xref: /openbmc/qemu/linux-user/syscall.c (revision e69b2c67)
1 /*
2  *  Linux syscalls
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
23 #include "qemu/memfd.h"
24 #include "qemu/queue.h"
25 #include "qemu/plugin.h"
26 #include "tcg/startup.h"
27 #include "target_mman.h"
28 #include "exec/page-protection.h"
29 #include <elf.h>
30 #include <endian.h>
31 #include <grp.h>
32 #include <sys/ipc.h>
33 #include <sys/msg.h>
34 #include <sys/wait.h>
35 #include <sys/mount.h>
36 #include <sys/file.h>
37 #include <sys/fsuid.h>
38 #include <sys/personality.h>
39 #include <sys/prctl.h>
40 #include <sys/resource.h>
41 #include <sys/swap.h>
42 #include <linux/capability.h>
43 #include <sched.h>
44 #include <sys/timex.h>
45 #include <sys/socket.h>
46 #include <linux/sockios.h>
47 #include <sys/un.h>
48 #include <sys/uio.h>
49 #include <poll.h>
50 #include <sys/times.h>
51 #include <sys/shm.h>
52 #include <sys/sem.h>
53 #include <sys/statfs.h>
54 #include <utime.h>
55 #include <sys/sysinfo.h>
56 #include <sys/signalfd.h>
57 //#include <sys/user.h>
58 #include <netinet/in.h>
59 #include <netinet/ip.h>
60 #include <netinet/tcp.h>
61 #include <netinet/udp.h>
62 #include <linux/wireless.h>
63 #include <linux/icmp.h>
64 #include <linux/icmpv6.h>
65 #include <linux/if_tun.h>
66 #include <linux/in6.h>
67 #include <linux/errqueue.h>
68 #include <linux/random.h>
69 #ifdef CONFIG_TIMERFD
70 #include <sys/timerfd.h>
71 #endif
72 #ifdef CONFIG_EVENTFD
73 #include <sys/eventfd.h>
74 #endif
75 #ifdef CONFIG_EPOLL
76 #include <sys/epoll.h>
77 #endif
78 #ifdef CONFIG_ATTR
79 #include "qemu/xattr.h"
80 #endif
81 #ifdef CONFIG_SENDFILE
82 #include <sys/sendfile.h>
83 #endif
84 #ifdef HAVE_SYS_KCOV_H
85 #include <sys/kcov.h>
86 #endif
87 
88 #define termios host_termios
89 #define winsize host_winsize
90 #define termio host_termio
91 #define sgttyb host_sgttyb /* same as target */
92 #define tchars host_tchars /* same as target */
93 #define ltchars host_ltchars /* same as target */
94 
95 #include <linux/termios.h>
96 #include <linux/unistd.h>
97 #include <linux/cdrom.h>
98 #include <linux/hdreg.h>
99 #include <linux/soundcard.h>
100 #include <linux/kd.h>
101 #include <linux/mtio.h>
102 #include <linux/fs.h>
103 #include <linux/fd.h>
104 #if defined(CONFIG_FIEMAP)
105 #include <linux/fiemap.h>
106 #endif
107 #include <linux/fb.h>
108 #if defined(CONFIG_USBFS)
109 #include <linux/usbdevice_fs.h>
110 #include <linux/usb/ch9.h>
111 #endif
112 #include <linux/vt.h>
113 #include <linux/dm-ioctl.h>
114 #include <linux/reboot.h>
115 #include <linux/route.h>
116 #include <linux/filter.h>
117 #include <linux/blkpg.h>
118 #include <netpacket/packet.h>
119 #include <linux/netlink.h>
120 #include <linux/if_alg.h>
121 #include <linux/rtc.h>
122 #include <sound/asound.h>
123 #ifdef HAVE_BTRFS_H
124 #include <linux/btrfs.h>
125 #endif
126 #ifdef HAVE_DRM_H
127 #include <libdrm/drm.h>
128 #include <libdrm/i915_drm.h>
129 #endif
130 #include "linux_loop.h"
131 #include "uname.h"
132 
133 #include "qemu.h"
134 #include "user-internals.h"
135 #include "strace.h"
136 #include "signal-common.h"
137 #include "loader.h"
138 #include "user-mmap.h"
139 #include "user/safe-syscall.h"
140 #include "qemu/guest-random.h"
141 #include "qemu/selfmap.h"
142 #include "user/syscall-trace.h"
143 #include "special-errno.h"
144 #include "qapi/error.h"
145 #include "fd-trans.h"
146 #include "cpu_loop-common.h"
147 
148 #ifndef CLONE_IO
149 #define CLONE_IO                0x80000000      /* Clone io context */
150 #endif
151 
152 /* We can't directly call the host clone syscall, because this will
153  * badly confuse libc (breaking mutexes, for example). So we must
154  * divide clone flags into:
155  *  * flag combinations that look like pthread_create()
156  *  * flag combinations that look like fork()
157  *  * flags we can implement within QEMU itself
158  *  * flags we can't support and will return an error for
159  */
160 /* For thread creation, all these flags must be present; for
161  * fork, none must be present.
162  */
163 #define CLONE_THREAD_FLAGS                              \
164     (CLONE_VM | CLONE_FS | CLONE_FILES |                \
165      CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
166 
167 /* These flags are ignored:
168  * CLONE_DETACHED is now ignored by the kernel;
169  * CLONE_IO is just an optimisation hint to the I/O scheduler
170  */
171 #define CLONE_IGNORED_FLAGS                     \
172     (CLONE_DETACHED | CLONE_IO)
173 
174 #ifndef CLONE_PIDFD
175 # define CLONE_PIDFD 0x00001000
176 #endif
177 
178 /* Flags for fork which we can implement within QEMU itself */
179 #define CLONE_OPTIONAL_FORK_FLAGS               \
180     (CLONE_SETTLS | CLONE_PARENT_SETTID | CLONE_PIDFD | \
181      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
182 
183 /* Flags for thread creation which we can implement within QEMU itself */
184 #define CLONE_OPTIONAL_THREAD_FLAGS                             \
185     (CLONE_SETTLS | CLONE_PARENT_SETTID |                       \
186      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
187 
188 #define CLONE_INVALID_FORK_FLAGS                                        \
189     (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
190 
191 #define CLONE_INVALID_THREAD_FLAGS                                      \
192     (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS |     \
193        CLONE_IGNORED_FLAGS))
194 
195 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits
196  * have almost all been allocated. We cannot support any of
197  * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
198  * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
199  * The checks against the invalid thread masks above will catch these.
200  * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
201  */
202 
203 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
204  * once. This exercises the codepaths for restart.
205  */
206 //#define DEBUG_ERESTARTSYS
207 
208 //#include <linux/msdos_fs.h>
209 #define VFAT_IOCTL_READDIR_BOTH \
210     _IOC(_IOC_READ, 'r', 1, (sizeof(struct linux_dirent) + 256) * 2)
211 #define VFAT_IOCTL_READDIR_SHORT \
212     _IOC(_IOC_READ, 'r', 2, (sizeof(struct linux_dirent) + 256) * 2)
213 
214 #undef _syscall0
215 #undef _syscall1
216 #undef _syscall2
217 #undef _syscall3
218 #undef _syscall4
219 #undef _syscall5
220 #undef _syscall6
221 
222 #define _syscall0(type,name)		\
223 static type name (void)			\
224 {					\
225 	return syscall(__NR_##name);	\
226 }
227 
228 #define _syscall1(type,name,type1,arg1)		\
229 static type name (type1 arg1)			\
230 {						\
231 	return syscall(__NR_##name, arg1);	\
232 }
233 
234 #define _syscall2(type,name,type1,arg1,type2,arg2)	\
235 static type name (type1 arg1,type2 arg2)		\
236 {							\
237 	return syscall(__NR_##name, arg1, arg2);	\
238 }
239 
240 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3)	\
241 static type name (type1 arg1,type2 arg2,type3 arg3)		\
242 {								\
243 	return syscall(__NR_##name, arg1, arg2, arg3);		\
244 }
245 
246 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4)	\
247 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4)			\
248 {										\
249 	return syscall(__NR_##name, arg1, arg2, arg3, arg4);			\
250 }
251 
252 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
253 		  type5,arg5)							\
254 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5)	\
255 {										\
256 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5);		\
257 }
258 
259 
260 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
261 		  type5,arg5,type6,arg6)					\
262 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5,	\
263                   type6 arg6)							\
264 {										\
265 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6);	\
266 }
267 
268 
269 #define __NR_sys_uname __NR_uname
270 #define __NR_sys_getcwd1 __NR_getcwd
271 #define __NR_sys_getdents __NR_getdents
272 #define __NR_sys_getdents64 __NR_getdents64
273 #define __NR_sys_getpriority __NR_getpriority
274 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
275 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo
276 #define __NR_sys_syslog __NR_syslog
277 #if defined(__NR_futex)
278 # define __NR_sys_futex __NR_futex
279 #endif
280 #if defined(__NR_futex_time64)
281 # define __NR_sys_futex_time64 __NR_futex_time64
282 #endif
283 #define __NR_sys_statx __NR_statx
284 
285 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__)
286 #define __NR__llseek __NR_lseek
287 #endif
288 
289 /* Newer kernel ports have llseek() instead of _llseek() */
290 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
291 #define TARGET_NR__llseek TARGET_NR_llseek
292 #endif
293 
294 /* some platforms need to mask more bits than just TARGET_O_NONBLOCK */
295 #ifndef TARGET_O_NONBLOCK_MASK
296 #define TARGET_O_NONBLOCK_MASK TARGET_O_NONBLOCK
297 #endif
298 
299 #define __NR_sys_gettid __NR_gettid
300 _syscall0(int, sys_gettid)
301 
302 /* For the 64-bit guest on 32-bit host case we must emulate
303  * getdents using getdents64, because otherwise the host
304  * might hand us back more dirent records than we can fit
305  * into the guest buffer after structure format conversion.
306  * Otherwise we emulate getdents with getdents if the host has it.
307  */
308 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS
309 #define EMULATE_GETDENTS_WITH_GETDENTS
310 #endif
311 
312 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS)
313 _syscall3(int, sys_getdents, unsigned int, fd, struct linux_dirent *, dirp, unsigned int, count);
314 #endif
315 #if (defined(TARGET_NR_getdents) && \
316       !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \
317     (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
318 _syscall3(int, sys_getdents64, unsigned int, fd, struct linux_dirent64 *, dirp, unsigned int, count);
319 #endif
320 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
321 _syscall5(int, _llseek,  unsigned int,  fd, unsigned long, hi, unsigned long, lo,
322           loff_t *, res, unsigned int, wh);
323 #endif
324 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo)
325 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig,
326           siginfo_t *, uinfo)
327 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len)
328 #ifdef __NR_exit_group
329 _syscall1(int,exit_group,int,error_code)
330 #endif
331 #if defined(__NR_close_range) && defined(TARGET_NR_close_range)
332 #define __NR_sys_close_range __NR_close_range
333 _syscall3(int,sys_close_range,int,first,int,last,int,flags)
334 #ifndef CLOSE_RANGE_CLOEXEC
335 #define CLOSE_RANGE_CLOEXEC     (1U << 2)
336 #endif
337 #endif
338 #if defined(__NR_futex)
339 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val,
340           const struct timespec *,timeout,int *,uaddr2,int,val3)
341 #endif
342 #if defined(__NR_futex_time64)
343 _syscall6(int,sys_futex_time64,int *,uaddr,int,op,int,val,
344           const struct timespec *,timeout,int *,uaddr2,int,val3)
345 #endif
346 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
347 _syscall2(int, pidfd_open, pid_t, pid, unsigned int, flags);
348 #endif
349 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
350 _syscall4(int, pidfd_send_signal, int, pidfd, int, sig, siginfo_t *, info,
351                              unsigned int, flags);
352 #endif
353 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
354 _syscall3(int, pidfd_getfd, int, pidfd, int, targetfd, unsigned int, flags);
355 #endif
356 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
357 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len,
358           unsigned long *, user_mask_ptr);
359 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
360 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len,
361           unsigned long *, user_mask_ptr);
362 /* sched_attr is not defined in glibc */
363 struct sched_attr {
364     uint32_t size;
365     uint32_t sched_policy;
366     uint64_t sched_flags;
367     int32_t sched_nice;
368     uint32_t sched_priority;
369     uint64_t sched_runtime;
370     uint64_t sched_deadline;
371     uint64_t sched_period;
372     uint32_t sched_util_min;
373     uint32_t sched_util_max;
374 };
375 #define __NR_sys_sched_getattr __NR_sched_getattr
376 _syscall4(int, sys_sched_getattr, pid_t, pid, struct sched_attr *, attr,
377           unsigned int, size, unsigned int, flags);
378 #define __NR_sys_sched_setattr __NR_sched_setattr
379 _syscall3(int, sys_sched_setattr, pid_t, pid, struct sched_attr *, attr,
380           unsigned int, flags);
381 #define __NR_sys_sched_getscheduler __NR_sched_getscheduler
382 _syscall1(int, sys_sched_getscheduler, pid_t, pid);
383 #define __NR_sys_sched_setscheduler __NR_sched_setscheduler
384 _syscall3(int, sys_sched_setscheduler, pid_t, pid, int, policy,
385           const struct sched_param *, param);
386 #define __NR_sys_sched_getparam __NR_sched_getparam
387 _syscall2(int, sys_sched_getparam, pid_t, pid,
388           struct sched_param *, param);
389 #define __NR_sys_sched_setparam __NR_sched_setparam
390 _syscall2(int, sys_sched_setparam, pid_t, pid,
391           const struct sched_param *, param);
392 #define __NR_sys_getcpu __NR_getcpu
393 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache);
394 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd,
395           void *, arg);
396 _syscall2(int, capget, struct __user_cap_header_struct *, header,
397           struct __user_cap_data_struct *, data);
398 _syscall2(int, capset, struct __user_cap_header_struct *, header,
399           struct __user_cap_data_struct *, data);
400 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
401 _syscall2(int, ioprio_get, int, which, int, who)
402 #endif
403 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
404 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio)
405 #endif
406 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
407 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags)
408 #endif
409 
410 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
411 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type,
412           unsigned long, idx1, unsigned long, idx2)
413 #endif
414 
415 /*
416  * It is assumed that struct statx is architecture independent.
417  */
418 #if defined(TARGET_NR_statx) && defined(__NR_statx)
419 _syscall5(int, sys_statx, int, dirfd, const char *, pathname, int, flags,
420           unsigned int, mask, struct target_statx *, statxbuf)
421 #endif
422 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier)
423 _syscall2(int, membarrier, int, cmd, int, flags)
424 #endif
425 
426 static const bitmask_transtbl fcntl_flags_tbl[] = {
427   { TARGET_O_ACCMODE,   TARGET_O_WRONLY,    O_ACCMODE,   O_WRONLY,    },
428   { TARGET_O_ACCMODE,   TARGET_O_RDWR,      O_ACCMODE,   O_RDWR,      },
429   { TARGET_O_CREAT,     TARGET_O_CREAT,     O_CREAT,     O_CREAT,     },
430   { TARGET_O_EXCL,      TARGET_O_EXCL,      O_EXCL,      O_EXCL,      },
431   { TARGET_O_NOCTTY,    TARGET_O_NOCTTY,    O_NOCTTY,    O_NOCTTY,    },
432   { TARGET_O_TRUNC,     TARGET_O_TRUNC,     O_TRUNC,     O_TRUNC,     },
433   { TARGET_O_APPEND,    TARGET_O_APPEND,    O_APPEND,    O_APPEND,    },
434   { TARGET_O_NONBLOCK,  TARGET_O_NONBLOCK,  O_NONBLOCK,  O_NONBLOCK,  },
435   { TARGET_O_SYNC,      TARGET_O_DSYNC,     O_SYNC,      O_DSYNC,     },
436   { TARGET_O_SYNC,      TARGET_O_SYNC,      O_SYNC,      O_SYNC,      },
437   { TARGET_FASYNC,      TARGET_FASYNC,      FASYNC,      FASYNC,      },
438   { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, },
439   { TARGET_O_NOFOLLOW,  TARGET_O_NOFOLLOW,  O_NOFOLLOW,  O_NOFOLLOW,  },
440 #if defined(O_DIRECT)
441   { TARGET_O_DIRECT,    TARGET_O_DIRECT,    O_DIRECT,    O_DIRECT,    },
442 #endif
443 #if defined(O_NOATIME)
444   { TARGET_O_NOATIME,   TARGET_O_NOATIME,   O_NOATIME,   O_NOATIME    },
445 #endif
446 #if defined(O_CLOEXEC)
447   { TARGET_O_CLOEXEC,   TARGET_O_CLOEXEC,   O_CLOEXEC,   O_CLOEXEC    },
448 #endif
449 #if defined(O_PATH)
450   { TARGET_O_PATH,      TARGET_O_PATH,      O_PATH,      O_PATH       },
451 #endif
452 #if defined(O_TMPFILE)
453   { TARGET_O_TMPFILE,   TARGET_O_TMPFILE,   O_TMPFILE,   O_TMPFILE    },
454 #endif
455   /* Don't terminate the list prematurely on 64-bit host+guest.  */
456 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
457   { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, },
458 #endif
459 };
460 
461 _syscall2(int, sys_getcwd1, char *, buf, size_t, size)
462 
463 #if defined(TARGET_NR_utimensat) || defined(TARGET_NR_utimensat_time64)
464 #if defined(__NR_utimensat)
465 #define __NR_sys_utimensat __NR_utimensat
466 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname,
467           const struct timespec *,tsp,int,flags)
468 #else
469 static int sys_utimensat(int dirfd, const char *pathname,
470                          const struct timespec times[2], int flags)
471 {
472     errno = ENOSYS;
473     return -1;
474 }
475 #endif
476 #endif /* TARGET_NR_utimensat */
477 
478 #ifdef TARGET_NR_renameat2
479 #if defined(__NR_renameat2)
480 #define __NR_sys_renameat2 __NR_renameat2
481 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd,
482           const char *, new, unsigned int, flags)
483 #else
484 static int sys_renameat2(int oldfd, const char *old,
485                          int newfd, const char *new, int flags)
486 {
487     if (flags == 0) {
488         return renameat(oldfd, old, newfd, new);
489     }
490     errno = ENOSYS;
491     return -1;
492 }
493 #endif
494 #endif /* TARGET_NR_renameat2 */
495 
496 #ifdef CONFIG_INOTIFY
497 #include <sys/inotify.h>
498 #else
499 /* Userspace can usually survive runtime without inotify */
500 #undef TARGET_NR_inotify_init
501 #undef TARGET_NR_inotify_init1
502 #undef TARGET_NR_inotify_add_watch
503 #undef TARGET_NR_inotify_rm_watch
504 #endif /* CONFIG_INOTIFY  */
505 
506 #if defined(TARGET_NR_prlimit64)
507 #ifndef __NR_prlimit64
508 # define __NR_prlimit64 -1
509 #endif
510 #define __NR_sys_prlimit64 __NR_prlimit64
511 /* The glibc rlimit structure may not be that used by the underlying syscall */
512 struct host_rlimit64 {
513     uint64_t rlim_cur;
514     uint64_t rlim_max;
515 };
516 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource,
517           const struct host_rlimit64 *, new_limit,
518           struct host_rlimit64 *, old_limit)
519 #endif
520 
521 
522 #if defined(TARGET_NR_timer_create)
523 /* Maximum of 32 active POSIX timers allowed at any one time. */
524 #define GUEST_TIMER_MAX 32
525 static timer_t g_posix_timers[GUEST_TIMER_MAX];
526 static int g_posix_timer_allocated[GUEST_TIMER_MAX];
527 
528 static inline int next_free_host_timer(void)
529 {
530     int k;
531     for (k = 0; k < ARRAY_SIZE(g_posix_timer_allocated); k++) {
532         if (qatomic_xchg(g_posix_timer_allocated + k, 1) == 0) {
533             return k;
534         }
535     }
536     return -1;
537 }
538 
539 static inline void free_host_timer_slot(int id)
540 {
541     qatomic_store_release(g_posix_timer_allocated + id, 0);
542 }
543 #endif
544 
545 static inline int host_to_target_errno(int host_errno)
546 {
547     switch (host_errno) {
548 #define E(X)  case X: return TARGET_##X;
549 #include "errnos.c.inc"
550 #undef E
551     default:
552         return host_errno;
553     }
554 }
555 
556 static inline int target_to_host_errno(int target_errno)
557 {
558     switch (target_errno) {
559 #define E(X)  case TARGET_##X: return X;
560 #include "errnos.c.inc"
561 #undef E
562     default:
563         return target_errno;
564     }
565 }
566 
567 abi_long get_errno(abi_long ret)
568 {
569     if (ret == -1)
570         return -host_to_target_errno(errno);
571     else
572         return ret;
573 }
574 
575 const char *target_strerror(int err)
576 {
577     if (err == QEMU_ERESTARTSYS) {
578         return "To be restarted";
579     }
580     if (err == QEMU_ESIGRETURN) {
581         return "Successful exit from sigreturn";
582     }
583 
584     return strerror(target_to_host_errno(err));
585 }
586 
587 static int check_zeroed_user(abi_long addr, size_t ksize, size_t usize)
588 {
589     int i;
590     uint8_t b;
591     if (usize <= ksize) {
592         return 1;
593     }
594     for (i = ksize; i < usize; i++) {
595         if (get_user_u8(b, addr + i)) {
596             return -TARGET_EFAULT;
597         }
598         if (b != 0) {
599             return 0;
600         }
601     }
602     return 1;
603 }
604 
605 #define safe_syscall0(type, name) \
606 static type safe_##name(void) \
607 { \
608     return safe_syscall(__NR_##name); \
609 }
610 
611 #define safe_syscall1(type, name, type1, arg1) \
612 static type safe_##name(type1 arg1) \
613 { \
614     return safe_syscall(__NR_##name, arg1); \
615 }
616 
617 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
618 static type safe_##name(type1 arg1, type2 arg2) \
619 { \
620     return safe_syscall(__NR_##name, arg1, arg2); \
621 }
622 
623 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
624 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
625 { \
626     return safe_syscall(__NR_##name, arg1, arg2, arg3); \
627 }
628 
629 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
630     type4, arg4) \
631 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
632 { \
633     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
634 }
635 
636 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
637     type4, arg4, type5, arg5) \
638 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
639     type5 arg5) \
640 { \
641     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
642 }
643 
644 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
645     type4, arg4, type5, arg5, type6, arg6) \
646 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
647     type5 arg5, type6 arg6) \
648 { \
649     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
650 }
651 
652 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count)
653 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count)
654 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \
655               int, flags, mode_t, mode)
656 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid)
657 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \
658               struct rusage *, rusage)
659 #endif
660 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \
661               int, options, struct rusage *, rusage)
662 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp)
663 safe_syscall5(int, execveat, int, dirfd, const char *, filename,
664               char **, argv, char **, envp, int, flags)
665 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
666     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
667 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \
668               fd_set *, exceptfds, struct timespec *, timeout, void *, sig)
669 #endif
670 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_ppoll_time64)
671 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds,
672               struct timespec *, tsp, const sigset_t *, sigmask,
673               size_t, sigsetsize)
674 #endif
675 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events,
676               int, maxevents, int, timeout, const sigset_t *, sigmask,
677               size_t, sigsetsize)
678 #if defined(__NR_futex)
679 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \
680               const struct timespec *,timeout,int *,uaddr2,int,val3)
681 #endif
682 #if defined(__NR_futex_time64)
683 safe_syscall6(int,futex_time64,int *,uaddr,int,op,int,val, \
684               const struct timespec *,timeout,int *,uaddr2,int,val3)
685 #endif
686 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize)
687 safe_syscall2(int, kill, pid_t, pid, int, sig)
688 safe_syscall2(int, tkill, int, tid, int, sig)
689 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig)
690 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt)
691 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt)
692 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt,
693               unsigned long, pos_l, unsigned long, pos_h)
694 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt,
695               unsigned long, pos_l, unsigned long, pos_h)
696 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr,
697               socklen_t, addrlen)
698 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len,
699               int, flags, const struct sockaddr *, addr, socklen_t, addrlen)
700 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len,
701               int, flags, struct sockaddr *, addr, socklen_t *, addrlen)
702 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags)
703 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags)
704 safe_syscall2(int, flock, int, fd, int, operation)
705 #if defined(TARGET_NR_rt_sigtimedwait) || defined(TARGET_NR_rt_sigtimedwait_time64)
706 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo,
707               const struct timespec *, uts, size_t, sigsetsize)
708 #endif
709 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len,
710               int, flags)
711 #if defined(TARGET_NR_nanosleep)
712 safe_syscall2(int, nanosleep, const struct timespec *, req,
713               struct timespec *, rem)
714 #endif
715 #if defined(TARGET_NR_clock_nanosleep) || \
716     defined(TARGET_NR_clock_nanosleep_time64)
717 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags,
718               const struct timespec *, req, struct timespec *, rem)
719 #endif
720 #ifdef __NR_ipc
721 #ifdef __s390x__
722 safe_syscall5(int, ipc, int, call, long, first, long, second, long, third,
723               void *, ptr)
724 #else
725 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third,
726               void *, ptr, long, fifth)
727 #endif
728 #endif
729 #ifdef __NR_msgsnd
730 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz,
731               int, flags)
732 #endif
733 #ifdef __NR_msgrcv
734 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz,
735               long, msgtype, int, flags)
736 #endif
737 #ifdef __NR_semtimedop
738 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops,
739               unsigned, nsops, const struct timespec *, timeout)
740 #endif
741 #if defined(TARGET_NR_mq_timedsend) || \
742     defined(TARGET_NR_mq_timedsend_time64)
743 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr,
744               size_t, len, unsigned, prio, const struct timespec *, timeout)
745 #endif
746 #if defined(TARGET_NR_mq_timedreceive) || \
747     defined(TARGET_NR_mq_timedreceive_time64)
748 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr,
749               size_t, len, unsigned *, prio, const struct timespec *, timeout)
750 #endif
751 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
752 safe_syscall6(ssize_t, copy_file_range, int, infd, loff_t *, pinoff,
753               int, outfd, loff_t *, poutoff, size_t, length,
754               unsigned int, flags)
755 #endif
756 
757 /* We do ioctl like this rather than via safe_syscall3 to preserve the
758  * "third argument might be integer or pointer or not present" behaviour of
759  * the libc function.
760  */
761 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
762 /* Similarly for fcntl. Note that callers must always:
763  *  pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
764  *  use the flock64 struct rather than unsuffixed flock
765  * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
766  */
767 #ifdef __NR_fcntl64
768 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
769 #else
770 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
771 #endif
772 
773 static inline int host_to_target_sock_type(int host_type)
774 {
775     int target_type;
776 
777     switch (host_type & 0xf /* SOCK_TYPE_MASK */) {
778     case SOCK_DGRAM:
779         target_type = TARGET_SOCK_DGRAM;
780         break;
781     case SOCK_STREAM:
782         target_type = TARGET_SOCK_STREAM;
783         break;
784     default:
785         target_type = host_type & 0xf /* SOCK_TYPE_MASK */;
786         break;
787     }
788 
789 #if defined(SOCK_CLOEXEC)
790     if (host_type & SOCK_CLOEXEC) {
791         target_type |= TARGET_SOCK_CLOEXEC;
792     }
793 #endif
794 
795 #if defined(SOCK_NONBLOCK)
796     if (host_type & SOCK_NONBLOCK) {
797         target_type |= TARGET_SOCK_NONBLOCK;
798     }
799 #endif
800 
801     return target_type;
802 }
803 
804 static abi_ulong target_brk, initial_target_brk;
805 
806 void target_set_brk(abi_ulong new_brk)
807 {
808     target_brk = TARGET_PAGE_ALIGN(new_brk);
809     initial_target_brk = target_brk;
810 }
811 
812 /* do_brk() must return target values and target errnos. */
813 abi_long do_brk(abi_ulong brk_val)
814 {
815     abi_long mapped_addr;
816     abi_ulong new_brk;
817     abi_ulong old_brk;
818 
819     /* brk pointers are always untagged */
820 
821     /* do not allow to shrink below initial brk value */
822     if (brk_val < initial_target_brk) {
823         return target_brk;
824     }
825 
826     new_brk = TARGET_PAGE_ALIGN(brk_val);
827     old_brk = TARGET_PAGE_ALIGN(target_brk);
828 
829     /* new and old target_brk might be on the same page */
830     if (new_brk == old_brk) {
831         target_brk = brk_val;
832         return target_brk;
833     }
834 
835     /* Release heap if necessary */
836     if (new_brk < old_brk) {
837         target_munmap(new_brk, old_brk - new_brk);
838 
839         target_brk = brk_val;
840         return target_brk;
841     }
842 
843     mapped_addr = target_mmap(old_brk, new_brk - old_brk,
844                               PROT_READ | PROT_WRITE,
845                               MAP_FIXED_NOREPLACE | MAP_ANON | MAP_PRIVATE,
846                               -1, 0);
847 
848     if (mapped_addr == old_brk) {
849         target_brk = brk_val;
850         return target_brk;
851     }
852 
853 #if defined(TARGET_ALPHA)
854     /* We (partially) emulate OSF/1 on Alpha, which requires we
855        return a proper errno, not an unchanged brk value.  */
856     return -TARGET_ENOMEM;
857 #endif
858     /* For everything else, return the previous break. */
859     return target_brk;
860 }
861 
862 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
863     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
864 static inline abi_long copy_from_user_fdset(fd_set *fds,
865                                             abi_ulong target_fds_addr,
866                                             int n)
867 {
868     int i, nw, j, k;
869     abi_ulong b, *target_fds;
870 
871     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
872     if (!(target_fds = lock_user(VERIFY_READ,
873                                  target_fds_addr,
874                                  sizeof(abi_ulong) * nw,
875                                  1)))
876         return -TARGET_EFAULT;
877 
878     FD_ZERO(fds);
879     k = 0;
880     for (i = 0; i < nw; i++) {
881         /* grab the abi_ulong */
882         __get_user(b, &target_fds[i]);
883         for (j = 0; j < TARGET_ABI_BITS; j++) {
884             /* check the bit inside the abi_ulong */
885             if ((b >> j) & 1)
886                 FD_SET(k, fds);
887             k++;
888         }
889     }
890 
891     unlock_user(target_fds, target_fds_addr, 0);
892 
893     return 0;
894 }
895 
896 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr,
897                                                  abi_ulong target_fds_addr,
898                                                  int n)
899 {
900     if (target_fds_addr) {
901         if (copy_from_user_fdset(fds, target_fds_addr, n))
902             return -TARGET_EFAULT;
903         *fds_ptr = fds;
904     } else {
905         *fds_ptr = NULL;
906     }
907     return 0;
908 }
909 
910 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr,
911                                           const fd_set *fds,
912                                           int n)
913 {
914     int i, nw, j, k;
915     abi_long v;
916     abi_ulong *target_fds;
917 
918     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
919     if (!(target_fds = lock_user(VERIFY_WRITE,
920                                  target_fds_addr,
921                                  sizeof(abi_ulong) * nw,
922                                  0)))
923         return -TARGET_EFAULT;
924 
925     k = 0;
926     for (i = 0; i < nw; i++) {
927         v = 0;
928         for (j = 0; j < TARGET_ABI_BITS; j++) {
929             v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j);
930             k++;
931         }
932         __put_user(v, &target_fds[i]);
933     }
934 
935     unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw);
936 
937     return 0;
938 }
939 #endif
940 
941 #if defined(__alpha__)
942 #define HOST_HZ 1024
943 #else
944 #define HOST_HZ 100
945 #endif
946 
947 static inline abi_long host_to_target_clock_t(long ticks)
948 {
949 #if HOST_HZ == TARGET_HZ
950     return ticks;
951 #else
952     return ((int64_t)ticks * TARGET_HZ) / HOST_HZ;
953 #endif
954 }
955 
956 static inline abi_long host_to_target_rusage(abi_ulong target_addr,
957                                              const struct rusage *rusage)
958 {
959     struct target_rusage *target_rusage;
960 
961     if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0))
962         return -TARGET_EFAULT;
963     target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec);
964     target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec);
965     target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec);
966     target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec);
967     target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss);
968     target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss);
969     target_rusage->ru_idrss = tswapal(rusage->ru_idrss);
970     target_rusage->ru_isrss = tswapal(rusage->ru_isrss);
971     target_rusage->ru_minflt = tswapal(rusage->ru_minflt);
972     target_rusage->ru_majflt = tswapal(rusage->ru_majflt);
973     target_rusage->ru_nswap = tswapal(rusage->ru_nswap);
974     target_rusage->ru_inblock = tswapal(rusage->ru_inblock);
975     target_rusage->ru_oublock = tswapal(rusage->ru_oublock);
976     target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd);
977     target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv);
978     target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals);
979     target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw);
980     target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw);
981     unlock_user_struct(target_rusage, target_addr, 1);
982 
983     return 0;
984 }
985 
986 #ifdef TARGET_NR_setrlimit
987 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim)
988 {
989     abi_ulong target_rlim_swap;
990     rlim_t result;
991 
992     target_rlim_swap = tswapal(target_rlim);
993     if (target_rlim_swap == TARGET_RLIM_INFINITY)
994         return RLIM_INFINITY;
995 
996     result = target_rlim_swap;
997     if (target_rlim_swap != (rlim_t)result)
998         return RLIM_INFINITY;
999 
1000     return result;
1001 }
1002 #endif
1003 
1004 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit)
1005 static inline abi_ulong host_to_target_rlim(rlim_t rlim)
1006 {
1007     abi_ulong target_rlim_swap;
1008     abi_ulong result;
1009 
1010     if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim)
1011         target_rlim_swap = TARGET_RLIM_INFINITY;
1012     else
1013         target_rlim_swap = rlim;
1014     result = tswapal(target_rlim_swap);
1015 
1016     return result;
1017 }
1018 #endif
1019 
1020 static inline int target_to_host_resource(int code)
1021 {
1022     switch (code) {
1023     case TARGET_RLIMIT_AS:
1024         return RLIMIT_AS;
1025     case TARGET_RLIMIT_CORE:
1026         return RLIMIT_CORE;
1027     case TARGET_RLIMIT_CPU:
1028         return RLIMIT_CPU;
1029     case TARGET_RLIMIT_DATA:
1030         return RLIMIT_DATA;
1031     case TARGET_RLIMIT_FSIZE:
1032         return RLIMIT_FSIZE;
1033     case TARGET_RLIMIT_LOCKS:
1034         return RLIMIT_LOCKS;
1035     case TARGET_RLIMIT_MEMLOCK:
1036         return RLIMIT_MEMLOCK;
1037     case TARGET_RLIMIT_MSGQUEUE:
1038         return RLIMIT_MSGQUEUE;
1039     case TARGET_RLIMIT_NICE:
1040         return RLIMIT_NICE;
1041     case TARGET_RLIMIT_NOFILE:
1042         return RLIMIT_NOFILE;
1043     case TARGET_RLIMIT_NPROC:
1044         return RLIMIT_NPROC;
1045     case TARGET_RLIMIT_RSS:
1046         return RLIMIT_RSS;
1047     case TARGET_RLIMIT_RTPRIO:
1048         return RLIMIT_RTPRIO;
1049 #ifdef RLIMIT_RTTIME
1050     case TARGET_RLIMIT_RTTIME:
1051         return RLIMIT_RTTIME;
1052 #endif
1053     case TARGET_RLIMIT_SIGPENDING:
1054         return RLIMIT_SIGPENDING;
1055     case TARGET_RLIMIT_STACK:
1056         return RLIMIT_STACK;
1057     default:
1058         return code;
1059     }
1060 }
1061 
1062 static inline abi_long copy_from_user_timeval(struct timeval *tv,
1063                                               abi_ulong target_tv_addr)
1064 {
1065     struct target_timeval *target_tv;
1066 
1067     if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1068         return -TARGET_EFAULT;
1069     }
1070 
1071     __get_user(tv->tv_sec, &target_tv->tv_sec);
1072     __get_user(tv->tv_usec, &target_tv->tv_usec);
1073 
1074     unlock_user_struct(target_tv, target_tv_addr, 0);
1075 
1076     return 0;
1077 }
1078 
1079 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr,
1080                                             const struct timeval *tv)
1081 {
1082     struct target_timeval *target_tv;
1083 
1084     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1085         return -TARGET_EFAULT;
1086     }
1087 
1088     __put_user(tv->tv_sec, &target_tv->tv_sec);
1089     __put_user(tv->tv_usec, &target_tv->tv_usec);
1090 
1091     unlock_user_struct(target_tv, target_tv_addr, 1);
1092 
1093     return 0;
1094 }
1095 
1096 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
1097 static inline abi_long copy_from_user_timeval64(struct timeval *tv,
1098                                                 abi_ulong target_tv_addr)
1099 {
1100     struct target__kernel_sock_timeval *target_tv;
1101 
1102     if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1103         return -TARGET_EFAULT;
1104     }
1105 
1106     __get_user(tv->tv_sec, &target_tv->tv_sec);
1107     __get_user(tv->tv_usec, &target_tv->tv_usec);
1108 
1109     unlock_user_struct(target_tv, target_tv_addr, 0);
1110 
1111     return 0;
1112 }
1113 #endif
1114 
1115 static inline abi_long copy_to_user_timeval64(abi_ulong target_tv_addr,
1116                                               const struct timeval *tv)
1117 {
1118     struct target__kernel_sock_timeval *target_tv;
1119 
1120     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1121         return -TARGET_EFAULT;
1122     }
1123 
1124     __put_user(tv->tv_sec, &target_tv->tv_sec);
1125     __put_user(tv->tv_usec, &target_tv->tv_usec);
1126 
1127     unlock_user_struct(target_tv, target_tv_addr, 1);
1128 
1129     return 0;
1130 }
1131 
1132 #if defined(TARGET_NR_futex) || \
1133     defined(TARGET_NR_rt_sigtimedwait) || \
1134     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \
1135     defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \
1136     defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \
1137     defined(TARGET_NR_mq_timedreceive) || defined(TARGET_NR_ipc) || \
1138     defined(TARGET_NR_semop) || defined(TARGET_NR_semtimedop) || \
1139     defined(TARGET_NR_timer_settime) || \
1140     (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
1141 static inline abi_long target_to_host_timespec(struct timespec *host_ts,
1142                                                abi_ulong target_addr)
1143 {
1144     struct target_timespec *target_ts;
1145 
1146     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1147         return -TARGET_EFAULT;
1148     }
1149     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1150     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1151     unlock_user_struct(target_ts, target_addr, 0);
1152     return 0;
1153 }
1154 #endif
1155 
1156 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64) || \
1157     defined(TARGET_NR_timer_settime64) || \
1158     defined(TARGET_NR_mq_timedsend_time64) || \
1159     defined(TARGET_NR_mq_timedreceive_time64) || \
1160     (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) || \
1161     defined(TARGET_NR_clock_nanosleep_time64) || \
1162     defined(TARGET_NR_rt_sigtimedwait_time64) || \
1163     defined(TARGET_NR_utimensat) || \
1164     defined(TARGET_NR_utimensat_time64) || \
1165     defined(TARGET_NR_semtimedop_time64) || \
1166     defined(TARGET_NR_pselect6_time64) || defined(TARGET_NR_ppoll_time64)
1167 static inline abi_long target_to_host_timespec64(struct timespec *host_ts,
1168                                                  abi_ulong target_addr)
1169 {
1170     struct target__kernel_timespec *target_ts;
1171 
1172     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1173         return -TARGET_EFAULT;
1174     }
1175     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1176     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1177     /* in 32bit mode, this drops the padding */
1178     host_ts->tv_nsec = (long)(abi_long)host_ts->tv_nsec;
1179     unlock_user_struct(target_ts, target_addr, 0);
1180     return 0;
1181 }
1182 #endif
1183 
1184 static inline abi_long host_to_target_timespec(abi_ulong target_addr,
1185                                                struct timespec *host_ts)
1186 {
1187     struct target_timespec *target_ts;
1188 
1189     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1190         return -TARGET_EFAULT;
1191     }
1192     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1193     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1194     unlock_user_struct(target_ts, target_addr, 1);
1195     return 0;
1196 }
1197 
1198 static inline abi_long host_to_target_timespec64(abi_ulong target_addr,
1199                                                  struct timespec *host_ts)
1200 {
1201     struct target__kernel_timespec *target_ts;
1202 
1203     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1204         return -TARGET_EFAULT;
1205     }
1206     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1207     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1208     unlock_user_struct(target_ts, target_addr, 1);
1209     return 0;
1210 }
1211 
1212 #if defined(TARGET_NR_gettimeofday)
1213 static inline abi_long copy_to_user_timezone(abi_ulong target_tz_addr,
1214                                              struct timezone *tz)
1215 {
1216     struct target_timezone *target_tz;
1217 
1218     if (!lock_user_struct(VERIFY_WRITE, target_tz, target_tz_addr, 1)) {
1219         return -TARGET_EFAULT;
1220     }
1221 
1222     __put_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1223     __put_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1224 
1225     unlock_user_struct(target_tz, target_tz_addr, 1);
1226 
1227     return 0;
1228 }
1229 #endif
1230 
1231 #if defined(TARGET_NR_settimeofday)
1232 static inline abi_long copy_from_user_timezone(struct timezone *tz,
1233                                                abi_ulong target_tz_addr)
1234 {
1235     struct target_timezone *target_tz;
1236 
1237     if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) {
1238         return -TARGET_EFAULT;
1239     }
1240 
1241     __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1242     __get_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1243 
1244     unlock_user_struct(target_tz, target_tz_addr, 0);
1245 
1246     return 0;
1247 }
1248 #endif
1249 
1250 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1251 #include <mqueue.h>
1252 
1253 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr,
1254                                               abi_ulong target_mq_attr_addr)
1255 {
1256     struct target_mq_attr *target_mq_attr;
1257 
1258     if (!lock_user_struct(VERIFY_READ, target_mq_attr,
1259                           target_mq_attr_addr, 1))
1260         return -TARGET_EFAULT;
1261 
1262     __get_user(attr->mq_flags, &target_mq_attr->mq_flags);
1263     __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1264     __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1265     __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1266 
1267     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0);
1268 
1269     return 0;
1270 }
1271 
1272 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr,
1273                                             const struct mq_attr *attr)
1274 {
1275     struct target_mq_attr *target_mq_attr;
1276 
1277     if (!lock_user_struct(VERIFY_WRITE, target_mq_attr,
1278                           target_mq_attr_addr, 0))
1279         return -TARGET_EFAULT;
1280 
1281     __put_user(attr->mq_flags, &target_mq_attr->mq_flags);
1282     __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1283     __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1284     __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1285 
1286     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1);
1287 
1288     return 0;
1289 }
1290 #endif
1291 
1292 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1293 /* do_select() must return target values and target errnos. */
1294 static abi_long do_select(int n,
1295                           abi_ulong rfd_addr, abi_ulong wfd_addr,
1296                           abi_ulong efd_addr, abi_ulong target_tv_addr)
1297 {
1298     fd_set rfds, wfds, efds;
1299     fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1300     struct timeval tv;
1301     struct timespec ts, *ts_ptr;
1302     abi_long ret;
1303 
1304     ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1305     if (ret) {
1306         return ret;
1307     }
1308     ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1309     if (ret) {
1310         return ret;
1311     }
1312     ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1313     if (ret) {
1314         return ret;
1315     }
1316 
1317     if (target_tv_addr) {
1318         if (copy_from_user_timeval(&tv, target_tv_addr))
1319             return -TARGET_EFAULT;
1320         ts.tv_sec = tv.tv_sec;
1321         ts.tv_nsec = tv.tv_usec * 1000;
1322         ts_ptr = &ts;
1323     } else {
1324         ts_ptr = NULL;
1325     }
1326 
1327     ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1328                                   ts_ptr, NULL));
1329 
1330     if (!is_error(ret)) {
1331         if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
1332             return -TARGET_EFAULT;
1333         if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
1334             return -TARGET_EFAULT;
1335         if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
1336             return -TARGET_EFAULT;
1337 
1338         if (target_tv_addr) {
1339             tv.tv_sec = ts.tv_sec;
1340             tv.tv_usec = ts.tv_nsec / 1000;
1341             if (copy_to_user_timeval(target_tv_addr, &tv)) {
1342                 return -TARGET_EFAULT;
1343             }
1344         }
1345     }
1346 
1347     return ret;
1348 }
1349 
1350 #if defined(TARGET_WANT_OLD_SYS_SELECT)
1351 static abi_long do_old_select(abi_ulong arg1)
1352 {
1353     struct target_sel_arg_struct *sel;
1354     abi_ulong inp, outp, exp, tvp;
1355     long nsel;
1356 
1357     if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) {
1358         return -TARGET_EFAULT;
1359     }
1360 
1361     nsel = tswapal(sel->n);
1362     inp = tswapal(sel->inp);
1363     outp = tswapal(sel->outp);
1364     exp = tswapal(sel->exp);
1365     tvp = tswapal(sel->tvp);
1366 
1367     unlock_user_struct(sel, arg1, 0);
1368 
1369     return do_select(nsel, inp, outp, exp, tvp);
1370 }
1371 #endif
1372 #endif
1373 
1374 #if defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
1375 static abi_long do_pselect6(abi_long arg1, abi_long arg2, abi_long arg3,
1376                             abi_long arg4, abi_long arg5, abi_long arg6,
1377                             bool time64)
1378 {
1379     abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr;
1380     fd_set rfds, wfds, efds;
1381     fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1382     struct timespec ts, *ts_ptr;
1383     abi_long ret;
1384 
1385     /*
1386      * The 6th arg is actually two args smashed together,
1387      * so we cannot use the C library.
1388      */
1389     struct {
1390         sigset_t *set;
1391         size_t size;
1392     } sig, *sig_ptr;
1393 
1394     abi_ulong arg_sigset, arg_sigsize, *arg7;
1395 
1396     n = arg1;
1397     rfd_addr = arg2;
1398     wfd_addr = arg3;
1399     efd_addr = arg4;
1400     ts_addr = arg5;
1401 
1402     ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1403     if (ret) {
1404         return ret;
1405     }
1406     ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1407     if (ret) {
1408         return ret;
1409     }
1410     ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1411     if (ret) {
1412         return ret;
1413     }
1414 
1415     /*
1416      * This takes a timespec, and not a timeval, so we cannot
1417      * use the do_select() helper ...
1418      */
1419     if (ts_addr) {
1420         if (time64) {
1421             if (target_to_host_timespec64(&ts, ts_addr)) {
1422                 return -TARGET_EFAULT;
1423             }
1424         } else {
1425             if (target_to_host_timespec(&ts, ts_addr)) {
1426                 return -TARGET_EFAULT;
1427             }
1428         }
1429             ts_ptr = &ts;
1430     } else {
1431         ts_ptr = NULL;
1432     }
1433 
1434     /* Extract the two packed args for the sigset */
1435     sig_ptr = NULL;
1436     if (arg6) {
1437         arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1);
1438         if (!arg7) {
1439             return -TARGET_EFAULT;
1440         }
1441         arg_sigset = tswapal(arg7[0]);
1442         arg_sigsize = tswapal(arg7[1]);
1443         unlock_user(arg7, arg6, 0);
1444 
1445         if (arg_sigset) {
1446             ret = process_sigsuspend_mask(&sig.set, arg_sigset, arg_sigsize);
1447             if (ret != 0) {
1448                 return ret;
1449             }
1450             sig_ptr = &sig;
1451             sig.size = SIGSET_T_SIZE;
1452         }
1453     }
1454 
1455     ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1456                                   ts_ptr, sig_ptr));
1457 
1458     if (sig_ptr) {
1459         finish_sigsuspend_mask(ret);
1460     }
1461 
1462     if (!is_error(ret)) {
1463         if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) {
1464             return -TARGET_EFAULT;
1465         }
1466         if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) {
1467             return -TARGET_EFAULT;
1468         }
1469         if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) {
1470             return -TARGET_EFAULT;
1471         }
1472         if (time64) {
1473             if (ts_addr && host_to_target_timespec64(ts_addr, &ts)) {
1474                 return -TARGET_EFAULT;
1475             }
1476         } else {
1477             if (ts_addr && host_to_target_timespec(ts_addr, &ts)) {
1478                 return -TARGET_EFAULT;
1479             }
1480         }
1481     }
1482     return ret;
1483 }
1484 #endif
1485 
1486 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) || \
1487     defined(TARGET_NR_ppoll_time64)
1488 static abi_long do_ppoll(abi_long arg1, abi_long arg2, abi_long arg3,
1489                          abi_long arg4, abi_long arg5, bool ppoll, bool time64)
1490 {
1491     struct target_pollfd *target_pfd;
1492     unsigned int nfds = arg2;
1493     struct pollfd *pfd;
1494     unsigned int i;
1495     abi_long ret;
1496 
1497     pfd = NULL;
1498     target_pfd = NULL;
1499     if (nfds) {
1500         if (nfds > (INT_MAX / sizeof(struct target_pollfd))) {
1501             return -TARGET_EINVAL;
1502         }
1503         target_pfd = lock_user(VERIFY_WRITE, arg1,
1504                                sizeof(struct target_pollfd) * nfds, 1);
1505         if (!target_pfd) {
1506             return -TARGET_EFAULT;
1507         }
1508 
1509         pfd = alloca(sizeof(struct pollfd) * nfds);
1510         for (i = 0; i < nfds; i++) {
1511             pfd[i].fd = tswap32(target_pfd[i].fd);
1512             pfd[i].events = tswap16(target_pfd[i].events);
1513         }
1514     }
1515     if (ppoll) {
1516         struct timespec _timeout_ts, *timeout_ts = &_timeout_ts;
1517         sigset_t *set = NULL;
1518 
1519         if (arg3) {
1520             if (time64) {
1521                 if (target_to_host_timespec64(timeout_ts, arg3)) {
1522                     unlock_user(target_pfd, arg1, 0);
1523                     return -TARGET_EFAULT;
1524                 }
1525             } else {
1526                 if (target_to_host_timespec(timeout_ts, arg3)) {
1527                     unlock_user(target_pfd, arg1, 0);
1528                     return -TARGET_EFAULT;
1529                 }
1530             }
1531         } else {
1532             timeout_ts = NULL;
1533         }
1534 
1535         if (arg4) {
1536             ret = process_sigsuspend_mask(&set, arg4, arg5);
1537             if (ret != 0) {
1538                 unlock_user(target_pfd, arg1, 0);
1539                 return ret;
1540             }
1541         }
1542 
1543         ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts,
1544                                    set, SIGSET_T_SIZE));
1545 
1546         if (set) {
1547             finish_sigsuspend_mask(ret);
1548         }
1549         if (!is_error(ret) && arg3) {
1550             if (time64) {
1551                 if (host_to_target_timespec64(arg3, timeout_ts)) {
1552                     return -TARGET_EFAULT;
1553                 }
1554             } else {
1555                 if (host_to_target_timespec(arg3, timeout_ts)) {
1556                     return -TARGET_EFAULT;
1557                 }
1558             }
1559         }
1560     } else {
1561           struct timespec ts, *pts;
1562 
1563           if (arg3 >= 0) {
1564               /* Convert ms to secs, ns */
1565               ts.tv_sec = arg3 / 1000;
1566               ts.tv_nsec = (arg3 % 1000) * 1000000LL;
1567               pts = &ts;
1568           } else {
1569               /* -ve poll() timeout means "infinite" */
1570               pts = NULL;
1571           }
1572           ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0));
1573     }
1574 
1575     if (!is_error(ret)) {
1576         for (i = 0; i < nfds; i++) {
1577             target_pfd[i].revents = tswap16(pfd[i].revents);
1578         }
1579     }
1580     unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds);
1581     return ret;
1582 }
1583 #endif
1584 
1585 static abi_long do_pipe(CPUArchState *cpu_env, abi_ulong pipedes,
1586                         int flags, int is_pipe2)
1587 {
1588     int host_pipe[2];
1589     abi_long ret;
1590     ret = pipe2(host_pipe, flags);
1591 
1592     if (is_error(ret))
1593         return get_errno(ret);
1594 
1595     /* Several targets have special calling conventions for the original
1596        pipe syscall, but didn't replicate this into the pipe2 syscall.  */
1597     if (!is_pipe2) {
1598 #if defined(TARGET_ALPHA)
1599         cpu_env->ir[IR_A4] = host_pipe[1];
1600         return host_pipe[0];
1601 #elif defined(TARGET_MIPS)
1602         cpu_env->active_tc.gpr[3] = host_pipe[1];
1603         return host_pipe[0];
1604 #elif defined(TARGET_SH4)
1605         cpu_env->gregs[1] = host_pipe[1];
1606         return host_pipe[0];
1607 #elif defined(TARGET_SPARC)
1608         cpu_env->regwptr[1] = host_pipe[1];
1609         return host_pipe[0];
1610 #endif
1611     }
1612 
1613     if (put_user_s32(host_pipe[0], pipedes)
1614         || put_user_s32(host_pipe[1], pipedes + sizeof(abi_int)))
1615         return -TARGET_EFAULT;
1616     return get_errno(ret);
1617 }
1618 
1619 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr,
1620                                                abi_ulong target_addr,
1621                                                socklen_t len)
1622 {
1623     const socklen_t unix_maxlen = sizeof (struct sockaddr_un);
1624     sa_family_t sa_family;
1625     struct target_sockaddr *target_saddr;
1626 
1627     if (fd_trans_target_to_host_addr(fd)) {
1628         return fd_trans_target_to_host_addr(fd)(addr, target_addr, len);
1629     }
1630 
1631     target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
1632     if (!target_saddr)
1633         return -TARGET_EFAULT;
1634 
1635     sa_family = tswap16(target_saddr->sa_family);
1636 
1637     /* Oops. The caller might send a incomplete sun_path; sun_path
1638      * must be terminated by \0 (see the manual page), but
1639      * unfortunately it is quite common to specify sockaddr_un
1640      * length as "strlen(x->sun_path)" while it should be
1641      * "strlen(...) + 1". We'll fix that here if needed.
1642      * Linux kernel has a similar feature.
1643      */
1644 
1645     if (sa_family == AF_UNIX) {
1646         if (len < unix_maxlen && len > 0) {
1647             char *cp = (char*)target_saddr;
1648 
1649             if ( cp[len-1] && !cp[len] )
1650                 len++;
1651         }
1652         if (len > unix_maxlen)
1653             len = unix_maxlen;
1654     }
1655 
1656     memcpy(addr, target_saddr, len);
1657     addr->sa_family = sa_family;
1658     if (sa_family == AF_NETLINK) {
1659         struct sockaddr_nl *nladdr;
1660 
1661         nladdr = (struct sockaddr_nl *)addr;
1662         nladdr->nl_pid = tswap32(nladdr->nl_pid);
1663         nladdr->nl_groups = tswap32(nladdr->nl_groups);
1664     } else if (sa_family == AF_PACKET) {
1665 	struct target_sockaddr_ll *lladdr;
1666 
1667 	lladdr = (struct target_sockaddr_ll *)addr;
1668 	lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex);
1669 	lladdr->sll_hatype = tswap16(lladdr->sll_hatype);
1670     } else if (sa_family == AF_INET6) {
1671         struct sockaddr_in6 *in6addr;
1672 
1673         in6addr = (struct sockaddr_in6 *)addr;
1674         in6addr->sin6_scope_id = tswap32(in6addr->sin6_scope_id);
1675     }
1676     unlock_user(target_saddr, target_addr, 0);
1677 
1678     return 0;
1679 }
1680 
1681 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr,
1682                                                struct sockaddr *addr,
1683                                                socklen_t len)
1684 {
1685     struct target_sockaddr *target_saddr;
1686 
1687     if (len == 0) {
1688         return 0;
1689     }
1690     assert(addr);
1691 
1692     target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0);
1693     if (!target_saddr)
1694         return -TARGET_EFAULT;
1695     memcpy(target_saddr, addr, len);
1696     if (len >= offsetof(struct target_sockaddr, sa_family) +
1697         sizeof(target_saddr->sa_family)) {
1698         target_saddr->sa_family = tswap16(addr->sa_family);
1699     }
1700     if (addr->sa_family == AF_NETLINK &&
1701         len >= sizeof(struct target_sockaddr_nl)) {
1702         struct target_sockaddr_nl *target_nl =
1703                (struct target_sockaddr_nl *)target_saddr;
1704         target_nl->nl_pid = tswap32(target_nl->nl_pid);
1705         target_nl->nl_groups = tswap32(target_nl->nl_groups);
1706     } else if (addr->sa_family == AF_PACKET) {
1707         struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr;
1708         target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex);
1709         target_ll->sll_hatype = tswap16(target_ll->sll_hatype);
1710     } else if (addr->sa_family == AF_INET6 &&
1711                len >= sizeof(struct target_sockaddr_in6)) {
1712         struct target_sockaddr_in6 *target_in6 =
1713                (struct target_sockaddr_in6 *)target_saddr;
1714         target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id);
1715     }
1716     unlock_user(target_saddr, target_addr, len);
1717 
1718     return 0;
1719 }
1720 
1721 static inline abi_long target_to_host_cmsg(struct msghdr *msgh,
1722                                            struct target_msghdr *target_msgh)
1723 {
1724     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1725     abi_long msg_controllen;
1726     abi_ulong target_cmsg_addr;
1727     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1728     socklen_t space = 0;
1729 
1730     msg_controllen = tswapal(target_msgh->msg_controllen);
1731     if (msg_controllen < sizeof (struct target_cmsghdr))
1732         goto the_end;
1733     target_cmsg_addr = tswapal(target_msgh->msg_control);
1734     target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1);
1735     target_cmsg_start = target_cmsg;
1736     if (!target_cmsg)
1737         return -TARGET_EFAULT;
1738 
1739     while (cmsg && target_cmsg) {
1740         void *data = CMSG_DATA(cmsg);
1741         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1742 
1743         int len = tswapal(target_cmsg->cmsg_len)
1744             - sizeof(struct target_cmsghdr);
1745 
1746         space += CMSG_SPACE(len);
1747         if (space > msgh->msg_controllen) {
1748             space -= CMSG_SPACE(len);
1749             /* This is a QEMU bug, since we allocated the payload
1750              * area ourselves (unlike overflow in host-to-target
1751              * conversion, which is just the guest giving us a buffer
1752              * that's too small). It can't happen for the payload types
1753              * we currently support; if it becomes an issue in future
1754              * we would need to improve our allocation strategy to
1755              * something more intelligent than "twice the size of the
1756              * target buffer we're reading from".
1757              */
1758             qemu_log_mask(LOG_UNIMP,
1759                           ("Unsupported ancillary data %d/%d: "
1760                            "unhandled msg size\n"),
1761                           tswap32(target_cmsg->cmsg_level),
1762                           tswap32(target_cmsg->cmsg_type));
1763             break;
1764         }
1765 
1766         if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) {
1767             cmsg->cmsg_level = SOL_SOCKET;
1768         } else {
1769             cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level);
1770         }
1771         cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type);
1772         cmsg->cmsg_len = CMSG_LEN(len);
1773 
1774         if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
1775             int *fd = (int *)data;
1776             int *target_fd = (int *)target_data;
1777             int i, numfds = len / sizeof(int);
1778 
1779             for (i = 0; i < numfds; i++) {
1780                 __get_user(fd[i], target_fd + i);
1781             }
1782         } else if (cmsg->cmsg_level == SOL_SOCKET
1783                &&  cmsg->cmsg_type == SCM_CREDENTIALS) {
1784             struct ucred *cred = (struct ucred *)data;
1785             struct target_ucred *target_cred =
1786                 (struct target_ucred *)target_data;
1787 
1788             __get_user(cred->pid, &target_cred->pid);
1789             __get_user(cred->uid, &target_cred->uid);
1790             __get_user(cred->gid, &target_cred->gid);
1791         } else if (cmsg->cmsg_level == SOL_ALG) {
1792             uint32_t *dst = (uint32_t *)data;
1793 
1794             memcpy(dst, target_data, len);
1795             /* fix endianness of first 32-bit word */
1796             if (len >= sizeof(uint32_t)) {
1797                 *dst = tswap32(*dst);
1798             }
1799         } else {
1800             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
1801                           cmsg->cmsg_level, cmsg->cmsg_type);
1802             memcpy(data, target_data, len);
1803         }
1804 
1805         cmsg = CMSG_NXTHDR(msgh, cmsg);
1806         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1807                                          target_cmsg_start);
1808     }
1809     unlock_user(target_cmsg, target_cmsg_addr, 0);
1810  the_end:
1811     msgh->msg_controllen = space;
1812     return 0;
1813 }
1814 
1815 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh,
1816                                            struct msghdr *msgh)
1817 {
1818     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1819     abi_long msg_controllen;
1820     abi_ulong target_cmsg_addr;
1821     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1822     socklen_t space = 0;
1823 
1824     msg_controllen = tswapal(target_msgh->msg_controllen);
1825     if (msg_controllen < sizeof (struct target_cmsghdr))
1826         goto the_end;
1827     target_cmsg_addr = tswapal(target_msgh->msg_control);
1828     target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0);
1829     target_cmsg_start = target_cmsg;
1830     if (!target_cmsg)
1831         return -TARGET_EFAULT;
1832 
1833     while (cmsg && target_cmsg) {
1834         void *data = CMSG_DATA(cmsg);
1835         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1836 
1837         int len = cmsg->cmsg_len - sizeof(struct cmsghdr);
1838         int tgt_len, tgt_space;
1839 
1840         /* We never copy a half-header but may copy half-data;
1841          * this is Linux's behaviour in put_cmsg(). Note that
1842          * truncation here is a guest problem (which we report
1843          * to the guest via the CTRUNC bit), unlike truncation
1844          * in target_to_host_cmsg, which is a QEMU bug.
1845          */
1846         if (msg_controllen < sizeof(struct target_cmsghdr)) {
1847             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1848             break;
1849         }
1850 
1851         if (cmsg->cmsg_level == SOL_SOCKET) {
1852             target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET);
1853         } else {
1854             target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level);
1855         }
1856         target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type);
1857 
1858         /* Payload types which need a different size of payload on
1859          * the target must adjust tgt_len here.
1860          */
1861         tgt_len = len;
1862         switch (cmsg->cmsg_level) {
1863         case SOL_SOCKET:
1864             switch (cmsg->cmsg_type) {
1865             case SO_TIMESTAMP:
1866                 tgt_len = sizeof(struct target_timeval);
1867                 break;
1868             default:
1869                 break;
1870             }
1871             break;
1872         default:
1873             break;
1874         }
1875 
1876         if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) {
1877             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1878             tgt_len = msg_controllen - sizeof(struct target_cmsghdr);
1879         }
1880 
1881         /* We must now copy-and-convert len bytes of payload
1882          * into tgt_len bytes of destination space. Bear in mind
1883          * that in both source and destination we may be dealing
1884          * with a truncated value!
1885          */
1886         switch (cmsg->cmsg_level) {
1887         case SOL_SOCKET:
1888             switch (cmsg->cmsg_type) {
1889             case SCM_RIGHTS:
1890             {
1891                 int *fd = (int *)data;
1892                 int *target_fd = (int *)target_data;
1893                 int i, numfds = tgt_len / sizeof(int);
1894 
1895                 for (i = 0; i < numfds; i++) {
1896                     __put_user(fd[i], target_fd + i);
1897                 }
1898                 break;
1899             }
1900             case SO_TIMESTAMP:
1901             {
1902                 struct timeval *tv = (struct timeval *)data;
1903                 struct target_timeval *target_tv =
1904                     (struct target_timeval *)target_data;
1905 
1906                 if (len != sizeof(struct timeval) ||
1907                     tgt_len != sizeof(struct target_timeval)) {
1908                     goto unimplemented;
1909                 }
1910 
1911                 /* copy struct timeval to target */
1912                 __put_user(tv->tv_sec, &target_tv->tv_sec);
1913                 __put_user(tv->tv_usec, &target_tv->tv_usec);
1914                 break;
1915             }
1916             case SCM_CREDENTIALS:
1917             {
1918                 struct ucred *cred = (struct ucred *)data;
1919                 struct target_ucred *target_cred =
1920                     (struct target_ucred *)target_data;
1921 
1922                 __put_user(cred->pid, &target_cred->pid);
1923                 __put_user(cred->uid, &target_cred->uid);
1924                 __put_user(cred->gid, &target_cred->gid);
1925                 break;
1926             }
1927             default:
1928                 goto unimplemented;
1929             }
1930             break;
1931 
1932         case SOL_IP:
1933             switch (cmsg->cmsg_type) {
1934             case IP_TTL:
1935             {
1936                 uint32_t *v = (uint32_t *)data;
1937                 uint32_t *t_int = (uint32_t *)target_data;
1938 
1939                 if (len != sizeof(uint32_t) ||
1940                     tgt_len != sizeof(uint32_t)) {
1941                     goto unimplemented;
1942                 }
1943                 __put_user(*v, t_int);
1944                 break;
1945             }
1946             case IP_RECVERR:
1947             {
1948                 struct errhdr_t {
1949                    struct sock_extended_err ee;
1950                    struct sockaddr_in offender;
1951                 };
1952                 struct errhdr_t *errh = (struct errhdr_t *)data;
1953                 struct errhdr_t *target_errh =
1954                     (struct errhdr_t *)target_data;
1955 
1956                 if (len != sizeof(struct errhdr_t) ||
1957                     tgt_len != sizeof(struct errhdr_t)) {
1958                     goto unimplemented;
1959                 }
1960                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
1961                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
1962                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
1963                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
1964                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
1965                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
1966                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
1967                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
1968                     (void *) &errh->offender, sizeof(errh->offender));
1969                 break;
1970             }
1971             default:
1972                 goto unimplemented;
1973             }
1974             break;
1975 
1976         case SOL_IPV6:
1977             switch (cmsg->cmsg_type) {
1978             case IPV6_HOPLIMIT:
1979             {
1980                 uint32_t *v = (uint32_t *)data;
1981                 uint32_t *t_int = (uint32_t *)target_data;
1982 
1983                 if (len != sizeof(uint32_t) ||
1984                     tgt_len != sizeof(uint32_t)) {
1985                     goto unimplemented;
1986                 }
1987                 __put_user(*v, t_int);
1988                 break;
1989             }
1990             case IPV6_RECVERR:
1991             {
1992                 struct errhdr6_t {
1993                    struct sock_extended_err ee;
1994                    struct sockaddr_in6 offender;
1995                 };
1996                 struct errhdr6_t *errh = (struct errhdr6_t *)data;
1997                 struct errhdr6_t *target_errh =
1998                     (struct errhdr6_t *)target_data;
1999 
2000                 if (len != sizeof(struct errhdr6_t) ||
2001                     tgt_len != sizeof(struct errhdr6_t)) {
2002                     goto unimplemented;
2003                 }
2004                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
2005                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
2006                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
2007                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
2008                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
2009                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
2010                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
2011                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
2012                     (void *) &errh->offender, sizeof(errh->offender));
2013                 break;
2014             }
2015             default:
2016                 goto unimplemented;
2017             }
2018             break;
2019 
2020         default:
2021         unimplemented:
2022             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
2023                           cmsg->cmsg_level, cmsg->cmsg_type);
2024             memcpy(target_data, data, MIN(len, tgt_len));
2025             if (tgt_len > len) {
2026                 memset(target_data + len, 0, tgt_len - len);
2027             }
2028         }
2029 
2030         target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len));
2031         tgt_space = TARGET_CMSG_SPACE(tgt_len);
2032         if (msg_controllen < tgt_space) {
2033             tgt_space = msg_controllen;
2034         }
2035         msg_controllen -= tgt_space;
2036         space += tgt_space;
2037         cmsg = CMSG_NXTHDR(msgh, cmsg);
2038         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
2039                                          target_cmsg_start);
2040     }
2041     unlock_user(target_cmsg, target_cmsg_addr, space);
2042  the_end:
2043     target_msgh->msg_controllen = tswapal(space);
2044     return 0;
2045 }
2046 
2047 /* do_setsockopt() Must return target values and target errnos. */
2048 static abi_long do_setsockopt(int sockfd, int level, int optname,
2049                               abi_ulong optval_addr, socklen_t optlen)
2050 {
2051     abi_long ret;
2052     int val;
2053 
2054     switch(level) {
2055     case SOL_TCP:
2056     case SOL_UDP:
2057         /* TCP and UDP options all take an 'int' value.  */
2058         if (optlen < sizeof(uint32_t))
2059             return -TARGET_EINVAL;
2060 
2061         if (get_user_u32(val, optval_addr))
2062             return -TARGET_EFAULT;
2063         ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2064         break;
2065     case SOL_IP:
2066         switch(optname) {
2067         case IP_TOS:
2068         case IP_TTL:
2069         case IP_HDRINCL:
2070         case IP_ROUTER_ALERT:
2071         case IP_RECVOPTS:
2072         case IP_RETOPTS:
2073         case IP_PKTINFO:
2074         case IP_MTU_DISCOVER:
2075         case IP_RECVERR:
2076         case IP_RECVTTL:
2077         case IP_RECVTOS:
2078 #ifdef IP_FREEBIND
2079         case IP_FREEBIND:
2080 #endif
2081         case IP_MULTICAST_TTL:
2082         case IP_MULTICAST_LOOP:
2083             val = 0;
2084             if (optlen >= sizeof(uint32_t)) {
2085                 if (get_user_u32(val, optval_addr))
2086                     return -TARGET_EFAULT;
2087             } else if (optlen >= 1) {
2088                 if (get_user_u8(val, optval_addr))
2089                     return -TARGET_EFAULT;
2090             }
2091             ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2092             break;
2093         case IP_ADD_MEMBERSHIP:
2094         case IP_DROP_MEMBERSHIP:
2095         {
2096             struct ip_mreqn ip_mreq;
2097             struct target_ip_mreqn *target_smreqn;
2098 
2099             QEMU_BUILD_BUG_ON(sizeof(struct ip_mreq) !=
2100                               sizeof(struct target_ip_mreq));
2101 
2102             if (optlen < sizeof (struct target_ip_mreq) ||
2103                 optlen > sizeof (struct target_ip_mreqn)) {
2104                 return -TARGET_EINVAL;
2105             }
2106 
2107             target_smreqn = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2108             if (!target_smreqn) {
2109                 return -TARGET_EFAULT;
2110             }
2111             ip_mreq.imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr;
2112             ip_mreq.imr_address.s_addr = target_smreqn->imr_address.s_addr;
2113             if (optlen == sizeof(struct target_ip_mreqn)) {
2114                 ip_mreq.imr_ifindex = tswapal(target_smreqn->imr_ifindex);
2115                 optlen = sizeof(struct ip_mreqn);
2116             }
2117             unlock_user(target_smreqn, optval_addr, 0);
2118 
2119             ret = get_errno(setsockopt(sockfd, level, optname, &ip_mreq, optlen));
2120             break;
2121         }
2122         case IP_BLOCK_SOURCE:
2123         case IP_UNBLOCK_SOURCE:
2124         case IP_ADD_SOURCE_MEMBERSHIP:
2125         case IP_DROP_SOURCE_MEMBERSHIP:
2126         {
2127             struct ip_mreq_source *ip_mreq_source;
2128 
2129             if (optlen != sizeof (struct target_ip_mreq_source))
2130                 return -TARGET_EINVAL;
2131 
2132             ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2133             if (!ip_mreq_source) {
2134                 return -TARGET_EFAULT;
2135             }
2136             ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen));
2137             unlock_user (ip_mreq_source, optval_addr, 0);
2138             break;
2139         }
2140         default:
2141             goto unimplemented;
2142         }
2143         break;
2144     case SOL_IPV6:
2145         switch (optname) {
2146         case IPV6_MTU_DISCOVER:
2147         case IPV6_MTU:
2148         case IPV6_V6ONLY:
2149         case IPV6_RECVPKTINFO:
2150         case IPV6_UNICAST_HOPS:
2151         case IPV6_MULTICAST_HOPS:
2152         case IPV6_MULTICAST_LOOP:
2153         case IPV6_RECVERR:
2154         case IPV6_RECVHOPLIMIT:
2155         case IPV6_2292HOPLIMIT:
2156         case IPV6_CHECKSUM:
2157         case IPV6_ADDRFORM:
2158         case IPV6_2292PKTINFO:
2159         case IPV6_RECVTCLASS:
2160         case IPV6_RECVRTHDR:
2161         case IPV6_2292RTHDR:
2162         case IPV6_RECVHOPOPTS:
2163         case IPV6_2292HOPOPTS:
2164         case IPV6_RECVDSTOPTS:
2165         case IPV6_2292DSTOPTS:
2166         case IPV6_TCLASS:
2167         case IPV6_ADDR_PREFERENCES:
2168 #ifdef IPV6_RECVPATHMTU
2169         case IPV6_RECVPATHMTU:
2170 #endif
2171 #ifdef IPV6_TRANSPARENT
2172         case IPV6_TRANSPARENT:
2173 #endif
2174 #ifdef IPV6_FREEBIND
2175         case IPV6_FREEBIND:
2176 #endif
2177 #ifdef IPV6_RECVORIGDSTADDR
2178         case IPV6_RECVORIGDSTADDR:
2179 #endif
2180             val = 0;
2181             if (optlen < sizeof(uint32_t)) {
2182                 return -TARGET_EINVAL;
2183             }
2184             if (get_user_u32(val, optval_addr)) {
2185                 return -TARGET_EFAULT;
2186             }
2187             ret = get_errno(setsockopt(sockfd, level, optname,
2188                                        &val, sizeof(val)));
2189             break;
2190         case IPV6_PKTINFO:
2191         {
2192             struct in6_pktinfo pki;
2193 
2194             if (optlen < sizeof(pki)) {
2195                 return -TARGET_EINVAL;
2196             }
2197 
2198             if (copy_from_user(&pki, optval_addr, sizeof(pki))) {
2199                 return -TARGET_EFAULT;
2200             }
2201 
2202             pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex);
2203 
2204             ret = get_errno(setsockopt(sockfd, level, optname,
2205                                        &pki, sizeof(pki)));
2206             break;
2207         }
2208         case IPV6_ADD_MEMBERSHIP:
2209         case IPV6_DROP_MEMBERSHIP:
2210         {
2211             struct ipv6_mreq ipv6mreq;
2212 
2213             if (optlen < sizeof(ipv6mreq)) {
2214                 return -TARGET_EINVAL;
2215             }
2216 
2217             if (copy_from_user(&ipv6mreq, optval_addr, sizeof(ipv6mreq))) {
2218                 return -TARGET_EFAULT;
2219             }
2220 
2221             ipv6mreq.ipv6mr_interface = tswap32(ipv6mreq.ipv6mr_interface);
2222 
2223             ret = get_errno(setsockopt(sockfd, level, optname,
2224                                        &ipv6mreq, sizeof(ipv6mreq)));
2225             break;
2226         }
2227         default:
2228             goto unimplemented;
2229         }
2230         break;
2231     case SOL_ICMPV6:
2232         switch (optname) {
2233         case ICMPV6_FILTER:
2234         {
2235             struct icmp6_filter icmp6f;
2236 
2237             if (optlen > sizeof(icmp6f)) {
2238                 optlen = sizeof(icmp6f);
2239             }
2240 
2241             if (copy_from_user(&icmp6f, optval_addr, optlen)) {
2242                 return -TARGET_EFAULT;
2243             }
2244 
2245             for (val = 0; val < 8; val++) {
2246                 icmp6f.data[val] = tswap32(icmp6f.data[val]);
2247             }
2248 
2249             ret = get_errno(setsockopt(sockfd, level, optname,
2250                                        &icmp6f, optlen));
2251             break;
2252         }
2253         default:
2254             goto unimplemented;
2255         }
2256         break;
2257     case SOL_RAW:
2258         switch (optname) {
2259         case ICMP_FILTER:
2260         case IPV6_CHECKSUM:
2261             /* those take an u32 value */
2262             if (optlen < sizeof(uint32_t)) {
2263                 return -TARGET_EINVAL;
2264             }
2265 
2266             if (get_user_u32(val, optval_addr)) {
2267                 return -TARGET_EFAULT;
2268             }
2269             ret = get_errno(setsockopt(sockfd, level, optname,
2270                                        &val, sizeof(val)));
2271             break;
2272 
2273         default:
2274             goto unimplemented;
2275         }
2276         break;
2277 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE)
2278     case SOL_ALG:
2279         switch (optname) {
2280         case ALG_SET_KEY:
2281         {
2282             char *alg_key = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2283             if (!alg_key) {
2284                 return -TARGET_EFAULT;
2285             }
2286             ret = get_errno(setsockopt(sockfd, level, optname,
2287                                        alg_key, optlen));
2288             unlock_user(alg_key, optval_addr, optlen);
2289             break;
2290         }
2291         case ALG_SET_AEAD_AUTHSIZE:
2292         {
2293             ret = get_errno(setsockopt(sockfd, level, optname,
2294                                        NULL, optlen));
2295             break;
2296         }
2297         default:
2298             goto unimplemented;
2299         }
2300         break;
2301 #endif
2302     case TARGET_SOL_SOCKET:
2303         switch (optname) {
2304         case TARGET_SO_RCVTIMEO:
2305         case TARGET_SO_SNDTIMEO:
2306         {
2307                 struct timeval tv;
2308 
2309                 if (optlen != sizeof(struct target_timeval)) {
2310                     return -TARGET_EINVAL;
2311                 }
2312 
2313                 if (copy_from_user_timeval(&tv, optval_addr)) {
2314                     return -TARGET_EFAULT;
2315                 }
2316 
2317                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
2318                                 optname == TARGET_SO_RCVTIMEO ?
2319                                     SO_RCVTIMEO : SO_SNDTIMEO,
2320                                 &tv, sizeof(tv)));
2321                 return ret;
2322         }
2323         case TARGET_SO_ATTACH_FILTER:
2324         {
2325                 struct target_sock_fprog *tfprog;
2326                 struct target_sock_filter *tfilter;
2327                 struct sock_fprog fprog;
2328                 struct sock_filter *filter;
2329                 int i;
2330 
2331                 if (optlen != sizeof(*tfprog)) {
2332                     return -TARGET_EINVAL;
2333                 }
2334                 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) {
2335                     return -TARGET_EFAULT;
2336                 }
2337                 if (!lock_user_struct(VERIFY_READ, tfilter,
2338                                       tswapal(tfprog->filter), 0)) {
2339                     unlock_user_struct(tfprog, optval_addr, 1);
2340                     return -TARGET_EFAULT;
2341                 }
2342 
2343                 fprog.len = tswap16(tfprog->len);
2344                 filter = g_try_new(struct sock_filter, fprog.len);
2345                 if (filter == NULL) {
2346                     unlock_user_struct(tfilter, tfprog->filter, 1);
2347                     unlock_user_struct(tfprog, optval_addr, 1);
2348                     return -TARGET_ENOMEM;
2349                 }
2350                 for (i = 0; i < fprog.len; i++) {
2351                     filter[i].code = tswap16(tfilter[i].code);
2352                     filter[i].jt = tfilter[i].jt;
2353                     filter[i].jf = tfilter[i].jf;
2354                     filter[i].k = tswap32(tfilter[i].k);
2355                 }
2356                 fprog.filter = filter;
2357 
2358                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
2359                                 SO_ATTACH_FILTER, &fprog, sizeof(fprog)));
2360                 g_free(filter);
2361 
2362                 unlock_user_struct(tfilter, tfprog->filter, 1);
2363                 unlock_user_struct(tfprog, optval_addr, 1);
2364                 return ret;
2365         }
2366 	case TARGET_SO_BINDTODEVICE:
2367 	{
2368 		char *dev_ifname, *addr_ifname;
2369 
2370 		if (optlen > IFNAMSIZ - 1) {
2371 		    optlen = IFNAMSIZ - 1;
2372 		}
2373 		dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2374 		if (!dev_ifname) {
2375 		    return -TARGET_EFAULT;
2376 		}
2377 		optname = SO_BINDTODEVICE;
2378 		addr_ifname = alloca(IFNAMSIZ);
2379 		memcpy(addr_ifname, dev_ifname, optlen);
2380 		addr_ifname[optlen] = 0;
2381 		ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2382                                            addr_ifname, optlen));
2383 		unlock_user (dev_ifname, optval_addr, 0);
2384 		return ret;
2385 	}
2386         case TARGET_SO_LINGER:
2387         {
2388                 struct linger lg;
2389                 struct target_linger *tlg;
2390 
2391                 if (optlen != sizeof(struct target_linger)) {
2392                     return -TARGET_EINVAL;
2393                 }
2394                 if (!lock_user_struct(VERIFY_READ, tlg, optval_addr, 1)) {
2395                     return -TARGET_EFAULT;
2396                 }
2397                 __get_user(lg.l_onoff, &tlg->l_onoff);
2398                 __get_user(lg.l_linger, &tlg->l_linger);
2399                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, SO_LINGER,
2400                                 &lg, sizeof(lg)));
2401                 unlock_user_struct(tlg, optval_addr, 0);
2402                 return ret;
2403         }
2404             /* Options with 'int' argument.  */
2405         case TARGET_SO_DEBUG:
2406 		optname = SO_DEBUG;
2407 		break;
2408         case TARGET_SO_REUSEADDR:
2409 		optname = SO_REUSEADDR;
2410 		break;
2411 #ifdef SO_REUSEPORT
2412         case TARGET_SO_REUSEPORT:
2413                 optname = SO_REUSEPORT;
2414                 break;
2415 #endif
2416         case TARGET_SO_TYPE:
2417 		optname = SO_TYPE;
2418 		break;
2419         case TARGET_SO_ERROR:
2420 		optname = SO_ERROR;
2421 		break;
2422         case TARGET_SO_DONTROUTE:
2423 		optname = SO_DONTROUTE;
2424 		break;
2425         case TARGET_SO_BROADCAST:
2426 		optname = SO_BROADCAST;
2427 		break;
2428         case TARGET_SO_SNDBUF:
2429 		optname = SO_SNDBUF;
2430 		break;
2431         case TARGET_SO_SNDBUFFORCE:
2432                 optname = SO_SNDBUFFORCE;
2433                 break;
2434         case TARGET_SO_RCVBUF:
2435 		optname = SO_RCVBUF;
2436 		break;
2437         case TARGET_SO_RCVBUFFORCE:
2438                 optname = SO_RCVBUFFORCE;
2439                 break;
2440         case TARGET_SO_KEEPALIVE:
2441 		optname = SO_KEEPALIVE;
2442 		break;
2443         case TARGET_SO_OOBINLINE:
2444 		optname = SO_OOBINLINE;
2445 		break;
2446         case TARGET_SO_NO_CHECK:
2447 		optname = SO_NO_CHECK;
2448 		break;
2449         case TARGET_SO_PRIORITY:
2450 		optname = SO_PRIORITY;
2451 		break;
2452 #ifdef SO_BSDCOMPAT
2453         case TARGET_SO_BSDCOMPAT:
2454 		optname = SO_BSDCOMPAT;
2455 		break;
2456 #endif
2457         case TARGET_SO_PASSCRED:
2458 		optname = SO_PASSCRED;
2459 		break;
2460         case TARGET_SO_PASSSEC:
2461                 optname = SO_PASSSEC;
2462                 break;
2463         case TARGET_SO_TIMESTAMP:
2464 		optname = SO_TIMESTAMP;
2465 		break;
2466         case TARGET_SO_RCVLOWAT:
2467 		optname = SO_RCVLOWAT;
2468 		break;
2469         default:
2470             goto unimplemented;
2471         }
2472 	if (optlen < sizeof(uint32_t))
2473             return -TARGET_EINVAL;
2474 
2475 	if (get_user_u32(val, optval_addr))
2476             return -TARGET_EFAULT;
2477 	ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val)));
2478         break;
2479 #ifdef SOL_NETLINK
2480     case SOL_NETLINK:
2481         switch (optname) {
2482         case NETLINK_PKTINFO:
2483         case NETLINK_ADD_MEMBERSHIP:
2484         case NETLINK_DROP_MEMBERSHIP:
2485         case NETLINK_BROADCAST_ERROR:
2486         case NETLINK_NO_ENOBUFS:
2487 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2488         case NETLINK_LISTEN_ALL_NSID:
2489         case NETLINK_CAP_ACK:
2490 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2491 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2492         case NETLINK_EXT_ACK:
2493 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2494 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2495         case NETLINK_GET_STRICT_CHK:
2496 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2497             break;
2498         default:
2499             goto unimplemented;
2500         }
2501         val = 0;
2502         if (optlen < sizeof(uint32_t)) {
2503             return -TARGET_EINVAL;
2504         }
2505         if (get_user_u32(val, optval_addr)) {
2506             return -TARGET_EFAULT;
2507         }
2508         ret = get_errno(setsockopt(sockfd, SOL_NETLINK, optname, &val,
2509                                    sizeof(val)));
2510         break;
2511 #endif /* SOL_NETLINK */
2512     default:
2513     unimplemented:
2514         qemu_log_mask(LOG_UNIMP, "Unsupported setsockopt level=%d optname=%d\n",
2515                       level, optname);
2516         ret = -TARGET_ENOPROTOOPT;
2517     }
2518     return ret;
2519 }
2520 
2521 /* do_getsockopt() Must return target values and target errnos. */
2522 static abi_long do_getsockopt(int sockfd, int level, int optname,
2523                               abi_ulong optval_addr, abi_ulong optlen)
2524 {
2525     abi_long ret;
2526     int len, val;
2527     socklen_t lv;
2528 
2529     switch(level) {
2530     case TARGET_SOL_SOCKET:
2531         level = SOL_SOCKET;
2532         switch (optname) {
2533         /* These don't just return a single integer */
2534         case TARGET_SO_PEERNAME:
2535             goto unimplemented;
2536         case TARGET_SO_RCVTIMEO: {
2537             struct timeval tv;
2538             socklen_t tvlen;
2539 
2540             optname = SO_RCVTIMEO;
2541 
2542 get_timeout:
2543             if (get_user_u32(len, optlen)) {
2544                 return -TARGET_EFAULT;
2545             }
2546             if (len < 0) {
2547                 return -TARGET_EINVAL;
2548             }
2549 
2550             tvlen = sizeof(tv);
2551             ret = get_errno(getsockopt(sockfd, level, optname,
2552                                        &tv, &tvlen));
2553             if (ret < 0) {
2554                 return ret;
2555             }
2556             if (len > sizeof(struct target_timeval)) {
2557                 len = sizeof(struct target_timeval);
2558             }
2559             if (copy_to_user_timeval(optval_addr, &tv)) {
2560                 return -TARGET_EFAULT;
2561             }
2562             if (put_user_u32(len, optlen)) {
2563                 return -TARGET_EFAULT;
2564             }
2565             break;
2566         }
2567         case TARGET_SO_SNDTIMEO:
2568             optname = SO_SNDTIMEO;
2569             goto get_timeout;
2570         case TARGET_SO_PEERCRED: {
2571             struct ucred cr;
2572             socklen_t crlen;
2573             struct target_ucred *tcr;
2574 
2575             if (get_user_u32(len, optlen)) {
2576                 return -TARGET_EFAULT;
2577             }
2578             if (len < 0) {
2579                 return -TARGET_EINVAL;
2580             }
2581 
2582             crlen = sizeof(cr);
2583             ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED,
2584                                        &cr, &crlen));
2585             if (ret < 0) {
2586                 return ret;
2587             }
2588             if (len > crlen) {
2589                 len = crlen;
2590             }
2591             if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) {
2592                 return -TARGET_EFAULT;
2593             }
2594             __put_user(cr.pid, &tcr->pid);
2595             __put_user(cr.uid, &tcr->uid);
2596             __put_user(cr.gid, &tcr->gid);
2597             unlock_user_struct(tcr, optval_addr, 1);
2598             if (put_user_u32(len, optlen)) {
2599                 return -TARGET_EFAULT;
2600             }
2601             break;
2602         }
2603         case TARGET_SO_PEERSEC: {
2604             char *name;
2605 
2606             if (get_user_u32(len, optlen)) {
2607                 return -TARGET_EFAULT;
2608             }
2609             if (len < 0) {
2610                 return -TARGET_EINVAL;
2611             }
2612             name = lock_user(VERIFY_WRITE, optval_addr, len, 0);
2613             if (!name) {
2614                 return -TARGET_EFAULT;
2615             }
2616             lv = len;
2617             ret = get_errno(getsockopt(sockfd, level, SO_PEERSEC,
2618                                        name, &lv));
2619             if (put_user_u32(lv, optlen)) {
2620                 ret = -TARGET_EFAULT;
2621             }
2622             unlock_user(name, optval_addr, lv);
2623             break;
2624         }
2625         case TARGET_SO_LINGER:
2626         {
2627             struct linger lg;
2628             socklen_t lglen;
2629             struct target_linger *tlg;
2630 
2631             if (get_user_u32(len, optlen)) {
2632                 return -TARGET_EFAULT;
2633             }
2634             if (len < 0) {
2635                 return -TARGET_EINVAL;
2636             }
2637 
2638             lglen = sizeof(lg);
2639             ret = get_errno(getsockopt(sockfd, level, SO_LINGER,
2640                                        &lg, &lglen));
2641             if (ret < 0) {
2642                 return ret;
2643             }
2644             if (len > lglen) {
2645                 len = lglen;
2646             }
2647             if (!lock_user_struct(VERIFY_WRITE, tlg, optval_addr, 0)) {
2648                 return -TARGET_EFAULT;
2649             }
2650             __put_user(lg.l_onoff, &tlg->l_onoff);
2651             __put_user(lg.l_linger, &tlg->l_linger);
2652             unlock_user_struct(tlg, optval_addr, 1);
2653             if (put_user_u32(len, optlen)) {
2654                 return -TARGET_EFAULT;
2655             }
2656             break;
2657         }
2658         /* Options with 'int' argument.  */
2659         case TARGET_SO_DEBUG:
2660             optname = SO_DEBUG;
2661             goto int_case;
2662         case TARGET_SO_REUSEADDR:
2663             optname = SO_REUSEADDR;
2664             goto int_case;
2665 #ifdef SO_REUSEPORT
2666         case TARGET_SO_REUSEPORT:
2667             optname = SO_REUSEPORT;
2668             goto int_case;
2669 #endif
2670         case TARGET_SO_TYPE:
2671             optname = SO_TYPE;
2672             goto int_case;
2673         case TARGET_SO_ERROR:
2674             optname = SO_ERROR;
2675             goto int_case;
2676         case TARGET_SO_DONTROUTE:
2677             optname = SO_DONTROUTE;
2678             goto int_case;
2679         case TARGET_SO_BROADCAST:
2680             optname = SO_BROADCAST;
2681             goto int_case;
2682         case TARGET_SO_SNDBUF:
2683             optname = SO_SNDBUF;
2684             goto int_case;
2685         case TARGET_SO_RCVBUF:
2686             optname = SO_RCVBUF;
2687             goto int_case;
2688         case TARGET_SO_KEEPALIVE:
2689             optname = SO_KEEPALIVE;
2690             goto int_case;
2691         case TARGET_SO_OOBINLINE:
2692             optname = SO_OOBINLINE;
2693             goto int_case;
2694         case TARGET_SO_NO_CHECK:
2695             optname = SO_NO_CHECK;
2696             goto int_case;
2697         case TARGET_SO_PRIORITY:
2698             optname = SO_PRIORITY;
2699             goto int_case;
2700 #ifdef SO_BSDCOMPAT
2701         case TARGET_SO_BSDCOMPAT:
2702             optname = SO_BSDCOMPAT;
2703             goto int_case;
2704 #endif
2705         case TARGET_SO_PASSCRED:
2706             optname = SO_PASSCRED;
2707             goto int_case;
2708         case TARGET_SO_TIMESTAMP:
2709             optname = SO_TIMESTAMP;
2710             goto int_case;
2711         case TARGET_SO_RCVLOWAT:
2712             optname = SO_RCVLOWAT;
2713             goto int_case;
2714         case TARGET_SO_ACCEPTCONN:
2715             optname = SO_ACCEPTCONN;
2716             goto int_case;
2717         case TARGET_SO_PROTOCOL:
2718             optname = SO_PROTOCOL;
2719             goto int_case;
2720         case TARGET_SO_DOMAIN:
2721             optname = SO_DOMAIN;
2722             goto int_case;
2723         default:
2724             goto int_case;
2725         }
2726         break;
2727     case SOL_TCP:
2728     case SOL_UDP:
2729         /* TCP and UDP options all take an 'int' value.  */
2730     int_case:
2731         if (get_user_u32(len, optlen))
2732             return -TARGET_EFAULT;
2733         if (len < 0)
2734             return -TARGET_EINVAL;
2735         lv = sizeof(lv);
2736         ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2737         if (ret < 0)
2738             return ret;
2739         switch (optname) {
2740         case SO_TYPE:
2741             val = host_to_target_sock_type(val);
2742             break;
2743         case SO_ERROR:
2744             val = host_to_target_errno(val);
2745             break;
2746         }
2747         if (len > lv)
2748             len = lv;
2749         if (len == 4) {
2750             if (put_user_u32(val, optval_addr))
2751                 return -TARGET_EFAULT;
2752         } else {
2753             if (put_user_u8(val, optval_addr))
2754                 return -TARGET_EFAULT;
2755         }
2756         if (put_user_u32(len, optlen))
2757             return -TARGET_EFAULT;
2758         break;
2759     case SOL_IP:
2760         switch(optname) {
2761         case IP_TOS:
2762         case IP_TTL:
2763         case IP_HDRINCL:
2764         case IP_ROUTER_ALERT:
2765         case IP_RECVOPTS:
2766         case IP_RETOPTS:
2767         case IP_PKTINFO:
2768         case IP_MTU_DISCOVER:
2769         case IP_RECVERR:
2770         case IP_RECVTOS:
2771 #ifdef IP_FREEBIND
2772         case IP_FREEBIND:
2773 #endif
2774         case IP_MULTICAST_TTL:
2775         case IP_MULTICAST_LOOP:
2776             if (get_user_u32(len, optlen))
2777                 return -TARGET_EFAULT;
2778             if (len < 0)
2779                 return -TARGET_EINVAL;
2780             lv = sizeof(lv);
2781             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2782             if (ret < 0)
2783                 return ret;
2784             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2785                 len = 1;
2786                 if (put_user_u32(len, optlen)
2787                     || put_user_u8(val, optval_addr))
2788                     return -TARGET_EFAULT;
2789             } else {
2790                 if (len > sizeof(int))
2791                     len = sizeof(int);
2792                 if (put_user_u32(len, optlen)
2793                     || put_user_u32(val, optval_addr))
2794                     return -TARGET_EFAULT;
2795             }
2796             break;
2797         default:
2798             ret = -TARGET_ENOPROTOOPT;
2799             break;
2800         }
2801         break;
2802     case SOL_IPV6:
2803         switch (optname) {
2804         case IPV6_MTU_DISCOVER:
2805         case IPV6_MTU:
2806         case IPV6_V6ONLY:
2807         case IPV6_RECVPKTINFO:
2808         case IPV6_UNICAST_HOPS:
2809         case IPV6_MULTICAST_HOPS:
2810         case IPV6_MULTICAST_LOOP:
2811         case IPV6_RECVERR:
2812         case IPV6_RECVHOPLIMIT:
2813         case IPV6_2292HOPLIMIT:
2814         case IPV6_CHECKSUM:
2815         case IPV6_ADDRFORM:
2816         case IPV6_2292PKTINFO:
2817         case IPV6_RECVTCLASS:
2818         case IPV6_RECVRTHDR:
2819         case IPV6_2292RTHDR:
2820         case IPV6_RECVHOPOPTS:
2821         case IPV6_2292HOPOPTS:
2822         case IPV6_RECVDSTOPTS:
2823         case IPV6_2292DSTOPTS:
2824         case IPV6_TCLASS:
2825         case IPV6_ADDR_PREFERENCES:
2826 #ifdef IPV6_RECVPATHMTU
2827         case IPV6_RECVPATHMTU:
2828 #endif
2829 #ifdef IPV6_TRANSPARENT
2830         case IPV6_TRANSPARENT:
2831 #endif
2832 #ifdef IPV6_FREEBIND
2833         case IPV6_FREEBIND:
2834 #endif
2835 #ifdef IPV6_RECVORIGDSTADDR
2836         case IPV6_RECVORIGDSTADDR:
2837 #endif
2838             if (get_user_u32(len, optlen))
2839                 return -TARGET_EFAULT;
2840             if (len < 0)
2841                 return -TARGET_EINVAL;
2842             lv = sizeof(lv);
2843             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2844             if (ret < 0)
2845                 return ret;
2846             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2847                 len = 1;
2848                 if (put_user_u32(len, optlen)
2849                     || put_user_u8(val, optval_addr))
2850                     return -TARGET_EFAULT;
2851             } else {
2852                 if (len > sizeof(int))
2853                     len = sizeof(int);
2854                 if (put_user_u32(len, optlen)
2855                     || put_user_u32(val, optval_addr))
2856                     return -TARGET_EFAULT;
2857             }
2858             break;
2859         default:
2860             ret = -TARGET_ENOPROTOOPT;
2861             break;
2862         }
2863         break;
2864 #ifdef SOL_NETLINK
2865     case SOL_NETLINK:
2866         switch (optname) {
2867         case NETLINK_PKTINFO:
2868         case NETLINK_BROADCAST_ERROR:
2869         case NETLINK_NO_ENOBUFS:
2870 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2871         case NETLINK_LISTEN_ALL_NSID:
2872         case NETLINK_CAP_ACK:
2873 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2874 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2875         case NETLINK_EXT_ACK:
2876 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2877 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2878         case NETLINK_GET_STRICT_CHK:
2879 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2880             if (get_user_u32(len, optlen)) {
2881                 return -TARGET_EFAULT;
2882             }
2883             if (len != sizeof(val)) {
2884                 return -TARGET_EINVAL;
2885             }
2886             lv = len;
2887             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2888             if (ret < 0) {
2889                 return ret;
2890             }
2891             if (put_user_u32(lv, optlen)
2892                 || put_user_u32(val, optval_addr)) {
2893                 return -TARGET_EFAULT;
2894             }
2895             break;
2896 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2897         case NETLINK_LIST_MEMBERSHIPS:
2898         {
2899             uint32_t *results;
2900             int i;
2901             if (get_user_u32(len, optlen)) {
2902                 return -TARGET_EFAULT;
2903             }
2904             if (len < 0) {
2905                 return -TARGET_EINVAL;
2906             }
2907             results = lock_user(VERIFY_WRITE, optval_addr, len, 1);
2908             if (!results && len > 0) {
2909                 return -TARGET_EFAULT;
2910             }
2911             lv = len;
2912             ret = get_errno(getsockopt(sockfd, level, optname, results, &lv));
2913             if (ret < 0) {
2914                 unlock_user(results, optval_addr, 0);
2915                 return ret;
2916             }
2917             /* swap host endianness to target endianness. */
2918             for (i = 0; i < (len / sizeof(uint32_t)); i++) {
2919                 results[i] = tswap32(results[i]);
2920             }
2921             if (put_user_u32(lv, optlen)) {
2922                 return -TARGET_EFAULT;
2923             }
2924             unlock_user(results, optval_addr, 0);
2925             break;
2926         }
2927 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2928         default:
2929             goto unimplemented;
2930         }
2931         break;
2932 #endif /* SOL_NETLINK */
2933     default:
2934     unimplemented:
2935         qemu_log_mask(LOG_UNIMP,
2936                       "getsockopt level=%d optname=%d not yet supported\n",
2937                       level, optname);
2938         ret = -TARGET_EOPNOTSUPP;
2939         break;
2940     }
2941     return ret;
2942 }
2943 
2944 /* Convert target low/high pair representing file offset into the host
2945  * low/high pair. This function doesn't handle offsets bigger than 64 bits
2946  * as the kernel doesn't handle them either.
2947  */
2948 static void target_to_host_low_high(abi_ulong tlow,
2949                                     abi_ulong thigh,
2950                                     unsigned long *hlow,
2951                                     unsigned long *hhigh)
2952 {
2953     uint64_t off = tlow |
2954         ((unsigned long long)thigh << TARGET_LONG_BITS / 2) <<
2955         TARGET_LONG_BITS / 2;
2956 
2957     *hlow = off;
2958     *hhigh = (off >> HOST_LONG_BITS / 2) >> HOST_LONG_BITS / 2;
2959 }
2960 
2961 static struct iovec *lock_iovec(int type, abi_ulong target_addr,
2962                                 abi_ulong count, int copy)
2963 {
2964     struct target_iovec *target_vec;
2965     struct iovec *vec;
2966     abi_ulong total_len, max_len;
2967     int i;
2968     int err = 0;
2969     bool bad_address = false;
2970 
2971     if (count == 0) {
2972         errno = 0;
2973         return NULL;
2974     }
2975     if (count > IOV_MAX) {
2976         errno = EINVAL;
2977         return NULL;
2978     }
2979 
2980     vec = g_try_new0(struct iovec, count);
2981     if (vec == NULL) {
2982         errno = ENOMEM;
2983         return NULL;
2984     }
2985 
2986     target_vec = lock_user(VERIFY_READ, target_addr,
2987                            count * sizeof(struct target_iovec), 1);
2988     if (target_vec == NULL) {
2989         err = EFAULT;
2990         goto fail2;
2991     }
2992 
2993     /* ??? If host page size > target page size, this will result in a
2994        value larger than what we can actually support.  */
2995     max_len = 0x7fffffff & TARGET_PAGE_MASK;
2996     total_len = 0;
2997 
2998     for (i = 0; i < count; i++) {
2999         abi_ulong base = tswapal(target_vec[i].iov_base);
3000         abi_long len = tswapal(target_vec[i].iov_len);
3001 
3002         if (len < 0) {
3003             err = EINVAL;
3004             goto fail;
3005         } else if (len == 0) {
3006             /* Zero length pointer is ignored.  */
3007             vec[i].iov_base = 0;
3008         } else {
3009             vec[i].iov_base = lock_user(type, base, len, copy);
3010             /* If the first buffer pointer is bad, this is a fault.  But
3011              * subsequent bad buffers will result in a partial write; this
3012              * is realized by filling the vector with null pointers and
3013              * zero lengths. */
3014             if (!vec[i].iov_base) {
3015                 if (i == 0) {
3016                     err = EFAULT;
3017                     goto fail;
3018                 } else {
3019                     bad_address = true;
3020                 }
3021             }
3022             if (bad_address) {
3023                 len = 0;
3024             }
3025             if (len > max_len - total_len) {
3026                 len = max_len - total_len;
3027             }
3028         }
3029         vec[i].iov_len = len;
3030         total_len += len;
3031     }
3032 
3033     unlock_user(target_vec, target_addr, 0);
3034     return vec;
3035 
3036  fail:
3037     while (--i >= 0) {
3038         if (tswapal(target_vec[i].iov_len) > 0) {
3039             unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0);
3040         }
3041     }
3042     unlock_user(target_vec, target_addr, 0);
3043  fail2:
3044     g_free(vec);
3045     errno = err;
3046     return NULL;
3047 }
3048 
3049 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr,
3050                          abi_ulong count, int copy)
3051 {
3052     struct target_iovec *target_vec;
3053     int i;
3054 
3055     target_vec = lock_user(VERIFY_READ, target_addr,
3056                            count * sizeof(struct target_iovec), 1);
3057     if (target_vec) {
3058         for (i = 0; i < count; i++) {
3059             abi_ulong base = tswapal(target_vec[i].iov_base);
3060             abi_long len = tswapal(target_vec[i].iov_len);
3061             if (len < 0) {
3062                 break;
3063             }
3064             unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0);
3065         }
3066         unlock_user(target_vec, target_addr, 0);
3067     }
3068 
3069     g_free(vec);
3070 }
3071 
3072 static inline int target_to_host_sock_type(int *type)
3073 {
3074     int host_type = 0;
3075     int target_type = *type;
3076 
3077     switch (target_type & TARGET_SOCK_TYPE_MASK) {
3078     case TARGET_SOCK_DGRAM:
3079         host_type = SOCK_DGRAM;
3080         break;
3081     case TARGET_SOCK_STREAM:
3082         host_type = SOCK_STREAM;
3083         break;
3084     default:
3085         host_type = target_type & TARGET_SOCK_TYPE_MASK;
3086         break;
3087     }
3088     if (target_type & TARGET_SOCK_CLOEXEC) {
3089 #if defined(SOCK_CLOEXEC)
3090         host_type |= SOCK_CLOEXEC;
3091 #else
3092         return -TARGET_EINVAL;
3093 #endif
3094     }
3095     if (target_type & TARGET_SOCK_NONBLOCK) {
3096 #if defined(SOCK_NONBLOCK)
3097         host_type |= SOCK_NONBLOCK;
3098 #elif !defined(O_NONBLOCK)
3099         return -TARGET_EINVAL;
3100 #endif
3101     }
3102     *type = host_type;
3103     return 0;
3104 }
3105 
3106 /* Try to emulate socket type flags after socket creation.  */
3107 static int sock_flags_fixup(int fd, int target_type)
3108 {
3109 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
3110     if (target_type & TARGET_SOCK_NONBLOCK) {
3111         int flags = fcntl(fd, F_GETFL);
3112         if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) {
3113             close(fd);
3114             return -TARGET_EINVAL;
3115         }
3116     }
3117 #endif
3118     return fd;
3119 }
3120 
3121 /* do_socket() Must return target values and target errnos. */
3122 static abi_long do_socket(int domain, int type, int protocol)
3123 {
3124     int target_type = type;
3125     int ret;
3126 
3127     ret = target_to_host_sock_type(&type);
3128     if (ret) {
3129         return ret;
3130     }
3131 
3132     if (domain == PF_NETLINK && !(
3133 #ifdef CONFIG_RTNETLINK
3134          protocol == NETLINK_ROUTE ||
3135 #endif
3136          protocol == NETLINK_KOBJECT_UEVENT ||
3137          protocol == NETLINK_AUDIT)) {
3138         return -TARGET_EPROTONOSUPPORT;
3139     }
3140 
3141     if (domain == AF_PACKET ||
3142         (domain == AF_INET && type == SOCK_PACKET)) {
3143         protocol = tswap16(protocol);
3144     }
3145 
3146     ret = get_errno(socket(domain, type, protocol));
3147     if (ret >= 0) {
3148         ret = sock_flags_fixup(ret, target_type);
3149         if (type == SOCK_PACKET) {
3150             /* Manage an obsolete case :
3151              * if socket type is SOCK_PACKET, bind by name
3152              */
3153             fd_trans_register(ret, &target_packet_trans);
3154         } else if (domain == PF_NETLINK) {
3155             switch (protocol) {
3156 #ifdef CONFIG_RTNETLINK
3157             case NETLINK_ROUTE:
3158                 fd_trans_register(ret, &target_netlink_route_trans);
3159                 break;
3160 #endif
3161             case NETLINK_KOBJECT_UEVENT:
3162                 /* nothing to do: messages are strings */
3163                 break;
3164             case NETLINK_AUDIT:
3165                 fd_trans_register(ret, &target_netlink_audit_trans);
3166                 break;
3167             default:
3168                 g_assert_not_reached();
3169             }
3170         }
3171     }
3172     return ret;
3173 }
3174 
3175 /* do_bind() Must return target values and target errnos. */
3176 static abi_long do_bind(int sockfd, abi_ulong target_addr,
3177                         socklen_t addrlen)
3178 {
3179     void *addr;
3180     abi_long ret;
3181 
3182     if ((int)addrlen < 0) {
3183         return -TARGET_EINVAL;
3184     }
3185 
3186     addr = alloca(addrlen+1);
3187 
3188     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3189     if (ret)
3190         return ret;
3191 
3192     return get_errno(bind(sockfd, addr, addrlen));
3193 }
3194 
3195 /* do_connect() Must return target values and target errnos. */
3196 static abi_long do_connect(int sockfd, abi_ulong target_addr,
3197                            socklen_t addrlen)
3198 {
3199     void *addr;
3200     abi_long ret;
3201 
3202     if ((int)addrlen < 0) {
3203         return -TARGET_EINVAL;
3204     }
3205 
3206     addr = alloca(addrlen+1);
3207 
3208     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3209     if (ret)
3210         return ret;
3211 
3212     return get_errno(safe_connect(sockfd, addr, addrlen));
3213 }
3214 
3215 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
3216 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp,
3217                                       int flags, int send)
3218 {
3219     abi_long ret, len;
3220     struct msghdr msg;
3221     abi_ulong count;
3222     struct iovec *vec;
3223     abi_ulong target_vec;
3224 
3225     if (msgp->msg_name) {
3226         msg.msg_namelen = tswap32(msgp->msg_namelen);
3227         msg.msg_name = alloca(msg.msg_namelen+1);
3228         ret = target_to_host_sockaddr(fd, msg.msg_name,
3229                                       tswapal(msgp->msg_name),
3230                                       msg.msg_namelen);
3231         if (ret == -TARGET_EFAULT) {
3232             /* For connected sockets msg_name and msg_namelen must
3233              * be ignored, so returning EFAULT immediately is wrong.
3234              * Instead, pass a bad msg_name to the host kernel, and
3235              * let it decide whether to return EFAULT or not.
3236              */
3237             msg.msg_name = (void *)-1;
3238         } else if (ret) {
3239             goto out2;
3240         }
3241     } else {
3242         msg.msg_name = NULL;
3243         msg.msg_namelen = 0;
3244     }
3245     msg.msg_controllen = 2 * tswapal(msgp->msg_controllen);
3246     msg.msg_control = alloca(msg.msg_controllen);
3247     memset(msg.msg_control, 0, msg.msg_controllen);
3248 
3249     msg.msg_flags = tswap32(msgp->msg_flags);
3250 
3251     count = tswapal(msgp->msg_iovlen);
3252     target_vec = tswapal(msgp->msg_iov);
3253 
3254     if (count > IOV_MAX) {
3255         /* sendrcvmsg returns a different errno for this condition than
3256          * readv/writev, so we must catch it here before lock_iovec() does.
3257          */
3258         ret = -TARGET_EMSGSIZE;
3259         goto out2;
3260     }
3261 
3262     vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE,
3263                      target_vec, count, send);
3264     if (vec == NULL) {
3265         ret = -host_to_target_errno(errno);
3266         /* allow sending packet without any iov, e.g. with MSG_MORE flag */
3267         if (!send || ret) {
3268             goto out2;
3269         }
3270     }
3271     msg.msg_iovlen = count;
3272     msg.msg_iov = vec;
3273 
3274     if (send) {
3275         if (fd_trans_target_to_host_data(fd)) {
3276             void *host_msg;
3277 
3278             host_msg = g_malloc(msg.msg_iov->iov_len);
3279             memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len);
3280             ret = fd_trans_target_to_host_data(fd)(host_msg,
3281                                                    msg.msg_iov->iov_len);
3282             if (ret >= 0) {
3283                 msg.msg_iov->iov_base = host_msg;
3284                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3285             }
3286             g_free(host_msg);
3287         } else {
3288             ret = target_to_host_cmsg(&msg, msgp);
3289             if (ret == 0) {
3290                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3291             }
3292         }
3293     } else {
3294         ret = get_errno(safe_recvmsg(fd, &msg, flags));
3295         if (!is_error(ret)) {
3296             len = ret;
3297             if (fd_trans_host_to_target_data(fd)) {
3298                 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base,
3299                                                MIN(msg.msg_iov->iov_len, len));
3300             }
3301             if (!is_error(ret)) {
3302                 ret = host_to_target_cmsg(msgp, &msg);
3303             }
3304             if (!is_error(ret)) {
3305                 msgp->msg_namelen = tswap32(msg.msg_namelen);
3306                 msgp->msg_flags = tswap32(msg.msg_flags);
3307                 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) {
3308                     ret = host_to_target_sockaddr(tswapal(msgp->msg_name),
3309                                     msg.msg_name, msg.msg_namelen);
3310                     if (ret) {
3311                         goto out;
3312                     }
3313                 }
3314 
3315                 ret = len;
3316             }
3317         }
3318     }
3319 
3320 out:
3321     if (vec) {
3322         unlock_iovec(vec, target_vec, count, !send);
3323     }
3324 out2:
3325     return ret;
3326 }
3327 
3328 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg,
3329                                int flags, int send)
3330 {
3331     abi_long ret;
3332     struct target_msghdr *msgp;
3333 
3334     if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE,
3335                           msgp,
3336                           target_msg,
3337                           send ? 1 : 0)) {
3338         return -TARGET_EFAULT;
3339     }
3340     ret = do_sendrecvmsg_locked(fd, msgp, flags, send);
3341     unlock_user_struct(msgp, target_msg, send ? 0 : 1);
3342     return ret;
3343 }
3344 
3345 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
3346  * so it might not have this *mmsg-specific flag either.
3347  */
3348 #ifndef MSG_WAITFORONE
3349 #define MSG_WAITFORONE 0x10000
3350 #endif
3351 
3352 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec,
3353                                 unsigned int vlen, unsigned int flags,
3354                                 int send)
3355 {
3356     struct target_mmsghdr *mmsgp;
3357     abi_long ret = 0;
3358     int i;
3359 
3360     if (vlen > UIO_MAXIOV) {
3361         vlen = UIO_MAXIOV;
3362     }
3363 
3364     mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1);
3365     if (!mmsgp) {
3366         return -TARGET_EFAULT;
3367     }
3368 
3369     for (i = 0; i < vlen; i++) {
3370         ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send);
3371         if (is_error(ret)) {
3372             break;
3373         }
3374         mmsgp[i].msg_len = tswap32(ret);
3375         /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3376         if (flags & MSG_WAITFORONE) {
3377             flags |= MSG_DONTWAIT;
3378         }
3379     }
3380 
3381     unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i);
3382 
3383     /* Return number of datagrams sent if we sent any at all;
3384      * otherwise return the error.
3385      */
3386     if (i) {
3387         return i;
3388     }
3389     return ret;
3390 }
3391 
3392 /* do_accept4() Must return target values and target errnos. */
3393 static abi_long do_accept4(int fd, abi_ulong target_addr,
3394                            abi_ulong target_addrlen_addr, int flags)
3395 {
3396     socklen_t addrlen, ret_addrlen;
3397     void *addr;
3398     abi_long ret;
3399     int host_flags;
3400 
3401     if (flags & ~(TARGET_SOCK_CLOEXEC | TARGET_SOCK_NONBLOCK)) {
3402         return -TARGET_EINVAL;
3403     }
3404 
3405     host_flags = 0;
3406     if (flags & TARGET_SOCK_NONBLOCK) {
3407         host_flags |= SOCK_NONBLOCK;
3408     }
3409     if (flags & TARGET_SOCK_CLOEXEC) {
3410         host_flags |= SOCK_CLOEXEC;
3411     }
3412 
3413     if (target_addr == 0) {
3414         return get_errno(safe_accept4(fd, NULL, NULL, host_flags));
3415     }
3416 
3417     /* linux returns EFAULT if addrlen pointer is invalid */
3418     if (get_user_u32(addrlen, target_addrlen_addr))
3419         return -TARGET_EFAULT;
3420 
3421     if ((int)addrlen < 0) {
3422         return -TARGET_EINVAL;
3423     }
3424 
3425     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3426         return -TARGET_EFAULT;
3427     }
3428 
3429     addr = alloca(addrlen);
3430 
3431     ret_addrlen = addrlen;
3432     ret = get_errno(safe_accept4(fd, addr, &ret_addrlen, host_flags));
3433     if (!is_error(ret)) {
3434         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3435         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3436             ret = -TARGET_EFAULT;
3437         }
3438     }
3439     return ret;
3440 }
3441 
3442 /* do_getpeername() Must return target values and target errnos. */
3443 static abi_long do_getpeername(int fd, abi_ulong target_addr,
3444                                abi_ulong target_addrlen_addr)
3445 {
3446     socklen_t addrlen, ret_addrlen;
3447     void *addr;
3448     abi_long ret;
3449 
3450     if (get_user_u32(addrlen, target_addrlen_addr))
3451         return -TARGET_EFAULT;
3452 
3453     if ((int)addrlen < 0) {
3454         return -TARGET_EINVAL;
3455     }
3456 
3457     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3458         return -TARGET_EFAULT;
3459     }
3460 
3461     addr = alloca(addrlen);
3462 
3463     ret_addrlen = addrlen;
3464     ret = get_errno(getpeername(fd, addr, &ret_addrlen));
3465     if (!is_error(ret)) {
3466         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3467         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3468             ret = -TARGET_EFAULT;
3469         }
3470     }
3471     return ret;
3472 }
3473 
3474 /* do_getsockname() Must return target values and target errnos. */
3475 static abi_long do_getsockname(int fd, abi_ulong target_addr,
3476                                abi_ulong target_addrlen_addr)
3477 {
3478     socklen_t addrlen, ret_addrlen;
3479     void *addr;
3480     abi_long ret;
3481 
3482     if (get_user_u32(addrlen, target_addrlen_addr))
3483         return -TARGET_EFAULT;
3484 
3485     if ((int)addrlen < 0) {
3486         return -TARGET_EINVAL;
3487     }
3488 
3489     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3490         return -TARGET_EFAULT;
3491     }
3492 
3493     addr = alloca(addrlen);
3494 
3495     ret_addrlen = addrlen;
3496     ret = get_errno(getsockname(fd, addr, &ret_addrlen));
3497     if (!is_error(ret)) {
3498         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3499         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3500             ret = -TARGET_EFAULT;
3501         }
3502     }
3503     return ret;
3504 }
3505 
3506 /* do_socketpair() Must return target values and target errnos. */
3507 static abi_long do_socketpair(int domain, int type, int protocol,
3508                               abi_ulong target_tab_addr)
3509 {
3510     int tab[2];
3511     abi_long ret;
3512 
3513     target_to_host_sock_type(&type);
3514 
3515     ret = get_errno(socketpair(domain, type, protocol, tab));
3516     if (!is_error(ret)) {
3517         if (put_user_s32(tab[0], target_tab_addr)
3518             || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0])))
3519             ret = -TARGET_EFAULT;
3520     }
3521     return ret;
3522 }
3523 
3524 /* do_sendto() Must return target values and target errnos. */
3525 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags,
3526                           abi_ulong target_addr, socklen_t addrlen)
3527 {
3528     void *addr;
3529     void *host_msg;
3530     void *copy_msg = NULL;
3531     abi_long ret;
3532 
3533     if ((int)addrlen < 0) {
3534         return -TARGET_EINVAL;
3535     }
3536 
3537     host_msg = lock_user(VERIFY_READ, msg, len, 1);
3538     if (!host_msg)
3539         return -TARGET_EFAULT;
3540     if (fd_trans_target_to_host_data(fd)) {
3541         copy_msg = host_msg;
3542         host_msg = g_malloc(len);
3543         memcpy(host_msg, copy_msg, len);
3544         ret = fd_trans_target_to_host_data(fd)(host_msg, len);
3545         if (ret < 0) {
3546             goto fail;
3547         }
3548     }
3549     if (target_addr) {
3550         addr = alloca(addrlen+1);
3551         ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen);
3552         if (ret) {
3553             goto fail;
3554         }
3555         ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen));
3556     } else {
3557         ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0));
3558     }
3559 fail:
3560     if (copy_msg) {
3561         g_free(host_msg);
3562         host_msg = copy_msg;
3563     }
3564     unlock_user(host_msg, msg, 0);
3565     return ret;
3566 }
3567 
3568 /* do_recvfrom() Must return target values and target errnos. */
3569 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags,
3570                             abi_ulong target_addr,
3571                             abi_ulong target_addrlen)
3572 {
3573     socklen_t addrlen, ret_addrlen;
3574     void *addr;
3575     void *host_msg;
3576     abi_long ret;
3577 
3578     if (!msg) {
3579         host_msg = NULL;
3580     } else {
3581         host_msg = lock_user(VERIFY_WRITE, msg, len, 0);
3582         if (!host_msg) {
3583             return -TARGET_EFAULT;
3584         }
3585     }
3586     if (target_addr) {
3587         if (get_user_u32(addrlen, target_addrlen)) {
3588             ret = -TARGET_EFAULT;
3589             goto fail;
3590         }
3591         if ((int)addrlen < 0) {
3592             ret = -TARGET_EINVAL;
3593             goto fail;
3594         }
3595         addr = alloca(addrlen);
3596         ret_addrlen = addrlen;
3597         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags,
3598                                       addr, &ret_addrlen));
3599     } else {
3600         addr = NULL; /* To keep compiler quiet.  */
3601         addrlen = 0; /* To keep compiler quiet.  */
3602         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0));
3603     }
3604     if (!is_error(ret)) {
3605         if (fd_trans_host_to_target_data(fd)) {
3606             abi_long trans;
3607             trans = fd_trans_host_to_target_data(fd)(host_msg, MIN(ret, len));
3608             if (is_error(trans)) {
3609                 ret = trans;
3610                 goto fail;
3611             }
3612         }
3613         if (target_addr) {
3614             host_to_target_sockaddr(target_addr, addr,
3615                                     MIN(addrlen, ret_addrlen));
3616             if (put_user_u32(ret_addrlen, target_addrlen)) {
3617                 ret = -TARGET_EFAULT;
3618                 goto fail;
3619             }
3620         }
3621         unlock_user(host_msg, msg, len);
3622     } else {
3623 fail:
3624         unlock_user(host_msg, msg, 0);
3625     }
3626     return ret;
3627 }
3628 
3629 #ifdef TARGET_NR_socketcall
3630 /* do_socketcall() must return target values and target errnos. */
3631 static abi_long do_socketcall(int num, abi_ulong vptr)
3632 {
3633     static const unsigned nargs[] = { /* number of arguments per operation */
3634         [TARGET_SYS_SOCKET] = 3,      /* domain, type, protocol */
3635         [TARGET_SYS_BIND] = 3,        /* fd, addr, addrlen */
3636         [TARGET_SYS_CONNECT] = 3,     /* fd, addr, addrlen */
3637         [TARGET_SYS_LISTEN] = 2,      /* fd, backlog */
3638         [TARGET_SYS_ACCEPT] = 3,      /* fd, addr, addrlen */
3639         [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */
3640         [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */
3641         [TARGET_SYS_SOCKETPAIR] = 4,  /* domain, type, protocol, tab */
3642         [TARGET_SYS_SEND] = 4,        /* fd, msg, len, flags */
3643         [TARGET_SYS_RECV] = 4,        /* fd, msg, len, flags */
3644         [TARGET_SYS_SENDTO] = 6,      /* fd, msg, len, flags, addr, addrlen */
3645         [TARGET_SYS_RECVFROM] = 6,    /* fd, msg, len, flags, addr, addrlen */
3646         [TARGET_SYS_SHUTDOWN] = 2,    /* fd, how */
3647         [TARGET_SYS_SETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3648         [TARGET_SYS_GETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3649         [TARGET_SYS_SENDMSG] = 3,     /* fd, msg, flags */
3650         [TARGET_SYS_RECVMSG] = 3,     /* fd, msg, flags */
3651         [TARGET_SYS_ACCEPT4] = 4,     /* fd, addr, addrlen, flags */
3652         [TARGET_SYS_RECVMMSG] = 4,    /* fd, msgvec, vlen, flags */
3653         [TARGET_SYS_SENDMMSG] = 4,    /* fd, msgvec, vlen, flags */
3654     };
3655     abi_long a[6]; /* max 6 args */
3656     unsigned i;
3657 
3658     /* check the range of the first argument num */
3659     /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */
3660     if (num < 1 || num > TARGET_SYS_SENDMMSG) {
3661         return -TARGET_EINVAL;
3662     }
3663     /* ensure we have space for args */
3664     if (nargs[num] > ARRAY_SIZE(a)) {
3665         return -TARGET_EINVAL;
3666     }
3667     /* collect the arguments in a[] according to nargs[] */
3668     for (i = 0; i < nargs[num]; ++i) {
3669         if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) {
3670             return -TARGET_EFAULT;
3671         }
3672     }
3673     /* now when we have the args, invoke the appropriate underlying function */
3674     switch (num) {
3675     case TARGET_SYS_SOCKET: /* domain, type, protocol */
3676         return do_socket(a[0], a[1], a[2]);
3677     case TARGET_SYS_BIND: /* sockfd, addr, addrlen */
3678         return do_bind(a[0], a[1], a[2]);
3679     case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */
3680         return do_connect(a[0], a[1], a[2]);
3681     case TARGET_SYS_LISTEN: /* sockfd, backlog */
3682         return get_errno(listen(a[0], a[1]));
3683     case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */
3684         return do_accept4(a[0], a[1], a[2], 0);
3685     case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */
3686         return do_getsockname(a[0], a[1], a[2]);
3687     case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */
3688         return do_getpeername(a[0], a[1], a[2]);
3689     case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */
3690         return do_socketpair(a[0], a[1], a[2], a[3]);
3691     case TARGET_SYS_SEND: /* sockfd, msg, len, flags */
3692         return do_sendto(a[0], a[1], a[2], a[3], 0, 0);
3693     case TARGET_SYS_RECV: /* sockfd, msg, len, flags */
3694         return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0);
3695     case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */
3696         return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]);
3697     case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */
3698         return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]);
3699     case TARGET_SYS_SHUTDOWN: /* sockfd, how */
3700         return get_errno(shutdown(a[0], a[1]));
3701     case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3702         return do_setsockopt(a[0], a[1], a[2], a[3], a[4]);
3703     case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3704         return do_getsockopt(a[0], a[1], a[2], a[3], a[4]);
3705     case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */
3706         return do_sendrecvmsg(a[0], a[1], a[2], 1);
3707     case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */
3708         return do_sendrecvmsg(a[0], a[1], a[2], 0);
3709     case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */
3710         return do_accept4(a[0], a[1], a[2], a[3]);
3711     case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */
3712         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0);
3713     case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */
3714         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1);
3715     default:
3716         qemu_log_mask(LOG_UNIMP, "Unsupported socketcall: %d\n", num);
3717         return -TARGET_EINVAL;
3718     }
3719 }
3720 #endif
3721 
3722 #ifndef TARGET_SEMID64_DS
3723 /* asm-generic version of this struct */
3724 struct target_semid64_ds
3725 {
3726   struct target_ipc_perm sem_perm;
3727   abi_ulong sem_otime;
3728 #if TARGET_ABI_BITS == 32
3729   abi_ulong __unused1;
3730 #endif
3731   abi_ulong sem_ctime;
3732 #if TARGET_ABI_BITS == 32
3733   abi_ulong __unused2;
3734 #endif
3735   abi_ulong sem_nsems;
3736   abi_ulong __unused3;
3737   abi_ulong __unused4;
3738 };
3739 #endif
3740 
3741 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip,
3742                                                abi_ulong target_addr)
3743 {
3744     struct target_ipc_perm *target_ip;
3745     struct target_semid64_ds *target_sd;
3746 
3747     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3748         return -TARGET_EFAULT;
3749     target_ip = &(target_sd->sem_perm);
3750     host_ip->__key = tswap32(target_ip->__key);
3751     host_ip->uid = tswap32(target_ip->uid);
3752     host_ip->gid = tswap32(target_ip->gid);
3753     host_ip->cuid = tswap32(target_ip->cuid);
3754     host_ip->cgid = tswap32(target_ip->cgid);
3755 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3756     host_ip->mode = tswap32(target_ip->mode);
3757 #else
3758     host_ip->mode = tswap16(target_ip->mode);
3759 #endif
3760 #if defined(TARGET_PPC)
3761     host_ip->__seq = tswap32(target_ip->__seq);
3762 #else
3763     host_ip->__seq = tswap16(target_ip->__seq);
3764 #endif
3765     unlock_user_struct(target_sd, target_addr, 0);
3766     return 0;
3767 }
3768 
3769 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr,
3770                                                struct ipc_perm *host_ip)
3771 {
3772     struct target_ipc_perm *target_ip;
3773     struct target_semid64_ds *target_sd;
3774 
3775     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3776         return -TARGET_EFAULT;
3777     target_ip = &(target_sd->sem_perm);
3778     target_ip->__key = tswap32(host_ip->__key);
3779     target_ip->uid = tswap32(host_ip->uid);
3780     target_ip->gid = tswap32(host_ip->gid);
3781     target_ip->cuid = tswap32(host_ip->cuid);
3782     target_ip->cgid = tswap32(host_ip->cgid);
3783 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3784     target_ip->mode = tswap32(host_ip->mode);
3785 #else
3786     target_ip->mode = tswap16(host_ip->mode);
3787 #endif
3788 #if defined(TARGET_PPC)
3789     target_ip->__seq = tswap32(host_ip->__seq);
3790 #else
3791     target_ip->__seq = tswap16(host_ip->__seq);
3792 #endif
3793     unlock_user_struct(target_sd, target_addr, 1);
3794     return 0;
3795 }
3796 
3797 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd,
3798                                                abi_ulong target_addr)
3799 {
3800     struct target_semid64_ds *target_sd;
3801 
3802     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3803         return -TARGET_EFAULT;
3804     if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr))
3805         return -TARGET_EFAULT;
3806     host_sd->sem_nsems = tswapal(target_sd->sem_nsems);
3807     host_sd->sem_otime = tswapal(target_sd->sem_otime);
3808     host_sd->sem_ctime = tswapal(target_sd->sem_ctime);
3809     unlock_user_struct(target_sd, target_addr, 0);
3810     return 0;
3811 }
3812 
3813 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr,
3814                                                struct semid_ds *host_sd)
3815 {
3816     struct target_semid64_ds *target_sd;
3817 
3818     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3819         return -TARGET_EFAULT;
3820     if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm)))
3821         return -TARGET_EFAULT;
3822     target_sd->sem_nsems = tswapal(host_sd->sem_nsems);
3823     target_sd->sem_otime = tswapal(host_sd->sem_otime);
3824     target_sd->sem_ctime = tswapal(host_sd->sem_ctime);
3825     unlock_user_struct(target_sd, target_addr, 1);
3826     return 0;
3827 }
3828 
3829 struct target_seminfo {
3830     int semmap;
3831     int semmni;
3832     int semmns;
3833     int semmnu;
3834     int semmsl;
3835     int semopm;
3836     int semume;
3837     int semusz;
3838     int semvmx;
3839     int semaem;
3840 };
3841 
3842 static inline abi_long host_to_target_seminfo(abi_ulong target_addr,
3843                                               struct seminfo *host_seminfo)
3844 {
3845     struct target_seminfo *target_seminfo;
3846     if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0))
3847         return -TARGET_EFAULT;
3848     __put_user(host_seminfo->semmap, &target_seminfo->semmap);
3849     __put_user(host_seminfo->semmni, &target_seminfo->semmni);
3850     __put_user(host_seminfo->semmns, &target_seminfo->semmns);
3851     __put_user(host_seminfo->semmnu, &target_seminfo->semmnu);
3852     __put_user(host_seminfo->semmsl, &target_seminfo->semmsl);
3853     __put_user(host_seminfo->semopm, &target_seminfo->semopm);
3854     __put_user(host_seminfo->semume, &target_seminfo->semume);
3855     __put_user(host_seminfo->semusz, &target_seminfo->semusz);
3856     __put_user(host_seminfo->semvmx, &target_seminfo->semvmx);
3857     __put_user(host_seminfo->semaem, &target_seminfo->semaem);
3858     unlock_user_struct(target_seminfo, target_addr, 1);
3859     return 0;
3860 }
3861 
3862 union semun {
3863 	int val;
3864 	struct semid_ds *buf;
3865 	unsigned short *array;
3866 	struct seminfo *__buf;
3867 };
3868 
3869 union target_semun {
3870 	int val;
3871 	abi_ulong buf;
3872 	abi_ulong array;
3873 	abi_ulong __buf;
3874 };
3875 
3876 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array,
3877                                                abi_ulong target_addr)
3878 {
3879     int nsems;
3880     unsigned short *array;
3881     union semun semun;
3882     struct semid_ds semid_ds;
3883     int i, ret;
3884 
3885     semun.buf = &semid_ds;
3886 
3887     ret = semctl(semid, 0, IPC_STAT, semun);
3888     if (ret == -1)
3889         return get_errno(ret);
3890 
3891     nsems = semid_ds.sem_nsems;
3892 
3893     *host_array = g_try_new(unsigned short, nsems);
3894     if (!*host_array) {
3895         return -TARGET_ENOMEM;
3896     }
3897     array = lock_user(VERIFY_READ, target_addr,
3898                       nsems*sizeof(unsigned short), 1);
3899     if (!array) {
3900         g_free(*host_array);
3901         return -TARGET_EFAULT;
3902     }
3903 
3904     for(i=0; i<nsems; i++) {
3905         __get_user((*host_array)[i], &array[i]);
3906     }
3907     unlock_user(array, target_addr, 0);
3908 
3909     return 0;
3910 }
3911 
3912 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr,
3913                                                unsigned short **host_array)
3914 {
3915     int nsems;
3916     unsigned short *array;
3917     union semun semun;
3918     struct semid_ds semid_ds;
3919     int i, ret;
3920 
3921     semun.buf = &semid_ds;
3922 
3923     ret = semctl(semid, 0, IPC_STAT, semun);
3924     if (ret == -1)
3925         return get_errno(ret);
3926 
3927     nsems = semid_ds.sem_nsems;
3928 
3929     array = lock_user(VERIFY_WRITE, target_addr,
3930                       nsems*sizeof(unsigned short), 0);
3931     if (!array)
3932         return -TARGET_EFAULT;
3933 
3934     for(i=0; i<nsems; i++) {
3935         __put_user((*host_array)[i], &array[i]);
3936     }
3937     g_free(*host_array);
3938     unlock_user(array, target_addr, 1);
3939 
3940     return 0;
3941 }
3942 
3943 static inline abi_long do_semctl(int semid, int semnum, int cmd,
3944                                  abi_ulong target_arg)
3945 {
3946     union target_semun target_su = { .buf = target_arg };
3947     union semun arg;
3948     struct semid_ds dsarg;
3949     unsigned short *array = NULL;
3950     struct seminfo seminfo;
3951     abi_long ret = -TARGET_EINVAL;
3952     abi_long err;
3953     cmd &= 0xff;
3954 
3955     switch( cmd ) {
3956 	case GETVAL:
3957 	case SETVAL:
3958             /* In 64 bit cross-endian situations, we will erroneously pick up
3959              * the wrong half of the union for the "val" element.  To rectify
3960              * this, the entire 8-byte structure is byteswapped, followed by
3961 	     * a swap of the 4 byte val field. In other cases, the data is
3962 	     * already in proper host byte order. */
3963 	    if (sizeof(target_su.val) != (sizeof(target_su.buf))) {
3964 		target_su.buf = tswapal(target_su.buf);
3965 		arg.val = tswap32(target_su.val);
3966 	    } else {
3967 		arg.val = target_su.val;
3968 	    }
3969             ret = get_errno(semctl(semid, semnum, cmd, arg));
3970             break;
3971 	case GETALL:
3972 	case SETALL:
3973             err = target_to_host_semarray(semid, &array, target_su.array);
3974             if (err)
3975                 return err;
3976             arg.array = array;
3977             ret = get_errno(semctl(semid, semnum, cmd, arg));
3978             err = host_to_target_semarray(semid, target_su.array, &array);
3979             if (err)
3980                 return err;
3981             break;
3982 	case IPC_STAT:
3983 	case IPC_SET:
3984 	case SEM_STAT:
3985             err = target_to_host_semid_ds(&dsarg, target_su.buf);
3986             if (err)
3987                 return err;
3988             arg.buf = &dsarg;
3989             ret = get_errno(semctl(semid, semnum, cmd, arg));
3990             err = host_to_target_semid_ds(target_su.buf, &dsarg);
3991             if (err)
3992                 return err;
3993             break;
3994 	case IPC_INFO:
3995 	case SEM_INFO:
3996             arg.__buf = &seminfo;
3997             ret = get_errno(semctl(semid, semnum, cmd, arg));
3998             err = host_to_target_seminfo(target_su.__buf, &seminfo);
3999             if (err)
4000                 return err;
4001             break;
4002 	case IPC_RMID:
4003 	case GETPID:
4004 	case GETNCNT:
4005 	case GETZCNT:
4006             ret = get_errno(semctl(semid, semnum, cmd, NULL));
4007             break;
4008     }
4009 
4010     return ret;
4011 }
4012 
4013 struct target_sembuf {
4014     unsigned short sem_num;
4015     short sem_op;
4016     short sem_flg;
4017 };
4018 
4019 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf,
4020                                              abi_ulong target_addr,
4021                                              unsigned nsops)
4022 {
4023     struct target_sembuf *target_sembuf;
4024     int i;
4025 
4026     target_sembuf = lock_user(VERIFY_READ, target_addr,
4027                               nsops*sizeof(struct target_sembuf), 1);
4028     if (!target_sembuf)
4029         return -TARGET_EFAULT;
4030 
4031     for(i=0; i<nsops; i++) {
4032         __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num);
4033         __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op);
4034         __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg);
4035     }
4036 
4037     unlock_user(target_sembuf, target_addr, 0);
4038 
4039     return 0;
4040 }
4041 
4042 #if defined(TARGET_NR_ipc) || defined(TARGET_NR_semop) || \
4043     defined(TARGET_NR_semtimedop) || defined(TARGET_NR_semtimedop_time64)
4044 
4045 /*
4046  * This macro is required to handle the s390 variants, which passes the
4047  * arguments in a different order than default.
4048  */
4049 #ifdef __s390x__
4050 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4051   (__nsops), (__timeout), (__sops)
4052 #else
4053 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4054   (__nsops), 0, (__sops), (__timeout)
4055 #endif
4056 
4057 static inline abi_long do_semtimedop(int semid,
4058                                      abi_long ptr,
4059                                      unsigned nsops,
4060                                      abi_long timeout, bool time64)
4061 {
4062     struct sembuf *sops;
4063     struct timespec ts, *pts = NULL;
4064     abi_long ret;
4065 
4066     if (timeout) {
4067         pts = &ts;
4068         if (time64) {
4069             if (target_to_host_timespec64(pts, timeout)) {
4070                 return -TARGET_EFAULT;
4071             }
4072         } else {
4073             if (target_to_host_timespec(pts, timeout)) {
4074                 return -TARGET_EFAULT;
4075             }
4076         }
4077     }
4078 
4079     if (nsops > TARGET_SEMOPM) {
4080         return -TARGET_E2BIG;
4081     }
4082 
4083     sops = g_new(struct sembuf, nsops);
4084 
4085     if (target_to_host_sembuf(sops, ptr, nsops)) {
4086         g_free(sops);
4087         return -TARGET_EFAULT;
4088     }
4089 
4090     ret = -TARGET_ENOSYS;
4091 #ifdef __NR_semtimedop
4092     ret = get_errno(safe_semtimedop(semid, sops, nsops, pts));
4093 #endif
4094 #ifdef __NR_ipc
4095     if (ret == -TARGET_ENOSYS) {
4096         ret = get_errno(safe_ipc(IPCOP_semtimedop, semid,
4097                                  SEMTIMEDOP_IPC_ARGS(nsops, sops, (long)pts)));
4098     }
4099 #endif
4100     g_free(sops);
4101     return ret;
4102 }
4103 #endif
4104 
4105 struct target_msqid_ds
4106 {
4107     struct target_ipc_perm msg_perm;
4108     abi_ulong msg_stime;
4109 #if TARGET_ABI_BITS == 32
4110     abi_ulong __unused1;
4111 #endif
4112     abi_ulong msg_rtime;
4113 #if TARGET_ABI_BITS == 32
4114     abi_ulong __unused2;
4115 #endif
4116     abi_ulong msg_ctime;
4117 #if TARGET_ABI_BITS == 32
4118     abi_ulong __unused3;
4119 #endif
4120     abi_ulong __msg_cbytes;
4121     abi_ulong msg_qnum;
4122     abi_ulong msg_qbytes;
4123     abi_ulong msg_lspid;
4124     abi_ulong msg_lrpid;
4125     abi_ulong __unused4;
4126     abi_ulong __unused5;
4127 };
4128 
4129 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md,
4130                                                abi_ulong target_addr)
4131 {
4132     struct target_msqid_ds *target_md;
4133 
4134     if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1))
4135         return -TARGET_EFAULT;
4136     if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr))
4137         return -TARGET_EFAULT;
4138     host_md->msg_stime = tswapal(target_md->msg_stime);
4139     host_md->msg_rtime = tswapal(target_md->msg_rtime);
4140     host_md->msg_ctime = tswapal(target_md->msg_ctime);
4141     host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes);
4142     host_md->msg_qnum = tswapal(target_md->msg_qnum);
4143     host_md->msg_qbytes = tswapal(target_md->msg_qbytes);
4144     host_md->msg_lspid = tswapal(target_md->msg_lspid);
4145     host_md->msg_lrpid = tswapal(target_md->msg_lrpid);
4146     unlock_user_struct(target_md, target_addr, 0);
4147     return 0;
4148 }
4149 
4150 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr,
4151                                                struct msqid_ds *host_md)
4152 {
4153     struct target_msqid_ds *target_md;
4154 
4155     if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0))
4156         return -TARGET_EFAULT;
4157     if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm)))
4158         return -TARGET_EFAULT;
4159     target_md->msg_stime = tswapal(host_md->msg_stime);
4160     target_md->msg_rtime = tswapal(host_md->msg_rtime);
4161     target_md->msg_ctime = tswapal(host_md->msg_ctime);
4162     target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes);
4163     target_md->msg_qnum = tswapal(host_md->msg_qnum);
4164     target_md->msg_qbytes = tswapal(host_md->msg_qbytes);
4165     target_md->msg_lspid = tswapal(host_md->msg_lspid);
4166     target_md->msg_lrpid = tswapal(host_md->msg_lrpid);
4167     unlock_user_struct(target_md, target_addr, 1);
4168     return 0;
4169 }
4170 
4171 struct target_msginfo {
4172     int msgpool;
4173     int msgmap;
4174     int msgmax;
4175     int msgmnb;
4176     int msgmni;
4177     int msgssz;
4178     int msgtql;
4179     unsigned short int msgseg;
4180 };
4181 
4182 static inline abi_long host_to_target_msginfo(abi_ulong target_addr,
4183                                               struct msginfo *host_msginfo)
4184 {
4185     struct target_msginfo *target_msginfo;
4186     if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0))
4187         return -TARGET_EFAULT;
4188     __put_user(host_msginfo->msgpool, &target_msginfo->msgpool);
4189     __put_user(host_msginfo->msgmap, &target_msginfo->msgmap);
4190     __put_user(host_msginfo->msgmax, &target_msginfo->msgmax);
4191     __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb);
4192     __put_user(host_msginfo->msgmni, &target_msginfo->msgmni);
4193     __put_user(host_msginfo->msgssz, &target_msginfo->msgssz);
4194     __put_user(host_msginfo->msgtql, &target_msginfo->msgtql);
4195     __put_user(host_msginfo->msgseg, &target_msginfo->msgseg);
4196     unlock_user_struct(target_msginfo, target_addr, 1);
4197     return 0;
4198 }
4199 
4200 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr)
4201 {
4202     struct msqid_ds dsarg;
4203     struct msginfo msginfo;
4204     abi_long ret = -TARGET_EINVAL;
4205 
4206     cmd &= 0xff;
4207 
4208     switch (cmd) {
4209     case IPC_STAT:
4210     case IPC_SET:
4211     case MSG_STAT:
4212         if (target_to_host_msqid_ds(&dsarg,ptr))
4213             return -TARGET_EFAULT;
4214         ret = get_errno(msgctl(msgid, cmd, &dsarg));
4215         if (host_to_target_msqid_ds(ptr,&dsarg))
4216             return -TARGET_EFAULT;
4217         break;
4218     case IPC_RMID:
4219         ret = get_errno(msgctl(msgid, cmd, NULL));
4220         break;
4221     case IPC_INFO:
4222     case MSG_INFO:
4223         ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo));
4224         if (host_to_target_msginfo(ptr, &msginfo))
4225             return -TARGET_EFAULT;
4226         break;
4227     }
4228 
4229     return ret;
4230 }
4231 
4232 struct target_msgbuf {
4233     abi_long mtype;
4234     char	mtext[1];
4235 };
4236 
4237 static inline abi_long do_msgsnd(int msqid, abi_long msgp,
4238                                  ssize_t msgsz, int msgflg)
4239 {
4240     struct target_msgbuf *target_mb;
4241     struct msgbuf *host_mb;
4242     abi_long ret = 0;
4243 
4244     if (msgsz < 0) {
4245         return -TARGET_EINVAL;
4246     }
4247 
4248     if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0))
4249         return -TARGET_EFAULT;
4250     host_mb = g_try_malloc(msgsz + sizeof(long));
4251     if (!host_mb) {
4252         unlock_user_struct(target_mb, msgp, 0);
4253         return -TARGET_ENOMEM;
4254     }
4255     host_mb->mtype = (abi_long) tswapal(target_mb->mtype);
4256     memcpy(host_mb->mtext, target_mb->mtext, msgsz);
4257     ret = -TARGET_ENOSYS;
4258 #ifdef __NR_msgsnd
4259     ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg));
4260 #endif
4261 #ifdef __NR_ipc
4262     if (ret == -TARGET_ENOSYS) {
4263 #ifdef __s390x__
4264         ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4265                                  host_mb));
4266 #else
4267         ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4268                                  host_mb, 0));
4269 #endif
4270     }
4271 #endif
4272     g_free(host_mb);
4273     unlock_user_struct(target_mb, msgp, 0);
4274 
4275     return ret;
4276 }
4277 
4278 #ifdef __NR_ipc
4279 #if defined(__sparc__)
4280 /* SPARC for msgrcv it does not use the kludge on final 2 arguments.  */
4281 #define MSGRCV_ARGS(__msgp, __msgtyp) __msgp, __msgtyp
4282 #elif defined(__s390x__)
4283 /* The s390 sys_ipc variant has only five parameters.  */
4284 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4285     ((long int[]){(long int)__msgp, __msgtyp})
4286 #else
4287 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4288     ((long int[]){(long int)__msgp, __msgtyp}), 0
4289 #endif
4290 #endif
4291 
4292 static inline abi_long do_msgrcv(int msqid, abi_long msgp,
4293                                  ssize_t msgsz, abi_long msgtyp,
4294                                  int msgflg)
4295 {
4296     struct target_msgbuf *target_mb;
4297     char *target_mtext;
4298     struct msgbuf *host_mb;
4299     abi_long ret = 0;
4300 
4301     if (msgsz < 0) {
4302         return -TARGET_EINVAL;
4303     }
4304 
4305     if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0))
4306         return -TARGET_EFAULT;
4307 
4308     host_mb = g_try_malloc(msgsz + sizeof(long));
4309     if (!host_mb) {
4310         ret = -TARGET_ENOMEM;
4311         goto end;
4312     }
4313     ret = -TARGET_ENOSYS;
4314 #ifdef __NR_msgrcv
4315     ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg));
4316 #endif
4317 #ifdef __NR_ipc
4318     if (ret == -TARGET_ENOSYS) {
4319         ret = get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv), msqid, msgsz,
4320                         msgflg, MSGRCV_ARGS(host_mb, msgtyp)));
4321     }
4322 #endif
4323 
4324     if (ret > 0) {
4325         abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong);
4326         target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0);
4327         if (!target_mtext) {
4328             ret = -TARGET_EFAULT;
4329             goto end;
4330         }
4331         memcpy(target_mb->mtext, host_mb->mtext, ret);
4332         unlock_user(target_mtext, target_mtext_addr, ret);
4333     }
4334 
4335     target_mb->mtype = tswapal(host_mb->mtype);
4336 
4337 end:
4338     if (target_mb)
4339         unlock_user_struct(target_mb, msgp, 1);
4340     g_free(host_mb);
4341     return ret;
4342 }
4343 
4344 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd,
4345                                                abi_ulong target_addr)
4346 {
4347     struct target_shmid_ds *target_sd;
4348 
4349     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
4350         return -TARGET_EFAULT;
4351     if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr))
4352         return -TARGET_EFAULT;
4353     __get_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4354     __get_user(host_sd->shm_atime, &target_sd->shm_atime);
4355     __get_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4356     __get_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4357     __get_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4358     __get_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4359     __get_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4360     unlock_user_struct(target_sd, target_addr, 0);
4361     return 0;
4362 }
4363 
4364 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr,
4365                                                struct shmid_ds *host_sd)
4366 {
4367     struct target_shmid_ds *target_sd;
4368 
4369     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
4370         return -TARGET_EFAULT;
4371     if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm)))
4372         return -TARGET_EFAULT;
4373     __put_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4374     __put_user(host_sd->shm_atime, &target_sd->shm_atime);
4375     __put_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4376     __put_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4377     __put_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4378     __put_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4379     __put_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4380     unlock_user_struct(target_sd, target_addr, 1);
4381     return 0;
4382 }
4383 
4384 struct  target_shminfo {
4385     abi_ulong shmmax;
4386     abi_ulong shmmin;
4387     abi_ulong shmmni;
4388     abi_ulong shmseg;
4389     abi_ulong shmall;
4390 };
4391 
4392 static inline abi_long host_to_target_shminfo(abi_ulong target_addr,
4393                                               struct shminfo *host_shminfo)
4394 {
4395     struct target_shminfo *target_shminfo;
4396     if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0))
4397         return -TARGET_EFAULT;
4398     __put_user(host_shminfo->shmmax, &target_shminfo->shmmax);
4399     __put_user(host_shminfo->shmmin, &target_shminfo->shmmin);
4400     __put_user(host_shminfo->shmmni, &target_shminfo->shmmni);
4401     __put_user(host_shminfo->shmseg, &target_shminfo->shmseg);
4402     __put_user(host_shminfo->shmall, &target_shminfo->shmall);
4403     unlock_user_struct(target_shminfo, target_addr, 1);
4404     return 0;
4405 }
4406 
4407 struct target_shm_info {
4408     int used_ids;
4409     abi_ulong shm_tot;
4410     abi_ulong shm_rss;
4411     abi_ulong shm_swp;
4412     abi_ulong swap_attempts;
4413     abi_ulong swap_successes;
4414 };
4415 
4416 static inline abi_long host_to_target_shm_info(abi_ulong target_addr,
4417                                                struct shm_info *host_shm_info)
4418 {
4419     struct target_shm_info *target_shm_info;
4420     if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0))
4421         return -TARGET_EFAULT;
4422     __put_user(host_shm_info->used_ids, &target_shm_info->used_ids);
4423     __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot);
4424     __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss);
4425     __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp);
4426     __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts);
4427     __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes);
4428     unlock_user_struct(target_shm_info, target_addr, 1);
4429     return 0;
4430 }
4431 
4432 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf)
4433 {
4434     struct shmid_ds dsarg;
4435     struct shminfo shminfo;
4436     struct shm_info shm_info;
4437     abi_long ret = -TARGET_EINVAL;
4438 
4439     cmd &= 0xff;
4440 
4441     switch(cmd) {
4442     case IPC_STAT:
4443     case IPC_SET:
4444     case SHM_STAT:
4445         if (target_to_host_shmid_ds(&dsarg, buf))
4446             return -TARGET_EFAULT;
4447         ret = get_errno(shmctl(shmid, cmd, &dsarg));
4448         if (host_to_target_shmid_ds(buf, &dsarg))
4449             return -TARGET_EFAULT;
4450         break;
4451     case IPC_INFO:
4452         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo));
4453         if (host_to_target_shminfo(buf, &shminfo))
4454             return -TARGET_EFAULT;
4455         break;
4456     case SHM_INFO:
4457         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info));
4458         if (host_to_target_shm_info(buf, &shm_info))
4459             return -TARGET_EFAULT;
4460         break;
4461     case IPC_RMID:
4462     case SHM_LOCK:
4463     case SHM_UNLOCK:
4464         ret = get_errno(shmctl(shmid, cmd, NULL));
4465         break;
4466     }
4467 
4468     return ret;
4469 }
4470 
4471 #ifdef TARGET_NR_ipc
4472 /* ??? This only works with linear mappings.  */
4473 /* do_ipc() must return target values and target errnos. */
4474 static abi_long do_ipc(CPUArchState *cpu_env,
4475                        unsigned int call, abi_long first,
4476                        abi_long second, abi_long third,
4477                        abi_long ptr, abi_long fifth)
4478 {
4479     int version;
4480     abi_long ret = 0;
4481 
4482     version = call >> 16;
4483     call &= 0xffff;
4484 
4485     switch (call) {
4486     case IPCOP_semop:
4487         ret = do_semtimedop(first, ptr, second, 0, false);
4488         break;
4489     case IPCOP_semtimedop:
4490     /*
4491      * The s390 sys_ipc variant has only five parameters instead of six
4492      * (as for default variant) and the only difference is the handling of
4493      * SEMTIMEDOP where on s390 the third parameter is used as a pointer
4494      * to a struct timespec where the generic variant uses fifth parameter.
4495      */
4496 #if defined(TARGET_S390X)
4497         ret = do_semtimedop(first, ptr, second, third, TARGET_ABI_BITS == 64);
4498 #else
4499         ret = do_semtimedop(first, ptr, second, fifth, TARGET_ABI_BITS == 64);
4500 #endif
4501         break;
4502 
4503     case IPCOP_semget:
4504         ret = get_errno(semget(first, second, third));
4505         break;
4506 
4507     case IPCOP_semctl: {
4508         /* The semun argument to semctl is passed by value, so dereference the
4509          * ptr argument. */
4510         abi_ulong atptr;
4511         get_user_ual(atptr, ptr);
4512         ret = do_semctl(first, second, third, atptr);
4513         break;
4514     }
4515 
4516     case IPCOP_msgget:
4517         ret = get_errno(msgget(first, second));
4518         break;
4519 
4520     case IPCOP_msgsnd:
4521         ret = do_msgsnd(first, ptr, second, third);
4522         break;
4523 
4524     case IPCOP_msgctl:
4525         ret = do_msgctl(first, second, ptr);
4526         break;
4527 
4528     case IPCOP_msgrcv:
4529         switch (version) {
4530         case 0:
4531             {
4532                 struct target_ipc_kludge {
4533                     abi_long msgp;
4534                     abi_long msgtyp;
4535                 } *tmp;
4536 
4537                 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) {
4538                     ret = -TARGET_EFAULT;
4539                     break;
4540                 }
4541 
4542                 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third);
4543 
4544                 unlock_user_struct(tmp, ptr, 0);
4545                 break;
4546             }
4547         default:
4548             ret = do_msgrcv(first, ptr, second, fifth, third);
4549         }
4550         break;
4551 
4552     case IPCOP_shmat:
4553         switch (version) {
4554         default:
4555         {
4556             abi_ulong raddr;
4557             raddr = target_shmat(cpu_env, first, ptr, second);
4558             if (is_error(raddr))
4559                 return get_errno(raddr);
4560             if (put_user_ual(raddr, third))
4561                 return -TARGET_EFAULT;
4562             break;
4563         }
4564         case 1:
4565             ret = -TARGET_EINVAL;
4566             break;
4567         }
4568 	break;
4569     case IPCOP_shmdt:
4570         ret = target_shmdt(ptr);
4571 	break;
4572 
4573     case IPCOP_shmget:
4574 	/* IPC_* flag values are the same on all linux platforms */
4575 	ret = get_errno(shmget(first, second, third));
4576 	break;
4577 
4578 	/* IPC_* and SHM_* command values are the same on all linux platforms */
4579     case IPCOP_shmctl:
4580         ret = do_shmctl(first, second, ptr);
4581         break;
4582     default:
4583         qemu_log_mask(LOG_UNIMP, "Unsupported ipc call: %d (version %d)\n",
4584                       call, version);
4585 	ret = -TARGET_ENOSYS;
4586 	break;
4587     }
4588     return ret;
4589 }
4590 #endif
4591 
4592 /* kernel structure types definitions */
4593 
4594 #define STRUCT(name, ...) STRUCT_ ## name,
4595 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
4596 enum {
4597 #include "syscall_types.h"
4598 STRUCT_MAX
4599 };
4600 #undef STRUCT
4601 #undef STRUCT_SPECIAL
4602 
4603 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = {  __VA_ARGS__, TYPE_NULL };
4604 #define STRUCT_SPECIAL(name)
4605 #include "syscall_types.h"
4606 #undef STRUCT
4607 #undef STRUCT_SPECIAL
4608 
4609 #define MAX_STRUCT_SIZE 4096
4610 
4611 #ifdef CONFIG_FIEMAP
4612 /* So fiemap access checks don't overflow on 32 bit systems.
4613  * This is very slightly smaller than the limit imposed by
4614  * the underlying kernel.
4615  */
4616 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap))  \
4617                             / sizeof(struct fiemap_extent))
4618 
4619 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp,
4620                                        int fd, int cmd, abi_long arg)
4621 {
4622     /* The parameter for this ioctl is a struct fiemap followed
4623      * by an array of struct fiemap_extent whose size is set
4624      * in fiemap->fm_extent_count. The array is filled in by the
4625      * ioctl.
4626      */
4627     int target_size_in, target_size_out;
4628     struct fiemap *fm;
4629     const argtype *arg_type = ie->arg_type;
4630     const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) };
4631     void *argptr, *p;
4632     abi_long ret;
4633     int i, extent_size = thunk_type_size(extent_arg_type, 0);
4634     uint32_t outbufsz;
4635     int free_fm = 0;
4636 
4637     assert(arg_type[0] == TYPE_PTR);
4638     assert(ie->access == IOC_RW);
4639     arg_type++;
4640     target_size_in = thunk_type_size(arg_type, 0);
4641     argptr = lock_user(VERIFY_READ, arg, target_size_in, 1);
4642     if (!argptr) {
4643         return -TARGET_EFAULT;
4644     }
4645     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4646     unlock_user(argptr, arg, 0);
4647     fm = (struct fiemap *)buf_temp;
4648     if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) {
4649         return -TARGET_EINVAL;
4650     }
4651 
4652     outbufsz = sizeof (*fm) +
4653         (sizeof(struct fiemap_extent) * fm->fm_extent_count);
4654 
4655     if (outbufsz > MAX_STRUCT_SIZE) {
4656         /* We can't fit all the extents into the fixed size buffer.
4657          * Allocate one that is large enough and use it instead.
4658          */
4659         fm = g_try_malloc(outbufsz);
4660         if (!fm) {
4661             return -TARGET_ENOMEM;
4662         }
4663         memcpy(fm, buf_temp, sizeof(struct fiemap));
4664         free_fm = 1;
4665     }
4666     ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm));
4667     if (!is_error(ret)) {
4668         target_size_out = target_size_in;
4669         /* An extent_count of 0 means we were only counting the extents
4670          * so there are no structs to copy
4671          */
4672         if (fm->fm_extent_count != 0) {
4673             target_size_out += fm->fm_mapped_extents * extent_size;
4674         }
4675         argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0);
4676         if (!argptr) {
4677             ret = -TARGET_EFAULT;
4678         } else {
4679             /* Convert the struct fiemap */
4680             thunk_convert(argptr, fm, arg_type, THUNK_TARGET);
4681             if (fm->fm_extent_count != 0) {
4682                 p = argptr + target_size_in;
4683                 /* ...and then all the struct fiemap_extents */
4684                 for (i = 0; i < fm->fm_mapped_extents; i++) {
4685                     thunk_convert(p, &fm->fm_extents[i], extent_arg_type,
4686                                   THUNK_TARGET);
4687                     p += extent_size;
4688                 }
4689             }
4690             unlock_user(argptr, arg, target_size_out);
4691         }
4692     }
4693     if (free_fm) {
4694         g_free(fm);
4695     }
4696     return ret;
4697 }
4698 #endif
4699 
4700 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp,
4701                                 int fd, int cmd, abi_long arg)
4702 {
4703     const argtype *arg_type = ie->arg_type;
4704     int target_size;
4705     void *argptr;
4706     int ret;
4707     struct ifconf *host_ifconf;
4708     uint32_t outbufsz;
4709     const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) };
4710     const argtype ifreq_max_type[] = { MK_STRUCT(STRUCT_ifmap_ifreq) };
4711     int target_ifreq_size;
4712     int nb_ifreq;
4713     int free_buf = 0;
4714     int i;
4715     int target_ifc_len;
4716     abi_long target_ifc_buf;
4717     int host_ifc_len;
4718     char *host_ifc_buf;
4719 
4720     assert(arg_type[0] == TYPE_PTR);
4721     assert(ie->access == IOC_RW);
4722 
4723     arg_type++;
4724     target_size = thunk_type_size(arg_type, 0);
4725 
4726     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4727     if (!argptr)
4728         return -TARGET_EFAULT;
4729     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4730     unlock_user(argptr, arg, 0);
4731 
4732     host_ifconf = (struct ifconf *)(unsigned long)buf_temp;
4733     target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf;
4734     target_ifreq_size = thunk_type_size(ifreq_max_type, 0);
4735 
4736     if (target_ifc_buf != 0) {
4737         target_ifc_len = host_ifconf->ifc_len;
4738         nb_ifreq = target_ifc_len / target_ifreq_size;
4739         host_ifc_len = nb_ifreq * sizeof(struct ifreq);
4740 
4741         outbufsz = sizeof(*host_ifconf) + host_ifc_len;
4742         if (outbufsz > MAX_STRUCT_SIZE) {
4743             /*
4744              * We can't fit all the extents into the fixed size buffer.
4745              * Allocate one that is large enough and use it instead.
4746              */
4747             host_ifconf = g_try_malloc(outbufsz);
4748             if (!host_ifconf) {
4749                 return -TARGET_ENOMEM;
4750             }
4751             memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf));
4752             free_buf = 1;
4753         }
4754         host_ifc_buf = (char *)host_ifconf + sizeof(*host_ifconf);
4755 
4756         host_ifconf->ifc_len = host_ifc_len;
4757     } else {
4758       host_ifc_buf = NULL;
4759     }
4760     host_ifconf->ifc_buf = host_ifc_buf;
4761 
4762     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf));
4763     if (!is_error(ret)) {
4764 	/* convert host ifc_len to target ifc_len */
4765 
4766         nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq);
4767         target_ifc_len = nb_ifreq * target_ifreq_size;
4768         host_ifconf->ifc_len = target_ifc_len;
4769 
4770 	/* restore target ifc_buf */
4771 
4772         host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf;
4773 
4774 	/* copy struct ifconf to target user */
4775 
4776         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4777         if (!argptr)
4778             return -TARGET_EFAULT;
4779         thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET);
4780         unlock_user(argptr, arg, target_size);
4781 
4782         if (target_ifc_buf != 0) {
4783             /* copy ifreq[] to target user */
4784             argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0);
4785             for (i = 0; i < nb_ifreq ; i++) {
4786                 thunk_convert(argptr + i * target_ifreq_size,
4787                               host_ifc_buf + i * sizeof(struct ifreq),
4788                               ifreq_arg_type, THUNK_TARGET);
4789             }
4790             unlock_user(argptr, target_ifc_buf, target_ifc_len);
4791         }
4792     }
4793 
4794     if (free_buf) {
4795         g_free(host_ifconf);
4796     }
4797 
4798     return ret;
4799 }
4800 
4801 #if defined(CONFIG_USBFS)
4802 #if HOST_LONG_BITS > 64
4803 #error USBDEVFS thunks do not support >64 bit hosts yet.
4804 #endif
4805 struct live_urb {
4806     uint64_t target_urb_adr;
4807     uint64_t target_buf_adr;
4808     char *target_buf_ptr;
4809     struct usbdevfs_urb host_urb;
4810 };
4811 
4812 static GHashTable *usbdevfs_urb_hashtable(void)
4813 {
4814     static GHashTable *urb_hashtable;
4815 
4816     if (!urb_hashtable) {
4817         urb_hashtable = g_hash_table_new(g_int64_hash, g_int64_equal);
4818     }
4819     return urb_hashtable;
4820 }
4821 
4822 static void urb_hashtable_insert(struct live_urb *urb)
4823 {
4824     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4825     g_hash_table_insert(urb_hashtable, urb, urb);
4826 }
4827 
4828 static struct live_urb *urb_hashtable_lookup(uint64_t target_urb_adr)
4829 {
4830     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4831     return g_hash_table_lookup(urb_hashtable, &target_urb_adr);
4832 }
4833 
4834 static void urb_hashtable_remove(struct live_urb *urb)
4835 {
4836     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4837     g_hash_table_remove(urb_hashtable, urb);
4838 }
4839 
4840 static abi_long
4841 do_ioctl_usbdevfs_reapurb(const IOCTLEntry *ie, uint8_t *buf_temp,
4842                           int fd, int cmd, abi_long arg)
4843 {
4844     const argtype usbfsurb_arg_type[] = { MK_STRUCT(STRUCT_usbdevfs_urb) };
4845     const argtype ptrvoid_arg_type[] = { TYPE_PTRVOID, 0, 0 };
4846     struct live_urb *lurb;
4847     void *argptr;
4848     uint64_t hurb;
4849     int target_size;
4850     uintptr_t target_urb_adr;
4851     abi_long ret;
4852 
4853     target_size = thunk_type_size(usbfsurb_arg_type, THUNK_TARGET);
4854 
4855     memset(buf_temp, 0, sizeof(uint64_t));
4856     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
4857     if (is_error(ret)) {
4858         return ret;
4859     }
4860 
4861     memcpy(&hurb, buf_temp, sizeof(uint64_t));
4862     lurb = (void *)((uintptr_t)hurb - offsetof(struct live_urb, host_urb));
4863     if (!lurb->target_urb_adr) {
4864         return -TARGET_EFAULT;
4865     }
4866     urb_hashtable_remove(lurb);
4867     unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr,
4868         lurb->host_urb.buffer_length);
4869     lurb->target_buf_ptr = NULL;
4870 
4871     /* restore the guest buffer pointer */
4872     lurb->host_urb.buffer = (void *)(uintptr_t)lurb->target_buf_adr;
4873 
4874     /* update the guest urb struct */
4875     argptr = lock_user(VERIFY_WRITE, lurb->target_urb_adr, target_size, 0);
4876     if (!argptr) {
4877         g_free(lurb);
4878         return -TARGET_EFAULT;
4879     }
4880     thunk_convert(argptr, &lurb->host_urb, usbfsurb_arg_type, THUNK_TARGET);
4881     unlock_user(argptr, lurb->target_urb_adr, target_size);
4882 
4883     target_size = thunk_type_size(ptrvoid_arg_type, THUNK_TARGET);
4884     /* write back the urb handle */
4885     argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4886     if (!argptr) {
4887         g_free(lurb);
4888         return -TARGET_EFAULT;
4889     }
4890 
4891     /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */
4892     target_urb_adr = lurb->target_urb_adr;
4893     thunk_convert(argptr, &target_urb_adr, ptrvoid_arg_type, THUNK_TARGET);
4894     unlock_user(argptr, arg, target_size);
4895 
4896     g_free(lurb);
4897     return ret;
4898 }
4899 
4900 static abi_long
4901 do_ioctl_usbdevfs_discardurb(const IOCTLEntry *ie,
4902                              uint8_t *buf_temp __attribute__((unused)),
4903                              int fd, int cmd, abi_long arg)
4904 {
4905     struct live_urb *lurb;
4906 
4907     /* map target address back to host URB with metadata. */
4908     lurb = urb_hashtable_lookup(arg);
4909     if (!lurb) {
4910         return -TARGET_EFAULT;
4911     }
4912     return get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
4913 }
4914 
4915 static abi_long
4916 do_ioctl_usbdevfs_submiturb(const IOCTLEntry *ie, uint8_t *buf_temp,
4917                             int fd, int cmd, abi_long arg)
4918 {
4919     const argtype *arg_type = ie->arg_type;
4920     int target_size;
4921     abi_long ret;
4922     void *argptr;
4923     int rw_dir;
4924     struct live_urb *lurb;
4925 
4926     /*
4927      * each submitted URB needs to map to a unique ID for the
4928      * kernel, and that unique ID needs to be a pointer to
4929      * host memory.  hence, we need to malloc for each URB.
4930      * isochronous transfers have a variable length struct.
4931      */
4932     arg_type++;
4933     target_size = thunk_type_size(arg_type, THUNK_TARGET);
4934 
4935     /* construct host copy of urb and metadata */
4936     lurb = g_try_new0(struct live_urb, 1);
4937     if (!lurb) {
4938         return -TARGET_ENOMEM;
4939     }
4940 
4941     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4942     if (!argptr) {
4943         g_free(lurb);
4944         return -TARGET_EFAULT;
4945     }
4946     thunk_convert(&lurb->host_urb, argptr, arg_type, THUNK_HOST);
4947     unlock_user(argptr, arg, 0);
4948 
4949     lurb->target_urb_adr = arg;
4950     lurb->target_buf_adr = (uintptr_t)lurb->host_urb.buffer;
4951 
4952     /* buffer space used depends on endpoint type so lock the entire buffer */
4953     /* control type urbs should check the buffer contents for true direction */
4954     rw_dir = lurb->host_urb.endpoint & USB_DIR_IN ? VERIFY_WRITE : VERIFY_READ;
4955     lurb->target_buf_ptr = lock_user(rw_dir, lurb->target_buf_adr,
4956         lurb->host_urb.buffer_length, 1);
4957     if (lurb->target_buf_ptr == NULL) {
4958         g_free(lurb);
4959         return -TARGET_EFAULT;
4960     }
4961 
4962     /* update buffer pointer in host copy */
4963     lurb->host_urb.buffer = lurb->target_buf_ptr;
4964 
4965     ret = get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
4966     if (is_error(ret)) {
4967         unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 0);
4968         g_free(lurb);
4969     } else {
4970         urb_hashtable_insert(lurb);
4971     }
4972 
4973     return ret;
4974 }
4975 #endif /* CONFIG_USBFS */
4976 
4977 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
4978                             int cmd, abi_long arg)
4979 {
4980     void *argptr;
4981     struct dm_ioctl *host_dm;
4982     abi_long guest_data;
4983     uint32_t guest_data_size;
4984     int target_size;
4985     const argtype *arg_type = ie->arg_type;
4986     abi_long ret;
4987     void *big_buf = NULL;
4988     char *host_data;
4989 
4990     arg_type++;
4991     target_size = thunk_type_size(arg_type, 0);
4992     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4993     if (!argptr) {
4994         ret = -TARGET_EFAULT;
4995         goto out;
4996     }
4997     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4998     unlock_user(argptr, arg, 0);
4999 
5000     /* buf_temp is too small, so fetch things into a bigger buffer */
5001     big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2);
5002     memcpy(big_buf, buf_temp, target_size);
5003     buf_temp = big_buf;
5004     host_dm = big_buf;
5005 
5006     guest_data = arg + host_dm->data_start;
5007     if ((guest_data - arg) < 0) {
5008         ret = -TARGET_EINVAL;
5009         goto out;
5010     }
5011     guest_data_size = host_dm->data_size - host_dm->data_start;
5012     host_data = (char*)host_dm + host_dm->data_start;
5013 
5014     argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1);
5015     if (!argptr) {
5016         ret = -TARGET_EFAULT;
5017         goto out;
5018     }
5019 
5020     switch (ie->host_cmd) {
5021     case DM_REMOVE_ALL:
5022     case DM_LIST_DEVICES:
5023     case DM_DEV_CREATE:
5024     case DM_DEV_REMOVE:
5025     case DM_DEV_SUSPEND:
5026     case DM_DEV_STATUS:
5027     case DM_DEV_WAIT:
5028     case DM_TABLE_STATUS:
5029     case DM_TABLE_CLEAR:
5030     case DM_TABLE_DEPS:
5031     case DM_LIST_VERSIONS:
5032         /* no input data */
5033         break;
5034     case DM_DEV_RENAME:
5035     case DM_DEV_SET_GEOMETRY:
5036         /* data contains only strings */
5037         memcpy(host_data, argptr, guest_data_size);
5038         break;
5039     case DM_TARGET_MSG:
5040         memcpy(host_data, argptr, guest_data_size);
5041         *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr);
5042         break;
5043     case DM_TABLE_LOAD:
5044     {
5045         void *gspec = argptr;
5046         void *cur_data = host_data;
5047         const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5048         int spec_size = thunk_type_size(dm_arg_type, 0);
5049         int i;
5050 
5051         for (i = 0; i < host_dm->target_count; i++) {
5052             struct dm_target_spec *spec = cur_data;
5053             uint32_t next;
5054             int slen;
5055 
5056             thunk_convert(spec, gspec, dm_arg_type, THUNK_HOST);
5057             slen = strlen((char*)gspec + spec_size) + 1;
5058             next = spec->next;
5059             spec->next = sizeof(*spec) + slen;
5060             strcpy((char*)&spec[1], gspec + spec_size);
5061             gspec += next;
5062             cur_data += spec->next;
5063         }
5064         break;
5065     }
5066     default:
5067         ret = -TARGET_EINVAL;
5068         unlock_user(argptr, guest_data, 0);
5069         goto out;
5070     }
5071     unlock_user(argptr, guest_data, 0);
5072 
5073     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5074     if (!is_error(ret)) {
5075         guest_data = arg + host_dm->data_start;
5076         guest_data_size = host_dm->data_size - host_dm->data_start;
5077         argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0);
5078         switch (ie->host_cmd) {
5079         case DM_REMOVE_ALL:
5080         case DM_DEV_CREATE:
5081         case DM_DEV_REMOVE:
5082         case DM_DEV_RENAME:
5083         case DM_DEV_SUSPEND:
5084         case DM_DEV_STATUS:
5085         case DM_TABLE_LOAD:
5086         case DM_TABLE_CLEAR:
5087         case DM_TARGET_MSG:
5088         case DM_DEV_SET_GEOMETRY:
5089             /* no return data */
5090             break;
5091         case DM_LIST_DEVICES:
5092         {
5093             struct dm_name_list *nl = (void*)host_dm + host_dm->data_start;
5094             uint32_t remaining_data = guest_data_size;
5095             void *cur_data = argptr;
5096             const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) };
5097             int nl_size = 12; /* can't use thunk_size due to alignment */
5098 
5099             while (1) {
5100                 uint32_t next = nl->next;
5101                 if (next) {
5102                     nl->next = nl_size + (strlen(nl->name) + 1);
5103                 }
5104                 if (remaining_data < nl->next) {
5105                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5106                     break;
5107                 }
5108                 thunk_convert(cur_data, nl, dm_arg_type, THUNK_TARGET);
5109                 strcpy(cur_data + nl_size, nl->name);
5110                 cur_data += nl->next;
5111                 remaining_data -= nl->next;
5112                 if (!next) {
5113                     break;
5114                 }
5115                 nl = (void*)nl + next;
5116             }
5117             break;
5118         }
5119         case DM_DEV_WAIT:
5120         case DM_TABLE_STATUS:
5121         {
5122             struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start;
5123             void *cur_data = argptr;
5124             const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5125             int spec_size = thunk_type_size(dm_arg_type, 0);
5126             int i;
5127 
5128             for (i = 0; i < host_dm->target_count; i++) {
5129                 uint32_t next = spec->next;
5130                 int slen = strlen((char*)&spec[1]) + 1;
5131                 spec->next = (cur_data - argptr) + spec_size + slen;
5132                 if (guest_data_size < spec->next) {
5133                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5134                     break;
5135                 }
5136                 thunk_convert(cur_data, spec, dm_arg_type, THUNK_TARGET);
5137                 strcpy(cur_data + spec_size, (char*)&spec[1]);
5138                 cur_data = argptr + spec->next;
5139                 spec = (void*)host_dm + host_dm->data_start + next;
5140             }
5141             break;
5142         }
5143         case DM_TABLE_DEPS:
5144         {
5145             void *hdata = (void*)host_dm + host_dm->data_start;
5146             int count = *(uint32_t*)hdata;
5147             uint64_t *hdev = hdata + 8;
5148             uint64_t *gdev = argptr + 8;
5149             int i;
5150 
5151             *(uint32_t*)argptr = tswap32(count);
5152             for (i = 0; i < count; i++) {
5153                 *gdev = tswap64(*hdev);
5154                 gdev++;
5155                 hdev++;
5156             }
5157             break;
5158         }
5159         case DM_LIST_VERSIONS:
5160         {
5161             struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start;
5162             uint32_t remaining_data = guest_data_size;
5163             void *cur_data = argptr;
5164             const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) };
5165             int vers_size = thunk_type_size(dm_arg_type, 0);
5166 
5167             while (1) {
5168                 uint32_t next = vers->next;
5169                 if (next) {
5170                     vers->next = vers_size + (strlen(vers->name) + 1);
5171                 }
5172                 if (remaining_data < vers->next) {
5173                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5174                     break;
5175                 }
5176                 thunk_convert(cur_data, vers, dm_arg_type, THUNK_TARGET);
5177                 strcpy(cur_data + vers_size, vers->name);
5178                 cur_data += vers->next;
5179                 remaining_data -= vers->next;
5180                 if (!next) {
5181                     break;
5182                 }
5183                 vers = (void*)vers + next;
5184             }
5185             break;
5186         }
5187         default:
5188             unlock_user(argptr, guest_data, 0);
5189             ret = -TARGET_EINVAL;
5190             goto out;
5191         }
5192         unlock_user(argptr, guest_data, guest_data_size);
5193 
5194         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5195         if (!argptr) {
5196             ret = -TARGET_EFAULT;
5197             goto out;
5198         }
5199         thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5200         unlock_user(argptr, arg, target_size);
5201     }
5202 out:
5203     g_free(big_buf);
5204     return ret;
5205 }
5206 
5207 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5208                                int cmd, abi_long arg)
5209 {
5210     void *argptr;
5211     int target_size;
5212     const argtype *arg_type = ie->arg_type;
5213     const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) };
5214     abi_long ret;
5215 
5216     struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp;
5217     struct blkpg_partition host_part;
5218 
5219     /* Read and convert blkpg */
5220     arg_type++;
5221     target_size = thunk_type_size(arg_type, 0);
5222     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5223     if (!argptr) {
5224         ret = -TARGET_EFAULT;
5225         goto out;
5226     }
5227     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5228     unlock_user(argptr, arg, 0);
5229 
5230     switch (host_blkpg->op) {
5231     case BLKPG_ADD_PARTITION:
5232     case BLKPG_DEL_PARTITION:
5233         /* payload is struct blkpg_partition */
5234         break;
5235     default:
5236         /* Unknown opcode */
5237         ret = -TARGET_EINVAL;
5238         goto out;
5239     }
5240 
5241     /* Read and convert blkpg->data */
5242     arg = (abi_long)(uintptr_t)host_blkpg->data;
5243     target_size = thunk_type_size(part_arg_type, 0);
5244     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5245     if (!argptr) {
5246         ret = -TARGET_EFAULT;
5247         goto out;
5248     }
5249     thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST);
5250     unlock_user(argptr, arg, 0);
5251 
5252     /* Swizzle the data pointer to our local copy and call! */
5253     host_blkpg->data = &host_part;
5254     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg));
5255 
5256 out:
5257     return ret;
5258 }
5259 
5260 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp,
5261                                 int fd, int cmd, abi_long arg)
5262 {
5263     const argtype *arg_type = ie->arg_type;
5264     const StructEntry *se;
5265     const argtype *field_types;
5266     const int *dst_offsets, *src_offsets;
5267     int target_size;
5268     void *argptr;
5269     abi_ulong *target_rt_dev_ptr = NULL;
5270     unsigned long *host_rt_dev_ptr = NULL;
5271     abi_long ret;
5272     int i;
5273 
5274     assert(ie->access == IOC_W);
5275     assert(*arg_type == TYPE_PTR);
5276     arg_type++;
5277     assert(*arg_type == TYPE_STRUCT);
5278     target_size = thunk_type_size(arg_type, 0);
5279     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5280     if (!argptr) {
5281         return -TARGET_EFAULT;
5282     }
5283     arg_type++;
5284     assert(*arg_type == (int)STRUCT_rtentry);
5285     se = struct_entries + *arg_type++;
5286     assert(se->convert[0] == NULL);
5287     /* convert struct here to be able to catch rt_dev string */
5288     field_types = se->field_types;
5289     dst_offsets = se->field_offsets[THUNK_HOST];
5290     src_offsets = se->field_offsets[THUNK_TARGET];
5291     for (i = 0; i < se->nb_fields; i++) {
5292         if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) {
5293             assert(*field_types == TYPE_PTRVOID);
5294             target_rt_dev_ptr = argptr + src_offsets[i];
5295             host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]);
5296             if (*target_rt_dev_ptr != 0) {
5297                 *host_rt_dev_ptr = (unsigned long)lock_user_string(
5298                                                   tswapal(*target_rt_dev_ptr));
5299                 if (!*host_rt_dev_ptr) {
5300                     unlock_user(argptr, arg, 0);
5301                     return -TARGET_EFAULT;
5302                 }
5303             } else {
5304                 *host_rt_dev_ptr = 0;
5305             }
5306             field_types++;
5307             continue;
5308         }
5309         field_types = thunk_convert(buf_temp + dst_offsets[i],
5310                                     argptr + src_offsets[i],
5311                                     field_types, THUNK_HOST);
5312     }
5313     unlock_user(argptr, arg, 0);
5314 
5315     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5316 
5317     assert(host_rt_dev_ptr != NULL);
5318     assert(target_rt_dev_ptr != NULL);
5319     if (*host_rt_dev_ptr != 0) {
5320         unlock_user((void *)*host_rt_dev_ptr,
5321                     *target_rt_dev_ptr, 0);
5322     }
5323     return ret;
5324 }
5325 
5326 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp,
5327                                      int fd, int cmd, abi_long arg)
5328 {
5329     int sig = target_to_host_signal(arg);
5330     return get_errno(safe_ioctl(fd, ie->host_cmd, sig));
5331 }
5332 
5333 static abi_long do_ioctl_SIOCGSTAMP(const IOCTLEntry *ie, uint8_t *buf_temp,
5334                                     int fd, int cmd, abi_long arg)
5335 {
5336     struct timeval tv;
5337     abi_long ret;
5338 
5339     ret = get_errno(safe_ioctl(fd, SIOCGSTAMP, &tv));
5340     if (is_error(ret)) {
5341         return ret;
5342     }
5343 
5344     if (cmd == (int)TARGET_SIOCGSTAMP_OLD) {
5345         if (copy_to_user_timeval(arg, &tv)) {
5346             return -TARGET_EFAULT;
5347         }
5348     } else {
5349         if (copy_to_user_timeval64(arg, &tv)) {
5350             return -TARGET_EFAULT;
5351         }
5352     }
5353 
5354     return ret;
5355 }
5356 
5357 static abi_long do_ioctl_SIOCGSTAMPNS(const IOCTLEntry *ie, uint8_t *buf_temp,
5358                                       int fd, int cmd, abi_long arg)
5359 {
5360     struct timespec ts;
5361     abi_long ret;
5362 
5363     ret = get_errno(safe_ioctl(fd, SIOCGSTAMPNS, &ts));
5364     if (is_error(ret)) {
5365         return ret;
5366     }
5367 
5368     if (cmd == (int)TARGET_SIOCGSTAMPNS_OLD) {
5369         if (host_to_target_timespec(arg, &ts)) {
5370             return -TARGET_EFAULT;
5371         }
5372     } else{
5373         if (host_to_target_timespec64(arg, &ts)) {
5374             return -TARGET_EFAULT;
5375         }
5376     }
5377 
5378     return ret;
5379 }
5380 
5381 #ifdef TIOCGPTPEER
5382 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp,
5383                                      int fd, int cmd, abi_long arg)
5384 {
5385     int flags = target_to_host_bitmask(arg, fcntl_flags_tbl);
5386     return get_errno(safe_ioctl(fd, ie->host_cmd, flags));
5387 }
5388 #endif
5389 
5390 #ifdef HAVE_DRM_H
5391 
5392 static void unlock_drm_version(struct drm_version *host_ver,
5393                                struct target_drm_version *target_ver,
5394                                bool copy)
5395 {
5396     unlock_user(host_ver->name, target_ver->name,
5397                                 copy ? host_ver->name_len : 0);
5398     unlock_user(host_ver->date, target_ver->date,
5399                                 copy ? host_ver->date_len : 0);
5400     unlock_user(host_ver->desc, target_ver->desc,
5401                                 copy ? host_ver->desc_len : 0);
5402 }
5403 
5404 static inline abi_long target_to_host_drmversion(struct drm_version *host_ver,
5405                                           struct target_drm_version *target_ver)
5406 {
5407     memset(host_ver, 0, sizeof(*host_ver));
5408 
5409     __get_user(host_ver->name_len, &target_ver->name_len);
5410     if (host_ver->name_len) {
5411         host_ver->name = lock_user(VERIFY_WRITE, target_ver->name,
5412                                    target_ver->name_len, 0);
5413         if (!host_ver->name) {
5414             return -EFAULT;
5415         }
5416     }
5417 
5418     __get_user(host_ver->date_len, &target_ver->date_len);
5419     if (host_ver->date_len) {
5420         host_ver->date = lock_user(VERIFY_WRITE, target_ver->date,
5421                                    target_ver->date_len, 0);
5422         if (!host_ver->date) {
5423             goto err;
5424         }
5425     }
5426 
5427     __get_user(host_ver->desc_len, &target_ver->desc_len);
5428     if (host_ver->desc_len) {
5429         host_ver->desc = lock_user(VERIFY_WRITE, target_ver->desc,
5430                                    target_ver->desc_len, 0);
5431         if (!host_ver->desc) {
5432             goto err;
5433         }
5434     }
5435 
5436     return 0;
5437 err:
5438     unlock_drm_version(host_ver, target_ver, false);
5439     return -EFAULT;
5440 }
5441 
5442 static inline void host_to_target_drmversion(
5443                                           struct target_drm_version *target_ver,
5444                                           struct drm_version *host_ver)
5445 {
5446     __put_user(host_ver->version_major, &target_ver->version_major);
5447     __put_user(host_ver->version_minor, &target_ver->version_minor);
5448     __put_user(host_ver->version_patchlevel, &target_ver->version_patchlevel);
5449     __put_user(host_ver->name_len, &target_ver->name_len);
5450     __put_user(host_ver->date_len, &target_ver->date_len);
5451     __put_user(host_ver->desc_len, &target_ver->desc_len);
5452     unlock_drm_version(host_ver, target_ver, true);
5453 }
5454 
5455 static abi_long do_ioctl_drm(const IOCTLEntry *ie, uint8_t *buf_temp,
5456                              int fd, int cmd, abi_long arg)
5457 {
5458     struct drm_version *ver;
5459     struct target_drm_version *target_ver;
5460     abi_long ret;
5461 
5462     switch (ie->host_cmd) {
5463     case DRM_IOCTL_VERSION:
5464         if (!lock_user_struct(VERIFY_WRITE, target_ver, arg, 0)) {
5465             return -TARGET_EFAULT;
5466         }
5467         ver = (struct drm_version *)buf_temp;
5468         ret = target_to_host_drmversion(ver, target_ver);
5469         if (!is_error(ret)) {
5470             ret = get_errno(safe_ioctl(fd, ie->host_cmd, ver));
5471             if (is_error(ret)) {
5472                 unlock_drm_version(ver, target_ver, false);
5473             } else {
5474                 host_to_target_drmversion(target_ver, ver);
5475             }
5476         }
5477         unlock_user_struct(target_ver, arg, 0);
5478         return ret;
5479     }
5480     return -TARGET_ENOSYS;
5481 }
5482 
5483 static abi_long do_ioctl_drm_i915_getparam(const IOCTLEntry *ie,
5484                                            struct drm_i915_getparam *gparam,
5485                                            int fd, abi_long arg)
5486 {
5487     abi_long ret;
5488     int value;
5489     struct target_drm_i915_getparam *target_gparam;
5490 
5491     if (!lock_user_struct(VERIFY_READ, target_gparam, arg, 0)) {
5492         return -TARGET_EFAULT;
5493     }
5494 
5495     __get_user(gparam->param, &target_gparam->param);
5496     gparam->value = &value;
5497     ret = get_errno(safe_ioctl(fd, ie->host_cmd, gparam));
5498     put_user_s32(value, target_gparam->value);
5499 
5500     unlock_user_struct(target_gparam, arg, 0);
5501     return ret;
5502 }
5503 
5504 static abi_long do_ioctl_drm_i915(const IOCTLEntry *ie, uint8_t *buf_temp,
5505                                   int fd, int cmd, abi_long arg)
5506 {
5507     switch (ie->host_cmd) {
5508     case DRM_IOCTL_I915_GETPARAM:
5509         return do_ioctl_drm_i915_getparam(ie,
5510                                           (struct drm_i915_getparam *)buf_temp,
5511                                           fd, arg);
5512     default:
5513         return -TARGET_ENOSYS;
5514     }
5515 }
5516 
5517 #endif
5518 
5519 static abi_long do_ioctl_TUNSETTXFILTER(const IOCTLEntry *ie, uint8_t *buf_temp,
5520                                         int fd, int cmd, abi_long arg)
5521 {
5522     struct tun_filter *filter = (struct tun_filter *)buf_temp;
5523     struct tun_filter *target_filter;
5524     char *target_addr;
5525 
5526     assert(ie->access == IOC_W);
5527 
5528     target_filter = lock_user(VERIFY_READ, arg, sizeof(*target_filter), 1);
5529     if (!target_filter) {
5530         return -TARGET_EFAULT;
5531     }
5532     filter->flags = tswap16(target_filter->flags);
5533     filter->count = tswap16(target_filter->count);
5534     unlock_user(target_filter, arg, 0);
5535 
5536     if (filter->count) {
5537         if (offsetof(struct tun_filter, addr) + filter->count * ETH_ALEN >
5538             MAX_STRUCT_SIZE) {
5539             return -TARGET_EFAULT;
5540         }
5541 
5542         target_addr = lock_user(VERIFY_READ,
5543                                 arg + offsetof(struct tun_filter, addr),
5544                                 filter->count * ETH_ALEN, 1);
5545         if (!target_addr) {
5546             return -TARGET_EFAULT;
5547         }
5548         memcpy(filter->addr, target_addr, filter->count * ETH_ALEN);
5549         unlock_user(target_addr, arg + offsetof(struct tun_filter, addr), 0);
5550     }
5551 
5552     return get_errno(safe_ioctl(fd, ie->host_cmd, filter));
5553 }
5554 
5555 IOCTLEntry ioctl_entries[] = {
5556 #define IOCTL(cmd, access, ...) \
5557     { TARGET_ ## cmd, cmd, #cmd, access, 0, {  __VA_ARGS__ } },
5558 #define IOCTL_SPECIAL(cmd, access, dofn, ...)                      \
5559     { TARGET_ ## cmd, cmd, #cmd, access, dofn, {  __VA_ARGS__ } },
5560 #define IOCTL_IGNORE(cmd) \
5561     { TARGET_ ## cmd, 0, #cmd },
5562 #include "ioctls.h"
5563     { 0, 0, },
5564 };
5565 
5566 /* ??? Implement proper locking for ioctls.  */
5567 /* do_ioctl() Must return target values and target errnos. */
5568 static abi_long do_ioctl(int fd, int cmd, abi_long arg)
5569 {
5570     const IOCTLEntry *ie;
5571     const argtype *arg_type;
5572     abi_long ret;
5573     uint8_t buf_temp[MAX_STRUCT_SIZE];
5574     int target_size;
5575     void *argptr;
5576 
5577     ie = ioctl_entries;
5578     for(;;) {
5579         if (ie->target_cmd == 0) {
5580             qemu_log_mask(
5581                 LOG_UNIMP, "Unsupported ioctl: cmd=0x%04lx\n", (long)cmd);
5582             return -TARGET_ENOTTY;
5583         }
5584         if (ie->target_cmd == cmd)
5585             break;
5586         ie++;
5587     }
5588     arg_type = ie->arg_type;
5589     if (ie->do_ioctl) {
5590         return ie->do_ioctl(ie, buf_temp, fd, cmd, arg);
5591     } else if (!ie->host_cmd) {
5592         /* Some architectures define BSD ioctls in their headers
5593            that are not implemented in Linux.  */
5594         return -TARGET_ENOTTY;
5595     }
5596 
5597     switch(arg_type[0]) {
5598     case TYPE_NULL:
5599         /* no argument */
5600         ret = get_errno(safe_ioctl(fd, ie->host_cmd));
5601         break;
5602     case TYPE_PTRVOID:
5603     case TYPE_INT:
5604     case TYPE_LONG:
5605     case TYPE_ULONG:
5606         ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg));
5607         break;
5608     case TYPE_PTR:
5609         arg_type++;
5610         target_size = thunk_type_size(arg_type, 0);
5611         switch(ie->access) {
5612         case IOC_R:
5613             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5614             if (!is_error(ret)) {
5615                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5616                 if (!argptr)
5617                     return -TARGET_EFAULT;
5618                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5619                 unlock_user(argptr, arg, target_size);
5620             }
5621             break;
5622         case IOC_W:
5623             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5624             if (!argptr)
5625                 return -TARGET_EFAULT;
5626             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5627             unlock_user(argptr, arg, 0);
5628             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5629             break;
5630         default:
5631         case IOC_RW:
5632             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5633             if (!argptr)
5634                 return -TARGET_EFAULT;
5635             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5636             unlock_user(argptr, arg, 0);
5637             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5638             if (!is_error(ret)) {
5639                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5640                 if (!argptr)
5641                     return -TARGET_EFAULT;
5642                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5643                 unlock_user(argptr, arg, target_size);
5644             }
5645             break;
5646         }
5647         break;
5648     default:
5649         qemu_log_mask(LOG_UNIMP,
5650                       "Unsupported ioctl type: cmd=0x%04lx type=%d\n",
5651                       (long)cmd, arg_type[0]);
5652         ret = -TARGET_ENOTTY;
5653         break;
5654     }
5655     return ret;
5656 }
5657 
5658 static const bitmask_transtbl iflag_tbl[] = {
5659         { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK },
5660         { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT },
5661         { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR },
5662         { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK },
5663         { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK },
5664         { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP },
5665         { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR },
5666         { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR },
5667         { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL },
5668         { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC },
5669         { TARGET_IXON, TARGET_IXON, IXON, IXON },
5670         { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY },
5671         { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF },
5672         { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL },
5673         { TARGET_IUTF8, TARGET_IUTF8, IUTF8, IUTF8},
5674 };
5675 
5676 static const bitmask_transtbl oflag_tbl[] = {
5677 	{ TARGET_OPOST, TARGET_OPOST, OPOST, OPOST },
5678 	{ TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC },
5679 	{ TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR },
5680 	{ TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL },
5681 	{ TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR },
5682 	{ TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET },
5683 	{ TARGET_OFILL, TARGET_OFILL, OFILL, OFILL },
5684 	{ TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL },
5685 	{ TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 },
5686 	{ TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 },
5687 	{ TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 },
5688 	{ TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 },
5689 	{ TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 },
5690 	{ TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 },
5691 	{ TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 },
5692 	{ TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 },
5693 	{ TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 },
5694 	{ TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 },
5695 	{ TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 },
5696 	{ TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 },
5697 	{ TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 },
5698 	{ TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 },
5699 	{ TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 },
5700 	{ TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 },
5701 };
5702 
5703 static const bitmask_transtbl cflag_tbl[] = {
5704 	{ TARGET_CBAUD, TARGET_B0, CBAUD, B0 },
5705 	{ TARGET_CBAUD, TARGET_B50, CBAUD, B50 },
5706 	{ TARGET_CBAUD, TARGET_B75, CBAUD, B75 },
5707 	{ TARGET_CBAUD, TARGET_B110, CBAUD, B110 },
5708 	{ TARGET_CBAUD, TARGET_B134, CBAUD, B134 },
5709 	{ TARGET_CBAUD, TARGET_B150, CBAUD, B150 },
5710 	{ TARGET_CBAUD, TARGET_B200, CBAUD, B200 },
5711 	{ TARGET_CBAUD, TARGET_B300, CBAUD, B300 },
5712 	{ TARGET_CBAUD, TARGET_B600, CBAUD, B600 },
5713 	{ TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 },
5714 	{ TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 },
5715 	{ TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 },
5716 	{ TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 },
5717 	{ TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 },
5718 	{ TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 },
5719 	{ TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 },
5720 	{ TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 },
5721 	{ TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 },
5722 	{ TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 },
5723 	{ TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 },
5724 	{ TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 },
5725 	{ TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 },
5726 	{ TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 },
5727 	{ TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 },
5728 	{ TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB },
5729 	{ TARGET_CREAD, TARGET_CREAD, CREAD, CREAD },
5730 	{ TARGET_PARENB, TARGET_PARENB, PARENB, PARENB },
5731 	{ TARGET_PARODD, TARGET_PARODD, PARODD, PARODD },
5732 	{ TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL },
5733 	{ TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL },
5734 	{ TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS },
5735 };
5736 
5737 static const bitmask_transtbl lflag_tbl[] = {
5738   { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG },
5739   { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON },
5740   { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE },
5741   { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO },
5742   { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE },
5743   { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK },
5744   { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL },
5745   { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH },
5746   { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP },
5747   { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL },
5748   { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT },
5749   { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE },
5750   { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO },
5751   { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN },
5752   { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN },
5753   { TARGET_EXTPROC, TARGET_EXTPROC, EXTPROC, EXTPROC},
5754 };
5755 
5756 static void target_to_host_termios (void *dst, const void *src)
5757 {
5758     struct host_termios *host = dst;
5759     const struct target_termios *target = src;
5760 
5761     host->c_iflag =
5762         target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl);
5763     host->c_oflag =
5764         target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl);
5765     host->c_cflag =
5766         target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl);
5767     host->c_lflag =
5768         target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl);
5769     host->c_line = target->c_line;
5770 
5771     memset(host->c_cc, 0, sizeof(host->c_cc));
5772     host->c_cc[VINTR] = target->c_cc[TARGET_VINTR];
5773     host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT];
5774     host->c_cc[VERASE] = target->c_cc[TARGET_VERASE];
5775     host->c_cc[VKILL] = target->c_cc[TARGET_VKILL];
5776     host->c_cc[VEOF] = target->c_cc[TARGET_VEOF];
5777     host->c_cc[VTIME] = target->c_cc[TARGET_VTIME];
5778     host->c_cc[VMIN] = target->c_cc[TARGET_VMIN];
5779     host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC];
5780     host->c_cc[VSTART] = target->c_cc[TARGET_VSTART];
5781     host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP];
5782     host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP];
5783     host->c_cc[VEOL] = target->c_cc[TARGET_VEOL];
5784     host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT];
5785     host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD];
5786     host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE];
5787     host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT];
5788     host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2];
5789 }
5790 
5791 static void host_to_target_termios (void *dst, const void *src)
5792 {
5793     struct target_termios *target = dst;
5794     const struct host_termios *host = src;
5795 
5796     target->c_iflag =
5797         tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl));
5798     target->c_oflag =
5799         tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl));
5800     target->c_cflag =
5801         tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl));
5802     target->c_lflag =
5803         tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl));
5804     target->c_line = host->c_line;
5805 
5806     memset(target->c_cc, 0, sizeof(target->c_cc));
5807     target->c_cc[TARGET_VINTR] = host->c_cc[VINTR];
5808     target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT];
5809     target->c_cc[TARGET_VERASE] = host->c_cc[VERASE];
5810     target->c_cc[TARGET_VKILL] = host->c_cc[VKILL];
5811     target->c_cc[TARGET_VEOF] = host->c_cc[VEOF];
5812     target->c_cc[TARGET_VTIME] = host->c_cc[VTIME];
5813     target->c_cc[TARGET_VMIN] = host->c_cc[VMIN];
5814     target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC];
5815     target->c_cc[TARGET_VSTART] = host->c_cc[VSTART];
5816     target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP];
5817     target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP];
5818     target->c_cc[TARGET_VEOL] = host->c_cc[VEOL];
5819     target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT];
5820     target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD];
5821     target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE];
5822     target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT];
5823     target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2];
5824 }
5825 
5826 static const StructEntry struct_termios_def = {
5827     .convert = { host_to_target_termios, target_to_host_termios },
5828     .size = { sizeof(struct target_termios), sizeof(struct host_termios) },
5829     .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) },
5830     .print = print_termios,
5831 };
5832 
5833 /* If the host does not provide these bits, they may be safely discarded. */
5834 #ifndef MAP_SYNC
5835 #define MAP_SYNC 0
5836 #endif
5837 #ifndef MAP_UNINITIALIZED
5838 #define MAP_UNINITIALIZED 0
5839 #endif
5840 
5841 static const bitmask_transtbl mmap_flags_tbl[] = {
5842     { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED },
5843     { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS,
5844       MAP_ANONYMOUS, MAP_ANONYMOUS },
5845     { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN,
5846       MAP_GROWSDOWN, MAP_GROWSDOWN },
5847     { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE,
5848       MAP_DENYWRITE, MAP_DENYWRITE },
5849     { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE,
5850       MAP_EXECUTABLE, MAP_EXECUTABLE },
5851     { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED },
5852     { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE,
5853       MAP_NORESERVE, MAP_NORESERVE },
5854     { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB },
5855     /* MAP_STACK had been ignored by the kernel for quite some time.
5856        Recognize it for the target insofar as we do not want to pass
5857        it through to the host.  */
5858     { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 },
5859     { TARGET_MAP_NONBLOCK, TARGET_MAP_NONBLOCK, MAP_NONBLOCK, MAP_NONBLOCK },
5860     { TARGET_MAP_POPULATE, TARGET_MAP_POPULATE, MAP_POPULATE, MAP_POPULATE },
5861     { TARGET_MAP_FIXED_NOREPLACE, TARGET_MAP_FIXED_NOREPLACE,
5862       MAP_FIXED_NOREPLACE, MAP_FIXED_NOREPLACE },
5863     { TARGET_MAP_UNINITIALIZED, TARGET_MAP_UNINITIALIZED,
5864       MAP_UNINITIALIZED, MAP_UNINITIALIZED },
5865 };
5866 
5867 /*
5868  * Arrange for legacy / undefined architecture specific flags to be
5869  * ignored by mmap handling code.
5870  */
5871 #ifndef TARGET_MAP_32BIT
5872 #define TARGET_MAP_32BIT 0
5873 #endif
5874 #ifndef TARGET_MAP_HUGE_2MB
5875 #define TARGET_MAP_HUGE_2MB 0
5876 #endif
5877 #ifndef TARGET_MAP_HUGE_1GB
5878 #define TARGET_MAP_HUGE_1GB 0
5879 #endif
5880 
5881 static abi_long do_mmap(abi_ulong addr, abi_ulong len, int prot,
5882                         int target_flags, int fd, off_t offset)
5883 {
5884     /*
5885      * The historical set of flags that all mmap types implicitly support.
5886      */
5887     enum {
5888         TARGET_LEGACY_MAP_MASK = TARGET_MAP_SHARED
5889                                | TARGET_MAP_PRIVATE
5890                                | TARGET_MAP_FIXED
5891                                | TARGET_MAP_ANONYMOUS
5892                                | TARGET_MAP_DENYWRITE
5893                                | TARGET_MAP_EXECUTABLE
5894                                | TARGET_MAP_UNINITIALIZED
5895                                | TARGET_MAP_GROWSDOWN
5896                                | TARGET_MAP_LOCKED
5897                                | TARGET_MAP_NORESERVE
5898                                | TARGET_MAP_POPULATE
5899                                | TARGET_MAP_NONBLOCK
5900                                | TARGET_MAP_STACK
5901                                | TARGET_MAP_HUGETLB
5902                                | TARGET_MAP_32BIT
5903                                | TARGET_MAP_HUGE_2MB
5904                                | TARGET_MAP_HUGE_1GB
5905     };
5906     int host_flags;
5907 
5908     switch (target_flags & TARGET_MAP_TYPE) {
5909     case TARGET_MAP_PRIVATE:
5910         host_flags = MAP_PRIVATE;
5911         break;
5912     case TARGET_MAP_SHARED:
5913         host_flags = MAP_SHARED;
5914         break;
5915     case TARGET_MAP_SHARED_VALIDATE:
5916         /*
5917          * MAP_SYNC is only supported for MAP_SHARED_VALIDATE, and is
5918          * therefore omitted from mmap_flags_tbl and TARGET_LEGACY_MAP_MASK.
5919          */
5920         if (target_flags & ~(TARGET_LEGACY_MAP_MASK | TARGET_MAP_SYNC)) {
5921             return -TARGET_EOPNOTSUPP;
5922         }
5923         host_flags = MAP_SHARED_VALIDATE;
5924         if (target_flags & TARGET_MAP_SYNC) {
5925             host_flags |= MAP_SYNC;
5926         }
5927         break;
5928     default:
5929         return -TARGET_EINVAL;
5930     }
5931     host_flags |= target_to_host_bitmask(target_flags, mmap_flags_tbl);
5932 
5933     return get_errno(target_mmap(addr, len, prot, host_flags, fd, offset));
5934 }
5935 
5936 /*
5937  * NOTE: TARGET_ABI32 is defined for TARGET_I386 (but not for TARGET_X86_64)
5938  *       TARGET_I386 is defined if TARGET_X86_64 is defined
5939  */
5940 #if defined(TARGET_I386)
5941 
5942 /* NOTE: there is really one LDT for all the threads */
5943 static uint8_t *ldt_table;
5944 
5945 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount)
5946 {
5947     int size;
5948     void *p;
5949 
5950     if (!ldt_table)
5951         return 0;
5952     size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE;
5953     if (size > bytecount)
5954         size = bytecount;
5955     p = lock_user(VERIFY_WRITE, ptr, size, 0);
5956     if (!p)
5957         return -TARGET_EFAULT;
5958     /* ??? Should this by byteswapped?  */
5959     memcpy(p, ldt_table, size);
5960     unlock_user(p, ptr, size);
5961     return size;
5962 }
5963 
5964 /* XXX: add locking support */
5965 static abi_long write_ldt(CPUX86State *env,
5966                           abi_ulong ptr, unsigned long bytecount, int oldmode)
5967 {
5968     struct target_modify_ldt_ldt_s ldt_info;
5969     struct target_modify_ldt_ldt_s *target_ldt_info;
5970     int seg_32bit, contents, read_exec_only, limit_in_pages;
5971     int seg_not_present, useable, lm;
5972     uint32_t *lp, entry_1, entry_2;
5973 
5974     if (bytecount != sizeof(ldt_info))
5975         return -TARGET_EINVAL;
5976     if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1))
5977         return -TARGET_EFAULT;
5978     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
5979     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
5980     ldt_info.limit = tswap32(target_ldt_info->limit);
5981     ldt_info.flags = tswap32(target_ldt_info->flags);
5982     unlock_user_struct(target_ldt_info, ptr, 0);
5983 
5984     if (ldt_info.entry_number >= TARGET_LDT_ENTRIES)
5985         return -TARGET_EINVAL;
5986     seg_32bit = ldt_info.flags & 1;
5987     contents = (ldt_info.flags >> 1) & 3;
5988     read_exec_only = (ldt_info.flags >> 3) & 1;
5989     limit_in_pages = (ldt_info.flags >> 4) & 1;
5990     seg_not_present = (ldt_info.flags >> 5) & 1;
5991     useable = (ldt_info.flags >> 6) & 1;
5992 #ifdef TARGET_ABI32
5993     lm = 0;
5994 #else
5995     lm = (ldt_info.flags >> 7) & 1;
5996 #endif
5997     if (contents == 3) {
5998         if (oldmode)
5999             return -TARGET_EINVAL;
6000         if (seg_not_present == 0)
6001             return -TARGET_EINVAL;
6002     }
6003     /* allocate the LDT */
6004     if (!ldt_table) {
6005         env->ldt.base = target_mmap(0,
6006                                     TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE,
6007                                     PROT_READ|PROT_WRITE,
6008                                     MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
6009         if (env->ldt.base == -1)
6010             return -TARGET_ENOMEM;
6011         memset(g2h_untagged(env->ldt.base), 0,
6012                TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE);
6013         env->ldt.limit = 0xffff;
6014         ldt_table = g2h_untagged(env->ldt.base);
6015     }
6016 
6017     /* NOTE: same code as Linux kernel */
6018     /* Allow LDTs to be cleared by the user. */
6019     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6020         if (oldmode ||
6021             (contents == 0		&&
6022              read_exec_only == 1	&&
6023              seg_32bit == 0		&&
6024              limit_in_pages == 0	&&
6025              seg_not_present == 1	&&
6026              useable == 0 )) {
6027             entry_1 = 0;
6028             entry_2 = 0;
6029             goto install;
6030         }
6031     }
6032 
6033     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6034         (ldt_info.limit & 0x0ffff);
6035     entry_2 = (ldt_info.base_addr & 0xff000000) |
6036         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6037         (ldt_info.limit & 0xf0000) |
6038         ((read_exec_only ^ 1) << 9) |
6039         (contents << 10) |
6040         ((seg_not_present ^ 1) << 15) |
6041         (seg_32bit << 22) |
6042         (limit_in_pages << 23) |
6043         (lm << 21) |
6044         0x7000;
6045     if (!oldmode)
6046         entry_2 |= (useable << 20);
6047 
6048     /* Install the new entry ...  */
6049 install:
6050     lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3));
6051     lp[0] = tswap32(entry_1);
6052     lp[1] = tswap32(entry_2);
6053     return 0;
6054 }
6055 
6056 /* specific and weird i386 syscalls */
6057 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr,
6058                               unsigned long bytecount)
6059 {
6060     abi_long ret;
6061 
6062     switch (func) {
6063     case 0:
6064         ret = read_ldt(ptr, bytecount);
6065         break;
6066     case 1:
6067         ret = write_ldt(env, ptr, bytecount, 1);
6068         break;
6069     case 0x11:
6070         ret = write_ldt(env, ptr, bytecount, 0);
6071         break;
6072     default:
6073         ret = -TARGET_ENOSYS;
6074         break;
6075     }
6076     return ret;
6077 }
6078 
6079 #if defined(TARGET_ABI32)
6080 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr)
6081 {
6082     uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6083     struct target_modify_ldt_ldt_s ldt_info;
6084     struct target_modify_ldt_ldt_s *target_ldt_info;
6085     int seg_32bit, contents, read_exec_only, limit_in_pages;
6086     int seg_not_present, useable, lm;
6087     uint32_t *lp, entry_1, entry_2;
6088     int i;
6089 
6090     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6091     if (!target_ldt_info)
6092         return -TARGET_EFAULT;
6093     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
6094     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
6095     ldt_info.limit = tswap32(target_ldt_info->limit);
6096     ldt_info.flags = tswap32(target_ldt_info->flags);
6097     if (ldt_info.entry_number == -1) {
6098         for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) {
6099             if (gdt_table[i] == 0) {
6100                 ldt_info.entry_number = i;
6101                 target_ldt_info->entry_number = tswap32(i);
6102                 break;
6103             }
6104         }
6105     }
6106     unlock_user_struct(target_ldt_info, ptr, 1);
6107 
6108     if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN ||
6109         ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX)
6110            return -TARGET_EINVAL;
6111     seg_32bit = ldt_info.flags & 1;
6112     contents = (ldt_info.flags >> 1) & 3;
6113     read_exec_only = (ldt_info.flags >> 3) & 1;
6114     limit_in_pages = (ldt_info.flags >> 4) & 1;
6115     seg_not_present = (ldt_info.flags >> 5) & 1;
6116     useable = (ldt_info.flags >> 6) & 1;
6117 #ifdef TARGET_ABI32
6118     lm = 0;
6119 #else
6120     lm = (ldt_info.flags >> 7) & 1;
6121 #endif
6122 
6123     if (contents == 3) {
6124         if (seg_not_present == 0)
6125             return -TARGET_EINVAL;
6126     }
6127 
6128     /* NOTE: same code as Linux kernel */
6129     /* Allow LDTs to be cleared by the user. */
6130     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6131         if ((contents == 0             &&
6132              read_exec_only == 1       &&
6133              seg_32bit == 0            &&
6134              limit_in_pages == 0       &&
6135              seg_not_present == 1      &&
6136              useable == 0 )) {
6137             entry_1 = 0;
6138             entry_2 = 0;
6139             goto install;
6140         }
6141     }
6142 
6143     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6144         (ldt_info.limit & 0x0ffff);
6145     entry_2 = (ldt_info.base_addr & 0xff000000) |
6146         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6147         (ldt_info.limit & 0xf0000) |
6148         ((read_exec_only ^ 1) << 9) |
6149         (contents << 10) |
6150         ((seg_not_present ^ 1) << 15) |
6151         (seg_32bit << 22) |
6152         (limit_in_pages << 23) |
6153         (useable << 20) |
6154         (lm << 21) |
6155         0x7000;
6156 
6157     /* Install the new entry ...  */
6158 install:
6159     lp = (uint32_t *)(gdt_table + ldt_info.entry_number);
6160     lp[0] = tswap32(entry_1);
6161     lp[1] = tswap32(entry_2);
6162     return 0;
6163 }
6164 
6165 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr)
6166 {
6167     struct target_modify_ldt_ldt_s *target_ldt_info;
6168     uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6169     uint32_t base_addr, limit, flags;
6170     int seg_32bit, contents, read_exec_only, limit_in_pages, idx;
6171     int seg_not_present, useable, lm;
6172     uint32_t *lp, entry_1, entry_2;
6173 
6174     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6175     if (!target_ldt_info)
6176         return -TARGET_EFAULT;
6177     idx = tswap32(target_ldt_info->entry_number);
6178     if (idx < TARGET_GDT_ENTRY_TLS_MIN ||
6179         idx > TARGET_GDT_ENTRY_TLS_MAX) {
6180         unlock_user_struct(target_ldt_info, ptr, 1);
6181         return -TARGET_EINVAL;
6182     }
6183     lp = (uint32_t *)(gdt_table + idx);
6184     entry_1 = tswap32(lp[0]);
6185     entry_2 = tswap32(lp[1]);
6186 
6187     read_exec_only = ((entry_2 >> 9) & 1) ^ 1;
6188     contents = (entry_2 >> 10) & 3;
6189     seg_not_present = ((entry_2 >> 15) & 1) ^ 1;
6190     seg_32bit = (entry_2 >> 22) & 1;
6191     limit_in_pages = (entry_2 >> 23) & 1;
6192     useable = (entry_2 >> 20) & 1;
6193 #ifdef TARGET_ABI32
6194     lm = 0;
6195 #else
6196     lm = (entry_2 >> 21) & 1;
6197 #endif
6198     flags = (seg_32bit << 0) | (contents << 1) |
6199         (read_exec_only << 3) | (limit_in_pages << 4) |
6200         (seg_not_present << 5) | (useable << 6) | (lm << 7);
6201     limit = (entry_1 & 0xffff) | (entry_2  & 0xf0000);
6202     base_addr = (entry_1 >> 16) |
6203         (entry_2 & 0xff000000) |
6204         ((entry_2 & 0xff) << 16);
6205     target_ldt_info->base_addr = tswapal(base_addr);
6206     target_ldt_info->limit = tswap32(limit);
6207     target_ldt_info->flags = tswap32(flags);
6208     unlock_user_struct(target_ldt_info, ptr, 1);
6209     return 0;
6210 }
6211 
6212 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6213 {
6214     return -TARGET_ENOSYS;
6215 }
6216 #else
6217 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6218 {
6219     abi_long ret = 0;
6220     abi_ulong val;
6221     int idx;
6222 
6223     switch(code) {
6224     case TARGET_ARCH_SET_GS:
6225     case TARGET_ARCH_SET_FS:
6226         if (code == TARGET_ARCH_SET_GS)
6227             idx = R_GS;
6228         else
6229             idx = R_FS;
6230         cpu_x86_load_seg(env, idx, 0);
6231         env->segs[idx].base = addr;
6232         break;
6233     case TARGET_ARCH_GET_GS:
6234     case TARGET_ARCH_GET_FS:
6235         if (code == TARGET_ARCH_GET_GS)
6236             idx = R_GS;
6237         else
6238             idx = R_FS;
6239         val = env->segs[idx].base;
6240         if (put_user(val, addr, abi_ulong))
6241             ret = -TARGET_EFAULT;
6242         break;
6243     default:
6244         ret = -TARGET_EINVAL;
6245         break;
6246     }
6247     return ret;
6248 }
6249 #endif /* defined(TARGET_ABI32 */
6250 #endif /* defined(TARGET_I386) */
6251 
6252 /*
6253  * These constants are generic.  Supply any that are missing from the host.
6254  */
6255 #ifndef PR_SET_NAME
6256 # define PR_SET_NAME    15
6257 # define PR_GET_NAME    16
6258 #endif
6259 #ifndef PR_SET_FP_MODE
6260 # define PR_SET_FP_MODE 45
6261 # define PR_GET_FP_MODE 46
6262 # define PR_FP_MODE_FR   (1 << 0)
6263 # define PR_FP_MODE_FRE  (1 << 1)
6264 #endif
6265 #ifndef PR_SVE_SET_VL
6266 # define PR_SVE_SET_VL  50
6267 # define PR_SVE_GET_VL  51
6268 # define PR_SVE_VL_LEN_MASK  0xffff
6269 # define PR_SVE_VL_INHERIT   (1 << 17)
6270 #endif
6271 #ifndef PR_PAC_RESET_KEYS
6272 # define PR_PAC_RESET_KEYS  54
6273 # define PR_PAC_APIAKEY   (1 << 0)
6274 # define PR_PAC_APIBKEY   (1 << 1)
6275 # define PR_PAC_APDAKEY   (1 << 2)
6276 # define PR_PAC_APDBKEY   (1 << 3)
6277 # define PR_PAC_APGAKEY   (1 << 4)
6278 #endif
6279 #ifndef PR_SET_TAGGED_ADDR_CTRL
6280 # define PR_SET_TAGGED_ADDR_CTRL 55
6281 # define PR_GET_TAGGED_ADDR_CTRL 56
6282 # define PR_TAGGED_ADDR_ENABLE  (1UL << 0)
6283 #endif
6284 #ifndef PR_SET_IO_FLUSHER
6285 # define PR_SET_IO_FLUSHER 57
6286 # define PR_GET_IO_FLUSHER 58
6287 #endif
6288 #ifndef PR_SET_SYSCALL_USER_DISPATCH
6289 # define PR_SET_SYSCALL_USER_DISPATCH 59
6290 #endif
6291 #ifndef PR_SME_SET_VL
6292 # define PR_SME_SET_VL  63
6293 # define PR_SME_GET_VL  64
6294 # define PR_SME_VL_LEN_MASK  0xffff
6295 # define PR_SME_VL_INHERIT   (1 << 17)
6296 #endif
6297 
6298 #include "target_prctl.h"
6299 
6300 static abi_long do_prctl_inval0(CPUArchState *env)
6301 {
6302     return -TARGET_EINVAL;
6303 }
6304 
6305 static abi_long do_prctl_inval1(CPUArchState *env, abi_long arg2)
6306 {
6307     return -TARGET_EINVAL;
6308 }
6309 
6310 #ifndef do_prctl_get_fp_mode
6311 #define do_prctl_get_fp_mode do_prctl_inval0
6312 #endif
6313 #ifndef do_prctl_set_fp_mode
6314 #define do_prctl_set_fp_mode do_prctl_inval1
6315 #endif
6316 #ifndef do_prctl_sve_get_vl
6317 #define do_prctl_sve_get_vl do_prctl_inval0
6318 #endif
6319 #ifndef do_prctl_sve_set_vl
6320 #define do_prctl_sve_set_vl do_prctl_inval1
6321 #endif
6322 #ifndef do_prctl_reset_keys
6323 #define do_prctl_reset_keys do_prctl_inval1
6324 #endif
6325 #ifndef do_prctl_set_tagged_addr_ctrl
6326 #define do_prctl_set_tagged_addr_ctrl do_prctl_inval1
6327 #endif
6328 #ifndef do_prctl_get_tagged_addr_ctrl
6329 #define do_prctl_get_tagged_addr_ctrl do_prctl_inval0
6330 #endif
6331 #ifndef do_prctl_get_unalign
6332 #define do_prctl_get_unalign do_prctl_inval1
6333 #endif
6334 #ifndef do_prctl_set_unalign
6335 #define do_prctl_set_unalign do_prctl_inval1
6336 #endif
6337 #ifndef do_prctl_sme_get_vl
6338 #define do_prctl_sme_get_vl do_prctl_inval0
6339 #endif
6340 #ifndef do_prctl_sme_set_vl
6341 #define do_prctl_sme_set_vl do_prctl_inval1
6342 #endif
6343 
6344 static abi_long do_prctl(CPUArchState *env, abi_long option, abi_long arg2,
6345                          abi_long arg3, abi_long arg4, abi_long arg5)
6346 {
6347     abi_long ret;
6348 
6349     switch (option) {
6350     case PR_GET_PDEATHSIG:
6351         {
6352             int deathsig;
6353             ret = get_errno(prctl(PR_GET_PDEATHSIG, &deathsig,
6354                                   arg3, arg4, arg5));
6355             if (!is_error(ret) &&
6356                 put_user_s32(host_to_target_signal(deathsig), arg2)) {
6357                 return -TARGET_EFAULT;
6358             }
6359             return ret;
6360         }
6361     case PR_SET_PDEATHSIG:
6362         return get_errno(prctl(PR_SET_PDEATHSIG, target_to_host_signal(arg2),
6363                                arg3, arg4, arg5));
6364     case PR_GET_NAME:
6365         {
6366             void *name = lock_user(VERIFY_WRITE, arg2, 16, 1);
6367             if (!name) {
6368                 return -TARGET_EFAULT;
6369             }
6370             ret = get_errno(prctl(PR_GET_NAME, (uintptr_t)name,
6371                                   arg3, arg4, arg5));
6372             unlock_user(name, arg2, 16);
6373             return ret;
6374         }
6375     case PR_SET_NAME:
6376         {
6377             void *name = lock_user(VERIFY_READ, arg2, 16, 1);
6378             if (!name) {
6379                 return -TARGET_EFAULT;
6380             }
6381             ret = get_errno(prctl(PR_SET_NAME, (uintptr_t)name,
6382                                   arg3, arg4, arg5));
6383             unlock_user(name, arg2, 0);
6384             return ret;
6385         }
6386     case PR_GET_FP_MODE:
6387         return do_prctl_get_fp_mode(env);
6388     case PR_SET_FP_MODE:
6389         return do_prctl_set_fp_mode(env, arg2);
6390     case PR_SVE_GET_VL:
6391         return do_prctl_sve_get_vl(env);
6392     case PR_SVE_SET_VL:
6393         return do_prctl_sve_set_vl(env, arg2);
6394     case PR_SME_GET_VL:
6395         return do_prctl_sme_get_vl(env);
6396     case PR_SME_SET_VL:
6397         return do_prctl_sme_set_vl(env, arg2);
6398     case PR_PAC_RESET_KEYS:
6399         if (arg3 || arg4 || arg5) {
6400             return -TARGET_EINVAL;
6401         }
6402         return do_prctl_reset_keys(env, arg2);
6403     case PR_SET_TAGGED_ADDR_CTRL:
6404         if (arg3 || arg4 || arg5) {
6405             return -TARGET_EINVAL;
6406         }
6407         return do_prctl_set_tagged_addr_ctrl(env, arg2);
6408     case PR_GET_TAGGED_ADDR_CTRL:
6409         if (arg2 || arg3 || arg4 || arg5) {
6410             return -TARGET_EINVAL;
6411         }
6412         return do_prctl_get_tagged_addr_ctrl(env);
6413 
6414     case PR_GET_UNALIGN:
6415         return do_prctl_get_unalign(env, arg2);
6416     case PR_SET_UNALIGN:
6417         return do_prctl_set_unalign(env, arg2);
6418 
6419     case PR_CAP_AMBIENT:
6420     case PR_CAPBSET_READ:
6421     case PR_CAPBSET_DROP:
6422     case PR_GET_DUMPABLE:
6423     case PR_SET_DUMPABLE:
6424     case PR_GET_KEEPCAPS:
6425     case PR_SET_KEEPCAPS:
6426     case PR_GET_SECUREBITS:
6427     case PR_SET_SECUREBITS:
6428     case PR_GET_TIMING:
6429     case PR_SET_TIMING:
6430     case PR_GET_TIMERSLACK:
6431     case PR_SET_TIMERSLACK:
6432     case PR_MCE_KILL:
6433     case PR_MCE_KILL_GET:
6434     case PR_GET_NO_NEW_PRIVS:
6435     case PR_SET_NO_NEW_PRIVS:
6436     case PR_GET_IO_FLUSHER:
6437     case PR_SET_IO_FLUSHER:
6438     case PR_SET_CHILD_SUBREAPER:
6439     case PR_GET_SPECULATION_CTRL:
6440     case PR_SET_SPECULATION_CTRL:
6441         /* Some prctl options have no pointer arguments and we can pass on. */
6442         return get_errno(prctl(option, arg2, arg3, arg4, arg5));
6443 
6444     case PR_GET_CHILD_SUBREAPER:
6445         {
6446             int val;
6447             ret = get_errno(prctl(PR_GET_CHILD_SUBREAPER, &val,
6448                                   arg3, arg4, arg5));
6449             if (!is_error(ret) && put_user_s32(val, arg2)) {
6450                 return -TARGET_EFAULT;
6451             }
6452             return ret;
6453         }
6454 
6455     case PR_GET_TID_ADDRESS:
6456         {
6457             TaskState *ts = get_task_state(env_cpu(env));
6458             return put_user_ual(ts->child_tidptr, arg2);
6459         }
6460 
6461     case PR_GET_FPEXC:
6462     case PR_SET_FPEXC:
6463         /* Was used for SPE on PowerPC. */
6464         return -TARGET_EINVAL;
6465 
6466     case PR_GET_ENDIAN:
6467     case PR_SET_ENDIAN:
6468     case PR_GET_FPEMU:
6469     case PR_SET_FPEMU:
6470     case PR_SET_MM:
6471     case PR_GET_SECCOMP:
6472     case PR_SET_SECCOMP:
6473     case PR_SET_SYSCALL_USER_DISPATCH:
6474     case PR_GET_THP_DISABLE:
6475     case PR_SET_THP_DISABLE:
6476     case PR_GET_TSC:
6477     case PR_SET_TSC:
6478         /* Disable to prevent the target disabling stuff we need. */
6479         return -TARGET_EINVAL;
6480 
6481     default:
6482         qemu_log_mask(LOG_UNIMP, "Unsupported prctl: " TARGET_ABI_FMT_ld "\n",
6483                       option);
6484         return -TARGET_EINVAL;
6485     }
6486 }
6487 
6488 #define NEW_STACK_SIZE 0x40000
6489 
6490 
6491 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER;
6492 typedef struct {
6493     CPUArchState *env;
6494     pthread_mutex_t mutex;
6495     pthread_cond_t cond;
6496     pthread_t thread;
6497     uint32_t tid;
6498     abi_ulong child_tidptr;
6499     abi_ulong parent_tidptr;
6500     sigset_t sigmask;
6501 } new_thread_info;
6502 
6503 static void *clone_func(void *arg)
6504 {
6505     new_thread_info *info = arg;
6506     CPUArchState *env;
6507     CPUState *cpu;
6508     TaskState *ts;
6509 
6510     rcu_register_thread();
6511     tcg_register_thread();
6512     env = info->env;
6513     cpu = env_cpu(env);
6514     thread_cpu = cpu;
6515     ts = get_task_state(cpu);
6516     info->tid = sys_gettid();
6517     task_settid(ts);
6518     if (info->child_tidptr)
6519         put_user_u32(info->tid, info->child_tidptr);
6520     if (info->parent_tidptr)
6521         put_user_u32(info->tid, info->parent_tidptr);
6522     qemu_guest_random_seed_thread_part2(cpu->random_seed);
6523     /* Enable signals.  */
6524     sigprocmask(SIG_SETMASK, &info->sigmask, NULL);
6525     /* Signal to the parent that we're ready.  */
6526     pthread_mutex_lock(&info->mutex);
6527     pthread_cond_broadcast(&info->cond);
6528     pthread_mutex_unlock(&info->mutex);
6529     /* Wait until the parent has finished initializing the tls state.  */
6530     pthread_mutex_lock(&clone_lock);
6531     pthread_mutex_unlock(&clone_lock);
6532     cpu_loop(env);
6533     /* never exits */
6534     return NULL;
6535 }
6536 
6537 /* do_fork() Must return host values and target errnos (unlike most
6538    do_*() functions). */
6539 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp,
6540                    abi_ulong parent_tidptr, target_ulong newtls,
6541                    abi_ulong child_tidptr)
6542 {
6543     CPUState *cpu = env_cpu(env);
6544     int ret;
6545     TaskState *ts;
6546     CPUState *new_cpu;
6547     CPUArchState *new_env;
6548     sigset_t sigmask;
6549 
6550     flags &= ~CLONE_IGNORED_FLAGS;
6551 
6552     /* Emulate vfork() with fork() */
6553     if (flags & CLONE_VFORK)
6554         flags &= ~(CLONE_VFORK | CLONE_VM);
6555 
6556     if (flags & CLONE_VM) {
6557         TaskState *parent_ts = get_task_state(cpu);
6558         new_thread_info info;
6559         pthread_attr_t attr;
6560 
6561         if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) ||
6562             (flags & CLONE_INVALID_THREAD_FLAGS)) {
6563             return -TARGET_EINVAL;
6564         }
6565 
6566         ts = g_new0(TaskState, 1);
6567         init_task_state(ts);
6568 
6569         /* Grab a mutex so that thread setup appears atomic.  */
6570         pthread_mutex_lock(&clone_lock);
6571 
6572         /*
6573          * If this is our first additional thread, we need to ensure we
6574          * generate code for parallel execution and flush old translations.
6575          * Do this now so that the copy gets CF_PARALLEL too.
6576          */
6577         if (!tcg_cflags_has(cpu, CF_PARALLEL)) {
6578             tcg_cflags_set(cpu, CF_PARALLEL);
6579             tb_flush(cpu);
6580         }
6581 
6582         /* we create a new CPU instance. */
6583         new_env = cpu_copy(env);
6584         /* Init regs that differ from the parent.  */
6585         cpu_clone_regs_child(new_env, newsp, flags);
6586         cpu_clone_regs_parent(env, flags);
6587         new_cpu = env_cpu(new_env);
6588         new_cpu->opaque = ts;
6589         ts->bprm = parent_ts->bprm;
6590         ts->info = parent_ts->info;
6591         ts->signal_mask = parent_ts->signal_mask;
6592 
6593         if (flags & CLONE_CHILD_CLEARTID) {
6594             ts->child_tidptr = child_tidptr;
6595         }
6596 
6597         if (flags & CLONE_SETTLS) {
6598             cpu_set_tls (new_env, newtls);
6599         }
6600 
6601         memset(&info, 0, sizeof(info));
6602         pthread_mutex_init(&info.mutex, NULL);
6603         pthread_mutex_lock(&info.mutex);
6604         pthread_cond_init(&info.cond, NULL);
6605         info.env = new_env;
6606         if (flags & CLONE_CHILD_SETTID) {
6607             info.child_tidptr = child_tidptr;
6608         }
6609         if (flags & CLONE_PARENT_SETTID) {
6610             info.parent_tidptr = parent_tidptr;
6611         }
6612 
6613         ret = pthread_attr_init(&attr);
6614         ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE);
6615         ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
6616         /* It is not safe to deliver signals until the child has finished
6617            initializing, so temporarily block all signals.  */
6618         sigfillset(&sigmask);
6619         sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask);
6620         cpu->random_seed = qemu_guest_random_seed_thread_part1();
6621 
6622         ret = pthread_create(&info.thread, &attr, clone_func, &info);
6623         /* TODO: Free new CPU state if thread creation failed.  */
6624 
6625         sigprocmask(SIG_SETMASK, &info.sigmask, NULL);
6626         pthread_attr_destroy(&attr);
6627         if (ret == 0) {
6628             /* Wait for the child to initialize.  */
6629             pthread_cond_wait(&info.cond, &info.mutex);
6630             ret = info.tid;
6631         } else {
6632             ret = -1;
6633         }
6634         pthread_mutex_unlock(&info.mutex);
6635         pthread_cond_destroy(&info.cond);
6636         pthread_mutex_destroy(&info.mutex);
6637         pthread_mutex_unlock(&clone_lock);
6638     } else {
6639         /* if no CLONE_VM, we consider it is a fork */
6640         if (flags & CLONE_INVALID_FORK_FLAGS) {
6641             return -TARGET_EINVAL;
6642         }
6643 
6644         /* We can't support custom termination signals */
6645         if ((flags & CSIGNAL) != TARGET_SIGCHLD) {
6646             return -TARGET_EINVAL;
6647         }
6648 
6649 #if !defined(__NR_pidfd_open) || !defined(TARGET_NR_pidfd_open)
6650         if (flags & CLONE_PIDFD) {
6651             return -TARGET_EINVAL;
6652         }
6653 #endif
6654 
6655         /* Can not allow CLONE_PIDFD with CLONE_PARENT_SETTID */
6656         if ((flags & CLONE_PIDFD) && (flags & CLONE_PARENT_SETTID)) {
6657             return -TARGET_EINVAL;
6658         }
6659 
6660         if (block_signals()) {
6661             return -QEMU_ERESTARTSYS;
6662         }
6663 
6664         fork_start();
6665         ret = fork();
6666         if (ret == 0) {
6667             /* Child Process.  */
6668             cpu_clone_regs_child(env, newsp, flags);
6669             fork_end(ret);
6670             /* There is a race condition here.  The parent process could
6671                theoretically read the TID in the child process before the child
6672                tid is set.  This would require using either ptrace
6673                (not implemented) or having *_tidptr to point at a shared memory
6674                mapping.  We can't repeat the spinlock hack used above because
6675                the child process gets its own copy of the lock.  */
6676             if (flags & CLONE_CHILD_SETTID)
6677                 put_user_u32(sys_gettid(), child_tidptr);
6678             if (flags & CLONE_PARENT_SETTID)
6679                 put_user_u32(sys_gettid(), parent_tidptr);
6680             ts = get_task_state(cpu);
6681             if (flags & CLONE_SETTLS)
6682                 cpu_set_tls (env, newtls);
6683             if (flags & CLONE_CHILD_CLEARTID)
6684                 ts->child_tidptr = child_tidptr;
6685         } else {
6686             cpu_clone_regs_parent(env, flags);
6687             if (flags & CLONE_PIDFD) {
6688                 int pid_fd = 0;
6689 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
6690                 int pid_child = ret;
6691                 pid_fd = pidfd_open(pid_child, 0);
6692                 if (pid_fd >= 0) {
6693                         fcntl(pid_fd, F_SETFD, fcntl(pid_fd, F_GETFL)
6694                                                | FD_CLOEXEC);
6695                 } else {
6696                         pid_fd = 0;
6697                 }
6698 #endif
6699                 put_user_u32(pid_fd, parent_tidptr);
6700             }
6701             fork_end(ret);
6702         }
6703         g_assert(!cpu_in_exclusive_context(cpu));
6704     }
6705     return ret;
6706 }
6707 
6708 /* warning : doesn't handle linux specific flags... */
6709 static int target_to_host_fcntl_cmd(int cmd)
6710 {
6711     int ret;
6712 
6713     switch(cmd) {
6714     case TARGET_F_DUPFD:
6715     case TARGET_F_GETFD:
6716     case TARGET_F_SETFD:
6717     case TARGET_F_GETFL:
6718     case TARGET_F_SETFL:
6719     case TARGET_F_OFD_GETLK:
6720     case TARGET_F_OFD_SETLK:
6721     case TARGET_F_OFD_SETLKW:
6722         ret = cmd;
6723         break;
6724     case TARGET_F_GETLK:
6725         ret = F_GETLK64;
6726         break;
6727     case TARGET_F_SETLK:
6728         ret = F_SETLK64;
6729         break;
6730     case TARGET_F_SETLKW:
6731         ret = F_SETLKW64;
6732         break;
6733     case TARGET_F_GETOWN:
6734         ret = F_GETOWN;
6735         break;
6736     case TARGET_F_SETOWN:
6737         ret = F_SETOWN;
6738         break;
6739     case TARGET_F_GETSIG:
6740         ret = F_GETSIG;
6741         break;
6742     case TARGET_F_SETSIG:
6743         ret = F_SETSIG;
6744         break;
6745 #if TARGET_ABI_BITS == 32
6746     case TARGET_F_GETLK64:
6747         ret = F_GETLK64;
6748         break;
6749     case TARGET_F_SETLK64:
6750         ret = F_SETLK64;
6751         break;
6752     case TARGET_F_SETLKW64:
6753         ret = F_SETLKW64;
6754         break;
6755 #endif
6756     case TARGET_F_SETLEASE:
6757         ret = F_SETLEASE;
6758         break;
6759     case TARGET_F_GETLEASE:
6760         ret = F_GETLEASE;
6761         break;
6762 #ifdef F_DUPFD_CLOEXEC
6763     case TARGET_F_DUPFD_CLOEXEC:
6764         ret = F_DUPFD_CLOEXEC;
6765         break;
6766 #endif
6767     case TARGET_F_NOTIFY:
6768         ret = F_NOTIFY;
6769         break;
6770 #ifdef F_GETOWN_EX
6771     case TARGET_F_GETOWN_EX:
6772         ret = F_GETOWN_EX;
6773         break;
6774 #endif
6775 #ifdef F_SETOWN_EX
6776     case TARGET_F_SETOWN_EX:
6777         ret = F_SETOWN_EX;
6778         break;
6779 #endif
6780 #ifdef F_SETPIPE_SZ
6781     case TARGET_F_SETPIPE_SZ:
6782         ret = F_SETPIPE_SZ;
6783         break;
6784     case TARGET_F_GETPIPE_SZ:
6785         ret = F_GETPIPE_SZ;
6786         break;
6787 #endif
6788 #ifdef F_ADD_SEALS
6789     case TARGET_F_ADD_SEALS:
6790         ret = F_ADD_SEALS;
6791         break;
6792     case TARGET_F_GET_SEALS:
6793         ret = F_GET_SEALS;
6794         break;
6795 #endif
6796     default:
6797         ret = -TARGET_EINVAL;
6798         break;
6799     }
6800 
6801 #if defined(__powerpc64__)
6802     /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and
6803      * is not supported by kernel. The glibc fcntl call actually adjusts
6804      * them to 5, 6 and 7 before making the syscall(). Since we make the
6805      * syscall directly, adjust to what is supported by the kernel.
6806      */
6807     if (ret >= F_GETLK64 && ret <= F_SETLKW64) {
6808         ret -= F_GETLK64 - 5;
6809     }
6810 #endif
6811 
6812     return ret;
6813 }
6814 
6815 #define FLOCK_TRANSTBL \
6816     switch (type) { \
6817     TRANSTBL_CONVERT(F_RDLCK); \
6818     TRANSTBL_CONVERT(F_WRLCK); \
6819     TRANSTBL_CONVERT(F_UNLCK); \
6820     }
6821 
6822 static int target_to_host_flock(int type)
6823 {
6824 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a
6825     FLOCK_TRANSTBL
6826 #undef  TRANSTBL_CONVERT
6827     return -TARGET_EINVAL;
6828 }
6829 
6830 static int host_to_target_flock(int type)
6831 {
6832 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a
6833     FLOCK_TRANSTBL
6834 #undef  TRANSTBL_CONVERT
6835     /* if we don't know how to convert the value coming
6836      * from the host we copy to the target field as-is
6837      */
6838     return type;
6839 }
6840 
6841 static inline abi_long copy_from_user_flock(struct flock64 *fl,
6842                                             abi_ulong target_flock_addr)
6843 {
6844     struct target_flock *target_fl;
6845     int l_type;
6846 
6847     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6848         return -TARGET_EFAULT;
6849     }
6850 
6851     __get_user(l_type, &target_fl->l_type);
6852     l_type = target_to_host_flock(l_type);
6853     if (l_type < 0) {
6854         return l_type;
6855     }
6856     fl->l_type = l_type;
6857     __get_user(fl->l_whence, &target_fl->l_whence);
6858     __get_user(fl->l_start, &target_fl->l_start);
6859     __get_user(fl->l_len, &target_fl->l_len);
6860     __get_user(fl->l_pid, &target_fl->l_pid);
6861     unlock_user_struct(target_fl, target_flock_addr, 0);
6862     return 0;
6863 }
6864 
6865 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr,
6866                                           const struct flock64 *fl)
6867 {
6868     struct target_flock *target_fl;
6869     short l_type;
6870 
6871     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6872         return -TARGET_EFAULT;
6873     }
6874 
6875     l_type = host_to_target_flock(fl->l_type);
6876     __put_user(l_type, &target_fl->l_type);
6877     __put_user(fl->l_whence, &target_fl->l_whence);
6878     __put_user(fl->l_start, &target_fl->l_start);
6879     __put_user(fl->l_len, &target_fl->l_len);
6880     __put_user(fl->l_pid, &target_fl->l_pid);
6881     unlock_user_struct(target_fl, target_flock_addr, 1);
6882     return 0;
6883 }
6884 
6885 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr);
6886 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl);
6887 
6888 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
6889 struct target_oabi_flock64 {
6890     abi_short l_type;
6891     abi_short l_whence;
6892     abi_llong l_start;
6893     abi_llong l_len;
6894     abi_int   l_pid;
6895 } QEMU_PACKED;
6896 
6897 static inline abi_long copy_from_user_oabi_flock64(struct flock64 *fl,
6898                                                    abi_ulong target_flock_addr)
6899 {
6900     struct target_oabi_flock64 *target_fl;
6901     int l_type;
6902 
6903     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6904         return -TARGET_EFAULT;
6905     }
6906 
6907     __get_user(l_type, &target_fl->l_type);
6908     l_type = target_to_host_flock(l_type);
6909     if (l_type < 0) {
6910         return l_type;
6911     }
6912     fl->l_type = l_type;
6913     __get_user(fl->l_whence, &target_fl->l_whence);
6914     __get_user(fl->l_start, &target_fl->l_start);
6915     __get_user(fl->l_len, &target_fl->l_len);
6916     __get_user(fl->l_pid, &target_fl->l_pid);
6917     unlock_user_struct(target_fl, target_flock_addr, 0);
6918     return 0;
6919 }
6920 
6921 static inline abi_long copy_to_user_oabi_flock64(abi_ulong target_flock_addr,
6922                                                  const struct flock64 *fl)
6923 {
6924     struct target_oabi_flock64 *target_fl;
6925     short l_type;
6926 
6927     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6928         return -TARGET_EFAULT;
6929     }
6930 
6931     l_type = host_to_target_flock(fl->l_type);
6932     __put_user(l_type, &target_fl->l_type);
6933     __put_user(fl->l_whence, &target_fl->l_whence);
6934     __put_user(fl->l_start, &target_fl->l_start);
6935     __put_user(fl->l_len, &target_fl->l_len);
6936     __put_user(fl->l_pid, &target_fl->l_pid);
6937     unlock_user_struct(target_fl, target_flock_addr, 1);
6938     return 0;
6939 }
6940 #endif
6941 
6942 static inline abi_long copy_from_user_flock64(struct flock64 *fl,
6943                                               abi_ulong target_flock_addr)
6944 {
6945     struct target_flock64 *target_fl;
6946     int l_type;
6947 
6948     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6949         return -TARGET_EFAULT;
6950     }
6951 
6952     __get_user(l_type, &target_fl->l_type);
6953     l_type = target_to_host_flock(l_type);
6954     if (l_type < 0) {
6955         return l_type;
6956     }
6957     fl->l_type = l_type;
6958     __get_user(fl->l_whence, &target_fl->l_whence);
6959     __get_user(fl->l_start, &target_fl->l_start);
6960     __get_user(fl->l_len, &target_fl->l_len);
6961     __get_user(fl->l_pid, &target_fl->l_pid);
6962     unlock_user_struct(target_fl, target_flock_addr, 0);
6963     return 0;
6964 }
6965 
6966 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr,
6967                                             const struct flock64 *fl)
6968 {
6969     struct target_flock64 *target_fl;
6970     short l_type;
6971 
6972     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6973         return -TARGET_EFAULT;
6974     }
6975 
6976     l_type = host_to_target_flock(fl->l_type);
6977     __put_user(l_type, &target_fl->l_type);
6978     __put_user(fl->l_whence, &target_fl->l_whence);
6979     __put_user(fl->l_start, &target_fl->l_start);
6980     __put_user(fl->l_len, &target_fl->l_len);
6981     __put_user(fl->l_pid, &target_fl->l_pid);
6982     unlock_user_struct(target_fl, target_flock_addr, 1);
6983     return 0;
6984 }
6985 
6986 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg)
6987 {
6988     struct flock64 fl64;
6989 #ifdef F_GETOWN_EX
6990     struct f_owner_ex fox;
6991     struct target_f_owner_ex *target_fox;
6992 #endif
6993     abi_long ret;
6994     int host_cmd = target_to_host_fcntl_cmd(cmd);
6995 
6996     if (host_cmd == -TARGET_EINVAL)
6997 	    return host_cmd;
6998 
6999     switch(cmd) {
7000     case TARGET_F_GETLK:
7001         ret = copy_from_user_flock(&fl64, arg);
7002         if (ret) {
7003             return ret;
7004         }
7005         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7006         if (ret == 0) {
7007             ret = copy_to_user_flock(arg, &fl64);
7008         }
7009         break;
7010 
7011     case TARGET_F_SETLK:
7012     case TARGET_F_SETLKW:
7013         ret = copy_from_user_flock(&fl64, arg);
7014         if (ret) {
7015             return ret;
7016         }
7017         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7018         break;
7019 
7020     case TARGET_F_GETLK64:
7021     case TARGET_F_OFD_GETLK:
7022         ret = copy_from_user_flock64(&fl64, arg);
7023         if (ret) {
7024             return ret;
7025         }
7026         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7027         if (ret == 0) {
7028             ret = copy_to_user_flock64(arg, &fl64);
7029         }
7030         break;
7031     case TARGET_F_SETLK64:
7032     case TARGET_F_SETLKW64:
7033     case TARGET_F_OFD_SETLK:
7034     case TARGET_F_OFD_SETLKW:
7035         ret = copy_from_user_flock64(&fl64, arg);
7036         if (ret) {
7037             return ret;
7038         }
7039         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7040         break;
7041 
7042     case TARGET_F_GETFL:
7043         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7044         if (ret >= 0) {
7045             ret = host_to_target_bitmask(ret, fcntl_flags_tbl);
7046             /* tell 32-bit guests it uses largefile on 64-bit hosts: */
7047             if (O_LARGEFILE == 0 && HOST_LONG_BITS == 64) {
7048                 ret |= TARGET_O_LARGEFILE;
7049             }
7050         }
7051         break;
7052 
7053     case TARGET_F_SETFL:
7054         ret = get_errno(safe_fcntl(fd, host_cmd,
7055                                    target_to_host_bitmask(arg,
7056                                                           fcntl_flags_tbl)));
7057         break;
7058 
7059 #ifdef F_GETOWN_EX
7060     case TARGET_F_GETOWN_EX:
7061         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7062         if (ret >= 0) {
7063             if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0))
7064                 return -TARGET_EFAULT;
7065             target_fox->type = tswap32(fox.type);
7066             target_fox->pid = tswap32(fox.pid);
7067             unlock_user_struct(target_fox, arg, 1);
7068         }
7069         break;
7070 #endif
7071 
7072 #ifdef F_SETOWN_EX
7073     case TARGET_F_SETOWN_EX:
7074         if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1))
7075             return -TARGET_EFAULT;
7076         fox.type = tswap32(target_fox->type);
7077         fox.pid = tswap32(target_fox->pid);
7078         unlock_user_struct(target_fox, arg, 0);
7079         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7080         break;
7081 #endif
7082 
7083     case TARGET_F_SETSIG:
7084         ret = get_errno(safe_fcntl(fd, host_cmd, target_to_host_signal(arg)));
7085         break;
7086 
7087     case TARGET_F_GETSIG:
7088         ret = host_to_target_signal(get_errno(safe_fcntl(fd, host_cmd, arg)));
7089         break;
7090 
7091     case TARGET_F_SETOWN:
7092     case TARGET_F_GETOWN:
7093     case TARGET_F_SETLEASE:
7094     case TARGET_F_GETLEASE:
7095     case TARGET_F_SETPIPE_SZ:
7096     case TARGET_F_GETPIPE_SZ:
7097     case TARGET_F_ADD_SEALS:
7098     case TARGET_F_GET_SEALS:
7099         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7100         break;
7101 
7102     default:
7103         ret = get_errno(safe_fcntl(fd, cmd, arg));
7104         break;
7105     }
7106     return ret;
7107 }
7108 
7109 #ifdef USE_UID16
7110 
7111 static inline int high2lowuid(int uid)
7112 {
7113     if (uid > 65535)
7114         return 65534;
7115     else
7116         return uid;
7117 }
7118 
7119 static inline int high2lowgid(int gid)
7120 {
7121     if (gid > 65535)
7122         return 65534;
7123     else
7124         return gid;
7125 }
7126 
7127 static inline int low2highuid(int uid)
7128 {
7129     if ((int16_t)uid == -1)
7130         return -1;
7131     else
7132         return uid;
7133 }
7134 
7135 static inline int low2highgid(int gid)
7136 {
7137     if ((int16_t)gid == -1)
7138         return -1;
7139     else
7140         return gid;
7141 }
7142 static inline int tswapid(int id)
7143 {
7144     return tswap16(id);
7145 }
7146 
7147 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
7148 
7149 #else /* !USE_UID16 */
7150 static inline int high2lowuid(int uid)
7151 {
7152     return uid;
7153 }
7154 static inline int high2lowgid(int gid)
7155 {
7156     return gid;
7157 }
7158 static inline int low2highuid(int uid)
7159 {
7160     return uid;
7161 }
7162 static inline int low2highgid(int gid)
7163 {
7164     return gid;
7165 }
7166 static inline int tswapid(int id)
7167 {
7168     return tswap32(id);
7169 }
7170 
7171 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
7172 
7173 #endif /* USE_UID16 */
7174 
7175 /* We must do direct syscalls for setting UID/GID, because we want to
7176  * implement the Linux system call semantics of "change only for this thread",
7177  * not the libc/POSIX semantics of "change for all threads in process".
7178  * (See http://ewontfix.com/17/ for more details.)
7179  * We use the 32-bit version of the syscalls if present; if it is not
7180  * then either the host architecture supports 32-bit UIDs natively with
7181  * the standard syscall, or the 16-bit UID is the best we can do.
7182  */
7183 #ifdef __NR_setuid32
7184 #define __NR_sys_setuid __NR_setuid32
7185 #else
7186 #define __NR_sys_setuid __NR_setuid
7187 #endif
7188 #ifdef __NR_setgid32
7189 #define __NR_sys_setgid __NR_setgid32
7190 #else
7191 #define __NR_sys_setgid __NR_setgid
7192 #endif
7193 #ifdef __NR_setresuid32
7194 #define __NR_sys_setresuid __NR_setresuid32
7195 #else
7196 #define __NR_sys_setresuid __NR_setresuid
7197 #endif
7198 #ifdef __NR_setresgid32
7199 #define __NR_sys_setresgid __NR_setresgid32
7200 #else
7201 #define __NR_sys_setresgid __NR_setresgid
7202 #endif
7203 #ifdef __NR_setgroups32
7204 #define __NR_sys_setgroups __NR_setgroups32
7205 #else
7206 #define __NR_sys_setgroups __NR_setgroups
7207 #endif
7208 
7209 _syscall1(int, sys_setuid, uid_t, uid)
7210 _syscall1(int, sys_setgid, gid_t, gid)
7211 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
7212 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
7213 _syscall2(int, sys_setgroups, int, size, gid_t *, grouplist)
7214 
7215 void syscall_init(void)
7216 {
7217     IOCTLEntry *ie;
7218     const argtype *arg_type;
7219     int size;
7220 
7221     thunk_init(STRUCT_MAX);
7222 
7223 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
7224 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
7225 #include "syscall_types.h"
7226 #undef STRUCT
7227 #undef STRUCT_SPECIAL
7228 
7229     /* we patch the ioctl size if necessary. We rely on the fact that
7230        no ioctl has all the bits at '1' in the size field */
7231     ie = ioctl_entries;
7232     while (ie->target_cmd != 0) {
7233         if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) ==
7234             TARGET_IOC_SIZEMASK) {
7235             arg_type = ie->arg_type;
7236             if (arg_type[0] != TYPE_PTR) {
7237                 fprintf(stderr, "cannot patch size for ioctl 0x%x\n",
7238                         ie->target_cmd);
7239                 exit(1);
7240             }
7241             arg_type++;
7242             size = thunk_type_size(arg_type, 0);
7243             ie->target_cmd = (ie->target_cmd &
7244                               ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) |
7245                 (size << TARGET_IOC_SIZESHIFT);
7246         }
7247 
7248         /* automatic consistency check if same arch */
7249 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
7250     (defined(__x86_64__) && defined(TARGET_X86_64))
7251         if (unlikely(ie->target_cmd != ie->host_cmd)) {
7252             fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
7253                     ie->name, ie->target_cmd, ie->host_cmd);
7254         }
7255 #endif
7256         ie++;
7257     }
7258 }
7259 
7260 #ifdef TARGET_NR_truncate64
7261 static inline abi_long target_truncate64(CPUArchState *cpu_env, const char *arg1,
7262                                          abi_long arg2,
7263                                          abi_long arg3,
7264                                          abi_long arg4)
7265 {
7266     if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) {
7267         arg2 = arg3;
7268         arg3 = arg4;
7269     }
7270     return get_errno(truncate64(arg1, target_offset64(arg2, arg3)));
7271 }
7272 #endif
7273 
7274 #ifdef TARGET_NR_ftruncate64
7275 static inline abi_long target_ftruncate64(CPUArchState *cpu_env, abi_long arg1,
7276                                           abi_long arg2,
7277                                           abi_long arg3,
7278                                           abi_long arg4)
7279 {
7280     if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) {
7281         arg2 = arg3;
7282         arg3 = arg4;
7283     }
7284     return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3)));
7285 }
7286 #endif
7287 
7288 #if defined(TARGET_NR_timer_settime) || \
7289     (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
7290 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_its,
7291                                                  abi_ulong target_addr)
7292 {
7293     if (target_to_host_timespec(&host_its->it_interval, target_addr +
7294                                 offsetof(struct target_itimerspec,
7295                                          it_interval)) ||
7296         target_to_host_timespec(&host_its->it_value, target_addr +
7297                                 offsetof(struct target_itimerspec,
7298                                          it_value))) {
7299         return -TARGET_EFAULT;
7300     }
7301 
7302     return 0;
7303 }
7304 #endif
7305 
7306 #if defined(TARGET_NR_timer_settime64) || \
7307     (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD))
7308 static inline abi_long target_to_host_itimerspec64(struct itimerspec *host_its,
7309                                                    abi_ulong target_addr)
7310 {
7311     if (target_to_host_timespec64(&host_its->it_interval, target_addr +
7312                                   offsetof(struct target__kernel_itimerspec,
7313                                            it_interval)) ||
7314         target_to_host_timespec64(&host_its->it_value, target_addr +
7315                                   offsetof(struct target__kernel_itimerspec,
7316                                            it_value))) {
7317         return -TARGET_EFAULT;
7318     }
7319 
7320     return 0;
7321 }
7322 #endif
7323 
7324 #if ((defined(TARGET_NR_timerfd_gettime) || \
7325       defined(TARGET_NR_timerfd_settime)) && defined(CONFIG_TIMERFD)) || \
7326       defined(TARGET_NR_timer_gettime) || defined(TARGET_NR_timer_settime)
7327 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr,
7328                                                  struct itimerspec *host_its)
7329 {
7330     if (host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7331                                                        it_interval),
7332                                 &host_its->it_interval) ||
7333         host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7334                                                        it_value),
7335                                 &host_its->it_value)) {
7336         return -TARGET_EFAULT;
7337     }
7338     return 0;
7339 }
7340 #endif
7341 
7342 #if ((defined(TARGET_NR_timerfd_gettime64) || \
7343       defined(TARGET_NR_timerfd_settime64)) && defined(CONFIG_TIMERFD)) || \
7344       defined(TARGET_NR_timer_gettime64) || defined(TARGET_NR_timer_settime64)
7345 static inline abi_long host_to_target_itimerspec64(abi_ulong target_addr,
7346                                                    struct itimerspec *host_its)
7347 {
7348     if (host_to_target_timespec64(target_addr +
7349                                   offsetof(struct target__kernel_itimerspec,
7350                                            it_interval),
7351                                   &host_its->it_interval) ||
7352         host_to_target_timespec64(target_addr +
7353                                   offsetof(struct target__kernel_itimerspec,
7354                                            it_value),
7355                                   &host_its->it_value)) {
7356         return -TARGET_EFAULT;
7357     }
7358     return 0;
7359 }
7360 #endif
7361 
7362 #if defined(TARGET_NR_adjtimex) || \
7363     (defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME))
7364 static inline abi_long target_to_host_timex(struct timex *host_tx,
7365                                             abi_long target_addr)
7366 {
7367     struct target_timex *target_tx;
7368 
7369     if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7370         return -TARGET_EFAULT;
7371     }
7372 
7373     __get_user(host_tx->modes, &target_tx->modes);
7374     __get_user(host_tx->offset, &target_tx->offset);
7375     __get_user(host_tx->freq, &target_tx->freq);
7376     __get_user(host_tx->maxerror, &target_tx->maxerror);
7377     __get_user(host_tx->esterror, &target_tx->esterror);
7378     __get_user(host_tx->status, &target_tx->status);
7379     __get_user(host_tx->constant, &target_tx->constant);
7380     __get_user(host_tx->precision, &target_tx->precision);
7381     __get_user(host_tx->tolerance, &target_tx->tolerance);
7382     __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7383     __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7384     __get_user(host_tx->tick, &target_tx->tick);
7385     __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7386     __get_user(host_tx->jitter, &target_tx->jitter);
7387     __get_user(host_tx->shift, &target_tx->shift);
7388     __get_user(host_tx->stabil, &target_tx->stabil);
7389     __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7390     __get_user(host_tx->calcnt, &target_tx->calcnt);
7391     __get_user(host_tx->errcnt, &target_tx->errcnt);
7392     __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7393     __get_user(host_tx->tai, &target_tx->tai);
7394 
7395     unlock_user_struct(target_tx, target_addr, 0);
7396     return 0;
7397 }
7398 
7399 static inline abi_long host_to_target_timex(abi_long target_addr,
7400                                             struct timex *host_tx)
7401 {
7402     struct target_timex *target_tx;
7403 
7404     if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7405         return -TARGET_EFAULT;
7406     }
7407 
7408     __put_user(host_tx->modes, &target_tx->modes);
7409     __put_user(host_tx->offset, &target_tx->offset);
7410     __put_user(host_tx->freq, &target_tx->freq);
7411     __put_user(host_tx->maxerror, &target_tx->maxerror);
7412     __put_user(host_tx->esterror, &target_tx->esterror);
7413     __put_user(host_tx->status, &target_tx->status);
7414     __put_user(host_tx->constant, &target_tx->constant);
7415     __put_user(host_tx->precision, &target_tx->precision);
7416     __put_user(host_tx->tolerance, &target_tx->tolerance);
7417     __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7418     __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7419     __put_user(host_tx->tick, &target_tx->tick);
7420     __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7421     __put_user(host_tx->jitter, &target_tx->jitter);
7422     __put_user(host_tx->shift, &target_tx->shift);
7423     __put_user(host_tx->stabil, &target_tx->stabil);
7424     __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7425     __put_user(host_tx->calcnt, &target_tx->calcnt);
7426     __put_user(host_tx->errcnt, &target_tx->errcnt);
7427     __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7428     __put_user(host_tx->tai, &target_tx->tai);
7429 
7430     unlock_user_struct(target_tx, target_addr, 1);
7431     return 0;
7432 }
7433 #endif
7434 
7435 
7436 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
7437 static inline abi_long target_to_host_timex64(struct timex *host_tx,
7438                                               abi_long target_addr)
7439 {
7440     struct target__kernel_timex *target_tx;
7441 
7442     if (copy_from_user_timeval64(&host_tx->time, target_addr +
7443                                  offsetof(struct target__kernel_timex,
7444                                           time))) {
7445         return -TARGET_EFAULT;
7446     }
7447 
7448     if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7449         return -TARGET_EFAULT;
7450     }
7451 
7452     __get_user(host_tx->modes, &target_tx->modes);
7453     __get_user(host_tx->offset, &target_tx->offset);
7454     __get_user(host_tx->freq, &target_tx->freq);
7455     __get_user(host_tx->maxerror, &target_tx->maxerror);
7456     __get_user(host_tx->esterror, &target_tx->esterror);
7457     __get_user(host_tx->status, &target_tx->status);
7458     __get_user(host_tx->constant, &target_tx->constant);
7459     __get_user(host_tx->precision, &target_tx->precision);
7460     __get_user(host_tx->tolerance, &target_tx->tolerance);
7461     __get_user(host_tx->tick, &target_tx->tick);
7462     __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7463     __get_user(host_tx->jitter, &target_tx->jitter);
7464     __get_user(host_tx->shift, &target_tx->shift);
7465     __get_user(host_tx->stabil, &target_tx->stabil);
7466     __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7467     __get_user(host_tx->calcnt, &target_tx->calcnt);
7468     __get_user(host_tx->errcnt, &target_tx->errcnt);
7469     __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7470     __get_user(host_tx->tai, &target_tx->tai);
7471 
7472     unlock_user_struct(target_tx, target_addr, 0);
7473     return 0;
7474 }
7475 
7476 static inline abi_long host_to_target_timex64(abi_long target_addr,
7477                                               struct timex *host_tx)
7478 {
7479     struct target__kernel_timex *target_tx;
7480 
7481    if (copy_to_user_timeval64(target_addr +
7482                               offsetof(struct target__kernel_timex, time),
7483                               &host_tx->time)) {
7484         return -TARGET_EFAULT;
7485     }
7486 
7487     if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7488         return -TARGET_EFAULT;
7489     }
7490 
7491     __put_user(host_tx->modes, &target_tx->modes);
7492     __put_user(host_tx->offset, &target_tx->offset);
7493     __put_user(host_tx->freq, &target_tx->freq);
7494     __put_user(host_tx->maxerror, &target_tx->maxerror);
7495     __put_user(host_tx->esterror, &target_tx->esterror);
7496     __put_user(host_tx->status, &target_tx->status);
7497     __put_user(host_tx->constant, &target_tx->constant);
7498     __put_user(host_tx->precision, &target_tx->precision);
7499     __put_user(host_tx->tolerance, &target_tx->tolerance);
7500     __put_user(host_tx->tick, &target_tx->tick);
7501     __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7502     __put_user(host_tx->jitter, &target_tx->jitter);
7503     __put_user(host_tx->shift, &target_tx->shift);
7504     __put_user(host_tx->stabil, &target_tx->stabil);
7505     __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7506     __put_user(host_tx->calcnt, &target_tx->calcnt);
7507     __put_user(host_tx->errcnt, &target_tx->errcnt);
7508     __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7509     __put_user(host_tx->tai, &target_tx->tai);
7510 
7511     unlock_user_struct(target_tx, target_addr, 1);
7512     return 0;
7513 }
7514 #endif
7515 
7516 #ifndef HAVE_SIGEV_NOTIFY_THREAD_ID
7517 #define sigev_notify_thread_id _sigev_un._tid
7518 #endif
7519 
7520 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp,
7521                                                abi_ulong target_addr)
7522 {
7523     struct target_sigevent *target_sevp;
7524 
7525     if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) {
7526         return -TARGET_EFAULT;
7527     }
7528 
7529     /* This union is awkward on 64 bit systems because it has a 32 bit
7530      * integer and a pointer in it; we follow the conversion approach
7531      * used for handling sigval types in signal.c so the guest should get
7532      * the correct value back even if we did a 64 bit byteswap and it's
7533      * using the 32 bit integer.
7534      */
7535     host_sevp->sigev_value.sival_ptr =
7536         (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr);
7537     host_sevp->sigev_signo =
7538         target_to_host_signal(tswap32(target_sevp->sigev_signo));
7539     host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify);
7540     host_sevp->sigev_notify_thread_id = tswap32(target_sevp->_sigev_un._tid);
7541 
7542     unlock_user_struct(target_sevp, target_addr, 1);
7543     return 0;
7544 }
7545 
7546 #if defined(TARGET_NR_mlockall)
7547 static inline int target_to_host_mlockall_arg(int arg)
7548 {
7549     int result = 0;
7550 
7551     if (arg & TARGET_MCL_CURRENT) {
7552         result |= MCL_CURRENT;
7553     }
7554     if (arg & TARGET_MCL_FUTURE) {
7555         result |= MCL_FUTURE;
7556     }
7557 #ifdef MCL_ONFAULT
7558     if (arg & TARGET_MCL_ONFAULT) {
7559         result |= MCL_ONFAULT;
7560     }
7561 #endif
7562 
7563     return result;
7564 }
7565 #endif
7566 
7567 static inline int target_to_host_msync_arg(abi_long arg)
7568 {
7569     return ((arg & TARGET_MS_ASYNC) ? MS_ASYNC : 0) |
7570            ((arg & TARGET_MS_INVALIDATE) ? MS_INVALIDATE : 0) |
7571            ((arg & TARGET_MS_SYNC) ? MS_SYNC : 0) |
7572            (arg & ~(TARGET_MS_ASYNC | TARGET_MS_INVALIDATE | TARGET_MS_SYNC));
7573 }
7574 
7575 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) ||     \
7576      defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) ||  \
7577      defined(TARGET_NR_newfstatat))
7578 static inline abi_long host_to_target_stat64(CPUArchState *cpu_env,
7579                                              abi_ulong target_addr,
7580                                              struct stat *host_st)
7581 {
7582 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
7583     if (cpu_env->eabi) {
7584         struct target_eabi_stat64 *target_st;
7585 
7586         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7587             return -TARGET_EFAULT;
7588         memset(target_st, 0, sizeof(struct target_eabi_stat64));
7589         __put_user(host_st->st_dev, &target_st->st_dev);
7590         __put_user(host_st->st_ino, &target_st->st_ino);
7591 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7592         __put_user(host_st->st_ino, &target_st->__st_ino);
7593 #endif
7594         __put_user(host_st->st_mode, &target_st->st_mode);
7595         __put_user(host_st->st_nlink, &target_st->st_nlink);
7596         __put_user(host_st->st_uid, &target_st->st_uid);
7597         __put_user(host_st->st_gid, &target_st->st_gid);
7598         __put_user(host_st->st_rdev, &target_st->st_rdev);
7599         __put_user(host_st->st_size, &target_st->st_size);
7600         __put_user(host_st->st_blksize, &target_st->st_blksize);
7601         __put_user(host_st->st_blocks, &target_st->st_blocks);
7602         __put_user(host_st->st_atime, &target_st->target_st_atime);
7603         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7604         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7605 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7606         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7607         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7608         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7609 #endif
7610         unlock_user_struct(target_st, target_addr, 1);
7611     } else
7612 #endif
7613     {
7614 #if defined(TARGET_HAS_STRUCT_STAT64)
7615         struct target_stat64 *target_st;
7616 #else
7617         struct target_stat *target_st;
7618 #endif
7619 
7620         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7621             return -TARGET_EFAULT;
7622         memset(target_st, 0, sizeof(*target_st));
7623         __put_user(host_st->st_dev, &target_st->st_dev);
7624         __put_user(host_st->st_ino, &target_st->st_ino);
7625 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7626         __put_user(host_st->st_ino, &target_st->__st_ino);
7627 #endif
7628         __put_user(host_st->st_mode, &target_st->st_mode);
7629         __put_user(host_st->st_nlink, &target_st->st_nlink);
7630         __put_user(host_st->st_uid, &target_st->st_uid);
7631         __put_user(host_st->st_gid, &target_st->st_gid);
7632         __put_user(host_st->st_rdev, &target_st->st_rdev);
7633         /* XXX: better use of kernel struct */
7634         __put_user(host_st->st_size, &target_st->st_size);
7635         __put_user(host_st->st_blksize, &target_st->st_blksize);
7636         __put_user(host_st->st_blocks, &target_st->st_blocks);
7637         __put_user(host_st->st_atime, &target_st->target_st_atime);
7638         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7639         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7640 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7641         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7642         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7643         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7644 #endif
7645         unlock_user_struct(target_st, target_addr, 1);
7646     }
7647 
7648     return 0;
7649 }
7650 #endif
7651 
7652 #if defined(TARGET_NR_statx) && defined(__NR_statx)
7653 static inline abi_long host_to_target_statx(struct target_statx *host_stx,
7654                                             abi_ulong target_addr)
7655 {
7656     struct target_statx *target_stx;
7657 
7658     if (!lock_user_struct(VERIFY_WRITE, target_stx, target_addr,  0)) {
7659         return -TARGET_EFAULT;
7660     }
7661     memset(target_stx, 0, sizeof(*target_stx));
7662 
7663     __put_user(host_stx->stx_mask, &target_stx->stx_mask);
7664     __put_user(host_stx->stx_blksize, &target_stx->stx_blksize);
7665     __put_user(host_stx->stx_attributes, &target_stx->stx_attributes);
7666     __put_user(host_stx->stx_nlink, &target_stx->stx_nlink);
7667     __put_user(host_stx->stx_uid, &target_stx->stx_uid);
7668     __put_user(host_stx->stx_gid, &target_stx->stx_gid);
7669     __put_user(host_stx->stx_mode, &target_stx->stx_mode);
7670     __put_user(host_stx->stx_ino, &target_stx->stx_ino);
7671     __put_user(host_stx->stx_size, &target_stx->stx_size);
7672     __put_user(host_stx->stx_blocks, &target_stx->stx_blocks);
7673     __put_user(host_stx->stx_attributes_mask, &target_stx->stx_attributes_mask);
7674     __put_user(host_stx->stx_atime.tv_sec, &target_stx->stx_atime.tv_sec);
7675     __put_user(host_stx->stx_atime.tv_nsec, &target_stx->stx_atime.tv_nsec);
7676     __put_user(host_stx->stx_btime.tv_sec, &target_stx->stx_btime.tv_sec);
7677     __put_user(host_stx->stx_btime.tv_nsec, &target_stx->stx_btime.tv_nsec);
7678     __put_user(host_stx->stx_ctime.tv_sec, &target_stx->stx_ctime.tv_sec);
7679     __put_user(host_stx->stx_ctime.tv_nsec, &target_stx->stx_ctime.tv_nsec);
7680     __put_user(host_stx->stx_mtime.tv_sec, &target_stx->stx_mtime.tv_sec);
7681     __put_user(host_stx->stx_mtime.tv_nsec, &target_stx->stx_mtime.tv_nsec);
7682     __put_user(host_stx->stx_rdev_major, &target_stx->stx_rdev_major);
7683     __put_user(host_stx->stx_rdev_minor, &target_stx->stx_rdev_minor);
7684     __put_user(host_stx->stx_dev_major, &target_stx->stx_dev_major);
7685     __put_user(host_stx->stx_dev_minor, &target_stx->stx_dev_minor);
7686 
7687     unlock_user_struct(target_stx, target_addr, 1);
7688 
7689     return 0;
7690 }
7691 #endif
7692 
7693 static int do_sys_futex(int *uaddr, int op, int val,
7694                          const struct timespec *timeout, int *uaddr2,
7695                          int val3)
7696 {
7697 #if HOST_LONG_BITS == 64
7698 #if defined(__NR_futex)
7699     /* always a 64-bit time_t, it doesn't define _time64 version  */
7700     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7701 
7702 #endif
7703 #else /* HOST_LONG_BITS == 64 */
7704 #if defined(__NR_futex_time64)
7705     if (sizeof(timeout->tv_sec) == 8) {
7706         /* _time64 function on 32bit arch */
7707         return sys_futex_time64(uaddr, op, val, timeout, uaddr2, val3);
7708     }
7709 #endif
7710 #if defined(__NR_futex)
7711     /* old function on 32bit arch */
7712     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7713 #endif
7714 #endif /* HOST_LONG_BITS == 64 */
7715     g_assert_not_reached();
7716 }
7717 
7718 static int do_safe_futex(int *uaddr, int op, int val,
7719                          const struct timespec *timeout, int *uaddr2,
7720                          int val3)
7721 {
7722 #if HOST_LONG_BITS == 64
7723 #if defined(__NR_futex)
7724     /* always a 64-bit time_t, it doesn't define _time64 version  */
7725     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7726 #endif
7727 #else /* HOST_LONG_BITS == 64 */
7728 #if defined(__NR_futex_time64)
7729     if (sizeof(timeout->tv_sec) == 8) {
7730         /* _time64 function on 32bit arch */
7731         return get_errno(safe_futex_time64(uaddr, op, val, timeout, uaddr2,
7732                                            val3));
7733     }
7734 #endif
7735 #if defined(__NR_futex)
7736     /* old function on 32bit arch */
7737     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7738 #endif
7739 #endif /* HOST_LONG_BITS == 64 */
7740     return -TARGET_ENOSYS;
7741 }
7742 
7743 /* ??? Using host futex calls even when target atomic operations
7744    are not really atomic probably breaks things.  However implementing
7745    futexes locally would make futexes shared between multiple processes
7746    tricky.  However they're probably useless because guest atomic
7747    operations won't work either.  */
7748 #if defined(TARGET_NR_futex) || defined(TARGET_NR_futex_time64)
7749 static int do_futex(CPUState *cpu, bool time64, target_ulong uaddr,
7750                     int op, int val, target_ulong timeout,
7751                     target_ulong uaddr2, int val3)
7752 {
7753     struct timespec ts, *pts = NULL;
7754     void *haddr2 = NULL;
7755     int base_op;
7756 
7757     /* We assume FUTEX_* constants are the same on both host and target. */
7758 #ifdef FUTEX_CMD_MASK
7759     base_op = op & FUTEX_CMD_MASK;
7760 #else
7761     base_op = op;
7762 #endif
7763     switch (base_op) {
7764     case FUTEX_WAIT:
7765     case FUTEX_WAIT_BITSET:
7766         val = tswap32(val);
7767         break;
7768     case FUTEX_WAIT_REQUEUE_PI:
7769         val = tswap32(val);
7770         haddr2 = g2h(cpu, uaddr2);
7771         break;
7772     case FUTEX_LOCK_PI:
7773     case FUTEX_LOCK_PI2:
7774         break;
7775     case FUTEX_WAKE:
7776     case FUTEX_WAKE_BITSET:
7777     case FUTEX_TRYLOCK_PI:
7778     case FUTEX_UNLOCK_PI:
7779         timeout = 0;
7780         break;
7781     case FUTEX_FD:
7782         val = target_to_host_signal(val);
7783         timeout = 0;
7784         break;
7785     case FUTEX_CMP_REQUEUE:
7786     case FUTEX_CMP_REQUEUE_PI:
7787         val3 = tswap32(val3);
7788         /* fall through */
7789     case FUTEX_REQUEUE:
7790     case FUTEX_WAKE_OP:
7791         /*
7792          * For these, the 4th argument is not TIMEOUT, but VAL2.
7793          * But the prototype of do_safe_futex takes a pointer, so
7794          * insert casts to satisfy the compiler.  We do not need
7795          * to tswap VAL2 since it's not compared to guest memory.
7796           */
7797         pts = (struct timespec *)(uintptr_t)timeout;
7798         timeout = 0;
7799         haddr2 = g2h(cpu, uaddr2);
7800         break;
7801     default:
7802         return -TARGET_ENOSYS;
7803     }
7804     if (timeout) {
7805         pts = &ts;
7806         if (time64
7807             ? target_to_host_timespec64(pts, timeout)
7808             : target_to_host_timespec(pts, timeout)) {
7809             return -TARGET_EFAULT;
7810         }
7811     }
7812     return do_safe_futex(g2h(cpu, uaddr), op, val, pts, haddr2, val3);
7813 }
7814 #endif
7815 
7816 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7817 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname,
7818                                      abi_long handle, abi_long mount_id,
7819                                      abi_long flags)
7820 {
7821     struct file_handle *target_fh;
7822     struct file_handle *fh;
7823     int mid = 0;
7824     abi_long ret;
7825     char *name;
7826     unsigned int size, total_size;
7827 
7828     if (get_user_s32(size, handle)) {
7829         return -TARGET_EFAULT;
7830     }
7831 
7832     name = lock_user_string(pathname);
7833     if (!name) {
7834         return -TARGET_EFAULT;
7835     }
7836 
7837     total_size = sizeof(struct file_handle) + size;
7838     target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0);
7839     if (!target_fh) {
7840         unlock_user(name, pathname, 0);
7841         return -TARGET_EFAULT;
7842     }
7843 
7844     fh = g_malloc0(total_size);
7845     fh->handle_bytes = size;
7846 
7847     ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags));
7848     unlock_user(name, pathname, 0);
7849 
7850     /* man name_to_handle_at(2):
7851      * Other than the use of the handle_bytes field, the caller should treat
7852      * the file_handle structure as an opaque data type
7853      */
7854 
7855     memcpy(target_fh, fh, total_size);
7856     target_fh->handle_bytes = tswap32(fh->handle_bytes);
7857     target_fh->handle_type = tswap32(fh->handle_type);
7858     g_free(fh);
7859     unlock_user(target_fh, handle, total_size);
7860 
7861     if (put_user_s32(mid, mount_id)) {
7862         return -TARGET_EFAULT;
7863     }
7864 
7865     return ret;
7866 
7867 }
7868 #endif
7869 
7870 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7871 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle,
7872                                      abi_long flags)
7873 {
7874     struct file_handle *target_fh;
7875     struct file_handle *fh;
7876     unsigned int size, total_size;
7877     abi_long ret;
7878 
7879     if (get_user_s32(size, handle)) {
7880         return -TARGET_EFAULT;
7881     }
7882 
7883     total_size = sizeof(struct file_handle) + size;
7884     target_fh = lock_user(VERIFY_READ, handle, total_size, 1);
7885     if (!target_fh) {
7886         return -TARGET_EFAULT;
7887     }
7888 
7889     fh = g_memdup(target_fh, total_size);
7890     fh->handle_bytes = size;
7891     fh->handle_type = tswap32(target_fh->handle_type);
7892 
7893     ret = get_errno(open_by_handle_at(mount_fd, fh,
7894                     target_to_host_bitmask(flags, fcntl_flags_tbl)));
7895 
7896     g_free(fh);
7897 
7898     unlock_user(target_fh, handle, total_size);
7899 
7900     return ret;
7901 }
7902 #endif
7903 
7904 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
7905 
7906 static abi_long do_signalfd4(int fd, abi_long mask, int flags)
7907 {
7908     int host_flags;
7909     target_sigset_t *target_mask;
7910     sigset_t host_mask;
7911     abi_long ret;
7912 
7913     if (flags & ~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC)) {
7914         return -TARGET_EINVAL;
7915     }
7916     if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) {
7917         return -TARGET_EFAULT;
7918     }
7919 
7920     target_to_host_sigset(&host_mask, target_mask);
7921 
7922     host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
7923 
7924     ret = get_errno(signalfd(fd, &host_mask, host_flags));
7925     if (ret >= 0) {
7926         fd_trans_register(ret, &target_signalfd_trans);
7927     }
7928 
7929     unlock_user_struct(target_mask, mask, 0);
7930 
7931     return ret;
7932 }
7933 #endif
7934 
7935 /* Map host to target signal numbers for the wait family of syscalls.
7936    Assume all other status bits are the same.  */
7937 int host_to_target_waitstatus(int status)
7938 {
7939     if (WIFSIGNALED(status)) {
7940         return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f);
7941     }
7942     if (WIFSTOPPED(status)) {
7943         return (host_to_target_signal(WSTOPSIG(status)) << 8)
7944                | (status & 0xff);
7945     }
7946     return status;
7947 }
7948 
7949 static int open_self_cmdline(CPUArchState *cpu_env, int fd)
7950 {
7951     CPUState *cpu = env_cpu(cpu_env);
7952     struct linux_binprm *bprm = get_task_state(cpu)->bprm;
7953     int i;
7954 
7955     for (i = 0; i < bprm->argc; i++) {
7956         size_t len = strlen(bprm->argv[i]) + 1;
7957 
7958         if (write(fd, bprm->argv[i], len) != len) {
7959             return -1;
7960         }
7961     }
7962 
7963     return 0;
7964 }
7965 
7966 struct open_self_maps_data {
7967     TaskState *ts;
7968     IntervalTreeRoot *host_maps;
7969     int fd;
7970     bool smaps;
7971 };
7972 
7973 /*
7974  * Subroutine to output one line of /proc/self/maps,
7975  * or one region of /proc/self/smaps.
7976  */
7977 
7978 #ifdef TARGET_HPPA
7979 # define test_stack(S, E, L)  (E == L)
7980 #else
7981 # define test_stack(S, E, L)  (S == L)
7982 #endif
7983 
7984 static void open_self_maps_4(const struct open_self_maps_data *d,
7985                              const MapInfo *mi, abi_ptr start,
7986                              abi_ptr end, unsigned flags)
7987 {
7988     const struct image_info *info = d->ts->info;
7989     const char *path = mi->path;
7990     uint64_t offset;
7991     int fd = d->fd;
7992     int count;
7993 
7994     if (test_stack(start, end, info->stack_limit)) {
7995         path = "[stack]";
7996     } else if (start == info->brk) {
7997         path = "[heap]";
7998     } else if (start == info->vdso) {
7999         path = "[vdso]";
8000 #ifdef TARGET_X86_64
8001     } else if (start == TARGET_VSYSCALL_PAGE) {
8002         path = "[vsyscall]";
8003 #endif
8004     }
8005 
8006     /* Except null device (MAP_ANON), adjust offset for this fragment. */
8007     offset = mi->offset;
8008     if (mi->dev) {
8009         uintptr_t hstart = (uintptr_t)g2h_untagged(start);
8010         offset += hstart - mi->itree.start;
8011     }
8012 
8013     count = dprintf(fd, TARGET_ABI_FMT_ptr "-" TARGET_ABI_FMT_ptr
8014                     " %c%c%c%c %08" PRIx64 " %02x:%02x %"PRId64,
8015                     start, end,
8016                     (flags & PAGE_READ) ? 'r' : '-',
8017                     (flags & PAGE_WRITE_ORG) ? 'w' : '-',
8018                     (flags & PAGE_EXEC) ? 'x' : '-',
8019                     mi->is_priv ? 'p' : 's',
8020                     offset, major(mi->dev), minor(mi->dev),
8021                     (uint64_t)mi->inode);
8022     if (path) {
8023         dprintf(fd, "%*s%s\n", 73 - count, "", path);
8024     } else {
8025         dprintf(fd, "\n");
8026     }
8027 
8028     if (d->smaps) {
8029         unsigned long size = end - start;
8030         unsigned long page_size_kb = TARGET_PAGE_SIZE >> 10;
8031         unsigned long size_kb = size >> 10;
8032 
8033         dprintf(fd, "Size:                  %lu kB\n"
8034                 "KernelPageSize:        %lu kB\n"
8035                 "MMUPageSize:           %lu kB\n"
8036                 "Rss:                   0 kB\n"
8037                 "Pss:                   0 kB\n"
8038                 "Pss_Dirty:             0 kB\n"
8039                 "Shared_Clean:          0 kB\n"
8040                 "Shared_Dirty:          0 kB\n"
8041                 "Private_Clean:         0 kB\n"
8042                 "Private_Dirty:         0 kB\n"
8043                 "Referenced:            0 kB\n"
8044                 "Anonymous:             %lu kB\n"
8045                 "LazyFree:              0 kB\n"
8046                 "AnonHugePages:         0 kB\n"
8047                 "ShmemPmdMapped:        0 kB\n"
8048                 "FilePmdMapped:         0 kB\n"
8049                 "Shared_Hugetlb:        0 kB\n"
8050                 "Private_Hugetlb:       0 kB\n"
8051                 "Swap:                  0 kB\n"
8052                 "SwapPss:               0 kB\n"
8053                 "Locked:                0 kB\n"
8054                 "THPeligible:    0\n"
8055                 "VmFlags:%s%s%s%s%s%s%s%s\n",
8056                 size_kb, page_size_kb, page_size_kb,
8057                 (flags & PAGE_ANON ? size_kb : 0),
8058                 (flags & PAGE_READ) ? " rd" : "",
8059                 (flags & PAGE_WRITE_ORG) ? " wr" : "",
8060                 (flags & PAGE_EXEC) ? " ex" : "",
8061                 mi->is_priv ? "" : " sh",
8062                 (flags & PAGE_READ) ? " mr" : "",
8063                 (flags & PAGE_WRITE_ORG) ? " mw" : "",
8064                 (flags & PAGE_EXEC) ? " me" : "",
8065                 mi->is_priv ? "" : " ms");
8066     }
8067 }
8068 
8069 /*
8070  * Callback for walk_memory_regions, when read_self_maps() fails.
8071  * Proceed without the benefit of host /proc/self/maps cross-check.
8072  */
8073 static int open_self_maps_3(void *opaque, target_ulong guest_start,
8074                             target_ulong guest_end, unsigned long flags)
8075 {
8076     static const MapInfo mi = { .is_priv = true };
8077 
8078     open_self_maps_4(opaque, &mi, guest_start, guest_end, flags);
8079     return 0;
8080 }
8081 
8082 /*
8083  * Callback for walk_memory_regions, when read_self_maps() succeeds.
8084  */
8085 static int open_self_maps_2(void *opaque, target_ulong guest_start,
8086                             target_ulong guest_end, unsigned long flags)
8087 {
8088     const struct open_self_maps_data *d = opaque;
8089     uintptr_t host_start = (uintptr_t)g2h_untagged(guest_start);
8090     uintptr_t host_last = (uintptr_t)g2h_untagged(guest_end - 1);
8091 
8092 #ifdef TARGET_X86_64
8093     /*
8094      * Because of the extremely high position of the page within the guest
8095      * virtual address space, this is not backed by host memory at all.
8096      * Therefore the loop below would fail.  This is the only instance
8097      * of not having host backing memory.
8098      */
8099     if (guest_start == TARGET_VSYSCALL_PAGE) {
8100         return open_self_maps_3(opaque, guest_start, guest_end, flags);
8101     }
8102 #endif
8103 
8104     while (1) {
8105         IntervalTreeNode *n =
8106             interval_tree_iter_first(d->host_maps, host_start, host_start);
8107         MapInfo *mi = container_of(n, MapInfo, itree);
8108         uintptr_t this_hlast = MIN(host_last, n->last);
8109         target_ulong this_gend = h2g(this_hlast) + 1;
8110 
8111         open_self_maps_4(d, mi, guest_start, this_gend, flags);
8112 
8113         if (this_hlast == host_last) {
8114             return 0;
8115         }
8116         host_start = this_hlast + 1;
8117         guest_start = h2g(host_start);
8118     }
8119 }
8120 
8121 static int open_self_maps_1(CPUArchState *env, int fd, bool smaps)
8122 {
8123     struct open_self_maps_data d = {
8124         .ts = get_task_state(env_cpu(env)),
8125         .fd = fd,
8126         .smaps = smaps
8127     };
8128 
8129     mmap_lock();
8130     d.host_maps = read_self_maps();
8131     if (d.host_maps) {
8132         walk_memory_regions(&d, open_self_maps_2);
8133         free_self_maps(d.host_maps);
8134     } else {
8135         walk_memory_regions(&d, open_self_maps_3);
8136     }
8137     mmap_unlock();
8138     return 0;
8139 }
8140 
8141 static int open_self_maps(CPUArchState *cpu_env, int fd)
8142 {
8143     return open_self_maps_1(cpu_env, fd, false);
8144 }
8145 
8146 static int open_self_smaps(CPUArchState *cpu_env, int fd)
8147 {
8148     return open_self_maps_1(cpu_env, fd, true);
8149 }
8150 
8151 static int open_self_stat(CPUArchState *cpu_env, int fd)
8152 {
8153     CPUState *cpu = env_cpu(cpu_env);
8154     TaskState *ts = get_task_state(cpu);
8155     g_autoptr(GString) buf = g_string_new(NULL);
8156     int i;
8157 
8158     for (i = 0; i < 44; i++) {
8159         if (i == 0) {
8160             /* pid */
8161             g_string_printf(buf, FMT_pid " ", getpid());
8162         } else if (i == 1) {
8163             /* app name */
8164             gchar *bin = g_strrstr(ts->bprm->argv[0], "/");
8165             bin = bin ? bin + 1 : ts->bprm->argv[0];
8166             g_string_printf(buf, "(%.15s) ", bin);
8167         } else if (i == 2) {
8168             /* task state */
8169             g_string_assign(buf, "R "); /* we are running right now */
8170         } else if (i == 3) {
8171             /* ppid */
8172             g_string_printf(buf, FMT_pid " ", getppid());
8173         } else if (i == 19) {
8174             /* num_threads */
8175             int cpus = 0;
8176             WITH_RCU_READ_LOCK_GUARD() {
8177                 CPUState *cpu_iter;
8178                 CPU_FOREACH(cpu_iter) {
8179                     cpus++;
8180                 }
8181             }
8182             g_string_printf(buf, "%d ", cpus);
8183         } else if (i == 21) {
8184             /* starttime */
8185             g_string_printf(buf, "%" PRIu64 " ", ts->start_boottime);
8186         } else if (i == 27) {
8187             /* stack bottom */
8188             g_string_printf(buf, TARGET_ABI_FMT_ld " ", ts->info->start_stack);
8189         } else {
8190             /* for the rest, there is MasterCard */
8191             g_string_printf(buf, "0%c", i == 43 ? '\n' : ' ');
8192         }
8193 
8194         if (write(fd, buf->str, buf->len) != buf->len) {
8195             return -1;
8196         }
8197     }
8198 
8199     return 0;
8200 }
8201 
8202 static int open_self_auxv(CPUArchState *cpu_env, int fd)
8203 {
8204     CPUState *cpu = env_cpu(cpu_env);
8205     TaskState *ts = get_task_state(cpu);
8206     abi_ulong auxv = ts->info->saved_auxv;
8207     abi_ulong len = ts->info->auxv_len;
8208     char *ptr;
8209 
8210     /*
8211      * Auxiliary vector is stored in target process stack.
8212      * read in whole auxv vector and copy it to file
8213      */
8214     ptr = lock_user(VERIFY_READ, auxv, len, 0);
8215     if (ptr != NULL) {
8216         while (len > 0) {
8217             ssize_t r;
8218             r = write(fd, ptr, len);
8219             if (r <= 0) {
8220                 break;
8221             }
8222             len -= r;
8223             ptr += r;
8224         }
8225         lseek(fd, 0, SEEK_SET);
8226         unlock_user(ptr, auxv, len);
8227     }
8228 
8229     return 0;
8230 }
8231 
8232 static int is_proc_myself(const char *filename, const char *entry)
8233 {
8234     if (!strncmp(filename, "/proc/", strlen("/proc/"))) {
8235         filename += strlen("/proc/");
8236         if (!strncmp(filename, "self/", strlen("self/"))) {
8237             filename += strlen("self/");
8238         } else if (*filename >= '1' && *filename <= '9') {
8239             char myself[80];
8240             snprintf(myself, sizeof(myself), "%d/", getpid());
8241             if (!strncmp(filename, myself, strlen(myself))) {
8242                 filename += strlen(myself);
8243             } else {
8244                 return 0;
8245             }
8246         } else {
8247             return 0;
8248         }
8249         if (!strcmp(filename, entry)) {
8250             return 1;
8251         }
8252     }
8253     return 0;
8254 }
8255 
8256 static void excp_dump_file(FILE *logfile, CPUArchState *env,
8257                       const char *fmt, int code)
8258 {
8259     if (logfile) {
8260         CPUState *cs = env_cpu(env);
8261 
8262         fprintf(logfile, fmt, code);
8263         fprintf(logfile, "Failing executable: %s\n", exec_path);
8264         cpu_dump_state(cs, logfile, 0);
8265         open_self_maps(env, fileno(logfile));
8266     }
8267 }
8268 
8269 void target_exception_dump(CPUArchState *env, const char *fmt, int code)
8270 {
8271     /* dump to console */
8272     excp_dump_file(stderr, env, fmt, code);
8273 
8274     /* dump to log file */
8275     if (qemu_log_separate()) {
8276         FILE *logfile = qemu_log_trylock();
8277 
8278         excp_dump_file(logfile, env, fmt, code);
8279         qemu_log_unlock(logfile);
8280     }
8281 }
8282 
8283 #include "target_proc.h"
8284 
8285 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN || \
8286     defined(HAVE_ARCH_PROC_CPUINFO) || \
8287     defined(HAVE_ARCH_PROC_HARDWARE)
8288 static int is_proc(const char *filename, const char *entry)
8289 {
8290     return strcmp(filename, entry) == 0;
8291 }
8292 #endif
8293 
8294 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8295 static int open_net_route(CPUArchState *cpu_env, int fd)
8296 {
8297     FILE *fp;
8298     char *line = NULL;
8299     size_t len = 0;
8300     ssize_t read;
8301 
8302     fp = fopen("/proc/net/route", "r");
8303     if (fp == NULL) {
8304         return -1;
8305     }
8306 
8307     /* read header */
8308 
8309     read = getline(&line, &len, fp);
8310     dprintf(fd, "%s", line);
8311 
8312     /* read routes */
8313 
8314     while ((read = getline(&line, &len, fp)) != -1) {
8315         char iface[16];
8316         uint32_t dest, gw, mask;
8317         unsigned int flags, refcnt, use, metric, mtu, window, irtt;
8318         int fields;
8319 
8320         fields = sscanf(line,
8321                         "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8322                         iface, &dest, &gw, &flags, &refcnt, &use, &metric,
8323                         &mask, &mtu, &window, &irtt);
8324         if (fields != 11) {
8325             continue;
8326         }
8327         dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8328                 iface, tswap32(dest), tswap32(gw), flags, refcnt, use,
8329                 metric, tswap32(mask), mtu, window, irtt);
8330     }
8331 
8332     free(line);
8333     fclose(fp);
8334 
8335     return 0;
8336 }
8337 #endif
8338 
8339 int do_guest_openat(CPUArchState *cpu_env, int dirfd, const char *fname,
8340                     int flags, mode_t mode, bool safe)
8341 {
8342     g_autofree char *proc_name = NULL;
8343     const char *pathname;
8344     struct fake_open {
8345         const char *filename;
8346         int (*fill)(CPUArchState *cpu_env, int fd);
8347         int (*cmp)(const char *s1, const char *s2);
8348     };
8349     const struct fake_open *fake_open;
8350     static const struct fake_open fakes[] = {
8351         { "maps", open_self_maps, is_proc_myself },
8352         { "smaps", open_self_smaps, is_proc_myself },
8353         { "stat", open_self_stat, is_proc_myself },
8354         { "auxv", open_self_auxv, is_proc_myself },
8355         { "cmdline", open_self_cmdline, is_proc_myself },
8356 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8357         { "/proc/net/route", open_net_route, is_proc },
8358 #endif
8359 #if defined(HAVE_ARCH_PROC_CPUINFO)
8360         { "/proc/cpuinfo", open_cpuinfo, is_proc },
8361 #endif
8362 #if defined(HAVE_ARCH_PROC_HARDWARE)
8363         { "/proc/hardware", open_hardware, is_proc },
8364 #endif
8365         { NULL, NULL, NULL }
8366     };
8367 
8368     /* if this is a file from /proc/ filesystem, expand full name */
8369     proc_name = realpath(fname, NULL);
8370     if (proc_name && strncmp(proc_name, "/proc/", 6) == 0) {
8371         pathname = proc_name;
8372     } else {
8373         pathname = fname;
8374     }
8375 
8376     if (is_proc_myself(pathname, "exe")) {
8377         if (safe) {
8378             return safe_openat(dirfd, exec_path, flags, mode);
8379         } else {
8380             return openat(dirfd, exec_path, flags, mode);
8381         }
8382     }
8383 
8384     for (fake_open = fakes; fake_open->filename; fake_open++) {
8385         if (fake_open->cmp(pathname, fake_open->filename)) {
8386             break;
8387         }
8388     }
8389 
8390     if (fake_open->filename) {
8391         const char *tmpdir;
8392         char filename[PATH_MAX];
8393         int fd, r;
8394 
8395         fd = memfd_create("qemu-open", 0);
8396         if (fd < 0) {
8397             if (errno != ENOSYS) {
8398                 return fd;
8399             }
8400             /* create temporary file to map stat to */
8401             tmpdir = getenv("TMPDIR");
8402             if (!tmpdir)
8403                 tmpdir = "/tmp";
8404             snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir);
8405             fd = mkstemp(filename);
8406             if (fd < 0) {
8407                 return fd;
8408             }
8409             unlink(filename);
8410         }
8411 
8412         if ((r = fake_open->fill(cpu_env, fd))) {
8413             int e = errno;
8414             close(fd);
8415             errno = e;
8416             return r;
8417         }
8418         lseek(fd, 0, SEEK_SET);
8419 
8420         return fd;
8421     }
8422 
8423     if (safe) {
8424         return safe_openat(dirfd, path(pathname), flags, mode);
8425     } else {
8426         return openat(dirfd, path(pathname), flags, mode);
8427     }
8428 }
8429 
8430 ssize_t do_guest_readlink(const char *pathname, char *buf, size_t bufsiz)
8431 {
8432     ssize_t ret;
8433 
8434     if (!pathname || !buf) {
8435         errno = EFAULT;
8436         return -1;
8437     }
8438 
8439     if (!bufsiz) {
8440         /* Short circuit this for the magic exe check. */
8441         errno = EINVAL;
8442         return -1;
8443     }
8444 
8445     if (is_proc_myself((const char *)pathname, "exe")) {
8446         /*
8447          * Don't worry about sign mismatch as earlier mapping
8448          * logic would have thrown a bad address error.
8449          */
8450         ret = MIN(strlen(exec_path), bufsiz);
8451         /* We cannot NUL terminate the string. */
8452         memcpy(buf, exec_path, ret);
8453     } else {
8454         ret = readlink(path(pathname), buf, bufsiz);
8455     }
8456 
8457     return ret;
8458 }
8459 
8460 static int do_execv(CPUArchState *cpu_env, int dirfd,
8461                     abi_long pathname, abi_long guest_argp,
8462                     abi_long guest_envp, int flags, bool is_execveat)
8463 {
8464     int ret;
8465     char **argp, **envp;
8466     int argc, envc;
8467     abi_ulong gp;
8468     abi_ulong addr;
8469     char **q;
8470     void *p;
8471 
8472     argc = 0;
8473 
8474     for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) {
8475         if (get_user_ual(addr, gp)) {
8476             return -TARGET_EFAULT;
8477         }
8478         if (!addr) {
8479             break;
8480         }
8481         argc++;
8482     }
8483     envc = 0;
8484     for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) {
8485         if (get_user_ual(addr, gp)) {
8486             return -TARGET_EFAULT;
8487         }
8488         if (!addr) {
8489             break;
8490         }
8491         envc++;
8492     }
8493 
8494     argp = g_new0(char *, argc + 1);
8495     envp = g_new0(char *, envc + 1);
8496 
8497     for (gp = guest_argp, q = argp; gp; gp += sizeof(abi_ulong), q++) {
8498         if (get_user_ual(addr, gp)) {
8499             goto execve_efault;
8500         }
8501         if (!addr) {
8502             break;
8503         }
8504         *q = lock_user_string(addr);
8505         if (!*q) {
8506             goto execve_efault;
8507         }
8508     }
8509     *q = NULL;
8510 
8511     for (gp = guest_envp, q = envp; gp; gp += sizeof(abi_ulong), q++) {
8512         if (get_user_ual(addr, gp)) {
8513             goto execve_efault;
8514         }
8515         if (!addr) {
8516             break;
8517         }
8518         *q = lock_user_string(addr);
8519         if (!*q) {
8520             goto execve_efault;
8521         }
8522     }
8523     *q = NULL;
8524 
8525     /*
8526      * Although execve() is not an interruptible syscall it is
8527      * a special case where we must use the safe_syscall wrapper:
8528      * if we allow a signal to happen before we make the host
8529      * syscall then we will 'lose' it, because at the point of
8530      * execve the process leaves QEMU's control. So we use the
8531      * safe syscall wrapper to ensure that we either take the
8532      * signal as a guest signal, or else it does not happen
8533      * before the execve completes and makes it the other
8534      * program's problem.
8535      */
8536     p = lock_user_string(pathname);
8537     if (!p) {
8538         goto execve_efault;
8539     }
8540 
8541     const char *exe = p;
8542     if (is_proc_myself(p, "exe")) {
8543         exe = exec_path;
8544     }
8545     ret = is_execveat
8546         ? safe_execveat(dirfd, exe, argp, envp, flags)
8547         : safe_execve(exe, argp, envp);
8548     ret = get_errno(ret);
8549 
8550     unlock_user(p, pathname, 0);
8551 
8552     goto execve_end;
8553 
8554 execve_efault:
8555     ret = -TARGET_EFAULT;
8556 
8557 execve_end:
8558     for (gp = guest_argp, q = argp; *q; gp += sizeof(abi_ulong), q++) {
8559         if (get_user_ual(addr, gp) || !addr) {
8560             break;
8561         }
8562         unlock_user(*q, addr, 0);
8563     }
8564     for (gp = guest_envp, q = envp; *q; gp += sizeof(abi_ulong), q++) {
8565         if (get_user_ual(addr, gp) || !addr) {
8566             break;
8567         }
8568         unlock_user(*q, addr, 0);
8569     }
8570 
8571     g_free(argp);
8572     g_free(envp);
8573     return ret;
8574 }
8575 
8576 #define TIMER_MAGIC 0x0caf0000
8577 #define TIMER_MAGIC_MASK 0xffff0000
8578 
8579 /* Convert QEMU provided timer ID back to internal 16bit index format */
8580 static target_timer_t get_timer_id(abi_long arg)
8581 {
8582     target_timer_t timerid = arg;
8583 
8584     if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) {
8585         return -TARGET_EINVAL;
8586     }
8587 
8588     timerid &= 0xffff;
8589 
8590     if (timerid >= ARRAY_SIZE(g_posix_timers)) {
8591         return -TARGET_EINVAL;
8592     }
8593 
8594     return timerid;
8595 }
8596 
8597 static int target_to_host_cpu_mask(unsigned long *host_mask,
8598                                    size_t host_size,
8599                                    abi_ulong target_addr,
8600                                    size_t target_size)
8601 {
8602     unsigned target_bits = sizeof(abi_ulong) * 8;
8603     unsigned host_bits = sizeof(*host_mask) * 8;
8604     abi_ulong *target_mask;
8605     unsigned i, j;
8606 
8607     assert(host_size >= target_size);
8608 
8609     target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1);
8610     if (!target_mask) {
8611         return -TARGET_EFAULT;
8612     }
8613     memset(host_mask, 0, host_size);
8614 
8615     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8616         unsigned bit = i * target_bits;
8617         abi_ulong val;
8618 
8619         __get_user(val, &target_mask[i]);
8620         for (j = 0; j < target_bits; j++, bit++) {
8621             if (val & (1UL << j)) {
8622                 host_mask[bit / host_bits] |= 1UL << (bit % host_bits);
8623             }
8624         }
8625     }
8626 
8627     unlock_user(target_mask, target_addr, 0);
8628     return 0;
8629 }
8630 
8631 static int host_to_target_cpu_mask(const unsigned long *host_mask,
8632                                    size_t host_size,
8633                                    abi_ulong target_addr,
8634                                    size_t target_size)
8635 {
8636     unsigned target_bits = sizeof(abi_ulong) * 8;
8637     unsigned host_bits = sizeof(*host_mask) * 8;
8638     abi_ulong *target_mask;
8639     unsigned i, j;
8640 
8641     assert(host_size >= target_size);
8642 
8643     target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0);
8644     if (!target_mask) {
8645         return -TARGET_EFAULT;
8646     }
8647 
8648     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8649         unsigned bit = i * target_bits;
8650         abi_ulong val = 0;
8651 
8652         for (j = 0; j < target_bits; j++, bit++) {
8653             if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) {
8654                 val |= 1UL << j;
8655             }
8656         }
8657         __put_user(val, &target_mask[i]);
8658     }
8659 
8660     unlock_user(target_mask, target_addr, target_size);
8661     return 0;
8662 }
8663 
8664 #ifdef TARGET_NR_getdents
8665 static int do_getdents(abi_long dirfd, abi_long arg2, abi_long count)
8666 {
8667     g_autofree void *hdirp = NULL;
8668     void *tdirp;
8669     int hlen, hoff, toff;
8670     int hreclen, treclen;
8671     off64_t prev_diroff = 0;
8672 
8673     hdirp = g_try_malloc(count);
8674     if (!hdirp) {
8675         return -TARGET_ENOMEM;
8676     }
8677 
8678 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8679     hlen = sys_getdents(dirfd, hdirp, count);
8680 #else
8681     hlen = sys_getdents64(dirfd, hdirp, count);
8682 #endif
8683 
8684     hlen = get_errno(hlen);
8685     if (is_error(hlen)) {
8686         return hlen;
8687     }
8688 
8689     tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8690     if (!tdirp) {
8691         return -TARGET_EFAULT;
8692     }
8693 
8694     for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8695 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8696         struct linux_dirent *hde = hdirp + hoff;
8697 #else
8698         struct linux_dirent64 *hde = hdirp + hoff;
8699 #endif
8700         struct target_dirent *tde = tdirp + toff;
8701         int namelen;
8702         uint8_t type;
8703 
8704         namelen = strlen(hde->d_name);
8705         hreclen = hde->d_reclen;
8706         treclen = offsetof(struct target_dirent, d_name) + namelen + 2;
8707         treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent));
8708 
8709         if (toff + treclen > count) {
8710             /*
8711              * If the host struct is smaller than the target struct, or
8712              * requires less alignment and thus packs into less space,
8713              * then the host can return more entries than we can pass
8714              * on to the guest.
8715              */
8716             if (toff == 0) {
8717                 toff = -TARGET_EINVAL; /* result buffer is too small */
8718                 break;
8719             }
8720             /*
8721              * Return what we have, resetting the file pointer to the
8722              * location of the first record not returned.
8723              */
8724             lseek64(dirfd, prev_diroff, SEEK_SET);
8725             break;
8726         }
8727 
8728         prev_diroff = hde->d_off;
8729         tde->d_ino = tswapal(hde->d_ino);
8730         tde->d_off = tswapal(hde->d_off);
8731         tde->d_reclen = tswap16(treclen);
8732         memcpy(tde->d_name, hde->d_name, namelen + 1);
8733 
8734         /*
8735          * The getdents type is in what was formerly a padding byte at the
8736          * end of the structure.
8737          */
8738 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8739         type = *((uint8_t *)hde + hreclen - 1);
8740 #else
8741         type = hde->d_type;
8742 #endif
8743         *((uint8_t *)tde + treclen - 1) = type;
8744     }
8745 
8746     unlock_user(tdirp, arg2, toff);
8747     return toff;
8748 }
8749 #endif /* TARGET_NR_getdents */
8750 
8751 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
8752 static int do_getdents64(abi_long dirfd, abi_long arg2, abi_long count)
8753 {
8754     g_autofree void *hdirp = NULL;
8755     void *tdirp;
8756     int hlen, hoff, toff;
8757     int hreclen, treclen;
8758     off64_t prev_diroff = 0;
8759 
8760     hdirp = g_try_malloc(count);
8761     if (!hdirp) {
8762         return -TARGET_ENOMEM;
8763     }
8764 
8765     hlen = get_errno(sys_getdents64(dirfd, hdirp, count));
8766     if (is_error(hlen)) {
8767         return hlen;
8768     }
8769 
8770     tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8771     if (!tdirp) {
8772         return -TARGET_EFAULT;
8773     }
8774 
8775     for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8776         struct linux_dirent64 *hde = hdirp + hoff;
8777         struct target_dirent64 *tde = tdirp + toff;
8778         int namelen;
8779 
8780         namelen = strlen(hde->d_name) + 1;
8781         hreclen = hde->d_reclen;
8782         treclen = offsetof(struct target_dirent64, d_name) + namelen;
8783         treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent64));
8784 
8785         if (toff + treclen > count) {
8786             /*
8787              * If the host struct is smaller than the target struct, or
8788              * requires less alignment and thus packs into less space,
8789              * then the host can return more entries than we can pass
8790              * on to the guest.
8791              */
8792             if (toff == 0) {
8793                 toff = -TARGET_EINVAL; /* result buffer is too small */
8794                 break;
8795             }
8796             /*
8797              * Return what we have, resetting the file pointer to the
8798              * location of the first record not returned.
8799              */
8800             lseek64(dirfd, prev_diroff, SEEK_SET);
8801             break;
8802         }
8803 
8804         prev_diroff = hde->d_off;
8805         tde->d_ino = tswap64(hde->d_ino);
8806         tde->d_off = tswap64(hde->d_off);
8807         tde->d_reclen = tswap16(treclen);
8808         tde->d_type = hde->d_type;
8809         memcpy(tde->d_name, hde->d_name, namelen);
8810     }
8811 
8812     unlock_user(tdirp, arg2, toff);
8813     return toff;
8814 }
8815 #endif /* TARGET_NR_getdents64 */
8816 
8817 #if defined(TARGET_NR_riscv_hwprobe)
8818 
8819 #define RISCV_HWPROBE_KEY_MVENDORID     0
8820 #define RISCV_HWPROBE_KEY_MARCHID       1
8821 #define RISCV_HWPROBE_KEY_MIMPID        2
8822 
8823 #define RISCV_HWPROBE_KEY_BASE_BEHAVIOR 3
8824 #define     RISCV_HWPROBE_BASE_BEHAVIOR_IMA (1 << 0)
8825 
8826 #define RISCV_HWPROBE_KEY_IMA_EXT_0         4
8827 #define     RISCV_HWPROBE_IMA_FD            (1 << 0)
8828 #define     RISCV_HWPROBE_IMA_C             (1 << 1)
8829 #define     RISCV_HWPROBE_IMA_V             (1 << 2)
8830 #define     RISCV_HWPROBE_EXT_ZBA           (1 << 3)
8831 #define     RISCV_HWPROBE_EXT_ZBB           (1 << 4)
8832 #define     RISCV_HWPROBE_EXT_ZBS           (1 << 5)
8833 #define     RISCV_HWPROBE_EXT_ZICBOZ        (1 << 6)
8834 #define     RISCV_HWPROBE_EXT_ZBC           (1 << 7)
8835 #define     RISCV_HWPROBE_EXT_ZBKB          (1 << 8)
8836 #define     RISCV_HWPROBE_EXT_ZBKC          (1 << 9)
8837 #define     RISCV_HWPROBE_EXT_ZBKX          (1 << 10)
8838 #define     RISCV_HWPROBE_EXT_ZKND          (1 << 11)
8839 #define     RISCV_HWPROBE_EXT_ZKNE          (1 << 12)
8840 #define     RISCV_HWPROBE_EXT_ZKNH          (1 << 13)
8841 #define     RISCV_HWPROBE_EXT_ZKSED         (1 << 14)
8842 #define     RISCV_HWPROBE_EXT_ZKSH          (1 << 15)
8843 #define     RISCV_HWPROBE_EXT_ZKT           (1 << 16)
8844 #define     RISCV_HWPROBE_EXT_ZVBB          (1 << 17)
8845 #define     RISCV_HWPROBE_EXT_ZVBC          (1 << 18)
8846 #define     RISCV_HWPROBE_EXT_ZVKB          (1 << 19)
8847 #define     RISCV_HWPROBE_EXT_ZVKG          (1 << 20)
8848 #define     RISCV_HWPROBE_EXT_ZVKNED        (1 << 21)
8849 #define     RISCV_HWPROBE_EXT_ZVKNHA        (1 << 22)
8850 #define     RISCV_HWPROBE_EXT_ZVKNHB        (1 << 23)
8851 #define     RISCV_HWPROBE_EXT_ZVKSED        (1 << 24)
8852 #define     RISCV_HWPROBE_EXT_ZVKSH         (1 << 25)
8853 #define     RISCV_HWPROBE_EXT_ZVKT          (1 << 26)
8854 #define     RISCV_HWPROBE_EXT_ZFH           (1 << 27)
8855 #define     RISCV_HWPROBE_EXT_ZFHMIN        (1 << 28)
8856 #define     RISCV_HWPROBE_EXT_ZIHINTNTL     (1 << 29)
8857 #define     RISCV_HWPROBE_EXT_ZVFH          (1 << 30)
8858 #define     RISCV_HWPROBE_EXT_ZVFHMIN       (1ULL << 31)
8859 #define     RISCV_HWPROBE_EXT_ZFA           (1ULL << 32)
8860 #define     RISCV_HWPROBE_EXT_ZTSO          (1ULL << 33)
8861 #define     RISCV_HWPROBE_EXT_ZACAS         (1ULL << 34)
8862 #define     RISCV_HWPROBE_EXT_ZICOND        (1ULL << 35)
8863 
8864 #define RISCV_HWPROBE_KEY_CPUPERF_0     5
8865 #define     RISCV_HWPROBE_MISALIGNED_UNKNOWN     (0 << 0)
8866 #define     RISCV_HWPROBE_MISALIGNED_EMULATED    (1 << 0)
8867 #define     RISCV_HWPROBE_MISALIGNED_SLOW        (2 << 0)
8868 #define     RISCV_HWPROBE_MISALIGNED_FAST        (3 << 0)
8869 #define     RISCV_HWPROBE_MISALIGNED_UNSUPPORTED (4 << 0)
8870 #define     RISCV_HWPROBE_MISALIGNED_MASK        (7 << 0)
8871 
8872 #define RISCV_HWPROBE_KEY_ZICBOZ_BLOCK_SIZE 6
8873 
8874 struct riscv_hwprobe {
8875     abi_llong  key;
8876     abi_ullong value;
8877 };
8878 
8879 static void risc_hwprobe_fill_pairs(CPURISCVState *env,
8880                                     struct riscv_hwprobe *pair,
8881                                     size_t pair_count)
8882 {
8883     const RISCVCPUConfig *cfg = riscv_cpu_cfg(env);
8884 
8885     for (; pair_count > 0; pair_count--, pair++) {
8886         abi_llong key;
8887         abi_ullong value;
8888         __put_user(0, &pair->value);
8889         __get_user(key, &pair->key);
8890         switch (key) {
8891         case RISCV_HWPROBE_KEY_MVENDORID:
8892             __put_user(cfg->mvendorid, &pair->value);
8893             break;
8894         case RISCV_HWPROBE_KEY_MARCHID:
8895             __put_user(cfg->marchid, &pair->value);
8896             break;
8897         case RISCV_HWPROBE_KEY_MIMPID:
8898             __put_user(cfg->mimpid, &pair->value);
8899             break;
8900         case RISCV_HWPROBE_KEY_BASE_BEHAVIOR:
8901             value = riscv_has_ext(env, RVI) &&
8902                     riscv_has_ext(env, RVM) &&
8903                     riscv_has_ext(env, RVA) ?
8904                     RISCV_HWPROBE_BASE_BEHAVIOR_IMA : 0;
8905             __put_user(value, &pair->value);
8906             break;
8907         case RISCV_HWPROBE_KEY_IMA_EXT_0:
8908             value = riscv_has_ext(env, RVF) &&
8909                     riscv_has_ext(env, RVD) ?
8910                     RISCV_HWPROBE_IMA_FD : 0;
8911             value |= riscv_has_ext(env, RVC) ?
8912                      RISCV_HWPROBE_IMA_C : 0;
8913             value |= riscv_has_ext(env, RVV) ?
8914                      RISCV_HWPROBE_IMA_V : 0;
8915             value |= cfg->ext_zba ?
8916                      RISCV_HWPROBE_EXT_ZBA : 0;
8917             value |= cfg->ext_zbb ?
8918                      RISCV_HWPROBE_EXT_ZBB : 0;
8919             value |= cfg->ext_zbs ?
8920                      RISCV_HWPROBE_EXT_ZBS : 0;
8921             value |= cfg->ext_zicboz ?
8922                      RISCV_HWPROBE_EXT_ZICBOZ : 0;
8923             value |= cfg->ext_zbc ?
8924                      RISCV_HWPROBE_EXT_ZBC : 0;
8925             value |= cfg->ext_zbkb ?
8926                      RISCV_HWPROBE_EXT_ZBKB : 0;
8927             value |= cfg->ext_zbkc ?
8928                      RISCV_HWPROBE_EXT_ZBKC : 0;
8929             value |= cfg->ext_zbkx ?
8930                      RISCV_HWPROBE_EXT_ZBKX : 0;
8931             value |= cfg->ext_zknd ?
8932                      RISCV_HWPROBE_EXT_ZKND : 0;
8933             value |= cfg->ext_zkne ?
8934                      RISCV_HWPROBE_EXT_ZKNE : 0;
8935             value |= cfg->ext_zknh ?
8936                      RISCV_HWPROBE_EXT_ZKNH : 0;
8937             value |= cfg->ext_zksed ?
8938                      RISCV_HWPROBE_EXT_ZKSED : 0;
8939             value |= cfg->ext_zksh ?
8940                      RISCV_HWPROBE_EXT_ZKSH : 0;
8941             value |= cfg->ext_zkt ?
8942                      RISCV_HWPROBE_EXT_ZKT : 0;
8943             value |= cfg->ext_zvbb ?
8944                      RISCV_HWPROBE_EXT_ZVBB : 0;
8945             value |= cfg->ext_zvbc ?
8946                      RISCV_HWPROBE_EXT_ZVBC : 0;
8947             value |= cfg->ext_zvkb ?
8948                      RISCV_HWPROBE_EXT_ZVKB : 0;
8949             value |= cfg->ext_zvkg ?
8950                      RISCV_HWPROBE_EXT_ZVKG : 0;
8951             value |= cfg->ext_zvkned ?
8952                      RISCV_HWPROBE_EXT_ZVKNED : 0;
8953             value |= cfg->ext_zvknha ?
8954                      RISCV_HWPROBE_EXT_ZVKNHA : 0;
8955             value |= cfg->ext_zvknhb ?
8956                      RISCV_HWPROBE_EXT_ZVKNHB : 0;
8957             value |= cfg->ext_zvksed ?
8958                      RISCV_HWPROBE_EXT_ZVKSED : 0;
8959             value |= cfg->ext_zvksh ?
8960                      RISCV_HWPROBE_EXT_ZVKSH : 0;
8961             value |= cfg->ext_zvkt ?
8962                      RISCV_HWPROBE_EXT_ZVKT : 0;
8963             value |= cfg->ext_zfh ?
8964                      RISCV_HWPROBE_EXT_ZFH : 0;
8965             value |= cfg->ext_zfhmin ?
8966                      RISCV_HWPROBE_EXT_ZFHMIN : 0;
8967             value |= cfg->ext_zihintntl ?
8968                      RISCV_HWPROBE_EXT_ZIHINTNTL : 0;
8969             value |= cfg->ext_zvfh ?
8970                      RISCV_HWPROBE_EXT_ZVFH : 0;
8971             value |= cfg->ext_zvfhmin ?
8972                      RISCV_HWPROBE_EXT_ZVFHMIN : 0;
8973             value |= cfg->ext_zfa ?
8974                      RISCV_HWPROBE_EXT_ZFA : 0;
8975             value |= cfg->ext_ztso ?
8976                      RISCV_HWPROBE_EXT_ZTSO : 0;
8977             value |= cfg->ext_zacas ?
8978                      RISCV_HWPROBE_EXT_ZACAS : 0;
8979             value |= cfg->ext_zicond ?
8980                      RISCV_HWPROBE_EXT_ZICOND : 0;
8981             __put_user(value, &pair->value);
8982             break;
8983         case RISCV_HWPROBE_KEY_CPUPERF_0:
8984             __put_user(RISCV_HWPROBE_MISALIGNED_FAST, &pair->value);
8985             break;
8986         case RISCV_HWPROBE_KEY_ZICBOZ_BLOCK_SIZE:
8987             value = cfg->ext_zicboz ? cfg->cboz_blocksize : 0;
8988             __put_user(value, &pair->value);
8989             break;
8990         default:
8991             __put_user(-1, &pair->key);
8992             break;
8993         }
8994     }
8995 }
8996 
8997 static int cpu_set_valid(abi_long arg3, abi_long arg4)
8998 {
8999     int ret, i, tmp;
9000     size_t host_mask_size, target_mask_size;
9001     unsigned long *host_mask;
9002 
9003     /*
9004      * cpu_set_t represent CPU masks as bit masks of type unsigned long *.
9005      * arg3 contains the cpu count.
9006      */
9007     tmp = (8 * sizeof(abi_ulong));
9008     target_mask_size = ((arg3 + tmp - 1) / tmp) * sizeof(abi_ulong);
9009     host_mask_size = (target_mask_size + (sizeof(*host_mask) - 1)) &
9010                      ~(sizeof(*host_mask) - 1);
9011 
9012     host_mask = alloca(host_mask_size);
9013 
9014     ret = target_to_host_cpu_mask(host_mask, host_mask_size,
9015                                   arg4, target_mask_size);
9016     if (ret != 0) {
9017         return ret;
9018     }
9019 
9020     for (i = 0 ; i < host_mask_size / sizeof(*host_mask); i++) {
9021         if (host_mask[i] != 0) {
9022             return 0;
9023         }
9024     }
9025     return -TARGET_EINVAL;
9026 }
9027 
9028 static abi_long do_riscv_hwprobe(CPUArchState *cpu_env, abi_long arg1,
9029                                  abi_long arg2, abi_long arg3,
9030                                  abi_long arg4, abi_long arg5)
9031 {
9032     int ret;
9033     struct riscv_hwprobe *host_pairs;
9034 
9035     /* flags must be 0 */
9036     if (arg5 != 0) {
9037         return -TARGET_EINVAL;
9038     }
9039 
9040     /* check cpu_set */
9041     if (arg3 != 0) {
9042         ret = cpu_set_valid(arg3, arg4);
9043         if (ret != 0) {
9044             return ret;
9045         }
9046     } else if (arg4 != 0) {
9047         return -TARGET_EINVAL;
9048     }
9049 
9050     /* no pairs */
9051     if (arg2 == 0) {
9052         return 0;
9053     }
9054 
9055     host_pairs = lock_user(VERIFY_WRITE, arg1,
9056                            sizeof(*host_pairs) * (size_t)arg2, 0);
9057     if (host_pairs == NULL) {
9058         return -TARGET_EFAULT;
9059     }
9060     risc_hwprobe_fill_pairs(cpu_env, host_pairs, arg2);
9061     unlock_user(host_pairs, arg1, sizeof(*host_pairs) * (size_t)arg2);
9062     return 0;
9063 }
9064 #endif /* TARGET_NR_riscv_hwprobe */
9065 
9066 #if defined(TARGET_NR_pivot_root) && defined(__NR_pivot_root)
9067 _syscall2(int, pivot_root, const char *, new_root, const char *, put_old)
9068 #endif
9069 
9070 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree)
9071 #define __NR_sys_open_tree __NR_open_tree
9072 _syscall3(int, sys_open_tree, int, __dfd, const char *, __filename,
9073           unsigned int, __flags)
9074 #endif
9075 
9076 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount)
9077 #define __NR_sys_move_mount __NR_move_mount
9078 _syscall5(int, sys_move_mount, int, __from_dfd, const char *, __from_pathname,
9079            int, __to_dfd, const char *, __to_pathname, unsigned int, flag)
9080 #endif
9081 
9082 /* This is an internal helper for do_syscall so that it is easier
9083  * to have a single return point, so that actions, such as logging
9084  * of syscall results, can be performed.
9085  * All errnos that do_syscall() returns must be -TARGET_<errcode>.
9086  */
9087 static abi_long do_syscall1(CPUArchState *cpu_env, int num, abi_long arg1,
9088                             abi_long arg2, abi_long arg3, abi_long arg4,
9089                             abi_long arg5, abi_long arg6, abi_long arg7,
9090                             abi_long arg8)
9091 {
9092     CPUState *cpu = env_cpu(cpu_env);
9093     abi_long ret;
9094 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \
9095     || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \
9096     || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \
9097     || defined(TARGET_NR_statx)
9098     struct stat st;
9099 #endif
9100 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \
9101     || defined(TARGET_NR_fstatfs)
9102     struct statfs stfs;
9103 #endif
9104     void *p;
9105 
9106     switch(num) {
9107     case TARGET_NR_exit:
9108         /* In old applications this may be used to implement _exit(2).
9109            However in threaded applications it is used for thread termination,
9110            and _exit_group is used for application termination.
9111            Do thread termination if we have more then one thread.  */
9112 
9113         if (block_signals()) {
9114             return -QEMU_ERESTARTSYS;
9115         }
9116 
9117         pthread_mutex_lock(&clone_lock);
9118 
9119         if (CPU_NEXT(first_cpu)) {
9120             TaskState *ts = get_task_state(cpu);
9121 
9122             if (ts->child_tidptr) {
9123                 put_user_u32(0, ts->child_tidptr);
9124                 do_sys_futex(g2h(cpu, ts->child_tidptr),
9125                              FUTEX_WAKE, INT_MAX, NULL, NULL, 0);
9126             }
9127 
9128             object_unparent(OBJECT(cpu));
9129             object_unref(OBJECT(cpu));
9130             /*
9131              * At this point the CPU should be unrealized and removed
9132              * from cpu lists. We can clean-up the rest of the thread
9133              * data without the lock held.
9134              */
9135 
9136             pthread_mutex_unlock(&clone_lock);
9137 
9138             thread_cpu = NULL;
9139             g_free(ts);
9140             rcu_unregister_thread();
9141             pthread_exit(NULL);
9142         }
9143 
9144         pthread_mutex_unlock(&clone_lock);
9145         preexit_cleanup(cpu_env, arg1);
9146         _exit(arg1);
9147         return 0; /* avoid warning */
9148     case TARGET_NR_read:
9149         if (arg2 == 0 && arg3 == 0) {
9150             return get_errno(safe_read(arg1, 0, 0));
9151         } else {
9152             if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
9153                 return -TARGET_EFAULT;
9154             ret = get_errno(safe_read(arg1, p, arg3));
9155             if (ret >= 0 &&
9156                 fd_trans_host_to_target_data(arg1)) {
9157                 ret = fd_trans_host_to_target_data(arg1)(p, ret);
9158             }
9159             unlock_user(p, arg2, ret);
9160         }
9161         return ret;
9162     case TARGET_NR_write:
9163         if (arg2 == 0 && arg3 == 0) {
9164             return get_errno(safe_write(arg1, 0, 0));
9165         }
9166         if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
9167             return -TARGET_EFAULT;
9168         if (fd_trans_target_to_host_data(arg1)) {
9169             void *copy = g_malloc(arg3);
9170             memcpy(copy, p, arg3);
9171             ret = fd_trans_target_to_host_data(arg1)(copy, arg3);
9172             if (ret >= 0) {
9173                 ret = get_errno(safe_write(arg1, copy, ret));
9174             }
9175             g_free(copy);
9176         } else {
9177             ret = get_errno(safe_write(arg1, p, arg3));
9178         }
9179         unlock_user(p, arg2, 0);
9180         return ret;
9181 
9182 #ifdef TARGET_NR_open
9183     case TARGET_NR_open:
9184         if (!(p = lock_user_string(arg1)))
9185             return -TARGET_EFAULT;
9186         ret = get_errno(do_guest_openat(cpu_env, AT_FDCWD, p,
9187                                   target_to_host_bitmask(arg2, fcntl_flags_tbl),
9188                                   arg3, true));
9189         fd_trans_unregister(ret);
9190         unlock_user(p, arg1, 0);
9191         return ret;
9192 #endif
9193     case TARGET_NR_openat:
9194         if (!(p = lock_user_string(arg2)))
9195             return -TARGET_EFAULT;
9196         ret = get_errno(do_guest_openat(cpu_env, arg1, p,
9197                                   target_to_host_bitmask(arg3, fcntl_flags_tbl),
9198                                   arg4, true));
9199         fd_trans_unregister(ret);
9200         unlock_user(p, arg2, 0);
9201         return ret;
9202 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
9203     case TARGET_NR_name_to_handle_at:
9204         ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5);
9205         return ret;
9206 #endif
9207 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
9208     case TARGET_NR_open_by_handle_at:
9209         ret = do_open_by_handle_at(arg1, arg2, arg3);
9210         fd_trans_unregister(ret);
9211         return ret;
9212 #endif
9213 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
9214     case TARGET_NR_pidfd_open:
9215         return get_errno(pidfd_open(arg1, arg2));
9216 #endif
9217 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
9218     case TARGET_NR_pidfd_send_signal:
9219         {
9220             siginfo_t uinfo, *puinfo;
9221 
9222             if (arg3) {
9223                 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
9224                 if (!p) {
9225                     return -TARGET_EFAULT;
9226                  }
9227                  target_to_host_siginfo(&uinfo, p);
9228                  unlock_user(p, arg3, 0);
9229                  puinfo = &uinfo;
9230             } else {
9231                  puinfo = NULL;
9232             }
9233             ret = get_errno(pidfd_send_signal(arg1, target_to_host_signal(arg2),
9234                                               puinfo, arg4));
9235         }
9236         return ret;
9237 #endif
9238 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
9239     case TARGET_NR_pidfd_getfd:
9240         return get_errno(pidfd_getfd(arg1, arg2, arg3));
9241 #endif
9242     case TARGET_NR_close:
9243         fd_trans_unregister(arg1);
9244         return get_errno(close(arg1));
9245 #if defined(__NR_close_range) && defined(TARGET_NR_close_range)
9246     case TARGET_NR_close_range:
9247         ret = get_errno(sys_close_range(arg1, arg2, arg3));
9248         if (ret == 0 && !(arg3 & CLOSE_RANGE_CLOEXEC)) {
9249             abi_long fd, maxfd;
9250             maxfd = MIN(arg2, target_fd_max);
9251             for (fd = arg1; fd < maxfd; fd++) {
9252                 fd_trans_unregister(fd);
9253             }
9254         }
9255         return ret;
9256 #endif
9257 
9258     case TARGET_NR_brk:
9259         return do_brk(arg1);
9260 #ifdef TARGET_NR_fork
9261     case TARGET_NR_fork:
9262         return get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0));
9263 #endif
9264 #ifdef TARGET_NR_waitpid
9265     case TARGET_NR_waitpid:
9266         {
9267             int status;
9268             ret = get_errno(safe_wait4(arg1, &status, arg3, 0));
9269             if (!is_error(ret) && arg2 && ret
9270                 && put_user_s32(host_to_target_waitstatus(status), arg2))
9271                 return -TARGET_EFAULT;
9272         }
9273         return ret;
9274 #endif
9275 #ifdef TARGET_NR_waitid
9276     case TARGET_NR_waitid:
9277         {
9278             struct rusage ru;
9279             siginfo_t info;
9280 
9281             ret = get_errno(safe_waitid(arg1, arg2, (arg3 ? &info : NULL),
9282                                         arg4, (arg5 ? &ru : NULL)));
9283             if (!is_error(ret)) {
9284                 if (arg3) {
9285                     p = lock_user(VERIFY_WRITE, arg3,
9286                                   sizeof(target_siginfo_t), 0);
9287                     if (!p) {
9288                         return -TARGET_EFAULT;
9289                     }
9290                     host_to_target_siginfo(p, &info);
9291                     unlock_user(p, arg3, sizeof(target_siginfo_t));
9292                 }
9293                 if (arg5 && host_to_target_rusage(arg5, &ru)) {
9294                     return -TARGET_EFAULT;
9295                 }
9296             }
9297         }
9298         return ret;
9299 #endif
9300 #ifdef TARGET_NR_creat /* not on alpha */
9301     case TARGET_NR_creat:
9302         if (!(p = lock_user_string(arg1)))
9303             return -TARGET_EFAULT;
9304         ret = get_errno(creat(p, arg2));
9305         fd_trans_unregister(ret);
9306         unlock_user(p, arg1, 0);
9307         return ret;
9308 #endif
9309 #ifdef TARGET_NR_link
9310     case TARGET_NR_link:
9311         {
9312             void * p2;
9313             p = lock_user_string(arg1);
9314             p2 = lock_user_string(arg2);
9315             if (!p || !p2)
9316                 ret = -TARGET_EFAULT;
9317             else
9318                 ret = get_errno(link(p, p2));
9319             unlock_user(p2, arg2, 0);
9320             unlock_user(p, arg1, 0);
9321         }
9322         return ret;
9323 #endif
9324 #if defined(TARGET_NR_linkat)
9325     case TARGET_NR_linkat:
9326         {
9327             void * p2 = NULL;
9328             if (!arg2 || !arg4)
9329                 return -TARGET_EFAULT;
9330             p  = lock_user_string(arg2);
9331             p2 = lock_user_string(arg4);
9332             if (!p || !p2)
9333                 ret = -TARGET_EFAULT;
9334             else
9335                 ret = get_errno(linkat(arg1, p, arg3, p2, arg5));
9336             unlock_user(p, arg2, 0);
9337             unlock_user(p2, arg4, 0);
9338         }
9339         return ret;
9340 #endif
9341 #ifdef TARGET_NR_unlink
9342     case TARGET_NR_unlink:
9343         if (!(p = lock_user_string(arg1)))
9344             return -TARGET_EFAULT;
9345         ret = get_errno(unlink(p));
9346         unlock_user(p, arg1, 0);
9347         return ret;
9348 #endif
9349 #if defined(TARGET_NR_unlinkat)
9350     case TARGET_NR_unlinkat:
9351         if (!(p = lock_user_string(arg2)))
9352             return -TARGET_EFAULT;
9353         ret = get_errno(unlinkat(arg1, p, arg3));
9354         unlock_user(p, arg2, 0);
9355         return ret;
9356 #endif
9357     case TARGET_NR_execveat:
9358         return do_execv(cpu_env, arg1, arg2, arg3, arg4, arg5, true);
9359     case TARGET_NR_execve:
9360         return do_execv(cpu_env, AT_FDCWD, arg1, arg2, arg3, 0, false);
9361     case TARGET_NR_chdir:
9362         if (!(p = lock_user_string(arg1)))
9363             return -TARGET_EFAULT;
9364         ret = get_errno(chdir(p));
9365         unlock_user(p, arg1, 0);
9366         return ret;
9367 #ifdef TARGET_NR_time
9368     case TARGET_NR_time:
9369         {
9370             time_t host_time;
9371             ret = get_errno(time(&host_time));
9372             if (!is_error(ret)
9373                 && arg1
9374                 && put_user_sal(host_time, arg1))
9375                 return -TARGET_EFAULT;
9376         }
9377         return ret;
9378 #endif
9379 #ifdef TARGET_NR_mknod
9380     case TARGET_NR_mknod:
9381         if (!(p = lock_user_string(arg1)))
9382             return -TARGET_EFAULT;
9383         ret = get_errno(mknod(p, arg2, arg3));
9384         unlock_user(p, arg1, 0);
9385         return ret;
9386 #endif
9387 #if defined(TARGET_NR_mknodat)
9388     case TARGET_NR_mknodat:
9389         if (!(p = lock_user_string(arg2)))
9390             return -TARGET_EFAULT;
9391         ret = get_errno(mknodat(arg1, p, arg3, arg4));
9392         unlock_user(p, arg2, 0);
9393         return ret;
9394 #endif
9395 #ifdef TARGET_NR_chmod
9396     case TARGET_NR_chmod:
9397         if (!(p = lock_user_string(arg1)))
9398             return -TARGET_EFAULT;
9399         ret = get_errno(chmod(p, arg2));
9400         unlock_user(p, arg1, 0);
9401         return ret;
9402 #endif
9403 #ifdef TARGET_NR_lseek
9404     case TARGET_NR_lseek:
9405         return get_errno(lseek(arg1, arg2, arg3));
9406 #endif
9407 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
9408     /* Alpha specific */
9409     case TARGET_NR_getxpid:
9410         cpu_env->ir[IR_A4] = getppid();
9411         return get_errno(getpid());
9412 #endif
9413 #ifdef TARGET_NR_getpid
9414     case TARGET_NR_getpid:
9415         return get_errno(getpid());
9416 #endif
9417     case TARGET_NR_mount:
9418         {
9419             /* need to look at the data field */
9420             void *p2, *p3;
9421 
9422             if (arg1) {
9423                 p = lock_user_string(arg1);
9424                 if (!p) {
9425                     return -TARGET_EFAULT;
9426                 }
9427             } else {
9428                 p = NULL;
9429             }
9430 
9431             p2 = lock_user_string(arg2);
9432             if (!p2) {
9433                 if (arg1) {
9434                     unlock_user(p, arg1, 0);
9435                 }
9436                 return -TARGET_EFAULT;
9437             }
9438 
9439             if (arg3) {
9440                 p3 = lock_user_string(arg3);
9441                 if (!p3) {
9442                     if (arg1) {
9443                         unlock_user(p, arg1, 0);
9444                     }
9445                     unlock_user(p2, arg2, 0);
9446                     return -TARGET_EFAULT;
9447                 }
9448             } else {
9449                 p3 = NULL;
9450             }
9451 
9452             /* FIXME - arg5 should be locked, but it isn't clear how to
9453              * do that since it's not guaranteed to be a NULL-terminated
9454              * string.
9455              */
9456             if (!arg5) {
9457                 ret = mount(p, p2, p3, (unsigned long)arg4, NULL);
9458             } else {
9459                 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(cpu, arg5));
9460             }
9461             ret = get_errno(ret);
9462 
9463             if (arg1) {
9464                 unlock_user(p, arg1, 0);
9465             }
9466             unlock_user(p2, arg2, 0);
9467             if (arg3) {
9468                 unlock_user(p3, arg3, 0);
9469             }
9470         }
9471         return ret;
9472 #if defined(TARGET_NR_umount) || defined(TARGET_NR_oldumount)
9473 #if defined(TARGET_NR_umount)
9474     case TARGET_NR_umount:
9475 #endif
9476 #if defined(TARGET_NR_oldumount)
9477     case TARGET_NR_oldumount:
9478 #endif
9479         if (!(p = lock_user_string(arg1)))
9480             return -TARGET_EFAULT;
9481         ret = get_errno(umount(p));
9482         unlock_user(p, arg1, 0);
9483         return ret;
9484 #endif
9485 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount)
9486     case TARGET_NR_move_mount:
9487         {
9488             void *p2, *p4;
9489 
9490             if (!arg2 || !arg4) {
9491                 return -TARGET_EFAULT;
9492             }
9493 
9494             p2 = lock_user_string(arg2);
9495             if (!p2) {
9496                 return -TARGET_EFAULT;
9497             }
9498 
9499             p4 = lock_user_string(arg4);
9500             if (!p4) {
9501                 unlock_user(p2, arg2, 0);
9502                 return -TARGET_EFAULT;
9503             }
9504             ret = get_errno(sys_move_mount(arg1, p2, arg3, p4, arg5));
9505 
9506             unlock_user(p2, arg2, 0);
9507             unlock_user(p4, arg4, 0);
9508 
9509             return ret;
9510         }
9511 #endif
9512 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree)
9513     case TARGET_NR_open_tree:
9514         {
9515             void *p2;
9516             int host_flags;
9517 
9518             if (!arg2) {
9519                 return -TARGET_EFAULT;
9520             }
9521 
9522             p2 = lock_user_string(arg2);
9523             if (!p2) {
9524                 return -TARGET_EFAULT;
9525             }
9526 
9527             host_flags = arg3 & ~TARGET_O_CLOEXEC;
9528             if (arg3 & TARGET_O_CLOEXEC) {
9529                 host_flags |= O_CLOEXEC;
9530             }
9531 
9532             ret = get_errno(sys_open_tree(arg1, p2, host_flags));
9533 
9534             unlock_user(p2, arg2, 0);
9535 
9536             return ret;
9537         }
9538 #endif
9539 #ifdef TARGET_NR_stime /* not on alpha */
9540     case TARGET_NR_stime:
9541         {
9542             struct timespec ts;
9543             ts.tv_nsec = 0;
9544             if (get_user_sal(ts.tv_sec, arg1)) {
9545                 return -TARGET_EFAULT;
9546             }
9547             return get_errno(clock_settime(CLOCK_REALTIME, &ts));
9548         }
9549 #endif
9550 #ifdef TARGET_NR_alarm /* not on alpha */
9551     case TARGET_NR_alarm:
9552         return alarm(arg1);
9553 #endif
9554 #ifdef TARGET_NR_pause /* not on alpha */
9555     case TARGET_NR_pause:
9556         if (!block_signals()) {
9557             sigsuspend(&get_task_state(cpu)->signal_mask);
9558         }
9559         return -TARGET_EINTR;
9560 #endif
9561 #ifdef TARGET_NR_utime
9562     case TARGET_NR_utime:
9563         {
9564             struct utimbuf tbuf, *host_tbuf;
9565             struct target_utimbuf *target_tbuf;
9566             if (arg2) {
9567                 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1))
9568                     return -TARGET_EFAULT;
9569                 tbuf.actime = tswapal(target_tbuf->actime);
9570                 tbuf.modtime = tswapal(target_tbuf->modtime);
9571                 unlock_user_struct(target_tbuf, arg2, 0);
9572                 host_tbuf = &tbuf;
9573             } else {
9574                 host_tbuf = NULL;
9575             }
9576             if (!(p = lock_user_string(arg1)))
9577                 return -TARGET_EFAULT;
9578             ret = get_errno(utime(p, host_tbuf));
9579             unlock_user(p, arg1, 0);
9580         }
9581         return ret;
9582 #endif
9583 #ifdef TARGET_NR_utimes
9584     case TARGET_NR_utimes:
9585         {
9586             struct timeval *tvp, tv[2];
9587             if (arg2) {
9588                 if (copy_from_user_timeval(&tv[0], arg2)
9589                     || copy_from_user_timeval(&tv[1],
9590                                               arg2 + sizeof(struct target_timeval)))
9591                     return -TARGET_EFAULT;
9592                 tvp = tv;
9593             } else {
9594                 tvp = NULL;
9595             }
9596             if (!(p = lock_user_string(arg1)))
9597                 return -TARGET_EFAULT;
9598             ret = get_errno(utimes(p, tvp));
9599             unlock_user(p, arg1, 0);
9600         }
9601         return ret;
9602 #endif
9603 #if defined(TARGET_NR_futimesat)
9604     case TARGET_NR_futimesat:
9605         {
9606             struct timeval *tvp, tv[2];
9607             if (arg3) {
9608                 if (copy_from_user_timeval(&tv[0], arg3)
9609                     || copy_from_user_timeval(&tv[1],
9610                                               arg3 + sizeof(struct target_timeval)))
9611                     return -TARGET_EFAULT;
9612                 tvp = tv;
9613             } else {
9614                 tvp = NULL;
9615             }
9616             if (!(p = lock_user_string(arg2))) {
9617                 return -TARGET_EFAULT;
9618             }
9619             ret = get_errno(futimesat(arg1, path(p), tvp));
9620             unlock_user(p, arg2, 0);
9621         }
9622         return ret;
9623 #endif
9624 #ifdef TARGET_NR_access
9625     case TARGET_NR_access:
9626         if (!(p = lock_user_string(arg1))) {
9627             return -TARGET_EFAULT;
9628         }
9629         ret = get_errno(access(path(p), arg2));
9630         unlock_user(p, arg1, 0);
9631         return ret;
9632 #endif
9633 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
9634     case TARGET_NR_faccessat:
9635         if (!(p = lock_user_string(arg2))) {
9636             return -TARGET_EFAULT;
9637         }
9638         ret = get_errno(faccessat(arg1, p, arg3, 0));
9639         unlock_user(p, arg2, 0);
9640         return ret;
9641 #endif
9642 #if defined(TARGET_NR_faccessat2)
9643     case TARGET_NR_faccessat2:
9644         if (!(p = lock_user_string(arg2))) {
9645             return -TARGET_EFAULT;
9646         }
9647         ret = get_errno(faccessat(arg1, p, arg3, arg4));
9648         unlock_user(p, arg2, 0);
9649         return ret;
9650 #endif
9651 #ifdef TARGET_NR_nice /* not on alpha */
9652     case TARGET_NR_nice:
9653         return get_errno(nice(arg1));
9654 #endif
9655     case TARGET_NR_sync:
9656         sync();
9657         return 0;
9658 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS)
9659     case TARGET_NR_syncfs:
9660         return get_errno(syncfs(arg1));
9661 #endif
9662     case TARGET_NR_kill:
9663         return get_errno(safe_kill(arg1, target_to_host_signal(arg2)));
9664 #ifdef TARGET_NR_rename
9665     case TARGET_NR_rename:
9666         {
9667             void *p2;
9668             p = lock_user_string(arg1);
9669             p2 = lock_user_string(arg2);
9670             if (!p || !p2)
9671                 ret = -TARGET_EFAULT;
9672             else
9673                 ret = get_errno(rename(p, p2));
9674             unlock_user(p2, arg2, 0);
9675             unlock_user(p, arg1, 0);
9676         }
9677         return ret;
9678 #endif
9679 #if defined(TARGET_NR_renameat)
9680     case TARGET_NR_renameat:
9681         {
9682             void *p2;
9683             p  = lock_user_string(arg2);
9684             p2 = lock_user_string(arg4);
9685             if (!p || !p2)
9686                 ret = -TARGET_EFAULT;
9687             else
9688                 ret = get_errno(renameat(arg1, p, arg3, p2));
9689             unlock_user(p2, arg4, 0);
9690             unlock_user(p, arg2, 0);
9691         }
9692         return ret;
9693 #endif
9694 #if defined(TARGET_NR_renameat2)
9695     case TARGET_NR_renameat2:
9696         {
9697             void *p2;
9698             p  = lock_user_string(arg2);
9699             p2 = lock_user_string(arg4);
9700             if (!p || !p2) {
9701                 ret = -TARGET_EFAULT;
9702             } else {
9703                 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5));
9704             }
9705             unlock_user(p2, arg4, 0);
9706             unlock_user(p, arg2, 0);
9707         }
9708         return ret;
9709 #endif
9710 #ifdef TARGET_NR_mkdir
9711     case TARGET_NR_mkdir:
9712         if (!(p = lock_user_string(arg1)))
9713             return -TARGET_EFAULT;
9714         ret = get_errno(mkdir(p, arg2));
9715         unlock_user(p, arg1, 0);
9716         return ret;
9717 #endif
9718 #if defined(TARGET_NR_mkdirat)
9719     case TARGET_NR_mkdirat:
9720         if (!(p = lock_user_string(arg2)))
9721             return -TARGET_EFAULT;
9722         ret = get_errno(mkdirat(arg1, p, arg3));
9723         unlock_user(p, arg2, 0);
9724         return ret;
9725 #endif
9726 #ifdef TARGET_NR_rmdir
9727     case TARGET_NR_rmdir:
9728         if (!(p = lock_user_string(arg1)))
9729             return -TARGET_EFAULT;
9730         ret = get_errno(rmdir(p));
9731         unlock_user(p, arg1, 0);
9732         return ret;
9733 #endif
9734     case TARGET_NR_dup:
9735         ret = get_errno(dup(arg1));
9736         if (ret >= 0) {
9737             fd_trans_dup(arg1, ret);
9738         }
9739         return ret;
9740 #ifdef TARGET_NR_pipe
9741     case TARGET_NR_pipe:
9742         return do_pipe(cpu_env, arg1, 0, 0);
9743 #endif
9744 #ifdef TARGET_NR_pipe2
9745     case TARGET_NR_pipe2:
9746         return do_pipe(cpu_env, arg1,
9747                        target_to_host_bitmask(arg2, fcntl_flags_tbl), 1);
9748 #endif
9749     case TARGET_NR_times:
9750         {
9751             struct target_tms *tmsp;
9752             struct tms tms;
9753             ret = get_errno(times(&tms));
9754             if (arg1) {
9755                 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0);
9756                 if (!tmsp)
9757                     return -TARGET_EFAULT;
9758                 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime));
9759                 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime));
9760                 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime));
9761                 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime));
9762             }
9763             if (!is_error(ret))
9764                 ret = host_to_target_clock_t(ret);
9765         }
9766         return ret;
9767     case TARGET_NR_acct:
9768         if (arg1 == 0) {
9769             ret = get_errno(acct(NULL));
9770         } else {
9771             if (!(p = lock_user_string(arg1))) {
9772                 return -TARGET_EFAULT;
9773             }
9774             ret = get_errno(acct(path(p)));
9775             unlock_user(p, arg1, 0);
9776         }
9777         return ret;
9778 #ifdef TARGET_NR_umount2
9779     case TARGET_NR_umount2:
9780         if (!(p = lock_user_string(arg1)))
9781             return -TARGET_EFAULT;
9782         ret = get_errno(umount2(p, arg2));
9783         unlock_user(p, arg1, 0);
9784         return ret;
9785 #endif
9786     case TARGET_NR_ioctl:
9787         return do_ioctl(arg1, arg2, arg3);
9788 #ifdef TARGET_NR_fcntl
9789     case TARGET_NR_fcntl:
9790         return do_fcntl(arg1, arg2, arg3);
9791 #endif
9792     case TARGET_NR_setpgid:
9793         return get_errno(setpgid(arg1, arg2));
9794     case TARGET_NR_umask:
9795         return get_errno(umask(arg1));
9796     case TARGET_NR_chroot:
9797         if (!(p = lock_user_string(arg1)))
9798             return -TARGET_EFAULT;
9799         ret = get_errno(chroot(p));
9800         unlock_user(p, arg1, 0);
9801         return ret;
9802 #ifdef TARGET_NR_dup2
9803     case TARGET_NR_dup2:
9804         ret = get_errno(dup2(arg1, arg2));
9805         if (ret >= 0) {
9806             fd_trans_dup(arg1, arg2);
9807         }
9808         return ret;
9809 #endif
9810 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
9811     case TARGET_NR_dup3:
9812     {
9813         int host_flags;
9814 
9815         if ((arg3 & ~TARGET_O_CLOEXEC) != 0) {
9816             return -EINVAL;
9817         }
9818         host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl);
9819         ret = get_errno(dup3(arg1, arg2, host_flags));
9820         if (ret >= 0) {
9821             fd_trans_dup(arg1, arg2);
9822         }
9823         return ret;
9824     }
9825 #endif
9826 #ifdef TARGET_NR_getppid /* not on alpha */
9827     case TARGET_NR_getppid:
9828         return get_errno(getppid());
9829 #endif
9830 #ifdef TARGET_NR_getpgrp
9831     case TARGET_NR_getpgrp:
9832         return get_errno(getpgrp());
9833 #endif
9834     case TARGET_NR_setsid:
9835         return get_errno(setsid());
9836 #ifdef TARGET_NR_sigaction
9837     case TARGET_NR_sigaction:
9838         {
9839 #if defined(TARGET_MIPS)
9840 	    struct target_sigaction act, oact, *pact, *old_act;
9841 
9842 	    if (arg2) {
9843                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9844                     return -TARGET_EFAULT;
9845 		act._sa_handler = old_act->_sa_handler;
9846 		target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]);
9847 		act.sa_flags = old_act->sa_flags;
9848 		unlock_user_struct(old_act, arg2, 0);
9849 		pact = &act;
9850 	    } else {
9851 		pact = NULL;
9852 	    }
9853 
9854         ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9855 
9856 	    if (!is_error(ret) && arg3) {
9857                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9858                     return -TARGET_EFAULT;
9859 		old_act->_sa_handler = oact._sa_handler;
9860 		old_act->sa_flags = oact.sa_flags;
9861 		old_act->sa_mask.sig[0] = oact.sa_mask.sig[0];
9862 		old_act->sa_mask.sig[1] = 0;
9863 		old_act->sa_mask.sig[2] = 0;
9864 		old_act->sa_mask.sig[3] = 0;
9865 		unlock_user_struct(old_act, arg3, 1);
9866 	    }
9867 #else
9868             struct target_old_sigaction *old_act;
9869             struct target_sigaction act, oact, *pact;
9870             if (arg2) {
9871                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9872                     return -TARGET_EFAULT;
9873                 act._sa_handler = old_act->_sa_handler;
9874                 target_siginitset(&act.sa_mask, old_act->sa_mask);
9875                 act.sa_flags = old_act->sa_flags;
9876 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9877                 act.sa_restorer = old_act->sa_restorer;
9878 #endif
9879                 unlock_user_struct(old_act, arg2, 0);
9880                 pact = &act;
9881             } else {
9882                 pact = NULL;
9883             }
9884             ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9885             if (!is_error(ret) && arg3) {
9886                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9887                     return -TARGET_EFAULT;
9888                 old_act->_sa_handler = oact._sa_handler;
9889                 old_act->sa_mask = oact.sa_mask.sig[0];
9890                 old_act->sa_flags = oact.sa_flags;
9891 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9892                 old_act->sa_restorer = oact.sa_restorer;
9893 #endif
9894                 unlock_user_struct(old_act, arg3, 1);
9895             }
9896 #endif
9897         }
9898         return ret;
9899 #endif
9900     case TARGET_NR_rt_sigaction:
9901         {
9902             /*
9903              * For Alpha and SPARC this is a 5 argument syscall, with
9904              * a 'restorer' parameter which must be copied into the
9905              * sa_restorer field of the sigaction struct.
9906              * For Alpha that 'restorer' is arg5; for SPARC it is arg4,
9907              * and arg5 is the sigsetsize.
9908              */
9909 #if defined(TARGET_ALPHA)
9910             target_ulong sigsetsize = arg4;
9911             target_ulong restorer = arg5;
9912 #elif defined(TARGET_SPARC)
9913             target_ulong restorer = arg4;
9914             target_ulong sigsetsize = arg5;
9915 #else
9916             target_ulong sigsetsize = arg4;
9917             target_ulong restorer = 0;
9918 #endif
9919             struct target_sigaction *act = NULL;
9920             struct target_sigaction *oact = NULL;
9921 
9922             if (sigsetsize != sizeof(target_sigset_t)) {
9923                 return -TARGET_EINVAL;
9924             }
9925             if (arg2 && !lock_user_struct(VERIFY_READ, act, arg2, 1)) {
9926                 return -TARGET_EFAULT;
9927             }
9928             if (arg3 && !lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) {
9929                 ret = -TARGET_EFAULT;
9930             } else {
9931                 ret = get_errno(do_sigaction(arg1, act, oact, restorer));
9932                 if (oact) {
9933                     unlock_user_struct(oact, arg3, 1);
9934                 }
9935             }
9936             if (act) {
9937                 unlock_user_struct(act, arg2, 0);
9938             }
9939         }
9940         return ret;
9941 #ifdef TARGET_NR_sgetmask /* not on alpha */
9942     case TARGET_NR_sgetmask:
9943         {
9944             sigset_t cur_set;
9945             abi_ulong target_set;
9946             ret = do_sigprocmask(0, NULL, &cur_set);
9947             if (!ret) {
9948                 host_to_target_old_sigset(&target_set, &cur_set);
9949                 ret = target_set;
9950             }
9951         }
9952         return ret;
9953 #endif
9954 #ifdef TARGET_NR_ssetmask /* not on alpha */
9955     case TARGET_NR_ssetmask:
9956         {
9957             sigset_t set, oset;
9958             abi_ulong target_set = arg1;
9959             target_to_host_old_sigset(&set, &target_set);
9960             ret = do_sigprocmask(SIG_SETMASK, &set, &oset);
9961             if (!ret) {
9962                 host_to_target_old_sigset(&target_set, &oset);
9963                 ret = target_set;
9964             }
9965         }
9966         return ret;
9967 #endif
9968 #ifdef TARGET_NR_sigprocmask
9969     case TARGET_NR_sigprocmask:
9970         {
9971 #if defined(TARGET_ALPHA)
9972             sigset_t set, oldset;
9973             abi_ulong mask;
9974             int how;
9975 
9976             switch (arg1) {
9977             case TARGET_SIG_BLOCK:
9978                 how = SIG_BLOCK;
9979                 break;
9980             case TARGET_SIG_UNBLOCK:
9981                 how = SIG_UNBLOCK;
9982                 break;
9983             case TARGET_SIG_SETMASK:
9984                 how = SIG_SETMASK;
9985                 break;
9986             default:
9987                 return -TARGET_EINVAL;
9988             }
9989             mask = arg2;
9990             target_to_host_old_sigset(&set, &mask);
9991 
9992             ret = do_sigprocmask(how, &set, &oldset);
9993             if (!is_error(ret)) {
9994                 host_to_target_old_sigset(&mask, &oldset);
9995                 ret = mask;
9996                 cpu_env->ir[IR_V0] = 0; /* force no error */
9997             }
9998 #else
9999             sigset_t set, oldset, *set_ptr;
10000             int how;
10001 
10002             if (arg2) {
10003                 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1);
10004                 if (!p) {
10005                     return -TARGET_EFAULT;
10006                 }
10007                 target_to_host_old_sigset(&set, p);
10008                 unlock_user(p, arg2, 0);
10009                 set_ptr = &set;
10010                 switch (arg1) {
10011                 case TARGET_SIG_BLOCK:
10012                     how = SIG_BLOCK;
10013                     break;
10014                 case TARGET_SIG_UNBLOCK:
10015                     how = SIG_UNBLOCK;
10016                     break;
10017                 case TARGET_SIG_SETMASK:
10018                     how = SIG_SETMASK;
10019                     break;
10020                 default:
10021                     return -TARGET_EINVAL;
10022                 }
10023             } else {
10024                 how = 0;
10025                 set_ptr = NULL;
10026             }
10027             ret = do_sigprocmask(how, set_ptr, &oldset);
10028             if (!is_error(ret) && arg3) {
10029                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
10030                     return -TARGET_EFAULT;
10031                 host_to_target_old_sigset(p, &oldset);
10032                 unlock_user(p, arg3, sizeof(target_sigset_t));
10033             }
10034 #endif
10035         }
10036         return ret;
10037 #endif
10038     case TARGET_NR_rt_sigprocmask:
10039         {
10040             int how = arg1;
10041             sigset_t set, oldset, *set_ptr;
10042 
10043             if (arg4 != sizeof(target_sigset_t)) {
10044                 return -TARGET_EINVAL;
10045             }
10046 
10047             if (arg2) {
10048                 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1);
10049                 if (!p) {
10050                     return -TARGET_EFAULT;
10051                 }
10052                 target_to_host_sigset(&set, p);
10053                 unlock_user(p, arg2, 0);
10054                 set_ptr = &set;
10055                 switch(how) {
10056                 case TARGET_SIG_BLOCK:
10057                     how = SIG_BLOCK;
10058                     break;
10059                 case TARGET_SIG_UNBLOCK:
10060                     how = SIG_UNBLOCK;
10061                     break;
10062                 case TARGET_SIG_SETMASK:
10063                     how = SIG_SETMASK;
10064                     break;
10065                 default:
10066                     return -TARGET_EINVAL;
10067                 }
10068             } else {
10069                 how = 0;
10070                 set_ptr = NULL;
10071             }
10072             ret = do_sigprocmask(how, set_ptr, &oldset);
10073             if (!is_error(ret) && arg3) {
10074                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
10075                     return -TARGET_EFAULT;
10076                 host_to_target_sigset(p, &oldset);
10077                 unlock_user(p, arg3, sizeof(target_sigset_t));
10078             }
10079         }
10080         return ret;
10081 #ifdef TARGET_NR_sigpending
10082     case TARGET_NR_sigpending:
10083         {
10084             sigset_t set;
10085             ret = get_errno(sigpending(&set));
10086             if (!is_error(ret)) {
10087                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
10088                     return -TARGET_EFAULT;
10089                 host_to_target_old_sigset(p, &set);
10090                 unlock_user(p, arg1, sizeof(target_sigset_t));
10091             }
10092         }
10093         return ret;
10094 #endif
10095     case TARGET_NR_rt_sigpending:
10096         {
10097             sigset_t set;
10098 
10099             /* Yes, this check is >, not != like most. We follow the kernel's
10100              * logic and it does it like this because it implements
10101              * NR_sigpending through the same code path, and in that case
10102              * the old_sigset_t is smaller in size.
10103              */
10104             if (arg2 > sizeof(target_sigset_t)) {
10105                 return -TARGET_EINVAL;
10106             }
10107 
10108             ret = get_errno(sigpending(&set));
10109             if (!is_error(ret)) {
10110                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
10111                     return -TARGET_EFAULT;
10112                 host_to_target_sigset(p, &set);
10113                 unlock_user(p, arg1, sizeof(target_sigset_t));
10114             }
10115         }
10116         return ret;
10117 #ifdef TARGET_NR_sigsuspend
10118     case TARGET_NR_sigsuspend:
10119         {
10120             sigset_t *set;
10121 
10122 #if defined(TARGET_ALPHA)
10123             TaskState *ts = get_task_state(cpu);
10124             /* target_to_host_old_sigset will bswap back */
10125             abi_ulong mask = tswapal(arg1);
10126             set = &ts->sigsuspend_mask;
10127             target_to_host_old_sigset(set, &mask);
10128 #else
10129             ret = process_sigsuspend_mask(&set, arg1, sizeof(target_sigset_t));
10130             if (ret != 0) {
10131                 return ret;
10132             }
10133 #endif
10134             ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE));
10135             finish_sigsuspend_mask(ret);
10136         }
10137         return ret;
10138 #endif
10139     case TARGET_NR_rt_sigsuspend:
10140         {
10141             sigset_t *set;
10142 
10143             ret = process_sigsuspend_mask(&set, arg1, arg2);
10144             if (ret != 0) {
10145                 return ret;
10146             }
10147             ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE));
10148             finish_sigsuspend_mask(ret);
10149         }
10150         return ret;
10151 #ifdef TARGET_NR_rt_sigtimedwait
10152     case TARGET_NR_rt_sigtimedwait:
10153         {
10154             sigset_t set;
10155             struct timespec uts, *puts;
10156             siginfo_t uinfo;
10157 
10158             if (arg4 != sizeof(target_sigset_t)) {
10159                 return -TARGET_EINVAL;
10160             }
10161 
10162             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
10163                 return -TARGET_EFAULT;
10164             target_to_host_sigset(&set, p);
10165             unlock_user(p, arg1, 0);
10166             if (arg3) {
10167                 puts = &uts;
10168                 if (target_to_host_timespec(puts, arg3)) {
10169                     return -TARGET_EFAULT;
10170                 }
10171             } else {
10172                 puts = NULL;
10173             }
10174             ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
10175                                                  SIGSET_T_SIZE));
10176             if (!is_error(ret)) {
10177                 if (arg2) {
10178                     p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t),
10179                                   0);
10180                     if (!p) {
10181                         return -TARGET_EFAULT;
10182                     }
10183                     host_to_target_siginfo(p, &uinfo);
10184                     unlock_user(p, arg2, sizeof(target_siginfo_t));
10185                 }
10186                 ret = host_to_target_signal(ret);
10187             }
10188         }
10189         return ret;
10190 #endif
10191 #ifdef TARGET_NR_rt_sigtimedwait_time64
10192     case TARGET_NR_rt_sigtimedwait_time64:
10193         {
10194             sigset_t set;
10195             struct timespec uts, *puts;
10196             siginfo_t uinfo;
10197 
10198             if (arg4 != sizeof(target_sigset_t)) {
10199                 return -TARGET_EINVAL;
10200             }
10201 
10202             p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1);
10203             if (!p) {
10204                 return -TARGET_EFAULT;
10205             }
10206             target_to_host_sigset(&set, p);
10207             unlock_user(p, arg1, 0);
10208             if (arg3) {
10209                 puts = &uts;
10210                 if (target_to_host_timespec64(puts, arg3)) {
10211                     return -TARGET_EFAULT;
10212                 }
10213             } else {
10214                 puts = NULL;
10215             }
10216             ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
10217                                                  SIGSET_T_SIZE));
10218             if (!is_error(ret)) {
10219                 if (arg2) {
10220                     p = lock_user(VERIFY_WRITE, arg2,
10221                                   sizeof(target_siginfo_t), 0);
10222                     if (!p) {
10223                         return -TARGET_EFAULT;
10224                     }
10225                     host_to_target_siginfo(p, &uinfo);
10226                     unlock_user(p, arg2, sizeof(target_siginfo_t));
10227                 }
10228                 ret = host_to_target_signal(ret);
10229             }
10230         }
10231         return ret;
10232 #endif
10233     case TARGET_NR_rt_sigqueueinfo:
10234         {
10235             siginfo_t uinfo;
10236 
10237             p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
10238             if (!p) {
10239                 return -TARGET_EFAULT;
10240             }
10241             target_to_host_siginfo(&uinfo, p);
10242             unlock_user(p, arg3, 0);
10243             ret = get_errno(sys_rt_sigqueueinfo(arg1, target_to_host_signal(arg2), &uinfo));
10244         }
10245         return ret;
10246     case TARGET_NR_rt_tgsigqueueinfo:
10247         {
10248             siginfo_t uinfo;
10249 
10250             p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1);
10251             if (!p) {
10252                 return -TARGET_EFAULT;
10253             }
10254             target_to_host_siginfo(&uinfo, p);
10255             unlock_user(p, arg4, 0);
10256             ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, target_to_host_signal(arg3), &uinfo));
10257         }
10258         return ret;
10259 #ifdef TARGET_NR_sigreturn
10260     case TARGET_NR_sigreturn:
10261         if (block_signals()) {
10262             return -QEMU_ERESTARTSYS;
10263         }
10264         return do_sigreturn(cpu_env);
10265 #endif
10266     case TARGET_NR_rt_sigreturn:
10267         if (block_signals()) {
10268             return -QEMU_ERESTARTSYS;
10269         }
10270         return do_rt_sigreturn(cpu_env);
10271     case TARGET_NR_sethostname:
10272         if (!(p = lock_user_string(arg1)))
10273             return -TARGET_EFAULT;
10274         ret = get_errno(sethostname(p, arg2));
10275         unlock_user(p, arg1, 0);
10276         return ret;
10277 #ifdef TARGET_NR_setrlimit
10278     case TARGET_NR_setrlimit:
10279         {
10280             int resource = target_to_host_resource(arg1);
10281             struct target_rlimit *target_rlim;
10282             struct rlimit rlim;
10283             if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1))
10284                 return -TARGET_EFAULT;
10285             rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur);
10286             rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max);
10287             unlock_user_struct(target_rlim, arg2, 0);
10288             /*
10289              * If we just passed through resource limit settings for memory then
10290              * they would also apply to QEMU's own allocations, and QEMU will
10291              * crash or hang or die if its allocations fail. Ideally we would
10292              * track the guest allocations in QEMU and apply the limits ourselves.
10293              * For now, just tell the guest the call succeeded but don't actually
10294              * limit anything.
10295              */
10296             if (resource != RLIMIT_AS &&
10297                 resource != RLIMIT_DATA &&
10298                 resource != RLIMIT_STACK) {
10299                 return get_errno(setrlimit(resource, &rlim));
10300             } else {
10301                 return 0;
10302             }
10303         }
10304 #endif
10305 #ifdef TARGET_NR_getrlimit
10306     case TARGET_NR_getrlimit:
10307         {
10308             int resource = target_to_host_resource(arg1);
10309             struct target_rlimit *target_rlim;
10310             struct rlimit rlim;
10311 
10312             ret = get_errno(getrlimit(resource, &rlim));
10313             if (!is_error(ret)) {
10314                 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
10315                     return -TARGET_EFAULT;
10316                 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
10317                 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
10318                 unlock_user_struct(target_rlim, arg2, 1);
10319             }
10320         }
10321         return ret;
10322 #endif
10323     case TARGET_NR_getrusage:
10324         {
10325             struct rusage rusage;
10326             ret = get_errno(getrusage(arg1, &rusage));
10327             if (!is_error(ret)) {
10328                 ret = host_to_target_rusage(arg2, &rusage);
10329             }
10330         }
10331         return ret;
10332 #if defined(TARGET_NR_gettimeofday)
10333     case TARGET_NR_gettimeofday:
10334         {
10335             struct timeval tv;
10336             struct timezone tz;
10337 
10338             ret = get_errno(gettimeofday(&tv, &tz));
10339             if (!is_error(ret)) {
10340                 if (arg1 && copy_to_user_timeval(arg1, &tv)) {
10341                     return -TARGET_EFAULT;
10342                 }
10343                 if (arg2 && copy_to_user_timezone(arg2, &tz)) {
10344                     return -TARGET_EFAULT;
10345                 }
10346             }
10347         }
10348         return ret;
10349 #endif
10350 #if defined(TARGET_NR_settimeofday)
10351     case TARGET_NR_settimeofday:
10352         {
10353             struct timeval tv, *ptv = NULL;
10354             struct timezone tz, *ptz = NULL;
10355 
10356             if (arg1) {
10357                 if (copy_from_user_timeval(&tv, arg1)) {
10358                     return -TARGET_EFAULT;
10359                 }
10360                 ptv = &tv;
10361             }
10362 
10363             if (arg2) {
10364                 if (copy_from_user_timezone(&tz, arg2)) {
10365                     return -TARGET_EFAULT;
10366                 }
10367                 ptz = &tz;
10368             }
10369 
10370             return get_errno(settimeofday(ptv, ptz));
10371         }
10372 #endif
10373 #if defined(TARGET_NR_select)
10374     case TARGET_NR_select:
10375 #if defined(TARGET_WANT_NI_OLD_SELECT)
10376         /* some architectures used to have old_select here
10377          * but now ENOSYS it.
10378          */
10379         ret = -TARGET_ENOSYS;
10380 #elif defined(TARGET_WANT_OLD_SYS_SELECT)
10381         ret = do_old_select(arg1);
10382 #else
10383         ret = do_select(arg1, arg2, arg3, arg4, arg5);
10384 #endif
10385         return ret;
10386 #endif
10387 #ifdef TARGET_NR_pselect6
10388     case TARGET_NR_pselect6:
10389         return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, false);
10390 #endif
10391 #ifdef TARGET_NR_pselect6_time64
10392     case TARGET_NR_pselect6_time64:
10393         return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, true);
10394 #endif
10395 #ifdef TARGET_NR_symlink
10396     case TARGET_NR_symlink:
10397         {
10398             void *p2;
10399             p = lock_user_string(arg1);
10400             p2 = lock_user_string(arg2);
10401             if (!p || !p2)
10402                 ret = -TARGET_EFAULT;
10403             else
10404                 ret = get_errno(symlink(p, p2));
10405             unlock_user(p2, arg2, 0);
10406             unlock_user(p, arg1, 0);
10407         }
10408         return ret;
10409 #endif
10410 #if defined(TARGET_NR_symlinkat)
10411     case TARGET_NR_symlinkat:
10412         {
10413             void *p2;
10414             p  = lock_user_string(arg1);
10415             p2 = lock_user_string(arg3);
10416             if (!p || !p2)
10417                 ret = -TARGET_EFAULT;
10418             else
10419                 ret = get_errno(symlinkat(p, arg2, p2));
10420             unlock_user(p2, arg3, 0);
10421             unlock_user(p, arg1, 0);
10422         }
10423         return ret;
10424 #endif
10425 #ifdef TARGET_NR_readlink
10426     case TARGET_NR_readlink:
10427         {
10428             void *p2;
10429             p = lock_user_string(arg1);
10430             p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10431             ret = get_errno(do_guest_readlink(p, p2, arg3));
10432             unlock_user(p2, arg2, ret);
10433             unlock_user(p, arg1, 0);
10434         }
10435         return ret;
10436 #endif
10437 #if defined(TARGET_NR_readlinkat)
10438     case TARGET_NR_readlinkat:
10439         {
10440             void *p2;
10441             p  = lock_user_string(arg2);
10442             p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0);
10443             if (!p || !p2) {
10444                 ret = -TARGET_EFAULT;
10445             } else if (!arg4) {
10446                 /* Short circuit this for the magic exe check. */
10447                 ret = -TARGET_EINVAL;
10448             } else if (is_proc_myself((const char *)p, "exe")) {
10449                 /*
10450                  * Don't worry about sign mismatch as earlier mapping
10451                  * logic would have thrown a bad address error.
10452                  */
10453                 ret = MIN(strlen(exec_path), arg4);
10454                 /* We cannot NUL terminate the string. */
10455                 memcpy(p2, exec_path, ret);
10456             } else {
10457                 ret = get_errno(readlinkat(arg1, path(p), p2, arg4));
10458             }
10459             unlock_user(p2, arg3, ret);
10460             unlock_user(p, arg2, 0);
10461         }
10462         return ret;
10463 #endif
10464 #ifdef TARGET_NR_swapon
10465     case TARGET_NR_swapon:
10466         if (!(p = lock_user_string(arg1)))
10467             return -TARGET_EFAULT;
10468         ret = get_errno(swapon(p, arg2));
10469         unlock_user(p, arg1, 0);
10470         return ret;
10471 #endif
10472     case TARGET_NR_reboot:
10473         if (arg3 == LINUX_REBOOT_CMD_RESTART2) {
10474            /* arg4 must be ignored in all other cases */
10475            p = lock_user_string(arg4);
10476            if (!p) {
10477                return -TARGET_EFAULT;
10478            }
10479            ret = get_errno(reboot(arg1, arg2, arg3, p));
10480            unlock_user(p, arg4, 0);
10481         } else {
10482            ret = get_errno(reboot(arg1, arg2, arg3, NULL));
10483         }
10484         return ret;
10485 #ifdef TARGET_NR_mmap
10486     case TARGET_NR_mmap:
10487 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
10488     (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
10489     defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
10490     || defined(TARGET_S390X)
10491         {
10492             abi_ulong *v;
10493             abi_ulong v1, v2, v3, v4, v5, v6;
10494             if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1)))
10495                 return -TARGET_EFAULT;
10496             v1 = tswapal(v[0]);
10497             v2 = tswapal(v[1]);
10498             v3 = tswapal(v[2]);
10499             v4 = tswapal(v[3]);
10500             v5 = tswapal(v[4]);
10501             v6 = tswapal(v[5]);
10502             unlock_user(v, arg1, 0);
10503             return do_mmap(v1, v2, v3, v4, v5, v6);
10504         }
10505 #else
10506         /* mmap pointers are always untagged */
10507         return do_mmap(arg1, arg2, arg3, arg4, arg5, arg6);
10508 #endif
10509 #endif
10510 #ifdef TARGET_NR_mmap2
10511     case TARGET_NR_mmap2:
10512 #ifndef MMAP_SHIFT
10513 #define MMAP_SHIFT 12
10514 #endif
10515         return do_mmap(arg1, arg2, arg3, arg4, arg5,
10516                        (off_t)(abi_ulong)arg6 << MMAP_SHIFT);
10517 #endif
10518     case TARGET_NR_munmap:
10519         arg1 = cpu_untagged_addr(cpu, arg1);
10520         return get_errno(target_munmap(arg1, arg2));
10521     case TARGET_NR_mprotect:
10522         arg1 = cpu_untagged_addr(cpu, arg1);
10523         {
10524             TaskState *ts = get_task_state(cpu);
10525             /* Special hack to detect libc making the stack executable.  */
10526             if ((arg3 & PROT_GROWSDOWN)
10527                 && arg1 >= ts->info->stack_limit
10528                 && arg1 <= ts->info->start_stack) {
10529                 arg3 &= ~PROT_GROWSDOWN;
10530                 arg2 = arg2 + arg1 - ts->info->stack_limit;
10531                 arg1 = ts->info->stack_limit;
10532             }
10533         }
10534         return get_errno(target_mprotect(arg1, arg2, arg3));
10535 #ifdef TARGET_NR_mremap
10536     case TARGET_NR_mremap:
10537         arg1 = cpu_untagged_addr(cpu, arg1);
10538         /* mremap new_addr (arg5) is always untagged */
10539         return get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5));
10540 #endif
10541         /* ??? msync/mlock/munlock are broken for softmmu.  */
10542 #ifdef TARGET_NR_msync
10543     case TARGET_NR_msync:
10544         return get_errno(msync(g2h(cpu, arg1), arg2,
10545                                target_to_host_msync_arg(arg3)));
10546 #endif
10547 #ifdef TARGET_NR_mlock
10548     case TARGET_NR_mlock:
10549         return get_errno(mlock(g2h(cpu, arg1), arg2));
10550 #endif
10551 #ifdef TARGET_NR_munlock
10552     case TARGET_NR_munlock:
10553         return get_errno(munlock(g2h(cpu, arg1), arg2));
10554 #endif
10555 #ifdef TARGET_NR_mlockall
10556     case TARGET_NR_mlockall:
10557         return get_errno(mlockall(target_to_host_mlockall_arg(arg1)));
10558 #endif
10559 #ifdef TARGET_NR_munlockall
10560     case TARGET_NR_munlockall:
10561         return get_errno(munlockall());
10562 #endif
10563 #ifdef TARGET_NR_truncate
10564     case TARGET_NR_truncate:
10565         if (!(p = lock_user_string(arg1)))
10566             return -TARGET_EFAULT;
10567         ret = get_errno(truncate(p, arg2));
10568         unlock_user(p, arg1, 0);
10569         return ret;
10570 #endif
10571 #ifdef TARGET_NR_ftruncate
10572     case TARGET_NR_ftruncate:
10573         return get_errno(ftruncate(arg1, arg2));
10574 #endif
10575     case TARGET_NR_fchmod:
10576         return get_errno(fchmod(arg1, arg2));
10577 #if defined(TARGET_NR_fchmodat)
10578     case TARGET_NR_fchmodat:
10579         if (!(p = lock_user_string(arg2)))
10580             return -TARGET_EFAULT;
10581         ret = get_errno(fchmodat(arg1, p, arg3, 0));
10582         unlock_user(p, arg2, 0);
10583         return ret;
10584 #endif
10585     case TARGET_NR_getpriority:
10586         /* Note that negative values are valid for getpriority, so we must
10587            differentiate based on errno settings.  */
10588         errno = 0;
10589         ret = getpriority(arg1, arg2);
10590         if (ret == -1 && errno != 0) {
10591             return -host_to_target_errno(errno);
10592         }
10593 #ifdef TARGET_ALPHA
10594         /* Return value is the unbiased priority.  Signal no error.  */
10595         cpu_env->ir[IR_V0] = 0;
10596 #else
10597         /* Return value is a biased priority to avoid negative numbers.  */
10598         ret = 20 - ret;
10599 #endif
10600         return ret;
10601     case TARGET_NR_setpriority:
10602         return get_errno(setpriority(arg1, arg2, arg3));
10603 #ifdef TARGET_NR_statfs
10604     case TARGET_NR_statfs:
10605         if (!(p = lock_user_string(arg1))) {
10606             return -TARGET_EFAULT;
10607         }
10608         ret = get_errno(statfs(path(p), &stfs));
10609         unlock_user(p, arg1, 0);
10610     convert_statfs:
10611         if (!is_error(ret)) {
10612             struct target_statfs *target_stfs;
10613 
10614             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0))
10615                 return -TARGET_EFAULT;
10616             __put_user(stfs.f_type, &target_stfs->f_type);
10617             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10618             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10619             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10620             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10621             __put_user(stfs.f_files, &target_stfs->f_files);
10622             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10623             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10624             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10625             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10626             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10627 #ifdef _STATFS_F_FLAGS
10628             __put_user(stfs.f_flags, &target_stfs->f_flags);
10629 #else
10630             __put_user(0, &target_stfs->f_flags);
10631 #endif
10632             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10633             unlock_user_struct(target_stfs, arg2, 1);
10634         }
10635         return ret;
10636 #endif
10637 #ifdef TARGET_NR_fstatfs
10638     case TARGET_NR_fstatfs:
10639         ret = get_errno(fstatfs(arg1, &stfs));
10640         goto convert_statfs;
10641 #endif
10642 #ifdef TARGET_NR_statfs64
10643     case TARGET_NR_statfs64:
10644         if (!(p = lock_user_string(arg1))) {
10645             return -TARGET_EFAULT;
10646         }
10647         ret = get_errno(statfs(path(p), &stfs));
10648         unlock_user(p, arg1, 0);
10649     convert_statfs64:
10650         if (!is_error(ret)) {
10651             struct target_statfs64 *target_stfs;
10652 
10653             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0))
10654                 return -TARGET_EFAULT;
10655             __put_user(stfs.f_type, &target_stfs->f_type);
10656             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10657             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10658             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10659             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10660             __put_user(stfs.f_files, &target_stfs->f_files);
10661             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10662             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10663             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10664             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10665             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10666 #ifdef _STATFS_F_FLAGS
10667             __put_user(stfs.f_flags, &target_stfs->f_flags);
10668 #else
10669             __put_user(0, &target_stfs->f_flags);
10670 #endif
10671             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10672             unlock_user_struct(target_stfs, arg3, 1);
10673         }
10674         return ret;
10675     case TARGET_NR_fstatfs64:
10676         ret = get_errno(fstatfs(arg1, &stfs));
10677         goto convert_statfs64;
10678 #endif
10679 #ifdef TARGET_NR_socketcall
10680     case TARGET_NR_socketcall:
10681         return do_socketcall(arg1, arg2);
10682 #endif
10683 #ifdef TARGET_NR_accept
10684     case TARGET_NR_accept:
10685         return do_accept4(arg1, arg2, arg3, 0);
10686 #endif
10687 #ifdef TARGET_NR_accept4
10688     case TARGET_NR_accept4:
10689         return do_accept4(arg1, arg2, arg3, arg4);
10690 #endif
10691 #ifdef TARGET_NR_bind
10692     case TARGET_NR_bind:
10693         return do_bind(arg1, arg2, arg3);
10694 #endif
10695 #ifdef TARGET_NR_connect
10696     case TARGET_NR_connect:
10697         return do_connect(arg1, arg2, arg3);
10698 #endif
10699 #ifdef TARGET_NR_getpeername
10700     case TARGET_NR_getpeername:
10701         return do_getpeername(arg1, arg2, arg3);
10702 #endif
10703 #ifdef TARGET_NR_getsockname
10704     case TARGET_NR_getsockname:
10705         return do_getsockname(arg1, arg2, arg3);
10706 #endif
10707 #ifdef TARGET_NR_getsockopt
10708     case TARGET_NR_getsockopt:
10709         return do_getsockopt(arg1, arg2, arg3, arg4, arg5);
10710 #endif
10711 #ifdef TARGET_NR_listen
10712     case TARGET_NR_listen:
10713         return get_errno(listen(arg1, arg2));
10714 #endif
10715 #ifdef TARGET_NR_recv
10716     case TARGET_NR_recv:
10717         return do_recvfrom(arg1, arg2, arg3, arg4, 0, 0);
10718 #endif
10719 #ifdef TARGET_NR_recvfrom
10720     case TARGET_NR_recvfrom:
10721         return do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6);
10722 #endif
10723 #ifdef TARGET_NR_recvmsg
10724     case TARGET_NR_recvmsg:
10725         return do_sendrecvmsg(arg1, arg2, arg3, 0);
10726 #endif
10727 #ifdef TARGET_NR_send
10728     case TARGET_NR_send:
10729         return do_sendto(arg1, arg2, arg3, arg4, 0, 0);
10730 #endif
10731 #ifdef TARGET_NR_sendmsg
10732     case TARGET_NR_sendmsg:
10733         return do_sendrecvmsg(arg1, arg2, arg3, 1);
10734 #endif
10735 #ifdef TARGET_NR_sendmmsg
10736     case TARGET_NR_sendmmsg:
10737         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1);
10738 #endif
10739 #ifdef TARGET_NR_recvmmsg
10740     case TARGET_NR_recvmmsg:
10741         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0);
10742 #endif
10743 #ifdef TARGET_NR_sendto
10744     case TARGET_NR_sendto:
10745         return do_sendto(arg1, arg2, arg3, arg4, arg5, arg6);
10746 #endif
10747 #ifdef TARGET_NR_shutdown
10748     case TARGET_NR_shutdown:
10749         return get_errno(shutdown(arg1, arg2));
10750 #endif
10751 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
10752     case TARGET_NR_getrandom:
10753         p = lock_user(VERIFY_WRITE, arg1, arg2, 0);
10754         if (!p) {
10755             return -TARGET_EFAULT;
10756         }
10757         ret = get_errno(getrandom(p, arg2, arg3));
10758         unlock_user(p, arg1, ret);
10759         return ret;
10760 #endif
10761 #ifdef TARGET_NR_socket
10762     case TARGET_NR_socket:
10763         return do_socket(arg1, arg2, arg3);
10764 #endif
10765 #ifdef TARGET_NR_socketpair
10766     case TARGET_NR_socketpair:
10767         return do_socketpair(arg1, arg2, arg3, arg4);
10768 #endif
10769 #ifdef TARGET_NR_setsockopt
10770     case TARGET_NR_setsockopt:
10771         return do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5);
10772 #endif
10773 #if defined(TARGET_NR_syslog)
10774     case TARGET_NR_syslog:
10775         {
10776             int len = arg2;
10777 
10778             switch (arg1) {
10779             case TARGET_SYSLOG_ACTION_CLOSE:         /* Close log */
10780             case TARGET_SYSLOG_ACTION_OPEN:          /* Open log */
10781             case TARGET_SYSLOG_ACTION_CLEAR:         /* Clear ring buffer */
10782             case TARGET_SYSLOG_ACTION_CONSOLE_OFF:   /* Disable logging */
10783             case TARGET_SYSLOG_ACTION_CONSOLE_ON:    /* Enable logging */
10784             case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */
10785             case TARGET_SYSLOG_ACTION_SIZE_UNREAD:   /* Number of chars */
10786             case TARGET_SYSLOG_ACTION_SIZE_BUFFER:   /* Size of the buffer */
10787                 return get_errno(sys_syslog((int)arg1, NULL, (int)arg3));
10788             case TARGET_SYSLOG_ACTION_READ:          /* Read from log */
10789             case TARGET_SYSLOG_ACTION_READ_CLEAR:    /* Read/clear msgs */
10790             case TARGET_SYSLOG_ACTION_READ_ALL:      /* Read last messages */
10791                 {
10792                     if (len < 0) {
10793                         return -TARGET_EINVAL;
10794                     }
10795                     if (len == 0) {
10796                         return 0;
10797                     }
10798                     p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10799                     if (!p) {
10800                         return -TARGET_EFAULT;
10801                     }
10802                     ret = get_errno(sys_syslog((int)arg1, p, (int)arg3));
10803                     unlock_user(p, arg2, arg3);
10804                 }
10805                 return ret;
10806             default:
10807                 return -TARGET_EINVAL;
10808             }
10809         }
10810         break;
10811 #endif
10812     case TARGET_NR_setitimer:
10813         {
10814             struct itimerval value, ovalue, *pvalue;
10815 
10816             if (arg2) {
10817                 pvalue = &value;
10818                 if (copy_from_user_timeval(&pvalue->it_interval, arg2)
10819                     || copy_from_user_timeval(&pvalue->it_value,
10820                                               arg2 + sizeof(struct target_timeval)))
10821                     return -TARGET_EFAULT;
10822             } else {
10823                 pvalue = NULL;
10824             }
10825             ret = get_errno(setitimer(arg1, pvalue, &ovalue));
10826             if (!is_error(ret) && arg3) {
10827                 if (copy_to_user_timeval(arg3,
10828                                          &ovalue.it_interval)
10829                     || copy_to_user_timeval(arg3 + sizeof(struct target_timeval),
10830                                             &ovalue.it_value))
10831                     return -TARGET_EFAULT;
10832             }
10833         }
10834         return ret;
10835     case TARGET_NR_getitimer:
10836         {
10837             struct itimerval value;
10838 
10839             ret = get_errno(getitimer(arg1, &value));
10840             if (!is_error(ret) && arg2) {
10841                 if (copy_to_user_timeval(arg2,
10842                                          &value.it_interval)
10843                     || copy_to_user_timeval(arg2 + sizeof(struct target_timeval),
10844                                             &value.it_value))
10845                     return -TARGET_EFAULT;
10846             }
10847         }
10848         return ret;
10849 #ifdef TARGET_NR_stat
10850     case TARGET_NR_stat:
10851         if (!(p = lock_user_string(arg1))) {
10852             return -TARGET_EFAULT;
10853         }
10854         ret = get_errno(stat(path(p), &st));
10855         unlock_user(p, arg1, 0);
10856         goto do_stat;
10857 #endif
10858 #ifdef TARGET_NR_lstat
10859     case TARGET_NR_lstat:
10860         if (!(p = lock_user_string(arg1))) {
10861             return -TARGET_EFAULT;
10862         }
10863         ret = get_errno(lstat(path(p), &st));
10864         unlock_user(p, arg1, 0);
10865         goto do_stat;
10866 #endif
10867 #ifdef TARGET_NR_fstat
10868     case TARGET_NR_fstat:
10869         {
10870             ret = get_errno(fstat(arg1, &st));
10871 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
10872         do_stat:
10873 #endif
10874             if (!is_error(ret)) {
10875                 struct target_stat *target_st;
10876 
10877                 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0))
10878                     return -TARGET_EFAULT;
10879                 memset(target_st, 0, sizeof(*target_st));
10880                 __put_user(st.st_dev, &target_st->st_dev);
10881                 __put_user(st.st_ino, &target_st->st_ino);
10882                 __put_user(st.st_mode, &target_st->st_mode);
10883                 __put_user(st.st_uid, &target_st->st_uid);
10884                 __put_user(st.st_gid, &target_st->st_gid);
10885                 __put_user(st.st_nlink, &target_st->st_nlink);
10886                 __put_user(st.st_rdev, &target_st->st_rdev);
10887                 __put_user(st.st_size, &target_st->st_size);
10888                 __put_user(st.st_blksize, &target_st->st_blksize);
10889                 __put_user(st.st_blocks, &target_st->st_blocks);
10890                 __put_user(st.st_atime, &target_st->target_st_atime);
10891                 __put_user(st.st_mtime, &target_st->target_st_mtime);
10892                 __put_user(st.st_ctime, &target_st->target_st_ctime);
10893 #if defined(HAVE_STRUCT_STAT_ST_ATIM) && defined(TARGET_STAT_HAVE_NSEC)
10894                 __put_user(st.st_atim.tv_nsec,
10895                            &target_st->target_st_atime_nsec);
10896                 __put_user(st.st_mtim.tv_nsec,
10897                            &target_st->target_st_mtime_nsec);
10898                 __put_user(st.st_ctim.tv_nsec,
10899                            &target_st->target_st_ctime_nsec);
10900 #endif
10901                 unlock_user_struct(target_st, arg2, 1);
10902             }
10903         }
10904         return ret;
10905 #endif
10906     case TARGET_NR_vhangup:
10907         return get_errno(vhangup());
10908 #ifdef TARGET_NR_syscall
10909     case TARGET_NR_syscall:
10910         return do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5,
10911                           arg6, arg7, arg8, 0);
10912 #endif
10913 #if defined(TARGET_NR_wait4)
10914     case TARGET_NR_wait4:
10915         {
10916             int status;
10917             abi_long status_ptr = arg2;
10918             struct rusage rusage, *rusage_ptr;
10919             abi_ulong target_rusage = arg4;
10920             abi_long rusage_err;
10921             if (target_rusage)
10922                 rusage_ptr = &rusage;
10923             else
10924                 rusage_ptr = NULL;
10925             ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr));
10926             if (!is_error(ret)) {
10927                 if (status_ptr && ret) {
10928                     status = host_to_target_waitstatus(status);
10929                     if (put_user_s32(status, status_ptr))
10930                         return -TARGET_EFAULT;
10931                 }
10932                 if (target_rusage) {
10933                     rusage_err = host_to_target_rusage(target_rusage, &rusage);
10934                     if (rusage_err) {
10935                         ret = rusage_err;
10936                     }
10937                 }
10938             }
10939         }
10940         return ret;
10941 #endif
10942 #ifdef TARGET_NR_swapoff
10943     case TARGET_NR_swapoff:
10944         if (!(p = lock_user_string(arg1)))
10945             return -TARGET_EFAULT;
10946         ret = get_errno(swapoff(p));
10947         unlock_user(p, arg1, 0);
10948         return ret;
10949 #endif
10950     case TARGET_NR_sysinfo:
10951         {
10952             struct target_sysinfo *target_value;
10953             struct sysinfo value;
10954             ret = get_errno(sysinfo(&value));
10955             if (!is_error(ret) && arg1)
10956             {
10957                 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0))
10958                     return -TARGET_EFAULT;
10959                 __put_user(value.uptime, &target_value->uptime);
10960                 __put_user(value.loads[0], &target_value->loads[0]);
10961                 __put_user(value.loads[1], &target_value->loads[1]);
10962                 __put_user(value.loads[2], &target_value->loads[2]);
10963                 __put_user(value.totalram, &target_value->totalram);
10964                 __put_user(value.freeram, &target_value->freeram);
10965                 __put_user(value.sharedram, &target_value->sharedram);
10966                 __put_user(value.bufferram, &target_value->bufferram);
10967                 __put_user(value.totalswap, &target_value->totalswap);
10968                 __put_user(value.freeswap, &target_value->freeswap);
10969                 __put_user(value.procs, &target_value->procs);
10970                 __put_user(value.totalhigh, &target_value->totalhigh);
10971                 __put_user(value.freehigh, &target_value->freehigh);
10972                 __put_user(value.mem_unit, &target_value->mem_unit);
10973                 unlock_user_struct(target_value, arg1, 1);
10974             }
10975         }
10976         return ret;
10977 #ifdef TARGET_NR_ipc
10978     case TARGET_NR_ipc:
10979         return do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6);
10980 #endif
10981 #ifdef TARGET_NR_semget
10982     case TARGET_NR_semget:
10983         return get_errno(semget(arg1, arg2, arg3));
10984 #endif
10985 #ifdef TARGET_NR_semop
10986     case TARGET_NR_semop:
10987         return do_semtimedop(arg1, arg2, arg3, 0, false);
10988 #endif
10989 #ifdef TARGET_NR_semtimedop
10990     case TARGET_NR_semtimedop:
10991         return do_semtimedop(arg1, arg2, arg3, arg4, false);
10992 #endif
10993 #ifdef TARGET_NR_semtimedop_time64
10994     case TARGET_NR_semtimedop_time64:
10995         return do_semtimedop(arg1, arg2, arg3, arg4, true);
10996 #endif
10997 #ifdef TARGET_NR_semctl
10998     case TARGET_NR_semctl:
10999         return do_semctl(arg1, arg2, arg3, arg4);
11000 #endif
11001 #ifdef TARGET_NR_msgctl
11002     case TARGET_NR_msgctl:
11003         return do_msgctl(arg1, arg2, arg3);
11004 #endif
11005 #ifdef TARGET_NR_msgget
11006     case TARGET_NR_msgget:
11007         return get_errno(msgget(arg1, arg2));
11008 #endif
11009 #ifdef TARGET_NR_msgrcv
11010     case TARGET_NR_msgrcv:
11011         return do_msgrcv(arg1, arg2, arg3, arg4, arg5);
11012 #endif
11013 #ifdef TARGET_NR_msgsnd
11014     case TARGET_NR_msgsnd:
11015         return do_msgsnd(arg1, arg2, arg3, arg4);
11016 #endif
11017 #ifdef TARGET_NR_shmget
11018     case TARGET_NR_shmget:
11019         return get_errno(shmget(arg1, arg2, arg3));
11020 #endif
11021 #ifdef TARGET_NR_shmctl
11022     case TARGET_NR_shmctl:
11023         return do_shmctl(arg1, arg2, arg3);
11024 #endif
11025 #ifdef TARGET_NR_shmat
11026     case TARGET_NR_shmat:
11027         return target_shmat(cpu_env, arg1, arg2, arg3);
11028 #endif
11029 #ifdef TARGET_NR_shmdt
11030     case TARGET_NR_shmdt:
11031         return target_shmdt(arg1);
11032 #endif
11033     case TARGET_NR_fsync:
11034         return get_errno(fsync(arg1));
11035     case TARGET_NR_clone:
11036         /* Linux manages to have three different orderings for its
11037          * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
11038          * match the kernel's CONFIG_CLONE_* settings.
11039          * Microblaze is further special in that it uses a sixth
11040          * implicit argument to clone for the TLS pointer.
11041          */
11042 #if defined(TARGET_MICROBLAZE)
11043         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5));
11044 #elif defined(TARGET_CLONE_BACKWARDS)
11045         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5));
11046 #elif defined(TARGET_CLONE_BACKWARDS2)
11047         ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4));
11048 #else
11049         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4));
11050 #endif
11051         return ret;
11052 #ifdef __NR_exit_group
11053         /* new thread calls */
11054     case TARGET_NR_exit_group:
11055         preexit_cleanup(cpu_env, arg1);
11056         return get_errno(exit_group(arg1));
11057 #endif
11058     case TARGET_NR_setdomainname:
11059         if (!(p = lock_user_string(arg1)))
11060             return -TARGET_EFAULT;
11061         ret = get_errno(setdomainname(p, arg2));
11062         unlock_user(p, arg1, 0);
11063         return ret;
11064     case TARGET_NR_uname:
11065         /* no need to transcode because we use the linux syscall */
11066         {
11067             struct new_utsname * buf;
11068 
11069             if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0))
11070                 return -TARGET_EFAULT;
11071             ret = get_errno(sys_uname(buf));
11072             if (!is_error(ret)) {
11073                 /* Overwrite the native machine name with whatever is being
11074                    emulated. */
11075                 g_strlcpy(buf->machine, cpu_to_uname_machine(cpu_env),
11076                           sizeof(buf->machine));
11077                 /* Allow the user to override the reported release.  */
11078                 if (qemu_uname_release && *qemu_uname_release) {
11079                     g_strlcpy(buf->release, qemu_uname_release,
11080                               sizeof(buf->release));
11081                 }
11082             }
11083             unlock_user_struct(buf, arg1, 1);
11084         }
11085         return ret;
11086 #ifdef TARGET_I386
11087     case TARGET_NR_modify_ldt:
11088         return do_modify_ldt(cpu_env, arg1, arg2, arg3);
11089 #if !defined(TARGET_X86_64)
11090     case TARGET_NR_vm86:
11091         return do_vm86(cpu_env, arg1, arg2);
11092 #endif
11093 #endif
11094 #if defined(TARGET_NR_adjtimex)
11095     case TARGET_NR_adjtimex:
11096         {
11097             struct timex host_buf;
11098 
11099             if (target_to_host_timex(&host_buf, arg1) != 0) {
11100                 return -TARGET_EFAULT;
11101             }
11102             ret = get_errno(adjtimex(&host_buf));
11103             if (!is_error(ret)) {
11104                 if (host_to_target_timex(arg1, &host_buf) != 0) {
11105                     return -TARGET_EFAULT;
11106                 }
11107             }
11108         }
11109         return ret;
11110 #endif
11111 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)
11112     case TARGET_NR_clock_adjtime:
11113         {
11114             struct timex htx;
11115 
11116             if (target_to_host_timex(&htx, arg2) != 0) {
11117                 return -TARGET_EFAULT;
11118             }
11119             ret = get_errno(clock_adjtime(arg1, &htx));
11120             if (!is_error(ret) && host_to_target_timex(arg2, &htx)) {
11121                 return -TARGET_EFAULT;
11122             }
11123         }
11124         return ret;
11125 #endif
11126 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
11127     case TARGET_NR_clock_adjtime64:
11128         {
11129             struct timex htx;
11130 
11131             if (target_to_host_timex64(&htx, arg2) != 0) {
11132                 return -TARGET_EFAULT;
11133             }
11134             ret = get_errno(clock_adjtime(arg1, &htx));
11135             if (!is_error(ret) && host_to_target_timex64(arg2, &htx)) {
11136                     return -TARGET_EFAULT;
11137             }
11138         }
11139         return ret;
11140 #endif
11141     case TARGET_NR_getpgid:
11142         return get_errno(getpgid(arg1));
11143     case TARGET_NR_fchdir:
11144         return get_errno(fchdir(arg1));
11145     case TARGET_NR_personality:
11146         return get_errno(personality(arg1));
11147 #ifdef TARGET_NR__llseek /* Not on alpha */
11148     case TARGET_NR__llseek:
11149         {
11150             int64_t res;
11151 #if !defined(__NR_llseek)
11152             res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5);
11153             if (res == -1) {
11154                 ret = get_errno(res);
11155             } else {
11156                 ret = 0;
11157             }
11158 #else
11159             ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5));
11160 #endif
11161             if ((ret == 0) && put_user_s64(res, arg4)) {
11162                 return -TARGET_EFAULT;
11163             }
11164         }
11165         return ret;
11166 #endif
11167 #ifdef TARGET_NR_getdents
11168     case TARGET_NR_getdents:
11169         return do_getdents(arg1, arg2, arg3);
11170 #endif /* TARGET_NR_getdents */
11171 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
11172     case TARGET_NR_getdents64:
11173         return do_getdents64(arg1, arg2, arg3);
11174 #endif /* TARGET_NR_getdents64 */
11175 #if defined(TARGET_NR__newselect)
11176     case TARGET_NR__newselect:
11177         return do_select(arg1, arg2, arg3, arg4, arg5);
11178 #endif
11179 #ifdef TARGET_NR_poll
11180     case TARGET_NR_poll:
11181         return do_ppoll(arg1, arg2, arg3, arg4, arg5, false, false);
11182 #endif
11183 #ifdef TARGET_NR_ppoll
11184     case TARGET_NR_ppoll:
11185         return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, false);
11186 #endif
11187 #ifdef TARGET_NR_ppoll_time64
11188     case TARGET_NR_ppoll_time64:
11189         return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, true);
11190 #endif
11191     case TARGET_NR_flock:
11192         /* NOTE: the flock constant seems to be the same for every
11193            Linux platform */
11194         return get_errno(safe_flock(arg1, arg2));
11195     case TARGET_NR_readv:
11196         {
11197             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
11198             if (vec != NULL) {
11199                 ret = get_errno(safe_readv(arg1, vec, arg3));
11200                 unlock_iovec(vec, arg2, arg3, 1);
11201             } else {
11202                 ret = -host_to_target_errno(errno);
11203             }
11204         }
11205         return ret;
11206     case TARGET_NR_writev:
11207         {
11208             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
11209             if (vec != NULL) {
11210                 ret = get_errno(safe_writev(arg1, vec, arg3));
11211                 unlock_iovec(vec, arg2, arg3, 0);
11212             } else {
11213                 ret = -host_to_target_errno(errno);
11214             }
11215         }
11216         return ret;
11217 #if defined(TARGET_NR_preadv)
11218     case TARGET_NR_preadv:
11219         {
11220             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
11221             if (vec != NULL) {
11222                 unsigned long low, high;
11223 
11224                 target_to_host_low_high(arg4, arg5, &low, &high);
11225                 ret = get_errno(safe_preadv(arg1, vec, arg3, low, high));
11226                 unlock_iovec(vec, arg2, arg3, 1);
11227             } else {
11228                 ret = -host_to_target_errno(errno);
11229            }
11230         }
11231         return ret;
11232 #endif
11233 #if defined(TARGET_NR_pwritev)
11234     case TARGET_NR_pwritev:
11235         {
11236             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
11237             if (vec != NULL) {
11238                 unsigned long low, high;
11239 
11240                 target_to_host_low_high(arg4, arg5, &low, &high);
11241                 ret = get_errno(safe_pwritev(arg1, vec, arg3, low, high));
11242                 unlock_iovec(vec, arg2, arg3, 0);
11243             } else {
11244                 ret = -host_to_target_errno(errno);
11245            }
11246         }
11247         return ret;
11248 #endif
11249     case TARGET_NR_getsid:
11250         return get_errno(getsid(arg1));
11251 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
11252     case TARGET_NR_fdatasync:
11253         return get_errno(fdatasync(arg1));
11254 #endif
11255     case TARGET_NR_sched_getaffinity:
11256         {
11257             unsigned int mask_size;
11258             unsigned long *mask;
11259 
11260             /*
11261              * sched_getaffinity needs multiples of ulong, so need to take
11262              * care of mismatches between target ulong and host ulong sizes.
11263              */
11264             if (arg2 & (sizeof(abi_ulong) - 1)) {
11265                 return -TARGET_EINVAL;
11266             }
11267             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
11268 
11269             mask = alloca(mask_size);
11270             memset(mask, 0, mask_size);
11271             ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask));
11272 
11273             if (!is_error(ret)) {
11274                 if (ret > arg2) {
11275                     /* More data returned than the caller's buffer will fit.
11276                      * This only happens if sizeof(abi_long) < sizeof(long)
11277                      * and the caller passed us a buffer holding an odd number
11278                      * of abi_longs. If the host kernel is actually using the
11279                      * extra 4 bytes then fail EINVAL; otherwise we can just
11280                      * ignore them and only copy the interesting part.
11281                      */
11282                     int numcpus = sysconf(_SC_NPROCESSORS_CONF);
11283                     if (numcpus > arg2 * 8) {
11284                         return -TARGET_EINVAL;
11285                     }
11286                     ret = arg2;
11287                 }
11288 
11289                 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) {
11290                     return -TARGET_EFAULT;
11291                 }
11292             }
11293         }
11294         return ret;
11295     case TARGET_NR_sched_setaffinity:
11296         {
11297             unsigned int mask_size;
11298             unsigned long *mask;
11299 
11300             /*
11301              * sched_setaffinity needs multiples of ulong, so need to take
11302              * care of mismatches between target ulong and host ulong sizes.
11303              */
11304             if (arg2 & (sizeof(abi_ulong) - 1)) {
11305                 return -TARGET_EINVAL;
11306             }
11307             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
11308             mask = alloca(mask_size);
11309 
11310             ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2);
11311             if (ret) {
11312                 return ret;
11313             }
11314 
11315             return get_errno(sys_sched_setaffinity(arg1, mask_size, mask));
11316         }
11317     case TARGET_NR_getcpu:
11318         {
11319             unsigned cpuid, node;
11320             ret = get_errno(sys_getcpu(arg1 ? &cpuid : NULL,
11321                                        arg2 ? &node : NULL,
11322                                        NULL));
11323             if (is_error(ret)) {
11324                 return ret;
11325             }
11326             if (arg1 && put_user_u32(cpuid, arg1)) {
11327                 return -TARGET_EFAULT;
11328             }
11329             if (arg2 && put_user_u32(node, arg2)) {
11330                 return -TARGET_EFAULT;
11331             }
11332         }
11333         return ret;
11334     case TARGET_NR_sched_setparam:
11335         {
11336             struct target_sched_param *target_schp;
11337             struct sched_param schp;
11338 
11339             if (arg2 == 0) {
11340                 return -TARGET_EINVAL;
11341             }
11342             if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1)) {
11343                 return -TARGET_EFAULT;
11344             }
11345             schp.sched_priority = tswap32(target_schp->sched_priority);
11346             unlock_user_struct(target_schp, arg2, 0);
11347             return get_errno(sys_sched_setparam(arg1, &schp));
11348         }
11349     case TARGET_NR_sched_getparam:
11350         {
11351             struct target_sched_param *target_schp;
11352             struct sched_param schp;
11353 
11354             if (arg2 == 0) {
11355                 return -TARGET_EINVAL;
11356             }
11357             ret = get_errno(sys_sched_getparam(arg1, &schp));
11358             if (!is_error(ret)) {
11359                 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0)) {
11360                     return -TARGET_EFAULT;
11361                 }
11362                 target_schp->sched_priority = tswap32(schp.sched_priority);
11363                 unlock_user_struct(target_schp, arg2, 1);
11364             }
11365         }
11366         return ret;
11367     case TARGET_NR_sched_setscheduler:
11368         {
11369             struct target_sched_param *target_schp;
11370             struct sched_param schp;
11371             if (arg3 == 0) {
11372                 return -TARGET_EINVAL;
11373             }
11374             if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1)) {
11375                 return -TARGET_EFAULT;
11376             }
11377             schp.sched_priority = tswap32(target_schp->sched_priority);
11378             unlock_user_struct(target_schp, arg3, 0);
11379             return get_errno(sys_sched_setscheduler(arg1, arg2, &schp));
11380         }
11381     case TARGET_NR_sched_getscheduler:
11382         return get_errno(sys_sched_getscheduler(arg1));
11383     case TARGET_NR_sched_getattr:
11384         {
11385             struct target_sched_attr *target_scha;
11386             struct sched_attr scha;
11387             if (arg2 == 0) {
11388                 return -TARGET_EINVAL;
11389             }
11390             if (arg3 > sizeof(scha)) {
11391                 arg3 = sizeof(scha);
11392             }
11393             ret = get_errno(sys_sched_getattr(arg1, &scha, arg3, arg4));
11394             if (!is_error(ret)) {
11395                 target_scha = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11396                 if (!target_scha) {
11397                     return -TARGET_EFAULT;
11398                 }
11399                 target_scha->size = tswap32(scha.size);
11400                 target_scha->sched_policy = tswap32(scha.sched_policy);
11401                 target_scha->sched_flags = tswap64(scha.sched_flags);
11402                 target_scha->sched_nice = tswap32(scha.sched_nice);
11403                 target_scha->sched_priority = tswap32(scha.sched_priority);
11404                 target_scha->sched_runtime = tswap64(scha.sched_runtime);
11405                 target_scha->sched_deadline = tswap64(scha.sched_deadline);
11406                 target_scha->sched_period = tswap64(scha.sched_period);
11407                 if (scha.size > offsetof(struct sched_attr, sched_util_min)) {
11408                     target_scha->sched_util_min = tswap32(scha.sched_util_min);
11409                     target_scha->sched_util_max = tswap32(scha.sched_util_max);
11410                 }
11411                 unlock_user(target_scha, arg2, arg3);
11412             }
11413             return ret;
11414         }
11415     case TARGET_NR_sched_setattr:
11416         {
11417             struct target_sched_attr *target_scha;
11418             struct sched_attr scha;
11419             uint32_t size;
11420             int zeroed;
11421             if (arg2 == 0) {
11422                 return -TARGET_EINVAL;
11423             }
11424             if (get_user_u32(size, arg2)) {
11425                 return -TARGET_EFAULT;
11426             }
11427             if (!size) {
11428                 size = offsetof(struct target_sched_attr, sched_util_min);
11429             }
11430             if (size < offsetof(struct target_sched_attr, sched_util_min)) {
11431                 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
11432                     return -TARGET_EFAULT;
11433                 }
11434                 return -TARGET_E2BIG;
11435             }
11436 
11437             zeroed = check_zeroed_user(arg2, sizeof(struct target_sched_attr), size);
11438             if (zeroed < 0) {
11439                 return zeroed;
11440             } else if (zeroed == 0) {
11441                 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
11442                     return -TARGET_EFAULT;
11443                 }
11444                 return -TARGET_E2BIG;
11445             }
11446             if (size > sizeof(struct target_sched_attr)) {
11447                 size = sizeof(struct target_sched_attr);
11448             }
11449 
11450             target_scha = lock_user(VERIFY_READ, arg2, size, 1);
11451             if (!target_scha) {
11452                 return -TARGET_EFAULT;
11453             }
11454             scha.size = size;
11455             scha.sched_policy = tswap32(target_scha->sched_policy);
11456             scha.sched_flags = tswap64(target_scha->sched_flags);
11457             scha.sched_nice = tswap32(target_scha->sched_nice);
11458             scha.sched_priority = tswap32(target_scha->sched_priority);
11459             scha.sched_runtime = tswap64(target_scha->sched_runtime);
11460             scha.sched_deadline = tswap64(target_scha->sched_deadline);
11461             scha.sched_period = tswap64(target_scha->sched_period);
11462             if (size > offsetof(struct target_sched_attr, sched_util_min)) {
11463                 scha.sched_util_min = tswap32(target_scha->sched_util_min);
11464                 scha.sched_util_max = tswap32(target_scha->sched_util_max);
11465             }
11466             unlock_user(target_scha, arg2, 0);
11467             return get_errno(sys_sched_setattr(arg1, &scha, arg3));
11468         }
11469     case TARGET_NR_sched_yield:
11470         return get_errno(sched_yield());
11471     case TARGET_NR_sched_get_priority_max:
11472         return get_errno(sched_get_priority_max(arg1));
11473     case TARGET_NR_sched_get_priority_min:
11474         return get_errno(sched_get_priority_min(arg1));
11475 #ifdef TARGET_NR_sched_rr_get_interval
11476     case TARGET_NR_sched_rr_get_interval:
11477         {
11478             struct timespec ts;
11479             ret = get_errno(sched_rr_get_interval(arg1, &ts));
11480             if (!is_error(ret)) {
11481                 ret = host_to_target_timespec(arg2, &ts);
11482             }
11483         }
11484         return ret;
11485 #endif
11486 #ifdef TARGET_NR_sched_rr_get_interval_time64
11487     case TARGET_NR_sched_rr_get_interval_time64:
11488         {
11489             struct timespec ts;
11490             ret = get_errno(sched_rr_get_interval(arg1, &ts));
11491             if (!is_error(ret)) {
11492                 ret = host_to_target_timespec64(arg2, &ts);
11493             }
11494         }
11495         return ret;
11496 #endif
11497 #if defined(TARGET_NR_nanosleep)
11498     case TARGET_NR_nanosleep:
11499         {
11500             struct timespec req, rem;
11501             target_to_host_timespec(&req, arg1);
11502             ret = get_errno(safe_nanosleep(&req, &rem));
11503             if (is_error(ret) && arg2) {
11504                 host_to_target_timespec(arg2, &rem);
11505             }
11506         }
11507         return ret;
11508 #endif
11509     case TARGET_NR_prctl:
11510         return do_prctl(cpu_env, arg1, arg2, arg3, arg4, arg5);
11511         break;
11512 #ifdef TARGET_NR_arch_prctl
11513     case TARGET_NR_arch_prctl:
11514         return do_arch_prctl(cpu_env, arg1, arg2);
11515 #endif
11516 #ifdef TARGET_NR_pread64
11517     case TARGET_NR_pread64:
11518         if (regpairs_aligned(cpu_env, num)) {
11519             arg4 = arg5;
11520             arg5 = arg6;
11521         }
11522         if (arg2 == 0 && arg3 == 0) {
11523             /* Special-case NULL buffer and zero length, which should succeed */
11524             p = 0;
11525         } else {
11526             p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11527             if (!p) {
11528                 return -TARGET_EFAULT;
11529             }
11530         }
11531         ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5)));
11532         unlock_user(p, arg2, ret);
11533         return ret;
11534     case TARGET_NR_pwrite64:
11535         if (regpairs_aligned(cpu_env, num)) {
11536             arg4 = arg5;
11537             arg5 = arg6;
11538         }
11539         if (arg2 == 0 && arg3 == 0) {
11540             /* Special-case NULL buffer and zero length, which should succeed */
11541             p = 0;
11542         } else {
11543             p = lock_user(VERIFY_READ, arg2, arg3, 1);
11544             if (!p) {
11545                 return -TARGET_EFAULT;
11546             }
11547         }
11548         ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5)));
11549         unlock_user(p, arg2, 0);
11550         return ret;
11551 #endif
11552     case TARGET_NR_getcwd:
11553         if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0)))
11554             return -TARGET_EFAULT;
11555         ret = get_errno(sys_getcwd1(p, arg2));
11556         unlock_user(p, arg1, ret);
11557         return ret;
11558     case TARGET_NR_capget:
11559     case TARGET_NR_capset:
11560     {
11561         struct target_user_cap_header *target_header;
11562         struct target_user_cap_data *target_data = NULL;
11563         struct __user_cap_header_struct header;
11564         struct __user_cap_data_struct data[2];
11565         struct __user_cap_data_struct *dataptr = NULL;
11566         int i, target_datalen;
11567         int data_items = 1;
11568 
11569         if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) {
11570             return -TARGET_EFAULT;
11571         }
11572         header.version = tswap32(target_header->version);
11573         header.pid = tswap32(target_header->pid);
11574 
11575         if (header.version != _LINUX_CAPABILITY_VERSION) {
11576             /* Version 2 and up takes pointer to two user_data structs */
11577             data_items = 2;
11578         }
11579 
11580         target_datalen = sizeof(*target_data) * data_items;
11581 
11582         if (arg2) {
11583             if (num == TARGET_NR_capget) {
11584                 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0);
11585             } else {
11586                 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1);
11587             }
11588             if (!target_data) {
11589                 unlock_user_struct(target_header, arg1, 0);
11590                 return -TARGET_EFAULT;
11591             }
11592 
11593             if (num == TARGET_NR_capset) {
11594                 for (i = 0; i < data_items; i++) {
11595                     data[i].effective = tswap32(target_data[i].effective);
11596                     data[i].permitted = tswap32(target_data[i].permitted);
11597                     data[i].inheritable = tswap32(target_data[i].inheritable);
11598                 }
11599             }
11600 
11601             dataptr = data;
11602         }
11603 
11604         if (num == TARGET_NR_capget) {
11605             ret = get_errno(capget(&header, dataptr));
11606         } else {
11607             ret = get_errno(capset(&header, dataptr));
11608         }
11609 
11610         /* The kernel always updates version for both capget and capset */
11611         target_header->version = tswap32(header.version);
11612         unlock_user_struct(target_header, arg1, 1);
11613 
11614         if (arg2) {
11615             if (num == TARGET_NR_capget) {
11616                 for (i = 0; i < data_items; i++) {
11617                     target_data[i].effective = tswap32(data[i].effective);
11618                     target_data[i].permitted = tswap32(data[i].permitted);
11619                     target_data[i].inheritable = tswap32(data[i].inheritable);
11620                 }
11621                 unlock_user(target_data, arg2, target_datalen);
11622             } else {
11623                 unlock_user(target_data, arg2, 0);
11624             }
11625         }
11626         return ret;
11627     }
11628     case TARGET_NR_sigaltstack:
11629         return do_sigaltstack(arg1, arg2, cpu_env);
11630 
11631 #ifdef CONFIG_SENDFILE
11632 #ifdef TARGET_NR_sendfile
11633     case TARGET_NR_sendfile:
11634     {
11635         off_t *offp = NULL;
11636         off_t off;
11637         if (arg3) {
11638             ret = get_user_sal(off, arg3);
11639             if (is_error(ret)) {
11640                 return ret;
11641             }
11642             offp = &off;
11643         }
11644         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11645         if (!is_error(ret) && arg3) {
11646             abi_long ret2 = put_user_sal(off, arg3);
11647             if (is_error(ret2)) {
11648                 ret = ret2;
11649             }
11650         }
11651         return ret;
11652     }
11653 #endif
11654 #ifdef TARGET_NR_sendfile64
11655     case TARGET_NR_sendfile64:
11656     {
11657         off_t *offp = NULL;
11658         off_t off;
11659         if (arg3) {
11660             ret = get_user_s64(off, arg3);
11661             if (is_error(ret)) {
11662                 return ret;
11663             }
11664             offp = &off;
11665         }
11666         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11667         if (!is_error(ret) && arg3) {
11668             abi_long ret2 = put_user_s64(off, arg3);
11669             if (is_error(ret2)) {
11670                 ret = ret2;
11671             }
11672         }
11673         return ret;
11674     }
11675 #endif
11676 #endif
11677 #ifdef TARGET_NR_vfork
11678     case TARGET_NR_vfork:
11679         return get_errno(do_fork(cpu_env,
11680                          CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD,
11681                          0, 0, 0, 0));
11682 #endif
11683 #ifdef TARGET_NR_ugetrlimit
11684     case TARGET_NR_ugetrlimit:
11685     {
11686 	struct rlimit rlim;
11687 	int resource = target_to_host_resource(arg1);
11688 	ret = get_errno(getrlimit(resource, &rlim));
11689 	if (!is_error(ret)) {
11690 	    struct target_rlimit *target_rlim;
11691             if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
11692                 return -TARGET_EFAULT;
11693 	    target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
11694 	    target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
11695             unlock_user_struct(target_rlim, arg2, 1);
11696 	}
11697         return ret;
11698     }
11699 #endif
11700 #ifdef TARGET_NR_truncate64
11701     case TARGET_NR_truncate64:
11702         if (!(p = lock_user_string(arg1)))
11703             return -TARGET_EFAULT;
11704 	ret = target_truncate64(cpu_env, p, arg2, arg3, arg4);
11705         unlock_user(p, arg1, 0);
11706         return ret;
11707 #endif
11708 #ifdef TARGET_NR_ftruncate64
11709     case TARGET_NR_ftruncate64:
11710         return target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4);
11711 #endif
11712 #ifdef TARGET_NR_stat64
11713     case TARGET_NR_stat64:
11714         if (!(p = lock_user_string(arg1))) {
11715             return -TARGET_EFAULT;
11716         }
11717         ret = get_errno(stat(path(p), &st));
11718         unlock_user(p, arg1, 0);
11719         if (!is_error(ret))
11720             ret = host_to_target_stat64(cpu_env, arg2, &st);
11721         return ret;
11722 #endif
11723 #ifdef TARGET_NR_lstat64
11724     case TARGET_NR_lstat64:
11725         if (!(p = lock_user_string(arg1))) {
11726             return -TARGET_EFAULT;
11727         }
11728         ret = get_errno(lstat(path(p), &st));
11729         unlock_user(p, arg1, 0);
11730         if (!is_error(ret))
11731             ret = host_to_target_stat64(cpu_env, arg2, &st);
11732         return ret;
11733 #endif
11734 #ifdef TARGET_NR_fstat64
11735     case TARGET_NR_fstat64:
11736         ret = get_errno(fstat(arg1, &st));
11737         if (!is_error(ret))
11738             ret = host_to_target_stat64(cpu_env, arg2, &st);
11739         return ret;
11740 #endif
11741 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
11742 #ifdef TARGET_NR_fstatat64
11743     case TARGET_NR_fstatat64:
11744 #endif
11745 #ifdef TARGET_NR_newfstatat
11746     case TARGET_NR_newfstatat:
11747 #endif
11748         if (!(p = lock_user_string(arg2))) {
11749             return -TARGET_EFAULT;
11750         }
11751         ret = get_errno(fstatat(arg1, path(p), &st, arg4));
11752         unlock_user(p, arg2, 0);
11753         if (!is_error(ret))
11754             ret = host_to_target_stat64(cpu_env, arg3, &st);
11755         return ret;
11756 #endif
11757 #if defined(TARGET_NR_statx)
11758     case TARGET_NR_statx:
11759         {
11760             struct target_statx *target_stx;
11761             int dirfd = arg1;
11762             int flags = arg3;
11763 
11764             p = lock_user_string(arg2);
11765             if (p == NULL) {
11766                 return -TARGET_EFAULT;
11767             }
11768 #if defined(__NR_statx)
11769             {
11770                 /*
11771                  * It is assumed that struct statx is architecture independent.
11772                  */
11773                 struct target_statx host_stx;
11774                 int mask = arg4;
11775 
11776                 ret = get_errno(sys_statx(dirfd, p, flags, mask, &host_stx));
11777                 if (!is_error(ret)) {
11778                     if (host_to_target_statx(&host_stx, arg5) != 0) {
11779                         unlock_user(p, arg2, 0);
11780                         return -TARGET_EFAULT;
11781                     }
11782                 }
11783 
11784                 if (ret != -TARGET_ENOSYS) {
11785                     unlock_user(p, arg2, 0);
11786                     return ret;
11787                 }
11788             }
11789 #endif
11790             ret = get_errno(fstatat(dirfd, path(p), &st, flags));
11791             unlock_user(p, arg2, 0);
11792 
11793             if (!is_error(ret)) {
11794                 if (!lock_user_struct(VERIFY_WRITE, target_stx, arg5, 0)) {
11795                     return -TARGET_EFAULT;
11796                 }
11797                 memset(target_stx, 0, sizeof(*target_stx));
11798                 __put_user(major(st.st_dev), &target_stx->stx_dev_major);
11799                 __put_user(minor(st.st_dev), &target_stx->stx_dev_minor);
11800                 __put_user(st.st_ino, &target_stx->stx_ino);
11801                 __put_user(st.st_mode, &target_stx->stx_mode);
11802                 __put_user(st.st_uid, &target_stx->stx_uid);
11803                 __put_user(st.st_gid, &target_stx->stx_gid);
11804                 __put_user(st.st_nlink, &target_stx->stx_nlink);
11805                 __put_user(major(st.st_rdev), &target_stx->stx_rdev_major);
11806                 __put_user(minor(st.st_rdev), &target_stx->stx_rdev_minor);
11807                 __put_user(st.st_size, &target_stx->stx_size);
11808                 __put_user(st.st_blksize, &target_stx->stx_blksize);
11809                 __put_user(st.st_blocks, &target_stx->stx_blocks);
11810                 __put_user(st.st_atime, &target_stx->stx_atime.tv_sec);
11811                 __put_user(st.st_mtime, &target_stx->stx_mtime.tv_sec);
11812                 __put_user(st.st_ctime, &target_stx->stx_ctime.tv_sec);
11813                 unlock_user_struct(target_stx, arg5, 1);
11814             }
11815         }
11816         return ret;
11817 #endif
11818 #ifdef TARGET_NR_lchown
11819     case TARGET_NR_lchown:
11820         if (!(p = lock_user_string(arg1)))
11821             return -TARGET_EFAULT;
11822         ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3)));
11823         unlock_user(p, arg1, 0);
11824         return ret;
11825 #endif
11826 #ifdef TARGET_NR_getuid
11827     case TARGET_NR_getuid:
11828         return get_errno(high2lowuid(getuid()));
11829 #endif
11830 #ifdef TARGET_NR_getgid
11831     case TARGET_NR_getgid:
11832         return get_errno(high2lowgid(getgid()));
11833 #endif
11834 #ifdef TARGET_NR_geteuid
11835     case TARGET_NR_geteuid:
11836         return get_errno(high2lowuid(geteuid()));
11837 #endif
11838 #ifdef TARGET_NR_getegid
11839     case TARGET_NR_getegid:
11840         return get_errno(high2lowgid(getegid()));
11841 #endif
11842     case TARGET_NR_setreuid:
11843         return get_errno(setreuid(low2highuid(arg1), low2highuid(arg2)));
11844     case TARGET_NR_setregid:
11845         return get_errno(setregid(low2highgid(arg1), low2highgid(arg2)));
11846     case TARGET_NR_getgroups:
11847         { /* the same code as for TARGET_NR_getgroups32 */
11848             int gidsetsize = arg1;
11849             target_id *target_grouplist;
11850             g_autofree gid_t *grouplist = NULL;
11851             int i;
11852 
11853             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
11854                 return -TARGET_EINVAL;
11855             }
11856             if (gidsetsize > 0) {
11857                 grouplist = g_try_new(gid_t, gidsetsize);
11858                 if (!grouplist) {
11859                     return -TARGET_ENOMEM;
11860                 }
11861             }
11862             ret = get_errno(getgroups(gidsetsize, grouplist));
11863             if (!is_error(ret) && gidsetsize > 0) {
11864                 target_grouplist = lock_user(VERIFY_WRITE, arg2,
11865                                              gidsetsize * sizeof(target_id), 0);
11866                 if (!target_grouplist) {
11867                     return -TARGET_EFAULT;
11868                 }
11869                 for (i = 0; i < ret; i++) {
11870                     target_grouplist[i] = tswapid(high2lowgid(grouplist[i]));
11871                 }
11872                 unlock_user(target_grouplist, arg2,
11873                             gidsetsize * sizeof(target_id));
11874             }
11875             return ret;
11876         }
11877     case TARGET_NR_setgroups:
11878         { /* the same code as for TARGET_NR_setgroups32 */
11879             int gidsetsize = arg1;
11880             target_id *target_grouplist;
11881             g_autofree gid_t *grouplist = NULL;
11882             int i;
11883 
11884             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
11885                 return -TARGET_EINVAL;
11886             }
11887             if (gidsetsize > 0) {
11888                 grouplist = g_try_new(gid_t, gidsetsize);
11889                 if (!grouplist) {
11890                     return -TARGET_ENOMEM;
11891                 }
11892                 target_grouplist = lock_user(VERIFY_READ, arg2,
11893                                              gidsetsize * sizeof(target_id), 1);
11894                 if (!target_grouplist) {
11895                     return -TARGET_EFAULT;
11896                 }
11897                 for (i = 0; i < gidsetsize; i++) {
11898                     grouplist[i] = low2highgid(tswapid(target_grouplist[i]));
11899                 }
11900                 unlock_user(target_grouplist, arg2,
11901                             gidsetsize * sizeof(target_id));
11902             }
11903             return get_errno(sys_setgroups(gidsetsize, grouplist));
11904         }
11905     case TARGET_NR_fchown:
11906         return get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3)));
11907 #if defined(TARGET_NR_fchownat)
11908     case TARGET_NR_fchownat:
11909         if (!(p = lock_user_string(arg2)))
11910             return -TARGET_EFAULT;
11911         ret = get_errno(fchownat(arg1, p, low2highuid(arg3),
11912                                  low2highgid(arg4), arg5));
11913         unlock_user(p, arg2, 0);
11914         return ret;
11915 #endif
11916 #ifdef TARGET_NR_setresuid
11917     case TARGET_NR_setresuid:
11918         return get_errno(sys_setresuid(low2highuid(arg1),
11919                                        low2highuid(arg2),
11920                                        low2highuid(arg3)));
11921 #endif
11922 #ifdef TARGET_NR_getresuid
11923     case TARGET_NR_getresuid:
11924         {
11925             uid_t ruid, euid, suid;
11926             ret = get_errno(getresuid(&ruid, &euid, &suid));
11927             if (!is_error(ret)) {
11928                 if (put_user_id(high2lowuid(ruid), arg1)
11929                     || put_user_id(high2lowuid(euid), arg2)
11930                     || put_user_id(high2lowuid(suid), arg3))
11931                     return -TARGET_EFAULT;
11932             }
11933         }
11934         return ret;
11935 #endif
11936 #ifdef TARGET_NR_getresgid
11937     case TARGET_NR_setresgid:
11938         return get_errno(sys_setresgid(low2highgid(arg1),
11939                                        low2highgid(arg2),
11940                                        low2highgid(arg3)));
11941 #endif
11942 #ifdef TARGET_NR_getresgid
11943     case TARGET_NR_getresgid:
11944         {
11945             gid_t rgid, egid, sgid;
11946             ret = get_errno(getresgid(&rgid, &egid, &sgid));
11947             if (!is_error(ret)) {
11948                 if (put_user_id(high2lowgid(rgid), arg1)
11949                     || put_user_id(high2lowgid(egid), arg2)
11950                     || put_user_id(high2lowgid(sgid), arg3))
11951                     return -TARGET_EFAULT;
11952             }
11953         }
11954         return ret;
11955 #endif
11956 #ifdef TARGET_NR_chown
11957     case TARGET_NR_chown:
11958         if (!(p = lock_user_string(arg1)))
11959             return -TARGET_EFAULT;
11960         ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3)));
11961         unlock_user(p, arg1, 0);
11962         return ret;
11963 #endif
11964     case TARGET_NR_setuid:
11965         return get_errno(sys_setuid(low2highuid(arg1)));
11966     case TARGET_NR_setgid:
11967         return get_errno(sys_setgid(low2highgid(arg1)));
11968     case TARGET_NR_setfsuid:
11969         return get_errno(setfsuid(arg1));
11970     case TARGET_NR_setfsgid:
11971         return get_errno(setfsgid(arg1));
11972 
11973 #ifdef TARGET_NR_lchown32
11974     case TARGET_NR_lchown32:
11975         if (!(p = lock_user_string(arg1)))
11976             return -TARGET_EFAULT;
11977         ret = get_errno(lchown(p, arg2, arg3));
11978         unlock_user(p, arg1, 0);
11979         return ret;
11980 #endif
11981 #ifdef TARGET_NR_getuid32
11982     case TARGET_NR_getuid32:
11983         return get_errno(getuid());
11984 #endif
11985 
11986 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
11987    /* Alpha specific */
11988     case TARGET_NR_getxuid:
11989          {
11990             uid_t euid;
11991             euid=geteuid();
11992             cpu_env->ir[IR_A4]=euid;
11993          }
11994         return get_errno(getuid());
11995 #endif
11996 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
11997    /* Alpha specific */
11998     case TARGET_NR_getxgid:
11999          {
12000             uid_t egid;
12001             egid=getegid();
12002             cpu_env->ir[IR_A4]=egid;
12003          }
12004         return get_errno(getgid());
12005 #endif
12006 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
12007     /* Alpha specific */
12008     case TARGET_NR_osf_getsysinfo:
12009         ret = -TARGET_EOPNOTSUPP;
12010         switch (arg1) {
12011           case TARGET_GSI_IEEE_FP_CONTROL:
12012             {
12013                 uint64_t fpcr = cpu_alpha_load_fpcr(cpu_env);
12014                 uint64_t swcr = cpu_env->swcr;
12015 
12016                 swcr &= ~SWCR_STATUS_MASK;
12017                 swcr |= (fpcr >> 35) & SWCR_STATUS_MASK;
12018 
12019                 if (put_user_u64 (swcr, arg2))
12020                         return -TARGET_EFAULT;
12021                 ret = 0;
12022             }
12023             break;
12024 
12025           /* case GSI_IEEE_STATE_AT_SIGNAL:
12026              -- Not implemented in linux kernel.
12027              case GSI_UACPROC:
12028              -- Retrieves current unaligned access state; not much used.
12029              case GSI_PROC_TYPE:
12030              -- Retrieves implver information; surely not used.
12031              case GSI_GET_HWRPB:
12032              -- Grabs a copy of the HWRPB; surely not used.
12033           */
12034         }
12035         return ret;
12036 #endif
12037 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
12038     /* Alpha specific */
12039     case TARGET_NR_osf_setsysinfo:
12040         ret = -TARGET_EOPNOTSUPP;
12041         switch (arg1) {
12042           case TARGET_SSI_IEEE_FP_CONTROL:
12043             {
12044                 uint64_t swcr, fpcr;
12045 
12046                 if (get_user_u64 (swcr, arg2)) {
12047                     return -TARGET_EFAULT;
12048                 }
12049 
12050                 /*
12051                  * The kernel calls swcr_update_status to update the
12052                  * status bits from the fpcr at every point that it
12053                  * could be queried.  Therefore, we store the status
12054                  * bits only in FPCR.
12055                  */
12056                 cpu_env->swcr = swcr & (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK);
12057 
12058                 fpcr = cpu_alpha_load_fpcr(cpu_env);
12059                 fpcr &= ((uint64_t)FPCR_DYN_MASK << 32);
12060                 fpcr |= alpha_ieee_swcr_to_fpcr(swcr);
12061                 cpu_alpha_store_fpcr(cpu_env, fpcr);
12062                 ret = 0;
12063             }
12064             break;
12065 
12066           case TARGET_SSI_IEEE_RAISE_EXCEPTION:
12067             {
12068                 uint64_t exc, fpcr, fex;
12069 
12070                 if (get_user_u64(exc, arg2)) {
12071                     return -TARGET_EFAULT;
12072                 }
12073                 exc &= SWCR_STATUS_MASK;
12074                 fpcr = cpu_alpha_load_fpcr(cpu_env);
12075 
12076                 /* Old exceptions are not signaled.  */
12077                 fex = alpha_ieee_fpcr_to_swcr(fpcr);
12078                 fex = exc & ~fex;
12079                 fex >>= SWCR_STATUS_TO_EXCSUM_SHIFT;
12080                 fex &= (cpu_env)->swcr;
12081 
12082                 /* Update the hardware fpcr.  */
12083                 fpcr |= alpha_ieee_swcr_to_fpcr(exc);
12084                 cpu_alpha_store_fpcr(cpu_env, fpcr);
12085 
12086                 if (fex) {
12087                     int si_code = TARGET_FPE_FLTUNK;
12088                     target_siginfo_t info;
12089 
12090                     if (fex & SWCR_TRAP_ENABLE_DNO) {
12091                         si_code = TARGET_FPE_FLTUND;
12092                     }
12093                     if (fex & SWCR_TRAP_ENABLE_INE) {
12094                         si_code = TARGET_FPE_FLTRES;
12095                     }
12096                     if (fex & SWCR_TRAP_ENABLE_UNF) {
12097                         si_code = TARGET_FPE_FLTUND;
12098                     }
12099                     if (fex & SWCR_TRAP_ENABLE_OVF) {
12100                         si_code = TARGET_FPE_FLTOVF;
12101                     }
12102                     if (fex & SWCR_TRAP_ENABLE_DZE) {
12103                         si_code = TARGET_FPE_FLTDIV;
12104                     }
12105                     if (fex & SWCR_TRAP_ENABLE_INV) {
12106                         si_code = TARGET_FPE_FLTINV;
12107                     }
12108 
12109                     info.si_signo = SIGFPE;
12110                     info.si_errno = 0;
12111                     info.si_code = si_code;
12112                     info._sifields._sigfault._addr = (cpu_env)->pc;
12113                     queue_signal(cpu_env, info.si_signo,
12114                                  QEMU_SI_FAULT, &info);
12115                 }
12116                 ret = 0;
12117             }
12118             break;
12119 
12120           /* case SSI_NVPAIRS:
12121              -- Used with SSIN_UACPROC to enable unaligned accesses.
12122              case SSI_IEEE_STATE_AT_SIGNAL:
12123              case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
12124              -- Not implemented in linux kernel
12125           */
12126         }
12127         return ret;
12128 #endif
12129 #ifdef TARGET_NR_osf_sigprocmask
12130     /* Alpha specific.  */
12131     case TARGET_NR_osf_sigprocmask:
12132         {
12133             abi_ulong mask;
12134             int how;
12135             sigset_t set, oldset;
12136 
12137             switch(arg1) {
12138             case TARGET_SIG_BLOCK:
12139                 how = SIG_BLOCK;
12140                 break;
12141             case TARGET_SIG_UNBLOCK:
12142                 how = SIG_UNBLOCK;
12143                 break;
12144             case TARGET_SIG_SETMASK:
12145                 how = SIG_SETMASK;
12146                 break;
12147             default:
12148                 return -TARGET_EINVAL;
12149             }
12150             mask = arg2;
12151             target_to_host_old_sigset(&set, &mask);
12152             ret = do_sigprocmask(how, &set, &oldset);
12153             if (!ret) {
12154                 host_to_target_old_sigset(&mask, &oldset);
12155                 ret = mask;
12156             }
12157         }
12158         return ret;
12159 #endif
12160 
12161 #ifdef TARGET_NR_getgid32
12162     case TARGET_NR_getgid32:
12163         return get_errno(getgid());
12164 #endif
12165 #ifdef TARGET_NR_geteuid32
12166     case TARGET_NR_geteuid32:
12167         return get_errno(geteuid());
12168 #endif
12169 #ifdef TARGET_NR_getegid32
12170     case TARGET_NR_getegid32:
12171         return get_errno(getegid());
12172 #endif
12173 #ifdef TARGET_NR_setreuid32
12174     case TARGET_NR_setreuid32:
12175         return get_errno(setreuid(arg1, arg2));
12176 #endif
12177 #ifdef TARGET_NR_setregid32
12178     case TARGET_NR_setregid32:
12179         return get_errno(setregid(arg1, arg2));
12180 #endif
12181 #ifdef TARGET_NR_getgroups32
12182     case TARGET_NR_getgroups32:
12183         { /* the same code as for TARGET_NR_getgroups */
12184             int gidsetsize = arg1;
12185             uint32_t *target_grouplist;
12186             g_autofree gid_t *grouplist = NULL;
12187             int i;
12188 
12189             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
12190                 return -TARGET_EINVAL;
12191             }
12192             if (gidsetsize > 0) {
12193                 grouplist = g_try_new(gid_t, gidsetsize);
12194                 if (!grouplist) {
12195                     return -TARGET_ENOMEM;
12196                 }
12197             }
12198             ret = get_errno(getgroups(gidsetsize, grouplist));
12199             if (!is_error(ret) && gidsetsize > 0) {
12200                 target_grouplist = lock_user(VERIFY_WRITE, arg2,
12201                                              gidsetsize * 4, 0);
12202                 if (!target_grouplist) {
12203                     return -TARGET_EFAULT;
12204                 }
12205                 for (i = 0; i < ret; i++) {
12206                     target_grouplist[i] = tswap32(grouplist[i]);
12207                 }
12208                 unlock_user(target_grouplist, arg2, gidsetsize * 4);
12209             }
12210             return ret;
12211         }
12212 #endif
12213 #ifdef TARGET_NR_setgroups32
12214     case TARGET_NR_setgroups32:
12215         { /* the same code as for TARGET_NR_setgroups */
12216             int gidsetsize = arg1;
12217             uint32_t *target_grouplist;
12218             g_autofree gid_t *grouplist = NULL;
12219             int i;
12220 
12221             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
12222                 return -TARGET_EINVAL;
12223             }
12224             if (gidsetsize > 0) {
12225                 grouplist = g_try_new(gid_t, gidsetsize);
12226                 if (!grouplist) {
12227                     return -TARGET_ENOMEM;
12228                 }
12229                 target_grouplist = lock_user(VERIFY_READ, arg2,
12230                                              gidsetsize * 4, 1);
12231                 if (!target_grouplist) {
12232                     return -TARGET_EFAULT;
12233                 }
12234                 for (i = 0; i < gidsetsize; i++) {
12235                     grouplist[i] = tswap32(target_grouplist[i]);
12236                 }
12237                 unlock_user(target_grouplist, arg2, 0);
12238             }
12239             return get_errno(sys_setgroups(gidsetsize, grouplist));
12240         }
12241 #endif
12242 #ifdef TARGET_NR_fchown32
12243     case TARGET_NR_fchown32:
12244         return get_errno(fchown(arg1, arg2, arg3));
12245 #endif
12246 #ifdef TARGET_NR_setresuid32
12247     case TARGET_NR_setresuid32:
12248         return get_errno(sys_setresuid(arg1, arg2, arg3));
12249 #endif
12250 #ifdef TARGET_NR_getresuid32
12251     case TARGET_NR_getresuid32:
12252         {
12253             uid_t ruid, euid, suid;
12254             ret = get_errno(getresuid(&ruid, &euid, &suid));
12255             if (!is_error(ret)) {
12256                 if (put_user_u32(ruid, arg1)
12257                     || put_user_u32(euid, arg2)
12258                     || put_user_u32(suid, arg3))
12259                     return -TARGET_EFAULT;
12260             }
12261         }
12262         return ret;
12263 #endif
12264 #ifdef TARGET_NR_setresgid32
12265     case TARGET_NR_setresgid32:
12266         return get_errno(sys_setresgid(arg1, arg2, arg3));
12267 #endif
12268 #ifdef TARGET_NR_getresgid32
12269     case TARGET_NR_getresgid32:
12270         {
12271             gid_t rgid, egid, sgid;
12272             ret = get_errno(getresgid(&rgid, &egid, &sgid));
12273             if (!is_error(ret)) {
12274                 if (put_user_u32(rgid, arg1)
12275                     || put_user_u32(egid, arg2)
12276                     || put_user_u32(sgid, arg3))
12277                     return -TARGET_EFAULT;
12278             }
12279         }
12280         return ret;
12281 #endif
12282 #ifdef TARGET_NR_chown32
12283     case TARGET_NR_chown32:
12284         if (!(p = lock_user_string(arg1)))
12285             return -TARGET_EFAULT;
12286         ret = get_errno(chown(p, arg2, arg3));
12287         unlock_user(p, arg1, 0);
12288         return ret;
12289 #endif
12290 #ifdef TARGET_NR_setuid32
12291     case TARGET_NR_setuid32:
12292         return get_errno(sys_setuid(arg1));
12293 #endif
12294 #ifdef TARGET_NR_setgid32
12295     case TARGET_NR_setgid32:
12296         return get_errno(sys_setgid(arg1));
12297 #endif
12298 #ifdef TARGET_NR_setfsuid32
12299     case TARGET_NR_setfsuid32:
12300         return get_errno(setfsuid(arg1));
12301 #endif
12302 #ifdef TARGET_NR_setfsgid32
12303     case TARGET_NR_setfsgid32:
12304         return get_errno(setfsgid(arg1));
12305 #endif
12306 #ifdef TARGET_NR_mincore
12307     case TARGET_NR_mincore:
12308         {
12309             void *a = lock_user(VERIFY_NONE, arg1, arg2, 0);
12310             if (!a) {
12311                 return -TARGET_ENOMEM;
12312             }
12313             p = lock_user_string(arg3);
12314             if (!p) {
12315                 ret = -TARGET_EFAULT;
12316             } else {
12317                 ret = get_errno(mincore(a, arg2, p));
12318                 unlock_user(p, arg3, ret);
12319             }
12320             unlock_user(a, arg1, 0);
12321         }
12322         return ret;
12323 #endif
12324 #ifdef TARGET_NR_arm_fadvise64_64
12325     case TARGET_NR_arm_fadvise64_64:
12326         /* arm_fadvise64_64 looks like fadvise64_64 but
12327          * with different argument order: fd, advice, offset, len
12328          * rather than the usual fd, offset, len, advice.
12329          * Note that offset and len are both 64-bit so appear as
12330          * pairs of 32-bit registers.
12331          */
12332         ret = posix_fadvise(arg1, target_offset64(arg3, arg4),
12333                             target_offset64(arg5, arg6), arg2);
12334         return -host_to_target_errno(ret);
12335 #endif
12336 
12337 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12338 
12339 #ifdef TARGET_NR_fadvise64_64
12340     case TARGET_NR_fadvise64_64:
12341 #if defined(TARGET_PPC) || defined(TARGET_XTENSA)
12342         /* 6 args: fd, advice, offset (high, low), len (high, low) */
12343         ret = arg2;
12344         arg2 = arg3;
12345         arg3 = arg4;
12346         arg4 = arg5;
12347         arg5 = arg6;
12348         arg6 = ret;
12349 #else
12350         /* 6 args: fd, offset (high, low), len (high, low), advice */
12351         if (regpairs_aligned(cpu_env, num)) {
12352             /* offset is in (3,4), len in (5,6) and advice in 7 */
12353             arg2 = arg3;
12354             arg3 = arg4;
12355             arg4 = arg5;
12356             arg5 = arg6;
12357             arg6 = arg7;
12358         }
12359 #endif
12360         ret = posix_fadvise(arg1, target_offset64(arg2, arg3),
12361                             target_offset64(arg4, arg5), arg6);
12362         return -host_to_target_errno(ret);
12363 #endif
12364 
12365 #ifdef TARGET_NR_fadvise64
12366     case TARGET_NR_fadvise64:
12367         /* 5 args: fd, offset (high, low), len, advice */
12368         if (regpairs_aligned(cpu_env, num)) {
12369             /* offset is in (3,4), len in 5 and advice in 6 */
12370             arg2 = arg3;
12371             arg3 = arg4;
12372             arg4 = arg5;
12373             arg5 = arg6;
12374         }
12375         ret = posix_fadvise(arg1, target_offset64(arg2, arg3), arg4, arg5);
12376         return -host_to_target_errno(ret);
12377 #endif
12378 
12379 #else /* not a 32-bit ABI */
12380 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
12381 #ifdef TARGET_NR_fadvise64_64
12382     case TARGET_NR_fadvise64_64:
12383 #endif
12384 #ifdef TARGET_NR_fadvise64
12385     case TARGET_NR_fadvise64:
12386 #endif
12387 #ifdef TARGET_S390X
12388         switch (arg4) {
12389         case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */
12390         case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */
12391         case 6: arg4 = POSIX_FADV_DONTNEED; break;
12392         case 7: arg4 = POSIX_FADV_NOREUSE; break;
12393         default: break;
12394         }
12395 #endif
12396         return -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4));
12397 #endif
12398 #endif /* end of 64-bit ABI fadvise handling */
12399 
12400 #ifdef TARGET_NR_madvise
12401     case TARGET_NR_madvise:
12402         return target_madvise(arg1, arg2, arg3);
12403 #endif
12404 #ifdef TARGET_NR_fcntl64
12405     case TARGET_NR_fcntl64:
12406     {
12407         int cmd;
12408         struct flock64 fl;
12409         from_flock64_fn *copyfrom = copy_from_user_flock64;
12410         to_flock64_fn *copyto = copy_to_user_flock64;
12411 
12412 #ifdef TARGET_ARM
12413         if (!cpu_env->eabi) {
12414             copyfrom = copy_from_user_oabi_flock64;
12415             copyto = copy_to_user_oabi_flock64;
12416         }
12417 #endif
12418 
12419         cmd = target_to_host_fcntl_cmd(arg2);
12420         if (cmd == -TARGET_EINVAL) {
12421             return cmd;
12422         }
12423 
12424         switch(arg2) {
12425         case TARGET_F_GETLK64:
12426             ret = copyfrom(&fl, arg3);
12427             if (ret) {
12428                 break;
12429             }
12430             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
12431             if (ret == 0) {
12432                 ret = copyto(arg3, &fl);
12433             }
12434 	    break;
12435 
12436         case TARGET_F_SETLK64:
12437         case TARGET_F_SETLKW64:
12438             ret = copyfrom(&fl, arg3);
12439             if (ret) {
12440                 break;
12441             }
12442             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
12443 	    break;
12444         default:
12445             ret = do_fcntl(arg1, arg2, arg3);
12446             break;
12447         }
12448         return ret;
12449     }
12450 #endif
12451 #ifdef TARGET_NR_cacheflush
12452     case TARGET_NR_cacheflush:
12453         /* self-modifying code is handled automatically, so nothing needed */
12454         return 0;
12455 #endif
12456 #ifdef TARGET_NR_getpagesize
12457     case TARGET_NR_getpagesize:
12458         return TARGET_PAGE_SIZE;
12459 #endif
12460     case TARGET_NR_gettid:
12461         return get_errno(sys_gettid());
12462 #ifdef TARGET_NR_readahead
12463     case TARGET_NR_readahead:
12464 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12465         if (regpairs_aligned(cpu_env, num)) {
12466             arg2 = arg3;
12467             arg3 = arg4;
12468             arg4 = arg5;
12469         }
12470         ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4));
12471 #else
12472         ret = get_errno(readahead(arg1, arg2, arg3));
12473 #endif
12474         return ret;
12475 #endif
12476 #ifdef CONFIG_ATTR
12477 #ifdef TARGET_NR_setxattr
12478     case TARGET_NR_listxattr:
12479     case TARGET_NR_llistxattr:
12480     {
12481         void *b = 0;
12482         if (arg2) {
12483             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
12484             if (!b) {
12485                 return -TARGET_EFAULT;
12486             }
12487         }
12488         p = lock_user_string(arg1);
12489         if (p) {
12490             if (num == TARGET_NR_listxattr) {
12491                 ret = get_errno(listxattr(p, b, arg3));
12492             } else {
12493                 ret = get_errno(llistxattr(p, b, arg3));
12494             }
12495         } else {
12496             ret = -TARGET_EFAULT;
12497         }
12498         unlock_user(p, arg1, 0);
12499         unlock_user(b, arg2, arg3);
12500         return ret;
12501     }
12502     case TARGET_NR_flistxattr:
12503     {
12504         void *b = 0;
12505         if (arg2) {
12506             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
12507             if (!b) {
12508                 return -TARGET_EFAULT;
12509             }
12510         }
12511         ret = get_errno(flistxattr(arg1, b, arg3));
12512         unlock_user(b, arg2, arg3);
12513         return ret;
12514     }
12515     case TARGET_NR_setxattr:
12516     case TARGET_NR_lsetxattr:
12517         {
12518             void *n, *v = 0;
12519             if (arg3) {
12520                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
12521                 if (!v) {
12522                     return -TARGET_EFAULT;
12523                 }
12524             }
12525             p = lock_user_string(arg1);
12526             n = lock_user_string(arg2);
12527             if (p && n) {
12528                 if (num == TARGET_NR_setxattr) {
12529                     ret = get_errno(setxattr(p, n, v, arg4, arg5));
12530                 } else {
12531                     ret = get_errno(lsetxattr(p, n, v, arg4, arg5));
12532                 }
12533             } else {
12534                 ret = -TARGET_EFAULT;
12535             }
12536             unlock_user(p, arg1, 0);
12537             unlock_user(n, arg2, 0);
12538             unlock_user(v, arg3, 0);
12539         }
12540         return ret;
12541     case TARGET_NR_fsetxattr:
12542         {
12543             void *n, *v = 0;
12544             if (arg3) {
12545                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
12546                 if (!v) {
12547                     return -TARGET_EFAULT;
12548                 }
12549             }
12550             n = lock_user_string(arg2);
12551             if (n) {
12552                 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5));
12553             } else {
12554                 ret = -TARGET_EFAULT;
12555             }
12556             unlock_user(n, arg2, 0);
12557             unlock_user(v, arg3, 0);
12558         }
12559         return ret;
12560     case TARGET_NR_getxattr:
12561     case TARGET_NR_lgetxattr:
12562         {
12563             void *n, *v = 0;
12564             if (arg3) {
12565                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12566                 if (!v) {
12567                     return -TARGET_EFAULT;
12568                 }
12569             }
12570             p = lock_user_string(arg1);
12571             n = lock_user_string(arg2);
12572             if (p && n) {
12573                 if (num == TARGET_NR_getxattr) {
12574                     ret = get_errno(getxattr(p, n, v, arg4));
12575                 } else {
12576                     ret = get_errno(lgetxattr(p, n, v, arg4));
12577                 }
12578             } else {
12579                 ret = -TARGET_EFAULT;
12580             }
12581             unlock_user(p, arg1, 0);
12582             unlock_user(n, arg2, 0);
12583             unlock_user(v, arg3, arg4);
12584         }
12585         return ret;
12586     case TARGET_NR_fgetxattr:
12587         {
12588             void *n, *v = 0;
12589             if (arg3) {
12590                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12591                 if (!v) {
12592                     return -TARGET_EFAULT;
12593                 }
12594             }
12595             n = lock_user_string(arg2);
12596             if (n) {
12597                 ret = get_errno(fgetxattr(arg1, n, v, arg4));
12598             } else {
12599                 ret = -TARGET_EFAULT;
12600             }
12601             unlock_user(n, arg2, 0);
12602             unlock_user(v, arg3, arg4);
12603         }
12604         return ret;
12605     case TARGET_NR_removexattr:
12606     case TARGET_NR_lremovexattr:
12607         {
12608             void *n;
12609             p = lock_user_string(arg1);
12610             n = lock_user_string(arg2);
12611             if (p && n) {
12612                 if (num == TARGET_NR_removexattr) {
12613                     ret = get_errno(removexattr(p, n));
12614                 } else {
12615                     ret = get_errno(lremovexattr(p, n));
12616                 }
12617             } else {
12618                 ret = -TARGET_EFAULT;
12619             }
12620             unlock_user(p, arg1, 0);
12621             unlock_user(n, arg2, 0);
12622         }
12623         return ret;
12624     case TARGET_NR_fremovexattr:
12625         {
12626             void *n;
12627             n = lock_user_string(arg2);
12628             if (n) {
12629                 ret = get_errno(fremovexattr(arg1, n));
12630             } else {
12631                 ret = -TARGET_EFAULT;
12632             }
12633             unlock_user(n, arg2, 0);
12634         }
12635         return ret;
12636 #endif
12637 #endif /* CONFIG_ATTR */
12638 #ifdef TARGET_NR_set_thread_area
12639     case TARGET_NR_set_thread_area:
12640 #if defined(TARGET_MIPS)
12641       cpu_env->active_tc.CP0_UserLocal = arg1;
12642       return 0;
12643 #elif defined(TARGET_CRIS)
12644       if (arg1 & 0xff)
12645           ret = -TARGET_EINVAL;
12646       else {
12647           cpu_env->pregs[PR_PID] = arg1;
12648           ret = 0;
12649       }
12650       return ret;
12651 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
12652       return do_set_thread_area(cpu_env, arg1);
12653 #elif defined(TARGET_M68K)
12654       {
12655           TaskState *ts = get_task_state(cpu);
12656           ts->tp_value = arg1;
12657           return 0;
12658       }
12659 #else
12660       return -TARGET_ENOSYS;
12661 #endif
12662 #endif
12663 #ifdef TARGET_NR_get_thread_area
12664     case TARGET_NR_get_thread_area:
12665 #if defined(TARGET_I386) && defined(TARGET_ABI32)
12666         return do_get_thread_area(cpu_env, arg1);
12667 #elif defined(TARGET_M68K)
12668         {
12669             TaskState *ts = get_task_state(cpu);
12670             return ts->tp_value;
12671         }
12672 #else
12673         return -TARGET_ENOSYS;
12674 #endif
12675 #endif
12676 #ifdef TARGET_NR_getdomainname
12677     case TARGET_NR_getdomainname:
12678         return -TARGET_ENOSYS;
12679 #endif
12680 
12681 #ifdef TARGET_NR_clock_settime
12682     case TARGET_NR_clock_settime:
12683     {
12684         struct timespec ts;
12685 
12686         ret = target_to_host_timespec(&ts, arg2);
12687         if (!is_error(ret)) {
12688             ret = get_errno(clock_settime(arg1, &ts));
12689         }
12690         return ret;
12691     }
12692 #endif
12693 #ifdef TARGET_NR_clock_settime64
12694     case TARGET_NR_clock_settime64:
12695     {
12696         struct timespec ts;
12697 
12698         ret = target_to_host_timespec64(&ts, arg2);
12699         if (!is_error(ret)) {
12700             ret = get_errno(clock_settime(arg1, &ts));
12701         }
12702         return ret;
12703     }
12704 #endif
12705 #ifdef TARGET_NR_clock_gettime
12706     case TARGET_NR_clock_gettime:
12707     {
12708         struct timespec ts;
12709         ret = get_errno(clock_gettime(arg1, &ts));
12710         if (!is_error(ret)) {
12711             ret = host_to_target_timespec(arg2, &ts);
12712         }
12713         return ret;
12714     }
12715 #endif
12716 #ifdef TARGET_NR_clock_gettime64
12717     case TARGET_NR_clock_gettime64:
12718     {
12719         struct timespec ts;
12720         ret = get_errno(clock_gettime(arg1, &ts));
12721         if (!is_error(ret)) {
12722             ret = host_to_target_timespec64(arg2, &ts);
12723         }
12724         return ret;
12725     }
12726 #endif
12727 #ifdef TARGET_NR_clock_getres
12728     case TARGET_NR_clock_getres:
12729     {
12730         struct timespec ts;
12731         ret = get_errno(clock_getres(arg1, &ts));
12732         if (!is_error(ret)) {
12733             host_to_target_timespec(arg2, &ts);
12734         }
12735         return ret;
12736     }
12737 #endif
12738 #ifdef TARGET_NR_clock_getres_time64
12739     case TARGET_NR_clock_getres_time64:
12740     {
12741         struct timespec ts;
12742         ret = get_errno(clock_getres(arg1, &ts));
12743         if (!is_error(ret)) {
12744             host_to_target_timespec64(arg2, &ts);
12745         }
12746         return ret;
12747     }
12748 #endif
12749 #ifdef TARGET_NR_clock_nanosleep
12750     case TARGET_NR_clock_nanosleep:
12751     {
12752         struct timespec ts;
12753         if (target_to_host_timespec(&ts, arg3)) {
12754             return -TARGET_EFAULT;
12755         }
12756         ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12757                                              &ts, arg4 ? &ts : NULL));
12758         /*
12759          * if the call is interrupted by a signal handler, it fails
12760          * with error -TARGET_EINTR and if arg4 is not NULL and arg2 is not
12761          * TIMER_ABSTIME, it returns the remaining unslept time in arg4.
12762          */
12763         if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12764             host_to_target_timespec(arg4, &ts)) {
12765               return -TARGET_EFAULT;
12766         }
12767 
12768         return ret;
12769     }
12770 #endif
12771 #ifdef TARGET_NR_clock_nanosleep_time64
12772     case TARGET_NR_clock_nanosleep_time64:
12773     {
12774         struct timespec ts;
12775 
12776         if (target_to_host_timespec64(&ts, arg3)) {
12777             return -TARGET_EFAULT;
12778         }
12779 
12780         ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12781                                              &ts, arg4 ? &ts : NULL));
12782 
12783         if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12784             host_to_target_timespec64(arg4, &ts)) {
12785             return -TARGET_EFAULT;
12786         }
12787         return ret;
12788     }
12789 #endif
12790 
12791 #if defined(TARGET_NR_set_tid_address)
12792     case TARGET_NR_set_tid_address:
12793     {
12794         TaskState *ts = get_task_state(cpu);
12795         ts->child_tidptr = arg1;
12796         /* do not call host set_tid_address() syscall, instead return tid() */
12797         return get_errno(sys_gettid());
12798     }
12799 #endif
12800 
12801     case TARGET_NR_tkill:
12802         return get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2)));
12803 
12804     case TARGET_NR_tgkill:
12805         return get_errno(safe_tgkill((int)arg1, (int)arg2,
12806                          target_to_host_signal(arg3)));
12807 
12808 #ifdef TARGET_NR_set_robust_list
12809     case TARGET_NR_set_robust_list:
12810     case TARGET_NR_get_robust_list:
12811         /* The ABI for supporting robust futexes has userspace pass
12812          * the kernel a pointer to a linked list which is updated by
12813          * userspace after the syscall; the list is walked by the kernel
12814          * when the thread exits. Since the linked list in QEMU guest
12815          * memory isn't a valid linked list for the host and we have
12816          * no way to reliably intercept the thread-death event, we can't
12817          * support these. Silently return ENOSYS so that guest userspace
12818          * falls back to a non-robust futex implementation (which should
12819          * be OK except in the corner case of the guest crashing while
12820          * holding a mutex that is shared with another process via
12821          * shared memory).
12822          */
12823         return -TARGET_ENOSYS;
12824 #endif
12825 
12826 #if defined(TARGET_NR_utimensat)
12827     case TARGET_NR_utimensat:
12828         {
12829             struct timespec *tsp, ts[2];
12830             if (!arg3) {
12831                 tsp = NULL;
12832             } else {
12833                 if (target_to_host_timespec(ts, arg3)) {
12834                     return -TARGET_EFAULT;
12835                 }
12836                 if (target_to_host_timespec(ts + 1, arg3 +
12837                                             sizeof(struct target_timespec))) {
12838                     return -TARGET_EFAULT;
12839                 }
12840                 tsp = ts;
12841             }
12842             if (!arg2)
12843                 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12844             else {
12845                 if (!(p = lock_user_string(arg2))) {
12846                     return -TARGET_EFAULT;
12847                 }
12848                 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12849                 unlock_user(p, arg2, 0);
12850             }
12851         }
12852         return ret;
12853 #endif
12854 #ifdef TARGET_NR_utimensat_time64
12855     case TARGET_NR_utimensat_time64:
12856         {
12857             struct timespec *tsp, ts[2];
12858             if (!arg3) {
12859                 tsp = NULL;
12860             } else {
12861                 if (target_to_host_timespec64(ts, arg3)) {
12862                     return -TARGET_EFAULT;
12863                 }
12864                 if (target_to_host_timespec64(ts + 1, arg3 +
12865                                      sizeof(struct target__kernel_timespec))) {
12866                     return -TARGET_EFAULT;
12867                 }
12868                 tsp = ts;
12869             }
12870             if (!arg2)
12871                 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12872             else {
12873                 p = lock_user_string(arg2);
12874                 if (!p) {
12875                     return -TARGET_EFAULT;
12876                 }
12877                 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12878                 unlock_user(p, arg2, 0);
12879             }
12880         }
12881         return ret;
12882 #endif
12883 #ifdef TARGET_NR_futex
12884     case TARGET_NR_futex:
12885         return do_futex(cpu, false, arg1, arg2, arg3, arg4, arg5, arg6);
12886 #endif
12887 #ifdef TARGET_NR_futex_time64
12888     case TARGET_NR_futex_time64:
12889         return do_futex(cpu, true, arg1, arg2, arg3, arg4, arg5, arg6);
12890 #endif
12891 #ifdef CONFIG_INOTIFY
12892 #if defined(TARGET_NR_inotify_init)
12893     case TARGET_NR_inotify_init:
12894         ret = get_errno(inotify_init());
12895         if (ret >= 0) {
12896             fd_trans_register(ret, &target_inotify_trans);
12897         }
12898         return ret;
12899 #endif
12900 #if defined(TARGET_NR_inotify_init1) && defined(CONFIG_INOTIFY1)
12901     case TARGET_NR_inotify_init1:
12902         ret = get_errno(inotify_init1(target_to_host_bitmask(arg1,
12903                                           fcntl_flags_tbl)));
12904         if (ret >= 0) {
12905             fd_trans_register(ret, &target_inotify_trans);
12906         }
12907         return ret;
12908 #endif
12909 #if defined(TARGET_NR_inotify_add_watch)
12910     case TARGET_NR_inotify_add_watch:
12911         p = lock_user_string(arg2);
12912         ret = get_errno(inotify_add_watch(arg1, path(p), arg3));
12913         unlock_user(p, arg2, 0);
12914         return ret;
12915 #endif
12916 #if defined(TARGET_NR_inotify_rm_watch)
12917     case TARGET_NR_inotify_rm_watch:
12918         return get_errno(inotify_rm_watch(arg1, arg2));
12919 #endif
12920 #endif
12921 
12922 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
12923     case TARGET_NR_mq_open:
12924         {
12925             struct mq_attr posix_mq_attr;
12926             struct mq_attr *pposix_mq_attr;
12927             int host_flags;
12928 
12929             host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl);
12930             pposix_mq_attr = NULL;
12931             if (arg4) {
12932                 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) {
12933                     return -TARGET_EFAULT;
12934                 }
12935                 pposix_mq_attr = &posix_mq_attr;
12936             }
12937             p = lock_user_string(arg1 - 1);
12938             if (!p) {
12939                 return -TARGET_EFAULT;
12940             }
12941             ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr));
12942             unlock_user (p, arg1, 0);
12943         }
12944         return ret;
12945 
12946     case TARGET_NR_mq_unlink:
12947         p = lock_user_string(arg1 - 1);
12948         if (!p) {
12949             return -TARGET_EFAULT;
12950         }
12951         ret = get_errno(mq_unlink(p));
12952         unlock_user (p, arg1, 0);
12953         return ret;
12954 
12955 #ifdef TARGET_NR_mq_timedsend
12956     case TARGET_NR_mq_timedsend:
12957         {
12958             struct timespec ts;
12959 
12960             p = lock_user (VERIFY_READ, arg2, arg3, 1);
12961             if (arg5 != 0) {
12962                 if (target_to_host_timespec(&ts, arg5)) {
12963                     return -TARGET_EFAULT;
12964                 }
12965                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12966                 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
12967                     return -TARGET_EFAULT;
12968                 }
12969             } else {
12970                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12971             }
12972             unlock_user (p, arg2, arg3);
12973         }
12974         return ret;
12975 #endif
12976 #ifdef TARGET_NR_mq_timedsend_time64
12977     case TARGET_NR_mq_timedsend_time64:
12978         {
12979             struct timespec ts;
12980 
12981             p = lock_user(VERIFY_READ, arg2, arg3, 1);
12982             if (arg5 != 0) {
12983                 if (target_to_host_timespec64(&ts, arg5)) {
12984                     return -TARGET_EFAULT;
12985                 }
12986                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12987                 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
12988                     return -TARGET_EFAULT;
12989                 }
12990             } else {
12991                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12992             }
12993             unlock_user(p, arg2, arg3);
12994         }
12995         return ret;
12996 #endif
12997 
12998 #ifdef TARGET_NR_mq_timedreceive
12999     case TARGET_NR_mq_timedreceive:
13000         {
13001             struct timespec ts;
13002             unsigned int prio;
13003 
13004             p = lock_user (VERIFY_READ, arg2, arg3, 1);
13005             if (arg5 != 0) {
13006                 if (target_to_host_timespec(&ts, arg5)) {
13007                     return -TARGET_EFAULT;
13008                 }
13009                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
13010                                                      &prio, &ts));
13011                 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
13012                     return -TARGET_EFAULT;
13013                 }
13014             } else {
13015                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
13016                                                      &prio, NULL));
13017             }
13018             unlock_user (p, arg2, arg3);
13019             if (arg4 != 0)
13020                 put_user_u32(prio, arg4);
13021         }
13022         return ret;
13023 #endif
13024 #ifdef TARGET_NR_mq_timedreceive_time64
13025     case TARGET_NR_mq_timedreceive_time64:
13026         {
13027             struct timespec ts;
13028             unsigned int prio;
13029 
13030             p = lock_user(VERIFY_READ, arg2, arg3, 1);
13031             if (arg5 != 0) {
13032                 if (target_to_host_timespec64(&ts, arg5)) {
13033                     return -TARGET_EFAULT;
13034                 }
13035                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
13036                                                      &prio, &ts));
13037                 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
13038                     return -TARGET_EFAULT;
13039                 }
13040             } else {
13041                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
13042                                                      &prio, NULL));
13043             }
13044             unlock_user(p, arg2, arg3);
13045             if (arg4 != 0) {
13046                 put_user_u32(prio, arg4);
13047             }
13048         }
13049         return ret;
13050 #endif
13051 
13052     /* Not implemented for now... */
13053 /*     case TARGET_NR_mq_notify: */
13054 /*         break; */
13055 
13056     case TARGET_NR_mq_getsetattr:
13057         {
13058             struct mq_attr posix_mq_attr_in, posix_mq_attr_out;
13059             ret = 0;
13060             if (arg2 != 0) {
13061                 copy_from_user_mq_attr(&posix_mq_attr_in, arg2);
13062                 ret = get_errno(mq_setattr(arg1, &posix_mq_attr_in,
13063                                            &posix_mq_attr_out));
13064             } else if (arg3 != 0) {
13065                 ret = get_errno(mq_getattr(arg1, &posix_mq_attr_out));
13066             }
13067             if (ret == 0 && arg3 != 0) {
13068                 copy_to_user_mq_attr(arg3, &posix_mq_attr_out);
13069             }
13070         }
13071         return ret;
13072 #endif
13073 
13074 #ifdef CONFIG_SPLICE
13075 #ifdef TARGET_NR_tee
13076     case TARGET_NR_tee:
13077         {
13078             ret = get_errno(tee(arg1,arg2,arg3,arg4));
13079         }
13080         return ret;
13081 #endif
13082 #ifdef TARGET_NR_splice
13083     case TARGET_NR_splice:
13084         {
13085             loff_t loff_in, loff_out;
13086             loff_t *ploff_in = NULL, *ploff_out = NULL;
13087             if (arg2) {
13088                 if (get_user_u64(loff_in, arg2)) {
13089                     return -TARGET_EFAULT;
13090                 }
13091                 ploff_in = &loff_in;
13092             }
13093             if (arg4) {
13094                 if (get_user_u64(loff_out, arg4)) {
13095                     return -TARGET_EFAULT;
13096                 }
13097                 ploff_out = &loff_out;
13098             }
13099             ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6));
13100             if (arg2) {
13101                 if (put_user_u64(loff_in, arg2)) {
13102                     return -TARGET_EFAULT;
13103                 }
13104             }
13105             if (arg4) {
13106                 if (put_user_u64(loff_out, arg4)) {
13107                     return -TARGET_EFAULT;
13108                 }
13109             }
13110         }
13111         return ret;
13112 #endif
13113 #ifdef TARGET_NR_vmsplice
13114 	case TARGET_NR_vmsplice:
13115         {
13116             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
13117             if (vec != NULL) {
13118                 ret = get_errno(vmsplice(arg1, vec, arg3, arg4));
13119                 unlock_iovec(vec, arg2, arg3, 0);
13120             } else {
13121                 ret = -host_to_target_errno(errno);
13122             }
13123         }
13124         return ret;
13125 #endif
13126 #endif /* CONFIG_SPLICE */
13127 #ifdef CONFIG_EVENTFD
13128 #if defined(TARGET_NR_eventfd)
13129     case TARGET_NR_eventfd:
13130         ret = get_errno(eventfd(arg1, 0));
13131         if (ret >= 0) {
13132             fd_trans_register(ret, &target_eventfd_trans);
13133         }
13134         return ret;
13135 #endif
13136 #if defined(TARGET_NR_eventfd2)
13137     case TARGET_NR_eventfd2:
13138     {
13139         int host_flags = arg2 & (~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC));
13140         if (arg2 & TARGET_O_NONBLOCK) {
13141             host_flags |= O_NONBLOCK;
13142         }
13143         if (arg2 & TARGET_O_CLOEXEC) {
13144             host_flags |= O_CLOEXEC;
13145         }
13146         ret = get_errno(eventfd(arg1, host_flags));
13147         if (ret >= 0) {
13148             fd_trans_register(ret, &target_eventfd_trans);
13149         }
13150         return ret;
13151     }
13152 #endif
13153 #endif /* CONFIG_EVENTFD  */
13154 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
13155     case TARGET_NR_fallocate:
13156 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13157         ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4),
13158                                   target_offset64(arg5, arg6)));
13159 #else
13160         ret = get_errno(fallocate(arg1, arg2, arg3, arg4));
13161 #endif
13162         return ret;
13163 #endif
13164 #if defined(CONFIG_SYNC_FILE_RANGE)
13165 #if defined(TARGET_NR_sync_file_range)
13166     case TARGET_NR_sync_file_range:
13167 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13168 #if defined(TARGET_MIPS)
13169         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
13170                                         target_offset64(arg5, arg6), arg7));
13171 #else
13172         ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3),
13173                                         target_offset64(arg4, arg5), arg6));
13174 #endif /* !TARGET_MIPS */
13175 #else
13176         ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4));
13177 #endif
13178         return ret;
13179 #endif
13180 #if defined(TARGET_NR_sync_file_range2) || \
13181     defined(TARGET_NR_arm_sync_file_range)
13182 #if defined(TARGET_NR_sync_file_range2)
13183     case TARGET_NR_sync_file_range2:
13184 #endif
13185 #if defined(TARGET_NR_arm_sync_file_range)
13186     case TARGET_NR_arm_sync_file_range:
13187 #endif
13188         /* This is like sync_file_range but the arguments are reordered */
13189 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13190         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
13191                                         target_offset64(arg5, arg6), arg2));
13192 #else
13193         ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2));
13194 #endif
13195         return ret;
13196 #endif
13197 #endif
13198 #if defined(TARGET_NR_signalfd4)
13199     case TARGET_NR_signalfd4:
13200         return do_signalfd4(arg1, arg2, arg4);
13201 #endif
13202 #if defined(TARGET_NR_signalfd)
13203     case TARGET_NR_signalfd:
13204         return do_signalfd4(arg1, arg2, 0);
13205 #endif
13206 #if defined(CONFIG_EPOLL)
13207 #if defined(TARGET_NR_epoll_create)
13208     case TARGET_NR_epoll_create:
13209         return get_errno(epoll_create(arg1));
13210 #endif
13211 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
13212     case TARGET_NR_epoll_create1:
13213         return get_errno(epoll_create1(target_to_host_bitmask(arg1, fcntl_flags_tbl)));
13214 #endif
13215 #if defined(TARGET_NR_epoll_ctl)
13216     case TARGET_NR_epoll_ctl:
13217     {
13218         struct epoll_event ep;
13219         struct epoll_event *epp = 0;
13220         if (arg4) {
13221             if (arg2 != EPOLL_CTL_DEL) {
13222                 struct target_epoll_event *target_ep;
13223                 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) {
13224                     return -TARGET_EFAULT;
13225                 }
13226                 ep.events = tswap32(target_ep->events);
13227                 /*
13228                  * The epoll_data_t union is just opaque data to the kernel,
13229                  * so we transfer all 64 bits across and need not worry what
13230                  * actual data type it is.
13231                  */
13232                 ep.data.u64 = tswap64(target_ep->data.u64);
13233                 unlock_user_struct(target_ep, arg4, 0);
13234             }
13235             /*
13236              * before kernel 2.6.9, EPOLL_CTL_DEL operation required a
13237              * non-null pointer, even though this argument is ignored.
13238              *
13239              */
13240             epp = &ep;
13241         }
13242         return get_errno(epoll_ctl(arg1, arg2, arg3, epp));
13243     }
13244 #endif
13245 
13246 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
13247 #if defined(TARGET_NR_epoll_wait)
13248     case TARGET_NR_epoll_wait:
13249 #endif
13250 #if defined(TARGET_NR_epoll_pwait)
13251     case TARGET_NR_epoll_pwait:
13252 #endif
13253     {
13254         struct target_epoll_event *target_ep;
13255         struct epoll_event *ep;
13256         int epfd = arg1;
13257         int maxevents = arg3;
13258         int timeout = arg4;
13259 
13260         if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) {
13261             return -TARGET_EINVAL;
13262         }
13263 
13264         target_ep = lock_user(VERIFY_WRITE, arg2,
13265                               maxevents * sizeof(struct target_epoll_event), 1);
13266         if (!target_ep) {
13267             return -TARGET_EFAULT;
13268         }
13269 
13270         ep = g_try_new(struct epoll_event, maxevents);
13271         if (!ep) {
13272             unlock_user(target_ep, arg2, 0);
13273             return -TARGET_ENOMEM;
13274         }
13275 
13276         switch (num) {
13277 #if defined(TARGET_NR_epoll_pwait)
13278         case TARGET_NR_epoll_pwait:
13279         {
13280             sigset_t *set = NULL;
13281 
13282             if (arg5) {
13283                 ret = process_sigsuspend_mask(&set, arg5, arg6);
13284                 if (ret != 0) {
13285                     break;
13286                 }
13287             }
13288 
13289             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
13290                                              set, SIGSET_T_SIZE));
13291 
13292             if (set) {
13293                 finish_sigsuspend_mask(ret);
13294             }
13295             break;
13296         }
13297 #endif
13298 #if defined(TARGET_NR_epoll_wait)
13299         case TARGET_NR_epoll_wait:
13300             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
13301                                              NULL, 0));
13302             break;
13303 #endif
13304         default:
13305             ret = -TARGET_ENOSYS;
13306         }
13307         if (!is_error(ret)) {
13308             int i;
13309             for (i = 0; i < ret; i++) {
13310                 target_ep[i].events = tswap32(ep[i].events);
13311                 target_ep[i].data.u64 = tswap64(ep[i].data.u64);
13312             }
13313             unlock_user(target_ep, arg2,
13314                         ret * sizeof(struct target_epoll_event));
13315         } else {
13316             unlock_user(target_ep, arg2, 0);
13317         }
13318         g_free(ep);
13319         return ret;
13320     }
13321 #endif
13322 #endif
13323 #ifdef TARGET_NR_prlimit64
13324     case TARGET_NR_prlimit64:
13325     {
13326         /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
13327         struct target_rlimit64 *target_rnew, *target_rold;
13328         struct host_rlimit64 rnew, rold, *rnewp = 0;
13329         int resource = target_to_host_resource(arg2);
13330 
13331         if (arg3 && (resource != RLIMIT_AS &&
13332                      resource != RLIMIT_DATA &&
13333                      resource != RLIMIT_STACK)) {
13334             if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) {
13335                 return -TARGET_EFAULT;
13336             }
13337             __get_user(rnew.rlim_cur, &target_rnew->rlim_cur);
13338             __get_user(rnew.rlim_max, &target_rnew->rlim_max);
13339             unlock_user_struct(target_rnew, arg3, 0);
13340             rnewp = &rnew;
13341         }
13342 
13343         ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0));
13344         if (!is_error(ret) && arg4) {
13345             if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) {
13346                 return -TARGET_EFAULT;
13347             }
13348             __put_user(rold.rlim_cur, &target_rold->rlim_cur);
13349             __put_user(rold.rlim_max, &target_rold->rlim_max);
13350             unlock_user_struct(target_rold, arg4, 1);
13351         }
13352         return ret;
13353     }
13354 #endif
13355 #ifdef TARGET_NR_gethostname
13356     case TARGET_NR_gethostname:
13357     {
13358         char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0);
13359         if (name) {
13360             ret = get_errno(gethostname(name, arg2));
13361             unlock_user(name, arg1, arg2);
13362         } else {
13363             ret = -TARGET_EFAULT;
13364         }
13365         return ret;
13366     }
13367 #endif
13368 #ifdef TARGET_NR_atomic_cmpxchg_32
13369     case TARGET_NR_atomic_cmpxchg_32:
13370     {
13371         /* should use start_exclusive from main.c */
13372         abi_ulong mem_value;
13373         if (get_user_u32(mem_value, arg6)) {
13374             target_siginfo_t info;
13375             info.si_signo = SIGSEGV;
13376             info.si_errno = 0;
13377             info.si_code = TARGET_SEGV_MAPERR;
13378             info._sifields._sigfault._addr = arg6;
13379             queue_signal(cpu_env, info.si_signo, QEMU_SI_FAULT, &info);
13380             ret = 0xdeadbeef;
13381 
13382         }
13383         if (mem_value == arg2)
13384             put_user_u32(arg1, arg6);
13385         return mem_value;
13386     }
13387 #endif
13388 #ifdef TARGET_NR_atomic_barrier
13389     case TARGET_NR_atomic_barrier:
13390         /* Like the kernel implementation and the
13391            qemu arm barrier, no-op this? */
13392         return 0;
13393 #endif
13394 
13395 #ifdef TARGET_NR_timer_create
13396     case TARGET_NR_timer_create:
13397     {
13398         /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
13399 
13400         struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL;
13401 
13402         int clkid = arg1;
13403         int timer_index = next_free_host_timer();
13404 
13405         if (timer_index < 0) {
13406             ret = -TARGET_EAGAIN;
13407         } else {
13408             timer_t *phtimer = g_posix_timers  + timer_index;
13409 
13410             if (arg2) {
13411                 phost_sevp = &host_sevp;
13412                 ret = target_to_host_sigevent(phost_sevp, arg2);
13413                 if (ret != 0) {
13414                     free_host_timer_slot(timer_index);
13415                     return ret;
13416                 }
13417             }
13418 
13419             ret = get_errno(timer_create(clkid, phost_sevp, phtimer));
13420             if (ret) {
13421                 free_host_timer_slot(timer_index);
13422             } else {
13423                 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) {
13424                     timer_delete(*phtimer);
13425                     free_host_timer_slot(timer_index);
13426                     return -TARGET_EFAULT;
13427                 }
13428             }
13429         }
13430         return ret;
13431     }
13432 #endif
13433 
13434 #ifdef TARGET_NR_timer_settime
13435     case TARGET_NR_timer_settime:
13436     {
13437         /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
13438          * struct itimerspec * old_value */
13439         target_timer_t timerid = get_timer_id(arg1);
13440 
13441         if (timerid < 0) {
13442             ret = timerid;
13443         } else if (arg3 == 0) {
13444             ret = -TARGET_EINVAL;
13445         } else {
13446             timer_t htimer = g_posix_timers[timerid];
13447             struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
13448 
13449             if (target_to_host_itimerspec(&hspec_new, arg3)) {
13450                 return -TARGET_EFAULT;
13451             }
13452             ret = get_errno(
13453                           timer_settime(htimer, arg2, &hspec_new, &hspec_old));
13454             if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) {
13455                 return -TARGET_EFAULT;
13456             }
13457         }
13458         return ret;
13459     }
13460 #endif
13461 
13462 #ifdef TARGET_NR_timer_settime64
13463     case TARGET_NR_timer_settime64:
13464     {
13465         target_timer_t timerid = get_timer_id(arg1);
13466 
13467         if (timerid < 0) {
13468             ret = timerid;
13469         } else if (arg3 == 0) {
13470             ret = -TARGET_EINVAL;
13471         } else {
13472             timer_t htimer = g_posix_timers[timerid];
13473             struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
13474 
13475             if (target_to_host_itimerspec64(&hspec_new, arg3)) {
13476                 return -TARGET_EFAULT;
13477             }
13478             ret = get_errno(
13479                           timer_settime(htimer, arg2, &hspec_new, &hspec_old));
13480             if (arg4 && host_to_target_itimerspec64(arg4, &hspec_old)) {
13481                 return -TARGET_EFAULT;
13482             }
13483         }
13484         return ret;
13485     }
13486 #endif
13487 
13488 #ifdef TARGET_NR_timer_gettime
13489     case TARGET_NR_timer_gettime:
13490     {
13491         /* args: timer_t timerid, struct itimerspec *curr_value */
13492         target_timer_t timerid = get_timer_id(arg1);
13493 
13494         if (timerid < 0) {
13495             ret = timerid;
13496         } else if (!arg2) {
13497             ret = -TARGET_EFAULT;
13498         } else {
13499             timer_t htimer = g_posix_timers[timerid];
13500             struct itimerspec hspec;
13501             ret = get_errno(timer_gettime(htimer, &hspec));
13502 
13503             if (host_to_target_itimerspec(arg2, &hspec)) {
13504                 ret = -TARGET_EFAULT;
13505             }
13506         }
13507         return ret;
13508     }
13509 #endif
13510 
13511 #ifdef TARGET_NR_timer_gettime64
13512     case TARGET_NR_timer_gettime64:
13513     {
13514         /* args: timer_t timerid, struct itimerspec64 *curr_value */
13515         target_timer_t timerid = get_timer_id(arg1);
13516 
13517         if (timerid < 0) {
13518             ret = timerid;
13519         } else if (!arg2) {
13520             ret = -TARGET_EFAULT;
13521         } else {
13522             timer_t htimer = g_posix_timers[timerid];
13523             struct itimerspec hspec;
13524             ret = get_errno(timer_gettime(htimer, &hspec));
13525 
13526             if (host_to_target_itimerspec64(arg2, &hspec)) {
13527                 ret = -TARGET_EFAULT;
13528             }
13529         }
13530         return ret;
13531     }
13532 #endif
13533 
13534 #ifdef TARGET_NR_timer_getoverrun
13535     case TARGET_NR_timer_getoverrun:
13536     {
13537         /* args: timer_t timerid */
13538         target_timer_t timerid = get_timer_id(arg1);
13539 
13540         if (timerid < 0) {
13541             ret = timerid;
13542         } else {
13543             timer_t htimer = g_posix_timers[timerid];
13544             ret = get_errno(timer_getoverrun(htimer));
13545         }
13546         return ret;
13547     }
13548 #endif
13549 
13550 #ifdef TARGET_NR_timer_delete
13551     case TARGET_NR_timer_delete:
13552     {
13553         /* args: timer_t timerid */
13554         target_timer_t timerid = get_timer_id(arg1);
13555 
13556         if (timerid < 0) {
13557             ret = timerid;
13558         } else {
13559             timer_t htimer = g_posix_timers[timerid];
13560             ret = get_errno(timer_delete(htimer));
13561             free_host_timer_slot(timerid);
13562         }
13563         return ret;
13564     }
13565 #endif
13566 
13567 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
13568     case TARGET_NR_timerfd_create:
13569         ret = get_errno(timerfd_create(arg1,
13570                         target_to_host_bitmask(arg2, fcntl_flags_tbl)));
13571         if (ret >= 0) {
13572             fd_trans_register(ret, &target_timerfd_trans);
13573         }
13574         return ret;
13575 #endif
13576 
13577 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
13578     case TARGET_NR_timerfd_gettime:
13579         {
13580             struct itimerspec its_curr;
13581 
13582             ret = get_errno(timerfd_gettime(arg1, &its_curr));
13583 
13584             if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) {
13585                 return -TARGET_EFAULT;
13586             }
13587         }
13588         return ret;
13589 #endif
13590 
13591 #if defined(TARGET_NR_timerfd_gettime64) && defined(CONFIG_TIMERFD)
13592     case TARGET_NR_timerfd_gettime64:
13593         {
13594             struct itimerspec its_curr;
13595 
13596             ret = get_errno(timerfd_gettime(arg1, &its_curr));
13597 
13598             if (arg2 && host_to_target_itimerspec64(arg2, &its_curr)) {
13599                 return -TARGET_EFAULT;
13600             }
13601         }
13602         return ret;
13603 #endif
13604 
13605 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
13606     case TARGET_NR_timerfd_settime:
13607         {
13608             struct itimerspec its_new, its_old, *p_new;
13609 
13610             if (arg3) {
13611                 if (target_to_host_itimerspec(&its_new, arg3)) {
13612                     return -TARGET_EFAULT;
13613                 }
13614                 p_new = &its_new;
13615             } else {
13616                 p_new = NULL;
13617             }
13618 
13619             ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13620 
13621             if (arg4 && host_to_target_itimerspec(arg4, &its_old)) {
13622                 return -TARGET_EFAULT;
13623             }
13624         }
13625         return ret;
13626 #endif
13627 
13628 #if defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)
13629     case TARGET_NR_timerfd_settime64:
13630         {
13631             struct itimerspec its_new, its_old, *p_new;
13632 
13633             if (arg3) {
13634                 if (target_to_host_itimerspec64(&its_new, arg3)) {
13635                     return -TARGET_EFAULT;
13636                 }
13637                 p_new = &its_new;
13638             } else {
13639                 p_new = NULL;
13640             }
13641 
13642             ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13643 
13644             if (arg4 && host_to_target_itimerspec64(arg4, &its_old)) {
13645                 return -TARGET_EFAULT;
13646             }
13647         }
13648         return ret;
13649 #endif
13650 
13651 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
13652     case TARGET_NR_ioprio_get:
13653         return get_errno(ioprio_get(arg1, arg2));
13654 #endif
13655 
13656 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
13657     case TARGET_NR_ioprio_set:
13658         return get_errno(ioprio_set(arg1, arg2, arg3));
13659 #endif
13660 
13661 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
13662     case TARGET_NR_setns:
13663         return get_errno(setns(arg1, arg2));
13664 #endif
13665 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
13666     case TARGET_NR_unshare:
13667         return get_errno(unshare(arg1));
13668 #endif
13669 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
13670     case TARGET_NR_kcmp:
13671         return get_errno(kcmp(arg1, arg2, arg3, arg4, arg5));
13672 #endif
13673 #ifdef TARGET_NR_swapcontext
13674     case TARGET_NR_swapcontext:
13675         /* PowerPC specific.  */
13676         return do_swapcontext(cpu_env, arg1, arg2, arg3);
13677 #endif
13678 #ifdef TARGET_NR_memfd_create
13679     case TARGET_NR_memfd_create:
13680         p = lock_user_string(arg1);
13681         if (!p) {
13682             return -TARGET_EFAULT;
13683         }
13684         ret = get_errno(memfd_create(p, arg2));
13685         fd_trans_unregister(ret);
13686         unlock_user(p, arg1, 0);
13687         return ret;
13688 #endif
13689 #if defined TARGET_NR_membarrier && defined __NR_membarrier
13690     case TARGET_NR_membarrier:
13691         return get_errno(membarrier(arg1, arg2));
13692 #endif
13693 
13694 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
13695     case TARGET_NR_copy_file_range:
13696         {
13697             loff_t inoff, outoff;
13698             loff_t *pinoff = NULL, *poutoff = NULL;
13699 
13700             if (arg2) {
13701                 if (get_user_u64(inoff, arg2)) {
13702                     return -TARGET_EFAULT;
13703                 }
13704                 pinoff = &inoff;
13705             }
13706             if (arg4) {
13707                 if (get_user_u64(outoff, arg4)) {
13708                     return -TARGET_EFAULT;
13709                 }
13710                 poutoff = &outoff;
13711             }
13712             /* Do not sign-extend the count parameter. */
13713             ret = get_errno(safe_copy_file_range(arg1, pinoff, arg3, poutoff,
13714                                                  (abi_ulong)arg5, arg6));
13715             if (!is_error(ret) && ret > 0) {
13716                 if (arg2) {
13717                     if (put_user_u64(inoff, arg2)) {
13718                         return -TARGET_EFAULT;
13719                     }
13720                 }
13721                 if (arg4) {
13722                     if (put_user_u64(outoff, arg4)) {
13723                         return -TARGET_EFAULT;
13724                     }
13725                 }
13726             }
13727         }
13728         return ret;
13729 #endif
13730 
13731 #if defined(TARGET_NR_pivot_root)
13732     case TARGET_NR_pivot_root:
13733         {
13734             void *p2;
13735             p = lock_user_string(arg1); /* new_root */
13736             p2 = lock_user_string(arg2); /* put_old */
13737             if (!p || !p2) {
13738                 ret = -TARGET_EFAULT;
13739             } else {
13740                 ret = get_errno(pivot_root(p, p2));
13741             }
13742             unlock_user(p2, arg2, 0);
13743             unlock_user(p, arg1, 0);
13744         }
13745         return ret;
13746 #endif
13747 
13748 #if defined(TARGET_NR_riscv_hwprobe)
13749     case TARGET_NR_riscv_hwprobe:
13750         return do_riscv_hwprobe(cpu_env, arg1, arg2, arg3, arg4, arg5);
13751 #endif
13752 
13753     default:
13754         qemu_log_mask(LOG_UNIMP, "Unsupported syscall: %d\n", num);
13755         return -TARGET_ENOSYS;
13756     }
13757     return ret;
13758 }
13759 
13760 abi_long do_syscall(CPUArchState *cpu_env, int num, abi_long arg1,
13761                     abi_long arg2, abi_long arg3, abi_long arg4,
13762                     abi_long arg5, abi_long arg6, abi_long arg7,
13763                     abi_long arg8)
13764 {
13765     CPUState *cpu = env_cpu(cpu_env);
13766     abi_long ret;
13767 
13768 #ifdef DEBUG_ERESTARTSYS
13769     /* Debug-only code for exercising the syscall-restart code paths
13770      * in the per-architecture cpu main loops: restart every syscall
13771      * the guest makes once before letting it through.
13772      */
13773     {
13774         static bool flag;
13775         flag = !flag;
13776         if (flag) {
13777             return -QEMU_ERESTARTSYS;
13778         }
13779     }
13780 #endif
13781 
13782     record_syscall_start(cpu, num, arg1,
13783                          arg2, arg3, arg4, arg5, arg6, arg7, arg8);
13784 
13785     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13786         print_syscall(cpu_env, num, arg1, arg2, arg3, arg4, arg5, arg6);
13787     }
13788 
13789     ret = do_syscall1(cpu_env, num, arg1, arg2, arg3, arg4,
13790                       arg5, arg6, arg7, arg8);
13791 
13792     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13793         print_syscall_ret(cpu_env, num, ret, arg1, arg2,
13794                           arg3, arg4, arg5, arg6);
13795     }
13796 
13797     record_syscall_return(cpu, num, ret);
13798     return ret;
13799 }
13800