xref: /openbmc/qemu/linux-user/syscall.c (revision e53c136f)
1 /*
2  *  Linux syscalls
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
23 #include "qemu/memfd.h"
24 #include "qemu/queue.h"
25 #include "qemu/plugin.h"
26 #include "tcg/startup.h"
27 #include "target_mman.h"
28 #include "exec/page-protection.h"
29 #include <elf.h>
30 #include <endian.h>
31 #include <grp.h>
32 #include <sys/ipc.h>
33 #include <sys/msg.h>
34 #include <sys/wait.h>
35 #include <sys/mount.h>
36 #include <sys/file.h>
37 #include <sys/fsuid.h>
38 #include <sys/personality.h>
39 #include <sys/prctl.h>
40 #include <sys/resource.h>
41 #include <sys/swap.h>
42 #include <linux/capability.h>
43 #include <sched.h>
44 #include <sys/timex.h>
45 #include <sys/socket.h>
46 #include <linux/sockios.h>
47 #include <sys/un.h>
48 #include <sys/uio.h>
49 #include <poll.h>
50 #include <sys/times.h>
51 #include <sys/shm.h>
52 #include <sys/sem.h>
53 #include <sys/statfs.h>
54 #include <utime.h>
55 #include <sys/sysinfo.h>
56 #include <sys/signalfd.h>
57 //#include <sys/user.h>
58 #include <netinet/in.h>
59 #include <netinet/ip.h>
60 #include <netinet/tcp.h>
61 #include <netinet/udp.h>
62 #include <linux/wireless.h>
63 #include <linux/icmp.h>
64 #include <linux/icmpv6.h>
65 #include <linux/if_tun.h>
66 #include <linux/in6.h>
67 #include <linux/errqueue.h>
68 #include <linux/random.h>
69 #ifdef CONFIG_TIMERFD
70 #include <sys/timerfd.h>
71 #endif
72 #ifdef CONFIG_EVENTFD
73 #include <sys/eventfd.h>
74 #endif
75 #ifdef CONFIG_EPOLL
76 #include <sys/epoll.h>
77 #endif
78 #ifdef CONFIG_ATTR
79 #include "qemu/xattr.h"
80 #endif
81 #ifdef CONFIG_SENDFILE
82 #include <sys/sendfile.h>
83 #endif
84 #ifdef HAVE_SYS_KCOV_H
85 #include <sys/kcov.h>
86 #endif
87 
88 #define termios host_termios
89 #define winsize host_winsize
90 #define termio host_termio
91 #define sgttyb host_sgttyb /* same as target */
92 #define tchars host_tchars /* same as target */
93 #define ltchars host_ltchars /* same as target */
94 
95 #include <linux/termios.h>
96 #include <linux/unistd.h>
97 #include <linux/cdrom.h>
98 #include <linux/hdreg.h>
99 #include <linux/soundcard.h>
100 #include <linux/kd.h>
101 #include <linux/mtio.h>
102 #include <linux/fs.h>
103 #include <linux/fd.h>
104 #if defined(CONFIG_FIEMAP)
105 #include <linux/fiemap.h>
106 #endif
107 #include <linux/fb.h>
108 #if defined(CONFIG_USBFS)
109 #include <linux/usbdevice_fs.h>
110 #include <linux/usb/ch9.h>
111 #endif
112 #include <linux/vt.h>
113 #include <linux/dm-ioctl.h>
114 #include <linux/reboot.h>
115 #include <linux/route.h>
116 #include <linux/filter.h>
117 #include <linux/blkpg.h>
118 #include <netpacket/packet.h>
119 #include <linux/netlink.h>
120 #include <linux/if_alg.h>
121 #include <linux/rtc.h>
122 #include <sound/asound.h>
123 #ifdef HAVE_BTRFS_H
124 #include <linux/btrfs.h>
125 #endif
126 #ifdef HAVE_DRM_H
127 #include <libdrm/drm.h>
128 #include <libdrm/i915_drm.h>
129 #endif
130 #include "linux_loop.h"
131 #include "uname.h"
132 
133 #include "qemu.h"
134 #include "user-internals.h"
135 #include "strace.h"
136 #include "signal-common.h"
137 #include "loader.h"
138 #include "user-mmap.h"
139 #include "user/safe-syscall.h"
140 #include "qemu/guest-random.h"
141 #include "qemu/selfmap.h"
142 #include "user/syscall-trace.h"
143 #include "special-errno.h"
144 #include "qapi/error.h"
145 #include "fd-trans.h"
146 #include "cpu_loop-common.h"
147 
148 #ifndef CLONE_IO
149 #define CLONE_IO                0x80000000      /* Clone io context */
150 #endif
151 
152 /* We can't directly call the host clone syscall, because this will
153  * badly confuse libc (breaking mutexes, for example). So we must
154  * divide clone flags into:
155  *  * flag combinations that look like pthread_create()
156  *  * flag combinations that look like fork()
157  *  * flags we can implement within QEMU itself
158  *  * flags we can't support and will return an error for
159  */
160 /* For thread creation, all these flags must be present; for
161  * fork, none must be present.
162  */
163 #define CLONE_THREAD_FLAGS                              \
164     (CLONE_VM | CLONE_FS | CLONE_FILES |                \
165      CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
166 
167 /* These flags are ignored:
168  * CLONE_DETACHED is now ignored by the kernel;
169  * CLONE_IO is just an optimisation hint to the I/O scheduler
170  */
171 #define CLONE_IGNORED_FLAGS                     \
172     (CLONE_DETACHED | CLONE_IO)
173 
174 #ifndef CLONE_PIDFD
175 # define CLONE_PIDFD 0x00001000
176 #endif
177 
178 /* Flags for fork which we can implement within QEMU itself */
179 #define CLONE_OPTIONAL_FORK_FLAGS               \
180     (CLONE_SETTLS | CLONE_PARENT_SETTID | CLONE_PIDFD | \
181      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
182 
183 /* Flags for thread creation which we can implement within QEMU itself */
184 #define CLONE_OPTIONAL_THREAD_FLAGS                             \
185     (CLONE_SETTLS | CLONE_PARENT_SETTID |                       \
186      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
187 
188 #define CLONE_INVALID_FORK_FLAGS                                        \
189     (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
190 
191 #define CLONE_INVALID_THREAD_FLAGS                                      \
192     (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS |     \
193        CLONE_IGNORED_FLAGS))
194 
195 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits
196  * have almost all been allocated. We cannot support any of
197  * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
198  * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
199  * The checks against the invalid thread masks above will catch these.
200  * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
201  */
202 
203 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
204  * once. This exercises the codepaths for restart.
205  */
206 //#define DEBUG_ERESTARTSYS
207 
208 //#include <linux/msdos_fs.h>
209 #define VFAT_IOCTL_READDIR_BOTH \
210     _IOC(_IOC_READ, 'r', 1, (sizeof(struct linux_dirent) + 256) * 2)
211 #define VFAT_IOCTL_READDIR_SHORT \
212     _IOC(_IOC_READ, 'r', 2, (sizeof(struct linux_dirent) + 256) * 2)
213 
214 #undef _syscall0
215 #undef _syscall1
216 #undef _syscall2
217 #undef _syscall3
218 #undef _syscall4
219 #undef _syscall5
220 #undef _syscall6
221 
222 #define _syscall0(type,name)		\
223 static type name (void)			\
224 {					\
225 	return syscall(__NR_##name);	\
226 }
227 
228 #define _syscall1(type,name,type1,arg1)		\
229 static type name (type1 arg1)			\
230 {						\
231 	return syscall(__NR_##name, arg1);	\
232 }
233 
234 #define _syscall2(type,name,type1,arg1,type2,arg2)	\
235 static type name (type1 arg1,type2 arg2)		\
236 {							\
237 	return syscall(__NR_##name, arg1, arg2);	\
238 }
239 
240 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3)	\
241 static type name (type1 arg1,type2 arg2,type3 arg3)		\
242 {								\
243 	return syscall(__NR_##name, arg1, arg2, arg3);		\
244 }
245 
246 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4)	\
247 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4)			\
248 {										\
249 	return syscall(__NR_##name, arg1, arg2, arg3, arg4);			\
250 }
251 
252 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
253 		  type5,arg5)							\
254 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5)	\
255 {										\
256 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5);		\
257 }
258 
259 
260 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
261 		  type5,arg5,type6,arg6)					\
262 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5,	\
263                   type6 arg6)							\
264 {										\
265 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6);	\
266 }
267 
268 
269 #define __NR_sys_uname __NR_uname
270 #define __NR_sys_getcwd1 __NR_getcwd
271 #define __NR_sys_getdents __NR_getdents
272 #define __NR_sys_getdents64 __NR_getdents64
273 #define __NR_sys_getpriority __NR_getpriority
274 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
275 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo
276 #define __NR_sys_syslog __NR_syslog
277 #if defined(__NR_futex)
278 # define __NR_sys_futex __NR_futex
279 #endif
280 #if defined(__NR_futex_time64)
281 # define __NR_sys_futex_time64 __NR_futex_time64
282 #endif
283 #define __NR_sys_statx __NR_statx
284 
285 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__)
286 #define __NR__llseek __NR_lseek
287 #endif
288 
289 /* Newer kernel ports have llseek() instead of _llseek() */
290 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
291 #define TARGET_NR__llseek TARGET_NR_llseek
292 #endif
293 
294 /* some platforms need to mask more bits than just TARGET_O_NONBLOCK */
295 #ifndef TARGET_O_NONBLOCK_MASK
296 #define TARGET_O_NONBLOCK_MASK TARGET_O_NONBLOCK
297 #endif
298 
299 #define __NR_sys_gettid __NR_gettid
300 _syscall0(int, sys_gettid)
301 
302 /* For the 64-bit guest on 32-bit host case we must emulate
303  * getdents using getdents64, because otherwise the host
304  * might hand us back more dirent records than we can fit
305  * into the guest buffer after structure format conversion.
306  * Otherwise we emulate getdents with getdents if the host has it.
307  */
308 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS
309 #define EMULATE_GETDENTS_WITH_GETDENTS
310 #endif
311 
312 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS)
313 _syscall3(int, sys_getdents, unsigned int, fd, struct linux_dirent *, dirp, unsigned int, count);
314 #endif
315 #if (defined(TARGET_NR_getdents) && \
316       !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \
317     (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
318 _syscall3(int, sys_getdents64, unsigned int, fd, struct linux_dirent64 *, dirp, unsigned int, count);
319 #endif
320 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
321 _syscall5(int, _llseek,  unsigned int,  fd, unsigned long, hi, unsigned long, lo,
322           loff_t *, res, unsigned int, wh);
323 #endif
324 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo)
325 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig,
326           siginfo_t *, uinfo)
327 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len)
328 #ifdef __NR_exit_group
329 _syscall1(int,exit_group,int,error_code)
330 #endif
331 #if defined(__NR_close_range) && defined(TARGET_NR_close_range)
332 #define __NR_sys_close_range __NR_close_range
333 _syscall3(int,sys_close_range,int,first,int,last,int,flags)
334 #ifndef CLOSE_RANGE_CLOEXEC
335 #define CLOSE_RANGE_CLOEXEC     (1U << 2)
336 #endif
337 #endif
338 #if defined(__NR_futex)
339 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val,
340           const struct timespec *,timeout,int *,uaddr2,int,val3)
341 #endif
342 #if defined(__NR_futex_time64)
343 _syscall6(int,sys_futex_time64,int *,uaddr,int,op,int,val,
344           const struct timespec *,timeout,int *,uaddr2,int,val3)
345 #endif
346 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
347 _syscall2(int, pidfd_open, pid_t, pid, unsigned int, flags);
348 #endif
349 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
350 _syscall4(int, pidfd_send_signal, int, pidfd, int, sig, siginfo_t *, info,
351                              unsigned int, flags);
352 #endif
353 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
354 _syscall3(int, pidfd_getfd, int, pidfd, int, targetfd, unsigned int, flags);
355 #endif
356 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
357 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len,
358           unsigned long *, user_mask_ptr);
359 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
360 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len,
361           unsigned long *, user_mask_ptr);
362 /* sched_attr is not defined in glibc */
363 struct sched_attr {
364     uint32_t size;
365     uint32_t sched_policy;
366     uint64_t sched_flags;
367     int32_t sched_nice;
368     uint32_t sched_priority;
369     uint64_t sched_runtime;
370     uint64_t sched_deadline;
371     uint64_t sched_period;
372     uint32_t sched_util_min;
373     uint32_t sched_util_max;
374 };
375 #define __NR_sys_sched_getattr __NR_sched_getattr
376 _syscall4(int, sys_sched_getattr, pid_t, pid, struct sched_attr *, attr,
377           unsigned int, size, unsigned int, flags);
378 #define __NR_sys_sched_setattr __NR_sched_setattr
379 _syscall3(int, sys_sched_setattr, pid_t, pid, struct sched_attr *, attr,
380           unsigned int, flags);
381 #define __NR_sys_sched_getscheduler __NR_sched_getscheduler
382 _syscall1(int, sys_sched_getscheduler, pid_t, pid);
383 #define __NR_sys_sched_setscheduler __NR_sched_setscheduler
384 _syscall3(int, sys_sched_setscheduler, pid_t, pid, int, policy,
385           const struct sched_param *, param);
386 #define __NR_sys_sched_getparam __NR_sched_getparam
387 _syscall2(int, sys_sched_getparam, pid_t, pid,
388           struct sched_param *, param);
389 #define __NR_sys_sched_setparam __NR_sched_setparam
390 _syscall2(int, sys_sched_setparam, pid_t, pid,
391           const struct sched_param *, param);
392 #define __NR_sys_getcpu __NR_getcpu
393 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache);
394 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd,
395           void *, arg);
396 _syscall2(int, capget, struct __user_cap_header_struct *, header,
397           struct __user_cap_data_struct *, data);
398 _syscall2(int, capset, struct __user_cap_header_struct *, header,
399           struct __user_cap_data_struct *, data);
400 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
401 _syscall2(int, ioprio_get, int, which, int, who)
402 #endif
403 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
404 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio)
405 #endif
406 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
407 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags)
408 #endif
409 
410 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
411 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type,
412           unsigned long, idx1, unsigned long, idx2)
413 #endif
414 
415 /*
416  * It is assumed that struct statx is architecture independent.
417  */
418 #if defined(TARGET_NR_statx) && defined(__NR_statx)
419 _syscall5(int, sys_statx, int, dirfd, const char *, pathname, int, flags,
420           unsigned int, mask, struct target_statx *, statxbuf)
421 #endif
422 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier)
423 _syscall2(int, membarrier, int, cmd, int, flags)
424 #endif
425 
426 static const bitmask_transtbl fcntl_flags_tbl[] = {
427   { TARGET_O_ACCMODE,   TARGET_O_WRONLY,    O_ACCMODE,   O_WRONLY,    },
428   { TARGET_O_ACCMODE,   TARGET_O_RDWR,      O_ACCMODE,   O_RDWR,      },
429   { TARGET_O_CREAT,     TARGET_O_CREAT,     O_CREAT,     O_CREAT,     },
430   { TARGET_O_EXCL,      TARGET_O_EXCL,      O_EXCL,      O_EXCL,      },
431   { TARGET_O_NOCTTY,    TARGET_O_NOCTTY,    O_NOCTTY,    O_NOCTTY,    },
432   { TARGET_O_TRUNC,     TARGET_O_TRUNC,     O_TRUNC,     O_TRUNC,     },
433   { TARGET_O_APPEND,    TARGET_O_APPEND,    O_APPEND,    O_APPEND,    },
434   { TARGET_O_NONBLOCK,  TARGET_O_NONBLOCK,  O_NONBLOCK,  O_NONBLOCK,  },
435   { TARGET_O_SYNC,      TARGET_O_DSYNC,     O_SYNC,      O_DSYNC,     },
436   { TARGET_O_SYNC,      TARGET_O_SYNC,      O_SYNC,      O_SYNC,      },
437   { TARGET_FASYNC,      TARGET_FASYNC,      FASYNC,      FASYNC,      },
438   { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, },
439   { TARGET_O_NOFOLLOW,  TARGET_O_NOFOLLOW,  O_NOFOLLOW,  O_NOFOLLOW,  },
440 #if defined(O_DIRECT)
441   { TARGET_O_DIRECT,    TARGET_O_DIRECT,    O_DIRECT,    O_DIRECT,    },
442 #endif
443 #if defined(O_NOATIME)
444   { TARGET_O_NOATIME,   TARGET_O_NOATIME,   O_NOATIME,   O_NOATIME    },
445 #endif
446 #if defined(O_CLOEXEC)
447   { TARGET_O_CLOEXEC,   TARGET_O_CLOEXEC,   O_CLOEXEC,   O_CLOEXEC    },
448 #endif
449 #if defined(O_PATH)
450   { TARGET_O_PATH,      TARGET_O_PATH,      O_PATH,      O_PATH       },
451 #endif
452 #if defined(O_TMPFILE)
453   { TARGET_O_TMPFILE,   TARGET_O_TMPFILE,   O_TMPFILE,   O_TMPFILE    },
454 #endif
455   /* Don't terminate the list prematurely on 64-bit host+guest.  */
456 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
457   { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, },
458 #endif
459 };
460 
461 _syscall2(int, sys_getcwd1, char *, buf, size_t, size)
462 
463 #if defined(TARGET_NR_utimensat) || defined(TARGET_NR_utimensat_time64)
464 #if defined(__NR_utimensat)
465 #define __NR_sys_utimensat __NR_utimensat
466 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname,
467           const struct timespec *,tsp,int,flags)
468 #else
469 static int sys_utimensat(int dirfd, const char *pathname,
470                          const struct timespec times[2], int flags)
471 {
472     errno = ENOSYS;
473     return -1;
474 }
475 #endif
476 #endif /* TARGET_NR_utimensat */
477 
478 #ifdef TARGET_NR_renameat2
479 #if defined(__NR_renameat2)
480 #define __NR_sys_renameat2 __NR_renameat2
481 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd,
482           const char *, new, unsigned int, flags)
483 #else
484 static int sys_renameat2(int oldfd, const char *old,
485                          int newfd, const char *new, int flags)
486 {
487     if (flags == 0) {
488         return renameat(oldfd, old, newfd, new);
489     }
490     errno = ENOSYS;
491     return -1;
492 }
493 #endif
494 #endif /* TARGET_NR_renameat2 */
495 
496 #ifdef CONFIG_INOTIFY
497 #include <sys/inotify.h>
498 #else
499 /* Userspace can usually survive runtime without inotify */
500 #undef TARGET_NR_inotify_init
501 #undef TARGET_NR_inotify_init1
502 #undef TARGET_NR_inotify_add_watch
503 #undef TARGET_NR_inotify_rm_watch
504 #endif /* CONFIG_INOTIFY  */
505 
506 #if defined(TARGET_NR_prlimit64)
507 #ifndef __NR_prlimit64
508 # define __NR_prlimit64 -1
509 #endif
510 #define __NR_sys_prlimit64 __NR_prlimit64
511 /* The glibc rlimit structure may not be that used by the underlying syscall */
512 struct host_rlimit64 {
513     uint64_t rlim_cur;
514     uint64_t rlim_max;
515 };
516 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource,
517           const struct host_rlimit64 *, new_limit,
518           struct host_rlimit64 *, old_limit)
519 #endif
520 
521 
522 #if defined(TARGET_NR_timer_create)
523 /* Maximum of 32 active POSIX timers allowed at any one time. */
524 #define GUEST_TIMER_MAX 32
525 static timer_t g_posix_timers[GUEST_TIMER_MAX];
526 static int g_posix_timer_allocated[GUEST_TIMER_MAX];
527 
528 static inline int next_free_host_timer(void)
529 {
530     int k;
531     for (k = 0; k < ARRAY_SIZE(g_posix_timer_allocated); k++) {
532         if (qatomic_xchg(g_posix_timer_allocated + k, 1) == 0) {
533             return k;
534         }
535     }
536     return -1;
537 }
538 
539 static inline void free_host_timer_slot(int id)
540 {
541     qatomic_store_release(g_posix_timer_allocated + id, 0);
542 }
543 #endif
544 
545 static inline int host_to_target_errno(int host_errno)
546 {
547     switch (host_errno) {
548 #define E(X)  case X: return TARGET_##X;
549 #include "errnos.c.inc"
550 #undef E
551     default:
552         return host_errno;
553     }
554 }
555 
556 static inline int target_to_host_errno(int target_errno)
557 {
558     switch (target_errno) {
559 #define E(X)  case TARGET_##X: return X;
560 #include "errnos.c.inc"
561 #undef E
562     default:
563         return target_errno;
564     }
565 }
566 
567 abi_long get_errno(abi_long ret)
568 {
569     if (ret == -1)
570         return -host_to_target_errno(errno);
571     else
572         return ret;
573 }
574 
575 const char *target_strerror(int err)
576 {
577     if (err == QEMU_ERESTARTSYS) {
578         return "To be restarted";
579     }
580     if (err == QEMU_ESIGRETURN) {
581         return "Successful exit from sigreturn";
582     }
583 
584     return strerror(target_to_host_errno(err));
585 }
586 
587 static int check_zeroed_user(abi_long addr, size_t ksize, size_t usize)
588 {
589     int i;
590     uint8_t b;
591     if (usize <= ksize) {
592         return 1;
593     }
594     for (i = ksize; i < usize; i++) {
595         if (get_user_u8(b, addr + i)) {
596             return -TARGET_EFAULT;
597         }
598         if (b != 0) {
599             return 0;
600         }
601     }
602     return 1;
603 }
604 
605 #define safe_syscall0(type, name) \
606 static type safe_##name(void) \
607 { \
608     return safe_syscall(__NR_##name); \
609 }
610 
611 #define safe_syscall1(type, name, type1, arg1) \
612 static type safe_##name(type1 arg1) \
613 { \
614     return safe_syscall(__NR_##name, arg1); \
615 }
616 
617 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
618 static type safe_##name(type1 arg1, type2 arg2) \
619 { \
620     return safe_syscall(__NR_##name, arg1, arg2); \
621 }
622 
623 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
624 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
625 { \
626     return safe_syscall(__NR_##name, arg1, arg2, arg3); \
627 }
628 
629 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
630     type4, arg4) \
631 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
632 { \
633     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
634 }
635 
636 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
637     type4, arg4, type5, arg5) \
638 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
639     type5 arg5) \
640 { \
641     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
642 }
643 
644 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
645     type4, arg4, type5, arg5, type6, arg6) \
646 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
647     type5 arg5, type6 arg6) \
648 { \
649     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
650 }
651 
652 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count)
653 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count)
654 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \
655               int, flags, mode_t, mode)
656 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid)
657 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \
658               struct rusage *, rusage)
659 #endif
660 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \
661               int, options, struct rusage *, rusage)
662 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp)
663 safe_syscall5(int, execveat, int, dirfd, const char *, filename,
664               char **, argv, char **, envp, int, flags)
665 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
666     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
667 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \
668               fd_set *, exceptfds, struct timespec *, timeout, void *, sig)
669 #endif
670 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_ppoll_time64)
671 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds,
672               struct timespec *, tsp, const sigset_t *, sigmask,
673               size_t, sigsetsize)
674 #endif
675 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events,
676               int, maxevents, int, timeout, const sigset_t *, sigmask,
677               size_t, sigsetsize)
678 #if defined(__NR_futex)
679 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \
680               const struct timespec *,timeout,int *,uaddr2,int,val3)
681 #endif
682 #if defined(__NR_futex_time64)
683 safe_syscall6(int,futex_time64,int *,uaddr,int,op,int,val, \
684               const struct timespec *,timeout,int *,uaddr2,int,val3)
685 #endif
686 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize)
687 safe_syscall2(int, kill, pid_t, pid, int, sig)
688 safe_syscall2(int, tkill, int, tid, int, sig)
689 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig)
690 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt)
691 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt)
692 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt,
693               unsigned long, pos_l, unsigned long, pos_h)
694 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt,
695               unsigned long, pos_l, unsigned long, pos_h)
696 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr,
697               socklen_t, addrlen)
698 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len,
699               int, flags, const struct sockaddr *, addr, socklen_t, addrlen)
700 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len,
701               int, flags, struct sockaddr *, addr, socklen_t *, addrlen)
702 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags)
703 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags)
704 safe_syscall2(int, flock, int, fd, int, operation)
705 #if defined(TARGET_NR_rt_sigtimedwait) || defined(TARGET_NR_rt_sigtimedwait_time64)
706 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo,
707               const struct timespec *, uts, size_t, sigsetsize)
708 #endif
709 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len,
710               int, flags)
711 #if defined(TARGET_NR_nanosleep)
712 safe_syscall2(int, nanosleep, const struct timespec *, req,
713               struct timespec *, rem)
714 #endif
715 #if defined(TARGET_NR_clock_nanosleep) || \
716     defined(TARGET_NR_clock_nanosleep_time64)
717 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags,
718               const struct timespec *, req, struct timespec *, rem)
719 #endif
720 #ifdef __NR_ipc
721 #ifdef __s390x__
722 safe_syscall5(int, ipc, int, call, long, first, long, second, long, third,
723               void *, ptr)
724 #else
725 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third,
726               void *, ptr, long, fifth)
727 #endif
728 #endif
729 #ifdef __NR_msgsnd
730 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz,
731               int, flags)
732 #endif
733 #ifdef __NR_msgrcv
734 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz,
735               long, msgtype, int, flags)
736 #endif
737 #ifdef __NR_semtimedop
738 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops,
739               unsigned, nsops, const struct timespec *, timeout)
740 #endif
741 #if defined(TARGET_NR_mq_timedsend) || \
742     defined(TARGET_NR_mq_timedsend_time64)
743 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr,
744               size_t, len, unsigned, prio, const struct timespec *, timeout)
745 #endif
746 #if defined(TARGET_NR_mq_timedreceive) || \
747     defined(TARGET_NR_mq_timedreceive_time64)
748 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr,
749               size_t, len, unsigned *, prio, const struct timespec *, timeout)
750 #endif
751 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
752 safe_syscall6(ssize_t, copy_file_range, int, infd, loff_t *, pinoff,
753               int, outfd, loff_t *, poutoff, size_t, length,
754               unsigned int, flags)
755 #endif
756 
757 /* We do ioctl like this rather than via safe_syscall3 to preserve the
758  * "third argument might be integer or pointer or not present" behaviour of
759  * the libc function.
760  */
761 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
762 /* Similarly for fcntl. Note that callers must always:
763  *  pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
764  *  use the flock64 struct rather than unsuffixed flock
765  * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
766  */
767 #ifdef __NR_fcntl64
768 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
769 #else
770 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
771 #endif
772 
773 static inline int host_to_target_sock_type(int host_type)
774 {
775     int target_type;
776 
777     switch (host_type & 0xf /* SOCK_TYPE_MASK */) {
778     case SOCK_DGRAM:
779         target_type = TARGET_SOCK_DGRAM;
780         break;
781     case SOCK_STREAM:
782         target_type = TARGET_SOCK_STREAM;
783         break;
784     default:
785         target_type = host_type & 0xf /* SOCK_TYPE_MASK */;
786         break;
787     }
788 
789 #if defined(SOCK_CLOEXEC)
790     if (host_type & SOCK_CLOEXEC) {
791         target_type |= TARGET_SOCK_CLOEXEC;
792     }
793 #endif
794 
795 #if defined(SOCK_NONBLOCK)
796     if (host_type & SOCK_NONBLOCK) {
797         target_type |= TARGET_SOCK_NONBLOCK;
798     }
799 #endif
800 
801     return target_type;
802 }
803 
804 static abi_ulong target_brk, initial_target_brk;
805 
806 void target_set_brk(abi_ulong new_brk)
807 {
808     target_brk = TARGET_PAGE_ALIGN(new_brk);
809     initial_target_brk = target_brk;
810 }
811 
812 /* do_brk() must return target values and target errnos. */
813 abi_long do_brk(abi_ulong brk_val)
814 {
815     abi_long mapped_addr;
816     abi_ulong new_brk;
817     abi_ulong old_brk;
818 
819     /* brk pointers are always untagged */
820 
821     /* do not allow to shrink below initial brk value */
822     if (brk_val < initial_target_brk) {
823         return target_brk;
824     }
825 
826     new_brk = TARGET_PAGE_ALIGN(brk_val);
827     old_brk = TARGET_PAGE_ALIGN(target_brk);
828 
829     /* new and old target_brk might be on the same page */
830     if (new_brk == old_brk) {
831         target_brk = brk_val;
832         return target_brk;
833     }
834 
835     /* Release heap if necessary */
836     if (new_brk < old_brk) {
837         target_munmap(new_brk, old_brk - new_brk);
838 
839         target_brk = brk_val;
840         return target_brk;
841     }
842 
843     mapped_addr = target_mmap(old_brk, new_brk - old_brk,
844                               PROT_READ | PROT_WRITE,
845                               MAP_FIXED_NOREPLACE | MAP_ANON | MAP_PRIVATE,
846                               -1, 0);
847 
848     if (mapped_addr == old_brk) {
849         target_brk = brk_val;
850         return target_brk;
851     }
852 
853 #if defined(TARGET_ALPHA)
854     /* We (partially) emulate OSF/1 on Alpha, which requires we
855        return a proper errno, not an unchanged brk value.  */
856     return -TARGET_ENOMEM;
857 #endif
858     /* For everything else, return the previous break. */
859     return target_brk;
860 }
861 
862 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
863     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
864 static inline abi_long copy_from_user_fdset(fd_set *fds,
865                                             abi_ulong target_fds_addr,
866                                             int n)
867 {
868     int i, nw, j, k;
869     abi_ulong b, *target_fds;
870 
871     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
872     if (!(target_fds = lock_user(VERIFY_READ,
873                                  target_fds_addr,
874                                  sizeof(abi_ulong) * nw,
875                                  1)))
876         return -TARGET_EFAULT;
877 
878     FD_ZERO(fds);
879     k = 0;
880     for (i = 0; i < nw; i++) {
881         /* grab the abi_ulong */
882         __get_user(b, &target_fds[i]);
883         for (j = 0; j < TARGET_ABI_BITS; j++) {
884             /* check the bit inside the abi_ulong */
885             if ((b >> j) & 1)
886                 FD_SET(k, fds);
887             k++;
888         }
889     }
890 
891     unlock_user(target_fds, target_fds_addr, 0);
892 
893     return 0;
894 }
895 
896 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr,
897                                                  abi_ulong target_fds_addr,
898                                                  int n)
899 {
900     if (target_fds_addr) {
901         if (copy_from_user_fdset(fds, target_fds_addr, n))
902             return -TARGET_EFAULT;
903         *fds_ptr = fds;
904     } else {
905         *fds_ptr = NULL;
906     }
907     return 0;
908 }
909 
910 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr,
911                                           const fd_set *fds,
912                                           int n)
913 {
914     int i, nw, j, k;
915     abi_long v;
916     abi_ulong *target_fds;
917 
918     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
919     if (!(target_fds = lock_user(VERIFY_WRITE,
920                                  target_fds_addr,
921                                  sizeof(abi_ulong) * nw,
922                                  0)))
923         return -TARGET_EFAULT;
924 
925     k = 0;
926     for (i = 0; i < nw; i++) {
927         v = 0;
928         for (j = 0; j < TARGET_ABI_BITS; j++) {
929             v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j);
930             k++;
931         }
932         __put_user(v, &target_fds[i]);
933     }
934 
935     unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw);
936 
937     return 0;
938 }
939 #endif
940 
941 #if defined(__alpha__)
942 #define HOST_HZ 1024
943 #else
944 #define HOST_HZ 100
945 #endif
946 
947 static inline abi_long host_to_target_clock_t(long ticks)
948 {
949 #if HOST_HZ == TARGET_HZ
950     return ticks;
951 #else
952     return ((int64_t)ticks * TARGET_HZ) / HOST_HZ;
953 #endif
954 }
955 
956 static inline abi_long host_to_target_rusage(abi_ulong target_addr,
957                                              const struct rusage *rusage)
958 {
959     struct target_rusage *target_rusage;
960 
961     if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0))
962         return -TARGET_EFAULT;
963     target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec);
964     target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec);
965     target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec);
966     target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec);
967     target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss);
968     target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss);
969     target_rusage->ru_idrss = tswapal(rusage->ru_idrss);
970     target_rusage->ru_isrss = tswapal(rusage->ru_isrss);
971     target_rusage->ru_minflt = tswapal(rusage->ru_minflt);
972     target_rusage->ru_majflt = tswapal(rusage->ru_majflt);
973     target_rusage->ru_nswap = tswapal(rusage->ru_nswap);
974     target_rusage->ru_inblock = tswapal(rusage->ru_inblock);
975     target_rusage->ru_oublock = tswapal(rusage->ru_oublock);
976     target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd);
977     target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv);
978     target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals);
979     target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw);
980     target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw);
981     unlock_user_struct(target_rusage, target_addr, 1);
982 
983     return 0;
984 }
985 
986 #ifdef TARGET_NR_setrlimit
987 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim)
988 {
989     abi_ulong target_rlim_swap;
990     rlim_t result;
991 
992     target_rlim_swap = tswapal(target_rlim);
993     if (target_rlim_swap == TARGET_RLIM_INFINITY)
994         return RLIM_INFINITY;
995 
996     result = target_rlim_swap;
997     if (target_rlim_swap != (rlim_t)result)
998         return RLIM_INFINITY;
999 
1000     return result;
1001 }
1002 #endif
1003 
1004 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit)
1005 static inline abi_ulong host_to_target_rlim(rlim_t rlim)
1006 {
1007     abi_ulong target_rlim_swap;
1008     abi_ulong result;
1009 
1010     if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim)
1011         target_rlim_swap = TARGET_RLIM_INFINITY;
1012     else
1013         target_rlim_swap = rlim;
1014     result = tswapal(target_rlim_swap);
1015 
1016     return result;
1017 }
1018 #endif
1019 
1020 static inline int target_to_host_resource(int code)
1021 {
1022     switch (code) {
1023     case TARGET_RLIMIT_AS:
1024         return RLIMIT_AS;
1025     case TARGET_RLIMIT_CORE:
1026         return RLIMIT_CORE;
1027     case TARGET_RLIMIT_CPU:
1028         return RLIMIT_CPU;
1029     case TARGET_RLIMIT_DATA:
1030         return RLIMIT_DATA;
1031     case TARGET_RLIMIT_FSIZE:
1032         return RLIMIT_FSIZE;
1033     case TARGET_RLIMIT_LOCKS:
1034         return RLIMIT_LOCKS;
1035     case TARGET_RLIMIT_MEMLOCK:
1036         return RLIMIT_MEMLOCK;
1037     case TARGET_RLIMIT_MSGQUEUE:
1038         return RLIMIT_MSGQUEUE;
1039     case TARGET_RLIMIT_NICE:
1040         return RLIMIT_NICE;
1041     case TARGET_RLIMIT_NOFILE:
1042         return RLIMIT_NOFILE;
1043     case TARGET_RLIMIT_NPROC:
1044         return RLIMIT_NPROC;
1045     case TARGET_RLIMIT_RSS:
1046         return RLIMIT_RSS;
1047     case TARGET_RLIMIT_RTPRIO:
1048         return RLIMIT_RTPRIO;
1049 #ifdef RLIMIT_RTTIME
1050     case TARGET_RLIMIT_RTTIME:
1051         return RLIMIT_RTTIME;
1052 #endif
1053     case TARGET_RLIMIT_SIGPENDING:
1054         return RLIMIT_SIGPENDING;
1055     case TARGET_RLIMIT_STACK:
1056         return RLIMIT_STACK;
1057     default:
1058         return code;
1059     }
1060 }
1061 
1062 static inline abi_long copy_from_user_timeval(struct timeval *tv,
1063                                               abi_ulong target_tv_addr)
1064 {
1065     struct target_timeval *target_tv;
1066 
1067     if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1068         return -TARGET_EFAULT;
1069     }
1070 
1071     __get_user(tv->tv_sec, &target_tv->tv_sec);
1072     __get_user(tv->tv_usec, &target_tv->tv_usec);
1073 
1074     unlock_user_struct(target_tv, target_tv_addr, 0);
1075 
1076     return 0;
1077 }
1078 
1079 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr,
1080                                             const struct timeval *tv)
1081 {
1082     struct target_timeval *target_tv;
1083 
1084     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1085         return -TARGET_EFAULT;
1086     }
1087 
1088     __put_user(tv->tv_sec, &target_tv->tv_sec);
1089     __put_user(tv->tv_usec, &target_tv->tv_usec);
1090 
1091     unlock_user_struct(target_tv, target_tv_addr, 1);
1092 
1093     return 0;
1094 }
1095 
1096 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
1097 static inline abi_long copy_from_user_timeval64(struct timeval *tv,
1098                                                 abi_ulong target_tv_addr)
1099 {
1100     struct target__kernel_sock_timeval *target_tv;
1101 
1102     if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1103         return -TARGET_EFAULT;
1104     }
1105 
1106     __get_user(tv->tv_sec, &target_tv->tv_sec);
1107     __get_user(tv->tv_usec, &target_tv->tv_usec);
1108 
1109     unlock_user_struct(target_tv, target_tv_addr, 0);
1110 
1111     return 0;
1112 }
1113 #endif
1114 
1115 static inline abi_long copy_to_user_timeval64(abi_ulong target_tv_addr,
1116                                               const struct timeval *tv)
1117 {
1118     struct target__kernel_sock_timeval *target_tv;
1119 
1120     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1121         return -TARGET_EFAULT;
1122     }
1123 
1124     __put_user(tv->tv_sec, &target_tv->tv_sec);
1125     __put_user(tv->tv_usec, &target_tv->tv_usec);
1126 
1127     unlock_user_struct(target_tv, target_tv_addr, 1);
1128 
1129     return 0;
1130 }
1131 
1132 #if defined(TARGET_NR_futex) || \
1133     defined(TARGET_NR_rt_sigtimedwait) || \
1134     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \
1135     defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \
1136     defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \
1137     defined(TARGET_NR_mq_timedreceive) || defined(TARGET_NR_ipc) || \
1138     defined(TARGET_NR_semop) || defined(TARGET_NR_semtimedop) || \
1139     defined(TARGET_NR_timer_settime) || \
1140     (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
1141 static inline abi_long target_to_host_timespec(struct timespec *host_ts,
1142                                                abi_ulong target_addr)
1143 {
1144     struct target_timespec *target_ts;
1145 
1146     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1147         return -TARGET_EFAULT;
1148     }
1149     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1150     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1151     unlock_user_struct(target_ts, target_addr, 0);
1152     return 0;
1153 }
1154 #endif
1155 
1156 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64) || \
1157     defined(TARGET_NR_timer_settime64) || \
1158     defined(TARGET_NR_mq_timedsend_time64) || \
1159     defined(TARGET_NR_mq_timedreceive_time64) || \
1160     (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) || \
1161     defined(TARGET_NR_clock_nanosleep_time64) || \
1162     defined(TARGET_NR_rt_sigtimedwait_time64) || \
1163     defined(TARGET_NR_utimensat) || \
1164     defined(TARGET_NR_utimensat_time64) || \
1165     defined(TARGET_NR_semtimedop_time64) || \
1166     defined(TARGET_NR_pselect6_time64) || defined(TARGET_NR_ppoll_time64)
1167 static inline abi_long target_to_host_timespec64(struct timespec *host_ts,
1168                                                  abi_ulong target_addr)
1169 {
1170     struct target__kernel_timespec *target_ts;
1171 
1172     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1173         return -TARGET_EFAULT;
1174     }
1175     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1176     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1177     /* in 32bit mode, this drops the padding */
1178     host_ts->tv_nsec = (long)(abi_long)host_ts->tv_nsec;
1179     unlock_user_struct(target_ts, target_addr, 0);
1180     return 0;
1181 }
1182 #endif
1183 
1184 static inline abi_long host_to_target_timespec(abi_ulong target_addr,
1185                                                struct timespec *host_ts)
1186 {
1187     struct target_timespec *target_ts;
1188 
1189     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1190         return -TARGET_EFAULT;
1191     }
1192     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1193     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1194     unlock_user_struct(target_ts, target_addr, 1);
1195     return 0;
1196 }
1197 
1198 static inline abi_long host_to_target_timespec64(abi_ulong target_addr,
1199                                                  struct timespec *host_ts)
1200 {
1201     struct target__kernel_timespec *target_ts;
1202 
1203     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1204         return -TARGET_EFAULT;
1205     }
1206     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1207     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1208     unlock_user_struct(target_ts, target_addr, 1);
1209     return 0;
1210 }
1211 
1212 #if defined(TARGET_NR_gettimeofday)
1213 static inline abi_long copy_to_user_timezone(abi_ulong target_tz_addr,
1214                                              struct timezone *tz)
1215 {
1216     struct target_timezone *target_tz;
1217 
1218     if (!lock_user_struct(VERIFY_WRITE, target_tz, target_tz_addr, 1)) {
1219         return -TARGET_EFAULT;
1220     }
1221 
1222     __put_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1223     __put_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1224 
1225     unlock_user_struct(target_tz, target_tz_addr, 1);
1226 
1227     return 0;
1228 }
1229 #endif
1230 
1231 #if defined(TARGET_NR_settimeofday)
1232 static inline abi_long copy_from_user_timezone(struct timezone *tz,
1233                                                abi_ulong target_tz_addr)
1234 {
1235     struct target_timezone *target_tz;
1236 
1237     if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) {
1238         return -TARGET_EFAULT;
1239     }
1240 
1241     __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1242     __get_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1243 
1244     unlock_user_struct(target_tz, target_tz_addr, 0);
1245 
1246     return 0;
1247 }
1248 #endif
1249 
1250 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1251 #include <mqueue.h>
1252 
1253 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr,
1254                                               abi_ulong target_mq_attr_addr)
1255 {
1256     struct target_mq_attr *target_mq_attr;
1257 
1258     if (!lock_user_struct(VERIFY_READ, target_mq_attr,
1259                           target_mq_attr_addr, 1))
1260         return -TARGET_EFAULT;
1261 
1262     __get_user(attr->mq_flags, &target_mq_attr->mq_flags);
1263     __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1264     __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1265     __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1266 
1267     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0);
1268 
1269     return 0;
1270 }
1271 
1272 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr,
1273                                             const struct mq_attr *attr)
1274 {
1275     struct target_mq_attr *target_mq_attr;
1276 
1277     if (!lock_user_struct(VERIFY_WRITE, target_mq_attr,
1278                           target_mq_attr_addr, 0))
1279         return -TARGET_EFAULT;
1280 
1281     __put_user(attr->mq_flags, &target_mq_attr->mq_flags);
1282     __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1283     __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1284     __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1285 
1286     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1);
1287 
1288     return 0;
1289 }
1290 #endif
1291 
1292 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1293 /* do_select() must return target values and target errnos. */
1294 static abi_long do_select(int n,
1295                           abi_ulong rfd_addr, abi_ulong wfd_addr,
1296                           abi_ulong efd_addr, abi_ulong target_tv_addr)
1297 {
1298     fd_set rfds, wfds, efds;
1299     fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1300     struct timeval tv;
1301     struct timespec ts, *ts_ptr;
1302     abi_long ret;
1303 
1304     ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1305     if (ret) {
1306         return ret;
1307     }
1308     ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1309     if (ret) {
1310         return ret;
1311     }
1312     ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1313     if (ret) {
1314         return ret;
1315     }
1316 
1317     if (target_tv_addr) {
1318         if (copy_from_user_timeval(&tv, target_tv_addr))
1319             return -TARGET_EFAULT;
1320         ts.tv_sec = tv.tv_sec;
1321         ts.tv_nsec = tv.tv_usec * 1000;
1322         ts_ptr = &ts;
1323     } else {
1324         ts_ptr = NULL;
1325     }
1326 
1327     ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1328                                   ts_ptr, NULL));
1329 
1330     if (!is_error(ret)) {
1331         if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
1332             return -TARGET_EFAULT;
1333         if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
1334             return -TARGET_EFAULT;
1335         if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
1336             return -TARGET_EFAULT;
1337 
1338         if (target_tv_addr) {
1339             tv.tv_sec = ts.tv_sec;
1340             tv.tv_usec = ts.tv_nsec / 1000;
1341             if (copy_to_user_timeval(target_tv_addr, &tv)) {
1342                 return -TARGET_EFAULT;
1343             }
1344         }
1345     }
1346 
1347     return ret;
1348 }
1349 
1350 #if defined(TARGET_WANT_OLD_SYS_SELECT)
1351 static abi_long do_old_select(abi_ulong arg1)
1352 {
1353     struct target_sel_arg_struct *sel;
1354     abi_ulong inp, outp, exp, tvp;
1355     long nsel;
1356 
1357     if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) {
1358         return -TARGET_EFAULT;
1359     }
1360 
1361     nsel = tswapal(sel->n);
1362     inp = tswapal(sel->inp);
1363     outp = tswapal(sel->outp);
1364     exp = tswapal(sel->exp);
1365     tvp = tswapal(sel->tvp);
1366 
1367     unlock_user_struct(sel, arg1, 0);
1368 
1369     return do_select(nsel, inp, outp, exp, tvp);
1370 }
1371 #endif
1372 #endif
1373 
1374 #if defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
1375 static abi_long do_pselect6(abi_long arg1, abi_long arg2, abi_long arg3,
1376                             abi_long arg4, abi_long arg5, abi_long arg6,
1377                             bool time64)
1378 {
1379     abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr;
1380     fd_set rfds, wfds, efds;
1381     fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1382     struct timespec ts, *ts_ptr;
1383     abi_long ret;
1384 
1385     /*
1386      * The 6th arg is actually two args smashed together,
1387      * so we cannot use the C library.
1388      */
1389     struct {
1390         sigset_t *set;
1391         size_t size;
1392     } sig, *sig_ptr;
1393 
1394     abi_ulong arg_sigset, arg_sigsize, *arg7;
1395 
1396     n = arg1;
1397     rfd_addr = arg2;
1398     wfd_addr = arg3;
1399     efd_addr = arg4;
1400     ts_addr = arg5;
1401 
1402     ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1403     if (ret) {
1404         return ret;
1405     }
1406     ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1407     if (ret) {
1408         return ret;
1409     }
1410     ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1411     if (ret) {
1412         return ret;
1413     }
1414 
1415     /*
1416      * This takes a timespec, and not a timeval, so we cannot
1417      * use the do_select() helper ...
1418      */
1419     if (ts_addr) {
1420         if (time64) {
1421             if (target_to_host_timespec64(&ts, ts_addr)) {
1422                 return -TARGET_EFAULT;
1423             }
1424         } else {
1425             if (target_to_host_timespec(&ts, ts_addr)) {
1426                 return -TARGET_EFAULT;
1427             }
1428         }
1429             ts_ptr = &ts;
1430     } else {
1431         ts_ptr = NULL;
1432     }
1433 
1434     /* Extract the two packed args for the sigset */
1435     sig_ptr = NULL;
1436     if (arg6) {
1437         arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1);
1438         if (!arg7) {
1439             return -TARGET_EFAULT;
1440         }
1441         arg_sigset = tswapal(arg7[0]);
1442         arg_sigsize = tswapal(arg7[1]);
1443         unlock_user(arg7, arg6, 0);
1444 
1445         if (arg_sigset) {
1446             ret = process_sigsuspend_mask(&sig.set, arg_sigset, arg_sigsize);
1447             if (ret != 0) {
1448                 return ret;
1449             }
1450             sig_ptr = &sig;
1451             sig.size = SIGSET_T_SIZE;
1452         }
1453     }
1454 
1455     ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1456                                   ts_ptr, sig_ptr));
1457 
1458     if (sig_ptr) {
1459         finish_sigsuspend_mask(ret);
1460     }
1461 
1462     if (!is_error(ret)) {
1463         if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) {
1464             return -TARGET_EFAULT;
1465         }
1466         if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) {
1467             return -TARGET_EFAULT;
1468         }
1469         if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) {
1470             return -TARGET_EFAULT;
1471         }
1472         if (time64) {
1473             if (ts_addr && host_to_target_timespec64(ts_addr, &ts)) {
1474                 return -TARGET_EFAULT;
1475             }
1476         } else {
1477             if (ts_addr && host_to_target_timespec(ts_addr, &ts)) {
1478                 return -TARGET_EFAULT;
1479             }
1480         }
1481     }
1482     return ret;
1483 }
1484 #endif
1485 
1486 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) || \
1487     defined(TARGET_NR_ppoll_time64)
1488 static abi_long do_ppoll(abi_long arg1, abi_long arg2, abi_long arg3,
1489                          abi_long arg4, abi_long arg5, bool ppoll, bool time64)
1490 {
1491     struct target_pollfd *target_pfd;
1492     unsigned int nfds = arg2;
1493     struct pollfd *pfd;
1494     unsigned int i;
1495     abi_long ret;
1496 
1497     pfd = NULL;
1498     target_pfd = NULL;
1499     if (nfds) {
1500         if (nfds > (INT_MAX / sizeof(struct target_pollfd))) {
1501             return -TARGET_EINVAL;
1502         }
1503         target_pfd = lock_user(VERIFY_WRITE, arg1,
1504                                sizeof(struct target_pollfd) * nfds, 1);
1505         if (!target_pfd) {
1506             return -TARGET_EFAULT;
1507         }
1508 
1509         pfd = alloca(sizeof(struct pollfd) * nfds);
1510         for (i = 0; i < nfds; i++) {
1511             pfd[i].fd = tswap32(target_pfd[i].fd);
1512             pfd[i].events = tswap16(target_pfd[i].events);
1513         }
1514     }
1515     if (ppoll) {
1516         struct timespec _timeout_ts, *timeout_ts = &_timeout_ts;
1517         sigset_t *set = NULL;
1518 
1519         if (arg3) {
1520             if (time64) {
1521                 if (target_to_host_timespec64(timeout_ts, arg3)) {
1522                     unlock_user(target_pfd, arg1, 0);
1523                     return -TARGET_EFAULT;
1524                 }
1525             } else {
1526                 if (target_to_host_timespec(timeout_ts, arg3)) {
1527                     unlock_user(target_pfd, arg1, 0);
1528                     return -TARGET_EFAULT;
1529                 }
1530             }
1531         } else {
1532             timeout_ts = NULL;
1533         }
1534 
1535         if (arg4) {
1536             ret = process_sigsuspend_mask(&set, arg4, arg5);
1537             if (ret != 0) {
1538                 unlock_user(target_pfd, arg1, 0);
1539                 return ret;
1540             }
1541         }
1542 
1543         ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts,
1544                                    set, SIGSET_T_SIZE));
1545 
1546         if (set) {
1547             finish_sigsuspend_mask(ret);
1548         }
1549         if (!is_error(ret) && arg3) {
1550             if (time64) {
1551                 if (host_to_target_timespec64(arg3, timeout_ts)) {
1552                     return -TARGET_EFAULT;
1553                 }
1554             } else {
1555                 if (host_to_target_timespec(arg3, timeout_ts)) {
1556                     return -TARGET_EFAULT;
1557                 }
1558             }
1559         }
1560     } else {
1561           struct timespec ts, *pts;
1562 
1563           if (arg3 >= 0) {
1564               /* Convert ms to secs, ns */
1565               ts.tv_sec = arg3 / 1000;
1566               ts.tv_nsec = (arg3 % 1000) * 1000000LL;
1567               pts = &ts;
1568           } else {
1569               /* -ve poll() timeout means "infinite" */
1570               pts = NULL;
1571           }
1572           ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0));
1573     }
1574 
1575     if (!is_error(ret)) {
1576         for (i = 0; i < nfds; i++) {
1577             target_pfd[i].revents = tswap16(pfd[i].revents);
1578         }
1579     }
1580     unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds);
1581     return ret;
1582 }
1583 #endif
1584 
1585 static abi_long do_pipe(CPUArchState *cpu_env, abi_ulong pipedes,
1586                         int flags, int is_pipe2)
1587 {
1588     int host_pipe[2];
1589     abi_long ret;
1590     ret = pipe2(host_pipe, flags);
1591 
1592     if (is_error(ret))
1593         return get_errno(ret);
1594 
1595     /* Several targets have special calling conventions for the original
1596        pipe syscall, but didn't replicate this into the pipe2 syscall.  */
1597     if (!is_pipe2) {
1598 #if defined(TARGET_ALPHA)
1599         cpu_env->ir[IR_A4] = host_pipe[1];
1600         return host_pipe[0];
1601 #elif defined(TARGET_MIPS)
1602         cpu_env->active_tc.gpr[3] = host_pipe[1];
1603         return host_pipe[0];
1604 #elif defined(TARGET_SH4)
1605         cpu_env->gregs[1] = host_pipe[1];
1606         return host_pipe[0];
1607 #elif defined(TARGET_SPARC)
1608         cpu_env->regwptr[1] = host_pipe[1];
1609         return host_pipe[0];
1610 #endif
1611     }
1612 
1613     if (put_user_s32(host_pipe[0], pipedes)
1614         || put_user_s32(host_pipe[1], pipedes + sizeof(abi_int)))
1615         return -TARGET_EFAULT;
1616     return get_errno(ret);
1617 }
1618 
1619 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr,
1620                                                abi_ulong target_addr,
1621                                                socklen_t len)
1622 {
1623     const socklen_t unix_maxlen = sizeof (struct sockaddr_un);
1624     sa_family_t sa_family;
1625     struct target_sockaddr *target_saddr;
1626 
1627     if (fd_trans_target_to_host_addr(fd)) {
1628         return fd_trans_target_to_host_addr(fd)(addr, target_addr, len);
1629     }
1630 
1631     target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
1632     if (!target_saddr)
1633         return -TARGET_EFAULT;
1634 
1635     sa_family = tswap16(target_saddr->sa_family);
1636 
1637     /* Oops. The caller might send a incomplete sun_path; sun_path
1638      * must be terminated by \0 (see the manual page), but
1639      * unfortunately it is quite common to specify sockaddr_un
1640      * length as "strlen(x->sun_path)" while it should be
1641      * "strlen(...) + 1". We'll fix that here if needed.
1642      * Linux kernel has a similar feature.
1643      */
1644 
1645     if (sa_family == AF_UNIX) {
1646         if (len < unix_maxlen && len > 0) {
1647             char *cp = (char*)target_saddr;
1648 
1649             if ( cp[len-1] && !cp[len] )
1650                 len++;
1651         }
1652         if (len > unix_maxlen)
1653             len = unix_maxlen;
1654     }
1655 
1656     memcpy(addr, target_saddr, len);
1657     addr->sa_family = sa_family;
1658     if (sa_family == AF_NETLINK) {
1659         struct sockaddr_nl *nladdr;
1660 
1661         nladdr = (struct sockaddr_nl *)addr;
1662         nladdr->nl_pid = tswap32(nladdr->nl_pid);
1663         nladdr->nl_groups = tswap32(nladdr->nl_groups);
1664     } else if (sa_family == AF_PACKET) {
1665 	struct target_sockaddr_ll *lladdr;
1666 
1667 	lladdr = (struct target_sockaddr_ll *)addr;
1668 	lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex);
1669 	lladdr->sll_hatype = tswap16(lladdr->sll_hatype);
1670     } else if (sa_family == AF_INET6) {
1671         struct sockaddr_in6 *in6addr;
1672 
1673         in6addr = (struct sockaddr_in6 *)addr;
1674         in6addr->sin6_scope_id = tswap32(in6addr->sin6_scope_id);
1675     }
1676     unlock_user(target_saddr, target_addr, 0);
1677 
1678     return 0;
1679 }
1680 
1681 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr,
1682                                                struct sockaddr *addr,
1683                                                socklen_t len)
1684 {
1685     struct target_sockaddr *target_saddr;
1686 
1687     if (len == 0) {
1688         return 0;
1689     }
1690     assert(addr);
1691 
1692     target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0);
1693     if (!target_saddr)
1694         return -TARGET_EFAULT;
1695     memcpy(target_saddr, addr, len);
1696     if (len >= offsetof(struct target_sockaddr, sa_family) +
1697         sizeof(target_saddr->sa_family)) {
1698         target_saddr->sa_family = tswap16(addr->sa_family);
1699     }
1700     if (addr->sa_family == AF_NETLINK &&
1701         len >= sizeof(struct target_sockaddr_nl)) {
1702         struct target_sockaddr_nl *target_nl =
1703                (struct target_sockaddr_nl *)target_saddr;
1704         target_nl->nl_pid = tswap32(target_nl->nl_pid);
1705         target_nl->nl_groups = tswap32(target_nl->nl_groups);
1706     } else if (addr->sa_family == AF_PACKET) {
1707         struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr;
1708         target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex);
1709         target_ll->sll_hatype = tswap16(target_ll->sll_hatype);
1710     } else if (addr->sa_family == AF_INET6 &&
1711                len >= sizeof(struct target_sockaddr_in6)) {
1712         struct target_sockaddr_in6 *target_in6 =
1713                (struct target_sockaddr_in6 *)target_saddr;
1714         target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id);
1715     }
1716     unlock_user(target_saddr, target_addr, len);
1717 
1718     return 0;
1719 }
1720 
1721 static inline abi_long target_to_host_cmsg(struct msghdr *msgh,
1722                                            struct target_msghdr *target_msgh)
1723 {
1724     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1725     abi_long msg_controllen;
1726     abi_ulong target_cmsg_addr;
1727     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1728     socklen_t space = 0;
1729 
1730     msg_controllen = tswapal(target_msgh->msg_controllen);
1731     if (msg_controllen < sizeof (struct target_cmsghdr))
1732         goto the_end;
1733     target_cmsg_addr = tswapal(target_msgh->msg_control);
1734     target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1);
1735     target_cmsg_start = target_cmsg;
1736     if (!target_cmsg)
1737         return -TARGET_EFAULT;
1738 
1739     while (cmsg && target_cmsg) {
1740         void *data = CMSG_DATA(cmsg);
1741         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1742 
1743         int len = tswapal(target_cmsg->cmsg_len)
1744             - sizeof(struct target_cmsghdr);
1745 
1746         space += CMSG_SPACE(len);
1747         if (space > msgh->msg_controllen) {
1748             space -= CMSG_SPACE(len);
1749             /* This is a QEMU bug, since we allocated the payload
1750              * area ourselves (unlike overflow in host-to-target
1751              * conversion, which is just the guest giving us a buffer
1752              * that's too small). It can't happen for the payload types
1753              * we currently support; if it becomes an issue in future
1754              * we would need to improve our allocation strategy to
1755              * something more intelligent than "twice the size of the
1756              * target buffer we're reading from".
1757              */
1758             qemu_log_mask(LOG_UNIMP,
1759                           ("Unsupported ancillary data %d/%d: "
1760                            "unhandled msg size\n"),
1761                           tswap32(target_cmsg->cmsg_level),
1762                           tswap32(target_cmsg->cmsg_type));
1763             break;
1764         }
1765 
1766         if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) {
1767             cmsg->cmsg_level = SOL_SOCKET;
1768         } else {
1769             cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level);
1770         }
1771         cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type);
1772         cmsg->cmsg_len = CMSG_LEN(len);
1773 
1774         if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
1775             int *fd = (int *)data;
1776             int *target_fd = (int *)target_data;
1777             int i, numfds = len / sizeof(int);
1778 
1779             for (i = 0; i < numfds; i++) {
1780                 __get_user(fd[i], target_fd + i);
1781             }
1782         } else if (cmsg->cmsg_level == SOL_SOCKET
1783                &&  cmsg->cmsg_type == SCM_CREDENTIALS) {
1784             struct ucred *cred = (struct ucred *)data;
1785             struct target_ucred *target_cred =
1786                 (struct target_ucred *)target_data;
1787 
1788             __get_user(cred->pid, &target_cred->pid);
1789             __get_user(cred->uid, &target_cred->uid);
1790             __get_user(cred->gid, &target_cred->gid);
1791         } else if (cmsg->cmsg_level == SOL_ALG) {
1792             uint32_t *dst = (uint32_t *)data;
1793 
1794             memcpy(dst, target_data, len);
1795             /* fix endianness of first 32-bit word */
1796             if (len >= sizeof(uint32_t)) {
1797                 *dst = tswap32(*dst);
1798             }
1799         } else {
1800             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
1801                           cmsg->cmsg_level, cmsg->cmsg_type);
1802             memcpy(data, target_data, len);
1803         }
1804 
1805         cmsg = CMSG_NXTHDR(msgh, cmsg);
1806         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1807                                          target_cmsg_start);
1808     }
1809     unlock_user(target_cmsg, target_cmsg_addr, 0);
1810  the_end:
1811     msgh->msg_controllen = space;
1812     return 0;
1813 }
1814 
1815 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh,
1816                                            struct msghdr *msgh)
1817 {
1818     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1819     abi_long msg_controllen;
1820     abi_ulong target_cmsg_addr;
1821     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1822     socklen_t space = 0;
1823 
1824     msg_controllen = tswapal(target_msgh->msg_controllen);
1825     if (msg_controllen < sizeof (struct target_cmsghdr))
1826         goto the_end;
1827     target_cmsg_addr = tswapal(target_msgh->msg_control);
1828     target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0);
1829     target_cmsg_start = target_cmsg;
1830     if (!target_cmsg)
1831         return -TARGET_EFAULT;
1832 
1833     while (cmsg && target_cmsg) {
1834         void *data = CMSG_DATA(cmsg);
1835         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1836 
1837         int len = cmsg->cmsg_len - sizeof(struct cmsghdr);
1838         int tgt_len, tgt_space;
1839 
1840         /* We never copy a half-header but may copy half-data;
1841          * this is Linux's behaviour in put_cmsg(). Note that
1842          * truncation here is a guest problem (which we report
1843          * to the guest via the CTRUNC bit), unlike truncation
1844          * in target_to_host_cmsg, which is a QEMU bug.
1845          */
1846         if (msg_controllen < sizeof(struct target_cmsghdr)) {
1847             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1848             break;
1849         }
1850 
1851         if (cmsg->cmsg_level == SOL_SOCKET) {
1852             target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET);
1853         } else {
1854             target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level);
1855         }
1856         target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type);
1857 
1858         /* Payload types which need a different size of payload on
1859          * the target must adjust tgt_len here.
1860          */
1861         tgt_len = len;
1862         switch (cmsg->cmsg_level) {
1863         case SOL_SOCKET:
1864             switch (cmsg->cmsg_type) {
1865             case SO_TIMESTAMP:
1866                 tgt_len = sizeof(struct target_timeval);
1867                 break;
1868             default:
1869                 break;
1870             }
1871             break;
1872         default:
1873             break;
1874         }
1875 
1876         if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) {
1877             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1878             tgt_len = msg_controllen - sizeof(struct target_cmsghdr);
1879         }
1880 
1881         /* We must now copy-and-convert len bytes of payload
1882          * into tgt_len bytes of destination space. Bear in mind
1883          * that in both source and destination we may be dealing
1884          * with a truncated value!
1885          */
1886         switch (cmsg->cmsg_level) {
1887         case SOL_SOCKET:
1888             switch (cmsg->cmsg_type) {
1889             case SCM_RIGHTS:
1890             {
1891                 int *fd = (int *)data;
1892                 int *target_fd = (int *)target_data;
1893                 int i, numfds = tgt_len / sizeof(int);
1894 
1895                 for (i = 0; i < numfds; i++) {
1896                     __put_user(fd[i], target_fd + i);
1897                 }
1898                 break;
1899             }
1900             case SO_TIMESTAMP:
1901             {
1902                 struct timeval *tv = (struct timeval *)data;
1903                 struct target_timeval *target_tv =
1904                     (struct target_timeval *)target_data;
1905 
1906                 if (len != sizeof(struct timeval) ||
1907                     tgt_len != sizeof(struct target_timeval)) {
1908                     goto unimplemented;
1909                 }
1910 
1911                 /* copy struct timeval to target */
1912                 __put_user(tv->tv_sec, &target_tv->tv_sec);
1913                 __put_user(tv->tv_usec, &target_tv->tv_usec);
1914                 break;
1915             }
1916             case SCM_CREDENTIALS:
1917             {
1918                 struct ucred *cred = (struct ucred *)data;
1919                 struct target_ucred *target_cred =
1920                     (struct target_ucred *)target_data;
1921 
1922                 __put_user(cred->pid, &target_cred->pid);
1923                 __put_user(cred->uid, &target_cred->uid);
1924                 __put_user(cred->gid, &target_cred->gid);
1925                 break;
1926             }
1927             default:
1928                 goto unimplemented;
1929             }
1930             break;
1931 
1932         case SOL_IP:
1933             switch (cmsg->cmsg_type) {
1934             case IP_TTL:
1935             {
1936                 uint32_t *v = (uint32_t *)data;
1937                 uint32_t *t_int = (uint32_t *)target_data;
1938 
1939                 if (len != sizeof(uint32_t) ||
1940                     tgt_len != sizeof(uint32_t)) {
1941                     goto unimplemented;
1942                 }
1943                 __put_user(*v, t_int);
1944                 break;
1945             }
1946             case IP_RECVERR:
1947             {
1948                 struct errhdr_t {
1949                    struct sock_extended_err ee;
1950                    struct sockaddr_in offender;
1951                 };
1952                 struct errhdr_t *errh = (struct errhdr_t *)data;
1953                 struct errhdr_t *target_errh =
1954                     (struct errhdr_t *)target_data;
1955 
1956                 if (len != sizeof(struct errhdr_t) ||
1957                     tgt_len != sizeof(struct errhdr_t)) {
1958                     goto unimplemented;
1959                 }
1960                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
1961                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
1962                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
1963                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
1964                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
1965                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
1966                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
1967                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
1968                     (void *) &errh->offender, sizeof(errh->offender));
1969                 break;
1970             }
1971             default:
1972                 goto unimplemented;
1973             }
1974             break;
1975 
1976         case SOL_IPV6:
1977             switch (cmsg->cmsg_type) {
1978             case IPV6_HOPLIMIT:
1979             {
1980                 uint32_t *v = (uint32_t *)data;
1981                 uint32_t *t_int = (uint32_t *)target_data;
1982 
1983                 if (len != sizeof(uint32_t) ||
1984                     tgt_len != sizeof(uint32_t)) {
1985                     goto unimplemented;
1986                 }
1987                 __put_user(*v, t_int);
1988                 break;
1989             }
1990             case IPV6_RECVERR:
1991             {
1992                 struct errhdr6_t {
1993                    struct sock_extended_err ee;
1994                    struct sockaddr_in6 offender;
1995                 };
1996                 struct errhdr6_t *errh = (struct errhdr6_t *)data;
1997                 struct errhdr6_t *target_errh =
1998                     (struct errhdr6_t *)target_data;
1999 
2000                 if (len != sizeof(struct errhdr6_t) ||
2001                     tgt_len != sizeof(struct errhdr6_t)) {
2002                     goto unimplemented;
2003                 }
2004                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
2005                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
2006                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
2007                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
2008                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
2009                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
2010                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
2011                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
2012                     (void *) &errh->offender, sizeof(errh->offender));
2013                 break;
2014             }
2015             default:
2016                 goto unimplemented;
2017             }
2018             break;
2019 
2020         default:
2021         unimplemented:
2022             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
2023                           cmsg->cmsg_level, cmsg->cmsg_type);
2024             memcpy(target_data, data, MIN(len, tgt_len));
2025             if (tgt_len > len) {
2026                 memset(target_data + len, 0, tgt_len - len);
2027             }
2028         }
2029 
2030         target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len));
2031         tgt_space = TARGET_CMSG_SPACE(tgt_len);
2032         if (msg_controllen < tgt_space) {
2033             tgt_space = msg_controllen;
2034         }
2035         msg_controllen -= tgt_space;
2036         space += tgt_space;
2037         cmsg = CMSG_NXTHDR(msgh, cmsg);
2038         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
2039                                          target_cmsg_start);
2040     }
2041     unlock_user(target_cmsg, target_cmsg_addr, space);
2042  the_end:
2043     target_msgh->msg_controllen = tswapal(space);
2044     return 0;
2045 }
2046 
2047 /* do_setsockopt() Must return target values and target errnos. */
2048 static abi_long do_setsockopt(int sockfd, int level, int optname,
2049                               abi_ulong optval_addr, socklen_t optlen)
2050 {
2051     abi_long ret;
2052     int val;
2053 
2054     switch(level) {
2055     case SOL_TCP:
2056     case SOL_UDP:
2057         /* TCP and UDP options all take an 'int' value.  */
2058         if (optlen < sizeof(uint32_t))
2059             return -TARGET_EINVAL;
2060 
2061         if (get_user_u32(val, optval_addr))
2062             return -TARGET_EFAULT;
2063         ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2064         break;
2065     case SOL_IP:
2066         switch(optname) {
2067         case IP_TOS:
2068         case IP_TTL:
2069         case IP_HDRINCL:
2070         case IP_ROUTER_ALERT:
2071         case IP_RECVOPTS:
2072         case IP_RETOPTS:
2073         case IP_PKTINFO:
2074         case IP_MTU_DISCOVER:
2075         case IP_RECVERR:
2076         case IP_RECVTTL:
2077         case IP_RECVTOS:
2078 #ifdef IP_FREEBIND
2079         case IP_FREEBIND:
2080 #endif
2081         case IP_MULTICAST_TTL:
2082         case IP_MULTICAST_LOOP:
2083             val = 0;
2084             if (optlen >= sizeof(uint32_t)) {
2085                 if (get_user_u32(val, optval_addr))
2086                     return -TARGET_EFAULT;
2087             } else if (optlen >= 1) {
2088                 if (get_user_u8(val, optval_addr))
2089                     return -TARGET_EFAULT;
2090             }
2091             ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2092             break;
2093         case IP_ADD_MEMBERSHIP:
2094         case IP_DROP_MEMBERSHIP:
2095         {
2096             struct ip_mreqn ip_mreq;
2097             struct target_ip_mreqn *target_smreqn;
2098 
2099             QEMU_BUILD_BUG_ON(sizeof(struct ip_mreq) !=
2100                               sizeof(struct target_ip_mreq));
2101 
2102             if (optlen < sizeof (struct target_ip_mreq) ||
2103                 optlen > sizeof (struct target_ip_mreqn)) {
2104                 return -TARGET_EINVAL;
2105             }
2106 
2107             target_smreqn = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2108             if (!target_smreqn) {
2109                 return -TARGET_EFAULT;
2110             }
2111             ip_mreq.imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr;
2112             ip_mreq.imr_address.s_addr = target_smreqn->imr_address.s_addr;
2113             if (optlen == sizeof(struct target_ip_mreqn)) {
2114                 ip_mreq.imr_ifindex = tswapal(target_smreqn->imr_ifindex);
2115                 optlen = sizeof(struct ip_mreqn);
2116             }
2117             unlock_user(target_smreqn, optval_addr, 0);
2118 
2119             ret = get_errno(setsockopt(sockfd, level, optname, &ip_mreq, optlen));
2120             break;
2121         }
2122         case IP_BLOCK_SOURCE:
2123         case IP_UNBLOCK_SOURCE:
2124         case IP_ADD_SOURCE_MEMBERSHIP:
2125         case IP_DROP_SOURCE_MEMBERSHIP:
2126         {
2127             struct ip_mreq_source *ip_mreq_source;
2128 
2129             if (optlen != sizeof (struct target_ip_mreq_source))
2130                 return -TARGET_EINVAL;
2131 
2132             ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2133             if (!ip_mreq_source) {
2134                 return -TARGET_EFAULT;
2135             }
2136             ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen));
2137             unlock_user (ip_mreq_source, optval_addr, 0);
2138             break;
2139         }
2140         default:
2141             goto unimplemented;
2142         }
2143         break;
2144     case SOL_IPV6:
2145         switch (optname) {
2146         case IPV6_MTU_DISCOVER:
2147         case IPV6_MTU:
2148         case IPV6_V6ONLY:
2149         case IPV6_RECVPKTINFO:
2150         case IPV6_UNICAST_HOPS:
2151         case IPV6_MULTICAST_HOPS:
2152         case IPV6_MULTICAST_LOOP:
2153         case IPV6_RECVERR:
2154         case IPV6_RECVHOPLIMIT:
2155         case IPV6_2292HOPLIMIT:
2156         case IPV6_CHECKSUM:
2157         case IPV6_ADDRFORM:
2158         case IPV6_2292PKTINFO:
2159         case IPV6_RECVTCLASS:
2160         case IPV6_RECVRTHDR:
2161         case IPV6_2292RTHDR:
2162         case IPV6_RECVHOPOPTS:
2163         case IPV6_2292HOPOPTS:
2164         case IPV6_RECVDSTOPTS:
2165         case IPV6_2292DSTOPTS:
2166         case IPV6_TCLASS:
2167         case IPV6_ADDR_PREFERENCES:
2168 #ifdef IPV6_RECVPATHMTU
2169         case IPV6_RECVPATHMTU:
2170 #endif
2171 #ifdef IPV6_TRANSPARENT
2172         case IPV6_TRANSPARENT:
2173 #endif
2174 #ifdef IPV6_FREEBIND
2175         case IPV6_FREEBIND:
2176 #endif
2177 #ifdef IPV6_RECVORIGDSTADDR
2178         case IPV6_RECVORIGDSTADDR:
2179 #endif
2180             val = 0;
2181             if (optlen < sizeof(uint32_t)) {
2182                 return -TARGET_EINVAL;
2183             }
2184             if (get_user_u32(val, optval_addr)) {
2185                 return -TARGET_EFAULT;
2186             }
2187             ret = get_errno(setsockopt(sockfd, level, optname,
2188                                        &val, sizeof(val)));
2189             break;
2190         case IPV6_PKTINFO:
2191         {
2192             struct in6_pktinfo pki;
2193 
2194             if (optlen < sizeof(pki)) {
2195                 return -TARGET_EINVAL;
2196             }
2197 
2198             if (copy_from_user(&pki, optval_addr, sizeof(pki))) {
2199                 return -TARGET_EFAULT;
2200             }
2201 
2202             pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex);
2203 
2204             ret = get_errno(setsockopt(sockfd, level, optname,
2205                                        &pki, sizeof(pki)));
2206             break;
2207         }
2208         case IPV6_ADD_MEMBERSHIP:
2209         case IPV6_DROP_MEMBERSHIP:
2210         {
2211             struct ipv6_mreq ipv6mreq;
2212 
2213             if (optlen < sizeof(ipv6mreq)) {
2214                 return -TARGET_EINVAL;
2215             }
2216 
2217             if (copy_from_user(&ipv6mreq, optval_addr, sizeof(ipv6mreq))) {
2218                 return -TARGET_EFAULT;
2219             }
2220 
2221             ipv6mreq.ipv6mr_interface = tswap32(ipv6mreq.ipv6mr_interface);
2222 
2223             ret = get_errno(setsockopt(sockfd, level, optname,
2224                                        &ipv6mreq, sizeof(ipv6mreq)));
2225             break;
2226         }
2227         default:
2228             goto unimplemented;
2229         }
2230         break;
2231     case SOL_ICMPV6:
2232         switch (optname) {
2233         case ICMPV6_FILTER:
2234         {
2235             struct icmp6_filter icmp6f;
2236 
2237             if (optlen > sizeof(icmp6f)) {
2238                 optlen = sizeof(icmp6f);
2239             }
2240 
2241             if (copy_from_user(&icmp6f, optval_addr, optlen)) {
2242                 return -TARGET_EFAULT;
2243             }
2244 
2245             for (val = 0; val < 8; val++) {
2246                 icmp6f.data[val] = tswap32(icmp6f.data[val]);
2247             }
2248 
2249             ret = get_errno(setsockopt(sockfd, level, optname,
2250                                        &icmp6f, optlen));
2251             break;
2252         }
2253         default:
2254             goto unimplemented;
2255         }
2256         break;
2257     case SOL_RAW:
2258         switch (optname) {
2259         case ICMP_FILTER:
2260         case IPV6_CHECKSUM:
2261             /* those take an u32 value */
2262             if (optlen < sizeof(uint32_t)) {
2263                 return -TARGET_EINVAL;
2264             }
2265 
2266             if (get_user_u32(val, optval_addr)) {
2267                 return -TARGET_EFAULT;
2268             }
2269             ret = get_errno(setsockopt(sockfd, level, optname,
2270                                        &val, sizeof(val)));
2271             break;
2272 
2273         default:
2274             goto unimplemented;
2275         }
2276         break;
2277 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE)
2278     case SOL_ALG:
2279         switch (optname) {
2280         case ALG_SET_KEY:
2281         {
2282             char *alg_key = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2283             if (!alg_key) {
2284                 return -TARGET_EFAULT;
2285             }
2286             ret = get_errno(setsockopt(sockfd, level, optname,
2287                                        alg_key, optlen));
2288             unlock_user(alg_key, optval_addr, optlen);
2289             break;
2290         }
2291         case ALG_SET_AEAD_AUTHSIZE:
2292         {
2293             ret = get_errno(setsockopt(sockfd, level, optname,
2294                                        NULL, optlen));
2295             break;
2296         }
2297         default:
2298             goto unimplemented;
2299         }
2300         break;
2301 #endif
2302     case TARGET_SOL_SOCKET:
2303         switch (optname) {
2304         case TARGET_SO_RCVTIMEO:
2305         case TARGET_SO_SNDTIMEO:
2306         {
2307                 struct timeval tv;
2308 
2309                 if (optlen != sizeof(struct target_timeval)) {
2310                     return -TARGET_EINVAL;
2311                 }
2312 
2313                 if (copy_from_user_timeval(&tv, optval_addr)) {
2314                     return -TARGET_EFAULT;
2315                 }
2316 
2317                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
2318                                 optname == TARGET_SO_RCVTIMEO ?
2319                                     SO_RCVTIMEO : SO_SNDTIMEO,
2320                                 &tv, sizeof(tv)));
2321                 return ret;
2322         }
2323         case TARGET_SO_ATTACH_FILTER:
2324         {
2325                 struct target_sock_fprog *tfprog;
2326                 struct target_sock_filter *tfilter;
2327                 struct sock_fprog fprog;
2328                 struct sock_filter *filter;
2329                 int i;
2330 
2331                 if (optlen != sizeof(*tfprog)) {
2332                     return -TARGET_EINVAL;
2333                 }
2334                 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) {
2335                     return -TARGET_EFAULT;
2336                 }
2337                 if (!lock_user_struct(VERIFY_READ, tfilter,
2338                                       tswapal(tfprog->filter), 0)) {
2339                     unlock_user_struct(tfprog, optval_addr, 1);
2340                     return -TARGET_EFAULT;
2341                 }
2342 
2343                 fprog.len = tswap16(tfprog->len);
2344                 filter = g_try_new(struct sock_filter, fprog.len);
2345                 if (filter == NULL) {
2346                     unlock_user_struct(tfilter, tfprog->filter, 1);
2347                     unlock_user_struct(tfprog, optval_addr, 1);
2348                     return -TARGET_ENOMEM;
2349                 }
2350                 for (i = 0; i < fprog.len; i++) {
2351                     filter[i].code = tswap16(tfilter[i].code);
2352                     filter[i].jt = tfilter[i].jt;
2353                     filter[i].jf = tfilter[i].jf;
2354                     filter[i].k = tswap32(tfilter[i].k);
2355                 }
2356                 fprog.filter = filter;
2357 
2358                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
2359                                 SO_ATTACH_FILTER, &fprog, sizeof(fprog)));
2360                 g_free(filter);
2361 
2362                 unlock_user_struct(tfilter, tfprog->filter, 1);
2363                 unlock_user_struct(tfprog, optval_addr, 1);
2364                 return ret;
2365         }
2366 	case TARGET_SO_BINDTODEVICE:
2367 	{
2368 		char *dev_ifname, *addr_ifname;
2369 
2370 		if (optlen > IFNAMSIZ - 1) {
2371 		    optlen = IFNAMSIZ - 1;
2372 		}
2373 		dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2374 		if (!dev_ifname) {
2375 		    return -TARGET_EFAULT;
2376 		}
2377 		optname = SO_BINDTODEVICE;
2378 		addr_ifname = alloca(IFNAMSIZ);
2379 		memcpy(addr_ifname, dev_ifname, optlen);
2380 		addr_ifname[optlen] = 0;
2381 		ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2382                                            addr_ifname, optlen));
2383 		unlock_user (dev_ifname, optval_addr, 0);
2384 		return ret;
2385 	}
2386         case TARGET_SO_LINGER:
2387         {
2388                 struct linger lg;
2389                 struct target_linger *tlg;
2390 
2391                 if (optlen != sizeof(struct target_linger)) {
2392                     return -TARGET_EINVAL;
2393                 }
2394                 if (!lock_user_struct(VERIFY_READ, tlg, optval_addr, 1)) {
2395                     return -TARGET_EFAULT;
2396                 }
2397                 __get_user(lg.l_onoff, &tlg->l_onoff);
2398                 __get_user(lg.l_linger, &tlg->l_linger);
2399                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, SO_LINGER,
2400                                 &lg, sizeof(lg)));
2401                 unlock_user_struct(tlg, optval_addr, 0);
2402                 return ret;
2403         }
2404             /* Options with 'int' argument.  */
2405         case TARGET_SO_DEBUG:
2406 		optname = SO_DEBUG;
2407 		break;
2408         case TARGET_SO_REUSEADDR:
2409 		optname = SO_REUSEADDR;
2410 		break;
2411 #ifdef SO_REUSEPORT
2412         case TARGET_SO_REUSEPORT:
2413                 optname = SO_REUSEPORT;
2414                 break;
2415 #endif
2416         case TARGET_SO_TYPE:
2417 		optname = SO_TYPE;
2418 		break;
2419         case TARGET_SO_ERROR:
2420 		optname = SO_ERROR;
2421 		break;
2422         case TARGET_SO_DONTROUTE:
2423 		optname = SO_DONTROUTE;
2424 		break;
2425         case TARGET_SO_BROADCAST:
2426 		optname = SO_BROADCAST;
2427 		break;
2428         case TARGET_SO_SNDBUF:
2429 		optname = SO_SNDBUF;
2430 		break;
2431         case TARGET_SO_SNDBUFFORCE:
2432                 optname = SO_SNDBUFFORCE;
2433                 break;
2434         case TARGET_SO_RCVBUF:
2435 		optname = SO_RCVBUF;
2436 		break;
2437         case TARGET_SO_RCVBUFFORCE:
2438                 optname = SO_RCVBUFFORCE;
2439                 break;
2440         case TARGET_SO_KEEPALIVE:
2441 		optname = SO_KEEPALIVE;
2442 		break;
2443         case TARGET_SO_OOBINLINE:
2444 		optname = SO_OOBINLINE;
2445 		break;
2446         case TARGET_SO_NO_CHECK:
2447 		optname = SO_NO_CHECK;
2448 		break;
2449         case TARGET_SO_PRIORITY:
2450 		optname = SO_PRIORITY;
2451 		break;
2452 #ifdef SO_BSDCOMPAT
2453         case TARGET_SO_BSDCOMPAT:
2454 		optname = SO_BSDCOMPAT;
2455 		break;
2456 #endif
2457         case TARGET_SO_PASSCRED:
2458 		optname = SO_PASSCRED;
2459 		break;
2460         case TARGET_SO_PASSSEC:
2461                 optname = SO_PASSSEC;
2462                 break;
2463         case TARGET_SO_TIMESTAMP:
2464 		optname = SO_TIMESTAMP;
2465 		break;
2466         case TARGET_SO_RCVLOWAT:
2467 		optname = SO_RCVLOWAT;
2468 		break;
2469         default:
2470             goto unimplemented;
2471         }
2472 	if (optlen < sizeof(uint32_t))
2473             return -TARGET_EINVAL;
2474 
2475 	if (get_user_u32(val, optval_addr))
2476             return -TARGET_EFAULT;
2477 	ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val)));
2478         break;
2479 #ifdef SOL_NETLINK
2480     case SOL_NETLINK:
2481         switch (optname) {
2482         case NETLINK_PKTINFO:
2483         case NETLINK_ADD_MEMBERSHIP:
2484         case NETLINK_DROP_MEMBERSHIP:
2485         case NETLINK_BROADCAST_ERROR:
2486         case NETLINK_NO_ENOBUFS:
2487 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2488         case NETLINK_LISTEN_ALL_NSID:
2489         case NETLINK_CAP_ACK:
2490 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2491 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2492         case NETLINK_EXT_ACK:
2493 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2494 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2495         case NETLINK_GET_STRICT_CHK:
2496 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2497             break;
2498         default:
2499             goto unimplemented;
2500         }
2501         val = 0;
2502         if (optlen < sizeof(uint32_t)) {
2503             return -TARGET_EINVAL;
2504         }
2505         if (get_user_u32(val, optval_addr)) {
2506             return -TARGET_EFAULT;
2507         }
2508         ret = get_errno(setsockopt(sockfd, SOL_NETLINK, optname, &val,
2509                                    sizeof(val)));
2510         break;
2511 #endif /* SOL_NETLINK */
2512     default:
2513     unimplemented:
2514         qemu_log_mask(LOG_UNIMP, "Unsupported setsockopt level=%d optname=%d\n",
2515                       level, optname);
2516         ret = -TARGET_ENOPROTOOPT;
2517     }
2518     return ret;
2519 }
2520 
2521 /* do_getsockopt() Must return target values and target errnos. */
2522 static abi_long do_getsockopt(int sockfd, int level, int optname,
2523                               abi_ulong optval_addr, abi_ulong optlen)
2524 {
2525     abi_long ret;
2526     int len, val;
2527     socklen_t lv;
2528 
2529     switch(level) {
2530     case TARGET_SOL_SOCKET:
2531         level = SOL_SOCKET;
2532         switch (optname) {
2533         /* These don't just return a single integer */
2534         case TARGET_SO_PEERNAME:
2535             goto unimplemented;
2536         case TARGET_SO_RCVTIMEO: {
2537             struct timeval tv;
2538             socklen_t tvlen;
2539 
2540             optname = SO_RCVTIMEO;
2541 
2542 get_timeout:
2543             if (get_user_u32(len, optlen)) {
2544                 return -TARGET_EFAULT;
2545             }
2546             if (len < 0) {
2547                 return -TARGET_EINVAL;
2548             }
2549 
2550             tvlen = sizeof(tv);
2551             ret = get_errno(getsockopt(sockfd, level, optname,
2552                                        &tv, &tvlen));
2553             if (ret < 0) {
2554                 return ret;
2555             }
2556             if (len > sizeof(struct target_timeval)) {
2557                 len = sizeof(struct target_timeval);
2558             }
2559             if (copy_to_user_timeval(optval_addr, &tv)) {
2560                 return -TARGET_EFAULT;
2561             }
2562             if (put_user_u32(len, optlen)) {
2563                 return -TARGET_EFAULT;
2564             }
2565             break;
2566         }
2567         case TARGET_SO_SNDTIMEO:
2568             optname = SO_SNDTIMEO;
2569             goto get_timeout;
2570         case TARGET_SO_PEERCRED: {
2571             struct ucred cr;
2572             socklen_t crlen;
2573             struct target_ucred *tcr;
2574 
2575             if (get_user_u32(len, optlen)) {
2576                 return -TARGET_EFAULT;
2577             }
2578             if (len < 0) {
2579                 return -TARGET_EINVAL;
2580             }
2581 
2582             crlen = sizeof(cr);
2583             ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED,
2584                                        &cr, &crlen));
2585             if (ret < 0) {
2586                 return ret;
2587             }
2588             if (len > crlen) {
2589                 len = crlen;
2590             }
2591             if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) {
2592                 return -TARGET_EFAULT;
2593             }
2594             __put_user(cr.pid, &tcr->pid);
2595             __put_user(cr.uid, &tcr->uid);
2596             __put_user(cr.gid, &tcr->gid);
2597             unlock_user_struct(tcr, optval_addr, 1);
2598             if (put_user_u32(len, optlen)) {
2599                 return -TARGET_EFAULT;
2600             }
2601             break;
2602         }
2603         case TARGET_SO_PEERSEC: {
2604             char *name;
2605 
2606             if (get_user_u32(len, optlen)) {
2607                 return -TARGET_EFAULT;
2608             }
2609             if (len < 0) {
2610                 return -TARGET_EINVAL;
2611             }
2612             name = lock_user(VERIFY_WRITE, optval_addr, len, 0);
2613             if (!name) {
2614                 return -TARGET_EFAULT;
2615             }
2616             lv = len;
2617             ret = get_errno(getsockopt(sockfd, level, SO_PEERSEC,
2618                                        name, &lv));
2619             if (put_user_u32(lv, optlen)) {
2620                 ret = -TARGET_EFAULT;
2621             }
2622             unlock_user(name, optval_addr, lv);
2623             break;
2624         }
2625         case TARGET_SO_LINGER:
2626         {
2627             struct linger lg;
2628             socklen_t lglen;
2629             struct target_linger *tlg;
2630 
2631             if (get_user_u32(len, optlen)) {
2632                 return -TARGET_EFAULT;
2633             }
2634             if (len < 0) {
2635                 return -TARGET_EINVAL;
2636             }
2637 
2638             lglen = sizeof(lg);
2639             ret = get_errno(getsockopt(sockfd, level, SO_LINGER,
2640                                        &lg, &lglen));
2641             if (ret < 0) {
2642                 return ret;
2643             }
2644             if (len > lglen) {
2645                 len = lglen;
2646             }
2647             if (!lock_user_struct(VERIFY_WRITE, tlg, optval_addr, 0)) {
2648                 return -TARGET_EFAULT;
2649             }
2650             __put_user(lg.l_onoff, &tlg->l_onoff);
2651             __put_user(lg.l_linger, &tlg->l_linger);
2652             unlock_user_struct(tlg, optval_addr, 1);
2653             if (put_user_u32(len, optlen)) {
2654                 return -TARGET_EFAULT;
2655             }
2656             break;
2657         }
2658         /* Options with 'int' argument.  */
2659         case TARGET_SO_DEBUG:
2660             optname = SO_DEBUG;
2661             goto int_case;
2662         case TARGET_SO_REUSEADDR:
2663             optname = SO_REUSEADDR;
2664             goto int_case;
2665 #ifdef SO_REUSEPORT
2666         case TARGET_SO_REUSEPORT:
2667             optname = SO_REUSEPORT;
2668             goto int_case;
2669 #endif
2670         case TARGET_SO_TYPE:
2671             optname = SO_TYPE;
2672             goto int_case;
2673         case TARGET_SO_ERROR:
2674             optname = SO_ERROR;
2675             goto int_case;
2676         case TARGET_SO_DONTROUTE:
2677             optname = SO_DONTROUTE;
2678             goto int_case;
2679         case TARGET_SO_BROADCAST:
2680             optname = SO_BROADCAST;
2681             goto int_case;
2682         case TARGET_SO_SNDBUF:
2683             optname = SO_SNDBUF;
2684             goto int_case;
2685         case TARGET_SO_RCVBUF:
2686             optname = SO_RCVBUF;
2687             goto int_case;
2688         case TARGET_SO_KEEPALIVE:
2689             optname = SO_KEEPALIVE;
2690             goto int_case;
2691         case TARGET_SO_OOBINLINE:
2692             optname = SO_OOBINLINE;
2693             goto int_case;
2694         case TARGET_SO_NO_CHECK:
2695             optname = SO_NO_CHECK;
2696             goto int_case;
2697         case TARGET_SO_PRIORITY:
2698             optname = SO_PRIORITY;
2699             goto int_case;
2700 #ifdef SO_BSDCOMPAT
2701         case TARGET_SO_BSDCOMPAT:
2702             optname = SO_BSDCOMPAT;
2703             goto int_case;
2704 #endif
2705         case TARGET_SO_PASSCRED:
2706             optname = SO_PASSCRED;
2707             goto int_case;
2708         case TARGET_SO_TIMESTAMP:
2709             optname = SO_TIMESTAMP;
2710             goto int_case;
2711         case TARGET_SO_RCVLOWAT:
2712             optname = SO_RCVLOWAT;
2713             goto int_case;
2714         case TARGET_SO_ACCEPTCONN:
2715             optname = SO_ACCEPTCONN;
2716             goto int_case;
2717         case TARGET_SO_PROTOCOL:
2718             optname = SO_PROTOCOL;
2719             goto int_case;
2720         case TARGET_SO_DOMAIN:
2721             optname = SO_DOMAIN;
2722             goto int_case;
2723         default:
2724             goto int_case;
2725         }
2726         break;
2727     case SOL_TCP:
2728     case SOL_UDP:
2729         /* TCP and UDP options all take an 'int' value.  */
2730     int_case:
2731         if (get_user_u32(len, optlen))
2732             return -TARGET_EFAULT;
2733         if (len < 0)
2734             return -TARGET_EINVAL;
2735         lv = sizeof(lv);
2736         ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2737         if (ret < 0)
2738             return ret;
2739         switch (optname) {
2740         case SO_TYPE:
2741             val = host_to_target_sock_type(val);
2742             break;
2743         case SO_ERROR:
2744             val = host_to_target_errno(val);
2745             break;
2746         }
2747         if (len > lv)
2748             len = lv;
2749         if (len == 4) {
2750             if (put_user_u32(val, optval_addr))
2751                 return -TARGET_EFAULT;
2752         } else {
2753             if (put_user_u8(val, optval_addr))
2754                 return -TARGET_EFAULT;
2755         }
2756         if (put_user_u32(len, optlen))
2757             return -TARGET_EFAULT;
2758         break;
2759     case SOL_IP:
2760         switch(optname) {
2761         case IP_TOS:
2762         case IP_TTL:
2763         case IP_HDRINCL:
2764         case IP_ROUTER_ALERT:
2765         case IP_RECVOPTS:
2766         case IP_RETOPTS:
2767         case IP_PKTINFO:
2768         case IP_MTU_DISCOVER:
2769         case IP_RECVERR:
2770         case IP_RECVTOS:
2771 #ifdef IP_FREEBIND
2772         case IP_FREEBIND:
2773 #endif
2774         case IP_MULTICAST_TTL:
2775         case IP_MULTICAST_LOOP:
2776             if (get_user_u32(len, optlen))
2777                 return -TARGET_EFAULT;
2778             if (len < 0)
2779                 return -TARGET_EINVAL;
2780             lv = sizeof(lv);
2781             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2782             if (ret < 0)
2783                 return ret;
2784             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2785                 len = 1;
2786                 if (put_user_u32(len, optlen)
2787                     || put_user_u8(val, optval_addr))
2788                     return -TARGET_EFAULT;
2789             } else {
2790                 if (len > sizeof(int))
2791                     len = sizeof(int);
2792                 if (put_user_u32(len, optlen)
2793                     || put_user_u32(val, optval_addr))
2794                     return -TARGET_EFAULT;
2795             }
2796             break;
2797         default:
2798             ret = -TARGET_ENOPROTOOPT;
2799             break;
2800         }
2801         break;
2802     case SOL_IPV6:
2803         switch (optname) {
2804         case IPV6_MTU_DISCOVER:
2805         case IPV6_MTU:
2806         case IPV6_V6ONLY:
2807         case IPV6_RECVPKTINFO:
2808         case IPV6_UNICAST_HOPS:
2809         case IPV6_MULTICAST_HOPS:
2810         case IPV6_MULTICAST_LOOP:
2811         case IPV6_RECVERR:
2812         case IPV6_RECVHOPLIMIT:
2813         case IPV6_2292HOPLIMIT:
2814         case IPV6_CHECKSUM:
2815         case IPV6_ADDRFORM:
2816         case IPV6_2292PKTINFO:
2817         case IPV6_RECVTCLASS:
2818         case IPV6_RECVRTHDR:
2819         case IPV6_2292RTHDR:
2820         case IPV6_RECVHOPOPTS:
2821         case IPV6_2292HOPOPTS:
2822         case IPV6_RECVDSTOPTS:
2823         case IPV6_2292DSTOPTS:
2824         case IPV6_TCLASS:
2825         case IPV6_ADDR_PREFERENCES:
2826 #ifdef IPV6_RECVPATHMTU
2827         case IPV6_RECVPATHMTU:
2828 #endif
2829 #ifdef IPV6_TRANSPARENT
2830         case IPV6_TRANSPARENT:
2831 #endif
2832 #ifdef IPV6_FREEBIND
2833         case IPV6_FREEBIND:
2834 #endif
2835 #ifdef IPV6_RECVORIGDSTADDR
2836         case IPV6_RECVORIGDSTADDR:
2837 #endif
2838             if (get_user_u32(len, optlen))
2839                 return -TARGET_EFAULT;
2840             if (len < 0)
2841                 return -TARGET_EINVAL;
2842             lv = sizeof(lv);
2843             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2844             if (ret < 0)
2845                 return ret;
2846             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2847                 len = 1;
2848                 if (put_user_u32(len, optlen)
2849                     || put_user_u8(val, optval_addr))
2850                     return -TARGET_EFAULT;
2851             } else {
2852                 if (len > sizeof(int))
2853                     len = sizeof(int);
2854                 if (put_user_u32(len, optlen)
2855                     || put_user_u32(val, optval_addr))
2856                     return -TARGET_EFAULT;
2857             }
2858             break;
2859         default:
2860             ret = -TARGET_ENOPROTOOPT;
2861             break;
2862         }
2863         break;
2864 #ifdef SOL_NETLINK
2865     case SOL_NETLINK:
2866         switch (optname) {
2867         case NETLINK_PKTINFO:
2868         case NETLINK_BROADCAST_ERROR:
2869         case NETLINK_NO_ENOBUFS:
2870 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2871         case NETLINK_LISTEN_ALL_NSID:
2872         case NETLINK_CAP_ACK:
2873 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2874 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2875         case NETLINK_EXT_ACK:
2876 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2877 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2878         case NETLINK_GET_STRICT_CHK:
2879 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2880             if (get_user_u32(len, optlen)) {
2881                 return -TARGET_EFAULT;
2882             }
2883             if (len != sizeof(val)) {
2884                 return -TARGET_EINVAL;
2885             }
2886             lv = len;
2887             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2888             if (ret < 0) {
2889                 return ret;
2890             }
2891             if (put_user_u32(lv, optlen)
2892                 || put_user_u32(val, optval_addr)) {
2893                 return -TARGET_EFAULT;
2894             }
2895             break;
2896 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2897         case NETLINK_LIST_MEMBERSHIPS:
2898         {
2899             uint32_t *results;
2900             int i;
2901             if (get_user_u32(len, optlen)) {
2902                 return -TARGET_EFAULT;
2903             }
2904             if (len < 0) {
2905                 return -TARGET_EINVAL;
2906             }
2907             results = lock_user(VERIFY_WRITE, optval_addr, len, 1);
2908             if (!results && len > 0) {
2909                 return -TARGET_EFAULT;
2910             }
2911             lv = len;
2912             ret = get_errno(getsockopt(sockfd, level, optname, results, &lv));
2913             if (ret < 0) {
2914                 unlock_user(results, optval_addr, 0);
2915                 return ret;
2916             }
2917             /* swap host endianness to target endianness. */
2918             for (i = 0; i < (len / sizeof(uint32_t)); i++) {
2919                 results[i] = tswap32(results[i]);
2920             }
2921             if (put_user_u32(lv, optlen)) {
2922                 return -TARGET_EFAULT;
2923             }
2924             unlock_user(results, optval_addr, 0);
2925             break;
2926         }
2927 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2928         default:
2929             goto unimplemented;
2930         }
2931         break;
2932 #endif /* SOL_NETLINK */
2933     default:
2934     unimplemented:
2935         qemu_log_mask(LOG_UNIMP,
2936                       "getsockopt level=%d optname=%d not yet supported\n",
2937                       level, optname);
2938         ret = -TARGET_EOPNOTSUPP;
2939         break;
2940     }
2941     return ret;
2942 }
2943 
2944 /* Convert target low/high pair representing file offset into the host
2945  * low/high pair. This function doesn't handle offsets bigger than 64 bits
2946  * as the kernel doesn't handle them either.
2947  */
2948 static void target_to_host_low_high(abi_ulong tlow,
2949                                     abi_ulong thigh,
2950                                     unsigned long *hlow,
2951                                     unsigned long *hhigh)
2952 {
2953     uint64_t off = tlow |
2954         ((unsigned long long)thigh << TARGET_LONG_BITS / 2) <<
2955         TARGET_LONG_BITS / 2;
2956 
2957     *hlow = off;
2958     *hhigh = (off >> HOST_LONG_BITS / 2) >> HOST_LONG_BITS / 2;
2959 }
2960 
2961 static struct iovec *lock_iovec(int type, abi_ulong target_addr,
2962                                 abi_ulong count, int copy)
2963 {
2964     struct target_iovec *target_vec;
2965     struct iovec *vec;
2966     abi_ulong total_len, max_len;
2967     int i;
2968     int err = 0;
2969     bool bad_address = false;
2970 
2971     if (count == 0) {
2972         errno = 0;
2973         return NULL;
2974     }
2975     if (count > IOV_MAX) {
2976         errno = EINVAL;
2977         return NULL;
2978     }
2979 
2980     vec = g_try_new0(struct iovec, count);
2981     if (vec == NULL) {
2982         errno = ENOMEM;
2983         return NULL;
2984     }
2985 
2986     target_vec = lock_user(VERIFY_READ, target_addr,
2987                            count * sizeof(struct target_iovec), 1);
2988     if (target_vec == NULL) {
2989         err = EFAULT;
2990         goto fail2;
2991     }
2992 
2993     /* ??? If host page size > target page size, this will result in a
2994        value larger than what we can actually support.  */
2995     max_len = 0x7fffffff & TARGET_PAGE_MASK;
2996     total_len = 0;
2997 
2998     for (i = 0; i < count; i++) {
2999         abi_ulong base = tswapal(target_vec[i].iov_base);
3000         abi_long len = tswapal(target_vec[i].iov_len);
3001 
3002         if (len < 0) {
3003             err = EINVAL;
3004             goto fail;
3005         } else if (len == 0) {
3006             /* Zero length pointer is ignored.  */
3007             vec[i].iov_base = 0;
3008         } else {
3009             vec[i].iov_base = lock_user(type, base, len, copy);
3010             /* If the first buffer pointer is bad, this is a fault.  But
3011              * subsequent bad buffers will result in a partial write; this
3012              * is realized by filling the vector with null pointers and
3013              * zero lengths. */
3014             if (!vec[i].iov_base) {
3015                 if (i == 0) {
3016                     err = EFAULT;
3017                     goto fail;
3018                 } else {
3019                     bad_address = true;
3020                 }
3021             }
3022             if (bad_address) {
3023                 len = 0;
3024             }
3025             if (len > max_len - total_len) {
3026                 len = max_len - total_len;
3027             }
3028         }
3029         vec[i].iov_len = len;
3030         total_len += len;
3031     }
3032 
3033     unlock_user(target_vec, target_addr, 0);
3034     return vec;
3035 
3036  fail:
3037     while (--i >= 0) {
3038         if (tswapal(target_vec[i].iov_len) > 0) {
3039             unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0);
3040         }
3041     }
3042     unlock_user(target_vec, target_addr, 0);
3043  fail2:
3044     g_free(vec);
3045     errno = err;
3046     return NULL;
3047 }
3048 
3049 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr,
3050                          abi_ulong count, int copy)
3051 {
3052     struct target_iovec *target_vec;
3053     int i;
3054 
3055     target_vec = lock_user(VERIFY_READ, target_addr,
3056                            count * sizeof(struct target_iovec), 1);
3057     if (target_vec) {
3058         for (i = 0; i < count; i++) {
3059             abi_ulong base = tswapal(target_vec[i].iov_base);
3060             abi_long len = tswapal(target_vec[i].iov_len);
3061             if (len < 0) {
3062                 break;
3063             }
3064             unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0);
3065         }
3066         unlock_user(target_vec, target_addr, 0);
3067     }
3068 
3069     g_free(vec);
3070 }
3071 
3072 static inline int target_to_host_sock_type(int *type)
3073 {
3074     int host_type = 0;
3075     int target_type = *type;
3076 
3077     switch (target_type & TARGET_SOCK_TYPE_MASK) {
3078     case TARGET_SOCK_DGRAM:
3079         host_type = SOCK_DGRAM;
3080         break;
3081     case TARGET_SOCK_STREAM:
3082         host_type = SOCK_STREAM;
3083         break;
3084     default:
3085         host_type = target_type & TARGET_SOCK_TYPE_MASK;
3086         break;
3087     }
3088     if (target_type & TARGET_SOCK_CLOEXEC) {
3089 #if defined(SOCK_CLOEXEC)
3090         host_type |= SOCK_CLOEXEC;
3091 #else
3092         return -TARGET_EINVAL;
3093 #endif
3094     }
3095     if (target_type & TARGET_SOCK_NONBLOCK) {
3096 #if defined(SOCK_NONBLOCK)
3097         host_type |= SOCK_NONBLOCK;
3098 #elif !defined(O_NONBLOCK)
3099         return -TARGET_EINVAL;
3100 #endif
3101     }
3102     *type = host_type;
3103     return 0;
3104 }
3105 
3106 /* Try to emulate socket type flags after socket creation.  */
3107 static int sock_flags_fixup(int fd, int target_type)
3108 {
3109 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
3110     if (target_type & TARGET_SOCK_NONBLOCK) {
3111         int flags = fcntl(fd, F_GETFL);
3112         if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) {
3113             close(fd);
3114             return -TARGET_EINVAL;
3115         }
3116     }
3117 #endif
3118     return fd;
3119 }
3120 
3121 /* do_socket() Must return target values and target errnos. */
3122 static abi_long do_socket(int domain, int type, int protocol)
3123 {
3124     int target_type = type;
3125     int ret;
3126 
3127     ret = target_to_host_sock_type(&type);
3128     if (ret) {
3129         return ret;
3130     }
3131 
3132     if (domain == PF_NETLINK && !(
3133 #ifdef CONFIG_RTNETLINK
3134          protocol == NETLINK_ROUTE ||
3135 #endif
3136          protocol == NETLINK_KOBJECT_UEVENT ||
3137          protocol == NETLINK_AUDIT)) {
3138         return -TARGET_EPROTONOSUPPORT;
3139     }
3140 
3141     if (domain == AF_PACKET ||
3142         (domain == AF_INET && type == SOCK_PACKET)) {
3143         protocol = tswap16(protocol);
3144     }
3145 
3146     ret = get_errno(socket(domain, type, protocol));
3147     if (ret >= 0) {
3148         ret = sock_flags_fixup(ret, target_type);
3149         if (type == SOCK_PACKET) {
3150             /* Manage an obsolete case :
3151              * if socket type is SOCK_PACKET, bind by name
3152              */
3153             fd_trans_register(ret, &target_packet_trans);
3154         } else if (domain == PF_NETLINK) {
3155             switch (protocol) {
3156 #ifdef CONFIG_RTNETLINK
3157             case NETLINK_ROUTE:
3158                 fd_trans_register(ret, &target_netlink_route_trans);
3159                 break;
3160 #endif
3161             case NETLINK_KOBJECT_UEVENT:
3162                 /* nothing to do: messages are strings */
3163                 break;
3164             case NETLINK_AUDIT:
3165                 fd_trans_register(ret, &target_netlink_audit_trans);
3166                 break;
3167             default:
3168                 g_assert_not_reached();
3169             }
3170         }
3171     }
3172     return ret;
3173 }
3174 
3175 /* do_bind() Must return target values and target errnos. */
3176 static abi_long do_bind(int sockfd, abi_ulong target_addr,
3177                         socklen_t addrlen)
3178 {
3179     void *addr;
3180     abi_long ret;
3181 
3182     if ((int)addrlen < 0) {
3183         return -TARGET_EINVAL;
3184     }
3185 
3186     addr = alloca(addrlen+1);
3187 
3188     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3189     if (ret)
3190         return ret;
3191 
3192     return get_errno(bind(sockfd, addr, addrlen));
3193 }
3194 
3195 /* do_connect() Must return target values and target errnos. */
3196 static abi_long do_connect(int sockfd, abi_ulong target_addr,
3197                            socklen_t addrlen)
3198 {
3199     void *addr;
3200     abi_long ret;
3201 
3202     if ((int)addrlen < 0) {
3203         return -TARGET_EINVAL;
3204     }
3205 
3206     addr = alloca(addrlen+1);
3207 
3208     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3209     if (ret)
3210         return ret;
3211 
3212     return get_errno(safe_connect(sockfd, addr, addrlen));
3213 }
3214 
3215 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
3216 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp,
3217                                       int flags, int send)
3218 {
3219     abi_long ret, len;
3220     struct msghdr msg;
3221     abi_ulong count;
3222     struct iovec *vec;
3223     abi_ulong target_vec;
3224 
3225     if (msgp->msg_name) {
3226         msg.msg_namelen = tswap32(msgp->msg_namelen);
3227         msg.msg_name = alloca(msg.msg_namelen+1);
3228         ret = target_to_host_sockaddr(fd, msg.msg_name,
3229                                       tswapal(msgp->msg_name),
3230                                       msg.msg_namelen);
3231         if (ret == -TARGET_EFAULT) {
3232             /* For connected sockets msg_name and msg_namelen must
3233              * be ignored, so returning EFAULT immediately is wrong.
3234              * Instead, pass a bad msg_name to the host kernel, and
3235              * let it decide whether to return EFAULT or not.
3236              */
3237             msg.msg_name = (void *)-1;
3238         } else if (ret) {
3239             goto out2;
3240         }
3241     } else {
3242         msg.msg_name = NULL;
3243         msg.msg_namelen = 0;
3244     }
3245     msg.msg_controllen = 2 * tswapal(msgp->msg_controllen);
3246     msg.msg_control = alloca(msg.msg_controllen);
3247     memset(msg.msg_control, 0, msg.msg_controllen);
3248 
3249     msg.msg_flags = tswap32(msgp->msg_flags);
3250 
3251     count = tswapal(msgp->msg_iovlen);
3252     target_vec = tswapal(msgp->msg_iov);
3253 
3254     if (count > IOV_MAX) {
3255         /* sendrcvmsg returns a different errno for this condition than
3256          * readv/writev, so we must catch it here before lock_iovec() does.
3257          */
3258         ret = -TARGET_EMSGSIZE;
3259         goto out2;
3260     }
3261 
3262     vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE,
3263                      target_vec, count, send);
3264     if (vec == NULL) {
3265         ret = -host_to_target_errno(errno);
3266         /* allow sending packet without any iov, e.g. with MSG_MORE flag */
3267         if (!send || ret) {
3268             goto out2;
3269         }
3270     }
3271     msg.msg_iovlen = count;
3272     msg.msg_iov = vec;
3273 
3274     if (send) {
3275         if (fd_trans_target_to_host_data(fd)) {
3276             void *host_msg;
3277 
3278             host_msg = g_malloc(msg.msg_iov->iov_len);
3279             memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len);
3280             ret = fd_trans_target_to_host_data(fd)(host_msg,
3281                                                    msg.msg_iov->iov_len);
3282             if (ret >= 0) {
3283                 msg.msg_iov->iov_base = host_msg;
3284                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3285             }
3286             g_free(host_msg);
3287         } else {
3288             ret = target_to_host_cmsg(&msg, msgp);
3289             if (ret == 0) {
3290                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3291             }
3292         }
3293     } else {
3294         ret = get_errno(safe_recvmsg(fd, &msg, flags));
3295         if (!is_error(ret)) {
3296             len = ret;
3297             if (fd_trans_host_to_target_data(fd)) {
3298                 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base,
3299                                                MIN(msg.msg_iov->iov_len, len));
3300             }
3301             if (!is_error(ret)) {
3302                 ret = host_to_target_cmsg(msgp, &msg);
3303             }
3304             if (!is_error(ret)) {
3305                 msgp->msg_namelen = tswap32(msg.msg_namelen);
3306                 msgp->msg_flags = tswap32(msg.msg_flags);
3307                 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) {
3308                     ret = host_to_target_sockaddr(tswapal(msgp->msg_name),
3309                                     msg.msg_name, msg.msg_namelen);
3310                     if (ret) {
3311                         goto out;
3312                     }
3313                 }
3314 
3315                 ret = len;
3316             }
3317         }
3318     }
3319 
3320 out:
3321     if (vec) {
3322         unlock_iovec(vec, target_vec, count, !send);
3323     }
3324 out2:
3325     return ret;
3326 }
3327 
3328 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg,
3329                                int flags, int send)
3330 {
3331     abi_long ret;
3332     struct target_msghdr *msgp;
3333 
3334     if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE,
3335                           msgp,
3336                           target_msg,
3337                           send ? 1 : 0)) {
3338         return -TARGET_EFAULT;
3339     }
3340     ret = do_sendrecvmsg_locked(fd, msgp, flags, send);
3341     unlock_user_struct(msgp, target_msg, send ? 0 : 1);
3342     return ret;
3343 }
3344 
3345 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
3346  * so it might not have this *mmsg-specific flag either.
3347  */
3348 #ifndef MSG_WAITFORONE
3349 #define MSG_WAITFORONE 0x10000
3350 #endif
3351 
3352 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec,
3353                                 unsigned int vlen, unsigned int flags,
3354                                 int send)
3355 {
3356     struct target_mmsghdr *mmsgp;
3357     abi_long ret = 0;
3358     int i;
3359 
3360     if (vlen > UIO_MAXIOV) {
3361         vlen = UIO_MAXIOV;
3362     }
3363 
3364     mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1);
3365     if (!mmsgp) {
3366         return -TARGET_EFAULT;
3367     }
3368 
3369     for (i = 0; i < vlen; i++) {
3370         ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send);
3371         if (is_error(ret)) {
3372             break;
3373         }
3374         mmsgp[i].msg_len = tswap32(ret);
3375         /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3376         if (flags & MSG_WAITFORONE) {
3377             flags |= MSG_DONTWAIT;
3378         }
3379     }
3380 
3381     unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i);
3382 
3383     /* Return number of datagrams sent if we sent any at all;
3384      * otherwise return the error.
3385      */
3386     if (i) {
3387         return i;
3388     }
3389     return ret;
3390 }
3391 
3392 /* do_accept4() Must return target values and target errnos. */
3393 static abi_long do_accept4(int fd, abi_ulong target_addr,
3394                            abi_ulong target_addrlen_addr, int flags)
3395 {
3396     socklen_t addrlen, ret_addrlen;
3397     void *addr;
3398     abi_long ret;
3399     int host_flags;
3400 
3401     if (flags & ~(TARGET_SOCK_CLOEXEC | TARGET_SOCK_NONBLOCK)) {
3402         return -TARGET_EINVAL;
3403     }
3404 
3405     host_flags = 0;
3406     if (flags & TARGET_SOCK_NONBLOCK) {
3407         host_flags |= SOCK_NONBLOCK;
3408     }
3409     if (flags & TARGET_SOCK_CLOEXEC) {
3410         host_flags |= SOCK_CLOEXEC;
3411     }
3412 
3413     if (target_addr == 0) {
3414         return get_errno(safe_accept4(fd, NULL, NULL, host_flags));
3415     }
3416 
3417     /* linux returns EFAULT if addrlen pointer is invalid */
3418     if (get_user_u32(addrlen, target_addrlen_addr))
3419         return -TARGET_EFAULT;
3420 
3421     if ((int)addrlen < 0) {
3422         return -TARGET_EINVAL;
3423     }
3424 
3425     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3426         return -TARGET_EFAULT;
3427     }
3428 
3429     addr = alloca(addrlen);
3430 
3431     ret_addrlen = addrlen;
3432     ret = get_errno(safe_accept4(fd, addr, &ret_addrlen, host_flags));
3433     if (!is_error(ret)) {
3434         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3435         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3436             ret = -TARGET_EFAULT;
3437         }
3438     }
3439     return ret;
3440 }
3441 
3442 /* do_getpeername() Must return target values and target errnos. */
3443 static abi_long do_getpeername(int fd, abi_ulong target_addr,
3444                                abi_ulong target_addrlen_addr)
3445 {
3446     socklen_t addrlen, ret_addrlen;
3447     void *addr;
3448     abi_long ret;
3449 
3450     if (get_user_u32(addrlen, target_addrlen_addr))
3451         return -TARGET_EFAULT;
3452 
3453     if ((int)addrlen < 0) {
3454         return -TARGET_EINVAL;
3455     }
3456 
3457     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3458         return -TARGET_EFAULT;
3459     }
3460 
3461     addr = alloca(addrlen);
3462 
3463     ret_addrlen = addrlen;
3464     ret = get_errno(getpeername(fd, addr, &ret_addrlen));
3465     if (!is_error(ret)) {
3466         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3467         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3468             ret = -TARGET_EFAULT;
3469         }
3470     }
3471     return ret;
3472 }
3473 
3474 /* do_getsockname() Must return target values and target errnos. */
3475 static abi_long do_getsockname(int fd, abi_ulong target_addr,
3476                                abi_ulong target_addrlen_addr)
3477 {
3478     socklen_t addrlen, ret_addrlen;
3479     void *addr;
3480     abi_long ret;
3481 
3482     if (get_user_u32(addrlen, target_addrlen_addr))
3483         return -TARGET_EFAULT;
3484 
3485     if ((int)addrlen < 0) {
3486         return -TARGET_EINVAL;
3487     }
3488 
3489     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3490         return -TARGET_EFAULT;
3491     }
3492 
3493     addr = alloca(addrlen);
3494 
3495     ret_addrlen = addrlen;
3496     ret = get_errno(getsockname(fd, addr, &ret_addrlen));
3497     if (!is_error(ret)) {
3498         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3499         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3500             ret = -TARGET_EFAULT;
3501         }
3502     }
3503     return ret;
3504 }
3505 
3506 /* do_socketpair() Must return target values and target errnos. */
3507 static abi_long do_socketpair(int domain, int type, int protocol,
3508                               abi_ulong target_tab_addr)
3509 {
3510     int tab[2];
3511     abi_long ret;
3512 
3513     target_to_host_sock_type(&type);
3514 
3515     ret = get_errno(socketpair(domain, type, protocol, tab));
3516     if (!is_error(ret)) {
3517         if (put_user_s32(tab[0], target_tab_addr)
3518             || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0])))
3519             ret = -TARGET_EFAULT;
3520     }
3521     return ret;
3522 }
3523 
3524 /* do_sendto() Must return target values and target errnos. */
3525 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags,
3526                           abi_ulong target_addr, socklen_t addrlen)
3527 {
3528     void *addr;
3529     void *host_msg;
3530     void *copy_msg = NULL;
3531     abi_long ret;
3532 
3533     if ((int)addrlen < 0) {
3534         return -TARGET_EINVAL;
3535     }
3536 
3537     host_msg = lock_user(VERIFY_READ, msg, len, 1);
3538     if (!host_msg)
3539         return -TARGET_EFAULT;
3540     if (fd_trans_target_to_host_data(fd)) {
3541         copy_msg = host_msg;
3542         host_msg = g_malloc(len);
3543         memcpy(host_msg, copy_msg, len);
3544         ret = fd_trans_target_to_host_data(fd)(host_msg, len);
3545         if (ret < 0) {
3546             goto fail;
3547         }
3548     }
3549     if (target_addr) {
3550         addr = alloca(addrlen+1);
3551         ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen);
3552         if (ret) {
3553             goto fail;
3554         }
3555         ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen));
3556     } else {
3557         ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0));
3558     }
3559 fail:
3560     if (copy_msg) {
3561         g_free(host_msg);
3562         host_msg = copy_msg;
3563     }
3564     unlock_user(host_msg, msg, 0);
3565     return ret;
3566 }
3567 
3568 /* do_recvfrom() Must return target values and target errnos. */
3569 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags,
3570                             abi_ulong target_addr,
3571                             abi_ulong target_addrlen)
3572 {
3573     socklen_t addrlen, ret_addrlen;
3574     void *addr;
3575     void *host_msg;
3576     abi_long ret;
3577 
3578     if (!msg) {
3579         host_msg = NULL;
3580     } else {
3581         host_msg = lock_user(VERIFY_WRITE, msg, len, 0);
3582         if (!host_msg) {
3583             return -TARGET_EFAULT;
3584         }
3585     }
3586     if (target_addr) {
3587         if (get_user_u32(addrlen, target_addrlen)) {
3588             ret = -TARGET_EFAULT;
3589             goto fail;
3590         }
3591         if ((int)addrlen < 0) {
3592             ret = -TARGET_EINVAL;
3593             goto fail;
3594         }
3595         addr = alloca(addrlen);
3596         ret_addrlen = addrlen;
3597         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags,
3598                                       addr, &ret_addrlen));
3599     } else {
3600         addr = NULL; /* To keep compiler quiet.  */
3601         addrlen = 0; /* To keep compiler quiet.  */
3602         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0));
3603     }
3604     if (!is_error(ret)) {
3605         if (fd_trans_host_to_target_data(fd)) {
3606             abi_long trans;
3607             trans = fd_trans_host_to_target_data(fd)(host_msg, MIN(ret, len));
3608             if (is_error(trans)) {
3609                 ret = trans;
3610                 goto fail;
3611             }
3612         }
3613         if (target_addr) {
3614             host_to_target_sockaddr(target_addr, addr,
3615                                     MIN(addrlen, ret_addrlen));
3616             if (put_user_u32(ret_addrlen, target_addrlen)) {
3617                 ret = -TARGET_EFAULT;
3618                 goto fail;
3619             }
3620         }
3621         unlock_user(host_msg, msg, len);
3622     } else {
3623 fail:
3624         unlock_user(host_msg, msg, 0);
3625     }
3626     return ret;
3627 }
3628 
3629 #ifdef TARGET_NR_socketcall
3630 /* do_socketcall() must return target values and target errnos. */
3631 static abi_long do_socketcall(int num, abi_ulong vptr)
3632 {
3633     static const unsigned nargs[] = { /* number of arguments per operation */
3634         [TARGET_SYS_SOCKET] = 3,      /* domain, type, protocol */
3635         [TARGET_SYS_BIND] = 3,        /* fd, addr, addrlen */
3636         [TARGET_SYS_CONNECT] = 3,     /* fd, addr, addrlen */
3637         [TARGET_SYS_LISTEN] = 2,      /* fd, backlog */
3638         [TARGET_SYS_ACCEPT] = 3,      /* fd, addr, addrlen */
3639         [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */
3640         [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */
3641         [TARGET_SYS_SOCKETPAIR] = 4,  /* domain, type, protocol, tab */
3642         [TARGET_SYS_SEND] = 4,        /* fd, msg, len, flags */
3643         [TARGET_SYS_RECV] = 4,        /* fd, msg, len, flags */
3644         [TARGET_SYS_SENDTO] = 6,      /* fd, msg, len, flags, addr, addrlen */
3645         [TARGET_SYS_RECVFROM] = 6,    /* fd, msg, len, flags, addr, addrlen */
3646         [TARGET_SYS_SHUTDOWN] = 2,    /* fd, how */
3647         [TARGET_SYS_SETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3648         [TARGET_SYS_GETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3649         [TARGET_SYS_SENDMSG] = 3,     /* fd, msg, flags */
3650         [TARGET_SYS_RECVMSG] = 3,     /* fd, msg, flags */
3651         [TARGET_SYS_ACCEPT4] = 4,     /* fd, addr, addrlen, flags */
3652         [TARGET_SYS_RECVMMSG] = 4,    /* fd, msgvec, vlen, flags */
3653         [TARGET_SYS_SENDMMSG] = 4,    /* fd, msgvec, vlen, flags */
3654     };
3655     abi_long a[6]; /* max 6 args */
3656     unsigned i;
3657 
3658     /* check the range of the first argument num */
3659     /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */
3660     if (num < 1 || num > TARGET_SYS_SENDMMSG) {
3661         return -TARGET_EINVAL;
3662     }
3663     /* ensure we have space for args */
3664     if (nargs[num] > ARRAY_SIZE(a)) {
3665         return -TARGET_EINVAL;
3666     }
3667     /* collect the arguments in a[] according to nargs[] */
3668     for (i = 0; i < nargs[num]; ++i) {
3669         if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) {
3670             return -TARGET_EFAULT;
3671         }
3672     }
3673     /* now when we have the args, invoke the appropriate underlying function */
3674     switch (num) {
3675     case TARGET_SYS_SOCKET: /* domain, type, protocol */
3676         return do_socket(a[0], a[1], a[2]);
3677     case TARGET_SYS_BIND: /* sockfd, addr, addrlen */
3678         return do_bind(a[0], a[1], a[2]);
3679     case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */
3680         return do_connect(a[0], a[1], a[2]);
3681     case TARGET_SYS_LISTEN: /* sockfd, backlog */
3682         return get_errno(listen(a[0], a[1]));
3683     case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */
3684         return do_accept4(a[0], a[1], a[2], 0);
3685     case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */
3686         return do_getsockname(a[0], a[1], a[2]);
3687     case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */
3688         return do_getpeername(a[0], a[1], a[2]);
3689     case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */
3690         return do_socketpair(a[0], a[1], a[2], a[3]);
3691     case TARGET_SYS_SEND: /* sockfd, msg, len, flags */
3692         return do_sendto(a[0], a[1], a[2], a[3], 0, 0);
3693     case TARGET_SYS_RECV: /* sockfd, msg, len, flags */
3694         return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0);
3695     case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */
3696         return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]);
3697     case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */
3698         return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]);
3699     case TARGET_SYS_SHUTDOWN: /* sockfd, how */
3700         return get_errno(shutdown(a[0], a[1]));
3701     case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3702         return do_setsockopt(a[0], a[1], a[2], a[3], a[4]);
3703     case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3704         return do_getsockopt(a[0], a[1], a[2], a[3], a[4]);
3705     case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */
3706         return do_sendrecvmsg(a[0], a[1], a[2], 1);
3707     case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */
3708         return do_sendrecvmsg(a[0], a[1], a[2], 0);
3709     case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */
3710         return do_accept4(a[0], a[1], a[2], a[3]);
3711     case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */
3712         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0);
3713     case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */
3714         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1);
3715     default:
3716         qemu_log_mask(LOG_UNIMP, "Unsupported socketcall: %d\n", num);
3717         return -TARGET_EINVAL;
3718     }
3719 }
3720 #endif
3721 
3722 #ifndef TARGET_SEMID64_DS
3723 /* asm-generic version of this struct */
3724 struct target_semid64_ds
3725 {
3726   struct target_ipc_perm sem_perm;
3727   abi_ulong sem_otime;
3728 #if TARGET_ABI_BITS == 32
3729   abi_ulong __unused1;
3730 #endif
3731   abi_ulong sem_ctime;
3732 #if TARGET_ABI_BITS == 32
3733   abi_ulong __unused2;
3734 #endif
3735   abi_ulong sem_nsems;
3736   abi_ulong __unused3;
3737   abi_ulong __unused4;
3738 };
3739 #endif
3740 
3741 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip,
3742                                                abi_ulong target_addr)
3743 {
3744     struct target_ipc_perm *target_ip;
3745     struct target_semid64_ds *target_sd;
3746 
3747     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3748         return -TARGET_EFAULT;
3749     target_ip = &(target_sd->sem_perm);
3750     host_ip->__key = tswap32(target_ip->__key);
3751     host_ip->uid = tswap32(target_ip->uid);
3752     host_ip->gid = tswap32(target_ip->gid);
3753     host_ip->cuid = tswap32(target_ip->cuid);
3754     host_ip->cgid = tswap32(target_ip->cgid);
3755 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3756     host_ip->mode = tswap32(target_ip->mode);
3757 #else
3758     host_ip->mode = tswap16(target_ip->mode);
3759 #endif
3760 #if defined(TARGET_PPC)
3761     host_ip->__seq = tswap32(target_ip->__seq);
3762 #else
3763     host_ip->__seq = tswap16(target_ip->__seq);
3764 #endif
3765     unlock_user_struct(target_sd, target_addr, 0);
3766     return 0;
3767 }
3768 
3769 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr,
3770                                                struct ipc_perm *host_ip)
3771 {
3772     struct target_ipc_perm *target_ip;
3773     struct target_semid64_ds *target_sd;
3774 
3775     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3776         return -TARGET_EFAULT;
3777     target_ip = &(target_sd->sem_perm);
3778     target_ip->__key = tswap32(host_ip->__key);
3779     target_ip->uid = tswap32(host_ip->uid);
3780     target_ip->gid = tswap32(host_ip->gid);
3781     target_ip->cuid = tswap32(host_ip->cuid);
3782     target_ip->cgid = tswap32(host_ip->cgid);
3783 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3784     target_ip->mode = tswap32(host_ip->mode);
3785 #else
3786     target_ip->mode = tswap16(host_ip->mode);
3787 #endif
3788 #if defined(TARGET_PPC)
3789     target_ip->__seq = tswap32(host_ip->__seq);
3790 #else
3791     target_ip->__seq = tswap16(host_ip->__seq);
3792 #endif
3793     unlock_user_struct(target_sd, target_addr, 1);
3794     return 0;
3795 }
3796 
3797 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd,
3798                                                abi_ulong target_addr)
3799 {
3800     struct target_semid64_ds *target_sd;
3801 
3802     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3803         return -TARGET_EFAULT;
3804     if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr))
3805         return -TARGET_EFAULT;
3806     host_sd->sem_nsems = tswapal(target_sd->sem_nsems);
3807     host_sd->sem_otime = tswapal(target_sd->sem_otime);
3808     host_sd->sem_ctime = tswapal(target_sd->sem_ctime);
3809     unlock_user_struct(target_sd, target_addr, 0);
3810     return 0;
3811 }
3812 
3813 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr,
3814                                                struct semid_ds *host_sd)
3815 {
3816     struct target_semid64_ds *target_sd;
3817 
3818     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3819         return -TARGET_EFAULT;
3820     if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm)))
3821         return -TARGET_EFAULT;
3822     target_sd->sem_nsems = tswapal(host_sd->sem_nsems);
3823     target_sd->sem_otime = tswapal(host_sd->sem_otime);
3824     target_sd->sem_ctime = tswapal(host_sd->sem_ctime);
3825     unlock_user_struct(target_sd, target_addr, 1);
3826     return 0;
3827 }
3828 
3829 struct target_seminfo {
3830     int semmap;
3831     int semmni;
3832     int semmns;
3833     int semmnu;
3834     int semmsl;
3835     int semopm;
3836     int semume;
3837     int semusz;
3838     int semvmx;
3839     int semaem;
3840 };
3841 
3842 static inline abi_long host_to_target_seminfo(abi_ulong target_addr,
3843                                               struct seminfo *host_seminfo)
3844 {
3845     struct target_seminfo *target_seminfo;
3846     if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0))
3847         return -TARGET_EFAULT;
3848     __put_user(host_seminfo->semmap, &target_seminfo->semmap);
3849     __put_user(host_seminfo->semmni, &target_seminfo->semmni);
3850     __put_user(host_seminfo->semmns, &target_seminfo->semmns);
3851     __put_user(host_seminfo->semmnu, &target_seminfo->semmnu);
3852     __put_user(host_seminfo->semmsl, &target_seminfo->semmsl);
3853     __put_user(host_seminfo->semopm, &target_seminfo->semopm);
3854     __put_user(host_seminfo->semume, &target_seminfo->semume);
3855     __put_user(host_seminfo->semusz, &target_seminfo->semusz);
3856     __put_user(host_seminfo->semvmx, &target_seminfo->semvmx);
3857     __put_user(host_seminfo->semaem, &target_seminfo->semaem);
3858     unlock_user_struct(target_seminfo, target_addr, 1);
3859     return 0;
3860 }
3861 
3862 union semun {
3863 	int val;
3864 	struct semid_ds *buf;
3865 	unsigned short *array;
3866 	struct seminfo *__buf;
3867 };
3868 
3869 union target_semun {
3870 	int val;
3871 	abi_ulong buf;
3872 	abi_ulong array;
3873 	abi_ulong __buf;
3874 };
3875 
3876 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array,
3877                                                abi_ulong target_addr)
3878 {
3879     int nsems;
3880     unsigned short *array;
3881     union semun semun;
3882     struct semid_ds semid_ds;
3883     int i, ret;
3884 
3885     semun.buf = &semid_ds;
3886 
3887     ret = semctl(semid, 0, IPC_STAT, semun);
3888     if (ret == -1)
3889         return get_errno(ret);
3890 
3891     nsems = semid_ds.sem_nsems;
3892 
3893     *host_array = g_try_new(unsigned short, nsems);
3894     if (!*host_array) {
3895         return -TARGET_ENOMEM;
3896     }
3897     array = lock_user(VERIFY_READ, target_addr,
3898                       nsems*sizeof(unsigned short), 1);
3899     if (!array) {
3900         g_free(*host_array);
3901         return -TARGET_EFAULT;
3902     }
3903 
3904     for(i=0; i<nsems; i++) {
3905         __get_user((*host_array)[i], &array[i]);
3906     }
3907     unlock_user(array, target_addr, 0);
3908 
3909     return 0;
3910 }
3911 
3912 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr,
3913                                                unsigned short **host_array)
3914 {
3915     int nsems;
3916     unsigned short *array;
3917     union semun semun;
3918     struct semid_ds semid_ds;
3919     int i, ret;
3920 
3921     semun.buf = &semid_ds;
3922 
3923     ret = semctl(semid, 0, IPC_STAT, semun);
3924     if (ret == -1)
3925         return get_errno(ret);
3926 
3927     nsems = semid_ds.sem_nsems;
3928 
3929     array = lock_user(VERIFY_WRITE, target_addr,
3930                       nsems*sizeof(unsigned short), 0);
3931     if (!array)
3932         return -TARGET_EFAULT;
3933 
3934     for(i=0; i<nsems; i++) {
3935         __put_user((*host_array)[i], &array[i]);
3936     }
3937     g_free(*host_array);
3938     unlock_user(array, target_addr, 1);
3939 
3940     return 0;
3941 }
3942 
3943 static inline abi_long do_semctl(int semid, int semnum, int cmd,
3944                                  abi_ulong target_arg)
3945 {
3946     union target_semun target_su = { .buf = target_arg };
3947     union semun arg;
3948     struct semid_ds dsarg;
3949     unsigned short *array = NULL;
3950     struct seminfo seminfo;
3951     abi_long ret = -TARGET_EINVAL;
3952     abi_long err;
3953     cmd &= 0xff;
3954 
3955     switch( cmd ) {
3956 	case GETVAL:
3957 	case SETVAL:
3958             /* In 64 bit cross-endian situations, we will erroneously pick up
3959              * the wrong half of the union for the "val" element.  To rectify
3960              * this, the entire 8-byte structure is byteswapped, followed by
3961 	     * a swap of the 4 byte val field. In other cases, the data is
3962 	     * already in proper host byte order. */
3963 	    if (sizeof(target_su.val) != (sizeof(target_su.buf))) {
3964 		target_su.buf = tswapal(target_su.buf);
3965 		arg.val = tswap32(target_su.val);
3966 	    } else {
3967 		arg.val = target_su.val;
3968 	    }
3969             ret = get_errno(semctl(semid, semnum, cmd, arg));
3970             break;
3971 	case GETALL:
3972 	case SETALL:
3973             err = target_to_host_semarray(semid, &array, target_su.array);
3974             if (err)
3975                 return err;
3976             arg.array = array;
3977             ret = get_errno(semctl(semid, semnum, cmd, arg));
3978             err = host_to_target_semarray(semid, target_su.array, &array);
3979             if (err)
3980                 return err;
3981             break;
3982 	case IPC_STAT:
3983 	case IPC_SET:
3984 	case SEM_STAT:
3985             err = target_to_host_semid_ds(&dsarg, target_su.buf);
3986             if (err)
3987                 return err;
3988             arg.buf = &dsarg;
3989             ret = get_errno(semctl(semid, semnum, cmd, arg));
3990             err = host_to_target_semid_ds(target_su.buf, &dsarg);
3991             if (err)
3992                 return err;
3993             break;
3994 	case IPC_INFO:
3995 	case SEM_INFO:
3996             arg.__buf = &seminfo;
3997             ret = get_errno(semctl(semid, semnum, cmd, arg));
3998             err = host_to_target_seminfo(target_su.__buf, &seminfo);
3999             if (err)
4000                 return err;
4001             break;
4002 	case IPC_RMID:
4003 	case GETPID:
4004 	case GETNCNT:
4005 	case GETZCNT:
4006             ret = get_errno(semctl(semid, semnum, cmd, NULL));
4007             break;
4008     }
4009 
4010     return ret;
4011 }
4012 
4013 struct target_sembuf {
4014     unsigned short sem_num;
4015     short sem_op;
4016     short sem_flg;
4017 };
4018 
4019 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf,
4020                                              abi_ulong target_addr,
4021                                              unsigned nsops)
4022 {
4023     struct target_sembuf *target_sembuf;
4024     int i;
4025 
4026     target_sembuf = lock_user(VERIFY_READ, target_addr,
4027                               nsops*sizeof(struct target_sembuf), 1);
4028     if (!target_sembuf)
4029         return -TARGET_EFAULT;
4030 
4031     for(i=0; i<nsops; i++) {
4032         __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num);
4033         __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op);
4034         __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg);
4035     }
4036 
4037     unlock_user(target_sembuf, target_addr, 0);
4038 
4039     return 0;
4040 }
4041 
4042 #if defined(TARGET_NR_ipc) || defined(TARGET_NR_semop) || \
4043     defined(TARGET_NR_semtimedop) || defined(TARGET_NR_semtimedop_time64)
4044 
4045 /*
4046  * This macro is required to handle the s390 variants, which passes the
4047  * arguments in a different order than default.
4048  */
4049 #ifdef __s390x__
4050 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4051   (__nsops), (__timeout), (__sops)
4052 #else
4053 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4054   (__nsops), 0, (__sops), (__timeout)
4055 #endif
4056 
4057 static inline abi_long do_semtimedop(int semid,
4058                                      abi_long ptr,
4059                                      unsigned nsops,
4060                                      abi_long timeout, bool time64)
4061 {
4062     struct sembuf *sops;
4063     struct timespec ts, *pts = NULL;
4064     abi_long ret;
4065 
4066     if (timeout) {
4067         pts = &ts;
4068         if (time64) {
4069             if (target_to_host_timespec64(pts, timeout)) {
4070                 return -TARGET_EFAULT;
4071             }
4072         } else {
4073             if (target_to_host_timespec(pts, timeout)) {
4074                 return -TARGET_EFAULT;
4075             }
4076         }
4077     }
4078 
4079     if (nsops > TARGET_SEMOPM) {
4080         return -TARGET_E2BIG;
4081     }
4082 
4083     sops = g_new(struct sembuf, nsops);
4084 
4085     if (target_to_host_sembuf(sops, ptr, nsops)) {
4086         g_free(sops);
4087         return -TARGET_EFAULT;
4088     }
4089 
4090     ret = -TARGET_ENOSYS;
4091 #ifdef __NR_semtimedop
4092     ret = get_errno(safe_semtimedop(semid, sops, nsops, pts));
4093 #endif
4094 #ifdef __NR_ipc
4095     if (ret == -TARGET_ENOSYS) {
4096         ret = get_errno(safe_ipc(IPCOP_semtimedop, semid,
4097                                  SEMTIMEDOP_IPC_ARGS(nsops, sops, (long)pts)));
4098     }
4099 #endif
4100     g_free(sops);
4101     return ret;
4102 }
4103 #endif
4104 
4105 struct target_msqid_ds
4106 {
4107     struct target_ipc_perm msg_perm;
4108     abi_ulong msg_stime;
4109 #if TARGET_ABI_BITS == 32
4110     abi_ulong __unused1;
4111 #endif
4112     abi_ulong msg_rtime;
4113 #if TARGET_ABI_BITS == 32
4114     abi_ulong __unused2;
4115 #endif
4116     abi_ulong msg_ctime;
4117 #if TARGET_ABI_BITS == 32
4118     abi_ulong __unused3;
4119 #endif
4120     abi_ulong __msg_cbytes;
4121     abi_ulong msg_qnum;
4122     abi_ulong msg_qbytes;
4123     abi_ulong msg_lspid;
4124     abi_ulong msg_lrpid;
4125     abi_ulong __unused4;
4126     abi_ulong __unused5;
4127 };
4128 
4129 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md,
4130                                                abi_ulong target_addr)
4131 {
4132     struct target_msqid_ds *target_md;
4133 
4134     if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1))
4135         return -TARGET_EFAULT;
4136     if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr))
4137         return -TARGET_EFAULT;
4138     host_md->msg_stime = tswapal(target_md->msg_stime);
4139     host_md->msg_rtime = tswapal(target_md->msg_rtime);
4140     host_md->msg_ctime = tswapal(target_md->msg_ctime);
4141     host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes);
4142     host_md->msg_qnum = tswapal(target_md->msg_qnum);
4143     host_md->msg_qbytes = tswapal(target_md->msg_qbytes);
4144     host_md->msg_lspid = tswapal(target_md->msg_lspid);
4145     host_md->msg_lrpid = tswapal(target_md->msg_lrpid);
4146     unlock_user_struct(target_md, target_addr, 0);
4147     return 0;
4148 }
4149 
4150 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr,
4151                                                struct msqid_ds *host_md)
4152 {
4153     struct target_msqid_ds *target_md;
4154 
4155     if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0))
4156         return -TARGET_EFAULT;
4157     if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm)))
4158         return -TARGET_EFAULT;
4159     target_md->msg_stime = tswapal(host_md->msg_stime);
4160     target_md->msg_rtime = tswapal(host_md->msg_rtime);
4161     target_md->msg_ctime = tswapal(host_md->msg_ctime);
4162     target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes);
4163     target_md->msg_qnum = tswapal(host_md->msg_qnum);
4164     target_md->msg_qbytes = tswapal(host_md->msg_qbytes);
4165     target_md->msg_lspid = tswapal(host_md->msg_lspid);
4166     target_md->msg_lrpid = tswapal(host_md->msg_lrpid);
4167     unlock_user_struct(target_md, target_addr, 1);
4168     return 0;
4169 }
4170 
4171 struct target_msginfo {
4172     int msgpool;
4173     int msgmap;
4174     int msgmax;
4175     int msgmnb;
4176     int msgmni;
4177     int msgssz;
4178     int msgtql;
4179     unsigned short int msgseg;
4180 };
4181 
4182 static inline abi_long host_to_target_msginfo(abi_ulong target_addr,
4183                                               struct msginfo *host_msginfo)
4184 {
4185     struct target_msginfo *target_msginfo;
4186     if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0))
4187         return -TARGET_EFAULT;
4188     __put_user(host_msginfo->msgpool, &target_msginfo->msgpool);
4189     __put_user(host_msginfo->msgmap, &target_msginfo->msgmap);
4190     __put_user(host_msginfo->msgmax, &target_msginfo->msgmax);
4191     __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb);
4192     __put_user(host_msginfo->msgmni, &target_msginfo->msgmni);
4193     __put_user(host_msginfo->msgssz, &target_msginfo->msgssz);
4194     __put_user(host_msginfo->msgtql, &target_msginfo->msgtql);
4195     __put_user(host_msginfo->msgseg, &target_msginfo->msgseg);
4196     unlock_user_struct(target_msginfo, target_addr, 1);
4197     return 0;
4198 }
4199 
4200 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr)
4201 {
4202     struct msqid_ds dsarg;
4203     struct msginfo msginfo;
4204     abi_long ret = -TARGET_EINVAL;
4205 
4206     cmd &= 0xff;
4207 
4208     switch (cmd) {
4209     case IPC_STAT:
4210     case IPC_SET:
4211     case MSG_STAT:
4212         if (target_to_host_msqid_ds(&dsarg,ptr))
4213             return -TARGET_EFAULT;
4214         ret = get_errno(msgctl(msgid, cmd, &dsarg));
4215         if (host_to_target_msqid_ds(ptr,&dsarg))
4216             return -TARGET_EFAULT;
4217         break;
4218     case IPC_RMID:
4219         ret = get_errno(msgctl(msgid, cmd, NULL));
4220         break;
4221     case IPC_INFO:
4222     case MSG_INFO:
4223         ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo));
4224         if (host_to_target_msginfo(ptr, &msginfo))
4225             return -TARGET_EFAULT;
4226         break;
4227     }
4228 
4229     return ret;
4230 }
4231 
4232 struct target_msgbuf {
4233     abi_long mtype;
4234     char	mtext[1];
4235 };
4236 
4237 static inline abi_long do_msgsnd(int msqid, abi_long msgp,
4238                                  ssize_t msgsz, int msgflg)
4239 {
4240     struct target_msgbuf *target_mb;
4241     struct msgbuf *host_mb;
4242     abi_long ret = 0;
4243 
4244     if (msgsz < 0) {
4245         return -TARGET_EINVAL;
4246     }
4247 
4248     if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0))
4249         return -TARGET_EFAULT;
4250     host_mb = g_try_malloc(msgsz + sizeof(long));
4251     if (!host_mb) {
4252         unlock_user_struct(target_mb, msgp, 0);
4253         return -TARGET_ENOMEM;
4254     }
4255     host_mb->mtype = (abi_long) tswapal(target_mb->mtype);
4256     memcpy(host_mb->mtext, target_mb->mtext, msgsz);
4257     ret = -TARGET_ENOSYS;
4258 #ifdef __NR_msgsnd
4259     ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg));
4260 #endif
4261 #ifdef __NR_ipc
4262     if (ret == -TARGET_ENOSYS) {
4263 #ifdef __s390x__
4264         ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4265                                  host_mb));
4266 #else
4267         ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4268                                  host_mb, 0));
4269 #endif
4270     }
4271 #endif
4272     g_free(host_mb);
4273     unlock_user_struct(target_mb, msgp, 0);
4274 
4275     return ret;
4276 }
4277 
4278 #ifdef __NR_ipc
4279 #if defined(__sparc__)
4280 /* SPARC for msgrcv it does not use the kludge on final 2 arguments.  */
4281 #define MSGRCV_ARGS(__msgp, __msgtyp) __msgp, __msgtyp
4282 #elif defined(__s390x__)
4283 /* The s390 sys_ipc variant has only five parameters.  */
4284 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4285     ((long int[]){(long int)__msgp, __msgtyp})
4286 #else
4287 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4288     ((long int[]){(long int)__msgp, __msgtyp}), 0
4289 #endif
4290 #endif
4291 
4292 static inline abi_long do_msgrcv(int msqid, abi_long msgp,
4293                                  ssize_t msgsz, abi_long msgtyp,
4294                                  int msgflg)
4295 {
4296     struct target_msgbuf *target_mb;
4297     char *target_mtext;
4298     struct msgbuf *host_mb;
4299     abi_long ret = 0;
4300 
4301     if (msgsz < 0) {
4302         return -TARGET_EINVAL;
4303     }
4304 
4305     if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0))
4306         return -TARGET_EFAULT;
4307 
4308     host_mb = g_try_malloc(msgsz + sizeof(long));
4309     if (!host_mb) {
4310         ret = -TARGET_ENOMEM;
4311         goto end;
4312     }
4313     ret = -TARGET_ENOSYS;
4314 #ifdef __NR_msgrcv
4315     ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg));
4316 #endif
4317 #ifdef __NR_ipc
4318     if (ret == -TARGET_ENOSYS) {
4319         ret = get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv), msqid, msgsz,
4320                         msgflg, MSGRCV_ARGS(host_mb, msgtyp)));
4321     }
4322 #endif
4323 
4324     if (ret > 0) {
4325         abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong);
4326         target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0);
4327         if (!target_mtext) {
4328             ret = -TARGET_EFAULT;
4329             goto end;
4330         }
4331         memcpy(target_mb->mtext, host_mb->mtext, ret);
4332         unlock_user(target_mtext, target_mtext_addr, ret);
4333     }
4334 
4335     target_mb->mtype = tswapal(host_mb->mtype);
4336 
4337 end:
4338     if (target_mb)
4339         unlock_user_struct(target_mb, msgp, 1);
4340     g_free(host_mb);
4341     return ret;
4342 }
4343 
4344 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd,
4345                                                abi_ulong target_addr)
4346 {
4347     struct target_shmid_ds *target_sd;
4348 
4349     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
4350         return -TARGET_EFAULT;
4351     if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr))
4352         return -TARGET_EFAULT;
4353     __get_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4354     __get_user(host_sd->shm_atime, &target_sd->shm_atime);
4355     __get_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4356     __get_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4357     __get_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4358     __get_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4359     __get_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4360     unlock_user_struct(target_sd, target_addr, 0);
4361     return 0;
4362 }
4363 
4364 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr,
4365                                                struct shmid_ds *host_sd)
4366 {
4367     struct target_shmid_ds *target_sd;
4368 
4369     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
4370         return -TARGET_EFAULT;
4371     if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm)))
4372         return -TARGET_EFAULT;
4373     __put_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4374     __put_user(host_sd->shm_atime, &target_sd->shm_atime);
4375     __put_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4376     __put_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4377     __put_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4378     __put_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4379     __put_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4380     unlock_user_struct(target_sd, target_addr, 1);
4381     return 0;
4382 }
4383 
4384 struct  target_shminfo {
4385     abi_ulong shmmax;
4386     abi_ulong shmmin;
4387     abi_ulong shmmni;
4388     abi_ulong shmseg;
4389     abi_ulong shmall;
4390 };
4391 
4392 static inline abi_long host_to_target_shminfo(abi_ulong target_addr,
4393                                               struct shminfo *host_shminfo)
4394 {
4395     struct target_shminfo *target_shminfo;
4396     if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0))
4397         return -TARGET_EFAULT;
4398     __put_user(host_shminfo->shmmax, &target_shminfo->shmmax);
4399     __put_user(host_shminfo->shmmin, &target_shminfo->shmmin);
4400     __put_user(host_shminfo->shmmni, &target_shminfo->shmmni);
4401     __put_user(host_shminfo->shmseg, &target_shminfo->shmseg);
4402     __put_user(host_shminfo->shmall, &target_shminfo->shmall);
4403     unlock_user_struct(target_shminfo, target_addr, 1);
4404     return 0;
4405 }
4406 
4407 struct target_shm_info {
4408     int used_ids;
4409     abi_ulong shm_tot;
4410     abi_ulong shm_rss;
4411     abi_ulong shm_swp;
4412     abi_ulong swap_attempts;
4413     abi_ulong swap_successes;
4414 };
4415 
4416 static inline abi_long host_to_target_shm_info(abi_ulong target_addr,
4417                                                struct shm_info *host_shm_info)
4418 {
4419     struct target_shm_info *target_shm_info;
4420     if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0))
4421         return -TARGET_EFAULT;
4422     __put_user(host_shm_info->used_ids, &target_shm_info->used_ids);
4423     __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot);
4424     __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss);
4425     __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp);
4426     __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts);
4427     __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes);
4428     unlock_user_struct(target_shm_info, target_addr, 1);
4429     return 0;
4430 }
4431 
4432 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf)
4433 {
4434     struct shmid_ds dsarg;
4435     struct shminfo shminfo;
4436     struct shm_info shm_info;
4437     abi_long ret = -TARGET_EINVAL;
4438 
4439     cmd &= 0xff;
4440 
4441     switch(cmd) {
4442     case IPC_STAT:
4443     case IPC_SET:
4444     case SHM_STAT:
4445         if (target_to_host_shmid_ds(&dsarg, buf))
4446             return -TARGET_EFAULT;
4447         ret = get_errno(shmctl(shmid, cmd, &dsarg));
4448         if (host_to_target_shmid_ds(buf, &dsarg))
4449             return -TARGET_EFAULT;
4450         break;
4451     case IPC_INFO:
4452         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo));
4453         if (host_to_target_shminfo(buf, &shminfo))
4454             return -TARGET_EFAULT;
4455         break;
4456     case SHM_INFO:
4457         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info));
4458         if (host_to_target_shm_info(buf, &shm_info))
4459             return -TARGET_EFAULT;
4460         break;
4461     case IPC_RMID:
4462     case SHM_LOCK:
4463     case SHM_UNLOCK:
4464         ret = get_errno(shmctl(shmid, cmd, NULL));
4465         break;
4466     }
4467 
4468     return ret;
4469 }
4470 
4471 #ifdef TARGET_NR_ipc
4472 /* ??? This only works with linear mappings.  */
4473 /* do_ipc() must return target values and target errnos. */
4474 static abi_long do_ipc(CPUArchState *cpu_env,
4475                        unsigned int call, abi_long first,
4476                        abi_long second, abi_long third,
4477                        abi_long ptr, abi_long fifth)
4478 {
4479     int version;
4480     abi_long ret = 0;
4481 
4482     version = call >> 16;
4483     call &= 0xffff;
4484 
4485     switch (call) {
4486     case IPCOP_semop:
4487         ret = do_semtimedop(first, ptr, second, 0, false);
4488         break;
4489     case IPCOP_semtimedop:
4490     /*
4491      * The s390 sys_ipc variant has only five parameters instead of six
4492      * (as for default variant) and the only difference is the handling of
4493      * SEMTIMEDOP where on s390 the third parameter is used as a pointer
4494      * to a struct timespec where the generic variant uses fifth parameter.
4495      */
4496 #if defined(TARGET_S390X)
4497         ret = do_semtimedop(first, ptr, second, third, TARGET_ABI_BITS == 64);
4498 #else
4499         ret = do_semtimedop(first, ptr, second, fifth, TARGET_ABI_BITS == 64);
4500 #endif
4501         break;
4502 
4503     case IPCOP_semget:
4504         ret = get_errno(semget(first, second, third));
4505         break;
4506 
4507     case IPCOP_semctl: {
4508         /* The semun argument to semctl is passed by value, so dereference the
4509          * ptr argument. */
4510         abi_ulong atptr;
4511         get_user_ual(atptr, ptr);
4512         ret = do_semctl(first, second, third, atptr);
4513         break;
4514     }
4515 
4516     case IPCOP_msgget:
4517         ret = get_errno(msgget(first, second));
4518         break;
4519 
4520     case IPCOP_msgsnd:
4521         ret = do_msgsnd(first, ptr, second, third);
4522         break;
4523 
4524     case IPCOP_msgctl:
4525         ret = do_msgctl(first, second, ptr);
4526         break;
4527 
4528     case IPCOP_msgrcv:
4529         switch (version) {
4530         case 0:
4531             {
4532                 struct target_ipc_kludge {
4533                     abi_long msgp;
4534                     abi_long msgtyp;
4535                 } *tmp;
4536 
4537                 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) {
4538                     ret = -TARGET_EFAULT;
4539                     break;
4540                 }
4541 
4542                 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third);
4543 
4544                 unlock_user_struct(tmp, ptr, 0);
4545                 break;
4546             }
4547         default:
4548             ret = do_msgrcv(first, ptr, second, fifth, third);
4549         }
4550         break;
4551 
4552     case IPCOP_shmat:
4553         switch (version) {
4554         default:
4555         {
4556             abi_ulong raddr;
4557             raddr = target_shmat(cpu_env, first, ptr, second);
4558             if (is_error(raddr))
4559                 return get_errno(raddr);
4560             if (put_user_ual(raddr, third))
4561                 return -TARGET_EFAULT;
4562             break;
4563         }
4564         case 1:
4565             ret = -TARGET_EINVAL;
4566             break;
4567         }
4568 	break;
4569     case IPCOP_shmdt:
4570         ret = target_shmdt(ptr);
4571 	break;
4572 
4573     case IPCOP_shmget:
4574 	/* IPC_* flag values are the same on all linux platforms */
4575 	ret = get_errno(shmget(first, second, third));
4576 	break;
4577 
4578 	/* IPC_* and SHM_* command values are the same on all linux platforms */
4579     case IPCOP_shmctl:
4580         ret = do_shmctl(first, second, ptr);
4581         break;
4582     default:
4583         qemu_log_mask(LOG_UNIMP, "Unsupported ipc call: %d (version %d)\n",
4584                       call, version);
4585 	ret = -TARGET_ENOSYS;
4586 	break;
4587     }
4588     return ret;
4589 }
4590 #endif
4591 
4592 /* kernel structure types definitions */
4593 
4594 #define STRUCT(name, ...) STRUCT_ ## name,
4595 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
4596 enum {
4597 #include "syscall_types.h"
4598 STRUCT_MAX
4599 };
4600 #undef STRUCT
4601 #undef STRUCT_SPECIAL
4602 
4603 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = {  __VA_ARGS__, TYPE_NULL };
4604 #define STRUCT_SPECIAL(name)
4605 #include "syscall_types.h"
4606 #undef STRUCT
4607 #undef STRUCT_SPECIAL
4608 
4609 #define MAX_STRUCT_SIZE 4096
4610 
4611 #ifdef CONFIG_FIEMAP
4612 /* So fiemap access checks don't overflow on 32 bit systems.
4613  * This is very slightly smaller than the limit imposed by
4614  * the underlying kernel.
4615  */
4616 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap))  \
4617                             / sizeof(struct fiemap_extent))
4618 
4619 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp,
4620                                        int fd, int cmd, abi_long arg)
4621 {
4622     /* The parameter for this ioctl is a struct fiemap followed
4623      * by an array of struct fiemap_extent whose size is set
4624      * in fiemap->fm_extent_count. The array is filled in by the
4625      * ioctl.
4626      */
4627     int target_size_in, target_size_out;
4628     struct fiemap *fm;
4629     const argtype *arg_type = ie->arg_type;
4630     const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) };
4631     void *argptr, *p;
4632     abi_long ret;
4633     int i, extent_size = thunk_type_size(extent_arg_type, 0);
4634     uint32_t outbufsz;
4635     int free_fm = 0;
4636 
4637     assert(arg_type[0] == TYPE_PTR);
4638     assert(ie->access == IOC_RW);
4639     arg_type++;
4640     target_size_in = thunk_type_size(arg_type, 0);
4641     argptr = lock_user(VERIFY_READ, arg, target_size_in, 1);
4642     if (!argptr) {
4643         return -TARGET_EFAULT;
4644     }
4645     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4646     unlock_user(argptr, arg, 0);
4647     fm = (struct fiemap *)buf_temp;
4648     if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) {
4649         return -TARGET_EINVAL;
4650     }
4651 
4652     outbufsz = sizeof (*fm) +
4653         (sizeof(struct fiemap_extent) * fm->fm_extent_count);
4654 
4655     if (outbufsz > MAX_STRUCT_SIZE) {
4656         /* We can't fit all the extents into the fixed size buffer.
4657          * Allocate one that is large enough and use it instead.
4658          */
4659         fm = g_try_malloc(outbufsz);
4660         if (!fm) {
4661             return -TARGET_ENOMEM;
4662         }
4663         memcpy(fm, buf_temp, sizeof(struct fiemap));
4664         free_fm = 1;
4665     }
4666     ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm));
4667     if (!is_error(ret)) {
4668         target_size_out = target_size_in;
4669         /* An extent_count of 0 means we were only counting the extents
4670          * so there are no structs to copy
4671          */
4672         if (fm->fm_extent_count != 0) {
4673             target_size_out += fm->fm_mapped_extents * extent_size;
4674         }
4675         argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0);
4676         if (!argptr) {
4677             ret = -TARGET_EFAULT;
4678         } else {
4679             /* Convert the struct fiemap */
4680             thunk_convert(argptr, fm, arg_type, THUNK_TARGET);
4681             if (fm->fm_extent_count != 0) {
4682                 p = argptr + target_size_in;
4683                 /* ...and then all the struct fiemap_extents */
4684                 for (i = 0; i < fm->fm_mapped_extents; i++) {
4685                     thunk_convert(p, &fm->fm_extents[i], extent_arg_type,
4686                                   THUNK_TARGET);
4687                     p += extent_size;
4688                 }
4689             }
4690             unlock_user(argptr, arg, target_size_out);
4691         }
4692     }
4693     if (free_fm) {
4694         g_free(fm);
4695     }
4696     return ret;
4697 }
4698 #endif
4699 
4700 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp,
4701                                 int fd, int cmd, abi_long arg)
4702 {
4703     const argtype *arg_type = ie->arg_type;
4704     int target_size;
4705     void *argptr;
4706     int ret;
4707     struct ifconf *host_ifconf;
4708     uint32_t outbufsz;
4709     const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) };
4710     const argtype ifreq_max_type[] = { MK_STRUCT(STRUCT_ifmap_ifreq) };
4711     int target_ifreq_size;
4712     int nb_ifreq;
4713     int free_buf = 0;
4714     int i;
4715     int target_ifc_len;
4716     abi_long target_ifc_buf;
4717     int host_ifc_len;
4718     char *host_ifc_buf;
4719 
4720     assert(arg_type[0] == TYPE_PTR);
4721     assert(ie->access == IOC_RW);
4722 
4723     arg_type++;
4724     target_size = thunk_type_size(arg_type, 0);
4725 
4726     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4727     if (!argptr)
4728         return -TARGET_EFAULT;
4729     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4730     unlock_user(argptr, arg, 0);
4731 
4732     host_ifconf = (struct ifconf *)(unsigned long)buf_temp;
4733     target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf;
4734     target_ifreq_size = thunk_type_size(ifreq_max_type, 0);
4735 
4736     if (target_ifc_buf != 0) {
4737         target_ifc_len = host_ifconf->ifc_len;
4738         nb_ifreq = target_ifc_len / target_ifreq_size;
4739         host_ifc_len = nb_ifreq * sizeof(struct ifreq);
4740 
4741         outbufsz = sizeof(*host_ifconf) + host_ifc_len;
4742         if (outbufsz > MAX_STRUCT_SIZE) {
4743             /*
4744              * We can't fit all the extents into the fixed size buffer.
4745              * Allocate one that is large enough and use it instead.
4746              */
4747             host_ifconf = g_try_malloc(outbufsz);
4748             if (!host_ifconf) {
4749                 return -TARGET_ENOMEM;
4750             }
4751             memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf));
4752             free_buf = 1;
4753         }
4754         host_ifc_buf = (char *)host_ifconf + sizeof(*host_ifconf);
4755 
4756         host_ifconf->ifc_len = host_ifc_len;
4757     } else {
4758       host_ifc_buf = NULL;
4759     }
4760     host_ifconf->ifc_buf = host_ifc_buf;
4761 
4762     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf));
4763     if (!is_error(ret)) {
4764 	/* convert host ifc_len to target ifc_len */
4765 
4766         nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq);
4767         target_ifc_len = nb_ifreq * target_ifreq_size;
4768         host_ifconf->ifc_len = target_ifc_len;
4769 
4770 	/* restore target ifc_buf */
4771 
4772         host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf;
4773 
4774 	/* copy struct ifconf to target user */
4775 
4776         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4777         if (!argptr)
4778             return -TARGET_EFAULT;
4779         thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET);
4780         unlock_user(argptr, arg, target_size);
4781 
4782         if (target_ifc_buf != 0) {
4783             /* copy ifreq[] to target user */
4784             argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0);
4785             for (i = 0; i < nb_ifreq ; i++) {
4786                 thunk_convert(argptr + i * target_ifreq_size,
4787                               host_ifc_buf + i * sizeof(struct ifreq),
4788                               ifreq_arg_type, THUNK_TARGET);
4789             }
4790             unlock_user(argptr, target_ifc_buf, target_ifc_len);
4791         }
4792     }
4793 
4794     if (free_buf) {
4795         g_free(host_ifconf);
4796     }
4797 
4798     return ret;
4799 }
4800 
4801 #if defined(CONFIG_USBFS)
4802 #if HOST_LONG_BITS > 64
4803 #error USBDEVFS thunks do not support >64 bit hosts yet.
4804 #endif
4805 struct live_urb {
4806     uint64_t target_urb_adr;
4807     uint64_t target_buf_adr;
4808     char *target_buf_ptr;
4809     struct usbdevfs_urb host_urb;
4810 };
4811 
4812 static GHashTable *usbdevfs_urb_hashtable(void)
4813 {
4814     static GHashTable *urb_hashtable;
4815 
4816     if (!urb_hashtable) {
4817         urb_hashtable = g_hash_table_new(g_int64_hash, g_int64_equal);
4818     }
4819     return urb_hashtable;
4820 }
4821 
4822 static void urb_hashtable_insert(struct live_urb *urb)
4823 {
4824     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4825     g_hash_table_insert(urb_hashtable, urb, urb);
4826 }
4827 
4828 static struct live_urb *urb_hashtable_lookup(uint64_t target_urb_adr)
4829 {
4830     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4831     return g_hash_table_lookup(urb_hashtable, &target_urb_adr);
4832 }
4833 
4834 static void urb_hashtable_remove(struct live_urb *urb)
4835 {
4836     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4837     g_hash_table_remove(urb_hashtable, urb);
4838 }
4839 
4840 static abi_long
4841 do_ioctl_usbdevfs_reapurb(const IOCTLEntry *ie, uint8_t *buf_temp,
4842                           int fd, int cmd, abi_long arg)
4843 {
4844     const argtype usbfsurb_arg_type[] = { MK_STRUCT(STRUCT_usbdevfs_urb) };
4845     const argtype ptrvoid_arg_type[] = { TYPE_PTRVOID, 0, 0 };
4846     struct live_urb *lurb;
4847     void *argptr;
4848     uint64_t hurb;
4849     int target_size;
4850     uintptr_t target_urb_adr;
4851     abi_long ret;
4852 
4853     target_size = thunk_type_size(usbfsurb_arg_type, THUNK_TARGET);
4854 
4855     memset(buf_temp, 0, sizeof(uint64_t));
4856     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
4857     if (is_error(ret)) {
4858         return ret;
4859     }
4860 
4861     memcpy(&hurb, buf_temp, sizeof(uint64_t));
4862     lurb = (void *)((uintptr_t)hurb - offsetof(struct live_urb, host_urb));
4863     if (!lurb->target_urb_adr) {
4864         return -TARGET_EFAULT;
4865     }
4866     urb_hashtable_remove(lurb);
4867     unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr,
4868         lurb->host_urb.buffer_length);
4869     lurb->target_buf_ptr = NULL;
4870 
4871     /* restore the guest buffer pointer */
4872     lurb->host_urb.buffer = (void *)(uintptr_t)lurb->target_buf_adr;
4873 
4874     /* update the guest urb struct */
4875     argptr = lock_user(VERIFY_WRITE, lurb->target_urb_adr, target_size, 0);
4876     if (!argptr) {
4877         g_free(lurb);
4878         return -TARGET_EFAULT;
4879     }
4880     thunk_convert(argptr, &lurb->host_urb, usbfsurb_arg_type, THUNK_TARGET);
4881     unlock_user(argptr, lurb->target_urb_adr, target_size);
4882 
4883     target_size = thunk_type_size(ptrvoid_arg_type, THUNK_TARGET);
4884     /* write back the urb handle */
4885     argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4886     if (!argptr) {
4887         g_free(lurb);
4888         return -TARGET_EFAULT;
4889     }
4890 
4891     /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */
4892     target_urb_adr = lurb->target_urb_adr;
4893     thunk_convert(argptr, &target_urb_adr, ptrvoid_arg_type, THUNK_TARGET);
4894     unlock_user(argptr, arg, target_size);
4895 
4896     g_free(lurb);
4897     return ret;
4898 }
4899 
4900 static abi_long
4901 do_ioctl_usbdevfs_discardurb(const IOCTLEntry *ie,
4902                              uint8_t *buf_temp __attribute__((unused)),
4903                              int fd, int cmd, abi_long arg)
4904 {
4905     struct live_urb *lurb;
4906 
4907     /* map target address back to host URB with metadata. */
4908     lurb = urb_hashtable_lookup(arg);
4909     if (!lurb) {
4910         return -TARGET_EFAULT;
4911     }
4912     return get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
4913 }
4914 
4915 static abi_long
4916 do_ioctl_usbdevfs_submiturb(const IOCTLEntry *ie, uint8_t *buf_temp,
4917                             int fd, int cmd, abi_long arg)
4918 {
4919     const argtype *arg_type = ie->arg_type;
4920     int target_size;
4921     abi_long ret;
4922     void *argptr;
4923     int rw_dir;
4924     struct live_urb *lurb;
4925 
4926     /*
4927      * each submitted URB needs to map to a unique ID for the
4928      * kernel, and that unique ID needs to be a pointer to
4929      * host memory.  hence, we need to malloc for each URB.
4930      * isochronous transfers have a variable length struct.
4931      */
4932     arg_type++;
4933     target_size = thunk_type_size(arg_type, THUNK_TARGET);
4934 
4935     /* construct host copy of urb and metadata */
4936     lurb = g_try_new0(struct live_urb, 1);
4937     if (!lurb) {
4938         return -TARGET_ENOMEM;
4939     }
4940 
4941     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4942     if (!argptr) {
4943         g_free(lurb);
4944         return -TARGET_EFAULT;
4945     }
4946     thunk_convert(&lurb->host_urb, argptr, arg_type, THUNK_HOST);
4947     unlock_user(argptr, arg, 0);
4948 
4949     lurb->target_urb_adr = arg;
4950     lurb->target_buf_adr = (uintptr_t)lurb->host_urb.buffer;
4951 
4952     /* buffer space used depends on endpoint type so lock the entire buffer */
4953     /* control type urbs should check the buffer contents for true direction */
4954     rw_dir = lurb->host_urb.endpoint & USB_DIR_IN ? VERIFY_WRITE : VERIFY_READ;
4955     lurb->target_buf_ptr = lock_user(rw_dir, lurb->target_buf_adr,
4956         lurb->host_urb.buffer_length, 1);
4957     if (lurb->target_buf_ptr == NULL) {
4958         g_free(lurb);
4959         return -TARGET_EFAULT;
4960     }
4961 
4962     /* update buffer pointer in host copy */
4963     lurb->host_urb.buffer = lurb->target_buf_ptr;
4964 
4965     ret = get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
4966     if (is_error(ret)) {
4967         unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 0);
4968         g_free(lurb);
4969     } else {
4970         urb_hashtable_insert(lurb);
4971     }
4972 
4973     return ret;
4974 }
4975 #endif /* CONFIG_USBFS */
4976 
4977 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
4978                             int cmd, abi_long arg)
4979 {
4980     void *argptr;
4981     struct dm_ioctl *host_dm;
4982     abi_long guest_data;
4983     uint32_t guest_data_size;
4984     int target_size;
4985     const argtype *arg_type = ie->arg_type;
4986     abi_long ret;
4987     void *big_buf = NULL;
4988     char *host_data;
4989 
4990     arg_type++;
4991     target_size = thunk_type_size(arg_type, 0);
4992     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4993     if (!argptr) {
4994         ret = -TARGET_EFAULT;
4995         goto out;
4996     }
4997     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4998     unlock_user(argptr, arg, 0);
4999 
5000     /* buf_temp is too small, so fetch things into a bigger buffer */
5001     big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2);
5002     memcpy(big_buf, buf_temp, target_size);
5003     buf_temp = big_buf;
5004     host_dm = big_buf;
5005 
5006     guest_data = arg + host_dm->data_start;
5007     if ((guest_data - arg) < 0) {
5008         ret = -TARGET_EINVAL;
5009         goto out;
5010     }
5011     guest_data_size = host_dm->data_size - host_dm->data_start;
5012     host_data = (char*)host_dm + host_dm->data_start;
5013 
5014     argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1);
5015     if (!argptr) {
5016         ret = -TARGET_EFAULT;
5017         goto out;
5018     }
5019 
5020     switch (ie->host_cmd) {
5021     case DM_REMOVE_ALL:
5022     case DM_LIST_DEVICES:
5023     case DM_DEV_CREATE:
5024     case DM_DEV_REMOVE:
5025     case DM_DEV_SUSPEND:
5026     case DM_DEV_STATUS:
5027     case DM_DEV_WAIT:
5028     case DM_TABLE_STATUS:
5029     case DM_TABLE_CLEAR:
5030     case DM_TABLE_DEPS:
5031     case DM_LIST_VERSIONS:
5032         /* no input data */
5033         break;
5034     case DM_DEV_RENAME:
5035     case DM_DEV_SET_GEOMETRY:
5036         /* data contains only strings */
5037         memcpy(host_data, argptr, guest_data_size);
5038         break;
5039     case DM_TARGET_MSG:
5040         memcpy(host_data, argptr, guest_data_size);
5041         *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr);
5042         break;
5043     case DM_TABLE_LOAD:
5044     {
5045         void *gspec = argptr;
5046         void *cur_data = host_data;
5047         const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5048         int spec_size = thunk_type_size(dm_arg_type, 0);
5049         int i;
5050 
5051         for (i = 0; i < host_dm->target_count; i++) {
5052             struct dm_target_spec *spec = cur_data;
5053             uint32_t next;
5054             int slen;
5055 
5056             thunk_convert(spec, gspec, dm_arg_type, THUNK_HOST);
5057             slen = strlen((char*)gspec + spec_size) + 1;
5058             next = spec->next;
5059             spec->next = sizeof(*spec) + slen;
5060             strcpy((char*)&spec[1], gspec + spec_size);
5061             gspec += next;
5062             cur_data += spec->next;
5063         }
5064         break;
5065     }
5066     default:
5067         ret = -TARGET_EINVAL;
5068         unlock_user(argptr, guest_data, 0);
5069         goto out;
5070     }
5071     unlock_user(argptr, guest_data, 0);
5072 
5073     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5074     if (!is_error(ret)) {
5075         guest_data = arg + host_dm->data_start;
5076         guest_data_size = host_dm->data_size - host_dm->data_start;
5077         argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0);
5078         switch (ie->host_cmd) {
5079         case DM_REMOVE_ALL:
5080         case DM_DEV_CREATE:
5081         case DM_DEV_REMOVE:
5082         case DM_DEV_RENAME:
5083         case DM_DEV_SUSPEND:
5084         case DM_DEV_STATUS:
5085         case DM_TABLE_LOAD:
5086         case DM_TABLE_CLEAR:
5087         case DM_TARGET_MSG:
5088         case DM_DEV_SET_GEOMETRY:
5089             /* no return data */
5090             break;
5091         case DM_LIST_DEVICES:
5092         {
5093             struct dm_name_list *nl = (void*)host_dm + host_dm->data_start;
5094             uint32_t remaining_data = guest_data_size;
5095             void *cur_data = argptr;
5096             const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) };
5097             int nl_size = 12; /* can't use thunk_size due to alignment */
5098 
5099             while (1) {
5100                 uint32_t next = nl->next;
5101                 if (next) {
5102                     nl->next = nl_size + (strlen(nl->name) + 1);
5103                 }
5104                 if (remaining_data < nl->next) {
5105                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5106                     break;
5107                 }
5108                 thunk_convert(cur_data, nl, dm_arg_type, THUNK_TARGET);
5109                 strcpy(cur_data + nl_size, nl->name);
5110                 cur_data += nl->next;
5111                 remaining_data -= nl->next;
5112                 if (!next) {
5113                     break;
5114                 }
5115                 nl = (void*)nl + next;
5116             }
5117             break;
5118         }
5119         case DM_DEV_WAIT:
5120         case DM_TABLE_STATUS:
5121         {
5122             struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start;
5123             void *cur_data = argptr;
5124             const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5125             int spec_size = thunk_type_size(dm_arg_type, 0);
5126             int i;
5127 
5128             for (i = 0; i < host_dm->target_count; i++) {
5129                 uint32_t next = spec->next;
5130                 int slen = strlen((char*)&spec[1]) + 1;
5131                 spec->next = (cur_data - argptr) + spec_size + slen;
5132                 if (guest_data_size < spec->next) {
5133                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5134                     break;
5135                 }
5136                 thunk_convert(cur_data, spec, dm_arg_type, THUNK_TARGET);
5137                 strcpy(cur_data + spec_size, (char*)&spec[1]);
5138                 cur_data = argptr + spec->next;
5139                 spec = (void*)host_dm + host_dm->data_start + next;
5140             }
5141             break;
5142         }
5143         case DM_TABLE_DEPS:
5144         {
5145             void *hdata = (void*)host_dm + host_dm->data_start;
5146             int count = *(uint32_t*)hdata;
5147             uint64_t *hdev = hdata + 8;
5148             uint64_t *gdev = argptr + 8;
5149             int i;
5150 
5151             *(uint32_t*)argptr = tswap32(count);
5152             for (i = 0; i < count; i++) {
5153                 *gdev = tswap64(*hdev);
5154                 gdev++;
5155                 hdev++;
5156             }
5157             break;
5158         }
5159         case DM_LIST_VERSIONS:
5160         {
5161             struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start;
5162             uint32_t remaining_data = guest_data_size;
5163             void *cur_data = argptr;
5164             const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) };
5165             int vers_size = thunk_type_size(dm_arg_type, 0);
5166 
5167             while (1) {
5168                 uint32_t next = vers->next;
5169                 if (next) {
5170                     vers->next = vers_size + (strlen(vers->name) + 1);
5171                 }
5172                 if (remaining_data < vers->next) {
5173                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5174                     break;
5175                 }
5176                 thunk_convert(cur_data, vers, dm_arg_type, THUNK_TARGET);
5177                 strcpy(cur_data + vers_size, vers->name);
5178                 cur_data += vers->next;
5179                 remaining_data -= vers->next;
5180                 if (!next) {
5181                     break;
5182                 }
5183                 vers = (void*)vers + next;
5184             }
5185             break;
5186         }
5187         default:
5188             unlock_user(argptr, guest_data, 0);
5189             ret = -TARGET_EINVAL;
5190             goto out;
5191         }
5192         unlock_user(argptr, guest_data, guest_data_size);
5193 
5194         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5195         if (!argptr) {
5196             ret = -TARGET_EFAULT;
5197             goto out;
5198         }
5199         thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5200         unlock_user(argptr, arg, target_size);
5201     }
5202 out:
5203     g_free(big_buf);
5204     return ret;
5205 }
5206 
5207 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5208                                int cmd, abi_long arg)
5209 {
5210     void *argptr;
5211     int target_size;
5212     const argtype *arg_type = ie->arg_type;
5213     const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) };
5214     abi_long ret;
5215 
5216     struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp;
5217     struct blkpg_partition host_part;
5218 
5219     /* Read and convert blkpg */
5220     arg_type++;
5221     target_size = thunk_type_size(arg_type, 0);
5222     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5223     if (!argptr) {
5224         ret = -TARGET_EFAULT;
5225         goto out;
5226     }
5227     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5228     unlock_user(argptr, arg, 0);
5229 
5230     switch (host_blkpg->op) {
5231     case BLKPG_ADD_PARTITION:
5232     case BLKPG_DEL_PARTITION:
5233         /* payload is struct blkpg_partition */
5234         break;
5235     default:
5236         /* Unknown opcode */
5237         ret = -TARGET_EINVAL;
5238         goto out;
5239     }
5240 
5241     /* Read and convert blkpg->data */
5242     arg = (abi_long)(uintptr_t)host_blkpg->data;
5243     target_size = thunk_type_size(part_arg_type, 0);
5244     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5245     if (!argptr) {
5246         ret = -TARGET_EFAULT;
5247         goto out;
5248     }
5249     thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST);
5250     unlock_user(argptr, arg, 0);
5251 
5252     /* Swizzle the data pointer to our local copy and call! */
5253     host_blkpg->data = &host_part;
5254     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg));
5255 
5256 out:
5257     return ret;
5258 }
5259 
5260 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp,
5261                                 int fd, int cmd, abi_long arg)
5262 {
5263     const argtype *arg_type = ie->arg_type;
5264     const StructEntry *se;
5265     const argtype *field_types;
5266     const int *dst_offsets, *src_offsets;
5267     int target_size;
5268     void *argptr;
5269     abi_ulong *target_rt_dev_ptr = NULL;
5270     unsigned long *host_rt_dev_ptr = NULL;
5271     abi_long ret;
5272     int i;
5273 
5274     assert(ie->access == IOC_W);
5275     assert(*arg_type == TYPE_PTR);
5276     arg_type++;
5277     assert(*arg_type == TYPE_STRUCT);
5278     target_size = thunk_type_size(arg_type, 0);
5279     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5280     if (!argptr) {
5281         return -TARGET_EFAULT;
5282     }
5283     arg_type++;
5284     assert(*arg_type == (int)STRUCT_rtentry);
5285     se = struct_entries + *arg_type++;
5286     assert(se->convert[0] == NULL);
5287     /* convert struct here to be able to catch rt_dev string */
5288     field_types = se->field_types;
5289     dst_offsets = se->field_offsets[THUNK_HOST];
5290     src_offsets = se->field_offsets[THUNK_TARGET];
5291     for (i = 0; i < se->nb_fields; i++) {
5292         if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) {
5293             assert(*field_types == TYPE_PTRVOID);
5294             target_rt_dev_ptr = argptr + src_offsets[i];
5295             host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]);
5296             if (*target_rt_dev_ptr != 0) {
5297                 *host_rt_dev_ptr = (unsigned long)lock_user_string(
5298                                                   tswapal(*target_rt_dev_ptr));
5299                 if (!*host_rt_dev_ptr) {
5300                     unlock_user(argptr, arg, 0);
5301                     return -TARGET_EFAULT;
5302                 }
5303             } else {
5304                 *host_rt_dev_ptr = 0;
5305             }
5306             field_types++;
5307             continue;
5308         }
5309         field_types = thunk_convert(buf_temp + dst_offsets[i],
5310                                     argptr + src_offsets[i],
5311                                     field_types, THUNK_HOST);
5312     }
5313     unlock_user(argptr, arg, 0);
5314 
5315     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5316 
5317     assert(host_rt_dev_ptr != NULL);
5318     assert(target_rt_dev_ptr != NULL);
5319     if (*host_rt_dev_ptr != 0) {
5320         unlock_user((void *)*host_rt_dev_ptr,
5321                     *target_rt_dev_ptr, 0);
5322     }
5323     return ret;
5324 }
5325 
5326 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp,
5327                                      int fd, int cmd, abi_long arg)
5328 {
5329     int sig = target_to_host_signal(arg);
5330     return get_errno(safe_ioctl(fd, ie->host_cmd, sig));
5331 }
5332 
5333 static abi_long do_ioctl_SIOCGSTAMP(const IOCTLEntry *ie, uint8_t *buf_temp,
5334                                     int fd, int cmd, abi_long arg)
5335 {
5336     struct timeval tv;
5337     abi_long ret;
5338 
5339     ret = get_errno(safe_ioctl(fd, SIOCGSTAMP, &tv));
5340     if (is_error(ret)) {
5341         return ret;
5342     }
5343 
5344     if (cmd == (int)TARGET_SIOCGSTAMP_OLD) {
5345         if (copy_to_user_timeval(arg, &tv)) {
5346             return -TARGET_EFAULT;
5347         }
5348     } else {
5349         if (copy_to_user_timeval64(arg, &tv)) {
5350             return -TARGET_EFAULT;
5351         }
5352     }
5353 
5354     return ret;
5355 }
5356 
5357 static abi_long do_ioctl_SIOCGSTAMPNS(const IOCTLEntry *ie, uint8_t *buf_temp,
5358                                       int fd, int cmd, abi_long arg)
5359 {
5360     struct timespec ts;
5361     abi_long ret;
5362 
5363     ret = get_errno(safe_ioctl(fd, SIOCGSTAMPNS, &ts));
5364     if (is_error(ret)) {
5365         return ret;
5366     }
5367 
5368     if (cmd == (int)TARGET_SIOCGSTAMPNS_OLD) {
5369         if (host_to_target_timespec(arg, &ts)) {
5370             return -TARGET_EFAULT;
5371         }
5372     } else{
5373         if (host_to_target_timespec64(arg, &ts)) {
5374             return -TARGET_EFAULT;
5375         }
5376     }
5377 
5378     return ret;
5379 }
5380 
5381 #ifdef TIOCGPTPEER
5382 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp,
5383                                      int fd, int cmd, abi_long arg)
5384 {
5385     int flags = target_to_host_bitmask(arg, fcntl_flags_tbl);
5386     return get_errno(safe_ioctl(fd, ie->host_cmd, flags));
5387 }
5388 #endif
5389 
5390 #ifdef HAVE_DRM_H
5391 
5392 static void unlock_drm_version(struct drm_version *host_ver,
5393                                struct target_drm_version *target_ver,
5394                                bool copy)
5395 {
5396     unlock_user(host_ver->name, target_ver->name,
5397                                 copy ? host_ver->name_len : 0);
5398     unlock_user(host_ver->date, target_ver->date,
5399                                 copy ? host_ver->date_len : 0);
5400     unlock_user(host_ver->desc, target_ver->desc,
5401                                 copy ? host_ver->desc_len : 0);
5402 }
5403 
5404 static inline abi_long target_to_host_drmversion(struct drm_version *host_ver,
5405                                           struct target_drm_version *target_ver)
5406 {
5407     memset(host_ver, 0, sizeof(*host_ver));
5408 
5409     __get_user(host_ver->name_len, &target_ver->name_len);
5410     if (host_ver->name_len) {
5411         host_ver->name = lock_user(VERIFY_WRITE, target_ver->name,
5412                                    target_ver->name_len, 0);
5413         if (!host_ver->name) {
5414             return -EFAULT;
5415         }
5416     }
5417 
5418     __get_user(host_ver->date_len, &target_ver->date_len);
5419     if (host_ver->date_len) {
5420         host_ver->date = lock_user(VERIFY_WRITE, target_ver->date,
5421                                    target_ver->date_len, 0);
5422         if (!host_ver->date) {
5423             goto err;
5424         }
5425     }
5426 
5427     __get_user(host_ver->desc_len, &target_ver->desc_len);
5428     if (host_ver->desc_len) {
5429         host_ver->desc = lock_user(VERIFY_WRITE, target_ver->desc,
5430                                    target_ver->desc_len, 0);
5431         if (!host_ver->desc) {
5432             goto err;
5433         }
5434     }
5435 
5436     return 0;
5437 err:
5438     unlock_drm_version(host_ver, target_ver, false);
5439     return -EFAULT;
5440 }
5441 
5442 static inline void host_to_target_drmversion(
5443                                           struct target_drm_version *target_ver,
5444                                           struct drm_version *host_ver)
5445 {
5446     __put_user(host_ver->version_major, &target_ver->version_major);
5447     __put_user(host_ver->version_minor, &target_ver->version_minor);
5448     __put_user(host_ver->version_patchlevel, &target_ver->version_patchlevel);
5449     __put_user(host_ver->name_len, &target_ver->name_len);
5450     __put_user(host_ver->date_len, &target_ver->date_len);
5451     __put_user(host_ver->desc_len, &target_ver->desc_len);
5452     unlock_drm_version(host_ver, target_ver, true);
5453 }
5454 
5455 static abi_long do_ioctl_drm(const IOCTLEntry *ie, uint8_t *buf_temp,
5456                              int fd, int cmd, abi_long arg)
5457 {
5458     struct drm_version *ver;
5459     struct target_drm_version *target_ver;
5460     abi_long ret;
5461 
5462     switch (ie->host_cmd) {
5463     case DRM_IOCTL_VERSION:
5464         if (!lock_user_struct(VERIFY_WRITE, target_ver, arg, 0)) {
5465             return -TARGET_EFAULT;
5466         }
5467         ver = (struct drm_version *)buf_temp;
5468         ret = target_to_host_drmversion(ver, target_ver);
5469         if (!is_error(ret)) {
5470             ret = get_errno(safe_ioctl(fd, ie->host_cmd, ver));
5471             if (is_error(ret)) {
5472                 unlock_drm_version(ver, target_ver, false);
5473             } else {
5474                 host_to_target_drmversion(target_ver, ver);
5475             }
5476         }
5477         unlock_user_struct(target_ver, arg, 0);
5478         return ret;
5479     }
5480     return -TARGET_ENOSYS;
5481 }
5482 
5483 static abi_long do_ioctl_drm_i915_getparam(const IOCTLEntry *ie,
5484                                            struct drm_i915_getparam *gparam,
5485                                            int fd, abi_long arg)
5486 {
5487     abi_long ret;
5488     int value;
5489     struct target_drm_i915_getparam *target_gparam;
5490 
5491     if (!lock_user_struct(VERIFY_READ, target_gparam, arg, 0)) {
5492         return -TARGET_EFAULT;
5493     }
5494 
5495     __get_user(gparam->param, &target_gparam->param);
5496     gparam->value = &value;
5497     ret = get_errno(safe_ioctl(fd, ie->host_cmd, gparam));
5498     put_user_s32(value, target_gparam->value);
5499 
5500     unlock_user_struct(target_gparam, arg, 0);
5501     return ret;
5502 }
5503 
5504 static abi_long do_ioctl_drm_i915(const IOCTLEntry *ie, uint8_t *buf_temp,
5505                                   int fd, int cmd, abi_long arg)
5506 {
5507     switch (ie->host_cmd) {
5508     case DRM_IOCTL_I915_GETPARAM:
5509         return do_ioctl_drm_i915_getparam(ie,
5510                                           (struct drm_i915_getparam *)buf_temp,
5511                                           fd, arg);
5512     default:
5513         return -TARGET_ENOSYS;
5514     }
5515 }
5516 
5517 #endif
5518 
5519 static abi_long do_ioctl_TUNSETTXFILTER(const IOCTLEntry *ie, uint8_t *buf_temp,
5520                                         int fd, int cmd, abi_long arg)
5521 {
5522     struct tun_filter *filter = (struct tun_filter *)buf_temp;
5523     struct tun_filter *target_filter;
5524     char *target_addr;
5525 
5526     assert(ie->access == IOC_W);
5527 
5528     target_filter = lock_user(VERIFY_READ, arg, sizeof(*target_filter), 1);
5529     if (!target_filter) {
5530         return -TARGET_EFAULT;
5531     }
5532     filter->flags = tswap16(target_filter->flags);
5533     filter->count = tswap16(target_filter->count);
5534     unlock_user(target_filter, arg, 0);
5535 
5536     if (filter->count) {
5537         if (offsetof(struct tun_filter, addr) + filter->count * ETH_ALEN >
5538             MAX_STRUCT_SIZE) {
5539             return -TARGET_EFAULT;
5540         }
5541 
5542         target_addr = lock_user(VERIFY_READ,
5543                                 arg + offsetof(struct tun_filter, addr),
5544                                 filter->count * ETH_ALEN, 1);
5545         if (!target_addr) {
5546             return -TARGET_EFAULT;
5547         }
5548         memcpy(filter->addr, target_addr, filter->count * ETH_ALEN);
5549         unlock_user(target_addr, arg + offsetof(struct tun_filter, addr), 0);
5550     }
5551 
5552     return get_errno(safe_ioctl(fd, ie->host_cmd, filter));
5553 }
5554 
5555 IOCTLEntry ioctl_entries[] = {
5556 #define IOCTL(cmd, access, ...) \
5557     { TARGET_ ## cmd, cmd, #cmd, access, 0, {  __VA_ARGS__ } },
5558 #define IOCTL_SPECIAL(cmd, access, dofn, ...)                      \
5559     { TARGET_ ## cmd, cmd, #cmd, access, dofn, {  __VA_ARGS__ } },
5560 #define IOCTL_IGNORE(cmd) \
5561     { TARGET_ ## cmd, 0, #cmd },
5562 #include "ioctls.h"
5563     { 0, 0, },
5564 };
5565 
5566 /* ??? Implement proper locking for ioctls.  */
5567 /* do_ioctl() Must return target values and target errnos. */
5568 static abi_long do_ioctl(int fd, int cmd, abi_long arg)
5569 {
5570     const IOCTLEntry *ie;
5571     const argtype *arg_type;
5572     abi_long ret;
5573     uint8_t buf_temp[MAX_STRUCT_SIZE];
5574     int target_size;
5575     void *argptr;
5576 
5577     ie = ioctl_entries;
5578     for(;;) {
5579         if (ie->target_cmd == 0) {
5580             qemu_log_mask(
5581                 LOG_UNIMP, "Unsupported ioctl: cmd=0x%04lx\n", (long)cmd);
5582             return -TARGET_ENOTTY;
5583         }
5584         if (ie->target_cmd == cmd)
5585             break;
5586         ie++;
5587     }
5588     arg_type = ie->arg_type;
5589     if (ie->do_ioctl) {
5590         return ie->do_ioctl(ie, buf_temp, fd, cmd, arg);
5591     } else if (!ie->host_cmd) {
5592         /* Some architectures define BSD ioctls in their headers
5593            that are not implemented in Linux.  */
5594         return -TARGET_ENOTTY;
5595     }
5596 
5597     switch(arg_type[0]) {
5598     case TYPE_NULL:
5599         /* no argument */
5600         ret = get_errno(safe_ioctl(fd, ie->host_cmd));
5601         break;
5602     case TYPE_PTRVOID:
5603     case TYPE_INT:
5604     case TYPE_LONG:
5605     case TYPE_ULONG:
5606         ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg));
5607         break;
5608     case TYPE_PTR:
5609         arg_type++;
5610         target_size = thunk_type_size(arg_type, 0);
5611         switch(ie->access) {
5612         case IOC_R:
5613             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5614             if (!is_error(ret)) {
5615                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5616                 if (!argptr)
5617                     return -TARGET_EFAULT;
5618                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5619                 unlock_user(argptr, arg, target_size);
5620             }
5621             break;
5622         case IOC_W:
5623             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5624             if (!argptr)
5625                 return -TARGET_EFAULT;
5626             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5627             unlock_user(argptr, arg, 0);
5628             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5629             break;
5630         default:
5631         case IOC_RW:
5632             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5633             if (!argptr)
5634                 return -TARGET_EFAULT;
5635             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5636             unlock_user(argptr, arg, 0);
5637             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5638             if (!is_error(ret)) {
5639                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5640                 if (!argptr)
5641                     return -TARGET_EFAULT;
5642                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5643                 unlock_user(argptr, arg, target_size);
5644             }
5645             break;
5646         }
5647         break;
5648     default:
5649         qemu_log_mask(LOG_UNIMP,
5650                       "Unsupported ioctl type: cmd=0x%04lx type=%d\n",
5651                       (long)cmd, arg_type[0]);
5652         ret = -TARGET_ENOTTY;
5653         break;
5654     }
5655     return ret;
5656 }
5657 
5658 static const bitmask_transtbl iflag_tbl[] = {
5659         { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK },
5660         { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT },
5661         { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR },
5662         { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK },
5663         { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK },
5664         { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP },
5665         { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR },
5666         { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR },
5667         { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL },
5668         { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC },
5669         { TARGET_IXON, TARGET_IXON, IXON, IXON },
5670         { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY },
5671         { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF },
5672         { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL },
5673         { TARGET_IUTF8, TARGET_IUTF8, IUTF8, IUTF8},
5674 };
5675 
5676 static const bitmask_transtbl oflag_tbl[] = {
5677 	{ TARGET_OPOST, TARGET_OPOST, OPOST, OPOST },
5678 	{ TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC },
5679 	{ TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR },
5680 	{ TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL },
5681 	{ TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR },
5682 	{ TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET },
5683 	{ TARGET_OFILL, TARGET_OFILL, OFILL, OFILL },
5684 	{ TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL },
5685 	{ TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 },
5686 	{ TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 },
5687 	{ TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 },
5688 	{ TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 },
5689 	{ TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 },
5690 	{ TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 },
5691 	{ TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 },
5692 	{ TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 },
5693 	{ TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 },
5694 	{ TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 },
5695 	{ TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 },
5696 	{ TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 },
5697 	{ TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 },
5698 	{ TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 },
5699 	{ TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 },
5700 	{ TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 },
5701 };
5702 
5703 static const bitmask_transtbl cflag_tbl[] = {
5704 	{ TARGET_CBAUD, TARGET_B0, CBAUD, B0 },
5705 	{ TARGET_CBAUD, TARGET_B50, CBAUD, B50 },
5706 	{ TARGET_CBAUD, TARGET_B75, CBAUD, B75 },
5707 	{ TARGET_CBAUD, TARGET_B110, CBAUD, B110 },
5708 	{ TARGET_CBAUD, TARGET_B134, CBAUD, B134 },
5709 	{ TARGET_CBAUD, TARGET_B150, CBAUD, B150 },
5710 	{ TARGET_CBAUD, TARGET_B200, CBAUD, B200 },
5711 	{ TARGET_CBAUD, TARGET_B300, CBAUD, B300 },
5712 	{ TARGET_CBAUD, TARGET_B600, CBAUD, B600 },
5713 	{ TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 },
5714 	{ TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 },
5715 	{ TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 },
5716 	{ TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 },
5717 	{ TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 },
5718 	{ TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 },
5719 	{ TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 },
5720 	{ TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 },
5721 	{ TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 },
5722 	{ TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 },
5723 	{ TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 },
5724 	{ TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 },
5725 	{ TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 },
5726 	{ TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 },
5727 	{ TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 },
5728 	{ TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB },
5729 	{ TARGET_CREAD, TARGET_CREAD, CREAD, CREAD },
5730 	{ TARGET_PARENB, TARGET_PARENB, PARENB, PARENB },
5731 	{ TARGET_PARODD, TARGET_PARODD, PARODD, PARODD },
5732 	{ TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL },
5733 	{ TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL },
5734 	{ TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS },
5735 };
5736 
5737 static const bitmask_transtbl lflag_tbl[] = {
5738   { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG },
5739   { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON },
5740   { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE },
5741   { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO },
5742   { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE },
5743   { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK },
5744   { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL },
5745   { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH },
5746   { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP },
5747   { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL },
5748   { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT },
5749   { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE },
5750   { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO },
5751   { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN },
5752   { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN },
5753   { TARGET_EXTPROC, TARGET_EXTPROC, EXTPROC, EXTPROC},
5754 };
5755 
5756 static void target_to_host_termios (void *dst, const void *src)
5757 {
5758     struct host_termios *host = dst;
5759     const struct target_termios *target = src;
5760 
5761     host->c_iflag =
5762         target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl);
5763     host->c_oflag =
5764         target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl);
5765     host->c_cflag =
5766         target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl);
5767     host->c_lflag =
5768         target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl);
5769     host->c_line = target->c_line;
5770 
5771     memset(host->c_cc, 0, sizeof(host->c_cc));
5772     host->c_cc[VINTR] = target->c_cc[TARGET_VINTR];
5773     host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT];
5774     host->c_cc[VERASE] = target->c_cc[TARGET_VERASE];
5775     host->c_cc[VKILL] = target->c_cc[TARGET_VKILL];
5776     host->c_cc[VEOF] = target->c_cc[TARGET_VEOF];
5777     host->c_cc[VTIME] = target->c_cc[TARGET_VTIME];
5778     host->c_cc[VMIN] = target->c_cc[TARGET_VMIN];
5779     host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC];
5780     host->c_cc[VSTART] = target->c_cc[TARGET_VSTART];
5781     host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP];
5782     host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP];
5783     host->c_cc[VEOL] = target->c_cc[TARGET_VEOL];
5784     host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT];
5785     host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD];
5786     host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE];
5787     host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT];
5788     host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2];
5789 }
5790 
5791 static void host_to_target_termios (void *dst, const void *src)
5792 {
5793     struct target_termios *target = dst;
5794     const struct host_termios *host = src;
5795 
5796     target->c_iflag =
5797         tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl));
5798     target->c_oflag =
5799         tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl));
5800     target->c_cflag =
5801         tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl));
5802     target->c_lflag =
5803         tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl));
5804     target->c_line = host->c_line;
5805 
5806     memset(target->c_cc, 0, sizeof(target->c_cc));
5807     target->c_cc[TARGET_VINTR] = host->c_cc[VINTR];
5808     target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT];
5809     target->c_cc[TARGET_VERASE] = host->c_cc[VERASE];
5810     target->c_cc[TARGET_VKILL] = host->c_cc[VKILL];
5811     target->c_cc[TARGET_VEOF] = host->c_cc[VEOF];
5812     target->c_cc[TARGET_VTIME] = host->c_cc[VTIME];
5813     target->c_cc[TARGET_VMIN] = host->c_cc[VMIN];
5814     target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC];
5815     target->c_cc[TARGET_VSTART] = host->c_cc[VSTART];
5816     target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP];
5817     target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP];
5818     target->c_cc[TARGET_VEOL] = host->c_cc[VEOL];
5819     target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT];
5820     target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD];
5821     target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE];
5822     target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT];
5823     target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2];
5824 }
5825 
5826 static const StructEntry struct_termios_def = {
5827     .convert = { host_to_target_termios, target_to_host_termios },
5828     .size = { sizeof(struct target_termios), sizeof(struct host_termios) },
5829     .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) },
5830     .print = print_termios,
5831 };
5832 
5833 /* If the host does not provide these bits, they may be safely discarded. */
5834 #ifndef MAP_SYNC
5835 #define MAP_SYNC 0
5836 #endif
5837 #ifndef MAP_UNINITIALIZED
5838 #define MAP_UNINITIALIZED 0
5839 #endif
5840 
5841 static const bitmask_transtbl mmap_flags_tbl[] = {
5842     { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED },
5843     { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS,
5844       MAP_ANONYMOUS, MAP_ANONYMOUS },
5845     { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN,
5846       MAP_GROWSDOWN, MAP_GROWSDOWN },
5847     { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE,
5848       MAP_DENYWRITE, MAP_DENYWRITE },
5849     { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE,
5850       MAP_EXECUTABLE, MAP_EXECUTABLE },
5851     { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED },
5852     { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE,
5853       MAP_NORESERVE, MAP_NORESERVE },
5854     { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB },
5855     /* MAP_STACK had been ignored by the kernel for quite some time.
5856        Recognize it for the target insofar as we do not want to pass
5857        it through to the host.  */
5858     { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 },
5859     { TARGET_MAP_NONBLOCK, TARGET_MAP_NONBLOCK, MAP_NONBLOCK, MAP_NONBLOCK },
5860     { TARGET_MAP_POPULATE, TARGET_MAP_POPULATE, MAP_POPULATE, MAP_POPULATE },
5861     { TARGET_MAP_FIXED_NOREPLACE, TARGET_MAP_FIXED_NOREPLACE,
5862       MAP_FIXED_NOREPLACE, MAP_FIXED_NOREPLACE },
5863     { TARGET_MAP_UNINITIALIZED, TARGET_MAP_UNINITIALIZED,
5864       MAP_UNINITIALIZED, MAP_UNINITIALIZED },
5865 };
5866 
5867 /*
5868  * Arrange for legacy / undefined architecture specific flags to be
5869  * ignored by mmap handling code.
5870  */
5871 #ifndef TARGET_MAP_32BIT
5872 #define TARGET_MAP_32BIT 0
5873 #endif
5874 #ifndef TARGET_MAP_HUGE_2MB
5875 #define TARGET_MAP_HUGE_2MB 0
5876 #endif
5877 #ifndef TARGET_MAP_HUGE_1GB
5878 #define TARGET_MAP_HUGE_1GB 0
5879 #endif
5880 
5881 static abi_long do_mmap(abi_ulong addr, abi_ulong len, int prot,
5882                         int target_flags, int fd, off_t offset)
5883 {
5884     /*
5885      * The historical set of flags that all mmap types implicitly support.
5886      */
5887     enum {
5888         TARGET_LEGACY_MAP_MASK = TARGET_MAP_SHARED
5889                                | TARGET_MAP_PRIVATE
5890                                | TARGET_MAP_FIXED
5891                                | TARGET_MAP_ANONYMOUS
5892                                | TARGET_MAP_DENYWRITE
5893                                | TARGET_MAP_EXECUTABLE
5894                                | TARGET_MAP_UNINITIALIZED
5895                                | TARGET_MAP_GROWSDOWN
5896                                | TARGET_MAP_LOCKED
5897                                | TARGET_MAP_NORESERVE
5898                                | TARGET_MAP_POPULATE
5899                                | TARGET_MAP_NONBLOCK
5900                                | TARGET_MAP_STACK
5901                                | TARGET_MAP_HUGETLB
5902                                | TARGET_MAP_32BIT
5903                                | TARGET_MAP_HUGE_2MB
5904                                | TARGET_MAP_HUGE_1GB
5905     };
5906     int host_flags;
5907 
5908     switch (target_flags & TARGET_MAP_TYPE) {
5909     case TARGET_MAP_PRIVATE:
5910         host_flags = MAP_PRIVATE;
5911         break;
5912     case TARGET_MAP_SHARED:
5913         host_flags = MAP_SHARED;
5914         break;
5915     case TARGET_MAP_SHARED_VALIDATE:
5916         /*
5917          * MAP_SYNC is only supported for MAP_SHARED_VALIDATE, and is
5918          * therefore omitted from mmap_flags_tbl and TARGET_LEGACY_MAP_MASK.
5919          */
5920         if (target_flags & ~(TARGET_LEGACY_MAP_MASK | TARGET_MAP_SYNC)) {
5921             return -TARGET_EOPNOTSUPP;
5922         }
5923         host_flags = MAP_SHARED_VALIDATE;
5924         if (target_flags & TARGET_MAP_SYNC) {
5925             host_flags |= MAP_SYNC;
5926         }
5927         break;
5928     default:
5929         return -TARGET_EINVAL;
5930     }
5931     host_flags |= target_to_host_bitmask(target_flags, mmap_flags_tbl);
5932 
5933     return get_errno(target_mmap(addr, len, prot, host_flags, fd, offset));
5934 }
5935 
5936 /*
5937  * NOTE: TARGET_ABI32 is defined for TARGET_I386 (but not for TARGET_X86_64)
5938  *       TARGET_I386 is defined if TARGET_X86_64 is defined
5939  */
5940 #if defined(TARGET_I386)
5941 
5942 /* NOTE: there is really one LDT for all the threads */
5943 static uint8_t *ldt_table;
5944 
5945 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount)
5946 {
5947     int size;
5948     void *p;
5949 
5950     if (!ldt_table)
5951         return 0;
5952     size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE;
5953     if (size > bytecount)
5954         size = bytecount;
5955     p = lock_user(VERIFY_WRITE, ptr, size, 0);
5956     if (!p)
5957         return -TARGET_EFAULT;
5958     /* ??? Should this by byteswapped?  */
5959     memcpy(p, ldt_table, size);
5960     unlock_user(p, ptr, size);
5961     return size;
5962 }
5963 
5964 /* XXX: add locking support */
5965 static abi_long write_ldt(CPUX86State *env,
5966                           abi_ulong ptr, unsigned long bytecount, int oldmode)
5967 {
5968     struct target_modify_ldt_ldt_s ldt_info;
5969     struct target_modify_ldt_ldt_s *target_ldt_info;
5970     int seg_32bit, contents, read_exec_only, limit_in_pages;
5971     int seg_not_present, useable, lm;
5972     uint32_t *lp, entry_1, entry_2;
5973 
5974     if (bytecount != sizeof(ldt_info))
5975         return -TARGET_EINVAL;
5976     if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1))
5977         return -TARGET_EFAULT;
5978     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
5979     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
5980     ldt_info.limit = tswap32(target_ldt_info->limit);
5981     ldt_info.flags = tswap32(target_ldt_info->flags);
5982     unlock_user_struct(target_ldt_info, ptr, 0);
5983 
5984     if (ldt_info.entry_number >= TARGET_LDT_ENTRIES)
5985         return -TARGET_EINVAL;
5986     seg_32bit = ldt_info.flags & 1;
5987     contents = (ldt_info.flags >> 1) & 3;
5988     read_exec_only = (ldt_info.flags >> 3) & 1;
5989     limit_in_pages = (ldt_info.flags >> 4) & 1;
5990     seg_not_present = (ldt_info.flags >> 5) & 1;
5991     useable = (ldt_info.flags >> 6) & 1;
5992 #ifdef TARGET_ABI32
5993     lm = 0;
5994 #else
5995     lm = (ldt_info.flags >> 7) & 1;
5996 #endif
5997     if (contents == 3) {
5998         if (oldmode)
5999             return -TARGET_EINVAL;
6000         if (seg_not_present == 0)
6001             return -TARGET_EINVAL;
6002     }
6003     /* allocate the LDT */
6004     if (!ldt_table) {
6005         env->ldt.base = target_mmap(0,
6006                                     TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE,
6007                                     PROT_READ|PROT_WRITE,
6008                                     MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
6009         if (env->ldt.base == -1)
6010             return -TARGET_ENOMEM;
6011         memset(g2h_untagged(env->ldt.base), 0,
6012                TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE);
6013         env->ldt.limit = 0xffff;
6014         ldt_table = g2h_untagged(env->ldt.base);
6015     }
6016 
6017     /* NOTE: same code as Linux kernel */
6018     /* Allow LDTs to be cleared by the user. */
6019     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6020         if (oldmode ||
6021             (contents == 0		&&
6022              read_exec_only == 1	&&
6023              seg_32bit == 0		&&
6024              limit_in_pages == 0	&&
6025              seg_not_present == 1	&&
6026              useable == 0 )) {
6027             entry_1 = 0;
6028             entry_2 = 0;
6029             goto install;
6030         }
6031     }
6032 
6033     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6034         (ldt_info.limit & 0x0ffff);
6035     entry_2 = (ldt_info.base_addr & 0xff000000) |
6036         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6037         (ldt_info.limit & 0xf0000) |
6038         ((read_exec_only ^ 1) << 9) |
6039         (contents << 10) |
6040         ((seg_not_present ^ 1) << 15) |
6041         (seg_32bit << 22) |
6042         (limit_in_pages << 23) |
6043         (lm << 21) |
6044         0x7000;
6045     if (!oldmode)
6046         entry_2 |= (useable << 20);
6047 
6048     /* Install the new entry ...  */
6049 install:
6050     lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3));
6051     lp[0] = tswap32(entry_1);
6052     lp[1] = tswap32(entry_2);
6053     return 0;
6054 }
6055 
6056 /* specific and weird i386 syscalls */
6057 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr,
6058                               unsigned long bytecount)
6059 {
6060     abi_long ret;
6061 
6062     switch (func) {
6063     case 0:
6064         ret = read_ldt(ptr, bytecount);
6065         break;
6066     case 1:
6067         ret = write_ldt(env, ptr, bytecount, 1);
6068         break;
6069     case 0x11:
6070         ret = write_ldt(env, ptr, bytecount, 0);
6071         break;
6072     default:
6073         ret = -TARGET_ENOSYS;
6074         break;
6075     }
6076     return ret;
6077 }
6078 
6079 #if defined(TARGET_ABI32)
6080 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr)
6081 {
6082     uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6083     struct target_modify_ldt_ldt_s ldt_info;
6084     struct target_modify_ldt_ldt_s *target_ldt_info;
6085     int seg_32bit, contents, read_exec_only, limit_in_pages;
6086     int seg_not_present, useable, lm;
6087     uint32_t *lp, entry_1, entry_2;
6088     int i;
6089 
6090     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6091     if (!target_ldt_info)
6092         return -TARGET_EFAULT;
6093     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
6094     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
6095     ldt_info.limit = tswap32(target_ldt_info->limit);
6096     ldt_info.flags = tswap32(target_ldt_info->flags);
6097     if (ldt_info.entry_number == -1) {
6098         for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) {
6099             if (gdt_table[i] == 0) {
6100                 ldt_info.entry_number = i;
6101                 target_ldt_info->entry_number = tswap32(i);
6102                 break;
6103             }
6104         }
6105     }
6106     unlock_user_struct(target_ldt_info, ptr, 1);
6107 
6108     if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN ||
6109         ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX)
6110            return -TARGET_EINVAL;
6111     seg_32bit = ldt_info.flags & 1;
6112     contents = (ldt_info.flags >> 1) & 3;
6113     read_exec_only = (ldt_info.flags >> 3) & 1;
6114     limit_in_pages = (ldt_info.flags >> 4) & 1;
6115     seg_not_present = (ldt_info.flags >> 5) & 1;
6116     useable = (ldt_info.flags >> 6) & 1;
6117 #ifdef TARGET_ABI32
6118     lm = 0;
6119 #else
6120     lm = (ldt_info.flags >> 7) & 1;
6121 #endif
6122 
6123     if (contents == 3) {
6124         if (seg_not_present == 0)
6125             return -TARGET_EINVAL;
6126     }
6127 
6128     /* NOTE: same code as Linux kernel */
6129     /* Allow LDTs to be cleared by the user. */
6130     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6131         if ((contents == 0             &&
6132              read_exec_only == 1       &&
6133              seg_32bit == 0            &&
6134              limit_in_pages == 0       &&
6135              seg_not_present == 1      &&
6136              useable == 0 )) {
6137             entry_1 = 0;
6138             entry_2 = 0;
6139             goto install;
6140         }
6141     }
6142 
6143     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6144         (ldt_info.limit & 0x0ffff);
6145     entry_2 = (ldt_info.base_addr & 0xff000000) |
6146         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6147         (ldt_info.limit & 0xf0000) |
6148         ((read_exec_only ^ 1) << 9) |
6149         (contents << 10) |
6150         ((seg_not_present ^ 1) << 15) |
6151         (seg_32bit << 22) |
6152         (limit_in_pages << 23) |
6153         (useable << 20) |
6154         (lm << 21) |
6155         0x7000;
6156 
6157     /* Install the new entry ...  */
6158 install:
6159     lp = (uint32_t *)(gdt_table + ldt_info.entry_number);
6160     lp[0] = tswap32(entry_1);
6161     lp[1] = tswap32(entry_2);
6162     return 0;
6163 }
6164 
6165 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr)
6166 {
6167     struct target_modify_ldt_ldt_s *target_ldt_info;
6168     uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6169     uint32_t base_addr, limit, flags;
6170     int seg_32bit, contents, read_exec_only, limit_in_pages, idx;
6171     int seg_not_present, useable, lm;
6172     uint32_t *lp, entry_1, entry_2;
6173 
6174     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6175     if (!target_ldt_info)
6176         return -TARGET_EFAULT;
6177     idx = tswap32(target_ldt_info->entry_number);
6178     if (idx < TARGET_GDT_ENTRY_TLS_MIN ||
6179         idx > TARGET_GDT_ENTRY_TLS_MAX) {
6180         unlock_user_struct(target_ldt_info, ptr, 1);
6181         return -TARGET_EINVAL;
6182     }
6183     lp = (uint32_t *)(gdt_table + idx);
6184     entry_1 = tswap32(lp[0]);
6185     entry_2 = tswap32(lp[1]);
6186 
6187     read_exec_only = ((entry_2 >> 9) & 1) ^ 1;
6188     contents = (entry_2 >> 10) & 3;
6189     seg_not_present = ((entry_2 >> 15) & 1) ^ 1;
6190     seg_32bit = (entry_2 >> 22) & 1;
6191     limit_in_pages = (entry_2 >> 23) & 1;
6192     useable = (entry_2 >> 20) & 1;
6193 #ifdef TARGET_ABI32
6194     lm = 0;
6195 #else
6196     lm = (entry_2 >> 21) & 1;
6197 #endif
6198     flags = (seg_32bit << 0) | (contents << 1) |
6199         (read_exec_only << 3) | (limit_in_pages << 4) |
6200         (seg_not_present << 5) | (useable << 6) | (lm << 7);
6201     limit = (entry_1 & 0xffff) | (entry_2  & 0xf0000);
6202     base_addr = (entry_1 >> 16) |
6203         (entry_2 & 0xff000000) |
6204         ((entry_2 & 0xff) << 16);
6205     target_ldt_info->base_addr = tswapal(base_addr);
6206     target_ldt_info->limit = tswap32(limit);
6207     target_ldt_info->flags = tswap32(flags);
6208     unlock_user_struct(target_ldt_info, ptr, 1);
6209     return 0;
6210 }
6211 
6212 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6213 {
6214     return -TARGET_ENOSYS;
6215 }
6216 #else
6217 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6218 {
6219     abi_long ret = 0;
6220     abi_ulong val;
6221     int idx;
6222 
6223     switch(code) {
6224     case TARGET_ARCH_SET_GS:
6225     case TARGET_ARCH_SET_FS:
6226         if (code == TARGET_ARCH_SET_GS)
6227             idx = R_GS;
6228         else
6229             idx = R_FS;
6230         cpu_x86_load_seg(env, idx, 0);
6231         env->segs[idx].base = addr;
6232         break;
6233     case TARGET_ARCH_GET_GS:
6234     case TARGET_ARCH_GET_FS:
6235         if (code == TARGET_ARCH_GET_GS)
6236             idx = R_GS;
6237         else
6238             idx = R_FS;
6239         val = env->segs[idx].base;
6240         if (put_user(val, addr, abi_ulong))
6241             ret = -TARGET_EFAULT;
6242         break;
6243     default:
6244         ret = -TARGET_EINVAL;
6245         break;
6246     }
6247     return ret;
6248 }
6249 #endif /* defined(TARGET_ABI32 */
6250 #endif /* defined(TARGET_I386) */
6251 
6252 /*
6253  * These constants are generic.  Supply any that are missing from the host.
6254  */
6255 #ifndef PR_SET_NAME
6256 # define PR_SET_NAME    15
6257 # define PR_GET_NAME    16
6258 #endif
6259 #ifndef PR_SET_FP_MODE
6260 # define PR_SET_FP_MODE 45
6261 # define PR_GET_FP_MODE 46
6262 # define PR_FP_MODE_FR   (1 << 0)
6263 # define PR_FP_MODE_FRE  (1 << 1)
6264 #endif
6265 #ifndef PR_SVE_SET_VL
6266 # define PR_SVE_SET_VL  50
6267 # define PR_SVE_GET_VL  51
6268 # define PR_SVE_VL_LEN_MASK  0xffff
6269 # define PR_SVE_VL_INHERIT   (1 << 17)
6270 #endif
6271 #ifndef PR_PAC_RESET_KEYS
6272 # define PR_PAC_RESET_KEYS  54
6273 # define PR_PAC_APIAKEY   (1 << 0)
6274 # define PR_PAC_APIBKEY   (1 << 1)
6275 # define PR_PAC_APDAKEY   (1 << 2)
6276 # define PR_PAC_APDBKEY   (1 << 3)
6277 # define PR_PAC_APGAKEY   (1 << 4)
6278 #endif
6279 #ifndef PR_SET_TAGGED_ADDR_CTRL
6280 # define PR_SET_TAGGED_ADDR_CTRL 55
6281 # define PR_GET_TAGGED_ADDR_CTRL 56
6282 # define PR_TAGGED_ADDR_ENABLE  (1UL << 0)
6283 #endif
6284 #ifndef PR_SET_IO_FLUSHER
6285 # define PR_SET_IO_FLUSHER 57
6286 # define PR_GET_IO_FLUSHER 58
6287 #endif
6288 #ifndef PR_SET_SYSCALL_USER_DISPATCH
6289 # define PR_SET_SYSCALL_USER_DISPATCH 59
6290 #endif
6291 #ifndef PR_SME_SET_VL
6292 # define PR_SME_SET_VL  63
6293 # define PR_SME_GET_VL  64
6294 # define PR_SME_VL_LEN_MASK  0xffff
6295 # define PR_SME_VL_INHERIT   (1 << 17)
6296 #endif
6297 
6298 #include "target_prctl.h"
6299 
6300 static abi_long do_prctl_inval0(CPUArchState *env)
6301 {
6302     return -TARGET_EINVAL;
6303 }
6304 
6305 static abi_long do_prctl_inval1(CPUArchState *env, abi_long arg2)
6306 {
6307     return -TARGET_EINVAL;
6308 }
6309 
6310 #ifndef do_prctl_get_fp_mode
6311 #define do_prctl_get_fp_mode do_prctl_inval0
6312 #endif
6313 #ifndef do_prctl_set_fp_mode
6314 #define do_prctl_set_fp_mode do_prctl_inval1
6315 #endif
6316 #ifndef do_prctl_sve_get_vl
6317 #define do_prctl_sve_get_vl do_prctl_inval0
6318 #endif
6319 #ifndef do_prctl_sve_set_vl
6320 #define do_prctl_sve_set_vl do_prctl_inval1
6321 #endif
6322 #ifndef do_prctl_reset_keys
6323 #define do_prctl_reset_keys do_prctl_inval1
6324 #endif
6325 #ifndef do_prctl_set_tagged_addr_ctrl
6326 #define do_prctl_set_tagged_addr_ctrl do_prctl_inval1
6327 #endif
6328 #ifndef do_prctl_get_tagged_addr_ctrl
6329 #define do_prctl_get_tagged_addr_ctrl do_prctl_inval0
6330 #endif
6331 #ifndef do_prctl_get_unalign
6332 #define do_prctl_get_unalign do_prctl_inval1
6333 #endif
6334 #ifndef do_prctl_set_unalign
6335 #define do_prctl_set_unalign do_prctl_inval1
6336 #endif
6337 #ifndef do_prctl_sme_get_vl
6338 #define do_prctl_sme_get_vl do_prctl_inval0
6339 #endif
6340 #ifndef do_prctl_sme_set_vl
6341 #define do_prctl_sme_set_vl do_prctl_inval1
6342 #endif
6343 
6344 static abi_long do_prctl(CPUArchState *env, abi_long option, abi_long arg2,
6345                          abi_long arg3, abi_long arg4, abi_long arg5)
6346 {
6347     abi_long ret;
6348 
6349     switch (option) {
6350     case PR_GET_PDEATHSIG:
6351         {
6352             int deathsig;
6353             ret = get_errno(prctl(PR_GET_PDEATHSIG, &deathsig,
6354                                   arg3, arg4, arg5));
6355             if (!is_error(ret) &&
6356                 put_user_s32(host_to_target_signal(deathsig), arg2)) {
6357                 return -TARGET_EFAULT;
6358             }
6359             return ret;
6360         }
6361     case PR_SET_PDEATHSIG:
6362         return get_errno(prctl(PR_SET_PDEATHSIG, target_to_host_signal(arg2),
6363                                arg3, arg4, arg5));
6364     case PR_GET_NAME:
6365         {
6366             void *name = lock_user(VERIFY_WRITE, arg2, 16, 1);
6367             if (!name) {
6368                 return -TARGET_EFAULT;
6369             }
6370             ret = get_errno(prctl(PR_GET_NAME, (uintptr_t)name,
6371                                   arg3, arg4, arg5));
6372             unlock_user(name, arg2, 16);
6373             return ret;
6374         }
6375     case PR_SET_NAME:
6376         {
6377             void *name = lock_user(VERIFY_READ, arg2, 16, 1);
6378             if (!name) {
6379                 return -TARGET_EFAULT;
6380             }
6381             ret = get_errno(prctl(PR_SET_NAME, (uintptr_t)name,
6382                                   arg3, arg4, arg5));
6383             unlock_user(name, arg2, 0);
6384             return ret;
6385         }
6386     case PR_GET_FP_MODE:
6387         return do_prctl_get_fp_mode(env);
6388     case PR_SET_FP_MODE:
6389         return do_prctl_set_fp_mode(env, arg2);
6390     case PR_SVE_GET_VL:
6391         return do_prctl_sve_get_vl(env);
6392     case PR_SVE_SET_VL:
6393         return do_prctl_sve_set_vl(env, arg2);
6394     case PR_SME_GET_VL:
6395         return do_prctl_sme_get_vl(env);
6396     case PR_SME_SET_VL:
6397         return do_prctl_sme_set_vl(env, arg2);
6398     case PR_PAC_RESET_KEYS:
6399         if (arg3 || arg4 || arg5) {
6400             return -TARGET_EINVAL;
6401         }
6402         return do_prctl_reset_keys(env, arg2);
6403     case PR_SET_TAGGED_ADDR_CTRL:
6404         if (arg3 || arg4 || arg5) {
6405             return -TARGET_EINVAL;
6406         }
6407         return do_prctl_set_tagged_addr_ctrl(env, arg2);
6408     case PR_GET_TAGGED_ADDR_CTRL:
6409         if (arg2 || arg3 || arg4 || arg5) {
6410             return -TARGET_EINVAL;
6411         }
6412         return do_prctl_get_tagged_addr_ctrl(env);
6413 
6414     case PR_GET_UNALIGN:
6415         return do_prctl_get_unalign(env, arg2);
6416     case PR_SET_UNALIGN:
6417         return do_prctl_set_unalign(env, arg2);
6418 
6419     case PR_CAP_AMBIENT:
6420     case PR_CAPBSET_READ:
6421     case PR_CAPBSET_DROP:
6422     case PR_GET_DUMPABLE:
6423     case PR_SET_DUMPABLE:
6424     case PR_GET_KEEPCAPS:
6425     case PR_SET_KEEPCAPS:
6426     case PR_GET_SECUREBITS:
6427     case PR_SET_SECUREBITS:
6428     case PR_GET_TIMING:
6429     case PR_SET_TIMING:
6430     case PR_GET_TIMERSLACK:
6431     case PR_SET_TIMERSLACK:
6432     case PR_MCE_KILL:
6433     case PR_MCE_KILL_GET:
6434     case PR_GET_NO_NEW_PRIVS:
6435     case PR_SET_NO_NEW_PRIVS:
6436     case PR_GET_IO_FLUSHER:
6437     case PR_SET_IO_FLUSHER:
6438     case PR_SET_CHILD_SUBREAPER:
6439     case PR_GET_SPECULATION_CTRL:
6440     case PR_SET_SPECULATION_CTRL:
6441         /* Some prctl options have no pointer arguments and we can pass on. */
6442         return get_errno(prctl(option, arg2, arg3, arg4, arg5));
6443 
6444     case PR_GET_CHILD_SUBREAPER:
6445         {
6446             int val;
6447             ret = get_errno(prctl(PR_GET_CHILD_SUBREAPER, &val,
6448                                   arg3, arg4, arg5));
6449             if (!is_error(ret) && put_user_s32(val, arg2)) {
6450                 return -TARGET_EFAULT;
6451             }
6452             return ret;
6453         }
6454 
6455     case PR_GET_TID_ADDRESS:
6456         {
6457             TaskState *ts = get_task_state(env_cpu(env));
6458             return put_user_ual(ts->child_tidptr, arg2);
6459         }
6460 
6461     case PR_GET_FPEXC:
6462     case PR_SET_FPEXC:
6463         /* Was used for SPE on PowerPC. */
6464         return -TARGET_EINVAL;
6465 
6466     case PR_GET_ENDIAN:
6467     case PR_SET_ENDIAN:
6468     case PR_GET_FPEMU:
6469     case PR_SET_FPEMU:
6470     case PR_SET_MM:
6471     case PR_GET_SECCOMP:
6472     case PR_SET_SECCOMP:
6473     case PR_SET_SYSCALL_USER_DISPATCH:
6474     case PR_GET_THP_DISABLE:
6475     case PR_SET_THP_DISABLE:
6476     case PR_GET_TSC:
6477     case PR_SET_TSC:
6478         /* Disable to prevent the target disabling stuff we need. */
6479         return -TARGET_EINVAL;
6480 
6481     default:
6482         qemu_log_mask(LOG_UNIMP, "Unsupported prctl: " TARGET_ABI_FMT_ld "\n",
6483                       option);
6484         return -TARGET_EINVAL;
6485     }
6486 }
6487 
6488 #define NEW_STACK_SIZE 0x40000
6489 
6490 
6491 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER;
6492 typedef struct {
6493     CPUArchState *env;
6494     pthread_mutex_t mutex;
6495     pthread_cond_t cond;
6496     pthread_t thread;
6497     uint32_t tid;
6498     abi_ulong child_tidptr;
6499     abi_ulong parent_tidptr;
6500     sigset_t sigmask;
6501 } new_thread_info;
6502 
6503 static void *clone_func(void *arg)
6504 {
6505     new_thread_info *info = arg;
6506     CPUArchState *env;
6507     CPUState *cpu;
6508     TaskState *ts;
6509 
6510     rcu_register_thread();
6511     tcg_register_thread();
6512     env = info->env;
6513     cpu = env_cpu(env);
6514     thread_cpu = cpu;
6515     ts = get_task_state(cpu);
6516     info->tid = sys_gettid();
6517     task_settid(ts);
6518     if (info->child_tidptr)
6519         put_user_u32(info->tid, info->child_tidptr);
6520     if (info->parent_tidptr)
6521         put_user_u32(info->tid, info->parent_tidptr);
6522     qemu_guest_random_seed_thread_part2(cpu->random_seed);
6523     /* Enable signals.  */
6524     sigprocmask(SIG_SETMASK, &info->sigmask, NULL);
6525     /* Signal to the parent that we're ready.  */
6526     pthread_mutex_lock(&info->mutex);
6527     pthread_cond_broadcast(&info->cond);
6528     pthread_mutex_unlock(&info->mutex);
6529     /* Wait until the parent has finished initializing the tls state.  */
6530     pthread_mutex_lock(&clone_lock);
6531     pthread_mutex_unlock(&clone_lock);
6532     cpu_loop(env);
6533     /* never exits */
6534     return NULL;
6535 }
6536 
6537 /* do_fork() Must return host values and target errnos (unlike most
6538    do_*() functions). */
6539 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp,
6540                    abi_ulong parent_tidptr, target_ulong newtls,
6541                    abi_ulong child_tidptr)
6542 {
6543     CPUState *cpu = env_cpu(env);
6544     int ret;
6545     TaskState *ts;
6546     CPUState *new_cpu;
6547     CPUArchState *new_env;
6548     sigset_t sigmask;
6549 
6550     flags &= ~CLONE_IGNORED_FLAGS;
6551 
6552     /* Emulate vfork() with fork() */
6553     if (flags & CLONE_VFORK)
6554         flags &= ~(CLONE_VFORK | CLONE_VM);
6555 
6556     if (flags & CLONE_VM) {
6557         TaskState *parent_ts = get_task_state(cpu);
6558         new_thread_info info;
6559         pthread_attr_t attr;
6560 
6561         if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) ||
6562             (flags & CLONE_INVALID_THREAD_FLAGS)) {
6563             return -TARGET_EINVAL;
6564         }
6565 
6566         ts = g_new0(TaskState, 1);
6567         init_task_state(ts);
6568 
6569         /* Grab a mutex so that thread setup appears atomic.  */
6570         pthread_mutex_lock(&clone_lock);
6571 
6572         /*
6573          * If this is our first additional thread, we need to ensure we
6574          * generate code for parallel execution and flush old translations.
6575          * Do this now so that the copy gets CF_PARALLEL too.
6576          */
6577         if (!tcg_cflags_has(cpu, CF_PARALLEL)) {
6578             tcg_cflags_set(cpu, CF_PARALLEL);
6579             tb_flush(cpu);
6580         }
6581 
6582         /* we create a new CPU instance. */
6583         new_env = cpu_copy(env);
6584         /* Init regs that differ from the parent.  */
6585         cpu_clone_regs_child(new_env, newsp, flags);
6586         cpu_clone_regs_parent(env, flags);
6587         new_cpu = env_cpu(new_env);
6588         new_cpu->opaque = ts;
6589         ts->bprm = parent_ts->bprm;
6590         ts->info = parent_ts->info;
6591         ts->signal_mask = parent_ts->signal_mask;
6592 
6593         if (flags & CLONE_CHILD_CLEARTID) {
6594             ts->child_tidptr = child_tidptr;
6595         }
6596 
6597         if (flags & CLONE_SETTLS) {
6598             cpu_set_tls (new_env, newtls);
6599         }
6600 
6601         memset(&info, 0, sizeof(info));
6602         pthread_mutex_init(&info.mutex, NULL);
6603         pthread_mutex_lock(&info.mutex);
6604         pthread_cond_init(&info.cond, NULL);
6605         info.env = new_env;
6606         if (flags & CLONE_CHILD_SETTID) {
6607             info.child_tidptr = child_tidptr;
6608         }
6609         if (flags & CLONE_PARENT_SETTID) {
6610             info.parent_tidptr = parent_tidptr;
6611         }
6612 
6613         ret = pthread_attr_init(&attr);
6614         ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE);
6615         ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
6616         /* It is not safe to deliver signals until the child has finished
6617            initializing, so temporarily block all signals.  */
6618         sigfillset(&sigmask);
6619         sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask);
6620         cpu->random_seed = qemu_guest_random_seed_thread_part1();
6621 
6622         ret = pthread_create(&info.thread, &attr, clone_func, &info);
6623         /* TODO: Free new CPU state if thread creation failed.  */
6624 
6625         sigprocmask(SIG_SETMASK, &info.sigmask, NULL);
6626         pthread_attr_destroy(&attr);
6627         if (ret == 0) {
6628             /* Wait for the child to initialize.  */
6629             pthread_cond_wait(&info.cond, &info.mutex);
6630             ret = info.tid;
6631         } else {
6632             ret = -1;
6633         }
6634         pthread_mutex_unlock(&info.mutex);
6635         pthread_cond_destroy(&info.cond);
6636         pthread_mutex_destroy(&info.mutex);
6637         pthread_mutex_unlock(&clone_lock);
6638     } else {
6639         /* if no CLONE_VM, we consider it is a fork */
6640         if (flags & CLONE_INVALID_FORK_FLAGS) {
6641             return -TARGET_EINVAL;
6642         }
6643 
6644         /* We can't support custom termination signals */
6645         if ((flags & CSIGNAL) != TARGET_SIGCHLD) {
6646             return -TARGET_EINVAL;
6647         }
6648 
6649 #if !defined(__NR_pidfd_open) || !defined(TARGET_NR_pidfd_open)
6650         if (flags & CLONE_PIDFD) {
6651             return -TARGET_EINVAL;
6652         }
6653 #endif
6654 
6655         /* Can not allow CLONE_PIDFD with CLONE_PARENT_SETTID */
6656         if ((flags & CLONE_PIDFD) && (flags & CLONE_PARENT_SETTID)) {
6657             return -TARGET_EINVAL;
6658         }
6659 
6660         if (block_signals()) {
6661             return -QEMU_ERESTARTSYS;
6662         }
6663 
6664         fork_start();
6665         ret = fork();
6666         if (ret == 0) {
6667             /* Child Process.  */
6668             cpu_clone_regs_child(env, newsp, flags);
6669             fork_end(ret);
6670             /* There is a race condition here.  The parent process could
6671                theoretically read the TID in the child process before the child
6672                tid is set.  This would require using either ptrace
6673                (not implemented) or having *_tidptr to point at a shared memory
6674                mapping.  We can't repeat the spinlock hack used above because
6675                the child process gets its own copy of the lock.  */
6676             if (flags & CLONE_CHILD_SETTID)
6677                 put_user_u32(sys_gettid(), child_tidptr);
6678             if (flags & CLONE_PARENT_SETTID)
6679                 put_user_u32(sys_gettid(), parent_tidptr);
6680             ts = get_task_state(cpu);
6681             if (flags & CLONE_SETTLS)
6682                 cpu_set_tls (env, newtls);
6683             if (flags & CLONE_CHILD_CLEARTID)
6684                 ts->child_tidptr = child_tidptr;
6685         } else {
6686             cpu_clone_regs_parent(env, flags);
6687             if (flags & CLONE_PIDFD) {
6688                 int pid_fd = 0;
6689 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
6690                 int pid_child = ret;
6691                 pid_fd = pidfd_open(pid_child, 0);
6692                 if (pid_fd >= 0) {
6693                         fcntl(pid_fd, F_SETFD, fcntl(pid_fd, F_GETFL)
6694                                                | FD_CLOEXEC);
6695                 } else {
6696                         pid_fd = 0;
6697                 }
6698 #endif
6699                 put_user_u32(pid_fd, parent_tidptr);
6700             }
6701             fork_end(ret);
6702         }
6703         g_assert(!cpu_in_exclusive_context(cpu));
6704     }
6705     return ret;
6706 }
6707 
6708 /* warning : doesn't handle linux specific flags... */
6709 static int target_to_host_fcntl_cmd(int cmd)
6710 {
6711     int ret;
6712 
6713     switch(cmd) {
6714     case TARGET_F_DUPFD:
6715     case TARGET_F_GETFD:
6716     case TARGET_F_SETFD:
6717     case TARGET_F_GETFL:
6718     case TARGET_F_SETFL:
6719     case TARGET_F_OFD_GETLK:
6720     case TARGET_F_OFD_SETLK:
6721     case TARGET_F_OFD_SETLKW:
6722         ret = cmd;
6723         break;
6724     case TARGET_F_GETLK:
6725         ret = F_GETLK64;
6726         break;
6727     case TARGET_F_SETLK:
6728         ret = F_SETLK64;
6729         break;
6730     case TARGET_F_SETLKW:
6731         ret = F_SETLKW64;
6732         break;
6733     case TARGET_F_GETOWN:
6734         ret = F_GETOWN;
6735         break;
6736     case TARGET_F_SETOWN:
6737         ret = F_SETOWN;
6738         break;
6739     case TARGET_F_GETSIG:
6740         ret = F_GETSIG;
6741         break;
6742     case TARGET_F_SETSIG:
6743         ret = F_SETSIG;
6744         break;
6745 #if TARGET_ABI_BITS == 32
6746     case TARGET_F_GETLK64:
6747         ret = F_GETLK64;
6748         break;
6749     case TARGET_F_SETLK64:
6750         ret = F_SETLK64;
6751         break;
6752     case TARGET_F_SETLKW64:
6753         ret = F_SETLKW64;
6754         break;
6755 #endif
6756     case TARGET_F_SETLEASE:
6757         ret = F_SETLEASE;
6758         break;
6759     case TARGET_F_GETLEASE:
6760         ret = F_GETLEASE;
6761         break;
6762 #ifdef F_DUPFD_CLOEXEC
6763     case TARGET_F_DUPFD_CLOEXEC:
6764         ret = F_DUPFD_CLOEXEC;
6765         break;
6766 #endif
6767     case TARGET_F_NOTIFY:
6768         ret = F_NOTIFY;
6769         break;
6770 #ifdef F_GETOWN_EX
6771     case TARGET_F_GETOWN_EX:
6772         ret = F_GETOWN_EX;
6773         break;
6774 #endif
6775 #ifdef F_SETOWN_EX
6776     case TARGET_F_SETOWN_EX:
6777         ret = F_SETOWN_EX;
6778         break;
6779 #endif
6780 #ifdef F_SETPIPE_SZ
6781     case TARGET_F_SETPIPE_SZ:
6782         ret = F_SETPIPE_SZ;
6783         break;
6784     case TARGET_F_GETPIPE_SZ:
6785         ret = F_GETPIPE_SZ;
6786         break;
6787 #endif
6788 #ifdef F_ADD_SEALS
6789     case TARGET_F_ADD_SEALS:
6790         ret = F_ADD_SEALS;
6791         break;
6792     case TARGET_F_GET_SEALS:
6793         ret = F_GET_SEALS;
6794         break;
6795 #endif
6796     default:
6797         ret = -TARGET_EINVAL;
6798         break;
6799     }
6800 
6801 #if defined(__powerpc64__)
6802     /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and
6803      * is not supported by kernel. The glibc fcntl call actually adjusts
6804      * them to 5, 6 and 7 before making the syscall(). Since we make the
6805      * syscall directly, adjust to what is supported by the kernel.
6806      */
6807     if (ret >= F_GETLK64 && ret <= F_SETLKW64) {
6808         ret -= F_GETLK64 - 5;
6809     }
6810 #endif
6811 
6812     return ret;
6813 }
6814 
6815 #define FLOCK_TRANSTBL \
6816     switch (type) { \
6817     TRANSTBL_CONVERT(F_RDLCK); \
6818     TRANSTBL_CONVERT(F_WRLCK); \
6819     TRANSTBL_CONVERT(F_UNLCK); \
6820     }
6821 
6822 static int target_to_host_flock(int type)
6823 {
6824 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a
6825     FLOCK_TRANSTBL
6826 #undef  TRANSTBL_CONVERT
6827     return -TARGET_EINVAL;
6828 }
6829 
6830 static int host_to_target_flock(int type)
6831 {
6832 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a
6833     FLOCK_TRANSTBL
6834 #undef  TRANSTBL_CONVERT
6835     /* if we don't know how to convert the value coming
6836      * from the host we copy to the target field as-is
6837      */
6838     return type;
6839 }
6840 
6841 static inline abi_long copy_from_user_flock(struct flock64 *fl,
6842                                             abi_ulong target_flock_addr)
6843 {
6844     struct target_flock *target_fl;
6845     int l_type;
6846 
6847     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6848         return -TARGET_EFAULT;
6849     }
6850 
6851     __get_user(l_type, &target_fl->l_type);
6852     l_type = target_to_host_flock(l_type);
6853     if (l_type < 0) {
6854         return l_type;
6855     }
6856     fl->l_type = l_type;
6857     __get_user(fl->l_whence, &target_fl->l_whence);
6858     __get_user(fl->l_start, &target_fl->l_start);
6859     __get_user(fl->l_len, &target_fl->l_len);
6860     __get_user(fl->l_pid, &target_fl->l_pid);
6861     unlock_user_struct(target_fl, target_flock_addr, 0);
6862     return 0;
6863 }
6864 
6865 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr,
6866                                           const struct flock64 *fl)
6867 {
6868     struct target_flock *target_fl;
6869     short l_type;
6870 
6871     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6872         return -TARGET_EFAULT;
6873     }
6874 
6875     l_type = host_to_target_flock(fl->l_type);
6876     __put_user(l_type, &target_fl->l_type);
6877     __put_user(fl->l_whence, &target_fl->l_whence);
6878     __put_user(fl->l_start, &target_fl->l_start);
6879     __put_user(fl->l_len, &target_fl->l_len);
6880     __put_user(fl->l_pid, &target_fl->l_pid);
6881     unlock_user_struct(target_fl, target_flock_addr, 1);
6882     return 0;
6883 }
6884 
6885 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr);
6886 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl);
6887 
6888 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
6889 struct target_oabi_flock64 {
6890     abi_short l_type;
6891     abi_short l_whence;
6892     abi_llong l_start;
6893     abi_llong l_len;
6894     abi_int   l_pid;
6895 } QEMU_PACKED;
6896 
6897 static inline abi_long copy_from_user_oabi_flock64(struct flock64 *fl,
6898                                                    abi_ulong target_flock_addr)
6899 {
6900     struct target_oabi_flock64 *target_fl;
6901     int l_type;
6902 
6903     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6904         return -TARGET_EFAULT;
6905     }
6906 
6907     __get_user(l_type, &target_fl->l_type);
6908     l_type = target_to_host_flock(l_type);
6909     if (l_type < 0) {
6910         return l_type;
6911     }
6912     fl->l_type = l_type;
6913     __get_user(fl->l_whence, &target_fl->l_whence);
6914     __get_user(fl->l_start, &target_fl->l_start);
6915     __get_user(fl->l_len, &target_fl->l_len);
6916     __get_user(fl->l_pid, &target_fl->l_pid);
6917     unlock_user_struct(target_fl, target_flock_addr, 0);
6918     return 0;
6919 }
6920 
6921 static inline abi_long copy_to_user_oabi_flock64(abi_ulong target_flock_addr,
6922                                                  const struct flock64 *fl)
6923 {
6924     struct target_oabi_flock64 *target_fl;
6925     short l_type;
6926 
6927     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6928         return -TARGET_EFAULT;
6929     }
6930 
6931     l_type = host_to_target_flock(fl->l_type);
6932     __put_user(l_type, &target_fl->l_type);
6933     __put_user(fl->l_whence, &target_fl->l_whence);
6934     __put_user(fl->l_start, &target_fl->l_start);
6935     __put_user(fl->l_len, &target_fl->l_len);
6936     __put_user(fl->l_pid, &target_fl->l_pid);
6937     unlock_user_struct(target_fl, target_flock_addr, 1);
6938     return 0;
6939 }
6940 #endif
6941 
6942 static inline abi_long copy_from_user_flock64(struct flock64 *fl,
6943                                               abi_ulong target_flock_addr)
6944 {
6945     struct target_flock64 *target_fl;
6946     int l_type;
6947 
6948     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6949         return -TARGET_EFAULT;
6950     }
6951 
6952     __get_user(l_type, &target_fl->l_type);
6953     l_type = target_to_host_flock(l_type);
6954     if (l_type < 0) {
6955         return l_type;
6956     }
6957     fl->l_type = l_type;
6958     __get_user(fl->l_whence, &target_fl->l_whence);
6959     __get_user(fl->l_start, &target_fl->l_start);
6960     __get_user(fl->l_len, &target_fl->l_len);
6961     __get_user(fl->l_pid, &target_fl->l_pid);
6962     unlock_user_struct(target_fl, target_flock_addr, 0);
6963     return 0;
6964 }
6965 
6966 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr,
6967                                             const struct flock64 *fl)
6968 {
6969     struct target_flock64 *target_fl;
6970     short l_type;
6971 
6972     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6973         return -TARGET_EFAULT;
6974     }
6975 
6976     l_type = host_to_target_flock(fl->l_type);
6977     __put_user(l_type, &target_fl->l_type);
6978     __put_user(fl->l_whence, &target_fl->l_whence);
6979     __put_user(fl->l_start, &target_fl->l_start);
6980     __put_user(fl->l_len, &target_fl->l_len);
6981     __put_user(fl->l_pid, &target_fl->l_pid);
6982     unlock_user_struct(target_fl, target_flock_addr, 1);
6983     return 0;
6984 }
6985 
6986 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg)
6987 {
6988     struct flock64 fl64;
6989 #ifdef F_GETOWN_EX
6990     struct f_owner_ex fox;
6991     struct target_f_owner_ex *target_fox;
6992 #endif
6993     abi_long ret;
6994     int host_cmd = target_to_host_fcntl_cmd(cmd);
6995 
6996     if (host_cmd == -TARGET_EINVAL)
6997 	    return host_cmd;
6998 
6999     switch(cmd) {
7000     case TARGET_F_GETLK:
7001         ret = copy_from_user_flock(&fl64, arg);
7002         if (ret) {
7003             return ret;
7004         }
7005         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7006         if (ret == 0) {
7007             ret = copy_to_user_flock(arg, &fl64);
7008         }
7009         break;
7010 
7011     case TARGET_F_SETLK:
7012     case TARGET_F_SETLKW:
7013         ret = copy_from_user_flock(&fl64, arg);
7014         if (ret) {
7015             return ret;
7016         }
7017         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7018         break;
7019 
7020     case TARGET_F_GETLK64:
7021     case TARGET_F_OFD_GETLK:
7022         ret = copy_from_user_flock64(&fl64, arg);
7023         if (ret) {
7024             return ret;
7025         }
7026         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7027         if (ret == 0) {
7028             ret = copy_to_user_flock64(arg, &fl64);
7029         }
7030         break;
7031     case TARGET_F_SETLK64:
7032     case TARGET_F_SETLKW64:
7033     case TARGET_F_OFD_SETLK:
7034     case TARGET_F_OFD_SETLKW:
7035         ret = copy_from_user_flock64(&fl64, arg);
7036         if (ret) {
7037             return ret;
7038         }
7039         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7040         break;
7041 
7042     case TARGET_F_GETFL:
7043         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7044         if (ret >= 0) {
7045             ret = host_to_target_bitmask(ret, fcntl_flags_tbl);
7046             /* tell 32-bit guests it uses largefile on 64-bit hosts: */
7047             if (O_LARGEFILE == 0 && HOST_LONG_BITS == 64) {
7048                 ret |= TARGET_O_LARGEFILE;
7049             }
7050         }
7051         break;
7052 
7053     case TARGET_F_SETFL:
7054         ret = get_errno(safe_fcntl(fd, host_cmd,
7055                                    target_to_host_bitmask(arg,
7056                                                           fcntl_flags_tbl)));
7057         break;
7058 
7059 #ifdef F_GETOWN_EX
7060     case TARGET_F_GETOWN_EX:
7061         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7062         if (ret >= 0) {
7063             if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0))
7064                 return -TARGET_EFAULT;
7065             target_fox->type = tswap32(fox.type);
7066             target_fox->pid = tswap32(fox.pid);
7067             unlock_user_struct(target_fox, arg, 1);
7068         }
7069         break;
7070 #endif
7071 
7072 #ifdef F_SETOWN_EX
7073     case TARGET_F_SETOWN_EX:
7074         if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1))
7075             return -TARGET_EFAULT;
7076         fox.type = tswap32(target_fox->type);
7077         fox.pid = tswap32(target_fox->pid);
7078         unlock_user_struct(target_fox, arg, 0);
7079         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7080         break;
7081 #endif
7082 
7083     case TARGET_F_SETSIG:
7084         ret = get_errno(safe_fcntl(fd, host_cmd, target_to_host_signal(arg)));
7085         break;
7086 
7087     case TARGET_F_GETSIG:
7088         ret = host_to_target_signal(get_errno(safe_fcntl(fd, host_cmd, arg)));
7089         break;
7090 
7091     case TARGET_F_SETOWN:
7092     case TARGET_F_GETOWN:
7093     case TARGET_F_SETLEASE:
7094     case TARGET_F_GETLEASE:
7095     case TARGET_F_SETPIPE_SZ:
7096     case TARGET_F_GETPIPE_SZ:
7097     case TARGET_F_ADD_SEALS:
7098     case TARGET_F_GET_SEALS:
7099         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7100         break;
7101 
7102     default:
7103         ret = get_errno(safe_fcntl(fd, cmd, arg));
7104         break;
7105     }
7106     return ret;
7107 }
7108 
7109 #ifdef USE_UID16
7110 
7111 static inline int high2lowuid(int uid)
7112 {
7113     if (uid > 65535)
7114         return 65534;
7115     else
7116         return uid;
7117 }
7118 
7119 static inline int high2lowgid(int gid)
7120 {
7121     if (gid > 65535)
7122         return 65534;
7123     else
7124         return gid;
7125 }
7126 
7127 static inline int low2highuid(int uid)
7128 {
7129     if ((int16_t)uid == -1)
7130         return -1;
7131     else
7132         return uid;
7133 }
7134 
7135 static inline int low2highgid(int gid)
7136 {
7137     if ((int16_t)gid == -1)
7138         return -1;
7139     else
7140         return gid;
7141 }
7142 static inline int tswapid(int id)
7143 {
7144     return tswap16(id);
7145 }
7146 
7147 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
7148 
7149 #else /* !USE_UID16 */
7150 static inline int high2lowuid(int uid)
7151 {
7152     return uid;
7153 }
7154 static inline int high2lowgid(int gid)
7155 {
7156     return gid;
7157 }
7158 static inline int low2highuid(int uid)
7159 {
7160     return uid;
7161 }
7162 static inline int low2highgid(int gid)
7163 {
7164     return gid;
7165 }
7166 static inline int tswapid(int id)
7167 {
7168     return tswap32(id);
7169 }
7170 
7171 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
7172 
7173 #endif /* USE_UID16 */
7174 
7175 /* We must do direct syscalls for setting UID/GID, because we want to
7176  * implement the Linux system call semantics of "change only for this thread",
7177  * not the libc/POSIX semantics of "change for all threads in process".
7178  * (See http://ewontfix.com/17/ for more details.)
7179  * We use the 32-bit version of the syscalls if present; if it is not
7180  * then either the host architecture supports 32-bit UIDs natively with
7181  * the standard syscall, or the 16-bit UID is the best we can do.
7182  */
7183 #ifdef __NR_setuid32
7184 #define __NR_sys_setuid __NR_setuid32
7185 #else
7186 #define __NR_sys_setuid __NR_setuid
7187 #endif
7188 #ifdef __NR_setgid32
7189 #define __NR_sys_setgid __NR_setgid32
7190 #else
7191 #define __NR_sys_setgid __NR_setgid
7192 #endif
7193 #ifdef __NR_setresuid32
7194 #define __NR_sys_setresuid __NR_setresuid32
7195 #else
7196 #define __NR_sys_setresuid __NR_setresuid
7197 #endif
7198 #ifdef __NR_setresgid32
7199 #define __NR_sys_setresgid __NR_setresgid32
7200 #else
7201 #define __NR_sys_setresgid __NR_setresgid
7202 #endif
7203 #ifdef __NR_setgroups32
7204 #define __NR_sys_setgroups __NR_setgroups32
7205 #else
7206 #define __NR_sys_setgroups __NR_setgroups
7207 #endif
7208 
7209 _syscall1(int, sys_setuid, uid_t, uid)
7210 _syscall1(int, sys_setgid, gid_t, gid)
7211 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
7212 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
7213 _syscall2(int, sys_setgroups, int, size, gid_t *, grouplist)
7214 
7215 void syscall_init(void)
7216 {
7217     IOCTLEntry *ie;
7218     const argtype *arg_type;
7219     int size;
7220 
7221     thunk_init(STRUCT_MAX);
7222 
7223 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
7224 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
7225 #include "syscall_types.h"
7226 #undef STRUCT
7227 #undef STRUCT_SPECIAL
7228 
7229     /* we patch the ioctl size if necessary. We rely on the fact that
7230        no ioctl has all the bits at '1' in the size field */
7231     ie = ioctl_entries;
7232     while (ie->target_cmd != 0) {
7233         if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) ==
7234             TARGET_IOC_SIZEMASK) {
7235             arg_type = ie->arg_type;
7236             if (arg_type[0] != TYPE_PTR) {
7237                 fprintf(stderr, "cannot patch size for ioctl 0x%x\n",
7238                         ie->target_cmd);
7239                 exit(1);
7240             }
7241             arg_type++;
7242             size = thunk_type_size(arg_type, 0);
7243             ie->target_cmd = (ie->target_cmd &
7244                               ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) |
7245                 (size << TARGET_IOC_SIZESHIFT);
7246         }
7247 
7248         /* automatic consistency check if same arch */
7249 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
7250     (defined(__x86_64__) && defined(TARGET_X86_64))
7251         if (unlikely(ie->target_cmd != ie->host_cmd)) {
7252             fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
7253                     ie->name, ie->target_cmd, ie->host_cmd);
7254         }
7255 #endif
7256         ie++;
7257     }
7258 }
7259 
7260 #ifdef TARGET_NR_truncate64
7261 static inline abi_long target_truncate64(CPUArchState *cpu_env, const char *arg1,
7262                                          abi_long arg2,
7263                                          abi_long arg3,
7264                                          abi_long arg4)
7265 {
7266     if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) {
7267         arg2 = arg3;
7268         arg3 = arg4;
7269     }
7270     return get_errno(truncate64(arg1, target_offset64(arg2, arg3)));
7271 }
7272 #endif
7273 
7274 #ifdef TARGET_NR_ftruncate64
7275 static inline abi_long target_ftruncate64(CPUArchState *cpu_env, abi_long arg1,
7276                                           abi_long arg2,
7277                                           abi_long arg3,
7278                                           abi_long arg4)
7279 {
7280     if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) {
7281         arg2 = arg3;
7282         arg3 = arg4;
7283     }
7284     return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3)));
7285 }
7286 #endif
7287 
7288 #if defined(TARGET_NR_timer_settime) || \
7289     (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
7290 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_its,
7291                                                  abi_ulong target_addr)
7292 {
7293     if (target_to_host_timespec(&host_its->it_interval, target_addr +
7294                                 offsetof(struct target_itimerspec,
7295                                          it_interval)) ||
7296         target_to_host_timespec(&host_its->it_value, target_addr +
7297                                 offsetof(struct target_itimerspec,
7298                                          it_value))) {
7299         return -TARGET_EFAULT;
7300     }
7301 
7302     return 0;
7303 }
7304 #endif
7305 
7306 #if defined(TARGET_NR_timer_settime64) || \
7307     (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD))
7308 static inline abi_long target_to_host_itimerspec64(struct itimerspec *host_its,
7309                                                    abi_ulong target_addr)
7310 {
7311     if (target_to_host_timespec64(&host_its->it_interval, target_addr +
7312                                   offsetof(struct target__kernel_itimerspec,
7313                                            it_interval)) ||
7314         target_to_host_timespec64(&host_its->it_value, target_addr +
7315                                   offsetof(struct target__kernel_itimerspec,
7316                                            it_value))) {
7317         return -TARGET_EFAULT;
7318     }
7319 
7320     return 0;
7321 }
7322 #endif
7323 
7324 #if ((defined(TARGET_NR_timerfd_gettime) || \
7325       defined(TARGET_NR_timerfd_settime)) && defined(CONFIG_TIMERFD)) || \
7326       defined(TARGET_NR_timer_gettime) || defined(TARGET_NR_timer_settime)
7327 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr,
7328                                                  struct itimerspec *host_its)
7329 {
7330     if (host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7331                                                        it_interval),
7332                                 &host_its->it_interval) ||
7333         host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7334                                                        it_value),
7335                                 &host_its->it_value)) {
7336         return -TARGET_EFAULT;
7337     }
7338     return 0;
7339 }
7340 #endif
7341 
7342 #if ((defined(TARGET_NR_timerfd_gettime64) || \
7343       defined(TARGET_NR_timerfd_settime64)) && defined(CONFIG_TIMERFD)) || \
7344       defined(TARGET_NR_timer_gettime64) || defined(TARGET_NR_timer_settime64)
7345 static inline abi_long host_to_target_itimerspec64(abi_ulong target_addr,
7346                                                    struct itimerspec *host_its)
7347 {
7348     if (host_to_target_timespec64(target_addr +
7349                                   offsetof(struct target__kernel_itimerspec,
7350                                            it_interval),
7351                                   &host_its->it_interval) ||
7352         host_to_target_timespec64(target_addr +
7353                                   offsetof(struct target__kernel_itimerspec,
7354                                            it_value),
7355                                   &host_its->it_value)) {
7356         return -TARGET_EFAULT;
7357     }
7358     return 0;
7359 }
7360 #endif
7361 
7362 #if defined(TARGET_NR_adjtimex) || \
7363     (defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME))
7364 static inline abi_long target_to_host_timex(struct timex *host_tx,
7365                                             abi_long target_addr)
7366 {
7367     struct target_timex *target_tx;
7368 
7369     if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7370         return -TARGET_EFAULT;
7371     }
7372 
7373     __get_user(host_tx->modes, &target_tx->modes);
7374     __get_user(host_tx->offset, &target_tx->offset);
7375     __get_user(host_tx->freq, &target_tx->freq);
7376     __get_user(host_tx->maxerror, &target_tx->maxerror);
7377     __get_user(host_tx->esterror, &target_tx->esterror);
7378     __get_user(host_tx->status, &target_tx->status);
7379     __get_user(host_tx->constant, &target_tx->constant);
7380     __get_user(host_tx->precision, &target_tx->precision);
7381     __get_user(host_tx->tolerance, &target_tx->tolerance);
7382     __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7383     __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7384     __get_user(host_tx->tick, &target_tx->tick);
7385     __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7386     __get_user(host_tx->jitter, &target_tx->jitter);
7387     __get_user(host_tx->shift, &target_tx->shift);
7388     __get_user(host_tx->stabil, &target_tx->stabil);
7389     __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7390     __get_user(host_tx->calcnt, &target_tx->calcnt);
7391     __get_user(host_tx->errcnt, &target_tx->errcnt);
7392     __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7393     __get_user(host_tx->tai, &target_tx->tai);
7394 
7395     unlock_user_struct(target_tx, target_addr, 0);
7396     return 0;
7397 }
7398 
7399 static inline abi_long host_to_target_timex(abi_long target_addr,
7400                                             struct timex *host_tx)
7401 {
7402     struct target_timex *target_tx;
7403 
7404     if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7405         return -TARGET_EFAULT;
7406     }
7407 
7408     __put_user(host_tx->modes, &target_tx->modes);
7409     __put_user(host_tx->offset, &target_tx->offset);
7410     __put_user(host_tx->freq, &target_tx->freq);
7411     __put_user(host_tx->maxerror, &target_tx->maxerror);
7412     __put_user(host_tx->esterror, &target_tx->esterror);
7413     __put_user(host_tx->status, &target_tx->status);
7414     __put_user(host_tx->constant, &target_tx->constant);
7415     __put_user(host_tx->precision, &target_tx->precision);
7416     __put_user(host_tx->tolerance, &target_tx->tolerance);
7417     __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7418     __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7419     __put_user(host_tx->tick, &target_tx->tick);
7420     __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7421     __put_user(host_tx->jitter, &target_tx->jitter);
7422     __put_user(host_tx->shift, &target_tx->shift);
7423     __put_user(host_tx->stabil, &target_tx->stabil);
7424     __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7425     __put_user(host_tx->calcnt, &target_tx->calcnt);
7426     __put_user(host_tx->errcnt, &target_tx->errcnt);
7427     __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7428     __put_user(host_tx->tai, &target_tx->tai);
7429 
7430     unlock_user_struct(target_tx, target_addr, 1);
7431     return 0;
7432 }
7433 #endif
7434 
7435 
7436 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
7437 static inline abi_long target_to_host_timex64(struct timex *host_tx,
7438                                               abi_long target_addr)
7439 {
7440     struct target__kernel_timex *target_tx;
7441 
7442     if (copy_from_user_timeval64(&host_tx->time, target_addr +
7443                                  offsetof(struct target__kernel_timex,
7444                                           time))) {
7445         return -TARGET_EFAULT;
7446     }
7447 
7448     if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7449         return -TARGET_EFAULT;
7450     }
7451 
7452     __get_user(host_tx->modes, &target_tx->modes);
7453     __get_user(host_tx->offset, &target_tx->offset);
7454     __get_user(host_tx->freq, &target_tx->freq);
7455     __get_user(host_tx->maxerror, &target_tx->maxerror);
7456     __get_user(host_tx->esterror, &target_tx->esterror);
7457     __get_user(host_tx->status, &target_tx->status);
7458     __get_user(host_tx->constant, &target_tx->constant);
7459     __get_user(host_tx->precision, &target_tx->precision);
7460     __get_user(host_tx->tolerance, &target_tx->tolerance);
7461     __get_user(host_tx->tick, &target_tx->tick);
7462     __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7463     __get_user(host_tx->jitter, &target_tx->jitter);
7464     __get_user(host_tx->shift, &target_tx->shift);
7465     __get_user(host_tx->stabil, &target_tx->stabil);
7466     __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7467     __get_user(host_tx->calcnt, &target_tx->calcnt);
7468     __get_user(host_tx->errcnt, &target_tx->errcnt);
7469     __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7470     __get_user(host_tx->tai, &target_tx->tai);
7471 
7472     unlock_user_struct(target_tx, target_addr, 0);
7473     return 0;
7474 }
7475 
7476 static inline abi_long host_to_target_timex64(abi_long target_addr,
7477                                               struct timex *host_tx)
7478 {
7479     struct target__kernel_timex *target_tx;
7480 
7481    if (copy_to_user_timeval64(target_addr +
7482                               offsetof(struct target__kernel_timex, time),
7483                               &host_tx->time)) {
7484         return -TARGET_EFAULT;
7485     }
7486 
7487     if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7488         return -TARGET_EFAULT;
7489     }
7490 
7491     __put_user(host_tx->modes, &target_tx->modes);
7492     __put_user(host_tx->offset, &target_tx->offset);
7493     __put_user(host_tx->freq, &target_tx->freq);
7494     __put_user(host_tx->maxerror, &target_tx->maxerror);
7495     __put_user(host_tx->esterror, &target_tx->esterror);
7496     __put_user(host_tx->status, &target_tx->status);
7497     __put_user(host_tx->constant, &target_tx->constant);
7498     __put_user(host_tx->precision, &target_tx->precision);
7499     __put_user(host_tx->tolerance, &target_tx->tolerance);
7500     __put_user(host_tx->tick, &target_tx->tick);
7501     __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7502     __put_user(host_tx->jitter, &target_tx->jitter);
7503     __put_user(host_tx->shift, &target_tx->shift);
7504     __put_user(host_tx->stabil, &target_tx->stabil);
7505     __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7506     __put_user(host_tx->calcnt, &target_tx->calcnt);
7507     __put_user(host_tx->errcnt, &target_tx->errcnt);
7508     __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7509     __put_user(host_tx->tai, &target_tx->tai);
7510 
7511     unlock_user_struct(target_tx, target_addr, 1);
7512     return 0;
7513 }
7514 #endif
7515 
7516 #ifndef HAVE_SIGEV_NOTIFY_THREAD_ID
7517 #define sigev_notify_thread_id _sigev_un._tid
7518 #endif
7519 
7520 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp,
7521                                                abi_ulong target_addr)
7522 {
7523     struct target_sigevent *target_sevp;
7524 
7525     if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) {
7526         return -TARGET_EFAULT;
7527     }
7528 
7529     /* This union is awkward on 64 bit systems because it has a 32 bit
7530      * integer and a pointer in it; we follow the conversion approach
7531      * used for handling sigval types in signal.c so the guest should get
7532      * the correct value back even if we did a 64 bit byteswap and it's
7533      * using the 32 bit integer.
7534      */
7535     host_sevp->sigev_value.sival_ptr =
7536         (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr);
7537     host_sevp->sigev_signo =
7538         target_to_host_signal(tswap32(target_sevp->sigev_signo));
7539     host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify);
7540     host_sevp->sigev_notify_thread_id = tswap32(target_sevp->_sigev_un._tid);
7541 
7542     unlock_user_struct(target_sevp, target_addr, 1);
7543     return 0;
7544 }
7545 
7546 #if defined(TARGET_NR_mlockall)
7547 static inline int target_to_host_mlockall_arg(int arg)
7548 {
7549     int result = 0;
7550 
7551     if (arg & TARGET_MCL_CURRENT) {
7552         result |= MCL_CURRENT;
7553     }
7554     if (arg & TARGET_MCL_FUTURE) {
7555         result |= MCL_FUTURE;
7556     }
7557 #ifdef MCL_ONFAULT
7558     if (arg & TARGET_MCL_ONFAULT) {
7559         result |= MCL_ONFAULT;
7560     }
7561 #endif
7562 
7563     return result;
7564 }
7565 #endif
7566 
7567 static inline int target_to_host_msync_arg(abi_long arg)
7568 {
7569     return ((arg & TARGET_MS_ASYNC) ? MS_ASYNC : 0) |
7570            ((arg & TARGET_MS_INVALIDATE) ? MS_INVALIDATE : 0) |
7571            ((arg & TARGET_MS_SYNC) ? MS_SYNC : 0) |
7572            (arg & ~(TARGET_MS_ASYNC | TARGET_MS_INVALIDATE | TARGET_MS_SYNC));
7573 }
7574 
7575 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) ||     \
7576      defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) ||  \
7577      defined(TARGET_NR_newfstatat))
7578 static inline abi_long host_to_target_stat64(CPUArchState *cpu_env,
7579                                              abi_ulong target_addr,
7580                                              struct stat *host_st)
7581 {
7582 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
7583     if (cpu_env->eabi) {
7584         struct target_eabi_stat64 *target_st;
7585 
7586         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7587             return -TARGET_EFAULT;
7588         memset(target_st, 0, sizeof(struct target_eabi_stat64));
7589         __put_user(host_st->st_dev, &target_st->st_dev);
7590         __put_user(host_st->st_ino, &target_st->st_ino);
7591 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7592         __put_user(host_st->st_ino, &target_st->__st_ino);
7593 #endif
7594         __put_user(host_st->st_mode, &target_st->st_mode);
7595         __put_user(host_st->st_nlink, &target_st->st_nlink);
7596         __put_user(host_st->st_uid, &target_st->st_uid);
7597         __put_user(host_st->st_gid, &target_st->st_gid);
7598         __put_user(host_st->st_rdev, &target_st->st_rdev);
7599         __put_user(host_st->st_size, &target_st->st_size);
7600         __put_user(host_st->st_blksize, &target_st->st_blksize);
7601         __put_user(host_st->st_blocks, &target_st->st_blocks);
7602         __put_user(host_st->st_atime, &target_st->target_st_atime);
7603         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7604         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7605 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7606         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7607         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7608         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7609 #endif
7610         unlock_user_struct(target_st, target_addr, 1);
7611     } else
7612 #endif
7613     {
7614 #if defined(TARGET_HAS_STRUCT_STAT64)
7615         struct target_stat64 *target_st;
7616 #else
7617         struct target_stat *target_st;
7618 #endif
7619 
7620         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7621             return -TARGET_EFAULT;
7622         memset(target_st, 0, sizeof(*target_st));
7623         __put_user(host_st->st_dev, &target_st->st_dev);
7624         __put_user(host_st->st_ino, &target_st->st_ino);
7625 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7626         __put_user(host_st->st_ino, &target_st->__st_ino);
7627 #endif
7628         __put_user(host_st->st_mode, &target_st->st_mode);
7629         __put_user(host_st->st_nlink, &target_st->st_nlink);
7630         __put_user(host_st->st_uid, &target_st->st_uid);
7631         __put_user(host_st->st_gid, &target_st->st_gid);
7632         __put_user(host_st->st_rdev, &target_st->st_rdev);
7633         /* XXX: better use of kernel struct */
7634         __put_user(host_st->st_size, &target_st->st_size);
7635         __put_user(host_st->st_blksize, &target_st->st_blksize);
7636         __put_user(host_st->st_blocks, &target_st->st_blocks);
7637         __put_user(host_st->st_atime, &target_st->target_st_atime);
7638         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7639         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7640 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7641         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7642         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7643         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7644 #endif
7645         unlock_user_struct(target_st, target_addr, 1);
7646     }
7647 
7648     return 0;
7649 }
7650 #endif
7651 
7652 #if defined(TARGET_NR_statx) && defined(__NR_statx)
7653 static inline abi_long host_to_target_statx(struct target_statx *host_stx,
7654                                             abi_ulong target_addr)
7655 {
7656     struct target_statx *target_stx;
7657 
7658     if (!lock_user_struct(VERIFY_WRITE, target_stx, target_addr,  0)) {
7659         return -TARGET_EFAULT;
7660     }
7661     memset(target_stx, 0, sizeof(*target_stx));
7662 
7663     __put_user(host_stx->stx_mask, &target_stx->stx_mask);
7664     __put_user(host_stx->stx_blksize, &target_stx->stx_blksize);
7665     __put_user(host_stx->stx_attributes, &target_stx->stx_attributes);
7666     __put_user(host_stx->stx_nlink, &target_stx->stx_nlink);
7667     __put_user(host_stx->stx_uid, &target_stx->stx_uid);
7668     __put_user(host_stx->stx_gid, &target_stx->stx_gid);
7669     __put_user(host_stx->stx_mode, &target_stx->stx_mode);
7670     __put_user(host_stx->stx_ino, &target_stx->stx_ino);
7671     __put_user(host_stx->stx_size, &target_stx->stx_size);
7672     __put_user(host_stx->stx_blocks, &target_stx->stx_blocks);
7673     __put_user(host_stx->stx_attributes_mask, &target_stx->stx_attributes_mask);
7674     __put_user(host_stx->stx_atime.tv_sec, &target_stx->stx_atime.tv_sec);
7675     __put_user(host_stx->stx_atime.tv_nsec, &target_stx->stx_atime.tv_nsec);
7676     __put_user(host_stx->stx_btime.tv_sec, &target_stx->stx_btime.tv_sec);
7677     __put_user(host_stx->stx_btime.tv_nsec, &target_stx->stx_btime.tv_nsec);
7678     __put_user(host_stx->stx_ctime.tv_sec, &target_stx->stx_ctime.tv_sec);
7679     __put_user(host_stx->stx_ctime.tv_nsec, &target_stx->stx_ctime.tv_nsec);
7680     __put_user(host_stx->stx_mtime.tv_sec, &target_stx->stx_mtime.tv_sec);
7681     __put_user(host_stx->stx_mtime.tv_nsec, &target_stx->stx_mtime.tv_nsec);
7682     __put_user(host_stx->stx_rdev_major, &target_stx->stx_rdev_major);
7683     __put_user(host_stx->stx_rdev_minor, &target_stx->stx_rdev_minor);
7684     __put_user(host_stx->stx_dev_major, &target_stx->stx_dev_major);
7685     __put_user(host_stx->stx_dev_minor, &target_stx->stx_dev_minor);
7686 
7687     unlock_user_struct(target_stx, target_addr, 1);
7688 
7689     return 0;
7690 }
7691 #endif
7692 
7693 static int do_sys_futex(int *uaddr, int op, int val,
7694                          const struct timespec *timeout, int *uaddr2,
7695                          int val3)
7696 {
7697 #if HOST_LONG_BITS == 64
7698 #if defined(__NR_futex)
7699     /* always a 64-bit time_t, it doesn't define _time64 version  */
7700     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7701 
7702 #endif
7703 #else /* HOST_LONG_BITS == 64 */
7704 #if defined(__NR_futex_time64)
7705     if (sizeof(timeout->tv_sec) == 8) {
7706         /* _time64 function on 32bit arch */
7707         return sys_futex_time64(uaddr, op, val, timeout, uaddr2, val3);
7708     }
7709 #endif
7710 #if defined(__NR_futex)
7711     /* old function on 32bit arch */
7712     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7713 #endif
7714 #endif /* HOST_LONG_BITS == 64 */
7715     g_assert_not_reached();
7716 }
7717 
7718 static int do_safe_futex(int *uaddr, int op, int val,
7719                          const struct timespec *timeout, int *uaddr2,
7720                          int val3)
7721 {
7722 #if HOST_LONG_BITS == 64
7723 #if defined(__NR_futex)
7724     /* always a 64-bit time_t, it doesn't define _time64 version  */
7725     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7726 #endif
7727 #else /* HOST_LONG_BITS == 64 */
7728 #if defined(__NR_futex_time64)
7729     if (sizeof(timeout->tv_sec) == 8) {
7730         /* _time64 function on 32bit arch */
7731         return get_errno(safe_futex_time64(uaddr, op, val, timeout, uaddr2,
7732                                            val3));
7733     }
7734 #endif
7735 #if defined(__NR_futex)
7736     /* old function on 32bit arch */
7737     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7738 #endif
7739 #endif /* HOST_LONG_BITS == 64 */
7740     return -TARGET_ENOSYS;
7741 }
7742 
7743 /* ??? Using host futex calls even when target atomic operations
7744    are not really atomic probably breaks things.  However implementing
7745    futexes locally would make futexes shared between multiple processes
7746    tricky.  However they're probably useless because guest atomic
7747    operations won't work either.  */
7748 #if defined(TARGET_NR_futex) || defined(TARGET_NR_futex_time64)
7749 static int do_futex(CPUState *cpu, bool time64, target_ulong uaddr,
7750                     int op, int val, target_ulong timeout,
7751                     target_ulong uaddr2, int val3)
7752 {
7753     struct timespec ts, *pts = NULL;
7754     void *haddr2 = NULL;
7755     int base_op;
7756 
7757     /* We assume FUTEX_* constants are the same on both host and target. */
7758 #ifdef FUTEX_CMD_MASK
7759     base_op = op & FUTEX_CMD_MASK;
7760 #else
7761     base_op = op;
7762 #endif
7763     switch (base_op) {
7764     case FUTEX_WAIT:
7765     case FUTEX_WAIT_BITSET:
7766         val = tswap32(val);
7767         break;
7768     case FUTEX_WAIT_REQUEUE_PI:
7769         val = tswap32(val);
7770         haddr2 = g2h(cpu, uaddr2);
7771         break;
7772     case FUTEX_LOCK_PI:
7773     case FUTEX_LOCK_PI2:
7774         break;
7775     case FUTEX_WAKE:
7776     case FUTEX_WAKE_BITSET:
7777     case FUTEX_TRYLOCK_PI:
7778     case FUTEX_UNLOCK_PI:
7779         timeout = 0;
7780         break;
7781     case FUTEX_FD:
7782         val = target_to_host_signal(val);
7783         timeout = 0;
7784         break;
7785     case FUTEX_CMP_REQUEUE:
7786     case FUTEX_CMP_REQUEUE_PI:
7787         val3 = tswap32(val3);
7788         /* fall through */
7789     case FUTEX_REQUEUE:
7790     case FUTEX_WAKE_OP:
7791         /*
7792          * For these, the 4th argument is not TIMEOUT, but VAL2.
7793          * But the prototype of do_safe_futex takes a pointer, so
7794          * insert casts to satisfy the compiler.  We do not need
7795          * to tswap VAL2 since it's not compared to guest memory.
7796           */
7797         pts = (struct timespec *)(uintptr_t)timeout;
7798         timeout = 0;
7799         haddr2 = g2h(cpu, uaddr2);
7800         break;
7801     default:
7802         return -TARGET_ENOSYS;
7803     }
7804     if (timeout) {
7805         pts = &ts;
7806         if (time64
7807             ? target_to_host_timespec64(pts, timeout)
7808             : target_to_host_timespec(pts, timeout)) {
7809             return -TARGET_EFAULT;
7810         }
7811     }
7812     return do_safe_futex(g2h(cpu, uaddr), op, val, pts, haddr2, val3);
7813 }
7814 #endif
7815 
7816 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7817 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname,
7818                                      abi_long handle, abi_long mount_id,
7819                                      abi_long flags)
7820 {
7821     struct file_handle *target_fh;
7822     struct file_handle *fh;
7823     int mid = 0;
7824     abi_long ret;
7825     char *name;
7826     unsigned int size, total_size;
7827 
7828     if (get_user_s32(size, handle)) {
7829         return -TARGET_EFAULT;
7830     }
7831 
7832     name = lock_user_string(pathname);
7833     if (!name) {
7834         return -TARGET_EFAULT;
7835     }
7836 
7837     total_size = sizeof(struct file_handle) + size;
7838     target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0);
7839     if (!target_fh) {
7840         unlock_user(name, pathname, 0);
7841         return -TARGET_EFAULT;
7842     }
7843 
7844     fh = g_malloc0(total_size);
7845     fh->handle_bytes = size;
7846 
7847     ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags));
7848     unlock_user(name, pathname, 0);
7849 
7850     /* man name_to_handle_at(2):
7851      * Other than the use of the handle_bytes field, the caller should treat
7852      * the file_handle structure as an opaque data type
7853      */
7854 
7855     memcpy(target_fh, fh, total_size);
7856     target_fh->handle_bytes = tswap32(fh->handle_bytes);
7857     target_fh->handle_type = tswap32(fh->handle_type);
7858     g_free(fh);
7859     unlock_user(target_fh, handle, total_size);
7860 
7861     if (put_user_s32(mid, mount_id)) {
7862         return -TARGET_EFAULT;
7863     }
7864 
7865     return ret;
7866 
7867 }
7868 #endif
7869 
7870 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7871 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle,
7872                                      abi_long flags)
7873 {
7874     struct file_handle *target_fh;
7875     struct file_handle *fh;
7876     unsigned int size, total_size;
7877     abi_long ret;
7878 
7879     if (get_user_s32(size, handle)) {
7880         return -TARGET_EFAULT;
7881     }
7882 
7883     total_size = sizeof(struct file_handle) + size;
7884     target_fh = lock_user(VERIFY_READ, handle, total_size, 1);
7885     if (!target_fh) {
7886         return -TARGET_EFAULT;
7887     }
7888 
7889     fh = g_memdup(target_fh, total_size);
7890     fh->handle_bytes = size;
7891     fh->handle_type = tswap32(target_fh->handle_type);
7892 
7893     ret = get_errno(open_by_handle_at(mount_fd, fh,
7894                     target_to_host_bitmask(flags, fcntl_flags_tbl)));
7895 
7896     g_free(fh);
7897 
7898     unlock_user(target_fh, handle, total_size);
7899 
7900     return ret;
7901 }
7902 #endif
7903 
7904 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
7905 
7906 static abi_long do_signalfd4(int fd, abi_long mask, int flags)
7907 {
7908     int host_flags;
7909     target_sigset_t *target_mask;
7910     sigset_t host_mask;
7911     abi_long ret;
7912 
7913     if (flags & ~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC)) {
7914         return -TARGET_EINVAL;
7915     }
7916     if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) {
7917         return -TARGET_EFAULT;
7918     }
7919 
7920     target_to_host_sigset(&host_mask, target_mask);
7921 
7922     host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
7923 
7924     ret = get_errno(signalfd(fd, &host_mask, host_flags));
7925     if (ret >= 0) {
7926         fd_trans_register(ret, &target_signalfd_trans);
7927     }
7928 
7929     unlock_user_struct(target_mask, mask, 0);
7930 
7931     return ret;
7932 }
7933 #endif
7934 
7935 /* Map host to target signal numbers for the wait family of syscalls.
7936    Assume all other status bits are the same.  */
7937 int host_to_target_waitstatus(int status)
7938 {
7939     if (WIFSIGNALED(status)) {
7940         return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f);
7941     }
7942     if (WIFSTOPPED(status)) {
7943         return (host_to_target_signal(WSTOPSIG(status)) << 8)
7944                | (status & 0xff);
7945     }
7946     return status;
7947 }
7948 
7949 static int open_self_cmdline(CPUArchState *cpu_env, int fd)
7950 {
7951     CPUState *cpu = env_cpu(cpu_env);
7952     struct linux_binprm *bprm = get_task_state(cpu)->bprm;
7953     int i;
7954 
7955     for (i = 0; i < bprm->argc; i++) {
7956         size_t len = strlen(bprm->argv[i]) + 1;
7957 
7958         if (write(fd, bprm->argv[i], len) != len) {
7959             return -1;
7960         }
7961     }
7962 
7963     return 0;
7964 }
7965 
7966 struct open_self_maps_data {
7967     TaskState *ts;
7968     IntervalTreeRoot *host_maps;
7969     int fd;
7970     bool smaps;
7971 };
7972 
7973 /*
7974  * Subroutine to output one line of /proc/self/maps,
7975  * or one region of /proc/self/smaps.
7976  */
7977 
7978 #ifdef TARGET_HPPA
7979 # define test_stack(S, E, L)  (E == L)
7980 #else
7981 # define test_stack(S, E, L)  (S == L)
7982 #endif
7983 
7984 static void open_self_maps_4(const struct open_self_maps_data *d,
7985                              const MapInfo *mi, abi_ptr start,
7986                              abi_ptr end, unsigned flags)
7987 {
7988     const struct image_info *info = d->ts->info;
7989     const char *path = mi->path;
7990     uint64_t offset;
7991     int fd = d->fd;
7992     int count;
7993 
7994     if (test_stack(start, end, info->stack_limit)) {
7995         path = "[stack]";
7996     } else if (start == info->brk) {
7997         path = "[heap]";
7998     } else if (start == info->vdso) {
7999         path = "[vdso]";
8000 #ifdef TARGET_X86_64
8001     } else if (start == TARGET_VSYSCALL_PAGE) {
8002         path = "[vsyscall]";
8003 #endif
8004     }
8005 
8006     /* Except null device (MAP_ANON), adjust offset for this fragment. */
8007     offset = mi->offset;
8008     if (mi->dev) {
8009         uintptr_t hstart = (uintptr_t)g2h_untagged(start);
8010         offset += hstart - mi->itree.start;
8011     }
8012 
8013     count = dprintf(fd, TARGET_ABI_FMT_ptr "-" TARGET_ABI_FMT_ptr
8014                     " %c%c%c%c %08" PRIx64 " %02x:%02x %"PRId64,
8015                     start, end,
8016                     (flags & PAGE_READ) ? 'r' : '-',
8017                     (flags & PAGE_WRITE_ORG) ? 'w' : '-',
8018                     (flags & PAGE_EXEC) ? 'x' : '-',
8019                     mi->is_priv ? 'p' : 's',
8020                     offset, major(mi->dev), minor(mi->dev),
8021                     (uint64_t)mi->inode);
8022     if (path) {
8023         dprintf(fd, "%*s%s\n", 73 - count, "", path);
8024     } else {
8025         dprintf(fd, "\n");
8026     }
8027 
8028     if (d->smaps) {
8029         unsigned long size = end - start;
8030         unsigned long page_size_kb = TARGET_PAGE_SIZE >> 10;
8031         unsigned long size_kb = size >> 10;
8032 
8033         dprintf(fd, "Size:                  %lu kB\n"
8034                 "KernelPageSize:        %lu kB\n"
8035                 "MMUPageSize:           %lu kB\n"
8036                 "Rss:                   0 kB\n"
8037                 "Pss:                   0 kB\n"
8038                 "Pss_Dirty:             0 kB\n"
8039                 "Shared_Clean:          0 kB\n"
8040                 "Shared_Dirty:          0 kB\n"
8041                 "Private_Clean:         0 kB\n"
8042                 "Private_Dirty:         0 kB\n"
8043                 "Referenced:            0 kB\n"
8044                 "Anonymous:             %lu kB\n"
8045                 "LazyFree:              0 kB\n"
8046                 "AnonHugePages:         0 kB\n"
8047                 "ShmemPmdMapped:        0 kB\n"
8048                 "FilePmdMapped:         0 kB\n"
8049                 "Shared_Hugetlb:        0 kB\n"
8050                 "Private_Hugetlb:       0 kB\n"
8051                 "Swap:                  0 kB\n"
8052                 "SwapPss:               0 kB\n"
8053                 "Locked:                0 kB\n"
8054                 "THPeligible:    0\n"
8055                 "VmFlags:%s%s%s%s%s%s%s%s\n",
8056                 size_kb, page_size_kb, page_size_kb,
8057                 (flags & PAGE_ANON ? size_kb : 0),
8058                 (flags & PAGE_READ) ? " rd" : "",
8059                 (flags & PAGE_WRITE_ORG) ? " wr" : "",
8060                 (flags & PAGE_EXEC) ? " ex" : "",
8061                 mi->is_priv ? "" : " sh",
8062                 (flags & PAGE_READ) ? " mr" : "",
8063                 (flags & PAGE_WRITE_ORG) ? " mw" : "",
8064                 (flags & PAGE_EXEC) ? " me" : "",
8065                 mi->is_priv ? "" : " ms");
8066     }
8067 }
8068 
8069 /*
8070  * Callback for walk_memory_regions, when read_self_maps() fails.
8071  * Proceed without the benefit of host /proc/self/maps cross-check.
8072  */
8073 static int open_self_maps_3(void *opaque, target_ulong guest_start,
8074                             target_ulong guest_end, unsigned long flags)
8075 {
8076     static const MapInfo mi = { .is_priv = true };
8077 
8078     open_self_maps_4(opaque, &mi, guest_start, guest_end, flags);
8079     return 0;
8080 }
8081 
8082 /*
8083  * Callback for walk_memory_regions, when read_self_maps() succeeds.
8084  */
8085 static int open_self_maps_2(void *opaque, target_ulong guest_start,
8086                             target_ulong guest_end, unsigned long flags)
8087 {
8088     const struct open_self_maps_data *d = opaque;
8089     uintptr_t host_start = (uintptr_t)g2h_untagged(guest_start);
8090     uintptr_t host_last = (uintptr_t)g2h_untagged(guest_end - 1);
8091 
8092 #ifdef TARGET_X86_64
8093     /*
8094      * Because of the extremely high position of the page within the guest
8095      * virtual address space, this is not backed by host memory at all.
8096      * Therefore the loop below would fail.  This is the only instance
8097      * of not having host backing memory.
8098      */
8099     if (guest_start == TARGET_VSYSCALL_PAGE) {
8100         return open_self_maps_3(opaque, guest_start, guest_end, flags);
8101     }
8102 #endif
8103 
8104     while (1) {
8105         IntervalTreeNode *n =
8106             interval_tree_iter_first(d->host_maps, host_start, host_start);
8107         MapInfo *mi = container_of(n, MapInfo, itree);
8108         uintptr_t this_hlast = MIN(host_last, n->last);
8109         target_ulong this_gend = h2g(this_hlast) + 1;
8110 
8111         open_self_maps_4(d, mi, guest_start, this_gend, flags);
8112 
8113         if (this_hlast == host_last) {
8114             return 0;
8115         }
8116         host_start = this_hlast + 1;
8117         guest_start = h2g(host_start);
8118     }
8119 }
8120 
8121 static int open_self_maps_1(CPUArchState *env, int fd, bool smaps)
8122 {
8123     struct open_self_maps_data d = {
8124         .ts = get_task_state(env_cpu(env)),
8125         .host_maps = read_self_maps(),
8126         .fd = fd,
8127         .smaps = smaps
8128     };
8129 
8130     if (d.host_maps) {
8131         walk_memory_regions(&d, open_self_maps_2);
8132         free_self_maps(d.host_maps);
8133     } else {
8134         walk_memory_regions(&d, open_self_maps_3);
8135     }
8136     return 0;
8137 }
8138 
8139 static int open_self_maps(CPUArchState *cpu_env, int fd)
8140 {
8141     return open_self_maps_1(cpu_env, fd, false);
8142 }
8143 
8144 static int open_self_smaps(CPUArchState *cpu_env, int fd)
8145 {
8146     return open_self_maps_1(cpu_env, fd, true);
8147 }
8148 
8149 static int open_self_stat(CPUArchState *cpu_env, int fd)
8150 {
8151     CPUState *cpu = env_cpu(cpu_env);
8152     TaskState *ts = get_task_state(cpu);
8153     g_autoptr(GString) buf = g_string_new(NULL);
8154     int i;
8155 
8156     for (i = 0; i < 44; i++) {
8157         if (i == 0) {
8158             /* pid */
8159             g_string_printf(buf, FMT_pid " ", getpid());
8160         } else if (i == 1) {
8161             /* app name */
8162             gchar *bin = g_strrstr(ts->bprm->argv[0], "/");
8163             bin = bin ? bin + 1 : ts->bprm->argv[0];
8164             g_string_printf(buf, "(%.15s) ", bin);
8165         } else if (i == 2) {
8166             /* task state */
8167             g_string_assign(buf, "R "); /* we are running right now */
8168         } else if (i == 3) {
8169             /* ppid */
8170             g_string_printf(buf, FMT_pid " ", getppid());
8171         } else if (i == 19) {
8172             /* num_threads */
8173             int cpus = 0;
8174             WITH_RCU_READ_LOCK_GUARD() {
8175                 CPUState *cpu_iter;
8176                 CPU_FOREACH(cpu_iter) {
8177                     cpus++;
8178                 }
8179             }
8180             g_string_printf(buf, "%d ", cpus);
8181         } else if (i == 21) {
8182             /* starttime */
8183             g_string_printf(buf, "%" PRIu64 " ", ts->start_boottime);
8184         } else if (i == 27) {
8185             /* stack bottom */
8186             g_string_printf(buf, TARGET_ABI_FMT_ld " ", ts->info->start_stack);
8187         } else {
8188             /* for the rest, there is MasterCard */
8189             g_string_printf(buf, "0%c", i == 43 ? '\n' : ' ');
8190         }
8191 
8192         if (write(fd, buf->str, buf->len) != buf->len) {
8193             return -1;
8194         }
8195     }
8196 
8197     return 0;
8198 }
8199 
8200 static int open_self_auxv(CPUArchState *cpu_env, int fd)
8201 {
8202     CPUState *cpu = env_cpu(cpu_env);
8203     TaskState *ts = get_task_state(cpu);
8204     abi_ulong auxv = ts->info->saved_auxv;
8205     abi_ulong len = ts->info->auxv_len;
8206     char *ptr;
8207 
8208     /*
8209      * Auxiliary vector is stored in target process stack.
8210      * read in whole auxv vector and copy it to file
8211      */
8212     ptr = lock_user(VERIFY_READ, auxv, len, 0);
8213     if (ptr != NULL) {
8214         while (len > 0) {
8215             ssize_t r;
8216             r = write(fd, ptr, len);
8217             if (r <= 0) {
8218                 break;
8219             }
8220             len -= r;
8221             ptr += r;
8222         }
8223         lseek(fd, 0, SEEK_SET);
8224         unlock_user(ptr, auxv, len);
8225     }
8226 
8227     return 0;
8228 }
8229 
8230 static int is_proc_myself(const char *filename, const char *entry)
8231 {
8232     if (!strncmp(filename, "/proc/", strlen("/proc/"))) {
8233         filename += strlen("/proc/");
8234         if (!strncmp(filename, "self/", strlen("self/"))) {
8235             filename += strlen("self/");
8236         } else if (*filename >= '1' && *filename <= '9') {
8237             char myself[80];
8238             snprintf(myself, sizeof(myself), "%d/", getpid());
8239             if (!strncmp(filename, myself, strlen(myself))) {
8240                 filename += strlen(myself);
8241             } else {
8242                 return 0;
8243             }
8244         } else {
8245             return 0;
8246         }
8247         if (!strcmp(filename, entry)) {
8248             return 1;
8249         }
8250     }
8251     return 0;
8252 }
8253 
8254 static void excp_dump_file(FILE *logfile, CPUArchState *env,
8255                       const char *fmt, int code)
8256 {
8257     if (logfile) {
8258         CPUState *cs = env_cpu(env);
8259 
8260         fprintf(logfile, fmt, code);
8261         fprintf(logfile, "Failing executable: %s\n", exec_path);
8262         cpu_dump_state(cs, logfile, 0);
8263         open_self_maps(env, fileno(logfile));
8264     }
8265 }
8266 
8267 void target_exception_dump(CPUArchState *env, const char *fmt, int code)
8268 {
8269     /* dump to console */
8270     excp_dump_file(stderr, env, fmt, code);
8271 
8272     /* dump to log file */
8273     if (qemu_log_separate()) {
8274         FILE *logfile = qemu_log_trylock();
8275 
8276         excp_dump_file(logfile, env, fmt, code);
8277         qemu_log_unlock(logfile);
8278     }
8279 }
8280 
8281 #include "target_proc.h"
8282 
8283 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN || \
8284     defined(HAVE_ARCH_PROC_CPUINFO) || \
8285     defined(HAVE_ARCH_PROC_HARDWARE)
8286 static int is_proc(const char *filename, const char *entry)
8287 {
8288     return strcmp(filename, entry) == 0;
8289 }
8290 #endif
8291 
8292 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8293 static int open_net_route(CPUArchState *cpu_env, int fd)
8294 {
8295     FILE *fp;
8296     char *line = NULL;
8297     size_t len = 0;
8298     ssize_t read;
8299 
8300     fp = fopen("/proc/net/route", "r");
8301     if (fp == NULL) {
8302         return -1;
8303     }
8304 
8305     /* read header */
8306 
8307     read = getline(&line, &len, fp);
8308     dprintf(fd, "%s", line);
8309 
8310     /* read routes */
8311 
8312     while ((read = getline(&line, &len, fp)) != -1) {
8313         char iface[16];
8314         uint32_t dest, gw, mask;
8315         unsigned int flags, refcnt, use, metric, mtu, window, irtt;
8316         int fields;
8317 
8318         fields = sscanf(line,
8319                         "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8320                         iface, &dest, &gw, &flags, &refcnt, &use, &metric,
8321                         &mask, &mtu, &window, &irtt);
8322         if (fields != 11) {
8323             continue;
8324         }
8325         dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8326                 iface, tswap32(dest), tswap32(gw), flags, refcnt, use,
8327                 metric, tswap32(mask), mtu, window, irtt);
8328     }
8329 
8330     free(line);
8331     fclose(fp);
8332 
8333     return 0;
8334 }
8335 #endif
8336 
8337 int do_guest_openat(CPUArchState *cpu_env, int dirfd, const char *fname,
8338                     int flags, mode_t mode, bool safe)
8339 {
8340     g_autofree char *proc_name = NULL;
8341     const char *pathname;
8342     struct fake_open {
8343         const char *filename;
8344         int (*fill)(CPUArchState *cpu_env, int fd);
8345         int (*cmp)(const char *s1, const char *s2);
8346     };
8347     const struct fake_open *fake_open;
8348     static const struct fake_open fakes[] = {
8349         { "maps", open_self_maps, is_proc_myself },
8350         { "smaps", open_self_smaps, is_proc_myself },
8351         { "stat", open_self_stat, is_proc_myself },
8352         { "auxv", open_self_auxv, is_proc_myself },
8353         { "cmdline", open_self_cmdline, is_proc_myself },
8354 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8355         { "/proc/net/route", open_net_route, is_proc },
8356 #endif
8357 #if defined(HAVE_ARCH_PROC_CPUINFO)
8358         { "/proc/cpuinfo", open_cpuinfo, is_proc },
8359 #endif
8360 #if defined(HAVE_ARCH_PROC_HARDWARE)
8361         { "/proc/hardware", open_hardware, is_proc },
8362 #endif
8363         { NULL, NULL, NULL }
8364     };
8365 
8366     /* if this is a file from /proc/ filesystem, expand full name */
8367     proc_name = realpath(fname, NULL);
8368     if (proc_name && strncmp(proc_name, "/proc/", 6) == 0) {
8369         pathname = proc_name;
8370     } else {
8371         pathname = fname;
8372     }
8373 
8374     if (is_proc_myself(pathname, "exe")) {
8375         if (safe) {
8376             return safe_openat(dirfd, exec_path, flags, mode);
8377         } else {
8378             return openat(dirfd, exec_path, flags, mode);
8379         }
8380     }
8381 
8382     for (fake_open = fakes; fake_open->filename; fake_open++) {
8383         if (fake_open->cmp(pathname, fake_open->filename)) {
8384             break;
8385         }
8386     }
8387 
8388     if (fake_open->filename) {
8389         const char *tmpdir;
8390         char filename[PATH_MAX];
8391         int fd, r;
8392 
8393         fd = memfd_create("qemu-open", 0);
8394         if (fd < 0) {
8395             if (errno != ENOSYS) {
8396                 return fd;
8397             }
8398             /* create temporary file to map stat to */
8399             tmpdir = getenv("TMPDIR");
8400             if (!tmpdir)
8401                 tmpdir = "/tmp";
8402             snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir);
8403             fd = mkstemp(filename);
8404             if (fd < 0) {
8405                 return fd;
8406             }
8407             unlink(filename);
8408         }
8409 
8410         if ((r = fake_open->fill(cpu_env, fd))) {
8411             int e = errno;
8412             close(fd);
8413             errno = e;
8414             return r;
8415         }
8416         lseek(fd, 0, SEEK_SET);
8417 
8418         return fd;
8419     }
8420 
8421     if (safe) {
8422         return safe_openat(dirfd, path(pathname), flags, mode);
8423     } else {
8424         return openat(dirfd, path(pathname), flags, mode);
8425     }
8426 }
8427 
8428 ssize_t do_guest_readlink(const char *pathname, char *buf, size_t bufsiz)
8429 {
8430     ssize_t ret;
8431 
8432     if (!pathname || !buf) {
8433         errno = EFAULT;
8434         return -1;
8435     }
8436 
8437     if (!bufsiz) {
8438         /* Short circuit this for the magic exe check. */
8439         errno = EINVAL;
8440         return -1;
8441     }
8442 
8443     if (is_proc_myself((const char *)pathname, "exe")) {
8444         /*
8445          * Don't worry about sign mismatch as earlier mapping
8446          * logic would have thrown a bad address error.
8447          */
8448         ret = MIN(strlen(exec_path), bufsiz);
8449         /* We cannot NUL terminate the string. */
8450         memcpy(buf, exec_path, ret);
8451     } else {
8452         ret = readlink(path(pathname), buf, bufsiz);
8453     }
8454 
8455     return ret;
8456 }
8457 
8458 static int do_execv(CPUArchState *cpu_env, int dirfd,
8459                     abi_long pathname, abi_long guest_argp,
8460                     abi_long guest_envp, int flags, bool is_execveat)
8461 {
8462     int ret;
8463     char **argp, **envp;
8464     int argc, envc;
8465     abi_ulong gp;
8466     abi_ulong addr;
8467     char **q;
8468     void *p;
8469 
8470     argc = 0;
8471 
8472     for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) {
8473         if (get_user_ual(addr, gp)) {
8474             return -TARGET_EFAULT;
8475         }
8476         if (!addr) {
8477             break;
8478         }
8479         argc++;
8480     }
8481     envc = 0;
8482     for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) {
8483         if (get_user_ual(addr, gp)) {
8484             return -TARGET_EFAULT;
8485         }
8486         if (!addr) {
8487             break;
8488         }
8489         envc++;
8490     }
8491 
8492     argp = g_new0(char *, argc + 1);
8493     envp = g_new0(char *, envc + 1);
8494 
8495     for (gp = guest_argp, q = argp; gp; gp += sizeof(abi_ulong), q++) {
8496         if (get_user_ual(addr, gp)) {
8497             goto execve_efault;
8498         }
8499         if (!addr) {
8500             break;
8501         }
8502         *q = lock_user_string(addr);
8503         if (!*q) {
8504             goto execve_efault;
8505         }
8506     }
8507     *q = NULL;
8508 
8509     for (gp = guest_envp, q = envp; gp; gp += sizeof(abi_ulong), q++) {
8510         if (get_user_ual(addr, gp)) {
8511             goto execve_efault;
8512         }
8513         if (!addr) {
8514             break;
8515         }
8516         *q = lock_user_string(addr);
8517         if (!*q) {
8518             goto execve_efault;
8519         }
8520     }
8521     *q = NULL;
8522 
8523     /*
8524      * Although execve() is not an interruptible syscall it is
8525      * a special case where we must use the safe_syscall wrapper:
8526      * if we allow a signal to happen before we make the host
8527      * syscall then we will 'lose' it, because at the point of
8528      * execve the process leaves QEMU's control. So we use the
8529      * safe syscall wrapper to ensure that we either take the
8530      * signal as a guest signal, or else it does not happen
8531      * before the execve completes and makes it the other
8532      * program's problem.
8533      */
8534     p = lock_user_string(pathname);
8535     if (!p) {
8536         goto execve_efault;
8537     }
8538 
8539     const char *exe = p;
8540     if (is_proc_myself(p, "exe")) {
8541         exe = exec_path;
8542     }
8543     ret = is_execveat
8544         ? safe_execveat(dirfd, exe, argp, envp, flags)
8545         : safe_execve(exe, argp, envp);
8546     ret = get_errno(ret);
8547 
8548     unlock_user(p, pathname, 0);
8549 
8550     goto execve_end;
8551 
8552 execve_efault:
8553     ret = -TARGET_EFAULT;
8554 
8555 execve_end:
8556     for (gp = guest_argp, q = argp; *q; gp += sizeof(abi_ulong), q++) {
8557         if (get_user_ual(addr, gp) || !addr) {
8558             break;
8559         }
8560         unlock_user(*q, addr, 0);
8561     }
8562     for (gp = guest_envp, q = envp; *q; gp += sizeof(abi_ulong), q++) {
8563         if (get_user_ual(addr, gp) || !addr) {
8564             break;
8565         }
8566         unlock_user(*q, addr, 0);
8567     }
8568 
8569     g_free(argp);
8570     g_free(envp);
8571     return ret;
8572 }
8573 
8574 #define TIMER_MAGIC 0x0caf0000
8575 #define TIMER_MAGIC_MASK 0xffff0000
8576 
8577 /* Convert QEMU provided timer ID back to internal 16bit index format */
8578 static target_timer_t get_timer_id(abi_long arg)
8579 {
8580     target_timer_t timerid = arg;
8581 
8582     if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) {
8583         return -TARGET_EINVAL;
8584     }
8585 
8586     timerid &= 0xffff;
8587 
8588     if (timerid >= ARRAY_SIZE(g_posix_timers)) {
8589         return -TARGET_EINVAL;
8590     }
8591 
8592     return timerid;
8593 }
8594 
8595 static int target_to_host_cpu_mask(unsigned long *host_mask,
8596                                    size_t host_size,
8597                                    abi_ulong target_addr,
8598                                    size_t target_size)
8599 {
8600     unsigned target_bits = sizeof(abi_ulong) * 8;
8601     unsigned host_bits = sizeof(*host_mask) * 8;
8602     abi_ulong *target_mask;
8603     unsigned i, j;
8604 
8605     assert(host_size >= target_size);
8606 
8607     target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1);
8608     if (!target_mask) {
8609         return -TARGET_EFAULT;
8610     }
8611     memset(host_mask, 0, host_size);
8612 
8613     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8614         unsigned bit = i * target_bits;
8615         abi_ulong val;
8616 
8617         __get_user(val, &target_mask[i]);
8618         for (j = 0; j < target_bits; j++, bit++) {
8619             if (val & (1UL << j)) {
8620                 host_mask[bit / host_bits] |= 1UL << (bit % host_bits);
8621             }
8622         }
8623     }
8624 
8625     unlock_user(target_mask, target_addr, 0);
8626     return 0;
8627 }
8628 
8629 static int host_to_target_cpu_mask(const unsigned long *host_mask,
8630                                    size_t host_size,
8631                                    abi_ulong target_addr,
8632                                    size_t target_size)
8633 {
8634     unsigned target_bits = sizeof(abi_ulong) * 8;
8635     unsigned host_bits = sizeof(*host_mask) * 8;
8636     abi_ulong *target_mask;
8637     unsigned i, j;
8638 
8639     assert(host_size >= target_size);
8640 
8641     target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0);
8642     if (!target_mask) {
8643         return -TARGET_EFAULT;
8644     }
8645 
8646     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8647         unsigned bit = i * target_bits;
8648         abi_ulong val = 0;
8649 
8650         for (j = 0; j < target_bits; j++, bit++) {
8651             if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) {
8652                 val |= 1UL << j;
8653             }
8654         }
8655         __put_user(val, &target_mask[i]);
8656     }
8657 
8658     unlock_user(target_mask, target_addr, target_size);
8659     return 0;
8660 }
8661 
8662 #ifdef TARGET_NR_getdents
8663 static int do_getdents(abi_long dirfd, abi_long arg2, abi_long count)
8664 {
8665     g_autofree void *hdirp = NULL;
8666     void *tdirp;
8667     int hlen, hoff, toff;
8668     int hreclen, treclen;
8669     off64_t prev_diroff = 0;
8670 
8671     hdirp = g_try_malloc(count);
8672     if (!hdirp) {
8673         return -TARGET_ENOMEM;
8674     }
8675 
8676 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8677     hlen = sys_getdents(dirfd, hdirp, count);
8678 #else
8679     hlen = sys_getdents64(dirfd, hdirp, count);
8680 #endif
8681 
8682     hlen = get_errno(hlen);
8683     if (is_error(hlen)) {
8684         return hlen;
8685     }
8686 
8687     tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8688     if (!tdirp) {
8689         return -TARGET_EFAULT;
8690     }
8691 
8692     for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8693 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8694         struct linux_dirent *hde = hdirp + hoff;
8695 #else
8696         struct linux_dirent64 *hde = hdirp + hoff;
8697 #endif
8698         struct target_dirent *tde = tdirp + toff;
8699         int namelen;
8700         uint8_t type;
8701 
8702         namelen = strlen(hde->d_name);
8703         hreclen = hde->d_reclen;
8704         treclen = offsetof(struct target_dirent, d_name) + namelen + 2;
8705         treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent));
8706 
8707         if (toff + treclen > count) {
8708             /*
8709              * If the host struct is smaller than the target struct, or
8710              * requires less alignment and thus packs into less space,
8711              * then the host can return more entries than we can pass
8712              * on to the guest.
8713              */
8714             if (toff == 0) {
8715                 toff = -TARGET_EINVAL; /* result buffer is too small */
8716                 break;
8717             }
8718             /*
8719              * Return what we have, resetting the file pointer to the
8720              * location of the first record not returned.
8721              */
8722             lseek64(dirfd, prev_diroff, SEEK_SET);
8723             break;
8724         }
8725 
8726         prev_diroff = hde->d_off;
8727         tde->d_ino = tswapal(hde->d_ino);
8728         tde->d_off = tswapal(hde->d_off);
8729         tde->d_reclen = tswap16(treclen);
8730         memcpy(tde->d_name, hde->d_name, namelen + 1);
8731 
8732         /*
8733          * The getdents type is in what was formerly a padding byte at the
8734          * end of the structure.
8735          */
8736 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8737         type = *((uint8_t *)hde + hreclen - 1);
8738 #else
8739         type = hde->d_type;
8740 #endif
8741         *((uint8_t *)tde + treclen - 1) = type;
8742     }
8743 
8744     unlock_user(tdirp, arg2, toff);
8745     return toff;
8746 }
8747 #endif /* TARGET_NR_getdents */
8748 
8749 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
8750 static int do_getdents64(abi_long dirfd, abi_long arg2, abi_long count)
8751 {
8752     g_autofree void *hdirp = NULL;
8753     void *tdirp;
8754     int hlen, hoff, toff;
8755     int hreclen, treclen;
8756     off64_t prev_diroff = 0;
8757 
8758     hdirp = g_try_malloc(count);
8759     if (!hdirp) {
8760         return -TARGET_ENOMEM;
8761     }
8762 
8763     hlen = get_errno(sys_getdents64(dirfd, hdirp, count));
8764     if (is_error(hlen)) {
8765         return hlen;
8766     }
8767 
8768     tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8769     if (!tdirp) {
8770         return -TARGET_EFAULT;
8771     }
8772 
8773     for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8774         struct linux_dirent64 *hde = hdirp + hoff;
8775         struct target_dirent64 *tde = tdirp + toff;
8776         int namelen;
8777 
8778         namelen = strlen(hde->d_name) + 1;
8779         hreclen = hde->d_reclen;
8780         treclen = offsetof(struct target_dirent64, d_name) + namelen;
8781         treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent64));
8782 
8783         if (toff + treclen > count) {
8784             /*
8785              * If the host struct is smaller than the target struct, or
8786              * requires less alignment and thus packs into less space,
8787              * then the host can return more entries than we can pass
8788              * on to the guest.
8789              */
8790             if (toff == 0) {
8791                 toff = -TARGET_EINVAL; /* result buffer is too small */
8792                 break;
8793             }
8794             /*
8795              * Return what we have, resetting the file pointer to the
8796              * location of the first record not returned.
8797              */
8798             lseek64(dirfd, prev_diroff, SEEK_SET);
8799             break;
8800         }
8801 
8802         prev_diroff = hde->d_off;
8803         tde->d_ino = tswap64(hde->d_ino);
8804         tde->d_off = tswap64(hde->d_off);
8805         tde->d_reclen = tswap16(treclen);
8806         tde->d_type = hde->d_type;
8807         memcpy(tde->d_name, hde->d_name, namelen);
8808     }
8809 
8810     unlock_user(tdirp, arg2, toff);
8811     return toff;
8812 }
8813 #endif /* TARGET_NR_getdents64 */
8814 
8815 #if defined(TARGET_NR_riscv_hwprobe)
8816 
8817 #define RISCV_HWPROBE_KEY_MVENDORID     0
8818 #define RISCV_HWPROBE_KEY_MARCHID       1
8819 #define RISCV_HWPROBE_KEY_MIMPID        2
8820 
8821 #define RISCV_HWPROBE_KEY_BASE_BEHAVIOR 3
8822 #define     RISCV_HWPROBE_BASE_BEHAVIOR_IMA (1 << 0)
8823 
8824 #define RISCV_HWPROBE_KEY_IMA_EXT_0         4
8825 #define     RISCV_HWPROBE_IMA_FD            (1 << 0)
8826 #define     RISCV_HWPROBE_IMA_C             (1 << 1)
8827 #define     RISCV_HWPROBE_IMA_V             (1 << 2)
8828 #define     RISCV_HWPROBE_EXT_ZBA           (1 << 3)
8829 #define     RISCV_HWPROBE_EXT_ZBB           (1 << 4)
8830 #define     RISCV_HWPROBE_EXT_ZBS           (1 << 5)
8831 #define     RISCV_HWPROBE_EXT_ZICBOZ        (1 << 6)
8832 #define     RISCV_HWPROBE_EXT_ZBC           (1 << 7)
8833 #define     RISCV_HWPROBE_EXT_ZBKB          (1 << 8)
8834 #define     RISCV_HWPROBE_EXT_ZBKC          (1 << 9)
8835 #define     RISCV_HWPROBE_EXT_ZBKX          (1 << 10)
8836 #define     RISCV_HWPROBE_EXT_ZKND          (1 << 11)
8837 #define     RISCV_HWPROBE_EXT_ZKNE          (1 << 12)
8838 #define     RISCV_HWPROBE_EXT_ZKNH          (1 << 13)
8839 #define     RISCV_HWPROBE_EXT_ZKSED         (1 << 14)
8840 #define     RISCV_HWPROBE_EXT_ZKSH          (1 << 15)
8841 #define     RISCV_HWPROBE_EXT_ZKT           (1 << 16)
8842 #define     RISCV_HWPROBE_EXT_ZVBB          (1 << 17)
8843 #define     RISCV_HWPROBE_EXT_ZVBC          (1 << 18)
8844 #define     RISCV_HWPROBE_EXT_ZVKB          (1 << 19)
8845 #define     RISCV_HWPROBE_EXT_ZVKG          (1 << 20)
8846 #define     RISCV_HWPROBE_EXT_ZVKNED        (1 << 21)
8847 #define     RISCV_HWPROBE_EXT_ZVKNHA        (1 << 22)
8848 #define     RISCV_HWPROBE_EXT_ZVKNHB        (1 << 23)
8849 #define     RISCV_HWPROBE_EXT_ZVKSED        (1 << 24)
8850 #define     RISCV_HWPROBE_EXT_ZVKSH         (1 << 25)
8851 #define     RISCV_HWPROBE_EXT_ZVKT          (1 << 26)
8852 #define     RISCV_HWPROBE_EXT_ZFH           (1 << 27)
8853 #define     RISCV_HWPROBE_EXT_ZFHMIN        (1 << 28)
8854 #define     RISCV_HWPROBE_EXT_ZIHINTNTL     (1 << 29)
8855 #define     RISCV_HWPROBE_EXT_ZVFH          (1 << 30)
8856 #define     RISCV_HWPROBE_EXT_ZVFHMIN       (1 << 31)
8857 #define     RISCV_HWPROBE_EXT_ZFA           (1ULL << 32)
8858 #define     RISCV_HWPROBE_EXT_ZTSO          (1ULL << 33)
8859 #define     RISCV_HWPROBE_EXT_ZACAS         (1ULL << 34)
8860 #define     RISCV_HWPROBE_EXT_ZICOND        (1ULL << 35)
8861 
8862 #define RISCV_HWPROBE_KEY_CPUPERF_0     5
8863 #define     RISCV_HWPROBE_MISALIGNED_UNKNOWN     (0 << 0)
8864 #define     RISCV_HWPROBE_MISALIGNED_EMULATED    (1 << 0)
8865 #define     RISCV_HWPROBE_MISALIGNED_SLOW        (2 << 0)
8866 #define     RISCV_HWPROBE_MISALIGNED_FAST        (3 << 0)
8867 #define     RISCV_HWPROBE_MISALIGNED_UNSUPPORTED (4 << 0)
8868 #define     RISCV_HWPROBE_MISALIGNED_MASK        (7 << 0)
8869 
8870 #define RISCV_HWPROBE_KEY_ZICBOZ_BLOCK_SIZE 6
8871 
8872 struct riscv_hwprobe {
8873     abi_llong  key;
8874     abi_ullong value;
8875 };
8876 
8877 static void risc_hwprobe_fill_pairs(CPURISCVState *env,
8878                                     struct riscv_hwprobe *pair,
8879                                     size_t pair_count)
8880 {
8881     const RISCVCPUConfig *cfg = riscv_cpu_cfg(env);
8882 
8883     for (; pair_count > 0; pair_count--, pair++) {
8884         abi_llong key;
8885         abi_ullong value;
8886         __put_user(0, &pair->value);
8887         __get_user(key, &pair->key);
8888         switch (key) {
8889         case RISCV_HWPROBE_KEY_MVENDORID:
8890             __put_user(cfg->mvendorid, &pair->value);
8891             break;
8892         case RISCV_HWPROBE_KEY_MARCHID:
8893             __put_user(cfg->marchid, &pair->value);
8894             break;
8895         case RISCV_HWPROBE_KEY_MIMPID:
8896             __put_user(cfg->mimpid, &pair->value);
8897             break;
8898         case RISCV_HWPROBE_KEY_BASE_BEHAVIOR:
8899             value = riscv_has_ext(env, RVI) &&
8900                     riscv_has_ext(env, RVM) &&
8901                     riscv_has_ext(env, RVA) ?
8902                     RISCV_HWPROBE_BASE_BEHAVIOR_IMA : 0;
8903             __put_user(value, &pair->value);
8904             break;
8905         case RISCV_HWPROBE_KEY_IMA_EXT_0:
8906             value = riscv_has_ext(env, RVF) &&
8907                     riscv_has_ext(env, RVD) ?
8908                     RISCV_HWPROBE_IMA_FD : 0;
8909             value |= riscv_has_ext(env, RVC) ?
8910                      RISCV_HWPROBE_IMA_C : 0;
8911             value |= riscv_has_ext(env, RVV) ?
8912                      RISCV_HWPROBE_IMA_V : 0;
8913             value |= cfg->ext_zba ?
8914                      RISCV_HWPROBE_EXT_ZBA : 0;
8915             value |= cfg->ext_zbb ?
8916                      RISCV_HWPROBE_EXT_ZBB : 0;
8917             value |= cfg->ext_zbs ?
8918                      RISCV_HWPROBE_EXT_ZBS : 0;
8919             value |= cfg->ext_zicboz ?
8920                      RISCV_HWPROBE_EXT_ZICBOZ : 0;
8921             value |= cfg->ext_zbc ?
8922                      RISCV_HWPROBE_EXT_ZBC : 0;
8923             value |= cfg->ext_zbkb ?
8924                      RISCV_HWPROBE_EXT_ZBKB : 0;
8925             value |= cfg->ext_zbkc ?
8926                      RISCV_HWPROBE_EXT_ZBKC : 0;
8927             value |= cfg->ext_zbkx ?
8928                      RISCV_HWPROBE_EXT_ZBKX : 0;
8929             value |= cfg->ext_zknd ?
8930                      RISCV_HWPROBE_EXT_ZKND : 0;
8931             value |= cfg->ext_zkne ?
8932                      RISCV_HWPROBE_EXT_ZKNE : 0;
8933             value |= cfg->ext_zknh ?
8934                      RISCV_HWPROBE_EXT_ZKNH : 0;
8935             value |= cfg->ext_zksed ?
8936                      RISCV_HWPROBE_EXT_ZKSED : 0;
8937             value |= cfg->ext_zksh ?
8938                      RISCV_HWPROBE_EXT_ZKSH : 0;
8939             value |= cfg->ext_zkt ?
8940                      RISCV_HWPROBE_EXT_ZKT : 0;
8941             value |= cfg->ext_zvbb ?
8942                      RISCV_HWPROBE_EXT_ZVBB : 0;
8943             value |= cfg->ext_zvbc ?
8944                      RISCV_HWPROBE_EXT_ZVBC : 0;
8945             value |= cfg->ext_zvkb ?
8946                      RISCV_HWPROBE_EXT_ZVKB : 0;
8947             value |= cfg->ext_zvkg ?
8948                      RISCV_HWPROBE_EXT_ZVKG : 0;
8949             value |= cfg->ext_zvkned ?
8950                      RISCV_HWPROBE_EXT_ZVKNED : 0;
8951             value |= cfg->ext_zvknha ?
8952                      RISCV_HWPROBE_EXT_ZVKNHA : 0;
8953             value |= cfg->ext_zvknhb ?
8954                      RISCV_HWPROBE_EXT_ZVKNHB : 0;
8955             value |= cfg->ext_zvksed ?
8956                      RISCV_HWPROBE_EXT_ZVKSED : 0;
8957             value |= cfg->ext_zvksh ?
8958                      RISCV_HWPROBE_EXT_ZVKSH : 0;
8959             value |= cfg->ext_zvkt ?
8960                      RISCV_HWPROBE_EXT_ZVKT : 0;
8961             value |= cfg->ext_zfh ?
8962                      RISCV_HWPROBE_EXT_ZFH : 0;
8963             value |= cfg->ext_zfhmin ?
8964                      RISCV_HWPROBE_EXT_ZFHMIN : 0;
8965             value |= cfg->ext_zihintntl ?
8966                      RISCV_HWPROBE_EXT_ZIHINTNTL : 0;
8967             value |= cfg->ext_zvfh ?
8968                      RISCV_HWPROBE_EXT_ZVFH : 0;
8969             value |= cfg->ext_zvfhmin ?
8970                      RISCV_HWPROBE_EXT_ZVFHMIN : 0;
8971             value |= cfg->ext_zfa ?
8972                      RISCV_HWPROBE_EXT_ZFA : 0;
8973             value |= cfg->ext_ztso ?
8974                      RISCV_HWPROBE_EXT_ZTSO : 0;
8975             value |= cfg->ext_zacas ?
8976                      RISCV_HWPROBE_EXT_ZACAS : 0;
8977             value |= cfg->ext_zicond ?
8978                      RISCV_HWPROBE_EXT_ZICOND : 0;
8979             __put_user(value, &pair->value);
8980             break;
8981         case RISCV_HWPROBE_KEY_CPUPERF_0:
8982             __put_user(RISCV_HWPROBE_MISALIGNED_FAST, &pair->value);
8983             break;
8984         case RISCV_HWPROBE_KEY_ZICBOZ_BLOCK_SIZE:
8985             value = cfg->ext_zicboz ? cfg->cboz_blocksize : 0;
8986             __put_user(value, &pair->value);
8987             break;
8988         default:
8989             __put_user(-1, &pair->key);
8990             break;
8991         }
8992     }
8993 }
8994 
8995 static int cpu_set_valid(abi_long arg3, abi_long arg4)
8996 {
8997     int ret, i, tmp;
8998     size_t host_mask_size, target_mask_size;
8999     unsigned long *host_mask;
9000 
9001     /*
9002      * cpu_set_t represent CPU masks as bit masks of type unsigned long *.
9003      * arg3 contains the cpu count.
9004      */
9005     tmp = (8 * sizeof(abi_ulong));
9006     target_mask_size = ((arg3 + tmp - 1) / tmp) * sizeof(abi_ulong);
9007     host_mask_size = (target_mask_size + (sizeof(*host_mask) - 1)) &
9008                      ~(sizeof(*host_mask) - 1);
9009 
9010     host_mask = alloca(host_mask_size);
9011 
9012     ret = target_to_host_cpu_mask(host_mask, host_mask_size,
9013                                   arg4, target_mask_size);
9014     if (ret != 0) {
9015         return ret;
9016     }
9017 
9018     for (i = 0 ; i < host_mask_size / sizeof(*host_mask); i++) {
9019         if (host_mask[i] != 0) {
9020             return 0;
9021         }
9022     }
9023     return -TARGET_EINVAL;
9024 }
9025 
9026 static abi_long do_riscv_hwprobe(CPUArchState *cpu_env, abi_long arg1,
9027                                  abi_long arg2, abi_long arg3,
9028                                  abi_long arg4, abi_long arg5)
9029 {
9030     int ret;
9031     struct riscv_hwprobe *host_pairs;
9032 
9033     /* flags must be 0 */
9034     if (arg5 != 0) {
9035         return -TARGET_EINVAL;
9036     }
9037 
9038     /* check cpu_set */
9039     if (arg3 != 0) {
9040         ret = cpu_set_valid(arg3, arg4);
9041         if (ret != 0) {
9042             return ret;
9043         }
9044     } else if (arg4 != 0) {
9045         return -TARGET_EINVAL;
9046     }
9047 
9048     /* no pairs */
9049     if (arg2 == 0) {
9050         return 0;
9051     }
9052 
9053     host_pairs = lock_user(VERIFY_WRITE, arg1,
9054                            sizeof(*host_pairs) * (size_t)arg2, 0);
9055     if (host_pairs == NULL) {
9056         return -TARGET_EFAULT;
9057     }
9058     risc_hwprobe_fill_pairs(cpu_env, host_pairs, arg2);
9059     unlock_user(host_pairs, arg1, sizeof(*host_pairs) * (size_t)arg2);
9060     return 0;
9061 }
9062 #endif /* TARGET_NR_riscv_hwprobe */
9063 
9064 #if defined(TARGET_NR_pivot_root) && defined(__NR_pivot_root)
9065 _syscall2(int, pivot_root, const char *, new_root, const char *, put_old)
9066 #endif
9067 
9068 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree)
9069 #define __NR_sys_open_tree __NR_open_tree
9070 _syscall3(int, sys_open_tree, int, __dfd, const char *, __filename,
9071           unsigned int, __flags)
9072 #endif
9073 
9074 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount)
9075 #define __NR_sys_move_mount __NR_move_mount
9076 _syscall5(int, sys_move_mount, int, __from_dfd, const char *, __from_pathname,
9077            int, __to_dfd, const char *, __to_pathname, unsigned int, flag)
9078 #endif
9079 
9080 /* This is an internal helper for do_syscall so that it is easier
9081  * to have a single return point, so that actions, such as logging
9082  * of syscall results, can be performed.
9083  * All errnos that do_syscall() returns must be -TARGET_<errcode>.
9084  */
9085 static abi_long do_syscall1(CPUArchState *cpu_env, int num, abi_long arg1,
9086                             abi_long arg2, abi_long arg3, abi_long arg4,
9087                             abi_long arg5, abi_long arg6, abi_long arg7,
9088                             abi_long arg8)
9089 {
9090     CPUState *cpu = env_cpu(cpu_env);
9091     abi_long ret;
9092 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \
9093     || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \
9094     || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \
9095     || defined(TARGET_NR_statx)
9096     struct stat st;
9097 #endif
9098 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \
9099     || defined(TARGET_NR_fstatfs)
9100     struct statfs stfs;
9101 #endif
9102     void *p;
9103 
9104     switch(num) {
9105     case TARGET_NR_exit:
9106         /* In old applications this may be used to implement _exit(2).
9107            However in threaded applications it is used for thread termination,
9108            and _exit_group is used for application termination.
9109            Do thread termination if we have more then one thread.  */
9110 
9111         if (block_signals()) {
9112             return -QEMU_ERESTARTSYS;
9113         }
9114 
9115         pthread_mutex_lock(&clone_lock);
9116 
9117         if (CPU_NEXT(first_cpu)) {
9118             TaskState *ts = get_task_state(cpu);
9119 
9120             if (ts->child_tidptr) {
9121                 put_user_u32(0, ts->child_tidptr);
9122                 do_sys_futex(g2h(cpu, ts->child_tidptr),
9123                              FUTEX_WAKE, INT_MAX, NULL, NULL, 0);
9124             }
9125 
9126             object_unparent(OBJECT(cpu));
9127             object_unref(OBJECT(cpu));
9128             /*
9129              * At this point the CPU should be unrealized and removed
9130              * from cpu lists. We can clean-up the rest of the thread
9131              * data without the lock held.
9132              */
9133 
9134             pthread_mutex_unlock(&clone_lock);
9135 
9136             thread_cpu = NULL;
9137             g_free(ts);
9138             rcu_unregister_thread();
9139             pthread_exit(NULL);
9140         }
9141 
9142         pthread_mutex_unlock(&clone_lock);
9143         preexit_cleanup(cpu_env, arg1);
9144         _exit(arg1);
9145         return 0; /* avoid warning */
9146     case TARGET_NR_read:
9147         if (arg2 == 0 && arg3 == 0) {
9148             return get_errno(safe_read(arg1, 0, 0));
9149         } else {
9150             if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
9151                 return -TARGET_EFAULT;
9152             ret = get_errno(safe_read(arg1, p, arg3));
9153             if (ret >= 0 &&
9154                 fd_trans_host_to_target_data(arg1)) {
9155                 ret = fd_trans_host_to_target_data(arg1)(p, ret);
9156             }
9157             unlock_user(p, arg2, ret);
9158         }
9159         return ret;
9160     case TARGET_NR_write:
9161         if (arg2 == 0 && arg3 == 0) {
9162             return get_errno(safe_write(arg1, 0, 0));
9163         }
9164         if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
9165             return -TARGET_EFAULT;
9166         if (fd_trans_target_to_host_data(arg1)) {
9167             void *copy = g_malloc(arg3);
9168             memcpy(copy, p, arg3);
9169             ret = fd_trans_target_to_host_data(arg1)(copy, arg3);
9170             if (ret >= 0) {
9171                 ret = get_errno(safe_write(arg1, copy, ret));
9172             }
9173             g_free(copy);
9174         } else {
9175             ret = get_errno(safe_write(arg1, p, arg3));
9176         }
9177         unlock_user(p, arg2, 0);
9178         return ret;
9179 
9180 #ifdef TARGET_NR_open
9181     case TARGET_NR_open:
9182         if (!(p = lock_user_string(arg1)))
9183             return -TARGET_EFAULT;
9184         ret = get_errno(do_guest_openat(cpu_env, AT_FDCWD, p,
9185                                   target_to_host_bitmask(arg2, fcntl_flags_tbl),
9186                                   arg3, true));
9187         fd_trans_unregister(ret);
9188         unlock_user(p, arg1, 0);
9189         return ret;
9190 #endif
9191     case TARGET_NR_openat:
9192         if (!(p = lock_user_string(arg2)))
9193             return -TARGET_EFAULT;
9194         ret = get_errno(do_guest_openat(cpu_env, arg1, p,
9195                                   target_to_host_bitmask(arg3, fcntl_flags_tbl),
9196                                   arg4, true));
9197         fd_trans_unregister(ret);
9198         unlock_user(p, arg2, 0);
9199         return ret;
9200 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
9201     case TARGET_NR_name_to_handle_at:
9202         ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5);
9203         return ret;
9204 #endif
9205 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
9206     case TARGET_NR_open_by_handle_at:
9207         ret = do_open_by_handle_at(arg1, arg2, arg3);
9208         fd_trans_unregister(ret);
9209         return ret;
9210 #endif
9211 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
9212     case TARGET_NR_pidfd_open:
9213         return get_errno(pidfd_open(arg1, arg2));
9214 #endif
9215 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
9216     case TARGET_NR_pidfd_send_signal:
9217         {
9218             siginfo_t uinfo, *puinfo;
9219 
9220             if (arg3) {
9221                 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
9222                 if (!p) {
9223                     return -TARGET_EFAULT;
9224                  }
9225                  target_to_host_siginfo(&uinfo, p);
9226                  unlock_user(p, arg3, 0);
9227                  puinfo = &uinfo;
9228             } else {
9229                  puinfo = NULL;
9230             }
9231             ret = get_errno(pidfd_send_signal(arg1, target_to_host_signal(arg2),
9232                                               puinfo, arg4));
9233         }
9234         return ret;
9235 #endif
9236 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
9237     case TARGET_NR_pidfd_getfd:
9238         return get_errno(pidfd_getfd(arg1, arg2, arg3));
9239 #endif
9240     case TARGET_NR_close:
9241         fd_trans_unregister(arg1);
9242         return get_errno(close(arg1));
9243 #if defined(__NR_close_range) && defined(TARGET_NR_close_range)
9244     case TARGET_NR_close_range:
9245         ret = get_errno(sys_close_range(arg1, arg2, arg3));
9246         if (ret == 0 && !(arg3 & CLOSE_RANGE_CLOEXEC)) {
9247             abi_long fd, maxfd;
9248             maxfd = MIN(arg2, target_fd_max);
9249             for (fd = arg1; fd < maxfd; fd++) {
9250                 fd_trans_unregister(fd);
9251             }
9252         }
9253         return ret;
9254 #endif
9255 
9256     case TARGET_NR_brk:
9257         return do_brk(arg1);
9258 #ifdef TARGET_NR_fork
9259     case TARGET_NR_fork:
9260         return get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0));
9261 #endif
9262 #ifdef TARGET_NR_waitpid
9263     case TARGET_NR_waitpid:
9264         {
9265             int status;
9266             ret = get_errno(safe_wait4(arg1, &status, arg3, 0));
9267             if (!is_error(ret) && arg2 && ret
9268                 && put_user_s32(host_to_target_waitstatus(status), arg2))
9269                 return -TARGET_EFAULT;
9270         }
9271         return ret;
9272 #endif
9273 #ifdef TARGET_NR_waitid
9274     case TARGET_NR_waitid:
9275         {
9276             struct rusage ru;
9277             siginfo_t info;
9278 
9279             ret = get_errno(safe_waitid(arg1, arg2, (arg3 ? &info : NULL),
9280                                         arg4, (arg5 ? &ru : NULL)));
9281             if (!is_error(ret)) {
9282                 if (arg3) {
9283                     p = lock_user(VERIFY_WRITE, arg3,
9284                                   sizeof(target_siginfo_t), 0);
9285                     if (!p) {
9286                         return -TARGET_EFAULT;
9287                     }
9288                     host_to_target_siginfo(p, &info);
9289                     unlock_user(p, arg3, sizeof(target_siginfo_t));
9290                 }
9291                 if (arg5 && host_to_target_rusage(arg5, &ru)) {
9292                     return -TARGET_EFAULT;
9293                 }
9294             }
9295         }
9296         return ret;
9297 #endif
9298 #ifdef TARGET_NR_creat /* not on alpha */
9299     case TARGET_NR_creat:
9300         if (!(p = lock_user_string(arg1)))
9301             return -TARGET_EFAULT;
9302         ret = get_errno(creat(p, arg2));
9303         fd_trans_unregister(ret);
9304         unlock_user(p, arg1, 0);
9305         return ret;
9306 #endif
9307 #ifdef TARGET_NR_link
9308     case TARGET_NR_link:
9309         {
9310             void * p2;
9311             p = lock_user_string(arg1);
9312             p2 = lock_user_string(arg2);
9313             if (!p || !p2)
9314                 ret = -TARGET_EFAULT;
9315             else
9316                 ret = get_errno(link(p, p2));
9317             unlock_user(p2, arg2, 0);
9318             unlock_user(p, arg1, 0);
9319         }
9320         return ret;
9321 #endif
9322 #if defined(TARGET_NR_linkat)
9323     case TARGET_NR_linkat:
9324         {
9325             void * p2 = NULL;
9326             if (!arg2 || !arg4)
9327                 return -TARGET_EFAULT;
9328             p  = lock_user_string(arg2);
9329             p2 = lock_user_string(arg4);
9330             if (!p || !p2)
9331                 ret = -TARGET_EFAULT;
9332             else
9333                 ret = get_errno(linkat(arg1, p, arg3, p2, arg5));
9334             unlock_user(p, arg2, 0);
9335             unlock_user(p2, arg4, 0);
9336         }
9337         return ret;
9338 #endif
9339 #ifdef TARGET_NR_unlink
9340     case TARGET_NR_unlink:
9341         if (!(p = lock_user_string(arg1)))
9342             return -TARGET_EFAULT;
9343         ret = get_errno(unlink(p));
9344         unlock_user(p, arg1, 0);
9345         return ret;
9346 #endif
9347 #if defined(TARGET_NR_unlinkat)
9348     case TARGET_NR_unlinkat:
9349         if (!(p = lock_user_string(arg2)))
9350             return -TARGET_EFAULT;
9351         ret = get_errno(unlinkat(arg1, p, arg3));
9352         unlock_user(p, arg2, 0);
9353         return ret;
9354 #endif
9355     case TARGET_NR_execveat:
9356         return do_execv(cpu_env, arg1, arg2, arg3, arg4, arg5, true);
9357     case TARGET_NR_execve:
9358         return do_execv(cpu_env, AT_FDCWD, arg1, arg2, arg3, 0, false);
9359     case TARGET_NR_chdir:
9360         if (!(p = lock_user_string(arg1)))
9361             return -TARGET_EFAULT;
9362         ret = get_errno(chdir(p));
9363         unlock_user(p, arg1, 0);
9364         return ret;
9365 #ifdef TARGET_NR_time
9366     case TARGET_NR_time:
9367         {
9368             time_t host_time;
9369             ret = get_errno(time(&host_time));
9370             if (!is_error(ret)
9371                 && arg1
9372                 && put_user_sal(host_time, arg1))
9373                 return -TARGET_EFAULT;
9374         }
9375         return ret;
9376 #endif
9377 #ifdef TARGET_NR_mknod
9378     case TARGET_NR_mknod:
9379         if (!(p = lock_user_string(arg1)))
9380             return -TARGET_EFAULT;
9381         ret = get_errno(mknod(p, arg2, arg3));
9382         unlock_user(p, arg1, 0);
9383         return ret;
9384 #endif
9385 #if defined(TARGET_NR_mknodat)
9386     case TARGET_NR_mknodat:
9387         if (!(p = lock_user_string(arg2)))
9388             return -TARGET_EFAULT;
9389         ret = get_errno(mknodat(arg1, p, arg3, arg4));
9390         unlock_user(p, arg2, 0);
9391         return ret;
9392 #endif
9393 #ifdef TARGET_NR_chmod
9394     case TARGET_NR_chmod:
9395         if (!(p = lock_user_string(arg1)))
9396             return -TARGET_EFAULT;
9397         ret = get_errno(chmod(p, arg2));
9398         unlock_user(p, arg1, 0);
9399         return ret;
9400 #endif
9401 #ifdef TARGET_NR_lseek
9402     case TARGET_NR_lseek:
9403         return get_errno(lseek(arg1, arg2, arg3));
9404 #endif
9405 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
9406     /* Alpha specific */
9407     case TARGET_NR_getxpid:
9408         cpu_env->ir[IR_A4] = getppid();
9409         return get_errno(getpid());
9410 #endif
9411 #ifdef TARGET_NR_getpid
9412     case TARGET_NR_getpid:
9413         return get_errno(getpid());
9414 #endif
9415     case TARGET_NR_mount:
9416         {
9417             /* need to look at the data field */
9418             void *p2, *p3;
9419 
9420             if (arg1) {
9421                 p = lock_user_string(arg1);
9422                 if (!p) {
9423                     return -TARGET_EFAULT;
9424                 }
9425             } else {
9426                 p = NULL;
9427             }
9428 
9429             p2 = lock_user_string(arg2);
9430             if (!p2) {
9431                 if (arg1) {
9432                     unlock_user(p, arg1, 0);
9433                 }
9434                 return -TARGET_EFAULT;
9435             }
9436 
9437             if (arg3) {
9438                 p3 = lock_user_string(arg3);
9439                 if (!p3) {
9440                     if (arg1) {
9441                         unlock_user(p, arg1, 0);
9442                     }
9443                     unlock_user(p2, arg2, 0);
9444                     return -TARGET_EFAULT;
9445                 }
9446             } else {
9447                 p3 = NULL;
9448             }
9449 
9450             /* FIXME - arg5 should be locked, but it isn't clear how to
9451              * do that since it's not guaranteed to be a NULL-terminated
9452              * string.
9453              */
9454             if (!arg5) {
9455                 ret = mount(p, p2, p3, (unsigned long)arg4, NULL);
9456             } else {
9457                 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(cpu, arg5));
9458             }
9459             ret = get_errno(ret);
9460 
9461             if (arg1) {
9462                 unlock_user(p, arg1, 0);
9463             }
9464             unlock_user(p2, arg2, 0);
9465             if (arg3) {
9466                 unlock_user(p3, arg3, 0);
9467             }
9468         }
9469         return ret;
9470 #if defined(TARGET_NR_umount) || defined(TARGET_NR_oldumount)
9471 #if defined(TARGET_NR_umount)
9472     case TARGET_NR_umount:
9473 #endif
9474 #if defined(TARGET_NR_oldumount)
9475     case TARGET_NR_oldumount:
9476 #endif
9477         if (!(p = lock_user_string(arg1)))
9478             return -TARGET_EFAULT;
9479         ret = get_errno(umount(p));
9480         unlock_user(p, arg1, 0);
9481         return ret;
9482 #endif
9483 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount)
9484     case TARGET_NR_move_mount:
9485         {
9486             void *p2, *p4;
9487 
9488             if (!arg2 || !arg4) {
9489                 return -TARGET_EFAULT;
9490             }
9491 
9492             p2 = lock_user_string(arg2);
9493             if (!p2) {
9494                 return -TARGET_EFAULT;
9495             }
9496 
9497             p4 = lock_user_string(arg4);
9498             if (!p4) {
9499                 unlock_user(p2, arg2, 0);
9500                 return -TARGET_EFAULT;
9501             }
9502             ret = get_errno(sys_move_mount(arg1, p2, arg3, p4, arg5));
9503 
9504             unlock_user(p2, arg2, 0);
9505             unlock_user(p4, arg4, 0);
9506 
9507             return ret;
9508         }
9509 #endif
9510 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree)
9511     case TARGET_NR_open_tree:
9512         {
9513             void *p2;
9514             int host_flags;
9515 
9516             if (!arg2) {
9517                 return -TARGET_EFAULT;
9518             }
9519 
9520             p2 = lock_user_string(arg2);
9521             if (!p2) {
9522                 return -TARGET_EFAULT;
9523             }
9524 
9525             host_flags = arg3 & ~TARGET_O_CLOEXEC;
9526             if (arg3 & TARGET_O_CLOEXEC) {
9527                 host_flags |= O_CLOEXEC;
9528             }
9529 
9530             ret = get_errno(sys_open_tree(arg1, p2, host_flags));
9531 
9532             unlock_user(p2, arg2, 0);
9533 
9534             return ret;
9535         }
9536 #endif
9537 #ifdef TARGET_NR_stime /* not on alpha */
9538     case TARGET_NR_stime:
9539         {
9540             struct timespec ts;
9541             ts.tv_nsec = 0;
9542             if (get_user_sal(ts.tv_sec, arg1)) {
9543                 return -TARGET_EFAULT;
9544             }
9545             return get_errno(clock_settime(CLOCK_REALTIME, &ts));
9546         }
9547 #endif
9548 #ifdef TARGET_NR_alarm /* not on alpha */
9549     case TARGET_NR_alarm:
9550         return alarm(arg1);
9551 #endif
9552 #ifdef TARGET_NR_pause /* not on alpha */
9553     case TARGET_NR_pause:
9554         if (!block_signals()) {
9555             sigsuspend(&get_task_state(cpu)->signal_mask);
9556         }
9557         return -TARGET_EINTR;
9558 #endif
9559 #ifdef TARGET_NR_utime
9560     case TARGET_NR_utime:
9561         {
9562             struct utimbuf tbuf, *host_tbuf;
9563             struct target_utimbuf *target_tbuf;
9564             if (arg2) {
9565                 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1))
9566                     return -TARGET_EFAULT;
9567                 tbuf.actime = tswapal(target_tbuf->actime);
9568                 tbuf.modtime = tswapal(target_tbuf->modtime);
9569                 unlock_user_struct(target_tbuf, arg2, 0);
9570                 host_tbuf = &tbuf;
9571             } else {
9572                 host_tbuf = NULL;
9573             }
9574             if (!(p = lock_user_string(arg1)))
9575                 return -TARGET_EFAULT;
9576             ret = get_errno(utime(p, host_tbuf));
9577             unlock_user(p, arg1, 0);
9578         }
9579         return ret;
9580 #endif
9581 #ifdef TARGET_NR_utimes
9582     case TARGET_NR_utimes:
9583         {
9584             struct timeval *tvp, tv[2];
9585             if (arg2) {
9586                 if (copy_from_user_timeval(&tv[0], arg2)
9587                     || copy_from_user_timeval(&tv[1],
9588                                               arg2 + sizeof(struct target_timeval)))
9589                     return -TARGET_EFAULT;
9590                 tvp = tv;
9591             } else {
9592                 tvp = NULL;
9593             }
9594             if (!(p = lock_user_string(arg1)))
9595                 return -TARGET_EFAULT;
9596             ret = get_errno(utimes(p, tvp));
9597             unlock_user(p, arg1, 0);
9598         }
9599         return ret;
9600 #endif
9601 #if defined(TARGET_NR_futimesat)
9602     case TARGET_NR_futimesat:
9603         {
9604             struct timeval *tvp, tv[2];
9605             if (arg3) {
9606                 if (copy_from_user_timeval(&tv[0], arg3)
9607                     || copy_from_user_timeval(&tv[1],
9608                                               arg3 + sizeof(struct target_timeval)))
9609                     return -TARGET_EFAULT;
9610                 tvp = tv;
9611             } else {
9612                 tvp = NULL;
9613             }
9614             if (!(p = lock_user_string(arg2))) {
9615                 return -TARGET_EFAULT;
9616             }
9617             ret = get_errno(futimesat(arg1, path(p), tvp));
9618             unlock_user(p, arg2, 0);
9619         }
9620         return ret;
9621 #endif
9622 #ifdef TARGET_NR_access
9623     case TARGET_NR_access:
9624         if (!(p = lock_user_string(arg1))) {
9625             return -TARGET_EFAULT;
9626         }
9627         ret = get_errno(access(path(p), arg2));
9628         unlock_user(p, arg1, 0);
9629         return ret;
9630 #endif
9631 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
9632     case TARGET_NR_faccessat:
9633         if (!(p = lock_user_string(arg2))) {
9634             return -TARGET_EFAULT;
9635         }
9636         ret = get_errno(faccessat(arg1, p, arg3, 0));
9637         unlock_user(p, arg2, 0);
9638         return ret;
9639 #endif
9640 #if defined(TARGET_NR_faccessat2)
9641     case TARGET_NR_faccessat2:
9642         if (!(p = lock_user_string(arg2))) {
9643             return -TARGET_EFAULT;
9644         }
9645         ret = get_errno(faccessat(arg1, p, arg3, arg4));
9646         unlock_user(p, arg2, 0);
9647         return ret;
9648 #endif
9649 #ifdef TARGET_NR_nice /* not on alpha */
9650     case TARGET_NR_nice:
9651         return get_errno(nice(arg1));
9652 #endif
9653     case TARGET_NR_sync:
9654         sync();
9655         return 0;
9656 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS)
9657     case TARGET_NR_syncfs:
9658         return get_errno(syncfs(arg1));
9659 #endif
9660     case TARGET_NR_kill:
9661         return get_errno(safe_kill(arg1, target_to_host_signal(arg2)));
9662 #ifdef TARGET_NR_rename
9663     case TARGET_NR_rename:
9664         {
9665             void *p2;
9666             p = lock_user_string(arg1);
9667             p2 = lock_user_string(arg2);
9668             if (!p || !p2)
9669                 ret = -TARGET_EFAULT;
9670             else
9671                 ret = get_errno(rename(p, p2));
9672             unlock_user(p2, arg2, 0);
9673             unlock_user(p, arg1, 0);
9674         }
9675         return ret;
9676 #endif
9677 #if defined(TARGET_NR_renameat)
9678     case TARGET_NR_renameat:
9679         {
9680             void *p2;
9681             p  = lock_user_string(arg2);
9682             p2 = lock_user_string(arg4);
9683             if (!p || !p2)
9684                 ret = -TARGET_EFAULT;
9685             else
9686                 ret = get_errno(renameat(arg1, p, arg3, p2));
9687             unlock_user(p2, arg4, 0);
9688             unlock_user(p, arg2, 0);
9689         }
9690         return ret;
9691 #endif
9692 #if defined(TARGET_NR_renameat2)
9693     case TARGET_NR_renameat2:
9694         {
9695             void *p2;
9696             p  = lock_user_string(arg2);
9697             p2 = lock_user_string(arg4);
9698             if (!p || !p2) {
9699                 ret = -TARGET_EFAULT;
9700             } else {
9701                 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5));
9702             }
9703             unlock_user(p2, arg4, 0);
9704             unlock_user(p, arg2, 0);
9705         }
9706         return ret;
9707 #endif
9708 #ifdef TARGET_NR_mkdir
9709     case TARGET_NR_mkdir:
9710         if (!(p = lock_user_string(arg1)))
9711             return -TARGET_EFAULT;
9712         ret = get_errno(mkdir(p, arg2));
9713         unlock_user(p, arg1, 0);
9714         return ret;
9715 #endif
9716 #if defined(TARGET_NR_mkdirat)
9717     case TARGET_NR_mkdirat:
9718         if (!(p = lock_user_string(arg2)))
9719             return -TARGET_EFAULT;
9720         ret = get_errno(mkdirat(arg1, p, arg3));
9721         unlock_user(p, arg2, 0);
9722         return ret;
9723 #endif
9724 #ifdef TARGET_NR_rmdir
9725     case TARGET_NR_rmdir:
9726         if (!(p = lock_user_string(arg1)))
9727             return -TARGET_EFAULT;
9728         ret = get_errno(rmdir(p));
9729         unlock_user(p, arg1, 0);
9730         return ret;
9731 #endif
9732     case TARGET_NR_dup:
9733         ret = get_errno(dup(arg1));
9734         if (ret >= 0) {
9735             fd_trans_dup(arg1, ret);
9736         }
9737         return ret;
9738 #ifdef TARGET_NR_pipe
9739     case TARGET_NR_pipe:
9740         return do_pipe(cpu_env, arg1, 0, 0);
9741 #endif
9742 #ifdef TARGET_NR_pipe2
9743     case TARGET_NR_pipe2:
9744         return do_pipe(cpu_env, arg1,
9745                        target_to_host_bitmask(arg2, fcntl_flags_tbl), 1);
9746 #endif
9747     case TARGET_NR_times:
9748         {
9749             struct target_tms *tmsp;
9750             struct tms tms;
9751             ret = get_errno(times(&tms));
9752             if (arg1) {
9753                 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0);
9754                 if (!tmsp)
9755                     return -TARGET_EFAULT;
9756                 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime));
9757                 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime));
9758                 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime));
9759                 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime));
9760             }
9761             if (!is_error(ret))
9762                 ret = host_to_target_clock_t(ret);
9763         }
9764         return ret;
9765     case TARGET_NR_acct:
9766         if (arg1 == 0) {
9767             ret = get_errno(acct(NULL));
9768         } else {
9769             if (!(p = lock_user_string(arg1))) {
9770                 return -TARGET_EFAULT;
9771             }
9772             ret = get_errno(acct(path(p)));
9773             unlock_user(p, arg1, 0);
9774         }
9775         return ret;
9776 #ifdef TARGET_NR_umount2
9777     case TARGET_NR_umount2:
9778         if (!(p = lock_user_string(arg1)))
9779             return -TARGET_EFAULT;
9780         ret = get_errno(umount2(p, arg2));
9781         unlock_user(p, arg1, 0);
9782         return ret;
9783 #endif
9784     case TARGET_NR_ioctl:
9785         return do_ioctl(arg1, arg2, arg3);
9786 #ifdef TARGET_NR_fcntl
9787     case TARGET_NR_fcntl:
9788         return do_fcntl(arg1, arg2, arg3);
9789 #endif
9790     case TARGET_NR_setpgid:
9791         return get_errno(setpgid(arg1, arg2));
9792     case TARGET_NR_umask:
9793         return get_errno(umask(arg1));
9794     case TARGET_NR_chroot:
9795         if (!(p = lock_user_string(arg1)))
9796             return -TARGET_EFAULT;
9797         ret = get_errno(chroot(p));
9798         unlock_user(p, arg1, 0);
9799         return ret;
9800 #ifdef TARGET_NR_dup2
9801     case TARGET_NR_dup2:
9802         ret = get_errno(dup2(arg1, arg2));
9803         if (ret >= 0) {
9804             fd_trans_dup(arg1, arg2);
9805         }
9806         return ret;
9807 #endif
9808 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
9809     case TARGET_NR_dup3:
9810     {
9811         int host_flags;
9812 
9813         if ((arg3 & ~TARGET_O_CLOEXEC) != 0) {
9814             return -EINVAL;
9815         }
9816         host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl);
9817         ret = get_errno(dup3(arg1, arg2, host_flags));
9818         if (ret >= 0) {
9819             fd_trans_dup(arg1, arg2);
9820         }
9821         return ret;
9822     }
9823 #endif
9824 #ifdef TARGET_NR_getppid /* not on alpha */
9825     case TARGET_NR_getppid:
9826         return get_errno(getppid());
9827 #endif
9828 #ifdef TARGET_NR_getpgrp
9829     case TARGET_NR_getpgrp:
9830         return get_errno(getpgrp());
9831 #endif
9832     case TARGET_NR_setsid:
9833         return get_errno(setsid());
9834 #ifdef TARGET_NR_sigaction
9835     case TARGET_NR_sigaction:
9836         {
9837 #if defined(TARGET_MIPS)
9838 	    struct target_sigaction act, oact, *pact, *old_act;
9839 
9840 	    if (arg2) {
9841                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9842                     return -TARGET_EFAULT;
9843 		act._sa_handler = old_act->_sa_handler;
9844 		target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]);
9845 		act.sa_flags = old_act->sa_flags;
9846 		unlock_user_struct(old_act, arg2, 0);
9847 		pact = &act;
9848 	    } else {
9849 		pact = NULL;
9850 	    }
9851 
9852         ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9853 
9854 	    if (!is_error(ret) && arg3) {
9855                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9856                     return -TARGET_EFAULT;
9857 		old_act->_sa_handler = oact._sa_handler;
9858 		old_act->sa_flags = oact.sa_flags;
9859 		old_act->sa_mask.sig[0] = oact.sa_mask.sig[0];
9860 		old_act->sa_mask.sig[1] = 0;
9861 		old_act->sa_mask.sig[2] = 0;
9862 		old_act->sa_mask.sig[3] = 0;
9863 		unlock_user_struct(old_act, arg3, 1);
9864 	    }
9865 #else
9866             struct target_old_sigaction *old_act;
9867             struct target_sigaction act, oact, *pact;
9868             if (arg2) {
9869                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9870                     return -TARGET_EFAULT;
9871                 act._sa_handler = old_act->_sa_handler;
9872                 target_siginitset(&act.sa_mask, old_act->sa_mask);
9873                 act.sa_flags = old_act->sa_flags;
9874 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9875                 act.sa_restorer = old_act->sa_restorer;
9876 #endif
9877                 unlock_user_struct(old_act, arg2, 0);
9878                 pact = &act;
9879             } else {
9880                 pact = NULL;
9881             }
9882             ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9883             if (!is_error(ret) && arg3) {
9884                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9885                     return -TARGET_EFAULT;
9886                 old_act->_sa_handler = oact._sa_handler;
9887                 old_act->sa_mask = oact.sa_mask.sig[0];
9888                 old_act->sa_flags = oact.sa_flags;
9889 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9890                 old_act->sa_restorer = oact.sa_restorer;
9891 #endif
9892                 unlock_user_struct(old_act, arg3, 1);
9893             }
9894 #endif
9895         }
9896         return ret;
9897 #endif
9898     case TARGET_NR_rt_sigaction:
9899         {
9900             /*
9901              * For Alpha and SPARC this is a 5 argument syscall, with
9902              * a 'restorer' parameter which must be copied into the
9903              * sa_restorer field of the sigaction struct.
9904              * For Alpha that 'restorer' is arg5; for SPARC it is arg4,
9905              * and arg5 is the sigsetsize.
9906              */
9907 #if defined(TARGET_ALPHA)
9908             target_ulong sigsetsize = arg4;
9909             target_ulong restorer = arg5;
9910 #elif defined(TARGET_SPARC)
9911             target_ulong restorer = arg4;
9912             target_ulong sigsetsize = arg5;
9913 #else
9914             target_ulong sigsetsize = arg4;
9915             target_ulong restorer = 0;
9916 #endif
9917             struct target_sigaction *act = NULL;
9918             struct target_sigaction *oact = NULL;
9919 
9920             if (sigsetsize != sizeof(target_sigset_t)) {
9921                 return -TARGET_EINVAL;
9922             }
9923             if (arg2 && !lock_user_struct(VERIFY_READ, act, arg2, 1)) {
9924                 return -TARGET_EFAULT;
9925             }
9926             if (arg3 && !lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) {
9927                 ret = -TARGET_EFAULT;
9928             } else {
9929                 ret = get_errno(do_sigaction(arg1, act, oact, restorer));
9930                 if (oact) {
9931                     unlock_user_struct(oact, arg3, 1);
9932                 }
9933             }
9934             if (act) {
9935                 unlock_user_struct(act, arg2, 0);
9936             }
9937         }
9938         return ret;
9939 #ifdef TARGET_NR_sgetmask /* not on alpha */
9940     case TARGET_NR_sgetmask:
9941         {
9942             sigset_t cur_set;
9943             abi_ulong target_set;
9944             ret = do_sigprocmask(0, NULL, &cur_set);
9945             if (!ret) {
9946                 host_to_target_old_sigset(&target_set, &cur_set);
9947                 ret = target_set;
9948             }
9949         }
9950         return ret;
9951 #endif
9952 #ifdef TARGET_NR_ssetmask /* not on alpha */
9953     case TARGET_NR_ssetmask:
9954         {
9955             sigset_t set, oset;
9956             abi_ulong target_set = arg1;
9957             target_to_host_old_sigset(&set, &target_set);
9958             ret = do_sigprocmask(SIG_SETMASK, &set, &oset);
9959             if (!ret) {
9960                 host_to_target_old_sigset(&target_set, &oset);
9961                 ret = target_set;
9962             }
9963         }
9964         return ret;
9965 #endif
9966 #ifdef TARGET_NR_sigprocmask
9967     case TARGET_NR_sigprocmask:
9968         {
9969 #if defined(TARGET_ALPHA)
9970             sigset_t set, oldset;
9971             abi_ulong mask;
9972             int how;
9973 
9974             switch (arg1) {
9975             case TARGET_SIG_BLOCK:
9976                 how = SIG_BLOCK;
9977                 break;
9978             case TARGET_SIG_UNBLOCK:
9979                 how = SIG_UNBLOCK;
9980                 break;
9981             case TARGET_SIG_SETMASK:
9982                 how = SIG_SETMASK;
9983                 break;
9984             default:
9985                 return -TARGET_EINVAL;
9986             }
9987             mask = arg2;
9988             target_to_host_old_sigset(&set, &mask);
9989 
9990             ret = do_sigprocmask(how, &set, &oldset);
9991             if (!is_error(ret)) {
9992                 host_to_target_old_sigset(&mask, &oldset);
9993                 ret = mask;
9994                 cpu_env->ir[IR_V0] = 0; /* force no error */
9995             }
9996 #else
9997             sigset_t set, oldset, *set_ptr;
9998             int how;
9999 
10000             if (arg2) {
10001                 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1);
10002                 if (!p) {
10003                     return -TARGET_EFAULT;
10004                 }
10005                 target_to_host_old_sigset(&set, p);
10006                 unlock_user(p, arg2, 0);
10007                 set_ptr = &set;
10008                 switch (arg1) {
10009                 case TARGET_SIG_BLOCK:
10010                     how = SIG_BLOCK;
10011                     break;
10012                 case TARGET_SIG_UNBLOCK:
10013                     how = SIG_UNBLOCK;
10014                     break;
10015                 case TARGET_SIG_SETMASK:
10016                     how = SIG_SETMASK;
10017                     break;
10018                 default:
10019                     return -TARGET_EINVAL;
10020                 }
10021             } else {
10022                 how = 0;
10023                 set_ptr = NULL;
10024             }
10025             ret = do_sigprocmask(how, set_ptr, &oldset);
10026             if (!is_error(ret) && arg3) {
10027                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
10028                     return -TARGET_EFAULT;
10029                 host_to_target_old_sigset(p, &oldset);
10030                 unlock_user(p, arg3, sizeof(target_sigset_t));
10031             }
10032 #endif
10033         }
10034         return ret;
10035 #endif
10036     case TARGET_NR_rt_sigprocmask:
10037         {
10038             int how = arg1;
10039             sigset_t set, oldset, *set_ptr;
10040 
10041             if (arg4 != sizeof(target_sigset_t)) {
10042                 return -TARGET_EINVAL;
10043             }
10044 
10045             if (arg2) {
10046                 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1);
10047                 if (!p) {
10048                     return -TARGET_EFAULT;
10049                 }
10050                 target_to_host_sigset(&set, p);
10051                 unlock_user(p, arg2, 0);
10052                 set_ptr = &set;
10053                 switch(how) {
10054                 case TARGET_SIG_BLOCK:
10055                     how = SIG_BLOCK;
10056                     break;
10057                 case TARGET_SIG_UNBLOCK:
10058                     how = SIG_UNBLOCK;
10059                     break;
10060                 case TARGET_SIG_SETMASK:
10061                     how = SIG_SETMASK;
10062                     break;
10063                 default:
10064                     return -TARGET_EINVAL;
10065                 }
10066             } else {
10067                 how = 0;
10068                 set_ptr = NULL;
10069             }
10070             ret = do_sigprocmask(how, set_ptr, &oldset);
10071             if (!is_error(ret) && arg3) {
10072                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
10073                     return -TARGET_EFAULT;
10074                 host_to_target_sigset(p, &oldset);
10075                 unlock_user(p, arg3, sizeof(target_sigset_t));
10076             }
10077         }
10078         return ret;
10079 #ifdef TARGET_NR_sigpending
10080     case TARGET_NR_sigpending:
10081         {
10082             sigset_t set;
10083             ret = get_errno(sigpending(&set));
10084             if (!is_error(ret)) {
10085                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
10086                     return -TARGET_EFAULT;
10087                 host_to_target_old_sigset(p, &set);
10088                 unlock_user(p, arg1, sizeof(target_sigset_t));
10089             }
10090         }
10091         return ret;
10092 #endif
10093     case TARGET_NR_rt_sigpending:
10094         {
10095             sigset_t set;
10096 
10097             /* Yes, this check is >, not != like most. We follow the kernel's
10098              * logic and it does it like this because it implements
10099              * NR_sigpending through the same code path, and in that case
10100              * the old_sigset_t is smaller in size.
10101              */
10102             if (arg2 > sizeof(target_sigset_t)) {
10103                 return -TARGET_EINVAL;
10104             }
10105 
10106             ret = get_errno(sigpending(&set));
10107             if (!is_error(ret)) {
10108                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
10109                     return -TARGET_EFAULT;
10110                 host_to_target_sigset(p, &set);
10111                 unlock_user(p, arg1, sizeof(target_sigset_t));
10112             }
10113         }
10114         return ret;
10115 #ifdef TARGET_NR_sigsuspend
10116     case TARGET_NR_sigsuspend:
10117         {
10118             sigset_t *set;
10119 
10120 #if defined(TARGET_ALPHA)
10121             TaskState *ts = get_task_state(cpu);
10122             /* target_to_host_old_sigset will bswap back */
10123             abi_ulong mask = tswapal(arg1);
10124             set = &ts->sigsuspend_mask;
10125             target_to_host_old_sigset(set, &mask);
10126 #else
10127             ret = process_sigsuspend_mask(&set, arg1, sizeof(target_sigset_t));
10128             if (ret != 0) {
10129                 return ret;
10130             }
10131 #endif
10132             ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE));
10133             finish_sigsuspend_mask(ret);
10134         }
10135         return ret;
10136 #endif
10137     case TARGET_NR_rt_sigsuspend:
10138         {
10139             sigset_t *set;
10140 
10141             ret = process_sigsuspend_mask(&set, arg1, arg2);
10142             if (ret != 0) {
10143                 return ret;
10144             }
10145             ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE));
10146             finish_sigsuspend_mask(ret);
10147         }
10148         return ret;
10149 #ifdef TARGET_NR_rt_sigtimedwait
10150     case TARGET_NR_rt_sigtimedwait:
10151         {
10152             sigset_t set;
10153             struct timespec uts, *puts;
10154             siginfo_t uinfo;
10155 
10156             if (arg4 != sizeof(target_sigset_t)) {
10157                 return -TARGET_EINVAL;
10158             }
10159 
10160             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
10161                 return -TARGET_EFAULT;
10162             target_to_host_sigset(&set, p);
10163             unlock_user(p, arg1, 0);
10164             if (arg3) {
10165                 puts = &uts;
10166                 if (target_to_host_timespec(puts, arg3)) {
10167                     return -TARGET_EFAULT;
10168                 }
10169             } else {
10170                 puts = NULL;
10171             }
10172             ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
10173                                                  SIGSET_T_SIZE));
10174             if (!is_error(ret)) {
10175                 if (arg2) {
10176                     p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t),
10177                                   0);
10178                     if (!p) {
10179                         return -TARGET_EFAULT;
10180                     }
10181                     host_to_target_siginfo(p, &uinfo);
10182                     unlock_user(p, arg2, sizeof(target_siginfo_t));
10183                 }
10184                 ret = host_to_target_signal(ret);
10185             }
10186         }
10187         return ret;
10188 #endif
10189 #ifdef TARGET_NR_rt_sigtimedwait_time64
10190     case TARGET_NR_rt_sigtimedwait_time64:
10191         {
10192             sigset_t set;
10193             struct timespec uts, *puts;
10194             siginfo_t uinfo;
10195 
10196             if (arg4 != sizeof(target_sigset_t)) {
10197                 return -TARGET_EINVAL;
10198             }
10199 
10200             p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1);
10201             if (!p) {
10202                 return -TARGET_EFAULT;
10203             }
10204             target_to_host_sigset(&set, p);
10205             unlock_user(p, arg1, 0);
10206             if (arg3) {
10207                 puts = &uts;
10208                 if (target_to_host_timespec64(puts, arg3)) {
10209                     return -TARGET_EFAULT;
10210                 }
10211             } else {
10212                 puts = NULL;
10213             }
10214             ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
10215                                                  SIGSET_T_SIZE));
10216             if (!is_error(ret)) {
10217                 if (arg2) {
10218                     p = lock_user(VERIFY_WRITE, arg2,
10219                                   sizeof(target_siginfo_t), 0);
10220                     if (!p) {
10221                         return -TARGET_EFAULT;
10222                     }
10223                     host_to_target_siginfo(p, &uinfo);
10224                     unlock_user(p, arg2, sizeof(target_siginfo_t));
10225                 }
10226                 ret = host_to_target_signal(ret);
10227             }
10228         }
10229         return ret;
10230 #endif
10231     case TARGET_NR_rt_sigqueueinfo:
10232         {
10233             siginfo_t uinfo;
10234 
10235             p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
10236             if (!p) {
10237                 return -TARGET_EFAULT;
10238             }
10239             target_to_host_siginfo(&uinfo, p);
10240             unlock_user(p, arg3, 0);
10241             ret = get_errno(sys_rt_sigqueueinfo(arg1, target_to_host_signal(arg2), &uinfo));
10242         }
10243         return ret;
10244     case TARGET_NR_rt_tgsigqueueinfo:
10245         {
10246             siginfo_t uinfo;
10247 
10248             p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1);
10249             if (!p) {
10250                 return -TARGET_EFAULT;
10251             }
10252             target_to_host_siginfo(&uinfo, p);
10253             unlock_user(p, arg4, 0);
10254             ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, target_to_host_signal(arg3), &uinfo));
10255         }
10256         return ret;
10257 #ifdef TARGET_NR_sigreturn
10258     case TARGET_NR_sigreturn:
10259         if (block_signals()) {
10260             return -QEMU_ERESTARTSYS;
10261         }
10262         return do_sigreturn(cpu_env);
10263 #endif
10264     case TARGET_NR_rt_sigreturn:
10265         if (block_signals()) {
10266             return -QEMU_ERESTARTSYS;
10267         }
10268         return do_rt_sigreturn(cpu_env);
10269     case TARGET_NR_sethostname:
10270         if (!(p = lock_user_string(arg1)))
10271             return -TARGET_EFAULT;
10272         ret = get_errno(sethostname(p, arg2));
10273         unlock_user(p, arg1, 0);
10274         return ret;
10275 #ifdef TARGET_NR_setrlimit
10276     case TARGET_NR_setrlimit:
10277         {
10278             int resource = target_to_host_resource(arg1);
10279             struct target_rlimit *target_rlim;
10280             struct rlimit rlim;
10281             if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1))
10282                 return -TARGET_EFAULT;
10283             rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur);
10284             rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max);
10285             unlock_user_struct(target_rlim, arg2, 0);
10286             /*
10287              * If we just passed through resource limit settings for memory then
10288              * they would also apply to QEMU's own allocations, and QEMU will
10289              * crash or hang or die if its allocations fail. Ideally we would
10290              * track the guest allocations in QEMU and apply the limits ourselves.
10291              * For now, just tell the guest the call succeeded but don't actually
10292              * limit anything.
10293              */
10294             if (resource != RLIMIT_AS &&
10295                 resource != RLIMIT_DATA &&
10296                 resource != RLIMIT_STACK) {
10297                 return get_errno(setrlimit(resource, &rlim));
10298             } else {
10299                 return 0;
10300             }
10301         }
10302 #endif
10303 #ifdef TARGET_NR_getrlimit
10304     case TARGET_NR_getrlimit:
10305         {
10306             int resource = target_to_host_resource(arg1);
10307             struct target_rlimit *target_rlim;
10308             struct rlimit rlim;
10309 
10310             ret = get_errno(getrlimit(resource, &rlim));
10311             if (!is_error(ret)) {
10312                 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
10313                     return -TARGET_EFAULT;
10314                 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
10315                 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
10316                 unlock_user_struct(target_rlim, arg2, 1);
10317             }
10318         }
10319         return ret;
10320 #endif
10321     case TARGET_NR_getrusage:
10322         {
10323             struct rusage rusage;
10324             ret = get_errno(getrusage(arg1, &rusage));
10325             if (!is_error(ret)) {
10326                 ret = host_to_target_rusage(arg2, &rusage);
10327             }
10328         }
10329         return ret;
10330 #if defined(TARGET_NR_gettimeofday)
10331     case TARGET_NR_gettimeofday:
10332         {
10333             struct timeval tv;
10334             struct timezone tz;
10335 
10336             ret = get_errno(gettimeofday(&tv, &tz));
10337             if (!is_error(ret)) {
10338                 if (arg1 && copy_to_user_timeval(arg1, &tv)) {
10339                     return -TARGET_EFAULT;
10340                 }
10341                 if (arg2 && copy_to_user_timezone(arg2, &tz)) {
10342                     return -TARGET_EFAULT;
10343                 }
10344             }
10345         }
10346         return ret;
10347 #endif
10348 #if defined(TARGET_NR_settimeofday)
10349     case TARGET_NR_settimeofday:
10350         {
10351             struct timeval tv, *ptv = NULL;
10352             struct timezone tz, *ptz = NULL;
10353 
10354             if (arg1) {
10355                 if (copy_from_user_timeval(&tv, arg1)) {
10356                     return -TARGET_EFAULT;
10357                 }
10358                 ptv = &tv;
10359             }
10360 
10361             if (arg2) {
10362                 if (copy_from_user_timezone(&tz, arg2)) {
10363                     return -TARGET_EFAULT;
10364                 }
10365                 ptz = &tz;
10366             }
10367 
10368             return get_errno(settimeofday(ptv, ptz));
10369         }
10370 #endif
10371 #if defined(TARGET_NR_select)
10372     case TARGET_NR_select:
10373 #if defined(TARGET_WANT_NI_OLD_SELECT)
10374         /* some architectures used to have old_select here
10375          * but now ENOSYS it.
10376          */
10377         ret = -TARGET_ENOSYS;
10378 #elif defined(TARGET_WANT_OLD_SYS_SELECT)
10379         ret = do_old_select(arg1);
10380 #else
10381         ret = do_select(arg1, arg2, arg3, arg4, arg5);
10382 #endif
10383         return ret;
10384 #endif
10385 #ifdef TARGET_NR_pselect6
10386     case TARGET_NR_pselect6:
10387         return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, false);
10388 #endif
10389 #ifdef TARGET_NR_pselect6_time64
10390     case TARGET_NR_pselect6_time64:
10391         return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, true);
10392 #endif
10393 #ifdef TARGET_NR_symlink
10394     case TARGET_NR_symlink:
10395         {
10396             void *p2;
10397             p = lock_user_string(arg1);
10398             p2 = lock_user_string(arg2);
10399             if (!p || !p2)
10400                 ret = -TARGET_EFAULT;
10401             else
10402                 ret = get_errno(symlink(p, p2));
10403             unlock_user(p2, arg2, 0);
10404             unlock_user(p, arg1, 0);
10405         }
10406         return ret;
10407 #endif
10408 #if defined(TARGET_NR_symlinkat)
10409     case TARGET_NR_symlinkat:
10410         {
10411             void *p2;
10412             p  = lock_user_string(arg1);
10413             p2 = lock_user_string(arg3);
10414             if (!p || !p2)
10415                 ret = -TARGET_EFAULT;
10416             else
10417                 ret = get_errno(symlinkat(p, arg2, p2));
10418             unlock_user(p2, arg3, 0);
10419             unlock_user(p, arg1, 0);
10420         }
10421         return ret;
10422 #endif
10423 #ifdef TARGET_NR_readlink
10424     case TARGET_NR_readlink:
10425         {
10426             void *p2;
10427             p = lock_user_string(arg1);
10428             p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10429             ret = get_errno(do_guest_readlink(p, p2, arg3));
10430             unlock_user(p2, arg2, ret);
10431             unlock_user(p, arg1, 0);
10432         }
10433         return ret;
10434 #endif
10435 #if defined(TARGET_NR_readlinkat)
10436     case TARGET_NR_readlinkat:
10437         {
10438             void *p2;
10439             p  = lock_user_string(arg2);
10440             p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0);
10441             if (!p || !p2) {
10442                 ret = -TARGET_EFAULT;
10443             } else if (!arg4) {
10444                 /* Short circuit this for the magic exe check. */
10445                 ret = -TARGET_EINVAL;
10446             } else if (is_proc_myself((const char *)p, "exe")) {
10447                 /*
10448                  * Don't worry about sign mismatch as earlier mapping
10449                  * logic would have thrown a bad address error.
10450                  */
10451                 ret = MIN(strlen(exec_path), arg4);
10452                 /* We cannot NUL terminate the string. */
10453                 memcpy(p2, exec_path, ret);
10454             } else {
10455                 ret = get_errno(readlinkat(arg1, path(p), p2, arg4));
10456             }
10457             unlock_user(p2, arg3, ret);
10458             unlock_user(p, arg2, 0);
10459         }
10460         return ret;
10461 #endif
10462 #ifdef TARGET_NR_swapon
10463     case TARGET_NR_swapon:
10464         if (!(p = lock_user_string(arg1)))
10465             return -TARGET_EFAULT;
10466         ret = get_errno(swapon(p, arg2));
10467         unlock_user(p, arg1, 0);
10468         return ret;
10469 #endif
10470     case TARGET_NR_reboot:
10471         if (arg3 == LINUX_REBOOT_CMD_RESTART2) {
10472            /* arg4 must be ignored in all other cases */
10473            p = lock_user_string(arg4);
10474            if (!p) {
10475                return -TARGET_EFAULT;
10476            }
10477            ret = get_errno(reboot(arg1, arg2, arg3, p));
10478            unlock_user(p, arg4, 0);
10479         } else {
10480            ret = get_errno(reboot(arg1, arg2, arg3, NULL));
10481         }
10482         return ret;
10483 #ifdef TARGET_NR_mmap
10484     case TARGET_NR_mmap:
10485 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
10486     (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
10487     defined(TARGET_M68K) || defined(TARGET_MICROBLAZE) \
10488     || defined(TARGET_S390X)
10489         {
10490             abi_ulong *v;
10491             abi_ulong v1, v2, v3, v4, v5, v6;
10492             if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1)))
10493                 return -TARGET_EFAULT;
10494             v1 = tswapal(v[0]);
10495             v2 = tswapal(v[1]);
10496             v3 = tswapal(v[2]);
10497             v4 = tswapal(v[3]);
10498             v5 = tswapal(v[4]);
10499             v6 = tswapal(v[5]);
10500             unlock_user(v, arg1, 0);
10501             return do_mmap(v1, v2, v3, v4, v5, v6);
10502         }
10503 #else
10504         /* mmap pointers are always untagged */
10505         return do_mmap(arg1, arg2, arg3, arg4, arg5, arg6);
10506 #endif
10507 #endif
10508 #ifdef TARGET_NR_mmap2
10509     case TARGET_NR_mmap2:
10510 #ifndef MMAP_SHIFT
10511 #define MMAP_SHIFT 12
10512 #endif
10513         return do_mmap(arg1, arg2, arg3, arg4, arg5,
10514                        (off_t)(abi_ulong)arg6 << MMAP_SHIFT);
10515 #endif
10516     case TARGET_NR_munmap:
10517         arg1 = cpu_untagged_addr(cpu, arg1);
10518         return get_errno(target_munmap(arg1, arg2));
10519     case TARGET_NR_mprotect:
10520         arg1 = cpu_untagged_addr(cpu, arg1);
10521         {
10522             TaskState *ts = get_task_state(cpu);
10523             /* Special hack to detect libc making the stack executable.  */
10524             if ((arg3 & PROT_GROWSDOWN)
10525                 && arg1 >= ts->info->stack_limit
10526                 && arg1 <= ts->info->start_stack) {
10527                 arg3 &= ~PROT_GROWSDOWN;
10528                 arg2 = arg2 + arg1 - ts->info->stack_limit;
10529                 arg1 = ts->info->stack_limit;
10530             }
10531         }
10532         return get_errno(target_mprotect(arg1, arg2, arg3));
10533 #ifdef TARGET_NR_mremap
10534     case TARGET_NR_mremap:
10535         arg1 = cpu_untagged_addr(cpu, arg1);
10536         /* mremap new_addr (arg5) is always untagged */
10537         return get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5));
10538 #endif
10539         /* ??? msync/mlock/munlock are broken for softmmu.  */
10540 #ifdef TARGET_NR_msync
10541     case TARGET_NR_msync:
10542         return get_errno(msync(g2h(cpu, arg1), arg2,
10543                                target_to_host_msync_arg(arg3)));
10544 #endif
10545 #ifdef TARGET_NR_mlock
10546     case TARGET_NR_mlock:
10547         return get_errno(mlock(g2h(cpu, arg1), arg2));
10548 #endif
10549 #ifdef TARGET_NR_munlock
10550     case TARGET_NR_munlock:
10551         return get_errno(munlock(g2h(cpu, arg1), arg2));
10552 #endif
10553 #ifdef TARGET_NR_mlockall
10554     case TARGET_NR_mlockall:
10555         return get_errno(mlockall(target_to_host_mlockall_arg(arg1)));
10556 #endif
10557 #ifdef TARGET_NR_munlockall
10558     case TARGET_NR_munlockall:
10559         return get_errno(munlockall());
10560 #endif
10561 #ifdef TARGET_NR_truncate
10562     case TARGET_NR_truncate:
10563         if (!(p = lock_user_string(arg1)))
10564             return -TARGET_EFAULT;
10565         ret = get_errno(truncate(p, arg2));
10566         unlock_user(p, arg1, 0);
10567         return ret;
10568 #endif
10569 #ifdef TARGET_NR_ftruncate
10570     case TARGET_NR_ftruncate:
10571         return get_errno(ftruncate(arg1, arg2));
10572 #endif
10573     case TARGET_NR_fchmod:
10574         return get_errno(fchmod(arg1, arg2));
10575 #if defined(TARGET_NR_fchmodat)
10576     case TARGET_NR_fchmodat:
10577         if (!(p = lock_user_string(arg2)))
10578             return -TARGET_EFAULT;
10579         ret = get_errno(fchmodat(arg1, p, arg3, 0));
10580         unlock_user(p, arg2, 0);
10581         return ret;
10582 #endif
10583     case TARGET_NR_getpriority:
10584         /* Note that negative values are valid for getpriority, so we must
10585            differentiate based on errno settings.  */
10586         errno = 0;
10587         ret = getpriority(arg1, arg2);
10588         if (ret == -1 && errno != 0) {
10589             return -host_to_target_errno(errno);
10590         }
10591 #ifdef TARGET_ALPHA
10592         /* Return value is the unbiased priority.  Signal no error.  */
10593         cpu_env->ir[IR_V0] = 0;
10594 #else
10595         /* Return value is a biased priority to avoid negative numbers.  */
10596         ret = 20 - ret;
10597 #endif
10598         return ret;
10599     case TARGET_NR_setpriority:
10600         return get_errno(setpriority(arg1, arg2, arg3));
10601 #ifdef TARGET_NR_statfs
10602     case TARGET_NR_statfs:
10603         if (!(p = lock_user_string(arg1))) {
10604             return -TARGET_EFAULT;
10605         }
10606         ret = get_errno(statfs(path(p), &stfs));
10607         unlock_user(p, arg1, 0);
10608     convert_statfs:
10609         if (!is_error(ret)) {
10610             struct target_statfs *target_stfs;
10611 
10612             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0))
10613                 return -TARGET_EFAULT;
10614             __put_user(stfs.f_type, &target_stfs->f_type);
10615             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10616             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10617             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10618             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10619             __put_user(stfs.f_files, &target_stfs->f_files);
10620             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10621             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10622             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10623             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10624             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10625 #ifdef _STATFS_F_FLAGS
10626             __put_user(stfs.f_flags, &target_stfs->f_flags);
10627 #else
10628             __put_user(0, &target_stfs->f_flags);
10629 #endif
10630             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10631             unlock_user_struct(target_stfs, arg2, 1);
10632         }
10633         return ret;
10634 #endif
10635 #ifdef TARGET_NR_fstatfs
10636     case TARGET_NR_fstatfs:
10637         ret = get_errno(fstatfs(arg1, &stfs));
10638         goto convert_statfs;
10639 #endif
10640 #ifdef TARGET_NR_statfs64
10641     case TARGET_NR_statfs64:
10642         if (!(p = lock_user_string(arg1))) {
10643             return -TARGET_EFAULT;
10644         }
10645         ret = get_errno(statfs(path(p), &stfs));
10646         unlock_user(p, arg1, 0);
10647     convert_statfs64:
10648         if (!is_error(ret)) {
10649             struct target_statfs64 *target_stfs;
10650 
10651             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0))
10652                 return -TARGET_EFAULT;
10653             __put_user(stfs.f_type, &target_stfs->f_type);
10654             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10655             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10656             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10657             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10658             __put_user(stfs.f_files, &target_stfs->f_files);
10659             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10660             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10661             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10662             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10663             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10664 #ifdef _STATFS_F_FLAGS
10665             __put_user(stfs.f_flags, &target_stfs->f_flags);
10666 #else
10667             __put_user(0, &target_stfs->f_flags);
10668 #endif
10669             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10670             unlock_user_struct(target_stfs, arg3, 1);
10671         }
10672         return ret;
10673     case TARGET_NR_fstatfs64:
10674         ret = get_errno(fstatfs(arg1, &stfs));
10675         goto convert_statfs64;
10676 #endif
10677 #ifdef TARGET_NR_socketcall
10678     case TARGET_NR_socketcall:
10679         return do_socketcall(arg1, arg2);
10680 #endif
10681 #ifdef TARGET_NR_accept
10682     case TARGET_NR_accept:
10683         return do_accept4(arg1, arg2, arg3, 0);
10684 #endif
10685 #ifdef TARGET_NR_accept4
10686     case TARGET_NR_accept4:
10687         return do_accept4(arg1, arg2, arg3, arg4);
10688 #endif
10689 #ifdef TARGET_NR_bind
10690     case TARGET_NR_bind:
10691         return do_bind(arg1, arg2, arg3);
10692 #endif
10693 #ifdef TARGET_NR_connect
10694     case TARGET_NR_connect:
10695         return do_connect(arg1, arg2, arg3);
10696 #endif
10697 #ifdef TARGET_NR_getpeername
10698     case TARGET_NR_getpeername:
10699         return do_getpeername(arg1, arg2, arg3);
10700 #endif
10701 #ifdef TARGET_NR_getsockname
10702     case TARGET_NR_getsockname:
10703         return do_getsockname(arg1, arg2, arg3);
10704 #endif
10705 #ifdef TARGET_NR_getsockopt
10706     case TARGET_NR_getsockopt:
10707         return do_getsockopt(arg1, arg2, arg3, arg4, arg5);
10708 #endif
10709 #ifdef TARGET_NR_listen
10710     case TARGET_NR_listen:
10711         return get_errno(listen(arg1, arg2));
10712 #endif
10713 #ifdef TARGET_NR_recv
10714     case TARGET_NR_recv:
10715         return do_recvfrom(arg1, arg2, arg3, arg4, 0, 0);
10716 #endif
10717 #ifdef TARGET_NR_recvfrom
10718     case TARGET_NR_recvfrom:
10719         return do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6);
10720 #endif
10721 #ifdef TARGET_NR_recvmsg
10722     case TARGET_NR_recvmsg:
10723         return do_sendrecvmsg(arg1, arg2, arg3, 0);
10724 #endif
10725 #ifdef TARGET_NR_send
10726     case TARGET_NR_send:
10727         return do_sendto(arg1, arg2, arg3, arg4, 0, 0);
10728 #endif
10729 #ifdef TARGET_NR_sendmsg
10730     case TARGET_NR_sendmsg:
10731         return do_sendrecvmsg(arg1, arg2, arg3, 1);
10732 #endif
10733 #ifdef TARGET_NR_sendmmsg
10734     case TARGET_NR_sendmmsg:
10735         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1);
10736 #endif
10737 #ifdef TARGET_NR_recvmmsg
10738     case TARGET_NR_recvmmsg:
10739         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0);
10740 #endif
10741 #ifdef TARGET_NR_sendto
10742     case TARGET_NR_sendto:
10743         return do_sendto(arg1, arg2, arg3, arg4, arg5, arg6);
10744 #endif
10745 #ifdef TARGET_NR_shutdown
10746     case TARGET_NR_shutdown:
10747         return get_errno(shutdown(arg1, arg2));
10748 #endif
10749 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
10750     case TARGET_NR_getrandom:
10751         p = lock_user(VERIFY_WRITE, arg1, arg2, 0);
10752         if (!p) {
10753             return -TARGET_EFAULT;
10754         }
10755         ret = get_errno(getrandom(p, arg2, arg3));
10756         unlock_user(p, arg1, ret);
10757         return ret;
10758 #endif
10759 #ifdef TARGET_NR_socket
10760     case TARGET_NR_socket:
10761         return do_socket(arg1, arg2, arg3);
10762 #endif
10763 #ifdef TARGET_NR_socketpair
10764     case TARGET_NR_socketpair:
10765         return do_socketpair(arg1, arg2, arg3, arg4);
10766 #endif
10767 #ifdef TARGET_NR_setsockopt
10768     case TARGET_NR_setsockopt:
10769         return do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5);
10770 #endif
10771 #if defined(TARGET_NR_syslog)
10772     case TARGET_NR_syslog:
10773         {
10774             int len = arg2;
10775 
10776             switch (arg1) {
10777             case TARGET_SYSLOG_ACTION_CLOSE:         /* Close log */
10778             case TARGET_SYSLOG_ACTION_OPEN:          /* Open log */
10779             case TARGET_SYSLOG_ACTION_CLEAR:         /* Clear ring buffer */
10780             case TARGET_SYSLOG_ACTION_CONSOLE_OFF:   /* Disable logging */
10781             case TARGET_SYSLOG_ACTION_CONSOLE_ON:    /* Enable logging */
10782             case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */
10783             case TARGET_SYSLOG_ACTION_SIZE_UNREAD:   /* Number of chars */
10784             case TARGET_SYSLOG_ACTION_SIZE_BUFFER:   /* Size of the buffer */
10785                 return get_errno(sys_syslog((int)arg1, NULL, (int)arg3));
10786             case TARGET_SYSLOG_ACTION_READ:          /* Read from log */
10787             case TARGET_SYSLOG_ACTION_READ_CLEAR:    /* Read/clear msgs */
10788             case TARGET_SYSLOG_ACTION_READ_ALL:      /* Read last messages */
10789                 {
10790                     if (len < 0) {
10791                         return -TARGET_EINVAL;
10792                     }
10793                     if (len == 0) {
10794                         return 0;
10795                     }
10796                     p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10797                     if (!p) {
10798                         return -TARGET_EFAULT;
10799                     }
10800                     ret = get_errno(sys_syslog((int)arg1, p, (int)arg3));
10801                     unlock_user(p, arg2, arg3);
10802                 }
10803                 return ret;
10804             default:
10805                 return -TARGET_EINVAL;
10806             }
10807         }
10808         break;
10809 #endif
10810     case TARGET_NR_setitimer:
10811         {
10812             struct itimerval value, ovalue, *pvalue;
10813 
10814             if (arg2) {
10815                 pvalue = &value;
10816                 if (copy_from_user_timeval(&pvalue->it_interval, arg2)
10817                     || copy_from_user_timeval(&pvalue->it_value,
10818                                               arg2 + sizeof(struct target_timeval)))
10819                     return -TARGET_EFAULT;
10820             } else {
10821                 pvalue = NULL;
10822             }
10823             ret = get_errno(setitimer(arg1, pvalue, &ovalue));
10824             if (!is_error(ret) && arg3) {
10825                 if (copy_to_user_timeval(arg3,
10826                                          &ovalue.it_interval)
10827                     || copy_to_user_timeval(arg3 + sizeof(struct target_timeval),
10828                                             &ovalue.it_value))
10829                     return -TARGET_EFAULT;
10830             }
10831         }
10832         return ret;
10833     case TARGET_NR_getitimer:
10834         {
10835             struct itimerval value;
10836 
10837             ret = get_errno(getitimer(arg1, &value));
10838             if (!is_error(ret) && arg2) {
10839                 if (copy_to_user_timeval(arg2,
10840                                          &value.it_interval)
10841                     || copy_to_user_timeval(arg2 + sizeof(struct target_timeval),
10842                                             &value.it_value))
10843                     return -TARGET_EFAULT;
10844             }
10845         }
10846         return ret;
10847 #ifdef TARGET_NR_stat
10848     case TARGET_NR_stat:
10849         if (!(p = lock_user_string(arg1))) {
10850             return -TARGET_EFAULT;
10851         }
10852         ret = get_errno(stat(path(p), &st));
10853         unlock_user(p, arg1, 0);
10854         goto do_stat;
10855 #endif
10856 #ifdef TARGET_NR_lstat
10857     case TARGET_NR_lstat:
10858         if (!(p = lock_user_string(arg1))) {
10859             return -TARGET_EFAULT;
10860         }
10861         ret = get_errno(lstat(path(p), &st));
10862         unlock_user(p, arg1, 0);
10863         goto do_stat;
10864 #endif
10865 #ifdef TARGET_NR_fstat
10866     case TARGET_NR_fstat:
10867         {
10868             ret = get_errno(fstat(arg1, &st));
10869 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
10870         do_stat:
10871 #endif
10872             if (!is_error(ret)) {
10873                 struct target_stat *target_st;
10874 
10875                 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0))
10876                     return -TARGET_EFAULT;
10877                 memset(target_st, 0, sizeof(*target_st));
10878                 __put_user(st.st_dev, &target_st->st_dev);
10879                 __put_user(st.st_ino, &target_st->st_ino);
10880                 __put_user(st.st_mode, &target_st->st_mode);
10881                 __put_user(st.st_uid, &target_st->st_uid);
10882                 __put_user(st.st_gid, &target_st->st_gid);
10883                 __put_user(st.st_nlink, &target_st->st_nlink);
10884                 __put_user(st.st_rdev, &target_st->st_rdev);
10885                 __put_user(st.st_size, &target_st->st_size);
10886                 __put_user(st.st_blksize, &target_st->st_blksize);
10887                 __put_user(st.st_blocks, &target_st->st_blocks);
10888                 __put_user(st.st_atime, &target_st->target_st_atime);
10889                 __put_user(st.st_mtime, &target_st->target_st_mtime);
10890                 __put_user(st.st_ctime, &target_st->target_st_ctime);
10891 #if defined(HAVE_STRUCT_STAT_ST_ATIM) && defined(TARGET_STAT_HAVE_NSEC)
10892                 __put_user(st.st_atim.tv_nsec,
10893                            &target_st->target_st_atime_nsec);
10894                 __put_user(st.st_mtim.tv_nsec,
10895                            &target_st->target_st_mtime_nsec);
10896                 __put_user(st.st_ctim.tv_nsec,
10897                            &target_st->target_st_ctime_nsec);
10898 #endif
10899                 unlock_user_struct(target_st, arg2, 1);
10900             }
10901         }
10902         return ret;
10903 #endif
10904     case TARGET_NR_vhangup:
10905         return get_errno(vhangup());
10906 #ifdef TARGET_NR_syscall
10907     case TARGET_NR_syscall:
10908         return do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5,
10909                           arg6, arg7, arg8, 0);
10910 #endif
10911 #if defined(TARGET_NR_wait4)
10912     case TARGET_NR_wait4:
10913         {
10914             int status;
10915             abi_long status_ptr = arg2;
10916             struct rusage rusage, *rusage_ptr;
10917             abi_ulong target_rusage = arg4;
10918             abi_long rusage_err;
10919             if (target_rusage)
10920                 rusage_ptr = &rusage;
10921             else
10922                 rusage_ptr = NULL;
10923             ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr));
10924             if (!is_error(ret)) {
10925                 if (status_ptr && ret) {
10926                     status = host_to_target_waitstatus(status);
10927                     if (put_user_s32(status, status_ptr))
10928                         return -TARGET_EFAULT;
10929                 }
10930                 if (target_rusage) {
10931                     rusage_err = host_to_target_rusage(target_rusage, &rusage);
10932                     if (rusage_err) {
10933                         ret = rusage_err;
10934                     }
10935                 }
10936             }
10937         }
10938         return ret;
10939 #endif
10940 #ifdef TARGET_NR_swapoff
10941     case TARGET_NR_swapoff:
10942         if (!(p = lock_user_string(arg1)))
10943             return -TARGET_EFAULT;
10944         ret = get_errno(swapoff(p));
10945         unlock_user(p, arg1, 0);
10946         return ret;
10947 #endif
10948     case TARGET_NR_sysinfo:
10949         {
10950             struct target_sysinfo *target_value;
10951             struct sysinfo value;
10952             ret = get_errno(sysinfo(&value));
10953             if (!is_error(ret) && arg1)
10954             {
10955                 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0))
10956                     return -TARGET_EFAULT;
10957                 __put_user(value.uptime, &target_value->uptime);
10958                 __put_user(value.loads[0], &target_value->loads[0]);
10959                 __put_user(value.loads[1], &target_value->loads[1]);
10960                 __put_user(value.loads[2], &target_value->loads[2]);
10961                 __put_user(value.totalram, &target_value->totalram);
10962                 __put_user(value.freeram, &target_value->freeram);
10963                 __put_user(value.sharedram, &target_value->sharedram);
10964                 __put_user(value.bufferram, &target_value->bufferram);
10965                 __put_user(value.totalswap, &target_value->totalswap);
10966                 __put_user(value.freeswap, &target_value->freeswap);
10967                 __put_user(value.procs, &target_value->procs);
10968                 __put_user(value.totalhigh, &target_value->totalhigh);
10969                 __put_user(value.freehigh, &target_value->freehigh);
10970                 __put_user(value.mem_unit, &target_value->mem_unit);
10971                 unlock_user_struct(target_value, arg1, 1);
10972             }
10973         }
10974         return ret;
10975 #ifdef TARGET_NR_ipc
10976     case TARGET_NR_ipc:
10977         return do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6);
10978 #endif
10979 #ifdef TARGET_NR_semget
10980     case TARGET_NR_semget:
10981         return get_errno(semget(arg1, arg2, arg3));
10982 #endif
10983 #ifdef TARGET_NR_semop
10984     case TARGET_NR_semop:
10985         return do_semtimedop(arg1, arg2, arg3, 0, false);
10986 #endif
10987 #ifdef TARGET_NR_semtimedop
10988     case TARGET_NR_semtimedop:
10989         return do_semtimedop(arg1, arg2, arg3, arg4, false);
10990 #endif
10991 #ifdef TARGET_NR_semtimedop_time64
10992     case TARGET_NR_semtimedop_time64:
10993         return do_semtimedop(arg1, arg2, arg3, arg4, true);
10994 #endif
10995 #ifdef TARGET_NR_semctl
10996     case TARGET_NR_semctl:
10997         return do_semctl(arg1, arg2, arg3, arg4);
10998 #endif
10999 #ifdef TARGET_NR_msgctl
11000     case TARGET_NR_msgctl:
11001         return do_msgctl(arg1, arg2, arg3);
11002 #endif
11003 #ifdef TARGET_NR_msgget
11004     case TARGET_NR_msgget:
11005         return get_errno(msgget(arg1, arg2));
11006 #endif
11007 #ifdef TARGET_NR_msgrcv
11008     case TARGET_NR_msgrcv:
11009         return do_msgrcv(arg1, arg2, arg3, arg4, arg5);
11010 #endif
11011 #ifdef TARGET_NR_msgsnd
11012     case TARGET_NR_msgsnd:
11013         return do_msgsnd(arg1, arg2, arg3, arg4);
11014 #endif
11015 #ifdef TARGET_NR_shmget
11016     case TARGET_NR_shmget:
11017         return get_errno(shmget(arg1, arg2, arg3));
11018 #endif
11019 #ifdef TARGET_NR_shmctl
11020     case TARGET_NR_shmctl:
11021         return do_shmctl(arg1, arg2, arg3);
11022 #endif
11023 #ifdef TARGET_NR_shmat
11024     case TARGET_NR_shmat:
11025         return target_shmat(cpu_env, arg1, arg2, arg3);
11026 #endif
11027 #ifdef TARGET_NR_shmdt
11028     case TARGET_NR_shmdt:
11029         return target_shmdt(arg1);
11030 #endif
11031     case TARGET_NR_fsync:
11032         return get_errno(fsync(arg1));
11033     case TARGET_NR_clone:
11034         /* Linux manages to have three different orderings for its
11035          * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
11036          * match the kernel's CONFIG_CLONE_* settings.
11037          * Microblaze is further special in that it uses a sixth
11038          * implicit argument to clone for the TLS pointer.
11039          */
11040 #if defined(TARGET_MICROBLAZE)
11041         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5));
11042 #elif defined(TARGET_CLONE_BACKWARDS)
11043         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5));
11044 #elif defined(TARGET_CLONE_BACKWARDS2)
11045         ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4));
11046 #else
11047         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4));
11048 #endif
11049         return ret;
11050 #ifdef __NR_exit_group
11051         /* new thread calls */
11052     case TARGET_NR_exit_group:
11053         preexit_cleanup(cpu_env, arg1);
11054         return get_errno(exit_group(arg1));
11055 #endif
11056     case TARGET_NR_setdomainname:
11057         if (!(p = lock_user_string(arg1)))
11058             return -TARGET_EFAULT;
11059         ret = get_errno(setdomainname(p, arg2));
11060         unlock_user(p, arg1, 0);
11061         return ret;
11062     case TARGET_NR_uname:
11063         /* no need to transcode because we use the linux syscall */
11064         {
11065             struct new_utsname * buf;
11066 
11067             if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0))
11068                 return -TARGET_EFAULT;
11069             ret = get_errno(sys_uname(buf));
11070             if (!is_error(ret)) {
11071                 /* Overwrite the native machine name with whatever is being
11072                    emulated. */
11073                 g_strlcpy(buf->machine, cpu_to_uname_machine(cpu_env),
11074                           sizeof(buf->machine));
11075                 /* Allow the user to override the reported release.  */
11076                 if (qemu_uname_release && *qemu_uname_release) {
11077                     g_strlcpy(buf->release, qemu_uname_release,
11078                               sizeof(buf->release));
11079                 }
11080             }
11081             unlock_user_struct(buf, arg1, 1);
11082         }
11083         return ret;
11084 #ifdef TARGET_I386
11085     case TARGET_NR_modify_ldt:
11086         return do_modify_ldt(cpu_env, arg1, arg2, arg3);
11087 #if !defined(TARGET_X86_64)
11088     case TARGET_NR_vm86:
11089         return do_vm86(cpu_env, arg1, arg2);
11090 #endif
11091 #endif
11092 #if defined(TARGET_NR_adjtimex)
11093     case TARGET_NR_adjtimex:
11094         {
11095             struct timex host_buf;
11096 
11097             if (target_to_host_timex(&host_buf, arg1) != 0) {
11098                 return -TARGET_EFAULT;
11099             }
11100             ret = get_errno(adjtimex(&host_buf));
11101             if (!is_error(ret)) {
11102                 if (host_to_target_timex(arg1, &host_buf) != 0) {
11103                     return -TARGET_EFAULT;
11104                 }
11105             }
11106         }
11107         return ret;
11108 #endif
11109 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)
11110     case TARGET_NR_clock_adjtime:
11111         {
11112             struct timex htx;
11113 
11114             if (target_to_host_timex(&htx, arg2) != 0) {
11115                 return -TARGET_EFAULT;
11116             }
11117             ret = get_errno(clock_adjtime(arg1, &htx));
11118             if (!is_error(ret) && host_to_target_timex(arg2, &htx)) {
11119                 return -TARGET_EFAULT;
11120             }
11121         }
11122         return ret;
11123 #endif
11124 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
11125     case TARGET_NR_clock_adjtime64:
11126         {
11127             struct timex htx;
11128 
11129             if (target_to_host_timex64(&htx, arg2) != 0) {
11130                 return -TARGET_EFAULT;
11131             }
11132             ret = get_errno(clock_adjtime(arg1, &htx));
11133             if (!is_error(ret) && host_to_target_timex64(arg2, &htx)) {
11134                     return -TARGET_EFAULT;
11135             }
11136         }
11137         return ret;
11138 #endif
11139     case TARGET_NR_getpgid:
11140         return get_errno(getpgid(arg1));
11141     case TARGET_NR_fchdir:
11142         return get_errno(fchdir(arg1));
11143     case TARGET_NR_personality:
11144         return get_errno(personality(arg1));
11145 #ifdef TARGET_NR__llseek /* Not on alpha */
11146     case TARGET_NR__llseek:
11147         {
11148             int64_t res;
11149 #if !defined(__NR_llseek)
11150             res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5);
11151             if (res == -1) {
11152                 ret = get_errno(res);
11153             } else {
11154                 ret = 0;
11155             }
11156 #else
11157             ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5));
11158 #endif
11159             if ((ret == 0) && put_user_s64(res, arg4)) {
11160                 return -TARGET_EFAULT;
11161             }
11162         }
11163         return ret;
11164 #endif
11165 #ifdef TARGET_NR_getdents
11166     case TARGET_NR_getdents:
11167         return do_getdents(arg1, arg2, arg3);
11168 #endif /* TARGET_NR_getdents */
11169 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
11170     case TARGET_NR_getdents64:
11171         return do_getdents64(arg1, arg2, arg3);
11172 #endif /* TARGET_NR_getdents64 */
11173 #if defined(TARGET_NR__newselect)
11174     case TARGET_NR__newselect:
11175         return do_select(arg1, arg2, arg3, arg4, arg5);
11176 #endif
11177 #ifdef TARGET_NR_poll
11178     case TARGET_NR_poll:
11179         return do_ppoll(arg1, arg2, arg3, arg4, arg5, false, false);
11180 #endif
11181 #ifdef TARGET_NR_ppoll
11182     case TARGET_NR_ppoll:
11183         return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, false);
11184 #endif
11185 #ifdef TARGET_NR_ppoll_time64
11186     case TARGET_NR_ppoll_time64:
11187         return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, true);
11188 #endif
11189     case TARGET_NR_flock:
11190         /* NOTE: the flock constant seems to be the same for every
11191            Linux platform */
11192         return get_errno(safe_flock(arg1, arg2));
11193     case TARGET_NR_readv:
11194         {
11195             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
11196             if (vec != NULL) {
11197                 ret = get_errno(safe_readv(arg1, vec, arg3));
11198                 unlock_iovec(vec, arg2, arg3, 1);
11199             } else {
11200                 ret = -host_to_target_errno(errno);
11201             }
11202         }
11203         return ret;
11204     case TARGET_NR_writev:
11205         {
11206             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
11207             if (vec != NULL) {
11208                 ret = get_errno(safe_writev(arg1, vec, arg3));
11209                 unlock_iovec(vec, arg2, arg3, 0);
11210             } else {
11211                 ret = -host_to_target_errno(errno);
11212             }
11213         }
11214         return ret;
11215 #if defined(TARGET_NR_preadv)
11216     case TARGET_NR_preadv:
11217         {
11218             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
11219             if (vec != NULL) {
11220                 unsigned long low, high;
11221 
11222                 target_to_host_low_high(arg4, arg5, &low, &high);
11223                 ret = get_errno(safe_preadv(arg1, vec, arg3, low, high));
11224                 unlock_iovec(vec, arg2, arg3, 1);
11225             } else {
11226                 ret = -host_to_target_errno(errno);
11227            }
11228         }
11229         return ret;
11230 #endif
11231 #if defined(TARGET_NR_pwritev)
11232     case TARGET_NR_pwritev:
11233         {
11234             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
11235             if (vec != NULL) {
11236                 unsigned long low, high;
11237 
11238                 target_to_host_low_high(arg4, arg5, &low, &high);
11239                 ret = get_errno(safe_pwritev(arg1, vec, arg3, low, high));
11240                 unlock_iovec(vec, arg2, arg3, 0);
11241             } else {
11242                 ret = -host_to_target_errno(errno);
11243            }
11244         }
11245         return ret;
11246 #endif
11247     case TARGET_NR_getsid:
11248         return get_errno(getsid(arg1));
11249 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
11250     case TARGET_NR_fdatasync:
11251         return get_errno(fdatasync(arg1));
11252 #endif
11253     case TARGET_NR_sched_getaffinity:
11254         {
11255             unsigned int mask_size;
11256             unsigned long *mask;
11257 
11258             /*
11259              * sched_getaffinity needs multiples of ulong, so need to take
11260              * care of mismatches between target ulong and host ulong sizes.
11261              */
11262             if (arg2 & (sizeof(abi_ulong) - 1)) {
11263                 return -TARGET_EINVAL;
11264             }
11265             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
11266 
11267             mask = alloca(mask_size);
11268             memset(mask, 0, mask_size);
11269             ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask));
11270 
11271             if (!is_error(ret)) {
11272                 if (ret > arg2) {
11273                     /* More data returned than the caller's buffer will fit.
11274                      * This only happens if sizeof(abi_long) < sizeof(long)
11275                      * and the caller passed us a buffer holding an odd number
11276                      * of abi_longs. If the host kernel is actually using the
11277                      * extra 4 bytes then fail EINVAL; otherwise we can just
11278                      * ignore them and only copy the interesting part.
11279                      */
11280                     int numcpus = sysconf(_SC_NPROCESSORS_CONF);
11281                     if (numcpus > arg2 * 8) {
11282                         return -TARGET_EINVAL;
11283                     }
11284                     ret = arg2;
11285                 }
11286 
11287                 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) {
11288                     return -TARGET_EFAULT;
11289                 }
11290             }
11291         }
11292         return ret;
11293     case TARGET_NR_sched_setaffinity:
11294         {
11295             unsigned int mask_size;
11296             unsigned long *mask;
11297 
11298             /*
11299              * sched_setaffinity needs multiples of ulong, so need to take
11300              * care of mismatches between target ulong and host ulong sizes.
11301              */
11302             if (arg2 & (sizeof(abi_ulong) - 1)) {
11303                 return -TARGET_EINVAL;
11304             }
11305             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
11306             mask = alloca(mask_size);
11307 
11308             ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2);
11309             if (ret) {
11310                 return ret;
11311             }
11312 
11313             return get_errno(sys_sched_setaffinity(arg1, mask_size, mask));
11314         }
11315     case TARGET_NR_getcpu:
11316         {
11317             unsigned cpuid, node;
11318             ret = get_errno(sys_getcpu(arg1 ? &cpuid : NULL,
11319                                        arg2 ? &node : NULL,
11320                                        NULL));
11321             if (is_error(ret)) {
11322                 return ret;
11323             }
11324             if (arg1 && put_user_u32(cpuid, arg1)) {
11325                 return -TARGET_EFAULT;
11326             }
11327             if (arg2 && put_user_u32(node, arg2)) {
11328                 return -TARGET_EFAULT;
11329             }
11330         }
11331         return ret;
11332     case TARGET_NR_sched_setparam:
11333         {
11334             struct target_sched_param *target_schp;
11335             struct sched_param schp;
11336 
11337             if (arg2 == 0) {
11338                 return -TARGET_EINVAL;
11339             }
11340             if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1)) {
11341                 return -TARGET_EFAULT;
11342             }
11343             schp.sched_priority = tswap32(target_schp->sched_priority);
11344             unlock_user_struct(target_schp, arg2, 0);
11345             return get_errno(sys_sched_setparam(arg1, &schp));
11346         }
11347     case TARGET_NR_sched_getparam:
11348         {
11349             struct target_sched_param *target_schp;
11350             struct sched_param schp;
11351 
11352             if (arg2 == 0) {
11353                 return -TARGET_EINVAL;
11354             }
11355             ret = get_errno(sys_sched_getparam(arg1, &schp));
11356             if (!is_error(ret)) {
11357                 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0)) {
11358                     return -TARGET_EFAULT;
11359                 }
11360                 target_schp->sched_priority = tswap32(schp.sched_priority);
11361                 unlock_user_struct(target_schp, arg2, 1);
11362             }
11363         }
11364         return ret;
11365     case TARGET_NR_sched_setscheduler:
11366         {
11367             struct target_sched_param *target_schp;
11368             struct sched_param schp;
11369             if (arg3 == 0) {
11370                 return -TARGET_EINVAL;
11371             }
11372             if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1)) {
11373                 return -TARGET_EFAULT;
11374             }
11375             schp.sched_priority = tswap32(target_schp->sched_priority);
11376             unlock_user_struct(target_schp, arg3, 0);
11377             return get_errno(sys_sched_setscheduler(arg1, arg2, &schp));
11378         }
11379     case TARGET_NR_sched_getscheduler:
11380         return get_errno(sys_sched_getscheduler(arg1));
11381     case TARGET_NR_sched_getattr:
11382         {
11383             struct target_sched_attr *target_scha;
11384             struct sched_attr scha;
11385             if (arg2 == 0) {
11386                 return -TARGET_EINVAL;
11387             }
11388             if (arg3 > sizeof(scha)) {
11389                 arg3 = sizeof(scha);
11390             }
11391             ret = get_errno(sys_sched_getattr(arg1, &scha, arg3, arg4));
11392             if (!is_error(ret)) {
11393                 target_scha = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11394                 if (!target_scha) {
11395                     return -TARGET_EFAULT;
11396                 }
11397                 target_scha->size = tswap32(scha.size);
11398                 target_scha->sched_policy = tswap32(scha.sched_policy);
11399                 target_scha->sched_flags = tswap64(scha.sched_flags);
11400                 target_scha->sched_nice = tswap32(scha.sched_nice);
11401                 target_scha->sched_priority = tswap32(scha.sched_priority);
11402                 target_scha->sched_runtime = tswap64(scha.sched_runtime);
11403                 target_scha->sched_deadline = tswap64(scha.sched_deadline);
11404                 target_scha->sched_period = tswap64(scha.sched_period);
11405                 if (scha.size > offsetof(struct sched_attr, sched_util_min)) {
11406                     target_scha->sched_util_min = tswap32(scha.sched_util_min);
11407                     target_scha->sched_util_max = tswap32(scha.sched_util_max);
11408                 }
11409                 unlock_user(target_scha, arg2, arg3);
11410             }
11411             return ret;
11412         }
11413     case TARGET_NR_sched_setattr:
11414         {
11415             struct target_sched_attr *target_scha;
11416             struct sched_attr scha;
11417             uint32_t size;
11418             int zeroed;
11419             if (arg2 == 0) {
11420                 return -TARGET_EINVAL;
11421             }
11422             if (get_user_u32(size, arg2)) {
11423                 return -TARGET_EFAULT;
11424             }
11425             if (!size) {
11426                 size = offsetof(struct target_sched_attr, sched_util_min);
11427             }
11428             if (size < offsetof(struct target_sched_attr, sched_util_min)) {
11429                 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
11430                     return -TARGET_EFAULT;
11431                 }
11432                 return -TARGET_E2BIG;
11433             }
11434 
11435             zeroed = check_zeroed_user(arg2, sizeof(struct target_sched_attr), size);
11436             if (zeroed < 0) {
11437                 return zeroed;
11438             } else if (zeroed == 0) {
11439                 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
11440                     return -TARGET_EFAULT;
11441                 }
11442                 return -TARGET_E2BIG;
11443             }
11444             if (size > sizeof(struct target_sched_attr)) {
11445                 size = sizeof(struct target_sched_attr);
11446             }
11447 
11448             target_scha = lock_user(VERIFY_READ, arg2, size, 1);
11449             if (!target_scha) {
11450                 return -TARGET_EFAULT;
11451             }
11452             scha.size = size;
11453             scha.sched_policy = tswap32(target_scha->sched_policy);
11454             scha.sched_flags = tswap64(target_scha->sched_flags);
11455             scha.sched_nice = tswap32(target_scha->sched_nice);
11456             scha.sched_priority = tswap32(target_scha->sched_priority);
11457             scha.sched_runtime = tswap64(target_scha->sched_runtime);
11458             scha.sched_deadline = tswap64(target_scha->sched_deadline);
11459             scha.sched_period = tswap64(target_scha->sched_period);
11460             if (size > offsetof(struct target_sched_attr, sched_util_min)) {
11461                 scha.sched_util_min = tswap32(target_scha->sched_util_min);
11462                 scha.sched_util_max = tswap32(target_scha->sched_util_max);
11463             }
11464             unlock_user(target_scha, arg2, 0);
11465             return get_errno(sys_sched_setattr(arg1, &scha, arg3));
11466         }
11467     case TARGET_NR_sched_yield:
11468         return get_errno(sched_yield());
11469     case TARGET_NR_sched_get_priority_max:
11470         return get_errno(sched_get_priority_max(arg1));
11471     case TARGET_NR_sched_get_priority_min:
11472         return get_errno(sched_get_priority_min(arg1));
11473 #ifdef TARGET_NR_sched_rr_get_interval
11474     case TARGET_NR_sched_rr_get_interval:
11475         {
11476             struct timespec ts;
11477             ret = get_errno(sched_rr_get_interval(arg1, &ts));
11478             if (!is_error(ret)) {
11479                 ret = host_to_target_timespec(arg2, &ts);
11480             }
11481         }
11482         return ret;
11483 #endif
11484 #ifdef TARGET_NR_sched_rr_get_interval_time64
11485     case TARGET_NR_sched_rr_get_interval_time64:
11486         {
11487             struct timespec ts;
11488             ret = get_errno(sched_rr_get_interval(arg1, &ts));
11489             if (!is_error(ret)) {
11490                 ret = host_to_target_timespec64(arg2, &ts);
11491             }
11492         }
11493         return ret;
11494 #endif
11495 #if defined(TARGET_NR_nanosleep)
11496     case TARGET_NR_nanosleep:
11497         {
11498             struct timespec req, rem;
11499             target_to_host_timespec(&req, arg1);
11500             ret = get_errno(safe_nanosleep(&req, &rem));
11501             if (is_error(ret) && arg2) {
11502                 host_to_target_timespec(arg2, &rem);
11503             }
11504         }
11505         return ret;
11506 #endif
11507     case TARGET_NR_prctl:
11508         return do_prctl(cpu_env, arg1, arg2, arg3, arg4, arg5);
11509         break;
11510 #ifdef TARGET_NR_arch_prctl
11511     case TARGET_NR_arch_prctl:
11512         return do_arch_prctl(cpu_env, arg1, arg2);
11513 #endif
11514 #ifdef TARGET_NR_pread64
11515     case TARGET_NR_pread64:
11516         if (regpairs_aligned(cpu_env, num)) {
11517             arg4 = arg5;
11518             arg5 = arg6;
11519         }
11520         if (arg2 == 0 && arg3 == 0) {
11521             /* Special-case NULL buffer and zero length, which should succeed */
11522             p = 0;
11523         } else {
11524             p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11525             if (!p) {
11526                 return -TARGET_EFAULT;
11527             }
11528         }
11529         ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5)));
11530         unlock_user(p, arg2, ret);
11531         return ret;
11532     case TARGET_NR_pwrite64:
11533         if (regpairs_aligned(cpu_env, num)) {
11534             arg4 = arg5;
11535             arg5 = arg6;
11536         }
11537         if (arg2 == 0 && arg3 == 0) {
11538             /* Special-case NULL buffer and zero length, which should succeed */
11539             p = 0;
11540         } else {
11541             p = lock_user(VERIFY_READ, arg2, arg3, 1);
11542             if (!p) {
11543                 return -TARGET_EFAULT;
11544             }
11545         }
11546         ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5)));
11547         unlock_user(p, arg2, 0);
11548         return ret;
11549 #endif
11550     case TARGET_NR_getcwd:
11551         if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0)))
11552             return -TARGET_EFAULT;
11553         ret = get_errno(sys_getcwd1(p, arg2));
11554         unlock_user(p, arg1, ret);
11555         return ret;
11556     case TARGET_NR_capget:
11557     case TARGET_NR_capset:
11558     {
11559         struct target_user_cap_header *target_header;
11560         struct target_user_cap_data *target_data = NULL;
11561         struct __user_cap_header_struct header;
11562         struct __user_cap_data_struct data[2];
11563         struct __user_cap_data_struct *dataptr = NULL;
11564         int i, target_datalen;
11565         int data_items = 1;
11566 
11567         if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) {
11568             return -TARGET_EFAULT;
11569         }
11570         header.version = tswap32(target_header->version);
11571         header.pid = tswap32(target_header->pid);
11572 
11573         if (header.version != _LINUX_CAPABILITY_VERSION) {
11574             /* Version 2 and up takes pointer to two user_data structs */
11575             data_items = 2;
11576         }
11577 
11578         target_datalen = sizeof(*target_data) * data_items;
11579 
11580         if (arg2) {
11581             if (num == TARGET_NR_capget) {
11582                 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0);
11583             } else {
11584                 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1);
11585             }
11586             if (!target_data) {
11587                 unlock_user_struct(target_header, arg1, 0);
11588                 return -TARGET_EFAULT;
11589             }
11590 
11591             if (num == TARGET_NR_capset) {
11592                 for (i = 0; i < data_items; i++) {
11593                     data[i].effective = tswap32(target_data[i].effective);
11594                     data[i].permitted = tswap32(target_data[i].permitted);
11595                     data[i].inheritable = tswap32(target_data[i].inheritable);
11596                 }
11597             }
11598 
11599             dataptr = data;
11600         }
11601 
11602         if (num == TARGET_NR_capget) {
11603             ret = get_errno(capget(&header, dataptr));
11604         } else {
11605             ret = get_errno(capset(&header, dataptr));
11606         }
11607 
11608         /* The kernel always updates version for both capget and capset */
11609         target_header->version = tswap32(header.version);
11610         unlock_user_struct(target_header, arg1, 1);
11611 
11612         if (arg2) {
11613             if (num == TARGET_NR_capget) {
11614                 for (i = 0; i < data_items; i++) {
11615                     target_data[i].effective = tswap32(data[i].effective);
11616                     target_data[i].permitted = tswap32(data[i].permitted);
11617                     target_data[i].inheritable = tswap32(data[i].inheritable);
11618                 }
11619                 unlock_user(target_data, arg2, target_datalen);
11620             } else {
11621                 unlock_user(target_data, arg2, 0);
11622             }
11623         }
11624         return ret;
11625     }
11626     case TARGET_NR_sigaltstack:
11627         return do_sigaltstack(arg1, arg2, cpu_env);
11628 
11629 #ifdef CONFIG_SENDFILE
11630 #ifdef TARGET_NR_sendfile
11631     case TARGET_NR_sendfile:
11632     {
11633         off_t *offp = NULL;
11634         off_t off;
11635         if (arg3) {
11636             ret = get_user_sal(off, arg3);
11637             if (is_error(ret)) {
11638                 return ret;
11639             }
11640             offp = &off;
11641         }
11642         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11643         if (!is_error(ret) && arg3) {
11644             abi_long ret2 = put_user_sal(off, arg3);
11645             if (is_error(ret2)) {
11646                 ret = ret2;
11647             }
11648         }
11649         return ret;
11650     }
11651 #endif
11652 #ifdef TARGET_NR_sendfile64
11653     case TARGET_NR_sendfile64:
11654     {
11655         off_t *offp = NULL;
11656         off_t off;
11657         if (arg3) {
11658             ret = get_user_s64(off, arg3);
11659             if (is_error(ret)) {
11660                 return ret;
11661             }
11662             offp = &off;
11663         }
11664         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11665         if (!is_error(ret) && arg3) {
11666             abi_long ret2 = put_user_s64(off, arg3);
11667             if (is_error(ret2)) {
11668                 ret = ret2;
11669             }
11670         }
11671         return ret;
11672     }
11673 #endif
11674 #endif
11675 #ifdef TARGET_NR_vfork
11676     case TARGET_NR_vfork:
11677         return get_errno(do_fork(cpu_env,
11678                          CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD,
11679                          0, 0, 0, 0));
11680 #endif
11681 #ifdef TARGET_NR_ugetrlimit
11682     case TARGET_NR_ugetrlimit:
11683     {
11684 	struct rlimit rlim;
11685 	int resource = target_to_host_resource(arg1);
11686 	ret = get_errno(getrlimit(resource, &rlim));
11687 	if (!is_error(ret)) {
11688 	    struct target_rlimit *target_rlim;
11689             if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
11690                 return -TARGET_EFAULT;
11691 	    target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
11692 	    target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
11693             unlock_user_struct(target_rlim, arg2, 1);
11694 	}
11695         return ret;
11696     }
11697 #endif
11698 #ifdef TARGET_NR_truncate64
11699     case TARGET_NR_truncate64:
11700         if (!(p = lock_user_string(arg1)))
11701             return -TARGET_EFAULT;
11702 	ret = target_truncate64(cpu_env, p, arg2, arg3, arg4);
11703         unlock_user(p, arg1, 0);
11704         return ret;
11705 #endif
11706 #ifdef TARGET_NR_ftruncate64
11707     case TARGET_NR_ftruncate64:
11708         return target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4);
11709 #endif
11710 #ifdef TARGET_NR_stat64
11711     case TARGET_NR_stat64:
11712         if (!(p = lock_user_string(arg1))) {
11713             return -TARGET_EFAULT;
11714         }
11715         ret = get_errno(stat(path(p), &st));
11716         unlock_user(p, arg1, 0);
11717         if (!is_error(ret))
11718             ret = host_to_target_stat64(cpu_env, arg2, &st);
11719         return ret;
11720 #endif
11721 #ifdef TARGET_NR_lstat64
11722     case TARGET_NR_lstat64:
11723         if (!(p = lock_user_string(arg1))) {
11724             return -TARGET_EFAULT;
11725         }
11726         ret = get_errno(lstat(path(p), &st));
11727         unlock_user(p, arg1, 0);
11728         if (!is_error(ret))
11729             ret = host_to_target_stat64(cpu_env, arg2, &st);
11730         return ret;
11731 #endif
11732 #ifdef TARGET_NR_fstat64
11733     case TARGET_NR_fstat64:
11734         ret = get_errno(fstat(arg1, &st));
11735         if (!is_error(ret))
11736             ret = host_to_target_stat64(cpu_env, arg2, &st);
11737         return ret;
11738 #endif
11739 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
11740 #ifdef TARGET_NR_fstatat64
11741     case TARGET_NR_fstatat64:
11742 #endif
11743 #ifdef TARGET_NR_newfstatat
11744     case TARGET_NR_newfstatat:
11745 #endif
11746         if (!(p = lock_user_string(arg2))) {
11747             return -TARGET_EFAULT;
11748         }
11749         ret = get_errno(fstatat(arg1, path(p), &st, arg4));
11750         unlock_user(p, arg2, 0);
11751         if (!is_error(ret))
11752             ret = host_to_target_stat64(cpu_env, arg3, &st);
11753         return ret;
11754 #endif
11755 #if defined(TARGET_NR_statx)
11756     case TARGET_NR_statx:
11757         {
11758             struct target_statx *target_stx;
11759             int dirfd = arg1;
11760             int flags = arg3;
11761 
11762             p = lock_user_string(arg2);
11763             if (p == NULL) {
11764                 return -TARGET_EFAULT;
11765             }
11766 #if defined(__NR_statx)
11767             {
11768                 /*
11769                  * It is assumed that struct statx is architecture independent.
11770                  */
11771                 struct target_statx host_stx;
11772                 int mask = arg4;
11773 
11774                 ret = get_errno(sys_statx(dirfd, p, flags, mask, &host_stx));
11775                 if (!is_error(ret)) {
11776                     if (host_to_target_statx(&host_stx, arg5) != 0) {
11777                         unlock_user(p, arg2, 0);
11778                         return -TARGET_EFAULT;
11779                     }
11780                 }
11781 
11782                 if (ret != -TARGET_ENOSYS) {
11783                     unlock_user(p, arg2, 0);
11784                     return ret;
11785                 }
11786             }
11787 #endif
11788             ret = get_errno(fstatat(dirfd, path(p), &st, flags));
11789             unlock_user(p, arg2, 0);
11790 
11791             if (!is_error(ret)) {
11792                 if (!lock_user_struct(VERIFY_WRITE, target_stx, arg5, 0)) {
11793                     return -TARGET_EFAULT;
11794                 }
11795                 memset(target_stx, 0, sizeof(*target_stx));
11796                 __put_user(major(st.st_dev), &target_stx->stx_dev_major);
11797                 __put_user(minor(st.st_dev), &target_stx->stx_dev_minor);
11798                 __put_user(st.st_ino, &target_stx->stx_ino);
11799                 __put_user(st.st_mode, &target_stx->stx_mode);
11800                 __put_user(st.st_uid, &target_stx->stx_uid);
11801                 __put_user(st.st_gid, &target_stx->stx_gid);
11802                 __put_user(st.st_nlink, &target_stx->stx_nlink);
11803                 __put_user(major(st.st_rdev), &target_stx->stx_rdev_major);
11804                 __put_user(minor(st.st_rdev), &target_stx->stx_rdev_minor);
11805                 __put_user(st.st_size, &target_stx->stx_size);
11806                 __put_user(st.st_blksize, &target_stx->stx_blksize);
11807                 __put_user(st.st_blocks, &target_stx->stx_blocks);
11808                 __put_user(st.st_atime, &target_stx->stx_atime.tv_sec);
11809                 __put_user(st.st_mtime, &target_stx->stx_mtime.tv_sec);
11810                 __put_user(st.st_ctime, &target_stx->stx_ctime.tv_sec);
11811                 unlock_user_struct(target_stx, arg5, 1);
11812             }
11813         }
11814         return ret;
11815 #endif
11816 #ifdef TARGET_NR_lchown
11817     case TARGET_NR_lchown:
11818         if (!(p = lock_user_string(arg1)))
11819             return -TARGET_EFAULT;
11820         ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3)));
11821         unlock_user(p, arg1, 0);
11822         return ret;
11823 #endif
11824 #ifdef TARGET_NR_getuid
11825     case TARGET_NR_getuid:
11826         return get_errno(high2lowuid(getuid()));
11827 #endif
11828 #ifdef TARGET_NR_getgid
11829     case TARGET_NR_getgid:
11830         return get_errno(high2lowgid(getgid()));
11831 #endif
11832 #ifdef TARGET_NR_geteuid
11833     case TARGET_NR_geteuid:
11834         return get_errno(high2lowuid(geteuid()));
11835 #endif
11836 #ifdef TARGET_NR_getegid
11837     case TARGET_NR_getegid:
11838         return get_errno(high2lowgid(getegid()));
11839 #endif
11840     case TARGET_NR_setreuid:
11841         return get_errno(setreuid(low2highuid(arg1), low2highuid(arg2)));
11842     case TARGET_NR_setregid:
11843         return get_errno(setregid(low2highgid(arg1), low2highgid(arg2)));
11844     case TARGET_NR_getgroups:
11845         { /* the same code as for TARGET_NR_getgroups32 */
11846             int gidsetsize = arg1;
11847             target_id *target_grouplist;
11848             g_autofree gid_t *grouplist = NULL;
11849             int i;
11850 
11851             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
11852                 return -TARGET_EINVAL;
11853             }
11854             if (gidsetsize > 0) {
11855                 grouplist = g_try_new(gid_t, gidsetsize);
11856                 if (!grouplist) {
11857                     return -TARGET_ENOMEM;
11858                 }
11859             }
11860             ret = get_errno(getgroups(gidsetsize, grouplist));
11861             if (!is_error(ret) && gidsetsize > 0) {
11862                 target_grouplist = lock_user(VERIFY_WRITE, arg2,
11863                                              gidsetsize * sizeof(target_id), 0);
11864                 if (!target_grouplist) {
11865                     return -TARGET_EFAULT;
11866                 }
11867                 for (i = 0; i < ret; i++) {
11868                     target_grouplist[i] = tswapid(high2lowgid(grouplist[i]));
11869                 }
11870                 unlock_user(target_grouplist, arg2,
11871                             gidsetsize * sizeof(target_id));
11872             }
11873             return ret;
11874         }
11875     case TARGET_NR_setgroups:
11876         { /* the same code as for TARGET_NR_setgroups32 */
11877             int gidsetsize = arg1;
11878             target_id *target_grouplist;
11879             g_autofree gid_t *grouplist = NULL;
11880             int i;
11881 
11882             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
11883                 return -TARGET_EINVAL;
11884             }
11885             if (gidsetsize > 0) {
11886                 grouplist = g_try_new(gid_t, gidsetsize);
11887                 if (!grouplist) {
11888                     return -TARGET_ENOMEM;
11889                 }
11890                 target_grouplist = lock_user(VERIFY_READ, arg2,
11891                                              gidsetsize * sizeof(target_id), 1);
11892                 if (!target_grouplist) {
11893                     return -TARGET_EFAULT;
11894                 }
11895                 for (i = 0; i < gidsetsize; i++) {
11896                     grouplist[i] = low2highgid(tswapid(target_grouplist[i]));
11897                 }
11898                 unlock_user(target_grouplist, arg2,
11899                             gidsetsize * sizeof(target_id));
11900             }
11901             return get_errno(sys_setgroups(gidsetsize, grouplist));
11902         }
11903     case TARGET_NR_fchown:
11904         return get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3)));
11905 #if defined(TARGET_NR_fchownat)
11906     case TARGET_NR_fchownat:
11907         if (!(p = lock_user_string(arg2)))
11908             return -TARGET_EFAULT;
11909         ret = get_errno(fchownat(arg1, p, low2highuid(arg3),
11910                                  low2highgid(arg4), arg5));
11911         unlock_user(p, arg2, 0);
11912         return ret;
11913 #endif
11914 #ifdef TARGET_NR_setresuid
11915     case TARGET_NR_setresuid:
11916         return get_errno(sys_setresuid(low2highuid(arg1),
11917                                        low2highuid(arg2),
11918                                        low2highuid(arg3)));
11919 #endif
11920 #ifdef TARGET_NR_getresuid
11921     case TARGET_NR_getresuid:
11922         {
11923             uid_t ruid, euid, suid;
11924             ret = get_errno(getresuid(&ruid, &euid, &suid));
11925             if (!is_error(ret)) {
11926                 if (put_user_id(high2lowuid(ruid), arg1)
11927                     || put_user_id(high2lowuid(euid), arg2)
11928                     || put_user_id(high2lowuid(suid), arg3))
11929                     return -TARGET_EFAULT;
11930             }
11931         }
11932         return ret;
11933 #endif
11934 #ifdef TARGET_NR_getresgid
11935     case TARGET_NR_setresgid:
11936         return get_errno(sys_setresgid(low2highgid(arg1),
11937                                        low2highgid(arg2),
11938                                        low2highgid(arg3)));
11939 #endif
11940 #ifdef TARGET_NR_getresgid
11941     case TARGET_NR_getresgid:
11942         {
11943             gid_t rgid, egid, sgid;
11944             ret = get_errno(getresgid(&rgid, &egid, &sgid));
11945             if (!is_error(ret)) {
11946                 if (put_user_id(high2lowgid(rgid), arg1)
11947                     || put_user_id(high2lowgid(egid), arg2)
11948                     || put_user_id(high2lowgid(sgid), arg3))
11949                     return -TARGET_EFAULT;
11950             }
11951         }
11952         return ret;
11953 #endif
11954 #ifdef TARGET_NR_chown
11955     case TARGET_NR_chown:
11956         if (!(p = lock_user_string(arg1)))
11957             return -TARGET_EFAULT;
11958         ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3)));
11959         unlock_user(p, arg1, 0);
11960         return ret;
11961 #endif
11962     case TARGET_NR_setuid:
11963         return get_errno(sys_setuid(low2highuid(arg1)));
11964     case TARGET_NR_setgid:
11965         return get_errno(sys_setgid(low2highgid(arg1)));
11966     case TARGET_NR_setfsuid:
11967         return get_errno(setfsuid(arg1));
11968     case TARGET_NR_setfsgid:
11969         return get_errno(setfsgid(arg1));
11970 
11971 #ifdef TARGET_NR_lchown32
11972     case TARGET_NR_lchown32:
11973         if (!(p = lock_user_string(arg1)))
11974             return -TARGET_EFAULT;
11975         ret = get_errno(lchown(p, arg2, arg3));
11976         unlock_user(p, arg1, 0);
11977         return ret;
11978 #endif
11979 #ifdef TARGET_NR_getuid32
11980     case TARGET_NR_getuid32:
11981         return get_errno(getuid());
11982 #endif
11983 
11984 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
11985    /* Alpha specific */
11986     case TARGET_NR_getxuid:
11987          {
11988             uid_t euid;
11989             euid=geteuid();
11990             cpu_env->ir[IR_A4]=euid;
11991          }
11992         return get_errno(getuid());
11993 #endif
11994 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
11995    /* Alpha specific */
11996     case TARGET_NR_getxgid:
11997          {
11998             uid_t egid;
11999             egid=getegid();
12000             cpu_env->ir[IR_A4]=egid;
12001          }
12002         return get_errno(getgid());
12003 #endif
12004 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
12005     /* Alpha specific */
12006     case TARGET_NR_osf_getsysinfo:
12007         ret = -TARGET_EOPNOTSUPP;
12008         switch (arg1) {
12009           case TARGET_GSI_IEEE_FP_CONTROL:
12010             {
12011                 uint64_t fpcr = cpu_alpha_load_fpcr(cpu_env);
12012                 uint64_t swcr = cpu_env->swcr;
12013 
12014                 swcr &= ~SWCR_STATUS_MASK;
12015                 swcr |= (fpcr >> 35) & SWCR_STATUS_MASK;
12016 
12017                 if (put_user_u64 (swcr, arg2))
12018                         return -TARGET_EFAULT;
12019                 ret = 0;
12020             }
12021             break;
12022 
12023           /* case GSI_IEEE_STATE_AT_SIGNAL:
12024              -- Not implemented in linux kernel.
12025              case GSI_UACPROC:
12026              -- Retrieves current unaligned access state; not much used.
12027              case GSI_PROC_TYPE:
12028              -- Retrieves implver information; surely not used.
12029              case GSI_GET_HWRPB:
12030              -- Grabs a copy of the HWRPB; surely not used.
12031           */
12032         }
12033         return ret;
12034 #endif
12035 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
12036     /* Alpha specific */
12037     case TARGET_NR_osf_setsysinfo:
12038         ret = -TARGET_EOPNOTSUPP;
12039         switch (arg1) {
12040           case TARGET_SSI_IEEE_FP_CONTROL:
12041             {
12042                 uint64_t swcr, fpcr;
12043 
12044                 if (get_user_u64 (swcr, arg2)) {
12045                     return -TARGET_EFAULT;
12046                 }
12047 
12048                 /*
12049                  * The kernel calls swcr_update_status to update the
12050                  * status bits from the fpcr at every point that it
12051                  * could be queried.  Therefore, we store the status
12052                  * bits only in FPCR.
12053                  */
12054                 cpu_env->swcr = swcr & (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK);
12055 
12056                 fpcr = cpu_alpha_load_fpcr(cpu_env);
12057                 fpcr &= ((uint64_t)FPCR_DYN_MASK << 32);
12058                 fpcr |= alpha_ieee_swcr_to_fpcr(swcr);
12059                 cpu_alpha_store_fpcr(cpu_env, fpcr);
12060                 ret = 0;
12061             }
12062             break;
12063 
12064           case TARGET_SSI_IEEE_RAISE_EXCEPTION:
12065             {
12066                 uint64_t exc, fpcr, fex;
12067 
12068                 if (get_user_u64(exc, arg2)) {
12069                     return -TARGET_EFAULT;
12070                 }
12071                 exc &= SWCR_STATUS_MASK;
12072                 fpcr = cpu_alpha_load_fpcr(cpu_env);
12073 
12074                 /* Old exceptions are not signaled.  */
12075                 fex = alpha_ieee_fpcr_to_swcr(fpcr);
12076                 fex = exc & ~fex;
12077                 fex >>= SWCR_STATUS_TO_EXCSUM_SHIFT;
12078                 fex &= (cpu_env)->swcr;
12079 
12080                 /* Update the hardware fpcr.  */
12081                 fpcr |= alpha_ieee_swcr_to_fpcr(exc);
12082                 cpu_alpha_store_fpcr(cpu_env, fpcr);
12083 
12084                 if (fex) {
12085                     int si_code = TARGET_FPE_FLTUNK;
12086                     target_siginfo_t info;
12087 
12088                     if (fex & SWCR_TRAP_ENABLE_DNO) {
12089                         si_code = TARGET_FPE_FLTUND;
12090                     }
12091                     if (fex & SWCR_TRAP_ENABLE_INE) {
12092                         si_code = TARGET_FPE_FLTRES;
12093                     }
12094                     if (fex & SWCR_TRAP_ENABLE_UNF) {
12095                         si_code = TARGET_FPE_FLTUND;
12096                     }
12097                     if (fex & SWCR_TRAP_ENABLE_OVF) {
12098                         si_code = TARGET_FPE_FLTOVF;
12099                     }
12100                     if (fex & SWCR_TRAP_ENABLE_DZE) {
12101                         si_code = TARGET_FPE_FLTDIV;
12102                     }
12103                     if (fex & SWCR_TRAP_ENABLE_INV) {
12104                         si_code = TARGET_FPE_FLTINV;
12105                     }
12106 
12107                     info.si_signo = SIGFPE;
12108                     info.si_errno = 0;
12109                     info.si_code = si_code;
12110                     info._sifields._sigfault._addr = (cpu_env)->pc;
12111                     queue_signal(cpu_env, info.si_signo,
12112                                  QEMU_SI_FAULT, &info);
12113                 }
12114                 ret = 0;
12115             }
12116             break;
12117 
12118           /* case SSI_NVPAIRS:
12119              -- Used with SSIN_UACPROC to enable unaligned accesses.
12120              case SSI_IEEE_STATE_AT_SIGNAL:
12121              case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
12122              -- Not implemented in linux kernel
12123           */
12124         }
12125         return ret;
12126 #endif
12127 #ifdef TARGET_NR_osf_sigprocmask
12128     /* Alpha specific.  */
12129     case TARGET_NR_osf_sigprocmask:
12130         {
12131             abi_ulong mask;
12132             int how;
12133             sigset_t set, oldset;
12134 
12135             switch(arg1) {
12136             case TARGET_SIG_BLOCK:
12137                 how = SIG_BLOCK;
12138                 break;
12139             case TARGET_SIG_UNBLOCK:
12140                 how = SIG_UNBLOCK;
12141                 break;
12142             case TARGET_SIG_SETMASK:
12143                 how = SIG_SETMASK;
12144                 break;
12145             default:
12146                 return -TARGET_EINVAL;
12147             }
12148             mask = arg2;
12149             target_to_host_old_sigset(&set, &mask);
12150             ret = do_sigprocmask(how, &set, &oldset);
12151             if (!ret) {
12152                 host_to_target_old_sigset(&mask, &oldset);
12153                 ret = mask;
12154             }
12155         }
12156         return ret;
12157 #endif
12158 
12159 #ifdef TARGET_NR_getgid32
12160     case TARGET_NR_getgid32:
12161         return get_errno(getgid());
12162 #endif
12163 #ifdef TARGET_NR_geteuid32
12164     case TARGET_NR_geteuid32:
12165         return get_errno(geteuid());
12166 #endif
12167 #ifdef TARGET_NR_getegid32
12168     case TARGET_NR_getegid32:
12169         return get_errno(getegid());
12170 #endif
12171 #ifdef TARGET_NR_setreuid32
12172     case TARGET_NR_setreuid32:
12173         return get_errno(setreuid(arg1, arg2));
12174 #endif
12175 #ifdef TARGET_NR_setregid32
12176     case TARGET_NR_setregid32:
12177         return get_errno(setregid(arg1, arg2));
12178 #endif
12179 #ifdef TARGET_NR_getgroups32
12180     case TARGET_NR_getgroups32:
12181         { /* the same code as for TARGET_NR_getgroups */
12182             int gidsetsize = arg1;
12183             uint32_t *target_grouplist;
12184             g_autofree gid_t *grouplist = NULL;
12185             int i;
12186 
12187             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
12188                 return -TARGET_EINVAL;
12189             }
12190             if (gidsetsize > 0) {
12191                 grouplist = g_try_new(gid_t, gidsetsize);
12192                 if (!grouplist) {
12193                     return -TARGET_ENOMEM;
12194                 }
12195             }
12196             ret = get_errno(getgroups(gidsetsize, grouplist));
12197             if (!is_error(ret) && gidsetsize > 0) {
12198                 target_grouplist = lock_user(VERIFY_WRITE, arg2,
12199                                              gidsetsize * 4, 0);
12200                 if (!target_grouplist) {
12201                     return -TARGET_EFAULT;
12202                 }
12203                 for (i = 0; i < ret; i++) {
12204                     target_grouplist[i] = tswap32(grouplist[i]);
12205                 }
12206                 unlock_user(target_grouplist, arg2, gidsetsize * 4);
12207             }
12208             return ret;
12209         }
12210 #endif
12211 #ifdef TARGET_NR_setgroups32
12212     case TARGET_NR_setgroups32:
12213         { /* the same code as for TARGET_NR_setgroups */
12214             int gidsetsize = arg1;
12215             uint32_t *target_grouplist;
12216             g_autofree gid_t *grouplist = NULL;
12217             int i;
12218 
12219             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
12220                 return -TARGET_EINVAL;
12221             }
12222             if (gidsetsize > 0) {
12223                 grouplist = g_try_new(gid_t, gidsetsize);
12224                 if (!grouplist) {
12225                     return -TARGET_ENOMEM;
12226                 }
12227                 target_grouplist = lock_user(VERIFY_READ, arg2,
12228                                              gidsetsize * 4, 1);
12229                 if (!target_grouplist) {
12230                     return -TARGET_EFAULT;
12231                 }
12232                 for (i = 0; i < gidsetsize; i++) {
12233                     grouplist[i] = tswap32(target_grouplist[i]);
12234                 }
12235                 unlock_user(target_grouplist, arg2, 0);
12236             }
12237             return get_errno(sys_setgroups(gidsetsize, grouplist));
12238         }
12239 #endif
12240 #ifdef TARGET_NR_fchown32
12241     case TARGET_NR_fchown32:
12242         return get_errno(fchown(arg1, arg2, arg3));
12243 #endif
12244 #ifdef TARGET_NR_setresuid32
12245     case TARGET_NR_setresuid32:
12246         return get_errno(sys_setresuid(arg1, arg2, arg3));
12247 #endif
12248 #ifdef TARGET_NR_getresuid32
12249     case TARGET_NR_getresuid32:
12250         {
12251             uid_t ruid, euid, suid;
12252             ret = get_errno(getresuid(&ruid, &euid, &suid));
12253             if (!is_error(ret)) {
12254                 if (put_user_u32(ruid, arg1)
12255                     || put_user_u32(euid, arg2)
12256                     || put_user_u32(suid, arg3))
12257                     return -TARGET_EFAULT;
12258             }
12259         }
12260         return ret;
12261 #endif
12262 #ifdef TARGET_NR_setresgid32
12263     case TARGET_NR_setresgid32:
12264         return get_errno(sys_setresgid(arg1, arg2, arg3));
12265 #endif
12266 #ifdef TARGET_NR_getresgid32
12267     case TARGET_NR_getresgid32:
12268         {
12269             gid_t rgid, egid, sgid;
12270             ret = get_errno(getresgid(&rgid, &egid, &sgid));
12271             if (!is_error(ret)) {
12272                 if (put_user_u32(rgid, arg1)
12273                     || put_user_u32(egid, arg2)
12274                     || put_user_u32(sgid, arg3))
12275                     return -TARGET_EFAULT;
12276             }
12277         }
12278         return ret;
12279 #endif
12280 #ifdef TARGET_NR_chown32
12281     case TARGET_NR_chown32:
12282         if (!(p = lock_user_string(arg1)))
12283             return -TARGET_EFAULT;
12284         ret = get_errno(chown(p, arg2, arg3));
12285         unlock_user(p, arg1, 0);
12286         return ret;
12287 #endif
12288 #ifdef TARGET_NR_setuid32
12289     case TARGET_NR_setuid32:
12290         return get_errno(sys_setuid(arg1));
12291 #endif
12292 #ifdef TARGET_NR_setgid32
12293     case TARGET_NR_setgid32:
12294         return get_errno(sys_setgid(arg1));
12295 #endif
12296 #ifdef TARGET_NR_setfsuid32
12297     case TARGET_NR_setfsuid32:
12298         return get_errno(setfsuid(arg1));
12299 #endif
12300 #ifdef TARGET_NR_setfsgid32
12301     case TARGET_NR_setfsgid32:
12302         return get_errno(setfsgid(arg1));
12303 #endif
12304 #ifdef TARGET_NR_mincore
12305     case TARGET_NR_mincore:
12306         {
12307             void *a = lock_user(VERIFY_NONE, arg1, arg2, 0);
12308             if (!a) {
12309                 return -TARGET_ENOMEM;
12310             }
12311             p = lock_user_string(arg3);
12312             if (!p) {
12313                 ret = -TARGET_EFAULT;
12314             } else {
12315                 ret = get_errno(mincore(a, arg2, p));
12316                 unlock_user(p, arg3, ret);
12317             }
12318             unlock_user(a, arg1, 0);
12319         }
12320         return ret;
12321 #endif
12322 #ifdef TARGET_NR_arm_fadvise64_64
12323     case TARGET_NR_arm_fadvise64_64:
12324         /* arm_fadvise64_64 looks like fadvise64_64 but
12325          * with different argument order: fd, advice, offset, len
12326          * rather than the usual fd, offset, len, advice.
12327          * Note that offset and len are both 64-bit so appear as
12328          * pairs of 32-bit registers.
12329          */
12330         ret = posix_fadvise(arg1, target_offset64(arg3, arg4),
12331                             target_offset64(arg5, arg6), arg2);
12332         return -host_to_target_errno(ret);
12333 #endif
12334 
12335 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12336 
12337 #ifdef TARGET_NR_fadvise64_64
12338     case TARGET_NR_fadvise64_64:
12339 #if defined(TARGET_PPC) || defined(TARGET_XTENSA)
12340         /* 6 args: fd, advice, offset (high, low), len (high, low) */
12341         ret = arg2;
12342         arg2 = arg3;
12343         arg3 = arg4;
12344         arg4 = arg5;
12345         arg5 = arg6;
12346         arg6 = ret;
12347 #else
12348         /* 6 args: fd, offset (high, low), len (high, low), advice */
12349         if (regpairs_aligned(cpu_env, num)) {
12350             /* offset is in (3,4), len in (5,6) and advice in 7 */
12351             arg2 = arg3;
12352             arg3 = arg4;
12353             arg4 = arg5;
12354             arg5 = arg6;
12355             arg6 = arg7;
12356         }
12357 #endif
12358         ret = posix_fadvise(arg1, target_offset64(arg2, arg3),
12359                             target_offset64(arg4, arg5), arg6);
12360         return -host_to_target_errno(ret);
12361 #endif
12362 
12363 #ifdef TARGET_NR_fadvise64
12364     case TARGET_NR_fadvise64:
12365         /* 5 args: fd, offset (high, low), len, advice */
12366         if (regpairs_aligned(cpu_env, num)) {
12367             /* offset is in (3,4), len in 5 and advice in 6 */
12368             arg2 = arg3;
12369             arg3 = arg4;
12370             arg4 = arg5;
12371             arg5 = arg6;
12372         }
12373         ret = posix_fadvise(arg1, target_offset64(arg2, arg3), arg4, arg5);
12374         return -host_to_target_errno(ret);
12375 #endif
12376 
12377 #else /* not a 32-bit ABI */
12378 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
12379 #ifdef TARGET_NR_fadvise64_64
12380     case TARGET_NR_fadvise64_64:
12381 #endif
12382 #ifdef TARGET_NR_fadvise64
12383     case TARGET_NR_fadvise64:
12384 #endif
12385 #ifdef TARGET_S390X
12386         switch (arg4) {
12387         case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */
12388         case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */
12389         case 6: arg4 = POSIX_FADV_DONTNEED; break;
12390         case 7: arg4 = POSIX_FADV_NOREUSE; break;
12391         default: break;
12392         }
12393 #endif
12394         return -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4));
12395 #endif
12396 #endif /* end of 64-bit ABI fadvise handling */
12397 
12398 #ifdef TARGET_NR_madvise
12399     case TARGET_NR_madvise:
12400         return target_madvise(arg1, arg2, arg3);
12401 #endif
12402 #ifdef TARGET_NR_fcntl64
12403     case TARGET_NR_fcntl64:
12404     {
12405         int cmd;
12406         struct flock64 fl;
12407         from_flock64_fn *copyfrom = copy_from_user_flock64;
12408         to_flock64_fn *copyto = copy_to_user_flock64;
12409 
12410 #ifdef TARGET_ARM
12411         if (!cpu_env->eabi) {
12412             copyfrom = copy_from_user_oabi_flock64;
12413             copyto = copy_to_user_oabi_flock64;
12414         }
12415 #endif
12416 
12417         cmd = target_to_host_fcntl_cmd(arg2);
12418         if (cmd == -TARGET_EINVAL) {
12419             return cmd;
12420         }
12421 
12422         switch(arg2) {
12423         case TARGET_F_GETLK64:
12424             ret = copyfrom(&fl, arg3);
12425             if (ret) {
12426                 break;
12427             }
12428             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
12429             if (ret == 0) {
12430                 ret = copyto(arg3, &fl);
12431             }
12432 	    break;
12433 
12434         case TARGET_F_SETLK64:
12435         case TARGET_F_SETLKW64:
12436             ret = copyfrom(&fl, arg3);
12437             if (ret) {
12438                 break;
12439             }
12440             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
12441 	    break;
12442         default:
12443             ret = do_fcntl(arg1, arg2, arg3);
12444             break;
12445         }
12446         return ret;
12447     }
12448 #endif
12449 #ifdef TARGET_NR_cacheflush
12450     case TARGET_NR_cacheflush:
12451         /* self-modifying code is handled automatically, so nothing needed */
12452         return 0;
12453 #endif
12454 #ifdef TARGET_NR_getpagesize
12455     case TARGET_NR_getpagesize:
12456         return TARGET_PAGE_SIZE;
12457 #endif
12458     case TARGET_NR_gettid:
12459         return get_errno(sys_gettid());
12460 #ifdef TARGET_NR_readahead
12461     case TARGET_NR_readahead:
12462 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12463         if (regpairs_aligned(cpu_env, num)) {
12464             arg2 = arg3;
12465             arg3 = arg4;
12466             arg4 = arg5;
12467         }
12468         ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4));
12469 #else
12470         ret = get_errno(readahead(arg1, arg2, arg3));
12471 #endif
12472         return ret;
12473 #endif
12474 #ifdef CONFIG_ATTR
12475 #ifdef TARGET_NR_setxattr
12476     case TARGET_NR_listxattr:
12477     case TARGET_NR_llistxattr:
12478     {
12479         void *b = 0;
12480         if (arg2) {
12481             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
12482             if (!b) {
12483                 return -TARGET_EFAULT;
12484             }
12485         }
12486         p = lock_user_string(arg1);
12487         if (p) {
12488             if (num == TARGET_NR_listxattr) {
12489                 ret = get_errno(listxattr(p, b, arg3));
12490             } else {
12491                 ret = get_errno(llistxattr(p, b, arg3));
12492             }
12493         } else {
12494             ret = -TARGET_EFAULT;
12495         }
12496         unlock_user(p, arg1, 0);
12497         unlock_user(b, arg2, arg3);
12498         return ret;
12499     }
12500     case TARGET_NR_flistxattr:
12501     {
12502         void *b = 0;
12503         if (arg2) {
12504             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
12505             if (!b) {
12506                 return -TARGET_EFAULT;
12507             }
12508         }
12509         ret = get_errno(flistxattr(arg1, b, arg3));
12510         unlock_user(b, arg2, arg3);
12511         return ret;
12512     }
12513     case TARGET_NR_setxattr:
12514     case TARGET_NR_lsetxattr:
12515         {
12516             void *n, *v = 0;
12517             if (arg3) {
12518                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
12519                 if (!v) {
12520                     return -TARGET_EFAULT;
12521                 }
12522             }
12523             p = lock_user_string(arg1);
12524             n = lock_user_string(arg2);
12525             if (p && n) {
12526                 if (num == TARGET_NR_setxattr) {
12527                     ret = get_errno(setxattr(p, n, v, arg4, arg5));
12528                 } else {
12529                     ret = get_errno(lsetxattr(p, n, v, arg4, arg5));
12530                 }
12531             } else {
12532                 ret = -TARGET_EFAULT;
12533             }
12534             unlock_user(p, arg1, 0);
12535             unlock_user(n, arg2, 0);
12536             unlock_user(v, arg3, 0);
12537         }
12538         return ret;
12539     case TARGET_NR_fsetxattr:
12540         {
12541             void *n, *v = 0;
12542             if (arg3) {
12543                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
12544                 if (!v) {
12545                     return -TARGET_EFAULT;
12546                 }
12547             }
12548             n = lock_user_string(arg2);
12549             if (n) {
12550                 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5));
12551             } else {
12552                 ret = -TARGET_EFAULT;
12553             }
12554             unlock_user(n, arg2, 0);
12555             unlock_user(v, arg3, 0);
12556         }
12557         return ret;
12558     case TARGET_NR_getxattr:
12559     case TARGET_NR_lgetxattr:
12560         {
12561             void *n, *v = 0;
12562             if (arg3) {
12563                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12564                 if (!v) {
12565                     return -TARGET_EFAULT;
12566                 }
12567             }
12568             p = lock_user_string(arg1);
12569             n = lock_user_string(arg2);
12570             if (p && n) {
12571                 if (num == TARGET_NR_getxattr) {
12572                     ret = get_errno(getxattr(p, n, v, arg4));
12573                 } else {
12574                     ret = get_errno(lgetxattr(p, n, v, arg4));
12575                 }
12576             } else {
12577                 ret = -TARGET_EFAULT;
12578             }
12579             unlock_user(p, arg1, 0);
12580             unlock_user(n, arg2, 0);
12581             unlock_user(v, arg3, arg4);
12582         }
12583         return ret;
12584     case TARGET_NR_fgetxattr:
12585         {
12586             void *n, *v = 0;
12587             if (arg3) {
12588                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12589                 if (!v) {
12590                     return -TARGET_EFAULT;
12591                 }
12592             }
12593             n = lock_user_string(arg2);
12594             if (n) {
12595                 ret = get_errno(fgetxattr(arg1, n, v, arg4));
12596             } else {
12597                 ret = -TARGET_EFAULT;
12598             }
12599             unlock_user(n, arg2, 0);
12600             unlock_user(v, arg3, arg4);
12601         }
12602         return ret;
12603     case TARGET_NR_removexattr:
12604     case TARGET_NR_lremovexattr:
12605         {
12606             void *n;
12607             p = lock_user_string(arg1);
12608             n = lock_user_string(arg2);
12609             if (p && n) {
12610                 if (num == TARGET_NR_removexattr) {
12611                     ret = get_errno(removexattr(p, n));
12612                 } else {
12613                     ret = get_errno(lremovexattr(p, n));
12614                 }
12615             } else {
12616                 ret = -TARGET_EFAULT;
12617             }
12618             unlock_user(p, arg1, 0);
12619             unlock_user(n, arg2, 0);
12620         }
12621         return ret;
12622     case TARGET_NR_fremovexattr:
12623         {
12624             void *n;
12625             n = lock_user_string(arg2);
12626             if (n) {
12627                 ret = get_errno(fremovexattr(arg1, n));
12628             } else {
12629                 ret = -TARGET_EFAULT;
12630             }
12631             unlock_user(n, arg2, 0);
12632         }
12633         return ret;
12634 #endif
12635 #endif /* CONFIG_ATTR */
12636 #ifdef TARGET_NR_set_thread_area
12637     case TARGET_NR_set_thread_area:
12638 #if defined(TARGET_MIPS)
12639       cpu_env->active_tc.CP0_UserLocal = arg1;
12640       return 0;
12641 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
12642       return do_set_thread_area(cpu_env, arg1);
12643 #elif defined(TARGET_M68K)
12644       {
12645           TaskState *ts = get_task_state(cpu);
12646           ts->tp_value = arg1;
12647           return 0;
12648       }
12649 #else
12650       return -TARGET_ENOSYS;
12651 #endif
12652 #endif
12653 #ifdef TARGET_NR_get_thread_area
12654     case TARGET_NR_get_thread_area:
12655 #if defined(TARGET_I386) && defined(TARGET_ABI32)
12656         return do_get_thread_area(cpu_env, arg1);
12657 #elif defined(TARGET_M68K)
12658         {
12659             TaskState *ts = get_task_state(cpu);
12660             return ts->tp_value;
12661         }
12662 #else
12663         return -TARGET_ENOSYS;
12664 #endif
12665 #endif
12666 #ifdef TARGET_NR_getdomainname
12667     case TARGET_NR_getdomainname:
12668         return -TARGET_ENOSYS;
12669 #endif
12670 
12671 #ifdef TARGET_NR_clock_settime
12672     case TARGET_NR_clock_settime:
12673     {
12674         struct timespec ts;
12675 
12676         ret = target_to_host_timespec(&ts, arg2);
12677         if (!is_error(ret)) {
12678             ret = get_errno(clock_settime(arg1, &ts));
12679         }
12680         return ret;
12681     }
12682 #endif
12683 #ifdef TARGET_NR_clock_settime64
12684     case TARGET_NR_clock_settime64:
12685     {
12686         struct timespec ts;
12687 
12688         ret = target_to_host_timespec64(&ts, arg2);
12689         if (!is_error(ret)) {
12690             ret = get_errno(clock_settime(arg1, &ts));
12691         }
12692         return ret;
12693     }
12694 #endif
12695 #ifdef TARGET_NR_clock_gettime
12696     case TARGET_NR_clock_gettime:
12697     {
12698         struct timespec ts;
12699         ret = get_errno(clock_gettime(arg1, &ts));
12700         if (!is_error(ret)) {
12701             ret = host_to_target_timespec(arg2, &ts);
12702         }
12703         return ret;
12704     }
12705 #endif
12706 #ifdef TARGET_NR_clock_gettime64
12707     case TARGET_NR_clock_gettime64:
12708     {
12709         struct timespec ts;
12710         ret = get_errno(clock_gettime(arg1, &ts));
12711         if (!is_error(ret)) {
12712             ret = host_to_target_timespec64(arg2, &ts);
12713         }
12714         return ret;
12715     }
12716 #endif
12717 #ifdef TARGET_NR_clock_getres
12718     case TARGET_NR_clock_getres:
12719     {
12720         struct timespec ts;
12721         ret = get_errno(clock_getres(arg1, &ts));
12722         if (!is_error(ret)) {
12723             host_to_target_timespec(arg2, &ts);
12724         }
12725         return ret;
12726     }
12727 #endif
12728 #ifdef TARGET_NR_clock_getres_time64
12729     case TARGET_NR_clock_getres_time64:
12730     {
12731         struct timespec ts;
12732         ret = get_errno(clock_getres(arg1, &ts));
12733         if (!is_error(ret)) {
12734             host_to_target_timespec64(arg2, &ts);
12735         }
12736         return ret;
12737     }
12738 #endif
12739 #ifdef TARGET_NR_clock_nanosleep
12740     case TARGET_NR_clock_nanosleep:
12741     {
12742         struct timespec ts;
12743         if (target_to_host_timespec(&ts, arg3)) {
12744             return -TARGET_EFAULT;
12745         }
12746         ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12747                                              &ts, arg4 ? &ts : NULL));
12748         /*
12749          * if the call is interrupted by a signal handler, it fails
12750          * with error -TARGET_EINTR and if arg4 is not NULL and arg2 is not
12751          * TIMER_ABSTIME, it returns the remaining unslept time in arg4.
12752          */
12753         if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12754             host_to_target_timespec(arg4, &ts)) {
12755               return -TARGET_EFAULT;
12756         }
12757 
12758         return ret;
12759     }
12760 #endif
12761 #ifdef TARGET_NR_clock_nanosleep_time64
12762     case TARGET_NR_clock_nanosleep_time64:
12763     {
12764         struct timespec ts;
12765 
12766         if (target_to_host_timespec64(&ts, arg3)) {
12767             return -TARGET_EFAULT;
12768         }
12769 
12770         ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12771                                              &ts, arg4 ? &ts : NULL));
12772 
12773         if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12774             host_to_target_timespec64(arg4, &ts)) {
12775             return -TARGET_EFAULT;
12776         }
12777         return ret;
12778     }
12779 #endif
12780 
12781 #if defined(TARGET_NR_set_tid_address)
12782     case TARGET_NR_set_tid_address:
12783     {
12784         TaskState *ts = get_task_state(cpu);
12785         ts->child_tidptr = arg1;
12786         /* do not call host set_tid_address() syscall, instead return tid() */
12787         return get_errno(sys_gettid());
12788     }
12789 #endif
12790 
12791     case TARGET_NR_tkill:
12792         return get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2)));
12793 
12794     case TARGET_NR_tgkill:
12795         return get_errno(safe_tgkill((int)arg1, (int)arg2,
12796                          target_to_host_signal(arg3)));
12797 
12798 #ifdef TARGET_NR_set_robust_list
12799     case TARGET_NR_set_robust_list:
12800     case TARGET_NR_get_robust_list:
12801         /* The ABI for supporting robust futexes has userspace pass
12802          * the kernel a pointer to a linked list which is updated by
12803          * userspace after the syscall; the list is walked by the kernel
12804          * when the thread exits. Since the linked list in QEMU guest
12805          * memory isn't a valid linked list for the host and we have
12806          * no way to reliably intercept the thread-death event, we can't
12807          * support these. Silently return ENOSYS so that guest userspace
12808          * falls back to a non-robust futex implementation (which should
12809          * be OK except in the corner case of the guest crashing while
12810          * holding a mutex that is shared with another process via
12811          * shared memory).
12812          */
12813         return -TARGET_ENOSYS;
12814 #endif
12815 
12816 #if defined(TARGET_NR_utimensat)
12817     case TARGET_NR_utimensat:
12818         {
12819             struct timespec *tsp, ts[2];
12820             if (!arg3) {
12821                 tsp = NULL;
12822             } else {
12823                 if (target_to_host_timespec(ts, arg3)) {
12824                     return -TARGET_EFAULT;
12825                 }
12826                 if (target_to_host_timespec(ts + 1, arg3 +
12827                                             sizeof(struct target_timespec))) {
12828                     return -TARGET_EFAULT;
12829                 }
12830                 tsp = ts;
12831             }
12832             if (!arg2)
12833                 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12834             else {
12835                 if (!(p = lock_user_string(arg2))) {
12836                     return -TARGET_EFAULT;
12837                 }
12838                 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12839                 unlock_user(p, arg2, 0);
12840             }
12841         }
12842         return ret;
12843 #endif
12844 #ifdef TARGET_NR_utimensat_time64
12845     case TARGET_NR_utimensat_time64:
12846         {
12847             struct timespec *tsp, ts[2];
12848             if (!arg3) {
12849                 tsp = NULL;
12850             } else {
12851                 if (target_to_host_timespec64(ts, arg3)) {
12852                     return -TARGET_EFAULT;
12853                 }
12854                 if (target_to_host_timespec64(ts + 1, arg3 +
12855                                      sizeof(struct target__kernel_timespec))) {
12856                     return -TARGET_EFAULT;
12857                 }
12858                 tsp = ts;
12859             }
12860             if (!arg2)
12861                 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12862             else {
12863                 p = lock_user_string(arg2);
12864                 if (!p) {
12865                     return -TARGET_EFAULT;
12866                 }
12867                 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12868                 unlock_user(p, arg2, 0);
12869             }
12870         }
12871         return ret;
12872 #endif
12873 #ifdef TARGET_NR_futex
12874     case TARGET_NR_futex:
12875         return do_futex(cpu, false, arg1, arg2, arg3, arg4, arg5, arg6);
12876 #endif
12877 #ifdef TARGET_NR_futex_time64
12878     case TARGET_NR_futex_time64:
12879         return do_futex(cpu, true, arg1, arg2, arg3, arg4, arg5, arg6);
12880 #endif
12881 #ifdef CONFIG_INOTIFY
12882 #if defined(TARGET_NR_inotify_init)
12883     case TARGET_NR_inotify_init:
12884         ret = get_errno(inotify_init());
12885         if (ret >= 0) {
12886             fd_trans_register(ret, &target_inotify_trans);
12887         }
12888         return ret;
12889 #endif
12890 #if defined(TARGET_NR_inotify_init1) && defined(CONFIG_INOTIFY1)
12891     case TARGET_NR_inotify_init1:
12892         ret = get_errno(inotify_init1(target_to_host_bitmask(arg1,
12893                                           fcntl_flags_tbl)));
12894         if (ret >= 0) {
12895             fd_trans_register(ret, &target_inotify_trans);
12896         }
12897         return ret;
12898 #endif
12899 #if defined(TARGET_NR_inotify_add_watch)
12900     case TARGET_NR_inotify_add_watch:
12901         p = lock_user_string(arg2);
12902         ret = get_errno(inotify_add_watch(arg1, path(p), arg3));
12903         unlock_user(p, arg2, 0);
12904         return ret;
12905 #endif
12906 #if defined(TARGET_NR_inotify_rm_watch)
12907     case TARGET_NR_inotify_rm_watch:
12908         return get_errno(inotify_rm_watch(arg1, arg2));
12909 #endif
12910 #endif
12911 
12912 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
12913     case TARGET_NR_mq_open:
12914         {
12915             struct mq_attr posix_mq_attr;
12916             struct mq_attr *pposix_mq_attr;
12917             int host_flags;
12918 
12919             host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl);
12920             pposix_mq_attr = NULL;
12921             if (arg4) {
12922                 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) {
12923                     return -TARGET_EFAULT;
12924                 }
12925                 pposix_mq_attr = &posix_mq_attr;
12926             }
12927             p = lock_user_string(arg1 - 1);
12928             if (!p) {
12929                 return -TARGET_EFAULT;
12930             }
12931             ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr));
12932             unlock_user (p, arg1, 0);
12933         }
12934         return ret;
12935 
12936     case TARGET_NR_mq_unlink:
12937         p = lock_user_string(arg1 - 1);
12938         if (!p) {
12939             return -TARGET_EFAULT;
12940         }
12941         ret = get_errno(mq_unlink(p));
12942         unlock_user (p, arg1, 0);
12943         return ret;
12944 
12945 #ifdef TARGET_NR_mq_timedsend
12946     case TARGET_NR_mq_timedsend:
12947         {
12948             struct timespec ts;
12949 
12950             p = lock_user (VERIFY_READ, arg2, arg3, 1);
12951             if (arg5 != 0) {
12952                 if (target_to_host_timespec(&ts, arg5)) {
12953                     return -TARGET_EFAULT;
12954                 }
12955                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12956                 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
12957                     return -TARGET_EFAULT;
12958                 }
12959             } else {
12960                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12961             }
12962             unlock_user (p, arg2, arg3);
12963         }
12964         return ret;
12965 #endif
12966 #ifdef TARGET_NR_mq_timedsend_time64
12967     case TARGET_NR_mq_timedsend_time64:
12968         {
12969             struct timespec ts;
12970 
12971             p = lock_user(VERIFY_READ, arg2, arg3, 1);
12972             if (arg5 != 0) {
12973                 if (target_to_host_timespec64(&ts, arg5)) {
12974                     return -TARGET_EFAULT;
12975                 }
12976                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12977                 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
12978                     return -TARGET_EFAULT;
12979                 }
12980             } else {
12981                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12982             }
12983             unlock_user(p, arg2, arg3);
12984         }
12985         return ret;
12986 #endif
12987 
12988 #ifdef TARGET_NR_mq_timedreceive
12989     case TARGET_NR_mq_timedreceive:
12990         {
12991             struct timespec ts;
12992             unsigned int prio;
12993 
12994             p = lock_user (VERIFY_READ, arg2, arg3, 1);
12995             if (arg5 != 0) {
12996                 if (target_to_host_timespec(&ts, arg5)) {
12997                     return -TARGET_EFAULT;
12998                 }
12999                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
13000                                                      &prio, &ts));
13001                 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
13002                     return -TARGET_EFAULT;
13003                 }
13004             } else {
13005                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
13006                                                      &prio, NULL));
13007             }
13008             unlock_user (p, arg2, arg3);
13009             if (arg4 != 0)
13010                 put_user_u32(prio, arg4);
13011         }
13012         return ret;
13013 #endif
13014 #ifdef TARGET_NR_mq_timedreceive_time64
13015     case TARGET_NR_mq_timedreceive_time64:
13016         {
13017             struct timespec ts;
13018             unsigned int prio;
13019 
13020             p = lock_user(VERIFY_READ, arg2, arg3, 1);
13021             if (arg5 != 0) {
13022                 if (target_to_host_timespec64(&ts, arg5)) {
13023                     return -TARGET_EFAULT;
13024                 }
13025                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
13026                                                      &prio, &ts));
13027                 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
13028                     return -TARGET_EFAULT;
13029                 }
13030             } else {
13031                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
13032                                                      &prio, NULL));
13033             }
13034             unlock_user(p, arg2, arg3);
13035             if (arg4 != 0) {
13036                 put_user_u32(prio, arg4);
13037             }
13038         }
13039         return ret;
13040 #endif
13041 
13042     /* Not implemented for now... */
13043 /*     case TARGET_NR_mq_notify: */
13044 /*         break; */
13045 
13046     case TARGET_NR_mq_getsetattr:
13047         {
13048             struct mq_attr posix_mq_attr_in, posix_mq_attr_out;
13049             ret = 0;
13050             if (arg2 != 0) {
13051                 copy_from_user_mq_attr(&posix_mq_attr_in, arg2);
13052                 ret = get_errno(mq_setattr(arg1, &posix_mq_attr_in,
13053                                            &posix_mq_attr_out));
13054             } else if (arg3 != 0) {
13055                 ret = get_errno(mq_getattr(arg1, &posix_mq_attr_out));
13056             }
13057             if (ret == 0 && arg3 != 0) {
13058                 copy_to_user_mq_attr(arg3, &posix_mq_attr_out);
13059             }
13060         }
13061         return ret;
13062 #endif
13063 
13064 #ifdef CONFIG_SPLICE
13065 #ifdef TARGET_NR_tee
13066     case TARGET_NR_tee:
13067         {
13068             ret = get_errno(tee(arg1,arg2,arg3,arg4));
13069         }
13070         return ret;
13071 #endif
13072 #ifdef TARGET_NR_splice
13073     case TARGET_NR_splice:
13074         {
13075             loff_t loff_in, loff_out;
13076             loff_t *ploff_in = NULL, *ploff_out = NULL;
13077             if (arg2) {
13078                 if (get_user_u64(loff_in, arg2)) {
13079                     return -TARGET_EFAULT;
13080                 }
13081                 ploff_in = &loff_in;
13082             }
13083             if (arg4) {
13084                 if (get_user_u64(loff_out, arg4)) {
13085                     return -TARGET_EFAULT;
13086                 }
13087                 ploff_out = &loff_out;
13088             }
13089             ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6));
13090             if (arg2) {
13091                 if (put_user_u64(loff_in, arg2)) {
13092                     return -TARGET_EFAULT;
13093                 }
13094             }
13095             if (arg4) {
13096                 if (put_user_u64(loff_out, arg4)) {
13097                     return -TARGET_EFAULT;
13098                 }
13099             }
13100         }
13101         return ret;
13102 #endif
13103 #ifdef TARGET_NR_vmsplice
13104 	case TARGET_NR_vmsplice:
13105         {
13106             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
13107             if (vec != NULL) {
13108                 ret = get_errno(vmsplice(arg1, vec, arg3, arg4));
13109                 unlock_iovec(vec, arg2, arg3, 0);
13110             } else {
13111                 ret = -host_to_target_errno(errno);
13112             }
13113         }
13114         return ret;
13115 #endif
13116 #endif /* CONFIG_SPLICE */
13117 #ifdef CONFIG_EVENTFD
13118 #if defined(TARGET_NR_eventfd)
13119     case TARGET_NR_eventfd:
13120         ret = get_errno(eventfd(arg1, 0));
13121         if (ret >= 0) {
13122             fd_trans_register(ret, &target_eventfd_trans);
13123         }
13124         return ret;
13125 #endif
13126 #if defined(TARGET_NR_eventfd2)
13127     case TARGET_NR_eventfd2:
13128     {
13129         int host_flags = arg2 & (~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC));
13130         if (arg2 & TARGET_O_NONBLOCK) {
13131             host_flags |= O_NONBLOCK;
13132         }
13133         if (arg2 & TARGET_O_CLOEXEC) {
13134             host_flags |= O_CLOEXEC;
13135         }
13136         ret = get_errno(eventfd(arg1, host_flags));
13137         if (ret >= 0) {
13138             fd_trans_register(ret, &target_eventfd_trans);
13139         }
13140         return ret;
13141     }
13142 #endif
13143 #endif /* CONFIG_EVENTFD  */
13144 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
13145     case TARGET_NR_fallocate:
13146 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13147         ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4),
13148                                   target_offset64(arg5, arg6)));
13149 #else
13150         ret = get_errno(fallocate(arg1, arg2, arg3, arg4));
13151 #endif
13152         return ret;
13153 #endif
13154 #if defined(CONFIG_SYNC_FILE_RANGE)
13155 #if defined(TARGET_NR_sync_file_range)
13156     case TARGET_NR_sync_file_range:
13157 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13158 #if defined(TARGET_MIPS)
13159         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
13160                                         target_offset64(arg5, arg6), arg7));
13161 #else
13162         ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3),
13163                                         target_offset64(arg4, arg5), arg6));
13164 #endif /* !TARGET_MIPS */
13165 #else
13166         ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4));
13167 #endif
13168         return ret;
13169 #endif
13170 #if defined(TARGET_NR_sync_file_range2) || \
13171     defined(TARGET_NR_arm_sync_file_range)
13172 #if defined(TARGET_NR_sync_file_range2)
13173     case TARGET_NR_sync_file_range2:
13174 #endif
13175 #if defined(TARGET_NR_arm_sync_file_range)
13176     case TARGET_NR_arm_sync_file_range:
13177 #endif
13178         /* This is like sync_file_range but the arguments are reordered */
13179 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13180         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
13181                                         target_offset64(arg5, arg6), arg2));
13182 #else
13183         ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2));
13184 #endif
13185         return ret;
13186 #endif
13187 #endif
13188 #if defined(TARGET_NR_signalfd4)
13189     case TARGET_NR_signalfd4:
13190         return do_signalfd4(arg1, arg2, arg4);
13191 #endif
13192 #if defined(TARGET_NR_signalfd)
13193     case TARGET_NR_signalfd:
13194         return do_signalfd4(arg1, arg2, 0);
13195 #endif
13196 #if defined(CONFIG_EPOLL)
13197 #if defined(TARGET_NR_epoll_create)
13198     case TARGET_NR_epoll_create:
13199         return get_errno(epoll_create(arg1));
13200 #endif
13201 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
13202     case TARGET_NR_epoll_create1:
13203         return get_errno(epoll_create1(target_to_host_bitmask(arg1, fcntl_flags_tbl)));
13204 #endif
13205 #if defined(TARGET_NR_epoll_ctl)
13206     case TARGET_NR_epoll_ctl:
13207     {
13208         struct epoll_event ep;
13209         struct epoll_event *epp = 0;
13210         if (arg4) {
13211             if (arg2 != EPOLL_CTL_DEL) {
13212                 struct target_epoll_event *target_ep;
13213                 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) {
13214                     return -TARGET_EFAULT;
13215                 }
13216                 ep.events = tswap32(target_ep->events);
13217                 /*
13218                  * The epoll_data_t union is just opaque data to the kernel,
13219                  * so we transfer all 64 bits across and need not worry what
13220                  * actual data type it is.
13221                  */
13222                 ep.data.u64 = tswap64(target_ep->data.u64);
13223                 unlock_user_struct(target_ep, arg4, 0);
13224             }
13225             /*
13226              * before kernel 2.6.9, EPOLL_CTL_DEL operation required a
13227              * non-null pointer, even though this argument is ignored.
13228              *
13229              */
13230             epp = &ep;
13231         }
13232         return get_errno(epoll_ctl(arg1, arg2, arg3, epp));
13233     }
13234 #endif
13235 
13236 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
13237 #if defined(TARGET_NR_epoll_wait)
13238     case TARGET_NR_epoll_wait:
13239 #endif
13240 #if defined(TARGET_NR_epoll_pwait)
13241     case TARGET_NR_epoll_pwait:
13242 #endif
13243     {
13244         struct target_epoll_event *target_ep;
13245         struct epoll_event *ep;
13246         int epfd = arg1;
13247         int maxevents = arg3;
13248         int timeout = arg4;
13249 
13250         if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) {
13251             return -TARGET_EINVAL;
13252         }
13253 
13254         target_ep = lock_user(VERIFY_WRITE, arg2,
13255                               maxevents * sizeof(struct target_epoll_event), 1);
13256         if (!target_ep) {
13257             return -TARGET_EFAULT;
13258         }
13259 
13260         ep = g_try_new(struct epoll_event, maxevents);
13261         if (!ep) {
13262             unlock_user(target_ep, arg2, 0);
13263             return -TARGET_ENOMEM;
13264         }
13265 
13266         switch (num) {
13267 #if defined(TARGET_NR_epoll_pwait)
13268         case TARGET_NR_epoll_pwait:
13269         {
13270             sigset_t *set = NULL;
13271 
13272             if (arg5) {
13273                 ret = process_sigsuspend_mask(&set, arg5, arg6);
13274                 if (ret != 0) {
13275                     break;
13276                 }
13277             }
13278 
13279             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
13280                                              set, SIGSET_T_SIZE));
13281 
13282             if (set) {
13283                 finish_sigsuspend_mask(ret);
13284             }
13285             break;
13286         }
13287 #endif
13288 #if defined(TARGET_NR_epoll_wait)
13289         case TARGET_NR_epoll_wait:
13290             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
13291                                              NULL, 0));
13292             break;
13293 #endif
13294         default:
13295             ret = -TARGET_ENOSYS;
13296         }
13297         if (!is_error(ret)) {
13298             int i;
13299             for (i = 0; i < ret; i++) {
13300                 target_ep[i].events = tswap32(ep[i].events);
13301                 target_ep[i].data.u64 = tswap64(ep[i].data.u64);
13302             }
13303             unlock_user(target_ep, arg2,
13304                         ret * sizeof(struct target_epoll_event));
13305         } else {
13306             unlock_user(target_ep, arg2, 0);
13307         }
13308         g_free(ep);
13309         return ret;
13310     }
13311 #endif
13312 #endif
13313 #ifdef TARGET_NR_prlimit64
13314     case TARGET_NR_prlimit64:
13315     {
13316         /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
13317         struct target_rlimit64 *target_rnew, *target_rold;
13318         struct host_rlimit64 rnew, rold, *rnewp = 0;
13319         int resource = target_to_host_resource(arg2);
13320 
13321         if (arg3 && (resource != RLIMIT_AS &&
13322                      resource != RLIMIT_DATA &&
13323                      resource != RLIMIT_STACK)) {
13324             if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) {
13325                 return -TARGET_EFAULT;
13326             }
13327             __get_user(rnew.rlim_cur, &target_rnew->rlim_cur);
13328             __get_user(rnew.rlim_max, &target_rnew->rlim_max);
13329             unlock_user_struct(target_rnew, arg3, 0);
13330             rnewp = &rnew;
13331         }
13332 
13333         ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0));
13334         if (!is_error(ret) && arg4) {
13335             if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) {
13336                 return -TARGET_EFAULT;
13337             }
13338             __put_user(rold.rlim_cur, &target_rold->rlim_cur);
13339             __put_user(rold.rlim_max, &target_rold->rlim_max);
13340             unlock_user_struct(target_rold, arg4, 1);
13341         }
13342         return ret;
13343     }
13344 #endif
13345 #ifdef TARGET_NR_gethostname
13346     case TARGET_NR_gethostname:
13347     {
13348         char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0);
13349         if (name) {
13350             ret = get_errno(gethostname(name, arg2));
13351             unlock_user(name, arg1, arg2);
13352         } else {
13353             ret = -TARGET_EFAULT;
13354         }
13355         return ret;
13356     }
13357 #endif
13358 #ifdef TARGET_NR_atomic_cmpxchg_32
13359     case TARGET_NR_atomic_cmpxchg_32:
13360     {
13361         /* should use start_exclusive from main.c */
13362         abi_ulong mem_value;
13363         if (get_user_u32(mem_value, arg6)) {
13364             target_siginfo_t info;
13365             info.si_signo = SIGSEGV;
13366             info.si_errno = 0;
13367             info.si_code = TARGET_SEGV_MAPERR;
13368             info._sifields._sigfault._addr = arg6;
13369             queue_signal(cpu_env, info.si_signo, QEMU_SI_FAULT, &info);
13370             ret = 0xdeadbeef;
13371 
13372         }
13373         if (mem_value == arg2)
13374             put_user_u32(arg1, arg6);
13375         return mem_value;
13376     }
13377 #endif
13378 #ifdef TARGET_NR_atomic_barrier
13379     case TARGET_NR_atomic_barrier:
13380         /* Like the kernel implementation and the
13381            qemu arm barrier, no-op this? */
13382         return 0;
13383 #endif
13384 
13385 #ifdef TARGET_NR_timer_create
13386     case TARGET_NR_timer_create:
13387     {
13388         /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
13389 
13390         struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL;
13391 
13392         int clkid = arg1;
13393         int timer_index = next_free_host_timer();
13394 
13395         if (timer_index < 0) {
13396             ret = -TARGET_EAGAIN;
13397         } else {
13398             timer_t *phtimer = g_posix_timers  + timer_index;
13399 
13400             if (arg2) {
13401                 phost_sevp = &host_sevp;
13402                 ret = target_to_host_sigevent(phost_sevp, arg2);
13403                 if (ret != 0) {
13404                     free_host_timer_slot(timer_index);
13405                     return ret;
13406                 }
13407             }
13408 
13409             ret = get_errno(timer_create(clkid, phost_sevp, phtimer));
13410             if (ret) {
13411                 free_host_timer_slot(timer_index);
13412             } else {
13413                 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) {
13414                     timer_delete(*phtimer);
13415                     free_host_timer_slot(timer_index);
13416                     return -TARGET_EFAULT;
13417                 }
13418             }
13419         }
13420         return ret;
13421     }
13422 #endif
13423 
13424 #ifdef TARGET_NR_timer_settime
13425     case TARGET_NR_timer_settime:
13426     {
13427         /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
13428          * struct itimerspec * old_value */
13429         target_timer_t timerid = get_timer_id(arg1);
13430 
13431         if (timerid < 0) {
13432             ret = timerid;
13433         } else if (arg3 == 0) {
13434             ret = -TARGET_EINVAL;
13435         } else {
13436             timer_t htimer = g_posix_timers[timerid];
13437             struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
13438 
13439             if (target_to_host_itimerspec(&hspec_new, arg3)) {
13440                 return -TARGET_EFAULT;
13441             }
13442             ret = get_errno(
13443                           timer_settime(htimer, arg2, &hspec_new, &hspec_old));
13444             if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) {
13445                 return -TARGET_EFAULT;
13446             }
13447         }
13448         return ret;
13449     }
13450 #endif
13451 
13452 #ifdef TARGET_NR_timer_settime64
13453     case TARGET_NR_timer_settime64:
13454     {
13455         target_timer_t timerid = get_timer_id(arg1);
13456 
13457         if (timerid < 0) {
13458             ret = timerid;
13459         } else if (arg3 == 0) {
13460             ret = -TARGET_EINVAL;
13461         } else {
13462             timer_t htimer = g_posix_timers[timerid];
13463             struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
13464 
13465             if (target_to_host_itimerspec64(&hspec_new, arg3)) {
13466                 return -TARGET_EFAULT;
13467             }
13468             ret = get_errno(
13469                           timer_settime(htimer, arg2, &hspec_new, &hspec_old));
13470             if (arg4 && host_to_target_itimerspec64(arg4, &hspec_old)) {
13471                 return -TARGET_EFAULT;
13472             }
13473         }
13474         return ret;
13475     }
13476 #endif
13477 
13478 #ifdef TARGET_NR_timer_gettime
13479     case TARGET_NR_timer_gettime:
13480     {
13481         /* args: timer_t timerid, struct itimerspec *curr_value */
13482         target_timer_t timerid = get_timer_id(arg1);
13483 
13484         if (timerid < 0) {
13485             ret = timerid;
13486         } else if (!arg2) {
13487             ret = -TARGET_EFAULT;
13488         } else {
13489             timer_t htimer = g_posix_timers[timerid];
13490             struct itimerspec hspec;
13491             ret = get_errno(timer_gettime(htimer, &hspec));
13492 
13493             if (host_to_target_itimerspec(arg2, &hspec)) {
13494                 ret = -TARGET_EFAULT;
13495             }
13496         }
13497         return ret;
13498     }
13499 #endif
13500 
13501 #ifdef TARGET_NR_timer_gettime64
13502     case TARGET_NR_timer_gettime64:
13503     {
13504         /* args: timer_t timerid, struct itimerspec64 *curr_value */
13505         target_timer_t timerid = get_timer_id(arg1);
13506 
13507         if (timerid < 0) {
13508             ret = timerid;
13509         } else if (!arg2) {
13510             ret = -TARGET_EFAULT;
13511         } else {
13512             timer_t htimer = g_posix_timers[timerid];
13513             struct itimerspec hspec;
13514             ret = get_errno(timer_gettime(htimer, &hspec));
13515 
13516             if (host_to_target_itimerspec64(arg2, &hspec)) {
13517                 ret = -TARGET_EFAULT;
13518             }
13519         }
13520         return ret;
13521     }
13522 #endif
13523 
13524 #ifdef TARGET_NR_timer_getoverrun
13525     case TARGET_NR_timer_getoverrun:
13526     {
13527         /* args: timer_t timerid */
13528         target_timer_t timerid = get_timer_id(arg1);
13529 
13530         if (timerid < 0) {
13531             ret = timerid;
13532         } else {
13533             timer_t htimer = g_posix_timers[timerid];
13534             ret = get_errno(timer_getoverrun(htimer));
13535         }
13536         return ret;
13537     }
13538 #endif
13539 
13540 #ifdef TARGET_NR_timer_delete
13541     case TARGET_NR_timer_delete:
13542     {
13543         /* args: timer_t timerid */
13544         target_timer_t timerid = get_timer_id(arg1);
13545 
13546         if (timerid < 0) {
13547             ret = timerid;
13548         } else {
13549             timer_t htimer = g_posix_timers[timerid];
13550             ret = get_errno(timer_delete(htimer));
13551             free_host_timer_slot(timerid);
13552         }
13553         return ret;
13554     }
13555 #endif
13556 
13557 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
13558     case TARGET_NR_timerfd_create:
13559         ret = get_errno(timerfd_create(arg1,
13560                         target_to_host_bitmask(arg2, fcntl_flags_tbl)));
13561         if (ret >= 0) {
13562             fd_trans_register(ret, &target_timerfd_trans);
13563         }
13564         return ret;
13565 #endif
13566 
13567 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
13568     case TARGET_NR_timerfd_gettime:
13569         {
13570             struct itimerspec its_curr;
13571 
13572             ret = get_errno(timerfd_gettime(arg1, &its_curr));
13573 
13574             if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) {
13575                 return -TARGET_EFAULT;
13576             }
13577         }
13578         return ret;
13579 #endif
13580 
13581 #if defined(TARGET_NR_timerfd_gettime64) && defined(CONFIG_TIMERFD)
13582     case TARGET_NR_timerfd_gettime64:
13583         {
13584             struct itimerspec its_curr;
13585 
13586             ret = get_errno(timerfd_gettime(arg1, &its_curr));
13587 
13588             if (arg2 && host_to_target_itimerspec64(arg2, &its_curr)) {
13589                 return -TARGET_EFAULT;
13590             }
13591         }
13592         return ret;
13593 #endif
13594 
13595 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
13596     case TARGET_NR_timerfd_settime:
13597         {
13598             struct itimerspec its_new, its_old, *p_new;
13599 
13600             if (arg3) {
13601                 if (target_to_host_itimerspec(&its_new, arg3)) {
13602                     return -TARGET_EFAULT;
13603                 }
13604                 p_new = &its_new;
13605             } else {
13606                 p_new = NULL;
13607             }
13608 
13609             ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13610 
13611             if (arg4 && host_to_target_itimerspec(arg4, &its_old)) {
13612                 return -TARGET_EFAULT;
13613             }
13614         }
13615         return ret;
13616 #endif
13617 
13618 #if defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)
13619     case TARGET_NR_timerfd_settime64:
13620         {
13621             struct itimerspec its_new, its_old, *p_new;
13622 
13623             if (arg3) {
13624                 if (target_to_host_itimerspec64(&its_new, arg3)) {
13625                     return -TARGET_EFAULT;
13626                 }
13627                 p_new = &its_new;
13628             } else {
13629                 p_new = NULL;
13630             }
13631 
13632             ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13633 
13634             if (arg4 && host_to_target_itimerspec64(arg4, &its_old)) {
13635                 return -TARGET_EFAULT;
13636             }
13637         }
13638         return ret;
13639 #endif
13640 
13641 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
13642     case TARGET_NR_ioprio_get:
13643         return get_errno(ioprio_get(arg1, arg2));
13644 #endif
13645 
13646 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
13647     case TARGET_NR_ioprio_set:
13648         return get_errno(ioprio_set(arg1, arg2, arg3));
13649 #endif
13650 
13651 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
13652     case TARGET_NR_setns:
13653         return get_errno(setns(arg1, arg2));
13654 #endif
13655 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
13656     case TARGET_NR_unshare:
13657         return get_errno(unshare(arg1));
13658 #endif
13659 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
13660     case TARGET_NR_kcmp:
13661         return get_errno(kcmp(arg1, arg2, arg3, arg4, arg5));
13662 #endif
13663 #ifdef TARGET_NR_swapcontext
13664     case TARGET_NR_swapcontext:
13665         /* PowerPC specific.  */
13666         return do_swapcontext(cpu_env, arg1, arg2, arg3);
13667 #endif
13668 #ifdef TARGET_NR_memfd_create
13669     case TARGET_NR_memfd_create:
13670         p = lock_user_string(arg1);
13671         if (!p) {
13672             return -TARGET_EFAULT;
13673         }
13674         ret = get_errno(memfd_create(p, arg2));
13675         fd_trans_unregister(ret);
13676         unlock_user(p, arg1, 0);
13677         return ret;
13678 #endif
13679 #if defined TARGET_NR_membarrier && defined __NR_membarrier
13680     case TARGET_NR_membarrier:
13681         return get_errno(membarrier(arg1, arg2));
13682 #endif
13683 
13684 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
13685     case TARGET_NR_copy_file_range:
13686         {
13687             loff_t inoff, outoff;
13688             loff_t *pinoff = NULL, *poutoff = NULL;
13689 
13690             if (arg2) {
13691                 if (get_user_u64(inoff, arg2)) {
13692                     return -TARGET_EFAULT;
13693                 }
13694                 pinoff = &inoff;
13695             }
13696             if (arg4) {
13697                 if (get_user_u64(outoff, arg4)) {
13698                     return -TARGET_EFAULT;
13699                 }
13700                 poutoff = &outoff;
13701             }
13702             /* Do not sign-extend the count parameter. */
13703             ret = get_errno(safe_copy_file_range(arg1, pinoff, arg3, poutoff,
13704                                                  (abi_ulong)arg5, arg6));
13705             if (!is_error(ret) && ret > 0) {
13706                 if (arg2) {
13707                     if (put_user_u64(inoff, arg2)) {
13708                         return -TARGET_EFAULT;
13709                     }
13710                 }
13711                 if (arg4) {
13712                     if (put_user_u64(outoff, arg4)) {
13713                         return -TARGET_EFAULT;
13714                     }
13715                 }
13716             }
13717         }
13718         return ret;
13719 #endif
13720 
13721 #if defined(TARGET_NR_pivot_root)
13722     case TARGET_NR_pivot_root:
13723         {
13724             void *p2;
13725             p = lock_user_string(arg1); /* new_root */
13726             p2 = lock_user_string(arg2); /* put_old */
13727             if (!p || !p2) {
13728                 ret = -TARGET_EFAULT;
13729             } else {
13730                 ret = get_errno(pivot_root(p, p2));
13731             }
13732             unlock_user(p2, arg2, 0);
13733             unlock_user(p, arg1, 0);
13734         }
13735         return ret;
13736 #endif
13737 
13738 #if defined(TARGET_NR_riscv_hwprobe)
13739     case TARGET_NR_riscv_hwprobe:
13740         return do_riscv_hwprobe(cpu_env, arg1, arg2, arg3, arg4, arg5);
13741 #endif
13742 
13743     default:
13744         qemu_log_mask(LOG_UNIMP, "Unsupported syscall: %d\n", num);
13745         return -TARGET_ENOSYS;
13746     }
13747     return ret;
13748 }
13749 
13750 abi_long do_syscall(CPUArchState *cpu_env, int num, abi_long arg1,
13751                     abi_long arg2, abi_long arg3, abi_long arg4,
13752                     abi_long arg5, abi_long arg6, abi_long arg7,
13753                     abi_long arg8)
13754 {
13755     CPUState *cpu = env_cpu(cpu_env);
13756     abi_long ret;
13757 
13758 #ifdef DEBUG_ERESTARTSYS
13759     /* Debug-only code for exercising the syscall-restart code paths
13760      * in the per-architecture cpu main loops: restart every syscall
13761      * the guest makes once before letting it through.
13762      */
13763     {
13764         static bool flag;
13765         flag = !flag;
13766         if (flag) {
13767             return -QEMU_ERESTARTSYS;
13768         }
13769     }
13770 #endif
13771 
13772     record_syscall_start(cpu, num, arg1,
13773                          arg2, arg3, arg4, arg5, arg6, arg7, arg8);
13774 
13775     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13776         print_syscall(cpu_env, num, arg1, arg2, arg3, arg4, arg5, arg6);
13777     }
13778 
13779     ret = do_syscall1(cpu_env, num, arg1, arg2, arg3, arg4,
13780                       arg5, arg6, arg7, arg8);
13781 
13782     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13783         print_syscall_ret(cpu_env, num, ret, arg1, arg2,
13784                           arg3, arg4, arg5, arg6);
13785     }
13786 
13787     record_syscall_return(cpu, num, ret);
13788     return ret;
13789 }
13790