555     case TARGET_NR_truncate:
10556         if (!(p = lock_user_string(arg1)))
10557             return -TARGET_EFAULT;
10558         ret = get_errno(truncate(p, arg2));
10559         unlock_user(p, arg1, 0);
10560         return ret;
10561 #endif
10562 #ifdef TARGET_NR_ftruncate
10563     case TARGET_NR_ftruncate:
10564         return get_errno(ftruncate(arg1, arg2));
10565 #endif
10566     case TARGET_NR_fchmod:
10567         return get_errno(fchmod(arg1, arg2));
10568 #if defined(TARGET_NR_fchmodat)
10569     case TARGET_NR_fchmodat:
10570         if (!(p = lock_user_string(arg2)))
10571             return -TARGET_EFAULT;
10572         ret = get_errno(fchmodat(arg1, p, arg3, 0));
10573         unlock_user(p, arg2, 0);
10574         return ret;
10575 #endif
10576     case TARGET_NR_getpriority:
10577         /* Note that negative values are valid for getpriority, so we must
10578            differentiate based on errno settings.  */
10579         errno = 0;
10580         ret = getpriority(arg1, arg2);
10581         if (ret == -1 && errno != 0) {
10582             return -host_to_target_errno(errno);
10583         }
10584 #ifdef TARGET_ALPHA
10585         /* Return value is the unbiased priority.  Signal no error.  */
10586         cpu_env->ir[IR_V0] = 0;
10587 #else
10588         /* Return value is a biased priority to avoid negative numbers.  */
10589         ret = 20 - ret;
10590 #endif
10591         return ret;
10592     case TARGET_NR_setpriority:
10593         return get_errno(setpriority(arg1, arg2, arg3));
10594 #ifdef TARGET_NR_statfs
10595     case TARGET_NR_statfs:
10596         if (!(p = lock_user_string(arg1))) {
10597             return -TARGET_EFAULT;
10598         }
10599         ret = get_errno(statfs(path(p), &stfs));
10600         unlock_user(p, arg1, 0);
10601     convert_statfs:
10602         if (!is_error(ret)) {
10603             struct target_statfs *target_stfs;
10604 
10605             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0))
10606                 return -TARGET_EFAULT;
10607             __put_user(stfs.f_type, &target_stfs->f_type);
10608             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10609             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10610             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10611             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10612             __put_user(stfs.f_files, &target_stfs->f_files);
10613             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10614             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10615             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10616             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10617             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10618 #ifdef _STATFS_F_FLAGS
10619             __put_user(stfs.f_flags, &target_stfs->f_flags);
10620 #else
10621             __put_user(0, &target_stfs->f_flags);
10622 #endif
10623             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10624             unlock_user_struct(target_stfs, arg2, 1);
10625         }
10626         return ret;
10627 #endif
10628 #ifdef TARGET_NR_fstatfs
10629     case TARGET_NR_fstatfs:
10630         ret = get_errno(fstatfs(arg1, &stfs));
10631         goto convert_statfs;
10632 #endif
10633 #ifdef TARGET_NR_statfs64
10634     case TARGET_NR_statfs64:
10635         if (!(p = lock_user_string(arg1))) {
10636             return -TARGET_EFAULT;
10637         }
10638         ret = get_errno(statfs(path(p), &stfs));
10639         unlock_user(p, arg1, 0);
10640     convert_statfs64:
10641         if (!is_error(ret)) {
10642             struct target_statfs64 *target_stfs;
10643 
10644             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0))
10645                 return -TARGET_EFAULT;
10646             __put_user(stfs.f_type, &target_stfs->f_type);
10647             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10648             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10649             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10650             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10651             __put_user(stfs.f_files, &target_stfs->f_files);
10652             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10653             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10654             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10655             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10656             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10657 #ifdef _STATFS_F_FLAGS
10658             __put_user(stfs.f_flags, &target_stfs->f_flags);
10659 #else
10660             __put_user(0, &target_stfs->f_flags);
10661 #endif
10662             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10663             unlock_user_struct(target_stfs, arg3, 1);
10664         }
10665         return ret;
10666     case TARGET_NR_fstatfs64:
10667         ret = get_errno(fstatfs(arg1, &stfs));
10668         goto convert_statfs64;
10669 #endif
10670 #ifdef TARGET_NR_socketcall
10671     case TARGET_NR_socketcall:
10672         return do_socketcall(arg1, arg2);
10673 #endif
10674 #ifdef TARGET_NR_accept
10675     case TARGET_NR_accept:
10676         return do_accept4(arg1, arg2, arg3, 0);
10677 #endif
10678 #ifdef TARGET_NR_accept4
10679     case TARGET_NR_accept4:
10680         return do_accept4(arg1, arg2, arg3, arg4);
10681 #endif
10682 #ifdef TARGET_NR_bind
10683     case TARGET_NR_bind:
10684         return do_bind(arg1, arg2, arg3);
10685 #endif
10686 #ifdef TARGET_NR_connect
10687     case TARGET_NR_connect:
10688         return do_connect(arg1, arg2, arg3);
10689 #endif
10690 #ifdef TARGET_NR_getpeername
10691     case TARGET_NR_getpeername:
10692         return do_getpeername(arg1, arg2, arg3);
10693 #endif
10694 #ifdef TARGET_NR_getsockname
10695     case TARGET_NR_getsockname:
10696         return do_getsockname(arg1, arg2, arg3);
10697 #endif
10698 #ifdef TARGET_NR_getsockopt
10699     case TARGET_NR_getsockopt:
10700         return do_getsockopt(arg1, arg2, arg3, arg4, arg5);
10701 #endif
10702 #ifdef TARGET_NR_listen
10703     case TARGET_NR_listen:
10704         return get_errno(listen(arg1, arg2));
10705 #endif
10706 #ifdef TARGET_NR_recv
10707     case TARGET_NR_recv:
10708         return do_recvfrom(arg1, arg2, arg3, arg4, 0, 0);
10709 #endif
10710 #ifdef TARGET_NR_recvfrom
10711     case TARGET_NR_recvfrom:
10712         return do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6);
10713 #endif
10714 #ifdef TARGET_NR_recvmsg
10715     case TARGET_NR_recvmsg:
10716         return do_sendrecvmsg(arg1, arg2, arg3, 0);
10717 #endif
10718 #ifdef TARGET_NR_send
10719     case TARGET_NR_send:
10720         return do_sendto(arg1, arg2, arg3, arg4, 0, 0);
10721 #endif
10722 #ifdef TARGET_NR_sendmsg
10723     case TARGET_NR_sendmsg:
10724         return do_sendrecvmsg(arg1, arg2, arg3, 1);
10725 #endif
10726 #ifdef TARGET_NR_sendmmsg
10727     case TARGET_NR_sendmmsg:
10728         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1);
10729 #endif
10730 #ifdef TARGET_NR_recvmmsg
10731     case TARGET_NR_recvmmsg:
10732         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0);
10733 #endif
10734 #ifdef TARGET_NR_sendto
10735     case TARGET_NR_sendto:
10736         return do_sendto(arg1, arg2, arg3, arg4, arg5, arg6);
10737 #endif
10738 #ifdef TARGET_NR_shutdown
10739     case TARGET_NR_shutdown:
10740         return get_errno(shutdown(arg1, arg2));
10741 #endif
10742 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
10743     case TARGET_NR_getrandom:
10744         p = lock_user(VERIFY_WRITE, arg1, arg2, 0);
10745         if (!p) {
10746             return -TARGET_EFAULT;
10747         }
10748         ret = get_errno(getrandom(p, arg2, arg3));
10749         unlock_user(p, arg1, ret);
10750         return ret;
10751 #endif
10752 #ifdef TARGET_NR_socket
10753     case TARGET_NR_socket:
10754         return do_socket(arg1, arg2, arg3);
10755 #endif
10756 #ifdef TARGET_NR_socketpair
10757     case TARGET_NR_socketpair:
10758         return do_socketpair(arg1, arg2, arg3, arg4);
10759 #endif
10760 #ifdef TARGET_NR_setsockopt
10761     case TARGET_NR_setsockopt:
10762         return do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5);
10763 #endif
10764 #if defined(TARGET_NR_syslog)
10765     case TARGET_NR_syslog:
10766         {
10767             int len = arg2;
10768 
10769             switch (arg1) {
10770             case TARGET_SYSLOG_ACTION_CLOSE:         /* Close log */
10771             case TARGET_SYSLOG_ACTION_OPEN:          /* Open log */
10772             case TARGET_SYSLOG_ACTION_CLEAR:         /* Clear ring buffer */
10773             case TARGET_SYSLOG_ACTION_CONSOLE_OFF:   /* Disable logging */
10774             case TARGET_SYSLOG_ACTION_CONSOLE_ON:    /* Enable logging */
10775             case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */
10776             case TARGET_SYSLOG_ACTION_SIZE_UNREAD:   /* Number of chars */
10777             case TARGET_SYSLOG_ACTION_SIZE_BUFFER:   /* Size of the buffer */
10778                 return get_errno(sys_syslog((int)arg1, NULL, (int)arg3));
10779             case TARGET_SYSLOG_ACTION_READ:          /* Read from log */
10780             case TARGET_SYSLOG_ACTION_READ_CLEAR:    /* Read/clear msgs */
10781             case TARGET_SYSLOG_ACTION_READ_ALL:      /* Read last messages */
10782                 {
10783                     if (len < 0) {
10784                         return -TARGET_EINVAL;
10785                     }
10786                     if (len == 0) {
10787                         return 0;
10788                     }
10789                     p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10790                     if (!p) {
10791                         return -TARGET_EFAULT;
10792                     }
10793                     ret = get_errno(sys_syslog((int)arg1, p, (int)arg3));
10794                     unlock_user(p, arg2, arg3);
10795                 }
10796                 return ret;
10797             default:
10798                 return -TARGET_EINVAL;
10799             }
10800         }
10801         break;
10802 #endif
10803     case TARGET_NR_setitimer:
10804         {
10805             struct itimerval value, ovalue, *pvalue;
10806 
10807             if (arg2) {
10808                 pvalue = &value;
10809                 if (copy_from_user_timeval(&pvalue->it_interval, arg2)
10810                     || copy_from_user_timeval(&pvalue->it_value,
10811                                               arg2 + sizeof(struct target_timeval)))
10812                     return -TARGET_EFAULT;
10813             } else {
10814                 pvalue = NULL;
10815             }
10816             ret = get_errno(setitimer(arg1, pvalue, &ovalue));
10817             if (!is_error(ret) && arg3) {
10818                 if (copy_to_user_timeval(arg3,
10819                                          &ovalue.it_interval)
10820                     || copy_to_user_timeval(arg3 + sizeof(struct target_timeval),
10821                                             &ovalue.it_value))
10822                     return -TARGET_EFAULT;
10823             }
10824         }
10825         return ret;
10826     case TARGET_NR_getitimer:
10827         {
10828             struct itimerval value;
10829 
10830             ret = get_errno(getitimer(arg1, &value));
10831             if (!is_error(ret) && arg2) {
10832                 if (copy_to_user_timeval(arg2,
10833                                          &value.it_interval)
10834                     || copy_to_user_timeval(arg2 + sizeof(struct target_timeval),
10835                                             &value.it_value))
10836                     return -TARGET_EFAULT;
10837             }
10838         }
10839         return ret;
10840 #ifdef TARGET_NR_stat
10841     case TARGET_NR_stat:
10842         if (!(p = lock_user_string(arg1))) {
10843             return -TARGET_EFAULT;
10844         }
10845         ret = get_errno(stat(path(p), &st));
10846         unlock_user(p, arg1, 0);
10847         goto do_stat;
10848 #endif
10849 #ifdef TARGET_NR_lstat
10850     case TARGET_NR_lstat:
10851         if (!(p = lock_user_string(arg1))) {
10852             return -TARGET_EFAULT;
10853         }
10854         ret = get_errno(lstat(path(p), &st));
10855         unlock_user(p, arg1, 0);
10856         goto do_stat;
10857 #endif
10858 #ifdef TARGET_NR_fstat
10859     case TARGET_NR_fstat:
10860         {
10861             ret = get_errno(fstat(arg1, &st));
10862 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
10863         do_stat:
10864 #endif
10865             if (!is_error(ret)) {
10866                 struct target_stat *target_st;
10867 
10868                 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0))
10869                     return -TARGET_EFAULT;
10870                 memset(target_st, 0, sizeof(*target_st));
10871                 __put_user(st.st_dev, &target_st->st_dev);
10872                 __put_user(st.st_ino, &target_st->st_ino);
10873                 __put_user(st.st_mode, &target_st->st_mode);
10874                 __put_user(st.st_uid, &target_st->st_uid);
10875                 __put_user(st.st_gid, &target_st->st_gid);
10876                 __put_user(st.st_nlink, &target_st->st_nlink);
10877                 __put_user(st.st_rdev, &target_st->st_rdev);
10878                 __put_user(st.st_size, &target_st->st_size);
10879                 __put_user(st.st_blksize, &target_st->st_blksize);
10880                 __put_user(st.st_blocks, &target_st->st_blocks);
10881                 __put_user(st.st_atime, &target_st->target_st_atime);
10882                 __put_user(st.st_mtime, &target_st->target_st_mtime);
10883                 __put_user(st.st_ctime, &target_st->target_st_ctime);
10884 #if defined(HAVE_STRUCT_STAT_ST_ATIM) && defined(TARGET_STAT_HAVE_NSEC)
10885                 __put_user(st.st_atim.tv_nsec,
10886                            &target_st->target_st_atime_nsec);
10887                 __put_user(st.st_mtim.tv_nsec,
10888                            &target_st->target_st_mtime_nsec);
10889                 __put_user(st.st_ctim.tv_nsec,
10890                            &target_st->target_st_ctime_nsec);
10891 #endif
10892                 unlock_user_struct(target_st, arg2, 1);
10893             }
10894         }
10895         return ret;
10896 #endif
10897     case TARGET_NR_vhangup:
10898         return get_errno(vhangup());
10899 #ifdef TARGET_NR_syscall
10900     case TARGET_NR_syscall:
10901         return do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5,
10902                           arg6, arg7, arg8, 0);
10903 #endif
10904 #if defined(TARGET_NR_wait4)
10905     case TARGET_NR_wait4:
10906         {
10907             int status;
10908             abi_long status_ptr = arg2;
10909             struct rusage rusage, *rusage_ptr;
10910             abi_ulong target_rusage = arg4;
10911             abi_long rusage_err;
10912             if (target_rusage)
10913                 rusage_ptr = &rusage;
10914             else
10915                 rusage_ptr = NULL;
10916             ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr));
10917             if (!is_error(ret)) {
10918                 if (status_ptr && ret) {
10919                     status = host_to_target_waitstatus(status);
10920                     if (put_user_s32(status, status_ptr))
10921                         return -TARGET_EFAULT;
10922                 }
10923                 if (target_rusage) {
10924                     rusage_err = host_to_target_rusage(target_rusage, &rusage);
10925                     if (rusage_err) {
10926                         ret = rusage_err;
10927                     }
10928                 }
10929             }
10930         }
10931         return ret;
10932 #endif
10933 #ifdef TARGET_NR_swapoff
10934     case TARGET_NR_swapoff:
10935         if (!(p = lock_user_string(arg1)))
10936             return -TARGET_EFAULT;
10937         ret = get_errno(swapoff(p));
10938         unlock_user(p, arg1, 0);
10939         return ret;
10940 #endif
10941     case TARGET_NR_sysinfo:
10942         {
10943             struct target_sysinfo *target_value;
10944             struct sysinfo value;
10945             ret = get_errno(sysinfo(&value));
10946             if (!is_error(ret) && arg1)
10947             {
10948                 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0))
10949                     return -TARGET_EFAULT;
10950                 __put_user(value.uptime, &target_value->uptime);
10951                 __put_user(value.loads[0], &target_value->loads[0]);
10952                 __put_user(value.loads[1], &target_value->loads[1]);
10953                 __put_user(value.loads[2], &target_value->loads[2]);
10954                 __put_user(value.totalram, &target_value->totalram);
10955                 __put_user(value.freeram, &target_value->freeram);
10956                 __put_user(value.sharedram, &target_value->sharedram);
10957                 __put_user(value.bufferram, &target_value->bufferram);
10958                 __put_user(value.totalswap, &target_value->totalswap);
10959                 __put_user(value.freeswap, &target_value->freeswap);
10960                 __put_user(value.procs, &target_value->procs);
10961                 __put_user(value.totalhigh, &target_value->totalhigh);
10962                 __put_user(value.freehigh, &target_value->freehigh);
10963                 __put_user(value.mem_unit, &target_value->mem_unit);
10964                 unlock_user_struct(target_value, arg1, 1);
10965             }
10966         }
10967         return ret;
10968 #ifdef TARGET_NR_ipc
10969     case TARGET_NR_ipc:
10970         return do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6);
10971 #endif
10972 #ifdef TARGET_NR_semget
10973     case TARGET_NR_semget:
10974         return get_errno(semget(arg1, arg2, arg3));
10975 #endif
10976 #ifdef TARGET_NR_semop
10977     case TARGET_NR_semop:
10978         return do_semtimedop(arg1, arg2, arg3, 0, false);
10979 #endif
10980 #ifdef TARGET_NR_semtimedop
10981     case TARGET_NR_semtimedop:
10982         return do_semtimedop(arg1, arg2, arg3, arg4, false);
10983 #endif
10984 #ifdef TARGET_NR_semtimedop_time64
10985     case TARGET_NR_semtimedop_time64:
10986         return do_semtimedop(arg1, arg2, arg3, arg4, true);
10987 #endif
10988 #ifdef TARGET_NR_semctl
10989     case TARGET_NR_semctl:
10990         return do_semctl(arg1, arg2, arg3, arg4);
10991 #endif
10992 #ifdef TARGET_NR_msgctl
10993     case TARGET_NR_msgctl:
10994         return do_msgctl(arg1, arg2, arg3);
10995 #endif
10996 #ifdef TARGET_NR_msgget
10997     case TARGET_NR_msgget:
10998         return get_errno(msgget(arg1, arg2));
10999 #endif
11000 #ifdef TARGET_NR_msgrcv
11001     case TARGET_NR_msgrcv:
11002         return do_msgrcv(arg1, arg2, arg3, arg4, arg5);
11003 #endif
11004 #ifdef TARGET_NR_msgsnd
11005     case TARGET_NR_msgsnd:
11006         return do_msgsnd(arg1, arg2, arg3, arg4);
11007 #endif
11008 #ifdef TARGET_NR_shmget
11009     case TARGET_NR_shmget:
11010         return get_errno(shmget(arg1, arg2, arg3));
11011 #endif
11012 #ifdef TARGET_NR_shmctl
11013     case TARGET_NR_shmctl:
11014         return do_shmctl(arg1, arg2, arg3);
11015 #endif
11016 #ifdef TARGET_NR_shmat
11017     case TARGET_NR_shmat:
11018         return target_shmat(cpu_env, arg1, arg2, arg3);
11019 #endif
11020 #ifdef TARGET_NR_shmdt
11021     case TARGET_NR_shmdt:
11022         return target_shmdt(arg1);
11023 #endif
11024     case TARGET_NR_fsync:
11025         return get_errno(fsync(arg1));
11026     case TARGET_NR_clone:
11027         /* Linux manages to have three different orderings for its
11028          * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
11029          * match the kernel's CONFIG_CLONE_* settings.
11030          * Microblaze is further special in that it uses a sixth
11031          * implicit argument to clone for the TLS pointer.
11032          */
11033 #if defined(TARGET_MICROBLAZE)
11034         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5));
11035 #elif defined(TARGET_CLONE_BACKWARDS)
11036         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5));
11037 #elif defined(TARGET_CLONE_BACKWARDS2)
11038         ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4));
11039 #else
11040         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4));
11041 #endif
11042         return ret;
11043 #ifdef __NR_exit_group
11044         /* new thread calls */
11045     case TARGET_NR_exit_group:
11046         preexit_cleanup(cpu_env, arg1);
11047         return get_errno(exit_group(arg1));
11048 #endif
11049     case TARGET_NR_setdomainname:
11050         if (!(p = lock_user_string(arg1)))
11051             return -TARGET_EFAULT;
11052         ret = get_errno(setdomainname(p, arg2));
11053         unlock_user(p, arg1, 0);
11054         return ret;
11055     case TARGET_NR_uname:
11056         /* no need to transcode because we use the linux syscall */
11057         {
11058             struct new_utsname * buf;
11059 
11060             if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0))
11061                 return -TARGET_EFAULT;
11062             ret = get_errno(sys_uname(buf));
11063             if (!is_error(ret)) {
11064                 /* Overwrite the native machine name with whatever is being
11065                    emulated. */
11066                 g_strlcpy(buf->machine, cpu_to_uname_machine(cpu_env),
11067                           sizeof(buf->machine));
11068                 /* Allow the user to override the reported release.  */
11069                 if (qemu_uname_release && *qemu_uname_release) {
11070                     g_strlcpy(buf->release, qemu_uname_release,
11071                               sizeof(buf->release));
11072                 }
11073             }
11074             unlock_user_struct(buf, arg1, 1);
11075         }
11076         return ret;
11077 #ifdef TARGET_I386
11078     case TARGET_NR_modify_ldt:
11079         return do_modify_ldt(cpu_env, arg1, arg2, arg3);
11080 #if !defined(TARGET_X86_64)
11081     case TARGET_NR_vm86:
11082         return do_vm86(cpu_env, arg1, arg2);
11083 #endif
11084 #endif
11085 #if defined(TARGET_NR_adjtimex)
11086     case TARGET_NR_adjtimex:
11087         {
11088             struct timex host_buf;
11089 
11090             if (target_to_host_timex(&host_buf, arg1) != 0) {
11091                 return -TARGET_EFAULT;
11092             }
11093             ret = get_errno(adjtimex(&host_buf));
11094             if (!is_error(ret)) {
11095                 if (host_to_target_timex(arg1, &host_buf) != 0) {
11096                     return -TARGET_EFAULT;
11097                 }
11098             }
11099         }
11100         return ret;
11101 #endif
11102 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)
11103     case TARGET_NR_clock_adjtime:
11104         {
11105             struct timex htx;
11106 
11107             if (target_to_host_timex(&htx, arg2) != 0) {
11108                 return -TARGET_EFAULT;
11109             }
11110             ret = get_errno(clock_adjtime(arg1, &htx));
11111             if (!is_error(ret) && host_to_target_timex(arg2, &htx)) {
11112                 return -TARGET_EFAULT;
11113             }
11114         }
11115         return ret;
11116 #endif
11117 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
11118     case TARGET_NR_clock_adjtime64:
11119         {
11120             struct timex htx;
11121 
11122             if (target_to_host_timex64(&htx, arg2) != 0) {
11123                 return -TARGET_EFAULT;
11124             }
11125             ret = get_errno(clock_adjtime(arg1, &htx));
11126             if (!is_error(ret) && host_to_target_timex64(arg2, &htx)) {
11127                     return -TARGET_EFAULT;
11128             }
11129         }
11130         return ret;
11131 #endif
11132     case TARGET_NR_getpgid:
11133         return get_errno(getpgid(arg1));
11134     case TARGET_NR_fchdir:
11135         return get_errno(fchdir(arg1));
11136     case TARGET_NR_personality:
11137         return get_errno(personality(arg1));
11138 #ifdef TARGET_NR__llseek /* Not on alpha */
11139     case TARGET_NR__llseek:
11140         {
11141             int64_t res;
11142 #if !defined(__NR_llseek)
11143             res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5);
11144             if (res == -1) {
11145                 ret = get_errno(res);
11146             } else {
11147                 ret = 0;
11148             }
11149 #else
11150             ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5));
11151 #endif
11152             if ((ret == 0) && put_user_s64(res, arg4)) {
11153                 return -TARGET_EFAULT;
11154             }
11155         }
11156         return ret;
11157 #endif
11158 #ifdef TARGET_NR_getdents
11159     case TARGET_NR_getdents:
11160         return do_getdents(arg1, arg2, arg3);
11161 #endif /* TARGET_NR_getdents */
11162 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
11163     case TARGET_NR_getdents64:
11164         return do_getdents64(arg1, arg2, arg3);
11165 #endif /* TARGET_NR_getdents64 */
11166 #if defined(TARGET_NR__newselect)
11167     case TARGET_NR__newselect:
11168         return do_select(arg1, arg2, arg3, arg4, arg5);
11169 #endif
11170 #ifdef TARGET_NR_poll
11171     case TARGET_NR_poll:
11172         return do_ppoll(arg1, arg2, arg3, arg4, arg5, false, false);
11173 #endif
11174 #ifdef TARGET_NR_ppoll
11175     case TARGET_NR_ppoll:
11176         return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, false);
11177 #endif
11178 #ifdef TARGET_NR_ppoll_time64
11179     case TARGET_NR_ppoll_time64:
11180         return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, true);
11181 #endif
11182     case TARGET_NR_flock:
11183         /* NOTE: the flock constant seems to be the same for every
11184            Linux platform */
11185         return get_errno(safe_flock(arg1, arg2));
11186     case TARGET_NR_readv:
11187         {
11188             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
11189             if (vec != NULL) {
11190                 ret = get_errno(safe_readv(arg1, vec, arg3));
11191                 unlock_iovec(vec, arg2, arg3, 1);
11192             } else {
11193                 ret = -host_to_target_errno(errno);
11194             }
11195         }
11196         return ret;
11197     case TARGET_NR_writev:
11198         {
11199             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
11200             if (vec != NULL) {
11201                 ret = get_errno(safe_writev(arg1, vec, arg3));
11202                 unlock_iovec(vec, arg2, arg3, 0);
11203             } else {
11204                 ret = -host_to_target_errno(errno);
11205             }
11206         }
11207         return ret;
11208 #if defined(TARGET_NR_preadv)
11209     case TARGET_NR_preadv:
11210         {
11211             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
11212             if (vec != NULL) {
11213                 unsigned long low, high;
11214 
11215                 target_to_host_low_high(arg4, arg5, &low, &high);
11216                 ret = get_errno(safe_preadv(arg1, vec, arg3, low, high));
11217                 unlock_iovec(vec, arg2, arg3, 1);
11218             } else {
11219                 ret = -host_to_target_errno(errno);
11220            }
11221         }
11222         return ret;
11223 #endif
11224 #if defined(TARGET_NR_pwritev)
11225     case TARGET_NR_pwritev:
11226         {
11227             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
11228             if (vec != NULL) {
11229                 unsigned long low, high;
11230 
11231                 target_to_host_low_high(arg4, arg5, &low, &high);
11232                 ret = get_errno(safe_pwritev(arg1, vec, arg3, low, high));
11233                 unlock_iovec(vec, arg2, arg3, 0);
11234             } else {
11235                 ret = -host_to_target_errno(errno);
11236            }
11237         }
11238         return ret;
11239 #endif
11240     case TARGET_NR_getsid:
11241         return get_errno(getsid(arg1));
11242 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
11243     case TARGET_NR_fdatasync:
11244         return get_errno(fdatasync(arg1));
11245 #endif
11246     case TARGET_NR_sched_getaffinity:
11247         {
11248             unsigned int mask_size;
11249             unsigned long *mask;
11250 
11251             /*
11252              * sched_getaffinity needs multiples of ulong, so need to take
11253              * care of mismatches between target ulong and host ulong sizes.
11254              */
11255             if (arg2 & (sizeof(abi_ulong) - 1)) {
11256                 return -TARGET_EINVAL;
11257             }
11258             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
11259 
11260             mask = alloca(mask_size);
11261             memset(mask, 0, mask_size);
11262             ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask));
11263 
11264             if (!is_error(ret)) {
11265                 if (ret > arg2) {
11266                     /* More data returned than the caller's buffer will fit.
11267                      * This only happens if sizeof(abi_long) < sizeof(long)
11268                      * and the caller passed us a buffer holding an odd number
11269                      * of abi_longs. If the host kernel is actually using the
11270                      * extra 4 bytes then fail EINVAL; otherwise we can just
11271                      * ignore them and only copy the interesting part.
11272                      */
11273                     int numcpus = sysconf(_SC_NPROCESSORS_CONF);
11274                     if (numcpus > arg2 * 8) {
11275                         return -TARGET_EINVAL;
11276                     }
11277                     ret = arg2;
11278                 }
11279 
11280                 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) {
11281                     return -TARGET_EFAULT;
11282                 }
11283             }
11284         }
11285         return ret;
11286     case TARGET_NR_sched_setaffinity:
11287         {
11288             unsigned int mask_size;
11289             unsigned long *mask;
11290 
11291             /*
11292              * sched_setaffinity needs multiples of ulong, so need to take
11293              * care of mismatches between target ulong and host ulong sizes.
11294              */
11295             if (arg2 & (sizeof(abi_ulong) - 1)) {
11296                 return -TARGET_EINVAL;
11297             }
11298             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
11299             mask = alloca(mask_size);
11300 
11301             ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2);
11302             if (ret) {
11303                 return ret;
11304             }
11305 
11306             return get_errno(sys_sched_setaffinity(arg1, mask_size, mask));
11307         }
11308     case TARGET_NR_getcpu:
11309         {
11310             unsigned cpuid, node;
11311             ret = get_errno(sys_getcpu(arg1 ? &cpuid : NULL,
11312                                        arg2 ? &node : NULL,
11313                                        NULL));
11314             if (is_error(ret)) {
11315                 return ret;
11316             }
11317             if (arg1 && put_user_u32(cpuid, arg1)) {
11318                 return -TARGET_EFAULT;
11319             }
11320             if (arg2 && put_user_u32(node, arg2)) {
11321                 return -TARGET_EFAULT;
11322             }
11323         }
11324         return ret;
11325     case TARGET_NR_sched_setparam:
11326         {
11327             struct target_sched_param *target_schp;
11328             struct sched_param schp;
11329 
11330             if (arg2 == 0) {
11331                 return -TARGET_EINVAL;
11332             }
11333             if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1)) {
11334                 return -TARGET_EFAULT;
11335             }
11336             schp.sched_priority = tswap32(target_schp->sched_priority);
11337             unlock_user_struct(target_schp, arg2, 0);
11338             return get_errno(sys_sched_setparam(arg1, &schp));
11339         }
11340     case TARGET_NR_sched_getparam:
11341         {
11342             struct target_sched_param *target_schp;
11343             struct sched_param schp;
11344 
11345             if (arg2 == 0) {
11346                 return -TARGET_EINVAL;
11347             }
11348             ret = get_errno(sys_sched_getparam(arg1, &schp));
11349             if (!is_error(ret)) {
11350                 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0)) {
11351                     return -TARGET_EFAULT;
11352                 }
11353                 target_schp->sched_priority = tswap32(schp.sched_priority);
11354                 unlock_user_struct(target_schp, arg2, 1);
11355             }
11356         }
11357         return ret;
11358     case TARGET_NR_sched_setscheduler:
11359         {
11360             struct target_sched_param *target_schp;
11361             struct sched_param schp;
11362             if (arg3 == 0) {
11363                 return -TARGET_EINVAL;
11364             }
11365             if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1)) {
11366                 return -TARGET_EFAULT;
11367             }
11368             schp.sched_priority = tswap32(target_schp->sched_priority);
11369             unlock_user_struct(target_schp, arg3, 0);
11370             return get_errno(sys_sched_setscheduler(arg1, arg2, &schp));
11371         }
11372     case TARGET_NR_sched_getscheduler:
11373         return get_errno(sys_sched_getscheduler(arg1));
11374     case TARGET_NR_sched_getattr:
11375         {
11376             struct target_sched_attr *target_scha;
11377             struct sched_attr scha;
11378             if (arg2 == 0) {
11379                 return -TARGET_EINVAL;
11380             }
11381             if (arg3 > sizeof(scha)) {
11382                 arg3 = sizeof(scha);
11383             }
11384             ret = get_errno(sys_sched_getattr(arg1, &scha, arg3, arg4));
11385             if (!is_error(ret)) {
11386                 target_scha = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11387                 if (!target_scha) {
11388                     return -TARGET_EFAULT;
11389                 }
11390                 target_scha->size = tswap32(scha.size);
11391                 target_scha->sched_policy = tswap32(scha.sched_policy);
11392                 target_scha->sched_flags = tswap64(scha.sched_flags);
11393                 target_scha->sched_nice = tswap32(scha.sched_nice);
11394                 target_scha->sched_priority = tswap32(scha.sched_priority);
11395                 target_scha->sched_runtime = tswap64(scha.sched_runtime);
11396                 target_scha->sched_deadline = tswap64(scha.sched_deadline);
11397                 target_scha->sched_period = tswap64(scha.sched_period);
11398                 if (scha.size > offsetof(struct sched_attr, sched_util_min)) {
11399                     target_scha->sched_util_min = tswap32(scha.sched_util_min);
11400                     target_scha->sched_util_max = tswap32(scha.sched_util_max);
11401                 }
11402                 unlock_user(target_scha, arg2, arg3);
11403             }
11404             return ret;
11405         }
11406     case TARGET_NR_sched_setattr:
11407         {
11408             struct target_sched_attr *target_scha;
11409             struct sched_attr scha;
11410             uint32_t size;
11411             int zeroed;
11412             if (arg2 == 0) {
11413                 return -TARGET_EINVAL;
11414             }
11415             if (get_user_u32(size, arg2)) {
11416                 return -TARGET_EFAULT;
11417             }
11418             if (!size) {
11419                 size = offsetof(struct target_sched_attr, sched_util_min);
11420             }
11421             if (size < offsetof(struct target_sched_attr, sched_util_min)) {
11422                 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
11423                     return -TARGET_EFAULT;
11424                 }
11425                 return -TARGET_E2BIG;
11426             }
11427 
11428             zeroed = check_zeroed_user(arg2, sizeof(struct target_sched_attr), size);
11429             if (zeroed < 0) {
11430                 return zeroed;
11431             } else if (zeroed == 0) {
11432                 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
11433                     return -TARGET_EFAULT;
11434                 }
11435                 return -TARGET_E2BIG;
11436             }
11437             if (size > sizeof(struct target_sched_attr)) {
11438                 size = sizeof(struct target_sched_attr);
11439             }
11440 
11441             target_scha = lock_user(VERIFY_READ, arg2, size, 1);
11442             if (!target_scha) {
11443                 return -TARGET_EFAULT;
11444             }
11445             scha.size = size;
11446             scha.sched_policy = tswap32(target_scha->sched_policy);
11447             scha.sched_flags = tswap64(target_scha->sched_flags);
11448             scha.sched_nice = tswap32(target_scha->sched_nice);
11449             scha.sched_priority = tswap32(target_scha->sched_priority);
11450             scha.sched_runtime = tswap64(target_scha->sched_runtime);
11451             scha.sched_deadline = tswap64(target_scha->sched_deadline);
11452             scha.sched_period = tswap64(target_scha->sched_period);
11453             if (size > offsetof(struct target_sched_attr, sched_util_min)) {
11454                 scha.sched_util_min = tswap32(target_scha->sched_util_min);
11455                 scha.sched_util_max = tswap32(target_scha->sched_util_max);
11456             }
11457             unlock_user(target_scha, arg2, 0);
11458             return get_errno(sys_sched_setattr(arg1, &scha, arg3));
11459         }
11460     case TARGET_NR_sched_yield:
11461         return get_errno(sched_yield());
11462     case TARGET_NR_sched_get_priority_max:
11463         return get_errno(sched_get_priority_max(arg1));
11464     case TARGET_NR_sched_get_priority_min:
11465         return get_errno(sched_get_priority_min(arg1));
11466 #ifdef TARGET_NR_sched_rr_get_interval
11467     case TARGET_NR_sched_rr_get_interval:
11468         {
11469             struct timespec ts;
11470             ret = get_errno(sched_rr_get_interval(arg1, &ts));
11471             if (!is_error(ret)) {
11472                 ret = host_to_target_timespec(arg2, &ts);
11473             }
11474         }
11475         return ret;
11476 #endif
11477 #ifdef TARGET_NR_sched_rr_get_interval_time64
11478     case TARGET_NR_sched_rr_get_interval_time64:
11479         {
11480             struct timespec ts;
11481             ret = get_errno(sched_rr_get_interval(arg1, &ts));
11482             if (!is_error(ret)) {
11483                 ret = host_to_target_timespec64(arg2, &ts);
11484             }
11485         }
11486         return ret;
11487 #endif
11488 #if defined(TARGET_NR_nanosleep)
11489     case TARGET_NR_nanosleep:
11490         {
11491             struct timespec req, rem;
11492             target_to_host_timespec(&req, arg1);
11493             ret = get_errno(safe_nanosleep(&req, &rem));
11494             if (is_error(ret) && arg2) {
11495                 host_to_target_timespec(arg2, &rem);
11496             }
11497         }
11498         return ret;
11499 #endif
11500     case TARGET_NR_prctl:
11501         return do_prctl(cpu_env, arg1, arg2, arg3, arg4, arg5);
11502         break;
11503 #ifdef TARGET_NR_arch_prctl
11504     case TARGET_NR_arch_prctl:
11505         return do_arch_prctl(cpu_env, arg1, arg2);
11506 #endif
11507 #ifdef TARGET_NR_pread64
11508     case TARGET_NR_pread64:
11509         if (regpairs_aligned(cpu_env, num)) {
11510             arg4 = arg5;
11511             arg5 = arg6;
11512         }
11513         if (arg2 == 0 && arg3 == 0) {
11514             /* Special-case NULL buffer and zero length, which should succeed */
11515             p = 0;
11516         } else {
11517             p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11518             if (!p) {
11519                 return -TARGET_EFAULT;
11520             }
11521         }
11522         ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5)));
11523         unlock_user(p, arg2, ret);
11524         return ret;
11525     case TARGET_NR_pwrite64:
11526         if (regpairs_aligned(cpu_env, num)) {
11527             arg4 = arg5;
11528             arg5 = arg6;
11529         }
11530         if (arg2 == 0 && arg3 == 0) {
11531             /* Special-case NULL buffer and zero length, which should succeed */
11532             p = 0;
11533         } else {
11534             p = lock_user(VERIFY_READ, arg2, arg3, 1);
11535             if (!p) {
11536                 return -TARGET_EFAULT;
11537             }
11538         }
11539         ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5)));
11540         unlock_user(p, arg2, 0);
11541         return ret;
11542 #endif
11543     case TARGET_NR_getcwd:
11544         if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0)))
11545             return -TARGET_EFAULT;
11546         ret = get_errno(sys_getcwd1(p, arg2));
11547         unlock_user(p, arg1, ret);
11548         return ret;
11549     case TARGET_NR_capget:
11550     case TARGET_NR_capset:
11551     {
11552         struct target_user_cap_header *target_header;
11553         struct target_user_cap_data *target_data = NULL;
11554         struct __user_cap_header_struct header;
11555         struct __user_cap_data_struct data[2];
11556         struct __user_cap_data_struct *dataptr = NULL;
11557         int i, target_datalen;
11558         int data_items = 1;
11559 
11560         if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) {
11561             return -TARGET_EFAULT;
11562         }
11563         header.version = tswap32(target_header->version);
11564         header.pid = tswap32(target_header->pid);
11565 
11566         if (header.version != _LINUX_CAPABILITY_VERSION) {
11567             /* Version 2 and up takes pointer to two user_data structs */
11568             data_items = 2;
11569         }
11570 
11571         target_datalen = sizeof(*target_data) * data_items;
11572 
11573         if (arg2) {
11574             if (num == TARGET_NR_capget) {
11575                 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0);
11576             } else {
11577                 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1);
11578             }
11579             if (!target_data) {
11580                 unlock_user_struct(target_header, arg1, 0);
11581                 return -TARGET_EFAULT;
11582             }
11583 
11584             if (num == TARGET_NR_capset) {
11585                 for (i = 0; i < data_items; i++) {
11586                     data[i].effective = tswap32(target_data[i].effective);
11587                     data[i].permitted = tswap32(target_data[i].permitted);
11588                     data[i].inheritable = tswap32(target_data[i].inheritable);
11589                 }
11590             }
11591 
11592             dataptr = data;
11593         }
11594 
11595         if (num == TARGET_NR_capget) {
11596             ret = get_errno(capget(&header, dataptr));
11597         } else {
11598             ret = get_errno(capset(&header, dataptr));
11599         }
11600 
11601         /* The kernel always updates version for both capget and capset */
11602         target_header->version = tswap32(header.version);
11603         unlock_user_struct(target_header, arg1, 1);
11604 
11605         if (arg2) {
11606             if (num == TARGET_NR_capget) {
11607                 for (i = 0; i < data_items; i++) {
11608                     target_data[i].effective = tswap32(data[i].effective);
11609                     target_data[i].permitted = tswap32(data[i].permitted);
11610                     target_data[i].inheritable = tswap32(data[i].inheritable);
11611                 }
11612                 unlock_user(target_data, arg2, target_datalen);
11613             } else {
11614                 unlock_user(target_data, arg2, 0);
11615             }
11616         }
11617         return ret;
11618     }
11619     case TARGET_NR_sigaltstack:
11620         return do_sigaltstack(arg1, arg2, cpu_env);
11621 
11622 #ifdef CONFIG_SENDFILE
11623 #ifdef TARGET_NR_sendfile
11624     case TARGET_NR_sendfile:
11625     {
11626         off_t *offp = NULL;
11627         off_t off;
11628         if (arg3) {
11629             ret = get_user_sal(off, arg3);
11630             if (is_error(ret)) {
11631                 return ret;
11632             }
11633             offp = &off;
11634         }
11635         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11636         if (!is_error(ret) && arg3) {
11637             abi_long ret2 = put_user_sal(off, arg3);
11638             if (is_error(ret2)) {
11639                 ret = ret2;
11640             }
11641         }
11642         return ret;
11643     }
11644 #endif
11645 #ifdef TARGET_NR_sendfile64
11646     case TARGET_NR_sendfile64:
11647     {
11648         off_t *offp = NULL;
11649         off_t off;
11650         if (arg3) {
11651             ret = get_user_s64(off, arg3);
11652             if (is_error(ret)) {
11653                 return ret;
11654             }
11655             offp = &off;
11656         }
11657         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11658         if (!is_error(ret) && arg3) {
11659             abi_long ret2 = put_user_s64(off, arg3);
11660             if (is_error(ret2)) {
11661                 ret = ret2;
11662             }
11663         }
11664         return ret;
11665     }
11666 #endif
11667 #endif
11668 #ifdef TARGET_NR_vfork
11669     case TARGET_NR_vfork:
11670         return get_errno(do_fork(cpu_env,
11671                          CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD,
11672                          0, 0, 0, 0));
11673 #endif
11674 #ifdef TARGET_NR_ugetrlimit
11675     case TARGET_NR_ugetrlimit:
11676     {
11677 	struct rlimit rlim;
11678 	int resource = target_to_host_resource(arg1);
11679 	ret = get_errno(getrlimit(resource, &rlim));
11680 	if (!is_error(ret)) {
11681 	    struct target_rlimit *target_rlim;
11682             if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
11683                 return -TARGET_EFAULT;
11684 	    target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
11685 	    target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
11686             unlock_user_struct(target_rlim, arg2, 1);
11687 	}
11688         return ret;
11689     }
11690 #endif
11691 #ifdef TARGET_NR_truncate64
11692     case TARGET_NR_truncate64:
11693         if (!(p = lock_user_string(arg1)))
11694             return -TARGET_EFAULT;
11695 	ret = target_truncate64(cpu_env, p, arg2, arg3, arg4);
11696         unlock_user(p, arg1, 0);
11697         return ret;
11698 #endif
11699 #ifdef TARGET_NR_ftruncate64
11700     case TARGET_NR_ftruncate64:
11701         return target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4);
11702 #endif
11703 #ifdef TARGET_NR_stat64
11704     case TARGET_NR_stat64:
11705         if (!(p = lock_user_string(arg1))) {
11706             return -TARGET_EFAULT;
11707         }
11708         ret = get_errno(stat(path(p), &st));
11709         unlock_user(p, arg1, 0);
11710         if (!is_error(ret))
11711             ret = host_to_target_stat64(cpu_env, arg2, &st);
11712         return ret;
11713 #endif
11714 #ifdef TARGET_NR_lstat64
11715     case TARGET_NR_lstat64:
11716         if (!(p = lock_user_string(arg1))) {
11717             return -TARGET_EFAULT;
11718         }
11719         ret = get_errno(lstat(path(p), &st));
11720         unlock_user(p, arg1, 0);
11721         if (!is_error(ret))
11722             ret = host_to_target_stat64(cpu_env, arg2, &st);
11723         return ret;
11724 #endif
11725 #ifdef TARGET_NR_fstat64
11726     case TARGET_NR_fstat64:
11727         ret = get_errno(fstat(arg1, &st));
11728         if (!is_error(ret))
11729             ret = host_to_target_stat64(cpu_env, arg2, &st);
11730         return ret;
11731 #endif
11732 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
11733 #ifdef TARGET_NR_fstatat64
11734     case TARGET_NR_fstatat64:
11735 #endif
11736 #ifdef TARGET_NR_newfstatat
11737     case TARGET_NR_newfstatat:
11738 #endif
11739         if (!(p = lock_user_string(arg2))) {
11740             return -TARGET_EFAULT;
11741         }
11742         ret = get_errno(fstatat(arg1, path(p), &st, arg4));
11743         unlock_user(p, arg2, 0);
11744         if (!is_error(ret))
11745             ret = host_to_target_stat64(cpu_env, arg3, &st);
11746         return ret;
11747 #endif
11748 #if defined(TARGET_NR_statx)
11749     case TARGET_NR_statx:
11750         {
11751             struct target_statx *target_stx;
11752             int dirfd = arg1;
11753             int flags = arg3;
11754 
11755             p = lock_user_string(arg2);
11756             if (p == NULL) {
11757                 return -TARGET_EFAULT;
11758             }
11759 #if defined(__NR_statx)
11760             {
11761                 /*
11762                  * It is assumed that struct statx is architecture independent.
11763                  */
11764                 struct target_statx host_stx;
11765                 int mask = arg4;
11766 
11767                 ret = get_errno(sys_statx(dirfd, p, flags, mask, &host_stx));
11768                 if (!is_error(ret)) {
11769                     if (host_to_target_statx(&host_stx, arg5) != 0) {
11770                         unlock_user(p, arg2, 0);
11771                         return -TARGET_EFAULT;
11772                     }
11773                 }
11774 
11775                 if (ret != -TARGET_ENOSYS) {
11776                     unlock_user(p, arg2, 0);
11777                     return ret;
11778                 }
11779             }
11780 #endif
11781             ret = get_errno(fstatat(dirfd, path(p), &st, flags));
11782             unlock_user(p, arg2, 0);
11783 
11784             if (!is_error(ret)) {
11785                 if (!lock_user_struct(VERIFY_WRITE, target_stx, arg5, 0)) {
11786                     return -TARGET_EFAULT;
11787                 }
11788                 memset(target_stx, 0, sizeof(*target_stx));
11789                 __put_user(major(st.st_dev), &target_stx->stx_dev_major);
11790                 __put_user(minor(st.st_dev), &target_stx->stx_dev_minor);
11791                 __put_user(st.st_ino, &target_stx->stx_ino);
11792                 __put_user(st.st_mode, &target_stx->stx_mode);
11793                 __put_user(st.st_uid, &target_stx->stx_uid);
11794                 __put_user(st.st_gid, &target_stx->stx_gid);
11795                 __put_user(st.st_nlink, &target_stx->stx_nlink);
11796                 __put_user(major(st.st_rdev), &target_stx->stx_rdev_major);
11797                 __put_user(minor(st.st_rdev), &target_stx->stx_rdev_minor);
11798                 __put_user(st.st_size, &target_stx->stx_size);
11799                 __put_user(st.st_blksize, &target_stx->stx_blksize);
11800                 __put_user(st.st_blocks, &target_stx->stx_blocks);
11801                 __put_user(st.st_atime, &target_stx->stx_atime.tv_sec);
11802                 __put_user(st.st_mtime, &target_stx->stx_mtime.tv_sec);
11803                 __put_user(st.st_ctime, &target_stx->stx_ctime.tv_sec);
11804                 unlock_user_struct(target_stx, arg5, 1);
11805             }
11806         }
11807         return ret;
11808 #endif
11809 #ifdef TARGET_NR_lchown
11810     case TARGET_NR_lchown:
11811         if (!(p = lock_user_string(arg1)))
11812             return -TARGET_EFAULT;
11813         ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3)));
11814         unlock_user(p, arg1, 0);
11815         return ret;
11816 #endif
11817 #ifdef TARGET_NR_getuid
11818     case TARGET_NR_getuid:
11819         return get_errno(high2lowuid(getuid()));
11820 #endif
11821 #ifdef TARGET_NR_getgid
11822     case TARGET_NR_getgid:
11823         return get_errno(high2lowgid(getgid()));
11824 #endif
11825 #ifdef TARGET_NR_geteuid
11826     case TARGET_NR_geteuid:
11827         return get_errno(high2lowuid(geteuid()));
11828 #endif
11829 #ifdef TARGET_NR_getegid
11830     case TARGET_NR_getegid:
11831         return get_errno(high2lowgid(getegid()));
11832 #endif
11833     case TARGET_NR_setreuid:
11834         return get_errno(setreuid(low2highuid(arg1), low2highuid(arg2)));
11835     case TARGET_NR_setregid:
11836         return get_errno(setregid(low2highgid(arg1), low2highgid(arg2)));
11837     case TARGET_NR_getgroups:
11838         { /* the same code as for TARGET_NR_getgroups32 */
11839             int gidsetsize = arg1;
11840             target_id *target_grouplist;
11841             g_autofree gid_t *grouplist = NULL;
11842             int i;
11843 
11844             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
11845                 return -TARGET_EINVAL;
11846             }
11847             if (gidsetsize > 0) {
11848                 grouplist = g_try_new(gid_t, gidsetsize);
11849                 if (!grouplist) {
11850                     return -TARGET_ENOMEM;
11851                 }
11852             }
11853             ret = get_errno(getgroups(gidsetsize, grouplist));
11854             if (!is_error(ret) && gidsetsize > 0) {
11855                 target_grouplist = lock_user(VERIFY_WRITE, arg2,
11856                                              gidsetsize * sizeof(target_id), 0);
11857                 if (!target_grouplist) {
11858                     return -TARGET_EFAULT;
11859                 }
11860                 for (i = 0; i < ret; i++) {
11861                     target_grouplist[i] = tswapid(high2lowgid(grouplist[i]));
11862                 }
11863                 unlock_user(target_grouplist, arg2,
11864                             gidsetsize * sizeof(target_id));
11865             }
11866             return ret;
11867         }
11868     case TARGET_NR_setgroups:
11869         { /* the same code as for TARGET_NR_setgroups32 */
11870             int gidsetsize = arg1;
11871             target_id *target_grouplist;
11872             g_autofree gid_t *grouplist = NULL;
11873             int i;
11874 
11875             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
11876                 return -TARGET_EINVAL;
11877             }
11878             if (gidsetsize > 0) {
11879                 grouplist = g_try_new(gid_t, gidsetsize);
11880                 if (!grouplist) {
11881                     return -TARGET_ENOMEM;
11882                 }
11883                 target_grouplist = lock_user(VERIFY_READ, arg2,
11884                                              gidsetsize * sizeof(target_id), 1);
11885                 if (!target_grouplist) {
11886                     return -TARGET_EFAULT;
11887                 }
11888                 for (i = 0; i < gidsetsize; i++) {
11889                     grouplist[i] = low2highgid(tswapid(target_grouplist[i]));
11890                 }
11891                 unlock_user(target_grouplist, arg2,
11892                             gidsetsize * sizeof(target_id));
11893             }
11894             return get_errno(setgroups(gidsetsize, grouplist));
11895         }
11896     case TARGET_NR_fchown:
11897         return get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3)));
11898 #if defined(TARGET_NR_fchownat)
11899     case TARGET_NR_fchownat:
11900         if (!(p = lock_user_string(arg2)))
11901             return -TARGET_EFAULT;
11902         ret = get_errno(fchownat(arg1, p, low2highuid(arg3),
11903                                  low2highgid(arg4), arg5));
11904         unlock_user(p, arg2, 0);
11905         return ret;
11906 #endif
11907 #ifdef TARGET_NR_setresuid
11908     case TARGET_NR_setresuid:
11909         return get_errno(sys_setresuid(low2highuid(arg1),
11910                                        low2highuid(arg2),
11911                                        low2highuid(arg3)));
11912 #endif
11913 #ifdef TARGET_NR_getresuid
11914     case TARGET_NR_getresuid:
11915         {
11916             uid_t ruid, euid, suid;
11917             ret = get_errno(getresuid(&ruid, &euid, &suid));
11918             if (!is_error(ret)) {
11919                 if (put_user_id(high2lowuid(ruid), arg1)
11920                     || put_user_id(high2lowuid(euid), arg2)
11921                     || put_user_id(high2lowuid(suid), arg3))
11922                     return -TARGET_EFAULT;
11923             }
11924         }
11925         return ret;
11926 #endif
11927 #ifdef TARGET_NR_getresgid
11928     case TARGET_NR_setresgid:
11929         return get_errno(sys_setresgid(low2highgid(arg1),
11930                                        low2highgid(arg2),
11931                                        low2highgid(arg3)));
11932 #endif
11933 #ifdef TARGET_NR_getresgid
11934     case TARGET_NR_getresgid:
11935         {
11936             gid_t rgid, egid, sgid;
11937             ret = get_errno(getresgid(&rgid, &egid, &sgid));
11938             if (!is_error(ret)) {
11939                 if (put_user_id(high2lowgid(rgid), arg1)
11940                     || put_user_id(high2lowgid(egid), arg2)
11941                     || put_user_id(high2lowgid(sgid), arg3))
11942                     return -TARGET_EFAULT;
11943             }
11944         }
11945         return ret;
11946 #endif
11947 #ifdef TARGET_NR_chown
11948     case TARGET_NR_chown:
11949         if (!(p = lock_user_string(arg1)))
11950             return -TARGET_EFAULT;
11951         ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3)));
11952         unlock_user(p, arg1, 0);
11953         return ret;
11954 #endif
11955     case TARGET_NR_setuid:
11956         return get_errno(sys_setuid(low2highuid(arg1)));
11957     case TARGET_NR_setgid:
11958         return get_errno(sys_setgid(low2highgid(arg1)));
11959     case TARGET_NR_setfsuid:
11960         return get_errno(setfsuid(arg1));
11961     case TARGET_NR_setfsgid:
11962         return get_errno(setfsgid(arg1));
11963 
11964 #ifdef TARGET_NR_lchown32
11965     case TARGET_NR_lchown32:
11966         if (!(p = lock_user_string(arg1)))
11967             return -TARGET_EFAULT;
11968         ret = get_errno(lchown(p, arg2, arg3));
11969         unlock_user(p, arg1, 0);
11970         return ret;
11971 #endif
11972 #ifdef TARGET_NR_getuid32
11973     case TARGET_NR_getuid32:
11974         return get_errno(getuid());
11975 #endif
11976 
11977 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
11978    /* Alpha specific */
11979     case TARGET_NR_getxuid:
11980          {
11981             uid_t euid;
11982             euid=geteuid();
11983             cpu_env->ir[IR_A4]=euid;
11984          }
11985         return get_errno(getuid());
11986 #endif
11987 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
11988    /* Alpha specific */
11989     case TARGET_NR_getxgid:
11990          {
11991             uid_t egid;
11992             egid=getegid();
11993             cpu_env->ir[IR_A4]=egid;
11994          }
11995         return get_errno(getgid());
11996 #endif
11997 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
11998     /* Alpha specific */
11999     case TARGET_NR_osf_getsysinfo:
12000         ret = -TARGET_EOPNOTSUPP;
12001         switch (arg1) {
12002           case TARGET_GSI_IEEE_FP_CONTROL:
12003             {
12004                 uint64_t fpcr = cpu_alpha_load_fpcr(cpu_env);
12005                 uint64_t swcr = cpu_env->swcr;
12006 
12007                 swcr &= ~SWCR_STATUS_MASK;
12008                 swcr |= (fpcr >> 35) & SWCR_STATUS_MASK;
12009 
12010                 if (put_user_u64 (swcr, arg2))
12011                         return -TARGET_EFAULT;
12012                 ret = 0;
12013             }
12014             break;
12015 
12016           /* case GSI_IEEE_STATE_AT_SIGNAL:
12017              -- Not implemented in linux kernel.
12018              case GSI_UACPROC:
12019              -- Retrieves current unaligned access state; not much used.
12020              case GSI_PROC_TYPE:
12021              -- Retrieves implver information; surely not used.
12022              case GSI_GET_HWRPB:
12023              -- Grabs a copy of the HWRPB; surely not used.
12024           */
12025         }
12026         return ret;
12027 #endif
12028 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
12029     /* Alpha specific */
12030     case TARGET_NR_osf_setsysinfo:
12031         ret = -TARGET_EOPNOTSUPP;
12032         switch (arg1) {
12033           case TARGET_SSI_IEEE_FP_CONTROL:
12034             {
12035                 uint64_t swcr, fpcr;
12036 
12037                 if (get_user_u64 (swcr, arg2)) {
12038                     return -TARGET_EFAULT;
12039                 }
12040 
12041                 /*
12042                  * The kernel calls swcr_update_status to update the
12043                  * status bits from the fpcr at every point that it
12044                  * could be queried.  Therefore, we store the status
12045                  * bits only in FPCR.
12046                  */
12047                 cpu_env->swcr = swcr & (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK);
12048 
12049                 fpcr = cpu_alpha_load_fpcr(cpu_env);
12050                 fpcr &= ((uint64_t)FPCR_DYN_MASK << 32);
12051                 fpcr |= alpha_ieee_swcr_to_fpcr(swcr);
12052                 cpu_alpha_store_fpcr(cpu_env, fpcr);
12053                 ret = 0;
12054             }
12055             break;
12056 
12057           case TARGET_SSI_IEEE_RAISE_EXCEPTION:
12058             {
12059                 uint64_t exc, fpcr, fex;
12060 
12061                 if (get_user_u64(exc, arg2)) {
12062                     return -TARGET_EFAULT;
12063                 }
12064                 exc &= SWCR_STATUS_MASK;
12065                 fpcr = cpu_alpha_load_fpcr(cpu_env);
12066 
12067                 /* Old exceptions are not signaled.  */
12068                 fex = alpha_ieee_fpcr_to_swcr(fpcr);
12069                 fex = exc & ~fex;
12070                 fex >>= SWCR_STATUS_TO_EXCSUM_SHIFT;
12071                 fex &= (cpu_env)->swcr;
12072 
12073                 /* Update the hardware fpcr.  */
12074                 fpcr |= alpha_ieee_swcr_to_fpcr(exc);
12075                 cpu_alpha_store_fpcr(cpu_env, fpcr);
12076 
12077                 if (fex) {
12078                     int si_code = TARGET_FPE_FLTUNK;
12079                     target_siginfo_t info;
12080 
12081                     if (fex & SWCR_TRAP_ENABLE_DNO) {
12082                         si_code = TARGET_FPE_FLTUND;
12083                     }
12084                     if (fex & SWCR_TRAP_ENABLE_INE) {
12085                         si_code = TARGET_FPE_FLTRES;
12086                     }
12087                     if (fex & SWCR_TRAP_ENABLE_UNF) {
12088                         si_code = TARGET_FPE_FLTUND;
12089                     }
12090                     if (fex & SWCR_TRAP_ENABLE_OVF) {
12091                         si_code = TARGET_FPE_FLTOVF;
12092                     }
12093                     if (fex & SWCR_TRAP_ENABLE_DZE) {
12094                         si_code = TARGET_FPE_FLTDIV;
12095                     }
12096                     if (fex & SWCR_TRAP_ENABLE_INV) {
12097                         si_code = TARGET_FPE_FLTINV;
12098                     }
12099 
12100                     info.si_signo = SIGFPE;
12101                     info.si_errno = 0;
12102                     info.si_code = si_code;
12103                     info._sifields._sigfault._addr = (cpu_env)->pc;
12104                     queue_signal(cpu_env, info.si_signo,
12105                                  QEMU_SI_FAULT, &info);
12106                 }
12107                 ret = 0;
12108             }
12109             break;
12110 
12111           /* case SSI_NVPAIRS:
12112              -- Used with SSIN_UACPROC to enable unaligned accesses.
12113              case SSI_IEEE_STATE_AT_SIGNAL:
12114              case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
12115              -- Not implemented in linux kernel
12116           */
12117         }
12118         return ret;
12119 #endif
12120 #ifdef TARGET_NR_osf_sigprocmask
12121     /* Alpha specific.  */
12122     case TARGET_NR_osf_sigprocmask:
12123         {
12124             abi_ulong mask;
12125             int how;
12126             sigset_t set, oldset;
12127 
12128             switch(arg1) {
12129             case TARGET_SIG_BLOCK:
12130                 how = SIG_BLOCK;
12131                 break;
12132             case TARGET_SIG_UNBLOCK:
12133                 how = SIG_UNBLOCK;
12134                 break;
12135             case TARGET_SIG_SETMASK:
12136                 how = SIG_SETMASK;
12137                 break;
12138             default:
12139                 return -TARGET_EINVAL;
12140             }
12141             mask = arg2;
12142             target_to_host_old_sigset(&set, &mask);
12143             ret = do_sigprocmask(how, &set, &oldset);
12144             if (!ret) {
12145                 host_to_target_old_sigset(&mask, &oldset);
12146                 ret = mask;
12147             }
12148         }
12149         return ret;
12150 #endif
12151 
12152 #ifdef TARGET_NR_getgid32
12153     case TARGET_NR_getgid32:
12154         return get_errno(getgid());
12155 #endif
12156 #ifdef TARGET_NR_geteuid32
12157     case TARGET_NR_geteuid32:
12158         return get_errno(geteuid());
12159 #endif
12160 #ifdef TARGET_NR_getegid32
12161     case TARGET_NR_getegid32:
12162         return get_errno(getegid());
12163 #endif
12164 #ifdef TARGET_NR_setreuid32
12165     case TARGET_NR_setreuid32:
12166         return get_errno(setreuid(arg1, arg2));
12167 #endif
12168 #ifdef TARGET_NR_setregid32
12169     case TARGET_NR_setregid32:
12170         return get_errno(setregid(arg1, arg2));
12171 #endif
12172 #ifdef TARGET_NR_getgroups32
12173     case TARGET_NR_getgroups32:
12174         { /* the same code as for TARGET_NR_getgroups */
12175             int gidsetsize = arg1;
12176             uint32_t *target_grouplist;
12177             g_autofree gid_t *grouplist = NULL;
12178             int i;
12179 
12180             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
12181                 return -TARGET_EINVAL;
12182             }
12183             if (gidsetsize > 0) {
12184                 grouplist = g_try_new(gid_t, gidsetsize);
12185                 if (!grouplist) {
12186                     return -TARGET_ENOMEM;
12187                 }
12188             }
12189             ret = get_errno(getgroups(gidsetsize, grouplist));
12190             if (!is_error(ret) && gidsetsize > 0) {
12191                 target_grouplist = lock_user(VERIFY_WRITE, arg2,
12192                                              gidsetsize * 4, 0);
12193                 if (!target_grouplist) {
12194                     return -TARGET_EFAULT;
12195                 }
12196                 for (i = 0; i < ret; i++) {
12197                     target_grouplist[i] = tswap32(grouplist[i]);
12198                 }
12199                 unlock_user(target_grouplist, arg2, gidsetsize * 4);
12200             }
12201             return ret;
12202         }
12203 #endif
12204 #ifdef TARGET_NR_setgroups32
12205     case TARGET_NR_setgroups32:
12206         { /* the same code as for TARGET_NR_setgroups */
12207             int gidsetsize = arg1;
12208             uint32_t *target_grouplist;
12209             g_autofree gid_t *grouplist = NULL;
12210             int i;
12211 
12212             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
12213                 return -TARGET_EINVAL;
12214             }
12215             if (gidsetsize > 0) {
12216                 grouplist = g_try_new(gid_t, gidsetsize);
12217                 if (!grouplist) {
12218                     return -TARGET_ENOMEM;
12219                 }
12220                 target_grouplist = lock_user(VERIFY_READ, arg2,
12221                                              gidsetsize * 4, 1);
12222                 if (!target_grouplist) {
12223                     return -TARGET_EFAULT;
12224                 }
12225                 for (i = 0; i < gidsetsize; i++) {
12226                     grouplist[i] = tswap32(target_grouplist[i]);
12227                 }
12228                 unlock_user(target_grouplist, arg2, 0);
12229             }
12230             return get_errno(setgroups(gidsetsize, grouplist));
12231         }
12232 #endif
12233 #ifdef TARGET_NR_fchown32
12234     case TARGET_NR_fchown32:
12235         return get_errno(fchown(arg1, arg2, arg3));
12236 #endif
12237 #ifdef TARGET_NR_setresuid32
12238     case TARGET_NR_setresuid32:
12239         return get_errno(sys_setresuid(arg1, arg2, arg3));
12240 #endif
12241 #ifdef TARGET_NR_getresuid32
12242     case TARGET_NR_getresuid32:
12243         {
12244             uid_t ruid, euid, suid;
12245             ret = get_errno(getresuid(&ruid, &euid, &suid));
12246             if (!is_error(ret)) {
12247                 if (put_user_u32(ruid, arg1)
12248                     || put_user_u32(euid, arg2)
12249                     || put_user_u32(suid, arg3))
12250                     return -TARGET_EFAULT;
12251             }
12252         }
12253         return ret;
12254 #endif
12255 #ifdef TARGET_NR_setresgid32
12256     case TARGET_NR_setresgid32:
12257         return get_errno(sys_setresgid(arg1, arg2, arg3));
12258 #endif
12259 #ifdef TARGET_NR_getresgid32
12260     case TARGET_NR_getresgid32:
12261         {
12262             gid_t rgid, egid, sgid;
12263             ret = get_errno(getresgid(&rgid, &egid, &sgid));
12264             if (!is_error(ret)) {
12265                 if (put_user_u32(rgid, arg1)
12266                     || put_user_u32(egid, arg2)
12267                     || put_user_u32(sgid, arg3))
12268                     return -TARGET_EFAULT;
12269             }
12270         }
12271         return ret;
12272 #endif
12273 #ifdef TARGET_NR_chown32
12274     case TARGET_NR_chown32:
12275         if (!(p = lock_user_string(arg1)))
12276             return -TARGET_EFAULT;
12277         ret = get_errno(chown(p, arg2, arg3));
12278         unlock_user(p, arg1, 0);
12279         return ret;
12280 #endif
12281 #ifdef TARGET_NR_setuid32
12282     case TARGET_NR_setuid32:
12283         return get_errno(sys_setuid(arg1));
12284 #endif
12285 #ifdef TARGET_NR_setgid32
12286     case TARGET_NR_setgid32:
12287         return get_errno(sys_setgid(arg1));
12288 #endif
12289 #ifdef TARGET_NR_setfsuid32
12290     case TARGET_NR_setfsuid32:
12291         return get_errno(setfsuid(arg1));
12292 #endif
12293 #ifdef TARGET_NR_setfsgid32
12294     case TARGET_NR_setfsgid32:
12295         return get_errno(setfsgid(arg1));
12296 #endif
12297 #ifdef TARGET_NR_mincore
12298     case TARGET_NR_mincore:
12299         {
12300             void *a = lock_user(VERIFY_NONE, arg1, arg2, 0);
12301             if (!a) {
12302                 return -TARGET_ENOMEM;
12303             }
12304             p = lock_user_string(arg3);
12305             if (!p) {
12306                 ret = -TARGET_EFAULT;
12307             } else {
12308                 ret = get_errno(mincore(a, arg2, p));
12309                 unlock_user(p, arg3, ret);
12310             }
12311             unlock_user(a, arg1, 0);
12312         }
12313         return ret;
12314 #endif
12315 #ifdef TARGET_NR_arm_fadvise64_64
12316     case TARGET_NR_arm_fadvise64_64:
12317         /* arm_fadvise64_64 looks like fadvise64_64 but
12318          * with different argument order: fd, advice, offset, len
12319          * rather than the usual fd, offset, len, advice.
12320          * Note that offset and len are both 64-bit so appear as
12321          * pairs of 32-bit registers.
12322          */
12323         ret = posix_fadvise(arg1, target_offset64(arg3, arg4),
12324                             target_offset64(arg5, arg6), arg2);
12325         return -host_to_target_errno(ret);
12326 #endif
12327 
12328 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12329 
12330 #ifdef TARGET_NR_fadvise64_64
12331     case TARGET_NR_fadvise64_64:
12332 #if defined(TARGET_PPC) || defined(TARGET_XTENSA)
12333         /* 6 args: fd, advice, offset (high, low), len (high, low) */
12334         ret = arg2;
12335         arg2 = arg3;
12336         arg3 = arg4;
12337         arg4 = arg5;
12338         arg5 = arg6;
12339         arg6 = ret;
12340 #else
12341         /* 6 args: fd, offset (high, low), len (high, low), advice */
12342         if (regpairs_aligned(cpu_env, num)) {
12343             /* offset is in (3,4), len in (5,6) and advice in 7 */
12344             arg2 = arg3;
12345             arg3 = arg4;
12346             arg4 = arg5;
12347             arg5 = arg6;
12348             arg6 = arg7;
12349         }
12350 #endif
12351         ret = posix_fadvise(arg1, target_offset64(arg2, arg3),
12352                             target_offset64(arg4, arg5), arg6);
12353         return -host_to_target_errno(ret);
12354 #endif
12355 
12356 #ifdef TARGET_NR_fadvise64
12357     case TARGET_NR_fadvise64:
12358         /* 5 args: fd, offset (high, low), len, advice */
12359         if (regpairs_aligned(cpu_env, num)) {
12360             /* offset is in (3,4), len in 5 and advice in 6 */
12361             arg2 = arg3;
12362             arg3 = arg4;
12363             arg4 = arg5;
12364             arg5 = arg6;
12365         }
12366         ret = posix_fadvise(arg1, target_offset64(arg2, arg3), arg4, arg5);
12367         return -host_to_target_errno(ret);
12368 #endif
12369 
12370 #else /* not a 32-bit ABI */
12371 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
12372 #ifdef TARGET_NR_fadvise64_64
12373     case TARGET_NR_fadvise64_64:
12374 #endif
12375 #ifdef TARGET_NR_fadvise64
12376     case TARGET_NR_fadvise64:
12377 #endif
12378 #ifdef TARGET_S390X
12379         switch (arg4) {
12380         case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */
12381         case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */
12382         case 6: arg4 = POSIX_FADV_DONTNEED; break;
12383         case 7: arg4 = POSIX_FADV_NOREUSE; break;
12384         default: break;
12385         }
12386 #endif
12387         return -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4));
12388 #endif
12389 #endif /* end of 64-bit ABI fadvise handling */
12390 
12391 #ifdef TARGET_NR_madvise
12392     case TARGET_NR_madvise:
12393         return target_madvise(arg1, arg2, arg3);
12394 #endif
12395 #ifdef TARGET_NR_fcntl64
12396     case TARGET_NR_fcntl64:
12397     {
12398         int cmd;
12399         struct flock64 fl;
12400         from_flock64_fn *copyfrom = copy_from_user_flock64;
12401         to_flock64_fn *copyto = copy_to_user_flock64;
12402 
12403 #ifdef TARGET_ARM
12404         if (!cpu_env->eabi) {
12405             copyfrom = copy_from_user_oabi_flock64;
12406             copyto = copy_to_user_oabi_flock64;
12407         }
12408 #endif
12409 
12410         cmd = target_to_host_fcntl_cmd(arg2);
12411         if (cmd == -TARGET_EINVAL) {
12412             return cmd;
12413         }
12414 
12415         switch(arg2) {
12416         case TARGET_F_GETLK64:
12417             ret = copyfrom(&fl, arg3);
12418             if (ret) {
12419                 break;
12420             }
12421             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
12422             if (ret == 0) {
12423                 ret = copyto(arg3, &fl);
12424             }
12425 	    break;
12426 
12427         case TARGET_F_SETLK64:
12428         case TARGET_F_SETLKW64:
12429             ret = copyfrom(&fl, arg3);
12430             if (ret) {
12431                 break;
12432             }
12433             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
12434 	    break;
12435         default:
12436             ret = do_fcntl(arg1, arg2, arg3);
12437             break;
12438         }
12439         return ret;
12440     }
12441 #endif
12442 #ifdef TARGET_NR_cacheflush
12443     case TARGET_NR_cacheflush:
12444         /* self-modifying code is handled automatically, so nothing needed */
12445         return 0;
12446 #endif
12447 #ifdef TARGET_NR_getpagesize
12448     case TARGET_NR_getpagesize:
12449         return TARGET_PAGE_SIZE;
12450 #endif
12451     case TARGET_NR_gettid:
12452         return get_errno(sys_gettid());
12453 #ifdef TARGET_NR_readahead
12454     case TARGET_NR_readahead:
12455 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12456         if (regpairs_aligned(cpu_env, num)) {
12457             arg2 = arg3;
12458             arg3 = arg4;
12459             arg4 = arg5;
12460         }
12461         ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4));
12462 #else
12463         ret = get_errno(readahead(arg1, arg2, arg3));
12464 #endif
12465         return ret;
12466 #endif
12467 #ifdef CONFIG_ATTR
12468 #ifdef TARGET_NR_setxattr
12469     case TARGET_NR_listxattr:
12470     case TARGET_NR_llistxattr:
12471     {
12472         void *b = 0;
12473         if (arg2) {
12474             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
12475             if (!b) {
12476                 return -TARGET_EFAULT;
12477             }
12478         }
12479         p = lock_user_string(arg1);
12480         if (p) {
12481             if (num == TARGET_NR_listxattr) {
12482                 ret = get_errno(listxattr(p, b, arg3));
12483             } else {
12484                 ret = get_errno(llistxattr(p, b, arg3));
12485             }
12486         } else {
12487             ret = -TARGET_EFAULT;
12488         }
12489         unlock_user(p, arg1, 0);
12490         unlock_user(b, arg2, arg3);
12491         return ret;
12492     }
12493     case TARGET_NR_flistxattr:
12494     {
12495         void *b = 0;
12496         if (arg2) {
12497             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
12498             if (!b) {
12499                 return -TARGET_EFAULT;
12500             }
12501         }
12502         ret = get_errno(flistxattr(arg1, b, arg3));
12503         unlock_user(b, arg2, arg3);
12504         return ret;
12505     }
12506     case TARGET_NR_setxattr:
12507     case TARGET_NR_lsetxattr:
12508         {
12509             void *n, *v = 0;
12510             if (arg3) {
12511                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
12512                 if (!v) {
12513                     return -TARGET_EFAULT;
12514                 }
12515             }
12516             p = lock_user_string(arg1);
12517             n = lock_user_string(arg2);
12518             if (p && n) {
12519                 if (num == TARGET_NR_setxattr) {
12520                     ret = get_errno(setxattr(p, n, v, arg4, arg5));
12521                 } else {
12522                     ret = get_errno(lsetxattr(p, n, v, arg4, arg5));
12523                 }
12524             } else {
12525                 ret = -TARGET_EFAULT;
12526             }
12527             unlock_user(p, arg1, 0);
12528             unlock_user(n, arg2, 0);
12529             unlock_user(v, arg3, 0);
12530         }
12531         return ret;
12532     case TARGET_NR_fsetxattr:
12533         {
12534             void *n, *v = 0;
12535             if (arg3) {
12536                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
12537                 if (!v) {
12538                     return -TARGET_EFAULT;
12539                 }
12540             }
12541             n = lock_user_string(arg2);
12542             if (n) {
12543                 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5));
12544             } else {
12545                 ret = -TARGET_EFAULT;
12546             }
12547             unlock_user(n, arg2, 0);
12548             unlock_user(v, arg3, 0);
12549         }
12550         return ret;
12551     case TARGET_NR_getxattr:
12552     case TARGET_NR_lgetxattr:
12553         {
12554             void *n, *v = 0;
12555             if (arg3) {
12556                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12557                 if (!v) {
12558                     return -TARGET_EFAULT;
12559                 }
12560             }
12561             p = lock_user_string(arg1);
12562             n = lock_user_string(arg2);
12563             if (p && n) {
12564                 if (num == TARGET_NR_getxattr) {
12565                     ret = get_errno(getxattr(p, n, v, arg4));
12566                 } else {
12567                     ret = get_errno(lgetxattr(p, n, v, arg4));
12568                 }
12569             } else {
12570                 ret = -TARGET_EFAULT;
12571             }
12572             unlock_user(p, arg1, 0);
12573             unlock_user(n, arg2, 0);
12574             unlock_user(v, arg3, arg4);
12575         }
12576         return ret;
12577     case TARGET_NR_fgetxattr:
12578         {
12579             void *n, *v = 0;
12580             if (arg3) {
12581                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12582                 if (!v) {
12583                     return -TARGET_EFAULT;
12584                 }
12585             }
12586             n = lock_user_string(arg2);
12587             if (n) {
12588                 ret = get_errno(fgetxattr(arg1, n, v, arg4));
12589             } else {
12590                 ret = -TARGET_EFAULT;
12591             }
12592             unlock_user(n, arg2, 0);
12593             unlock_user(v, arg3, arg4);
12594         }
12595         return ret;
12596     case TARGET_NR_removexattr:
12597     case TARGET_NR_lremovexattr:
12598         {
12599             void *n;
12600             p = lock_user_string(arg1);
12601             n = lock_user_string(arg2);
12602             if (p && n) {
12603                 if (num == TARGET_NR_removexattr) {
12604                     ret = get_errno(removexattr(p, n));
12605                 } else {
12606                     ret = get_errno(lremovexattr(p, n));
12607                 }
12608             } else {
12609                 ret = -TARGET_EFAULT;
12610             }
12611             unlock_user(p, arg1, 0);
12612             unlock_user(n, arg2, 0);
12613         }
12614         return ret;
12615     case TARGET_NR_fremovexattr:
12616         {
12617             void *n;
12618             n = lock_user_string(arg2);
12619             if (n) {
12620                 ret = get_errno(fremovexattr(arg1, n));
12621             } else {
12622                 ret = -TARGET_EFAULT;
12623             }
12624             unlock_user(n, arg2, 0);
12625         }
12626         return ret;
12627 #endif
12628 #endif /* CONFIG_ATTR */
12629 #ifdef TARGET_NR_set_thread_area
12630     case TARGET_NR_set_thread_area:
12631 #if defined(TARGET_MIPS)
12632       cpu_env->active_tc.CP0_UserLocal = arg1;
12633       return 0;
12634 #elif defined(TARGET_CRIS)
12635       if (arg1 & 0xff)
12636           ret = -TARGET_EINVAL;
12637       else {
12638           cpu_env->pregs[PR_PID] = arg1;
12639           ret = 0;
12640       }
12641       return ret;
12642 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
12643       return do_set_thread_area(cpu_env, arg1);
12644 #elif defined(TARGET_M68K)
12645       {
12646           TaskState *ts = get_task_state(cpu);
12647           ts->tp_value = arg1;
12648           return 0;
12649       }
12650 #else
12651       return -TARGET_ENOSYS;
12652 #endif
12653 #endif
12654 #ifdef TARGET_NR_get_thread_area
12655     case TARGET_NR_get_thread_area:
12656 #if defined(TARGET_I386) && defined(TARGET_ABI32)
12657         return do_get_thread_area(cpu_env, arg1);
12658 #elif defined(TARGET_M68K)
12659         {
12660             TaskState *ts = get_task_state(cpu);
12661             return ts->tp_value;
12662         }
12663 #else
12664         return -TARGET_ENOSYS;
12665 #endif
12666 #endif
12667 #ifdef TARGET_NR_getdomainname
12668     case TARGET_NR_getdomainname:
12669         return -TARGET_ENOSYS;
12670 #endif
12671 
12672 #ifdef TARGET_NR_clock_settime
12673     case TARGET_NR_clock_settime:
12674     {
12675         struct timespec ts;
12676 
12677         ret = target_to_host_timespec(&ts, arg2);
12678         if (!is_error(ret)) {
12679             ret = get_errno(clock_settime(arg1, &ts));
12680         }
12681         return ret;
12682     }
12683 #endif
12684 #ifdef TARGET_NR_clock_settime64
12685     case TARGET_NR_clock_settime64:
12686     {
12687         struct timespec ts;
12688 
12689         ret = target_to_host_timespec64(&ts, arg2);
12690         if (!is_error(ret)) {
12691             ret = get_errno(clock_settime(arg1, &ts));
12692         }
12693         return ret;
12694     }
12695 #endif
12696 #ifdef TARGET_NR_clock_gettime
12697     case TARGET_NR_clock_gettime:
12698     {
12699         struct timespec ts;
12700         ret = get_errno(clock_gettime(arg1, &ts));
12701         if (!is_error(ret)) {
12702             ret = host_to_target_timespec(arg2, &ts);
12703         }
12704         return ret;
12705     }
12706 #endif
12707 #ifdef TARGET_NR_clock_gettime64
12708     case TARGET_NR_clock_gettime64:
12709     {
12710         struct timespec ts;
12711         ret = get_errno(clock_gettime(arg1, &ts));
12712         if (!is_error(ret)) {
12713             ret = host_to_target_timespec64(arg2, &ts);
12714         }
12715         return ret;
12716     }
12717 #endif
12718 #ifdef TARGET_NR_clock_getres
12719     case TARGET_NR_clock_getres:
12720     {
12721         struct timespec ts;
12722         ret = get_errno(clock_getres(arg1, &ts));
12723         if (!is_error(ret)) {
12724             host_to_target_timespec(arg2, &ts);
12725         }
12726         return ret;
12727     }
12728 #endif
12729 #ifdef TARGET_NR_clock_getres_time64
12730     case TARGET_NR_clock_getres_time64:
12731     {
12732         struct timespec ts;
12733         ret = get_errno(clock_getres(arg1, &ts));
12734         if (!is_error(ret)) {
12735             host_to_target_timespec64(arg2, &ts);
12736         }
12737         return ret;
12738     }
12739 #endif
12740 #ifdef TARGET_NR_clock_nanosleep
12741     case TARGET_NR_clock_nanosleep:
12742     {
12743         struct timespec ts;
12744         if (target_to_host_timespec(&ts, arg3)) {
12745             return -TARGET_EFAULT;
12746         }
12747         ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12748                                              &ts, arg4 ? &ts : NULL));
12749         /*
12750          * if the call is interrupted by a signal handler, it fails
12751          * with error -TARGET_EINTR and if arg4 is not NULL and arg2 is not
12752          * TIMER_ABSTIME, it returns the remaining unslept time in arg4.
12753          */
12754         if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12755             host_to_target_timespec(arg4, &ts)) {
12756               return -TARGET_EFAULT;
12757         }
12758 
12759         return ret;
12760     }
12761 #endif
12762 #ifdef TARGET_NR_clock_nanosleep_time64
12763     case TARGET_NR_clock_nanosleep_time64:
12764     {
12765         struct timespec ts;
12766 
12767         if (target_to_host_timespec64(&ts, arg3)) {
12768             return -TARGET_EFAULT;
12769         }
12770 
12771         ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12772                                              &ts, arg4 ? &ts : NULL));
12773 
12774         if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12775             host_to_target_timespec64(arg4, &ts)) {
12776             return -TARGET_EFAULT;
12777         }
12778         return ret;
12779     }
12780 #endif
12781 
12782 #if defined(TARGET_NR_set_tid_address)
12783     case TARGET_NR_set_tid_address:
12784     {
12785         TaskState *ts = get_task_state(cpu);
12786         ts->child_tidptr = arg1;
12787         /* do not call host set_tid_address() syscall, instead return tid() */
12788         return get_errno(sys_gettid());
12789     }
12790 #endif
12791 
12792     case TARGET_NR_tkill:
12793         return get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2)));
12794 
12795     case TARGET_NR_tgkill:
12796         return get_errno(safe_tgkill((int)arg1, (int)arg2,
12797                          target_to_host_signal(arg3)));
12798 
12799 #ifdef TARGET_NR_set_robust_list
12800     case TARGET_NR_set_robust_list:
12801     case TARGET_NR_get_robust_list:
12802         /* The ABI for supporting robust futexes has userspace pass
12803          * the kernel a pointer to a linked list which is updated by
12804          * userspace after the syscall; the list is walked by the kernel
12805          * when the thread exits. Since the linked list in QEMU guest
12806          * memory isn't a valid linked list for the host and we have
12807          * no way to reliably intercept the thread-death event, we can't
12808          * support these. Silently return ENOSYS so that guest userspace
12809          * falls back to a non-robust futex implementation (which should
12810          * be OK except in the corner case of the guest crashing while
12811          * holding a mutex that is shared with another process via
12812          * shared memory).
12813          */
12814         return -TARGET_ENOSYS;
12815 #endif
12816 
12817 #if defined(TARGET_NR_utimensat)
12818     case TARGET_NR_utimensat:
12819         {
12820             struct timespec *tsp, ts[2];
12821             if (!arg3) {
12822                 tsp = NULL;
12823             } else {
12824                 if (target_to_host_timespec(ts, arg3)) {
12825                     return -TARGET_EFAULT;
12826                 }
12827                 if (target_to_host_timespec(ts + 1, arg3 +
12828                                             sizeof(struct target_timespec))) {
12829                     return -TARGET_EFAULT;
12830                 }
12831                 tsp = ts;
12832             }
12833             if (!arg2)
12834                 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12835             else {
12836                 if (!(p = lock_user_string(arg2))) {
12837                     return -TARGET_EFAULT;
12838                 }
12839                 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12840                 unlock_user(p, arg2, 0);
12841             }
12842         }
12843         return ret;
12844 #endif
12845 #ifdef TARGET_NR_utimensat_time64
12846     case TARGET_NR_utimensat_time64:
12847         {
12848             struct timespec *tsp, ts[2];
12849             if (!arg3) {
12850                 tsp = NULL;
12851             } else {
12852                 if (target_to_host_timespec64(ts, arg3)) {
12853                     return -TARGET_EFAULT;
12854                 }
12855                 if (target_to_host_timespec64(ts + 1, arg3 +
12856                                      sizeof(struct target__kernel_timespec))) {
12857                     return -TARGET_EFAULT;
12858                 }
12859                 tsp = ts;
12860             }
12861             if (!arg2)
12862                 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12863             else {
12864                 p = lock_user_string(arg2);
12865                 if (!p) {
12866                     return -TARGET_EFAULT;
12867                 }
12868                 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12869                 unlock_user(p, arg2, 0);
12870             }
12871         }
12872         return ret;
12873 #endif
12874 #ifdef TARGET_NR_futex
12875     case TARGET_NR_futex:
12876         return do_futex(cpu, false, arg1, arg2, arg3, arg4, arg5, arg6);
12877 #endif
12878 #ifdef TARGET_NR_futex_time64
12879     case TARGET_NR_futex_time64:
12880         return do_futex(cpu, true, arg1, arg2, arg3, arg4, arg5, arg6);
12881 #endif
12882 #ifdef CONFIG_INOTIFY
12883 #if defined(TARGET_NR_inotify_init)
12884     case TARGET_NR_inotify_init:
12885         ret = get_errno(inotify_init());
12886         if (ret >= 0) {
12887             fd_trans_register(ret, &target_inotify_trans);
12888         }
12889         return ret;
12890 #endif
12891 #if defined(TARGET_NR_inotify_init1) && defined(CONFIG_INOTIFY1)
12892     case TARGET_NR_inotify_init1:
12893         ret = get_errno(inotify_init1(target_to_host_bitmask(arg1,
12894                                           fcntl_flags_tbl)));
12895         if (ret >= 0) {
12896             fd_trans_register(ret, &target_inotify_trans);
12897         }
12898         return ret;
12899 #endif
12900 #if defined(TARGET_NR_inotify_add_watch)
12901     case TARGET_NR_inotify_add_watch:
12902         p = lock_user_string(arg2);
12903         ret = get_errno(inotify_add_watch(arg1, path(p), arg3));
12904         unlock_user(p, arg2, 0);
12905         return ret;
12906 #endif
12907 #if defined(TARGET_NR_inotify_rm_watch)
12908     case TARGET_NR_inotify_rm_watch:
12909         return get_errno(inotify_rm_watch(arg1, arg2));
12910 #endif
12911 #endif
12912 
12913 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
12914     case TARGET_NR_mq_open:
12915         {
12916             struct mq_attr posix_mq_attr;
12917             struct mq_attr *pposix_mq_attr;
12918             int host_flags;
12919 
12920             host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl);
12921             pposix_mq_attr = NULL;
12922             if (arg4) {
12923                 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) {
12924                     return -TARGET_EFAULT;
12925                 }
12926                 pposix_mq_attr = &posix_mq_attr;
12927             }
12928             p = lock_user_string(arg1 - 1);
12929             if (!p) {
12930                 return -TARGET_EFAULT;
12931             }
12932             ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr));
12933             unlock_user (p, arg1, 0);
12934         }
12935         return ret;
12936 
12937     case TARGET_NR_mq_unlink:
12938         p = lock_user_string(arg1 - 1);
12939         if (!p) {
12940             return -TARGET_EFAULT;
12941         }
12942         ret = get_errno(mq_unlink(p));
12943         unlock_user (p, arg1, 0);
12944         return ret;
12945 
12946 #ifdef TARGET_NR_mq_timedsend
12947     case TARGET_NR_mq_timedsend:
12948         {
12949             struct timespec ts;
12950 
12951             p = lock_user (VERIFY_READ, arg2, arg3, 1);
12952             if (arg5 != 0) {
12953                 if (target_to_host_timespec(&ts, arg5)) {
12954                     return -TARGET_EFAULT;
12955                 }
12956                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12957                 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
12958                     return -TARGET_EFAULT;
12959                 }
12960             } else {
12961                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12962             }
12963             unlock_user (p, arg2, arg3);
12964         }
12965         return ret;
12966 #endif
12967 #ifdef TARGET_NR_mq_timedsend_time64
12968     case TARGET_NR_mq_timedsend_time64:
12969         {
12970             struct timespec ts;
12971 
12972             p = lock_user(VERIFY_READ, arg2, arg3, 1);
12973             if (arg5 != 0) {
12974                 if (target_to_host_timespec64(&ts, arg5)) {
12975                     return -TARGET_EFAULT;
12976                 }
12977                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12978                 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
12979                     return -TARGET_EFAULT;
12980                 }
12981             } else {
12982                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12983             }
12984             unlock_user(p, arg2, arg3);
12985         }
12986         return ret;
12987 #endif
12988 
12989 #ifdef TARGET_NR_mq_timedreceive
12990     case TARGET_NR_mq_timedreceive:
12991         {
12992             struct timespec ts;
12993             unsigned int prio;
12994 
12995             p = lock_user (VERIFY_READ, arg2, arg3, 1);
12996             if (arg5 != 0) {
12997                 if (target_to_host_timespec(&ts, arg5)) {
12998                     return -TARGET_EFAULT;
12999                 }
13000                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
13001                                                      &prio, &ts));
13002                 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
13003                     return -TARGET_EFAULT;
13004                 }
13005             } else {
13006                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
13007                                                      &prio, NULL));
13008             }
13009             unlock_user (p, arg2, arg3);
13010             if (arg4 != 0)
13011                 put_user_u32(prio, arg4);
13012         }
13013         return ret;
13014 #endif
13015 #ifdef TARGET_NR_mq_timedreceive_time64
13016     case TARGET_NR_mq_timedreceive_time64:
13017         {
13018             struct timespec ts;
13019             unsigned int prio;
13020 
13021             p = lock_user(VERIFY_READ, arg2, arg3, 1);
13022             if (arg5 != 0) {
13023                 if (target_to_host_timespec64(&ts, arg5)) {
13024                     return -TARGET_EFAULT;
13025                 }
13026                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
13027                                                      &prio, &ts));
13028                 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
13029                     return -TARGET_EFAULT;
13030                 }
13031             } else {
13032                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
13033                                                      &prio, NULL));
13034             }
13035             unlock_user(p, arg2, arg3);
13036             if (arg4 != 0) {
13037                 put_user_u32(prio, arg4);
13038             }
13039         }
13040         return ret;
13041 #endif
13042 
13043     /* Not implemented for now... */
13044 /*     case TARGET_NR_mq_notify: */
13045 /*         break; */
13046 
13047     case TARGET_NR_mq_getsetattr:
13048         {
13049             struct mq_attr posix_mq_attr_in, posix_mq_attr_out;
13050             ret = 0;
13051             if (arg2 != 0) {
13052                 copy_from_user_mq_attr(&posix_mq_attr_in, arg2);
13053                 ret = get_errno(mq_setattr(arg1, &posix_mq_attr_in,
13054                                            &posix_mq_attr_out));
13055             } else if (arg3 != 0) {
13056                 ret = get_errno(mq_getattr(arg1, &posix_mq_attr_out));
13057             }
13058             if (ret == 0 && arg3 != 0) {
13059                 copy_to_user_mq_attr(arg3, &posix_mq_attr_out);
13060             }
13061         }
13062         return ret;
13063 #endif
13064 
13065 #ifdef CONFIG_SPLICE
13066 #ifdef TARGET_NR_tee
13067     case TARGET_NR_tee:
13068         {
13069             ret = get_errno(tee(arg1,arg2,arg3,arg4));
13070         }
13071         return ret;
13072 #endif
13073 #ifdef TARGET_NR_splice
13074     case TARGET_NR_splice:
13075         {
13076             loff_t loff_in, loff_out;
13077             loff_t *ploff_in = NULL, *ploff_out = NULL;
13078             if (arg2) {
13079                 if (get_user_u64(loff_in, arg2)) {
13080                     return -TARGET_EFAULT;
13081                 }
13082                 ploff_in = &loff_in;
13083             }
13084             if (arg4) {
13085                 if (get_user_u64(loff_out, arg4)) {
13086                     return -TARGET_EFAULT;
13087                 }
13088                 ploff_out = &loff_out;
13089             }
13090             ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6));
13091             if (arg2) {
13092                 if (put_user_u64(loff_in, arg2)) {
13093                     return -TARGET_EFAULT;
13094                 }
13095             }
13096             if (arg4) {
13097                 if (put_user_u64(loff_out, arg4)) {
13098                     return -TARGET_EFAULT;
13099                 }
13100             }
13101         }
13102         return ret;
13103 #endif
13104 #ifdef TARGET_NR_vmsplice
13105 	case TARGET_NR_vmsplice:
13106         {
13107             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
13108             if (vec != NULL) {
13109                 ret = get_errno(vmsplice(arg1, vec, arg3, arg4));
13110                 unlock_iovec(vec, arg2, arg3, 0);
13111             } else {
13112                 ret = -host_to_target_errno(errno);
13113             }
13114         }
13115         return ret;
13116 #endif
13117 #endif /* CONFIG_SPLICE */
13118 #ifdef CONFIG_EVENTFD
13119 #if defined(TARGET_NR_eventfd)
13120     case TARGET_NR_eventfd:
13121         ret = get_errno(eventfd(arg1, 0));
13122         if (ret >= 0) {
13123             fd_trans_register(ret, &target_eventfd_trans);
13124         }
13125         return ret;
13126 #endif
13127 #if defined(TARGET_NR_eventfd2)
13128     case TARGET_NR_eventfd2:
13129     {
13130         int host_flags = arg2 & (~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC));
13131         if (arg2 & TARGET_O_NONBLOCK) {
13132             host_flags |= O_NONBLOCK;
13133         }
13134         if (arg2 & TARGET_O_CLOEXEC) {
13135             host_flags |= O_CLOEXEC;
13136         }
13137         ret = get_errno(eventfd(arg1, host_flags));
13138         if (ret >= 0) {
13139             fd_trans_register(ret, &target_eventfd_trans);
13140         }
13141         return ret;
13142     }
13143 #endif
13144 #endif /* CONFIG_EVENTFD  */
13145 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
13146     case TARGET_NR_fallocate:
13147 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13148         ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4),
13149                                   target_offset64(arg5, arg6)));
13150 #else
13151         ret = get_errno(fallocate(arg1, arg2, arg3, arg4));
13152 #endif
13153         return ret;
13154 #endif
13155 #if defined(CONFIG_SYNC_FILE_RANGE)
13156 #if defined(TARGET_NR_sync_file_range)
13157     case TARGET_NR_sync_file_range:
13158 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13159 #if defined(TARGET_MIPS)
13160         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
13161                                         target_offset64(arg5, arg6), arg7));
13162 #else
13163         ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3),
13164                                         target_offset64(arg4, arg5), arg6));
13165 #endif /* !TARGET_MIPS */
13166 #else
13167         ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4));
13168 #endif
13169         return ret;
13170 #endif
13171 #if defined(TARGET_NR_sync_file_range2) || \
13172     defined(TARGET_NR_arm_sync_file_range)
13173 #if defined(TARGET_NR_sync_file_range2)
13174     case TARGET_NR_sync_file_range2:
13175 #endif
13176 #if defined(TARGET_NR_arm_sync_file_range)
13177     case TARGET_NR_arm_sync_file_range:
13178 #endif
13179         /* This is like sync_file_range but the arguments are reordered */
13180 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13181         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
13182                                         target_offset64(arg5, arg6), arg2));
13183 #else
13184         ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2));
13185 #endif
13186         return ret;
13187 #endif
13188 #endif
13189 #if defined(TARGET_NR_signalfd4)
13190     case TARGET_NR_signalfd4:
13191         return do_signalfd4(arg1, arg2, arg4);
13192 #endif
13193 #if defined(TARGET_NR_signalfd)
13194     case TARGET_NR_signalfd:
13195         return do_signalfd4(arg1, arg2, 0);
13196 #endif
13197 #if defined(CONFIG_EPOLL)
13198 #if defined(TARGET_NR_epoll_create)
13199     case TARGET_NR_epoll_create:
13200         return get_errno(epoll_create(arg1));
13201 #endif
13202 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
13203     case TARGET_NR_epoll_create1:
13204         return get_errno(epoll_create1(target_to_host_bitmask(arg1, fcntl_flags_tbl)));
13205 #endif
13206 #if defined(TARGET_NR_epoll_ctl)
13207     case TARGET_NR_epoll_ctl:
13208     {
13209         struct epoll_event ep;
13210         struct epoll_event *epp = 0;
13211         if (arg4) {
13212             if (arg2 != EPOLL_CTL_DEL) {
13213                 struct target_epoll_event *target_ep;
13214                 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) {
13215                     return -TARGET_EFAULT;
13216                 }
13217                 ep.events = tswap32(target_ep->events);
13218                 /*
13219                  * The epoll_data_t union is just opaque data to the kernel,
13220                  * so we transfer all 64 bits across and need not worry what
13221                  * actual data type it is.
13222                  */
13223                 ep.data.u64 = tswap64(target_ep->data.u64);
13224                 unlock_user_struct(target_ep, arg4, 0);
13225             }
13226             /*
13227              * before kernel 2.6.9, EPOLL_CTL_DEL operation required a
13228              * non-null pointer, even though this argument is ignored.
13229              *
13230              */
13231             epp = &ep;
13232         }
13233         return get_errno(epoll_ctl(arg1, arg2, arg3, epp));
13234     }
13235 #endif
13236 
13237 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
13238 #if defined(TARGET_NR_epoll_wait)
13239     case TARGET_NR_epoll_wait:
13240 #endif
13241 #if defined(TARGET_NR_epoll_pwait)
13242     case TARGET_NR_epoll_pwait:
13243 #endif
13244     {
13245         struct target_epoll_event *target_ep;
13246         struct epoll_event *ep;
13247         int epfd = arg1;
13248         int maxevents = arg3;
13249         int timeout = arg4;
13250 
13251         if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) {
13252             return -TARGET_EINVAL;
13253         }
13254 
13255         target_ep = lock_user(VERIFY_WRITE, arg2,
13256                               maxevents * sizeof(struct target_epoll_event), 1);
13257         if (!target_ep) {
13258             return -TARGET_EFAULT;
13259         }
13260 
13261         ep = g_try_new(struct epoll_event, maxevents);
13262         if (!ep) {
13263             unlock_user(target_ep, arg2, 0);
13264             return -TARGET_ENOMEM;
13265         }
13266 
13267         switch (num) {
13268 #if defined(TARGET_NR_epoll_pwait)
13269         case TARGET_NR_epoll_pwait:
13270         {
13271             sigset_t *set = NULL;
13272 
13273             if (arg5) {
13274                 ret = process_sigsuspend_mask(&set, arg5, arg6);
13275                 if (ret != 0) {
13276                     break;
13277                 }
13278             }
13279 
13280             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
13281                                              set, SIGSET_T_SIZE));
13282 
13283             if (set) {
13284                 finish_sigsuspend_mask(ret);
13285             }
13286             break;
13287         }
13288 #endif
13289 #if defined(TARGET_NR_epoll_wait)
13290         case TARGET_NR_epoll_wait:
13291             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
13292                                              NULL, 0));
13293             break;
13294 #endif
13295         default:
13296             ret = -TARGET_ENOSYS;
13297         }
13298         if (!is_error(ret)) {
13299             int i;
13300             for (i = 0; i < ret; i++) {
13301                 target_ep[i].events = tswap32(ep[i].events);
13302                 target_ep[i].data.u64 = tswap64(ep[i].data.u64);
13303             }
13304             unlock_user(target_ep, arg2,
13305                         ret * sizeof(struct target_epoll_event));
13306         } else {
13307             unlock_user(target_ep, arg2, 0);
13308         }
13309         g_free(ep);
13310         return ret;
13311     }
13312 #endif
13313 #endif
13314 #ifdef TARGET_NR_prlimit64
13315     case TARGET_NR_prlimit64:
13316     {
13317         /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
13318         struct target_rlimit64 *target_rnew, *target_rold;
13319         struct host_rlimit64 rnew, rold, *rnewp = 0;
13320         int resource = target_to_host_resource(arg2);
13321 
13322         if (arg3 && (resource != RLIMIT_AS &&
13323                      resource != RLIMIT_DATA &&
13324                      resource != RLIMIT_STACK)) {
13325             if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) {
13326                 return -TARGET_EFAULT;
13327             }
13328             __get_user(rnew.rlim_cur, &target_rnew->rlim_cur);
13329             __get_user(rnew.rlim_max, &target_rnew->rlim_max);
13330             unlock_user_struct(target_rnew, arg3, 0);
13331             rnewp = &rnew;
13332         }
13333 
13334         ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0));
13335         if (!is_error(ret) && arg4) {
13336             if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) {
13337                 return -TARGET_EFAULT;
13338             }
13339             __put_user(rold.rlim_cur, &target_rold->rlim_cur);
13340             __put_user(rold.rlim_max, &target_rold->rlim_max);
13341             unlock_user_struct(target_rold, arg4, 1);
13342         }
13343         return ret;
13344     }
13345 #endif
13346 #ifdef TARGET_NR_gethostname
13347     case TARGET_NR_gethostname:
13348     {
13349         char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0);
13350         if (name) {
13351             ret = get_errno(gethostname(name, arg2));
13352             unlock_user(name, arg1, arg2);
13353         } else {
13354             ret = -TARGET_EFAULT;
13355         }
13356         return ret;
13357     }
13358 #endif
13359 #ifdef TARGET_NR_atomic_cmpxchg_32
13360     case TARGET_NR_atomic_cmpxchg_32:
13361     {
13362         /* should use start_exclusive from main.c */
13363         abi_ulong mem_value;
13364         if (get_user_u32(mem_value, arg6)) {
13365             target_siginfo_t info;
13366             info.si_signo = SIGSEGV;
13367             info.si_errno = 0;
13368             info.si_code = TARGET_SEGV_MAPERR;
13369             info._sifields._sigfault._addr = arg6;
13370             queue_signal(cpu_env, info.si_signo, QEMU_SI_FAULT, &info);
13371             ret = 0xdeadbeef;
13372 
13373         }
13374         if (mem_value == arg2)
13375             put_user_u32(arg1, arg6);
13376         return mem_value;
13377     }
13378 #endif
13379 #ifdef TARGET_NR_atomic_barrier
13380     case TARGET_NR_atomic_barrier:
13381         /* Like the kernel implementation and the
13382            qemu arm barrier, no-op this? */
13383         return 0;
13384 #endif
13385 
13386 #ifdef TARGET_NR_timer_create
13387     case TARGET_NR_timer_create:
13388     {
13389         /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
13390 
13391         struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL;
13392 
13393         int clkid = arg1;
13394         int timer_index = next_free_host_timer();
13395 
13396         if (timer_index < 0) {
13397             ret = -TARGET_EAGAIN;
13398         } else {
13399             timer_t *phtimer = g_posix_timers  + timer_index;
13400 
13401             if (arg2) {
13402                 phost_sevp = &host_sevp;
13403                 ret = target_to_host_sigevent(phost_sevp, arg2);
13404                 if (ret != 0) {
13405                     free_host_timer_slot(timer_index);
13406                     return ret;
13407                 }
13408             }
13409 
13410             ret = get_errno(timer_create(clkid, phost_sevp, phtimer));
13411             if (ret) {
13412                 free_host_timer_slot(timer_index);
13413             } else {
13414                 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) {
13415                     timer_delete(*phtimer);
13416                     free_host_timer_slot(timer_index);
13417                     return -TARGET_EFAULT;
13418                 }
13419             }
13420         }
13421         return ret;
13422     }
13423 #endif
13424 
13425 #ifdef TARGET_NR_timer_settime
13426     case TARGET_NR_timer_settime:
13427     {
13428         /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
13429          * struct itimerspec * old_value */
13430         target_timer_t timerid = get_timer_id(arg1);
13431 
13432         if (timerid < 0) {
13433             ret = timerid;
13434         } else if (arg3 == 0) {
13435             ret = -TARGET_EINVAL;
13436         } else {
13437             timer_t htimer = g_posix_timers[timerid];
13438             struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
13439 
13440             if (target_to_host_itimerspec(&hspec_new, arg3)) {
13441                 return -TARGET_EFAULT;
13442             }
13443             ret = get_errno(
13444                           timer_settime(htimer, arg2, &hspec_new, &hspec_old));
13445             if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) {
13446                 return -TARGET_EFAULT;
13447             }
13448         }
13449         return ret;
13450     }
13451 #endif
13452 
13453 #ifdef TARGET_NR_timer_settime64
13454     case TARGET_NR_timer_settime64:
13455     {
13456         target_timer_t timerid = get_timer_id(arg1);
13457 
13458         if (timerid < 0) {
13459             ret = timerid;
13460         } else if (arg3 == 0) {
13461             ret = -TARGET_EINVAL;
13462         } else {
13463             timer_t htimer = g_posix_timers[timerid];
13464             struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
13465 
13466             if (target_to_host_itimerspec64(&hspec_new, arg3)) {
13467                 return -TARGET_EFAULT;
13468             }
13469             ret = get_errno(
13470                           timer_settime(htimer, arg2, &hspec_new, &hspec_old));
13471             if (arg4 && host_to_target_itimerspec64(arg4, &hspec_old)) {
13472                 return -TARGET_EFAULT;
13473             }
13474         }
13475         return ret;
13476     }
13477 #endif
13478 
13479 #ifdef TARGET_NR_timer_gettime
13480     case TARGET_NR_timer_gettime:
13481     {
13482         /* args: timer_t timerid, struct itimerspec *curr_value */
13483         target_timer_t timerid = get_timer_id(arg1);
13484 
13485         if (timerid < 0) {
13486             ret = timerid;
13487         } else if (!arg2) {
13488             ret = -TARGET_EFAULT;
13489         } else {
13490             timer_t htimer = g_posix_timers[timerid];
13491             struct itimerspec hspec;
13492             ret = get_errno(timer_gettime(htimer, &hspec));
13493 
13494             if (host_to_target_itimerspec(arg2, &hspec)) {
13495                 ret = -TARGET_EFAULT;
13496             }
13497         }
13498         return ret;
13499     }
13500 #endif
13501 
13502 #ifdef TARGET_NR_timer_gettime64
13503     case TARGET_NR_timer_gettime64:
13504     {
13505         /* args: timer_t timerid, struct itimerspec64 *curr_value */
13506         target_timer_t timerid = get_timer_id(arg1);
13507 
13508         if (timerid < 0) {
13509             ret = timerid;
13510         } else if (!arg2) {
13511             ret = -TARGET_EFAULT;
13512         } else {
13513             timer_t htimer = g_posix_timers[timerid];
13514             struct itimerspec hspec;
13515             ret = get_errno(timer_gettime(htimer, &hspec));
13516 
13517             if (host_to_target_itimerspec64(arg2, &hspec)) {
13518                 ret = -TARGET_EFAULT;
13519             }
13520         }
13521         return ret;
13522     }
13523 #endif
13524 
13525 #ifdef TARGET_NR_timer_getoverrun
13526     case TARGET_NR_timer_getoverrun:
13527     {
13528         /* args: timer_t timerid */
13529         target_timer_t timerid = get_timer_id(arg1);
13530 
13531         if (timerid < 0) {
13532             ret = timerid;
13533         } else {
13534             timer_t htimer = g_posix_timers[timerid];
13535             ret = get_errno(timer_getoverrun(htimer));
13536         }
13537         return ret;
13538     }
13539 #endif
13540 
13541 #ifdef TARGET_NR_timer_delete
13542     case TARGET_NR_timer_delete:
13543     {
13544         /* args: timer_t timerid */
13545         target_timer_t timerid = get_timer_id(arg1);
13546 
13547         if (timerid < 0) {
13548             ret = timerid;
13549         } else {
13550             timer_t htimer = g_posix_timers[timerid];
13551             ret = get_errno(timer_delete(htimer));
13552             free_host_timer_slot(timerid);
13553         }
13554         return ret;
13555     }
13556 #endif
13557 
13558 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
13559     case TARGET_NR_timerfd_create:
13560         ret = get_errno(timerfd_create(arg1,
13561                         target_to_host_bitmask(arg2, fcntl_flags_tbl)));
13562         if (ret >= 0) {
13563             fd_trans_register(ret, &target_timerfd_trans);
13564         }
13565         return ret;
13566 #endif
13567 
13568 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
13569     case TARGET_NR_timerfd_gettime:
13570         {
13571             struct itimerspec its_curr;
13572 
13573             ret = get_errno(timerfd_gettime(arg1, &its_curr));
13574 
13575             if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) {
13576                 return -TARGET_EFAULT;
13577             }
13578         }
13579         return ret;
13580 #endif
13581 
13582 #if defined(TARGET_NR_timerfd_gettime64) && defined(CONFIG_TIMERFD)
13583     case TARGET_NR_timerfd_gettime64:
13584         {
13585             struct itimerspec its_curr;
13586 
13587             ret = get_errno(timerfd_gettime(arg1, &its_curr));
13588 
13589             if (arg2 && host_to_target_itimerspec64(arg2, &its_curr)) {
13590                 return -TARGET_EFAULT;
13591             }
13592         }
13593         return ret;
13594 #endif
13595 
13596 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
13597     case TARGET_NR_timerfd_settime:
13598         {
13599             struct itimerspec its_new, its_old, *p_new;
13600 
13601             if (arg3) {
13602                 if (target_to_host_itimerspec(&its_new, arg3)) {
13603                     return -TARGET_EFAULT;
13604                 }
13605                 p_new = &its_new;
13606             } else {
13607                 p_new = NULL;
13608             }
13609 
13610             ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13611 
13612             if (arg4 && host_to_target_itimerspec(arg4, &its_old)) {
13613                 return -TARGET_EFAULT;
13614             }
13615         }
13616         return ret;
13617 #endif
13618 
13619 #if defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)
13620     case TARGET_NR_timerfd_settime64:
13621         {
13622             struct itimerspec its_new, its_old, *p_new;
13623 
13624             if (arg3) {
13625                 if (target_to_host_itimerspec64(&its_new, arg3)) {
13626                     return -TARGET_EFAULT;
13627                 }
13628                 p_new = &its_new;
13629             } else {
13630                 p_new = NULL;
13631             }
13632 
13633             ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13634 
13635             if (arg4 && host_to_target_itimerspec64(arg4, &its_old)) {
13636                 return -TARGET_EFAULT;
13637             }
13638         }
13639         return ret;
13640 #endif
13641 
13642 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
13643     case TARGET_NR_ioprio_get:
13644         return get_errno(ioprio_get(arg1, arg2));
13645 #endif
13646 
13647 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
13648     case TARGET_NR_ioprio_set:
13649         return get_errno(ioprio_set(arg1, arg2, arg3));
13650 #endif
13651 
13652 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
13653     case TARGET_NR_setns:
13654         return get_errno(setns(arg1, arg2));
13655 #endif
13656 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
13657     case TARGET_NR_unshare:
13658         return get_errno(unshare(arg1));
13659 #endif
13660 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
13661     case TARGET_NR_kcmp:
13662         return get_errno(kcmp(arg1, arg2, arg3, arg4, arg5));
13663 #endif
13664 #ifdef TARGET_NR_swapcontext
13665     case TARGET_NR_swapcontext:
13666         /* PowerPC specific.  */
13667         return do_swapcontext(cpu_env, arg1, arg2, arg3);
13668 #endif
13669 #ifdef TARGET_NR_memfd_create
13670     case TARGET_NR_memfd_create:
13671         p = lock_user_string(arg1);
13672         if (!p) {
13673             return -TARGET_EFAULT;
13674         }
13675         ret = get_errno(memfd_create(p, arg2));
13676         fd_trans_unregister(ret);
13677         unlock_user(p, arg1, 0);
13678         return ret;
13679 #endif
13680 #if defined TARGET_NR_membarrier && defined __NR_membarrier
13681     case TARGET_NR_membarrier:
13682         return get_errno(membarrier(arg1, arg2));
13683 #endif
13684 
13685 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
13686     case TARGET_NR_copy_file_range:
13687         {
13688             loff_t inoff, outoff;
13689             loff_t *pinoff = NULL, *poutoff = NULL;
13690 
13691             if (arg2) {
13692                 if (get_user_u64(inoff, arg2)) {
13693                     return -TARGET_EFAULT;
13694                 }
13695                 pinoff = &inoff;
13696             }
13697             if (arg4) {
13698                 if (get_user_u64(outoff, arg4)) {
13699                     return -TARGET_EFAULT;
13700                 }
13701                 poutoff = &outoff;
13702             }
13703             /* Do not sign-extend the count parameter. */
13704             ret = get_errno(safe_copy_file_range(arg1, pinoff, arg3, poutoff,
13705                                                  (abi_ulong)arg5, arg6));
13706             if (!is_error(ret) && ret > 0) {
13707                 if (arg2) {
13708                     if (put_user_u64(inoff, arg2)) {
13709                         return -TARGET_EFAULT;
13710                     }
13711                 }
13712                 if (arg4) {
13713                     if (put_user_u64(outoff, arg4)) {
13714                         return -TARGET_EFAULT;
13715                     }
13716                 }
13717             }
13718         }
13719         return ret;
13720 #endif
13721 
13722 #if defined(TARGET_NR_pivot_root)
13723     case TARGET_NR_pivot_root:
13724         {
13725             void *p2;
13726             p = lock_user_string(arg1); /* new_root */
13727             p2 = lock_user_string(arg2); /* put_old */
13728             if (!p || !p2) {
13729                 ret = -TARGET_EFAULT;
13730             } else {
13731                 ret = get_errno(pivot_root(p, p2));
13732             }
13733             unlock_user(p2, arg2, 0);
13734             unlock_user(p, arg1, 0);
13735         }
13736         return ret;
13737 #endif
13738 
13739 #if defined(TARGET_NR_riscv_hwprobe)
13740     case TARGET_NR_riscv_hwprobe:
13741         return do_riscv_hwprobe(cpu_env, arg1, arg2, arg3, arg4, arg5);
13742 #endif
13743 
13744     default:
13745         qemu_log_mask(LOG_UNIMP, "Unsupported syscall: %d\n", num);
13746         return -TARGET_ENOSYS;
13747     }
13748     return ret;
13749 }
13750 
13751 abi_long do_syscall(CPUArchState *cpu_env, int num, abi_long arg1,
13752                     abi_long arg2, abi_long arg3, abi_long arg4,
13753                     abi_long arg5, abi_long arg6, abi_long arg7,
13754                     abi_long arg8)
13755 {
13756     CPUState *cpu = env_cpu(cpu_env);
13757     abi_long ret;
13758 
13759 #ifdef DEBUG_ERESTARTSYS
13760     /* Debug-only code for exercising the syscall-restart code paths
13761      * in the per-architecture cpu main loops: restart every syscall
13762      * the guest makes once before letting it through.
13763      */
13764     {
13765         static bool flag;
13766         flag = !flag;
13767         if (flag) {
13768             return -QEMU_ERESTARTSYS;
13769         }
13770     }
13771 #endif
13772 
13773     record_syscall_start(cpu, num, arg1,
13774                          arg2, arg3, arg4, arg5, arg6, arg7, arg8);
13775 
13776     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13777         print_syscall(cpu_env, num, arg1, arg2, arg3, arg4, arg5, arg6);
13778     }
13779 
13780     ret = do_syscall1(cpu_env, num, arg1, arg2, arg3, arg4,
13781                       arg5, arg6, arg7, arg8);
13782 
13783     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13784         print_syscall_ret(cpu_env, num, ret, arg1, arg2,
13785                           arg3, arg4, arg5, arg6);
13786     }
13787 
13788     record_syscall_return(cpu, num, ret);
13789     return ret;
13790 }
13791