1 /* 2 * Linux syscalls 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #define _ATFILE_SOURCE 20 #include <stdlib.h> 21 #include <stdio.h> 22 #include <stdarg.h> 23 #include <string.h> 24 #include <elf.h> 25 #include <endian.h> 26 #include <errno.h> 27 #include <unistd.h> 28 #include <fcntl.h> 29 #include <time.h> 30 #include <limits.h> 31 #include <grp.h> 32 #include <sys/types.h> 33 #include <sys/ipc.h> 34 #include <sys/msg.h> 35 #include <sys/wait.h> 36 #include <sys/time.h> 37 #include <sys/stat.h> 38 #include <sys/mount.h> 39 #include <sys/file.h> 40 #include <sys/fsuid.h> 41 #include <sys/personality.h> 42 #include <sys/prctl.h> 43 #include <sys/resource.h> 44 #include <sys/mman.h> 45 #include <sys/swap.h> 46 #include <linux/capability.h> 47 #include <signal.h> 48 #include <sched.h> 49 #ifdef __ia64__ 50 int __clone2(int (*fn)(void *), void *child_stack_base, 51 size_t stack_size, int flags, void *arg, ...); 52 #endif 53 #include <sys/socket.h> 54 #include <sys/un.h> 55 #include <sys/uio.h> 56 #include <sys/poll.h> 57 #include <sys/times.h> 58 #include <sys/shm.h> 59 #include <sys/sem.h> 60 #include <sys/statfs.h> 61 #include <utime.h> 62 #include <sys/sysinfo.h> 63 //#include <sys/user.h> 64 #include <netinet/ip.h> 65 #include <netinet/tcp.h> 66 #include <linux/wireless.h> 67 #include <linux/icmp.h> 68 #include "qemu-common.h" 69 #ifdef CONFIG_TIMERFD 70 #include <sys/timerfd.h> 71 #endif 72 #ifdef TARGET_GPROF 73 #include <sys/gmon.h> 74 #endif 75 #ifdef CONFIG_EVENTFD 76 #include <sys/eventfd.h> 77 #endif 78 #ifdef CONFIG_EPOLL 79 #include <sys/epoll.h> 80 #endif 81 #ifdef CONFIG_ATTR 82 #include "qemu/xattr.h" 83 #endif 84 #ifdef CONFIG_SENDFILE 85 #include <sys/sendfile.h> 86 #endif 87 88 #define termios host_termios 89 #define winsize host_winsize 90 #define termio host_termio 91 #define sgttyb host_sgttyb /* same as target */ 92 #define tchars host_tchars /* same as target */ 93 #define ltchars host_ltchars /* same as target */ 94 95 #include <linux/termios.h> 96 #include <linux/unistd.h> 97 #include <linux/cdrom.h> 98 #include <linux/hdreg.h> 99 #include <linux/soundcard.h> 100 #include <linux/kd.h> 101 #include <linux/mtio.h> 102 #include <linux/fs.h> 103 #if defined(CONFIG_FIEMAP) 104 #include <linux/fiemap.h> 105 #endif 106 #include <linux/fb.h> 107 #include <linux/vt.h> 108 #include <linux/dm-ioctl.h> 109 #include <linux/reboot.h> 110 #include <linux/route.h> 111 #include <linux/filter.h> 112 #include <linux/blkpg.h> 113 #include "linux_loop.h" 114 #include "uname.h" 115 116 #include "qemu.h" 117 118 #define CLONE_NPTL_FLAGS2 (CLONE_SETTLS | \ 119 CLONE_PARENT_SETTID | CLONE_CHILD_SETTID | CLONE_CHILD_CLEARTID) 120 121 //#define DEBUG 122 123 //#include <linux/msdos_fs.h> 124 #define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct linux_dirent [2]) 125 #define VFAT_IOCTL_READDIR_SHORT _IOR('r', 2, struct linux_dirent [2]) 126 127 128 #undef _syscall0 129 #undef _syscall1 130 #undef _syscall2 131 #undef _syscall3 132 #undef _syscall4 133 #undef _syscall5 134 #undef _syscall6 135 136 #define _syscall0(type,name) \ 137 static type name (void) \ 138 { \ 139 return syscall(__NR_##name); \ 140 } 141 142 #define _syscall1(type,name,type1,arg1) \ 143 static type name (type1 arg1) \ 144 { \ 145 return syscall(__NR_##name, arg1); \ 146 } 147 148 #define _syscall2(type,name,type1,arg1,type2,arg2) \ 149 static type name (type1 arg1,type2 arg2) \ 150 { \ 151 return syscall(__NR_##name, arg1, arg2); \ 152 } 153 154 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \ 155 static type name (type1 arg1,type2 arg2,type3 arg3) \ 156 { \ 157 return syscall(__NR_##name, arg1, arg2, arg3); \ 158 } 159 160 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \ 161 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \ 162 { \ 163 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \ 164 } 165 166 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \ 167 type5,arg5) \ 168 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \ 169 { \ 170 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \ 171 } 172 173 174 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \ 175 type5,arg5,type6,arg6) \ 176 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \ 177 type6 arg6) \ 178 { \ 179 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \ 180 } 181 182 183 #define __NR_sys_uname __NR_uname 184 #define __NR_sys_getcwd1 __NR_getcwd 185 #define __NR_sys_getdents __NR_getdents 186 #define __NR_sys_getdents64 __NR_getdents64 187 #define __NR_sys_getpriority __NR_getpriority 188 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo 189 #define __NR_sys_syslog __NR_syslog 190 #define __NR_sys_tgkill __NR_tgkill 191 #define __NR_sys_tkill __NR_tkill 192 #define __NR_sys_futex __NR_futex 193 #define __NR_sys_inotify_init __NR_inotify_init 194 #define __NR_sys_inotify_add_watch __NR_inotify_add_watch 195 #define __NR_sys_inotify_rm_watch __NR_inotify_rm_watch 196 197 #if defined(__alpha__) || defined (__ia64__) || defined(__x86_64__) || \ 198 defined(__s390x__) 199 #define __NR__llseek __NR_lseek 200 #endif 201 202 /* Newer kernel ports have llseek() instead of _llseek() */ 203 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek) 204 #define TARGET_NR__llseek TARGET_NR_llseek 205 #endif 206 207 #ifdef __NR_gettid 208 _syscall0(int, gettid) 209 #else 210 /* This is a replacement for the host gettid() and must return a host 211 errno. */ 212 static int gettid(void) { 213 return -ENOSYS; 214 } 215 #endif 216 #ifdef __NR_getdents 217 _syscall3(int, sys_getdents, uint, fd, struct linux_dirent *, dirp, uint, count); 218 #endif 219 #if !defined(__NR_getdents) || \ 220 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64)) 221 _syscall3(int, sys_getdents64, uint, fd, struct linux_dirent64 *, dirp, uint, count); 222 #endif 223 #if defined(TARGET_NR__llseek) && defined(__NR_llseek) 224 _syscall5(int, _llseek, uint, fd, ulong, hi, ulong, lo, 225 loff_t *, res, uint, wh); 226 #endif 227 _syscall3(int,sys_rt_sigqueueinfo,int,pid,int,sig,siginfo_t *,uinfo) 228 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len) 229 #if defined(TARGET_NR_tgkill) && defined(__NR_tgkill) 230 _syscall3(int,sys_tgkill,int,tgid,int,pid,int,sig) 231 #endif 232 #if defined(TARGET_NR_tkill) && defined(__NR_tkill) 233 _syscall2(int,sys_tkill,int,tid,int,sig) 234 #endif 235 #ifdef __NR_exit_group 236 _syscall1(int,exit_group,int,error_code) 237 #endif 238 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address) 239 _syscall1(int,set_tid_address,int *,tidptr) 240 #endif 241 #if defined(TARGET_NR_futex) && defined(__NR_futex) 242 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val, 243 const struct timespec *,timeout,int *,uaddr2,int,val3) 244 #endif 245 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity 246 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len, 247 unsigned long *, user_mask_ptr); 248 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity 249 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len, 250 unsigned long *, user_mask_ptr); 251 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd, 252 void *, arg); 253 _syscall2(int, capget, struct __user_cap_header_struct *, header, 254 struct __user_cap_data_struct *, data); 255 _syscall2(int, capset, struct __user_cap_header_struct *, header, 256 struct __user_cap_data_struct *, data); 257 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get) 258 _syscall2(int, ioprio_get, int, which, int, who) 259 #endif 260 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set) 261 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio) 262 #endif 263 264 static bitmask_transtbl fcntl_flags_tbl[] = { 265 { TARGET_O_ACCMODE, TARGET_O_WRONLY, O_ACCMODE, O_WRONLY, }, 266 { TARGET_O_ACCMODE, TARGET_O_RDWR, O_ACCMODE, O_RDWR, }, 267 { TARGET_O_CREAT, TARGET_O_CREAT, O_CREAT, O_CREAT, }, 268 { TARGET_O_EXCL, TARGET_O_EXCL, O_EXCL, O_EXCL, }, 269 { TARGET_O_NOCTTY, TARGET_O_NOCTTY, O_NOCTTY, O_NOCTTY, }, 270 { TARGET_O_TRUNC, TARGET_O_TRUNC, O_TRUNC, O_TRUNC, }, 271 { TARGET_O_APPEND, TARGET_O_APPEND, O_APPEND, O_APPEND, }, 272 { TARGET_O_NONBLOCK, TARGET_O_NONBLOCK, O_NONBLOCK, O_NONBLOCK, }, 273 { TARGET_O_SYNC, TARGET_O_DSYNC, O_SYNC, O_DSYNC, }, 274 { TARGET_O_SYNC, TARGET_O_SYNC, O_SYNC, O_SYNC, }, 275 { TARGET_FASYNC, TARGET_FASYNC, FASYNC, FASYNC, }, 276 { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, }, 277 { TARGET_O_NOFOLLOW, TARGET_O_NOFOLLOW, O_NOFOLLOW, O_NOFOLLOW, }, 278 #if defined(O_DIRECT) 279 { TARGET_O_DIRECT, TARGET_O_DIRECT, O_DIRECT, O_DIRECT, }, 280 #endif 281 #if defined(O_NOATIME) 282 { TARGET_O_NOATIME, TARGET_O_NOATIME, O_NOATIME, O_NOATIME }, 283 #endif 284 #if defined(O_CLOEXEC) 285 { TARGET_O_CLOEXEC, TARGET_O_CLOEXEC, O_CLOEXEC, O_CLOEXEC }, 286 #endif 287 #if defined(O_PATH) 288 { TARGET_O_PATH, TARGET_O_PATH, O_PATH, O_PATH }, 289 #endif 290 /* Don't terminate the list prematurely on 64-bit host+guest. */ 291 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0 292 { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, }, 293 #endif 294 { 0, 0, 0, 0 } 295 }; 296 297 static int sys_getcwd1(char *buf, size_t size) 298 { 299 if (getcwd(buf, size) == NULL) { 300 /* getcwd() sets errno */ 301 return (-1); 302 } 303 return strlen(buf)+1; 304 } 305 306 static int sys_openat(int dirfd, const char *pathname, int flags, mode_t mode) 307 { 308 /* 309 * open(2) has extra parameter 'mode' when called with 310 * flag O_CREAT. 311 */ 312 if ((flags & O_CREAT) != 0) { 313 return (openat(dirfd, pathname, flags, mode)); 314 } 315 return (openat(dirfd, pathname, flags)); 316 } 317 318 #ifdef TARGET_NR_utimensat 319 #ifdef CONFIG_UTIMENSAT 320 static int sys_utimensat(int dirfd, const char *pathname, 321 const struct timespec times[2], int flags) 322 { 323 if (pathname == NULL) 324 return futimens(dirfd, times); 325 else 326 return utimensat(dirfd, pathname, times, flags); 327 } 328 #elif defined(__NR_utimensat) 329 #define __NR_sys_utimensat __NR_utimensat 330 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname, 331 const struct timespec *,tsp,int,flags) 332 #else 333 static int sys_utimensat(int dirfd, const char *pathname, 334 const struct timespec times[2], int flags) 335 { 336 errno = ENOSYS; 337 return -1; 338 } 339 #endif 340 #endif /* TARGET_NR_utimensat */ 341 342 #ifdef CONFIG_INOTIFY 343 #include <sys/inotify.h> 344 345 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init) 346 static int sys_inotify_init(void) 347 { 348 return (inotify_init()); 349 } 350 #endif 351 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch) 352 static int sys_inotify_add_watch(int fd,const char *pathname, int32_t mask) 353 { 354 return (inotify_add_watch(fd, pathname, mask)); 355 } 356 #endif 357 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch) 358 static int sys_inotify_rm_watch(int fd, int32_t wd) 359 { 360 return (inotify_rm_watch(fd, wd)); 361 } 362 #endif 363 #ifdef CONFIG_INOTIFY1 364 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1) 365 static int sys_inotify_init1(int flags) 366 { 367 return (inotify_init1(flags)); 368 } 369 #endif 370 #endif 371 #else 372 /* Userspace can usually survive runtime without inotify */ 373 #undef TARGET_NR_inotify_init 374 #undef TARGET_NR_inotify_init1 375 #undef TARGET_NR_inotify_add_watch 376 #undef TARGET_NR_inotify_rm_watch 377 #endif /* CONFIG_INOTIFY */ 378 379 #if defined(TARGET_NR_ppoll) 380 #ifndef __NR_ppoll 381 # define __NR_ppoll -1 382 #endif 383 #define __NR_sys_ppoll __NR_ppoll 384 _syscall5(int, sys_ppoll, struct pollfd *, fds, nfds_t, nfds, 385 struct timespec *, timeout, const sigset_t *, sigmask, 386 size_t, sigsetsize) 387 #endif 388 389 #if defined(TARGET_NR_pselect6) 390 #ifndef __NR_pselect6 391 # define __NR_pselect6 -1 392 #endif 393 #define __NR_sys_pselect6 __NR_pselect6 394 _syscall6(int, sys_pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, 395 fd_set *, exceptfds, struct timespec *, timeout, void *, sig); 396 #endif 397 398 #if defined(TARGET_NR_prlimit64) 399 #ifndef __NR_prlimit64 400 # define __NR_prlimit64 -1 401 #endif 402 #define __NR_sys_prlimit64 __NR_prlimit64 403 /* The glibc rlimit structure may not be that used by the underlying syscall */ 404 struct host_rlimit64 { 405 uint64_t rlim_cur; 406 uint64_t rlim_max; 407 }; 408 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource, 409 const struct host_rlimit64 *, new_limit, 410 struct host_rlimit64 *, old_limit) 411 #endif 412 413 414 #if defined(TARGET_NR_timer_create) 415 /* Maxiumum of 32 active POSIX timers allowed at any one time. */ 416 static timer_t g_posix_timers[32] = { 0, } ; 417 418 static inline int next_free_host_timer(void) 419 { 420 int k ; 421 /* FIXME: Does finding the next free slot require a lock? */ 422 for (k = 0; k < ARRAY_SIZE(g_posix_timers); k++) { 423 if (g_posix_timers[k] == 0) { 424 g_posix_timers[k] = (timer_t) 1; 425 return k; 426 } 427 } 428 return -1; 429 } 430 #endif 431 432 /* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */ 433 #ifdef TARGET_ARM 434 static inline int regpairs_aligned(void *cpu_env) { 435 return ((((CPUARMState *)cpu_env)->eabi) == 1) ; 436 } 437 #elif defined(TARGET_MIPS) 438 static inline int regpairs_aligned(void *cpu_env) { return 1; } 439 #elif defined(TARGET_PPC) && !defined(TARGET_PPC64) 440 /* SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs 441 * of registers which translates to the same as ARM/MIPS, because we start with 442 * r3 as arg1 */ 443 static inline int regpairs_aligned(void *cpu_env) { return 1; } 444 #else 445 static inline int regpairs_aligned(void *cpu_env) { return 0; } 446 #endif 447 448 #define ERRNO_TABLE_SIZE 1200 449 450 /* target_to_host_errno_table[] is initialized from 451 * host_to_target_errno_table[] in syscall_init(). */ 452 static uint16_t target_to_host_errno_table[ERRNO_TABLE_SIZE] = { 453 }; 454 455 /* 456 * This list is the union of errno values overridden in asm-<arch>/errno.h 457 * minus the errnos that are not actually generic to all archs. 458 */ 459 static uint16_t host_to_target_errno_table[ERRNO_TABLE_SIZE] = { 460 [EIDRM] = TARGET_EIDRM, 461 [ECHRNG] = TARGET_ECHRNG, 462 [EL2NSYNC] = TARGET_EL2NSYNC, 463 [EL3HLT] = TARGET_EL3HLT, 464 [EL3RST] = TARGET_EL3RST, 465 [ELNRNG] = TARGET_ELNRNG, 466 [EUNATCH] = TARGET_EUNATCH, 467 [ENOCSI] = TARGET_ENOCSI, 468 [EL2HLT] = TARGET_EL2HLT, 469 [EDEADLK] = TARGET_EDEADLK, 470 [ENOLCK] = TARGET_ENOLCK, 471 [EBADE] = TARGET_EBADE, 472 [EBADR] = TARGET_EBADR, 473 [EXFULL] = TARGET_EXFULL, 474 [ENOANO] = TARGET_ENOANO, 475 [EBADRQC] = TARGET_EBADRQC, 476 [EBADSLT] = TARGET_EBADSLT, 477 [EBFONT] = TARGET_EBFONT, 478 [ENOSTR] = TARGET_ENOSTR, 479 [ENODATA] = TARGET_ENODATA, 480 [ETIME] = TARGET_ETIME, 481 [ENOSR] = TARGET_ENOSR, 482 [ENONET] = TARGET_ENONET, 483 [ENOPKG] = TARGET_ENOPKG, 484 [EREMOTE] = TARGET_EREMOTE, 485 [ENOLINK] = TARGET_ENOLINK, 486 [EADV] = TARGET_EADV, 487 [ESRMNT] = TARGET_ESRMNT, 488 [ECOMM] = TARGET_ECOMM, 489 [EPROTO] = TARGET_EPROTO, 490 [EDOTDOT] = TARGET_EDOTDOT, 491 [EMULTIHOP] = TARGET_EMULTIHOP, 492 [EBADMSG] = TARGET_EBADMSG, 493 [ENAMETOOLONG] = TARGET_ENAMETOOLONG, 494 [EOVERFLOW] = TARGET_EOVERFLOW, 495 [ENOTUNIQ] = TARGET_ENOTUNIQ, 496 [EBADFD] = TARGET_EBADFD, 497 [EREMCHG] = TARGET_EREMCHG, 498 [ELIBACC] = TARGET_ELIBACC, 499 [ELIBBAD] = TARGET_ELIBBAD, 500 [ELIBSCN] = TARGET_ELIBSCN, 501 [ELIBMAX] = TARGET_ELIBMAX, 502 [ELIBEXEC] = TARGET_ELIBEXEC, 503 [EILSEQ] = TARGET_EILSEQ, 504 [ENOSYS] = TARGET_ENOSYS, 505 [ELOOP] = TARGET_ELOOP, 506 [ERESTART] = TARGET_ERESTART, 507 [ESTRPIPE] = TARGET_ESTRPIPE, 508 [ENOTEMPTY] = TARGET_ENOTEMPTY, 509 [EUSERS] = TARGET_EUSERS, 510 [ENOTSOCK] = TARGET_ENOTSOCK, 511 [EDESTADDRREQ] = TARGET_EDESTADDRREQ, 512 [EMSGSIZE] = TARGET_EMSGSIZE, 513 [EPROTOTYPE] = TARGET_EPROTOTYPE, 514 [ENOPROTOOPT] = TARGET_ENOPROTOOPT, 515 [EPROTONOSUPPORT] = TARGET_EPROTONOSUPPORT, 516 [ESOCKTNOSUPPORT] = TARGET_ESOCKTNOSUPPORT, 517 [EOPNOTSUPP] = TARGET_EOPNOTSUPP, 518 [EPFNOSUPPORT] = TARGET_EPFNOSUPPORT, 519 [EAFNOSUPPORT] = TARGET_EAFNOSUPPORT, 520 [EADDRINUSE] = TARGET_EADDRINUSE, 521 [EADDRNOTAVAIL] = TARGET_EADDRNOTAVAIL, 522 [ENETDOWN] = TARGET_ENETDOWN, 523 [ENETUNREACH] = TARGET_ENETUNREACH, 524 [ENETRESET] = TARGET_ENETRESET, 525 [ECONNABORTED] = TARGET_ECONNABORTED, 526 [ECONNRESET] = TARGET_ECONNRESET, 527 [ENOBUFS] = TARGET_ENOBUFS, 528 [EISCONN] = TARGET_EISCONN, 529 [ENOTCONN] = TARGET_ENOTCONN, 530 [EUCLEAN] = TARGET_EUCLEAN, 531 [ENOTNAM] = TARGET_ENOTNAM, 532 [ENAVAIL] = TARGET_ENAVAIL, 533 [EISNAM] = TARGET_EISNAM, 534 [EREMOTEIO] = TARGET_EREMOTEIO, 535 [ESHUTDOWN] = TARGET_ESHUTDOWN, 536 [ETOOMANYREFS] = TARGET_ETOOMANYREFS, 537 [ETIMEDOUT] = TARGET_ETIMEDOUT, 538 [ECONNREFUSED] = TARGET_ECONNREFUSED, 539 [EHOSTDOWN] = TARGET_EHOSTDOWN, 540 [EHOSTUNREACH] = TARGET_EHOSTUNREACH, 541 [EALREADY] = TARGET_EALREADY, 542 [EINPROGRESS] = TARGET_EINPROGRESS, 543 [ESTALE] = TARGET_ESTALE, 544 [ECANCELED] = TARGET_ECANCELED, 545 [ENOMEDIUM] = TARGET_ENOMEDIUM, 546 [EMEDIUMTYPE] = TARGET_EMEDIUMTYPE, 547 #ifdef ENOKEY 548 [ENOKEY] = TARGET_ENOKEY, 549 #endif 550 #ifdef EKEYEXPIRED 551 [EKEYEXPIRED] = TARGET_EKEYEXPIRED, 552 #endif 553 #ifdef EKEYREVOKED 554 [EKEYREVOKED] = TARGET_EKEYREVOKED, 555 #endif 556 #ifdef EKEYREJECTED 557 [EKEYREJECTED] = TARGET_EKEYREJECTED, 558 #endif 559 #ifdef EOWNERDEAD 560 [EOWNERDEAD] = TARGET_EOWNERDEAD, 561 #endif 562 #ifdef ENOTRECOVERABLE 563 [ENOTRECOVERABLE] = TARGET_ENOTRECOVERABLE, 564 #endif 565 }; 566 567 static inline int host_to_target_errno(int err) 568 { 569 if(host_to_target_errno_table[err]) 570 return host_to_target_errno_table[err]; 571 return err; 572 } 573 574 static inline int target_to_host_errno(int err) 575 { 576 if (target_to_host_errno_table[err]) 577 return target_to_host_errno_table[err]; 578 return err; 579 } 580 581 static inline abi_long get_errno(abi_long ret) 582 { 583 if (ret == -1) 584 return -host_to_target_errno(errno); 585 else 586 return ret; 587 } 588 589 static inline int is_error(abi_long ret) 590 { 591 return (abi_ulong)ret >= (abi_ulong)(-4096); 592 } 593 594 char *target_strerror(int err) 595 { 596 if ((err >= ERRNO_TABLE_SIZE) || (err < 0)) { 597 return NULL; 598 } 599 return strerror(target_to_host_errno(err)); 600 } 601 602 static inline int host_to_target_sock_type(int host_type) 603 { 604 int target_type; 605 606 switch (host_type & 0xf /* SOCK_TYPE_MASK */) { 607 case SOCK_DGRAM: 608 target_type = TARGET_SOCK_DGRAM; 609 break; 610 case SOCK_STREAM: 611 target_type = TARGET_SOCK_STREAM; 612 break; 613 default: 614 target_type = host_type & 0xf /* SOCK_TYPE_MASK */; 615 break; 616 } 617 618 #if defined(SOCK_CLOEXEC) 619 if (host_type & SOCK_CLOEXEC) { 620 target_type |= TARGET_SOCK_CLOEXEC; 621 } 622 #endif 623 624 #if defined(SOCK_NONBLOCK) 625 if (host_type & SOCK_NONBLOCK) { 626 target_type |= TARGET_SOCK_NONBLOCK; 627 } 628 #endif 629 630 return target_type; 631 } 632 633 static abi_ulong target_brk; 634 static abi_ulong target_original_brk; 635 static abi_ulong brk_page; 636 637 void target_set_brk(abi_ulong new_brk) 638 { 639 target_original_brk = target_brk = HOST_PAGE_ALIGN(new_brk); 640 brk_page = HOST_PAGE_ALIGN(target_brk); 641 } 642 643 //#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0) 644 #define DEBUGF_BRK(message, args...) 645 646 /* do_brk() must return target values and target errnos. */ 647 abi_long do_brk(abi_ulong new_brk) 648 { 649 abi_long mapped_addr; 650 int new_alloc_size; 651 652 DEBUGF_BRK("do_brk(" TARGET_ABI_FMT_lx ") -> ", new_brk); 653 654 if (!new_brk) { 655 DEBUGF_BRK(TARGET_ABI_FMT_lx " (!new_brk)\n", target_brk); 656 return target_brk; 657 } 658 if (new_brk < target_original_brk) { 659 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk < target_original_brk)\n", 660 target_brk); 661 return target_brk; 662 } 663 664 /* If the new brk is less than the highest page reserved to the 665 * target heap allocation, set it and we're almost done... */ 666 if (new_brk <= brk_page) { 667 /* Heap contents are initialized to zero, as for anonymous 668 * mapped pages. */ 669 if (new_brk > target_brk) { 670 memset(g2h(target_brk), 0, new_brk - target_brk); 671 } 672 target_brk = new_brk; 673 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk <= brk_page)\n", target_brk); 674 return target_brk; 675 } 676 677 /* We need to allocate more memory after the brk... Note that 678 * we don't use MAP_FIXED because that will map over the top of 679 * any existing mapping (like the one with the host libc or qemu 680 * itself); instead we treat "mapped but at wrong address" as 681 * a failure and unmap again. 682 */ 683 new_alloc_size = HOST_PAGE_ALIGN(new_brk - brk_page); 684 mapped_addr = get_errno(target_mmap(brk_page, new_alloc_size, 685 PROT_READ|PROT_WRITE, 686 MAP_ANON|MAP_PRIVATE, 0, 0)); 687 688 if (mapped_addr == brk_page) { 689 /* Heap contents are initialized to zero, as for anonymous 690 * mapped pages. Technically the new pages are already 691 * initialized to zero since they *are* anonymous mapped 692 * pages, however we have to take care with the contents that 693 * come from the remaining part of the previous page: it may 694 * contains garbage data due to a previous heap usage (grown 695 * then shrunken). */ 696 memset(g2h(target_brk), 0, brk_page - target_brk); 697 698 target_brk = new_brk; 699 brk_page = HOST_PAGE_ALIGN(target_brk); 700 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr == brk_page)\n", 701 target_brk); 702 return target_brk; 703 } else if (mapped_addr != -1) { 704 /* Mapped but at wrong address, meaning there wasn't actually 705 * enough space for this brk. 706 */ 707 target_munmap(mapped_addr, new_alloc_size); 708 mapped_addr = -1; 709 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr != -1)\n", target_brk); 710 } 711 else { 712 DEBUGF_BRK(TARGET_ABI_FMT_lx " (otherwise)\n", target_brk); 713 } 714 715 #if defined(TARGET_ALPHA) 716 /* We (partially) emulate OSF/1 on Alpha, which requires we 717 return a proper errno, not an unchanged brk value. */ 718 return -TARGET_ENOMEM; 719 #endif 720 /* For everything else, return the previous break. */ 721 return target_brk; 722 } 723 724 static inline abi_long copy_from_user_fdset(fd_set *fds, 725 abi_ulong target_fds_addr, 726 int n) 727 { 728 int i, nw, j, k; 729 abi_ulong b, *target_fds; 730 731 nw = (n + TARGET_ABI_BITS - 1) / TARGET_ABI_BITS; 732 if (!(target_fds = lock_user(VERIFY_READ, 733 target_fds_addr, 734 sizeof(abi_ulong) * nw, 735 1))) 736 return -TARGET_EFAULT; 737 738 FD_ZERO(fds); 739 k = 0; 740 for (i = 0; i < nw; i++) { 741 /* grab the abi_ulong */ 742 __get_user(b, &target_fds[i]); 743 for (j = 0; j < TARGET_ABI_BITS; j++) { 744 /* check the bit inside the abi_ulong */ 745 if ((b >> j) & 1) 746 FD_SET(k, fds); 747 k++; 748 } 749 } 750 751 unlock_user(target_fds, target_fds_addr, 0); 752 753 return 0; 754 } 755 756 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr, 757 abi_ulong target_fds_addr, 758 int n) 759 { 760 if (target_fds_addr) { 761 if (copy_from_user_fdset(fds, target_fds_addr, n)) 762 return -TARGET_EFAULT; 763 *fds_ptr = fds; 764 } else { 765 *fds_ptr = NULL; 766 } 767 return 0; 768 } 769 770 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr, 771 const fd_set *fds, 772 int n) 773 { 774 int i, nw, j, k; 775 abi_long v; 776 abi_ulong *target_fds; 777 778 nw = (n + TARGET_ABI_BITS - 1) / TARGET_ABI_BITS; 779 if (!(target_fds = lock_user(VERIFY_WRITE, 780 target_fds_addr, 781 sizeof(abi_ulong) * nw, 782 0))) 783 return -TARGET_EFAULT; 784 785 k = 0; 786 for (i = 0; i < nw; i++) { 787 v = 0; 788 for (j = 0; j < TARGET_ABI_BITS; j++) { 789 v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j); 790 k++; 791 } 792 __put_user(v, &target_fds[i]); 793 } 794 795 unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw); 796 797 return 0; 798 } 799 800 #if defined(__alpha__) 801 #define HOST_HZ 1024 802 #else 803 #define HOST_HZ 100 804 #endif 805 806 static inline abi_long host_to_target_clock_t(long ticks) 807 { 808 #if HOST_HZ == TARGET_HZ 809 return ticks; 810 #else 811 return ((int64_t)ticks * TARGET_HZ) / HOST_HZ; 812 #endif 813 } 814 815 static inline abi_long host_to_target_rusage(abi_ulong target_addr, 816 const struct rusage *rusage) 817 { 818 struct target_rusage *target_rusage; 819 820 if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0)) 821 return -TARGET_EFAULT; 822 target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec); 823 target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec); 824 target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec); 825 target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec); 826 target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss); 827 target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss); 828 target_rusage->ru_idrss = tswapal(rusage->ru_idrss); 829 target_rusage->ru_isrss = tswapal(rusage->ru_isrss); 830 target_rusage->ru_minflt = tswapal(rusage->ru_minflt); 831 target_rusage->ru_majflt = tswapal(rusage->ru_majflt); 832 target_rusage->ru_nswap = tswapal(rusage->ru_nswap); 833 target_rusage->ru_inblock = tswapal(rusage->ru_inblock); 834 target_rusage->ru_oublock = tswapal(rusage->ru_oublock); 835 target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd); 836 target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv); 837 target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals); 838 target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw); 839 target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw); 840 unlock_user_struct(target_rusage, target_addr, 1); 841 842 return 0; 843 } 844 845 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim) 846 { 847 abi_ulong target_rlim_swap; 848 rlim_t result; 849 850 target_rlim_swap = tswapal(target_rlim); 851 if (target_rlim_swap == TARGET_RLIM_INFINITY) 852 return RLIM_INFINITY; 853 854 result = target_rlim_swap; 855 if (target_rlim_swap != (rlim_t)result) 856 return RLIM_INFINITY; 857 858 return result; 859 } 860 861 static inline abi_ulong host_to_target_rlim(rlim_t rlim) 862 { 863 abi_ulong target_rlim_swap; 864 abi_ulong result; 865 866 if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim) 867 target_rlim_swap = TARGET_RLIM_INFINITY; 868 else 869 target_rlim_swap = rlim; 870 result = tswapal(target_rlim_swap); 871 872 return result; 873 } 874 875 static inline int target_to_host_resource(int code) 876 { 877 switch (code) { 878 case TARGET_RLIMIT_AS: 879 return RLIMIT_AS; 880 case TARGET_RLIMIT_CORE: 881 return RLIMIT_CORE; 882 case TARGET_RLIMIT_CPU: 883 return RLIMIT_CPU; 884 case TARGET_RLIMIT_DATA: 885 return RLIMIT_DATA; 886 case TARGET_RLIMIT_FSIZE: 887 return RLIMIT_FSIZE; 888 case TARGET_RLIMIT_LOCKS: 889 return RLIMIT_LOCKS; 890 case TARGET_RLIMIT_MEMLOCK: 891 return RLIMIT_MEMLOCK; 892 case TARGET_RLIMIT_MSGQUEUE: 893 return RLIMIT_MSGQUEUE; 894 case TARGET_RLIMIT_NICE: 895 return RLIMIT_NICE; 896 case TARGET_RLIMIT_NOFILE: 897 return RLIMIT_NOFILE; 898 case TARGET_RLIMIT_NPROC: 899 return RLIMIT_NPROC; 900 case TARGET_RLIMIT_RSS: 901 return RLIMIT_RSS; 902 case TARGET_RLIMIT_RTPRIO: 903 return RLIMIT_RTPRIO; 904 case TARGET_RLIMIT_SIGPENDING: 905 return RLIMIT_SIGPENDING; 906 case TARGET_RLIMIT_STACK: 907 return RLIMIT_STACK; 908 default: 909 return code; 910 } 911 } 912 913 static inline abi_long copy_from_user_timeval(struct timeval *tv, 914 abi_ulong target_tv_addr) 915 { 916 struct target_timeval *target_tv; 917 918 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) 919 return -TARGET_EFAULT; 920 921 __get_user(tv->tv_sec, &target_tv->tv_sec); 922 __get_user(tv->tv_usec, &target_tv->tv_usec); 923 924 unlock_user_struct(target_tv, target_tv_addr, 0); 925 926 return 0; 927 } 928 929 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr, 930 const struct timeval *tv) 931 { 932 struct target_timeval *target_tv; 933 934 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) 935 return -TARGET_EFAULT; 936 937 __put_user(tv->tv_sec, &target_tv->tv_sec); 938 __put_user(tv->tv_usec, &target_tv->tv_usec); 939 940 unlock_user_struct(target_tv, target_tv_addr, 1); 941 942 return 0; 943 } 944 945 static inline abi_long copy_from_user_timezone(struct timezone *tz, 946 abi_ulong target_tz_addr) 947 { 948 struct target_timezone *target_tz; 949 950 if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) { 951 return -TARGET_EFAULT; 952 } 953 954 __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest); 955 __get_user(tz->tz_dsttime, &target_tz->tz_dsttime); 956 957 unlock_user_struct(target_tz, target_tz_addr, 0); 958 959 return 0; 960 } 961 962 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 963 #include <mqueue.h> 964 965 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr, 966 abi_ulong target_mq_attr_addr) 967 { 968 struct target_mq_attr *target_mq_attr; 969 970 if (!lock_user_struct(VERIFY_READ, target_mq_attr, 971 target_mq_attr_addr, 1)) 972 return -TARGET_EFAULT; 973 974 __get_user(attr->mq_flags, &target_mq_attr->mq_flags); 975 __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg); 976 __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize); 977 __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs); 978 979 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0); 980 981 return 0; 982 } 983 984 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr, 985 const struct mq_attr *attr) 986 { 987 struct target_mq_attr *target_mq_attr; 988 989 if (!lock_user_struct(VERIFY_WRITE, target_mq_attr, 990 target_mq_attr_addr, 0)) 991 return -TARGET_EFAULT; 992 993 __put_user(attr->mq_flags, &target_mq_attr->mq_flags); 994 __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg); 995 __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize); 996 __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs); 997 998 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1); 999 1000 return 0; 1001 } 1002 #endif 1003 1004 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) 1005 /* do_select() must return target values and target errnos. */ 1006 static abi_long do_select(int n, 1007 abi_ulong rfd_addr, abi_ulong wfd_addr, 1008 abi_ulong efd_addr, abi_ulong target_tv_addr) 1009 { 1010 fd_set rfds, wfds, efds; 1011 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr; 1012 struct timeval tv, *tv_ptr; 1013 abi_long ret; 1014 1015 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n); 1016 if (ret) { 1017 return ret; 1018 } 1019 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n); 1020 if (ret) { 1021 return ret; 1022 } 1023 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n); 1024 if (ret) { 1025 return ret; 1026 } 1027 1028 if (target_tv_addr) { 1029 if (copy_from_user_timeval(&tv, target_tv_addr)) 1030 return -TARGET_EFAULT; 1031 tv_ptr = &tv; 1032 } else { 1033 tv_ptr = NULL; 1034 } 1035 1036 ret = get_errno(select(n, rfds_ptr, wfds_ptr, efds_ptr, tv_ptr)); 1037 1038 if (!is_error(ret)) { 1039 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) 1040 return -TARGET_EFAULT; 1041 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) 1042 return -TARGET_EFAULT; 1043 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) 1044 return -TARGET_EFAULT; 1045 1046 if (target_tv_addr && copy_to_user_timeval(target_tv_addr, &tv)) 1047 return -TARGET_EFAULT; 1048 } 1049 1050 return ret; 1051 } 1052 #endif 1053 1054 static abi_long do_pipe2(int host_pipe[], int flags) 1055 { 1056 #ifdef CONFIG_PIPE2 1057 return pipe2(host_pipe, flags); 1058 #else 1059 return -ENOSYS; 1060 #endif 1061 } 1062 1063 static abi_long do_pipe(void *cpu_env, abi_ulong pipedes, 1064 int flags, int is_pipe2) 1065 { 1066 int host_pipe[2]; 1067 abi_long ret; 1068 ret = flags ? do_pipe2(host_pipe, flags) : pipe(host_pipe); 1069 1070 if (is_error(ret)) 1071 return get_errno(ret); 1072 1073 /* Several targets have special calling conventions for the original 1074 pipe syscall, but didn't replicate this into the pipe2 syscall. */ 1075 if (!is_pipe2) { 1076 #if defined(TARGET_ALPHA) 1077 ((CPUAlphaState *)cpu_env)->ir[IR_A4] = host_pipe[1]; 1078 return host_pipe[0]; 1079 #elif defined(TARGET_MIPS) 1080 ((CPUMIPSState*)cpu_env)->active_tc.gpr[3] = host_pipe[1]; 1081 return host_pipe[0]; 1082 #elif defined(TARGET_SH4) 1083 ((CPUSH4State*)cpu_env)->gregs[1] = host_pipe[1]; 1084 return host_pipe[0]; 1085 #elif defined(TARGET_SPARC) 1086 ((CPUSPARCState*)cpu_env)->regwptr[1] = host_pipe[1]; 1087 return host_pipe[0]; 1088 #endif 1089 } 1090 1091 if (put_user_s32(host_pipe[0], pipedes) 1092 || put_user_s32(host_pipe[1], pipedes + sizeof(host_pipe[0]))) 1093 return -TARGET_EFAULT; 1094 return get_errno(ret); 1095 } 1096 1097 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn, 1098 abi_ulong target_addr, 1099 socklen_t len) 1100 { 1101 struct target_ip_mreqn *target_smreqn; 1102 1103 target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1); 1104 if (!target_smreqn) 1105 return -TARGET_EFAULT; 1106 mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr; 1107 mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr; 1108 if (len == sizeof(struct target_ip_mreqn)) 1109 mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex); 1110 unlock_user(target_smreqn, target_addr, 0); 1111 1112 return 0; 1113 } 1114 1115 static inline abi_long target_to_host_sockaddr(struct sockaddr *addr, 1116 abi_ulong target_addr, 1117 socklen_t len) 1118 { 1119 const socklen_t unix_maxlen = sizeof (struct sockaddr_un); 1120 sa_family_t sa_family; 1121 struct target_sockaddr *target_saddr; 1122 1123 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1); 1124 if (!target_saddr) 1125 return -TARGET_EFAULT; 1126 1127 sa_family = tswap16(target_saddr->sa_family); 1128 1129 /* Oops. The caller might send a incomplete sun_path; sun_path 1130 * must be terminated by \0 (see the manual page), but 1131 * unfortunately it is quite common to specify sockaddr_un 1132 * length as "strlen(x->sun_path)" while it should be 1133 * "strlen(...) + 1". We'll fix that here if needed. 1134 * Linux kernel has a similar feature. 1135 */ 1136 1137 if (sa_family == AF_UNIX) { 1138 if (len < unix_maxlen && len > 0) { 1139 char *cp = (char*)target_saddr; 1140 1141 if ( cp[len-1] && !cp[len] ) 1142 len++; 1143 } 1144 if (len > unix_maxlen) 1145 len = unix_maxlen; 1146 } 1147 1148 memcpy(addr, target_saddr, len); 1149 addr->sa_family = sa_family; 1150 if (sa_family == AF_PACKET) { 1151 struct target_sockaddr_ll *lladdr; 1152 1153 lladdr = (struct target_sockaddr_ll *)addr; 1154 lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex); 1155 lladdr->sll_hatype = tswap16(lladdr->sll_hatype); 1156 } 1157 unlock_user(target_saddr, target_addr, 0); 1158 1159 return 0; 1160 } 1161 1162 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr, 1163 struct sockaddr *addr, 1164 socklen_t len) 1165 { 1166 struct target_sockaddr *target_saddr; 1167 1168 target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0); 1169 if (!target_saddr) 1170 return -TARGET_EFAULT; 1171 memcpy(target_saddr, addr, len); 1172 target_saddr->sa_family = tswap16(addr->sa_family); 1173 unlock_user(target_saddr, target_addr, len); 1174 1175 return 0; 1176 } 1177 1178 static inline abi_long target_to_host_cmsg(struct msghdr *msgh, 1179 struct target_msghdr *target_msgh) 1180 { 1181 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh); 1182 abi_long msg_controllen; 1183 abi_ulong target_cmsg_addr; 1184 struct target_cmsghdr *target_cmsg; 1185 socklen_t space = 0; 1186 1187 msg_controllen = tswapal(target_msgh->msg_controllen); 1188 if (msg_controllen < sizeof (struct target_cmsghdr)) 1189 goto the_end; 1190 target_cmsg_addr = tswapal(target_msgh->msg_control); 1191 target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1); 1192 if (!target_cmsg) 1193 return -TARGET_EFAULT; 1194 1195 while (cmsg && target_cmsg) { 1196 void *data = CMSG_DATA(cmsg); 1197 void *target_data = TARGET_CMSG_DATA(target_cmsg); 1198 1199 int len = tswapal(target_cmsg->cmsg_len) 1200 - TARGET_CMSG_ALIGN(sizeof (struct target_cmsghdr)); 1201 1202 space += CMSG_SPACE(len); 1203 if (space > msgh->msg_controllen) { 1204 space -= CMSG_SPACE(len); 1205 /* This is a QEMU bug, since we allocated the payload 1206 * area ourselves (unlike overflow in host-to-target 1207 * conversion, which is just the guest giving us a buffer 1208 * that's too small). It can't happen for the payload types 1209 * we currently support; if it becomes an issue in future 1210 * we would need to improve our allocation strategy to 1211 * something more intelligent than "twice the size of the 1212 * target buffer we're reading from". 1213 */ 1214 gemu_log("Host cmsg overflow\n"); 1215 break; 1216 } 1217 1218 if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) { 1219 cmsg->cmsg_level = SOL_SOCKET; 1220 } else { 1221 cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level); 1222 } 1223 cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type); 1224 cmsg->cmsg_len = CMSG_LEN(len); 1225 1226 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) { 1227 int *fd = (int *)data; 1228 int *target_fd = (int *)target_data; 1229 int i, numfds = len / sizeof(int); 1230 1231 for (i = 0; i < numfds; i++) { 1232 __get_user(fd[i], target_fd + i); 1233 } 1234 } else if (cmsg->cmsg_level == SOL_SOCKET 1235 && cmsg->cmsg_type == SCM_CREDENTIALS) { 1236 struct ucred *cred = (struct ucred *)data; 1237 struct target_ucred *target_cred = 1238 (struct target_ucred *)target_data; 1239 1240 __get_user(cred->pid, &target_cred->pid); 1241 __get_user(cred->uid, &target_cred->uid); 1242 __get_user(cred->gid, &target_cred->gid); 1243 } else { 1244 gemu_log("Unsupported ancillary data: %d/%d\n", 1245 cmsg->cmsg_level, cmsg->cmsg_type); 1246 memcpy(data, target_data, len); 1247 } 1248 1249 cmsg = CMSG_NXTHDR(msgh, cmsg); 1250 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg); 1251 } 1252 unlock_user(target_cmsg, target_cmsg_addr, 0); 1253 the_end: 1254 msgh->msg_controllen = space; 1255 return 0; 1256 } 1257 1258 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh, 1259 struct msghdr *msgh) 1260 { 1261 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh); 1262 abi_long msg_controllen; 1263 abi_ulong target_cmsg_addr; 1264 struct target_cmsghdr *target_cmsg; 1265 socklen_t space = 0; 1266 1267 msg_controllen = tswapal(target_msgh->msg_controllen); 1268 if (msg_controllen < sizeof (struct target_cmsghdr)) 1269 goto the_end; 1270 target_cmsg_addr = tswapal(target_msgh->msg_control); 1271 target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0); 1272 if (!target_cmsg) 1273 return -TARGET_EFAULT; 1274 1275 while (cmsg && target_cmsg) { 1276 void *data = CMSG_DATA(cmsg); 1277 void *target_data = TARGET_CMSG_DATA(target_cmsg); 1278 1279 int len = cmsg->cmsg_len - CMSG_ALIGN(sizeof (struct cmsghdr)); 1280 int tgt_len, tgt_space; 1281 1282 /* We never copy a half-header but may copy half-data; 1283 * this is Linux's behaviour in put_cmsg(). Note that 1284 * truncation here is a guest problem (which we report 1285 * to the guest via the CTRUNC bit), unlike truncation 1286 * in target_to_host_cmsg, which is a QEMU bug. 1287 */ 1288 if (msg_controllen < sizeof(struct cmsghdr)) { 1289 target_msgh->msg_flags |= tswap32(MSG_CTRUNC); 1290 break; 1291 } 1292 1293 if (cmsg->cmsg_level == SOL_SOCKET) { 1294 target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET); 1295 } else { 1296 target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level); 1297 } 1298 target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type); 1299 1300 tgt_len = TARGET_CMSG_LEN(len); 1301 1302 /* Payload types which need a different size of payload on 1303 * the target must adjust tgt_len here. 1304 */ 1305 switch (cmsg->cmsg_level) { 1306 case SOL_SOCKET: 1307 switch (cmsg->cmsg_type) { 1308 case SO_TIMESTAMP: 1309 tgt_len = sizeof(struct target_timeval); 1310 break; 1311 default: 1312 break; 1313 } 1314 default: 1315 break; 1316 } 1317 1318 if (msg_controllen < tgt_len) { 1319 target_msgh->msg_flags |= tswap32(MSG_CTRUNC); 1320 tgt_len = msg_controllen; 1321 } 1322 1323 /* We must now copy-and-convert len bytes of payload 1324 * into tgt_len bytes of destination space. Bear in mind 1325 * that in both source and destination we may be dealing 1326 * with a truncated value! 1327 */ 1328 switch (cmsg->cmsg_level) { 1329 case SOL_SOCKET: 1330 switch (cmsg->cmsg_type) { 1331 case SCM_RIGHTS: 1332 { 1333 int *fd = (int *)data; 1334 int *target_fd = (int *)target_data; 1335 int i, numfds = tgt_len / sizeof(int); 1336 1337 for (i = 0; i < numfds; i++) { 1338 __put_user(fd[i], target_fd + i); 1339 } 1340 break; 1341 } 1342 case SO_TIMESTAMP: 1343 { 1344 struct timeval *tv = (struct timeval *)data; 1345 struct target_timeval *target_tv = 1346 (struct target_timeval *)target_data; 1347 1348 if (len != sizeof(struct timeval) || 1349 tgt_len != sizeof(struct target_timeval)) { 1350 goto unimplemented; 1351 } 1352 1353 /* copy struct timeval to target */ 1354 __put_user(tv->tv_sec, &target_tv->tv_sec); 1355 __put_user(tv->tv_usec, &target_tv->tv_usec); 1356 break; 1357 } 1358 case SCM_CREDENTIALS: 1359 { 1360 struct ucred *cred = (struct ucred *)data; 1361 struct target_ucred *target_cred = 1362 (struct target_ucred *)target_data; 1363 1364 __put_user(cred->pid, &target_cred->pid); 1365 __put_user(cred->uid, &target_cred->uid); 1366 __put_user(cred->gid, &target_cred->gid); 1367 break; 1368 } 1369 default: 1370 goto unimplemented; 1371 } 1372 break; 1373 1374 default: 1375 unimplemented: 1376 gemu_log("Unsupported ancillary data: %d/%d\n", 1377 cmsg->cmsg_level, cmsg->cmsg_type); 1378 memcpy(target_data, data, MIN(len, tgt_len)); 1379 if (tgt_len > len) { 1380 memset(target_data + len, 0, tgt_len - len); 1381 } 1382 } 1383 1384 target_cmsg->cmsg_len = tswapal(tgt_len); 1385 tgt_space = TARGET_CMSG_SPACE(tgt_len); 1386 if (msg_controllen < tgt_space) { 1387 tgt_space = msg_controllen; 1388 } 1389 msg_controllen -= tgt_space; 1390 space += tgt_space; 1391 cmsg = CMSG_NXTHDR(msgh, cmsg); 1392 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg); 1393 } 1394 unlock_user(target_cmsg, target_cmsg_addr, space); 1395 the_end: 1396 target_msgh->msg_controllen = tswapal(space); 1397 return 0; 1398 } 1399 1400 /* do_setsockopt() Must return target values and target errnos. */ 1401 static abi_long do_setsockopt(int sockfd, int level, int optname, 1402 abi_ulong optval_addr, socklen_t optlen) 1403 { 1404 abi_long ret; 1405 int val; 1406 struct ip_mreqn *ip_mreq; 1407 struct ip_mreq_source *ip_mreq_source; 1408 1409 switch(level) { 1410 case SOL_TCP: 1411 /* TCP options all take an 'int' value. */ 1412 if (optlen < sizeof(uint32_t)) 1413 return -TARGET_EINVAL; 1414 1415 if (get_user_u32(val, optval_addr)) 1416 return -TARGET_EFAULT; 1417 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val))); 1418 break; 1419 case SOL_IP: 1420 switch(optname) { 1421 case IP_TOS: 1422 case IP_TTL: 1423 case IP_HDRINCL: 1424 case IP_ROUTER_ALERT: 1425 case IP_RECVOPTS: 1426 case IP_RETOPTS: 1427 case IP_PKTINFO: 1428 case IP_MTU_DISCOVER: 1429 case IP_RECVERR: 1430 case IP_RECVTOS: 1431 #ifdef IP_FREEBIND 1432 case IP_FREEBIND: 1433 #endif 1434 case IP_MULTICAST_TTL: 1435 case IP_MULTICAST_LOOP: 1436 val = 0; 1437 if (optlen >= sizeof(uint32_t)) { 1438 if (get_user_u32(val, optval_addr)) 1439 return -TARGET_EFAULT; 1440 } else if (optlen >= 1) { 1441 if (get_user_u8(val, optval_addr)) 1442 return -TARGET_EFAULT; 1443 } 1444 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val))); 1445 break; 1446 case IP_ADD_MEMBERSHIP: 1447 case IP_DROP_MEMBERSHIP: 1448 if (optlen < sizeof (struct target_ip_mreq) || 1449 optlen > sizeof (struct target_ip_mreqn)) 1450 return -TARGET_EINVAL; 1451 1452 ip_mreq = (struct ip_mreqn *) alloca(optlen); 1453 target_to_host_ip_mreq(ip_mreq, optval_addr, optlen); 1454 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen)); 1455 break; 1456 1457 case IP_BLOCK_SOURCE: 1458 case IP_UNBLOCK_SOURCE: 1459 case IP_ADD_SOURCE_MEMBERSHIP: 1460 case IP_DROP_SOURCE_MEMBERSHIP: 1461 if (optlen != sizeof (struct target_ip_mreq_source)) 1462 return -TARGET_EINVAL; 1463 1464 ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1); 1465 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen)); 1466 unlock_user (ip_mreq_source, optval_addr, 0); 1467 break; 1468 1469 default: 1470 goto unimplemented; 1471 } 1472 break; 1473 case SOL_IPV6: 1474 switch (optname) { 1475 case IPV6_MTU_DISCOVER: 1476 case IPV6_MTU: 1477 case IPV6_V6ONLY: 1478 case IPV6_RECVPKTINFO: 1479 val = 0; 1480 if (optlen < sizeof(uint32_t)) { 1481 return -TARGET_EINVAL; 1482 } 1483 if (get_user_u32(val, optval_addr)) { 1484 return -TARGET_EFAULT; 1485 } 1486 ret = get_errno(setsockopt(sockfd, level, optname, 1487 &val, sizeof(val))); 1488 break; 1489 default: 1490 goto unimplemented; 1491 } 1492 break; 1493 case SOL_RAW: 1494 switch (optname) { 1495 case ICMP_FILTER: 1496 /* struct icmp_filter takes an u32 value */ 1497 if (optlen < sizeof(uint32_t)) { 1498 return -TARGET_EINVAL; 1499 } 1500 1501 if (get_user_u32(val, optval_addr)) { 1502 return -TARGET_EFAULT; 1503 } 1504 ret = get_errno(setsockopt(sockfd, level, optname, 1505 &val, sizeof(val))); 1506 break; 1507 1508 default: 1509 goto unimplemented; 1510 } 1511 break; 1512 case TARGET_SOL_SOCKET: 1513 switch (optname) { 1514 case TARGET_SO_RCVTIMEO: 1515 { 1516 struct timeval tv; 1517 1518 optname = SO_RCVTIMEO; 1519 1520 set_timeout: 1521 if (optlen != sizeof(struct target_timeval)) { 1522 return -TARGET_EINVAL; 1523 } 1524 1525 if (copy_from_user_timeval(&tv, optval_addr)) { 1526 return -TARGET_EFAULT; 1527 } 1528 1529 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, 1530 &tv, sizeof(tv))); 1531 return ret; 1532 } 1533 case TARGET_SO_SNDTIMEO: 1534 optname = SO_SNDTIMEO; 1535 goto set_timeout; 1536 case TARGET_SO_ATTACH_FILTER: 1537 { 1538 struct target_sock_fprog *tfprog; 1539 struct target_sock_filter *tfilter; 1540 struct sock_fprog fprog; 1541 struct sock_filter *filter; 1542 int i; 1543 1544 if (optlen != sizeof(*tfprog)) { 1545 return -TARGET_EINVAL; 1546 } 1547 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) { 1548 return -TARGET_EFAULT; 1549 } 1550 if (!lock_user_struct(VERIFY_READ, tfilter, 1551 tswapal(tfprog->filter), 0)) { 1552 unlock_user_struct(tfprog, optval_addr, 1); 1553 return -TARGET_EFAULT; 1554 } 1555 1556 fprog.len = tswap16(tfprog->len); 1557 filter = malloc(fprog.len * sizeof(*filter)); 1558 if (filter == NULL) { 1559 unlock_user_struct(tfilter, tfprog->filter, 1); 1560 unlock_user_struct(tfprog, optval_addr, 1); 1561 return -TARGET_ENOMEM; 1562 } 1563 for (i = 0; i < fprog.len; i++) { 1564 filter[i].code = tswap16(tfilter[i].code); 1565 filter[i].jt = tfilter[i].jt; 1566 filter[i].jf = tfilter[i].jf; 1567 filter[i].k = tswap32(tfilter[i].k); 1568 } 1569 fprog.filter = filter; 1570 1571 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, 1572 SO_ATTACH_FILTER, &fprog, sizeof(fprog))); 1573 free(filter); 1574 1575 unlock_user_struct(tfilter, tfprog->filter, 1); 1576 unlock_user_struct(tfprog, optval_addr, 1); 1577 return ret; 1578 } 1579 case TARGET_SO_BINDTODEVICE: 1580 { 1581 char *dev_ifname, *addr_ifname; 1582 1583 if (optlen > IFNAMSIZ - 1) { 1584 optlen = IFNAMSIZ - 1; 1585 } 1586 dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1); 1587 if (!dev_ifname) { 1588 return -TARGET_EFAULT; 1589 } 1590 optname = SO_BINDTODEVICE; 1591 addr_ifname = alloca(IFNAMSIZ); 1592 memcpy(addr_ifname, dev_ifname, optlen); 1593 addr_ifname[optlen] = 0; 1594 ret = get_errno(setsockopt(sockfd, level, optname, addr_ifname, optlen)); 1595 unlock_user (dev_ifname, optval_addr, 0); 1596 return ret; 1597 } 1598 /* Options with 'int' argument. */ 1599 case TARGET_SO_DEBUG: 1600 optname = SO_DEBUG; 1601 break; 1602 case TARGET_SO_REUSEADDR: 1603 optname = SO_REUSEADDR; 1604 break; 1605 case TARGET_SO_TYPE: 1606 optname = SO_TYPE; 1607 break; 1608 case TARGET_SO_ERROR: 1609 optname = SO_ERROR; 1610 break; 1611 case TARGET_SO_DONTROUTE: 1612 optname = SO_DONTROUTE; 1613 break; 1614 case TARGET_SO_BROADCAST: 1615 optname = SO_BROADCAST; 1616 break; 1617 case TARGET_SO_SNDBUF: 1618 optname = SO_SNDBUF; 1619 break; 1620 case TARGET_SO_SNDBUFFORCE: 1621 optname = SO_SNDBUFFORCE; 1622 break; 1623 case TARGET_SO_RCVBUF: 1624 optname = SO_RCVBUF; 1625 break; 1626 case TARGET_SO_RCVBUFFORCE: 1627 optname = SO_RCVBUFFORCE; 1628 break; 1629 case TARGET_SO_KEEPALIVE: 1630 optname = SO_KEEPALIVE; 1631 break; 1632 case TARGET_SO_OOBINLINE: 1633 optname = SO_OOBINLINE; 1634 break; 1635 case TARGET_SO_NO_CHECK: 1636 optname = SO_NO_CHECK; 1637 break; 1638 case TARGET_SO_PRIORITY: 1639 optname = SO_PRIORITY; 1640 break; 1641 #ifdef SO_BSDCOMPAT 1642 case TARGET_SO_BSDCOMPAT: 1643 optname = SO_BSDCOMPAT; 1644 break; 1645 #endif 1646 case TARGET_SO_PASSCRED: 1647 optname = SO_PASSCRED; 1648 break; 1649 case TARGET_SO_PASSSEC: 1650 optname = SO_PASSSEC; 1651 break; 1652 case TARGET_SO_TIMESTAMP: 1653 optname = SO_TIMESTAMP; 1654 break; 1655 case TARGET_SO_RCVLOWAT: 1656 optname = SO_RCVLOWAT; 1657 break; 1658 break; 1659 default: 1660 goto unimplemented; 1661 } 1662 if (optlen < sizeof(uint32_t)) 1663 return -TARGET_EINVAL; 1664 1665 if (get_user_u32(val, optval_addr)) 1666 return -TARGET_EFAULT; 1667 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val))); 1668 break; 1669 default: 1670 unimplemented: 1671 gemu_log("Unsupported setsockopt level=%d optname=%d\n", level, optname); 1672 ret = -TARGET_ENOPROTOOPT; 1673 } 1674 return ret; 1675 } 1676 1677 /* do_getsockopt() Must return target values and target errnos. */ 1678 static abi_long do_getsockopt(int sockfd, int level, int optname, 1679 abi_ulong optval_addr, abi_ulong optlen) 1680 { 1681 abi_long ret; 1682 int len, val; 1683 socklen_t lv; 1684 1685 switch(level) { 1686 case TARGET_SOL_SOCKET: 1687 level = SOL_SOCKET; 1688 switch (optname) { 1689 /* These don't just return a single integer */ 1690 case TARGET_SO_LINGER: 1691 case TARGET_SO_RCVTIMEO: 1692 case TARGET_SO_SNDTIMEO: 1693 case TARGET_SO_PEERNAME: 1694 goto unimplemented; 1695 case TARGET_SO_PEERCRED: { 1696 struct ucred cr; 1697 socklen_t crlen; 1698 struct target_ucred *tcr; 1699 1700 if (get_user_u32(len, optlen)) { 1701 return -TARGET_EFAULT; 1702 } 1703 if (len < 0) { 1704 return -TARGET_EINVAL; 1705 } 1706 1707 crlen = sizeof(cr); 1708 ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED, 1709 &cr, &crlen)); 1710 if (ret < 0) { 1711 return ret; 1712 } 1713 if (len > crlen) { 1714 len = crlen; 1715 } 1716 if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) { 1717 return -TARGET_EFAULT; 1718 } 1719 __put_user(cr.pid, &tcr->pid); 1720 __put_user(cr.uid, &tcr->uid); 1721 __put_user(cr.gid, &tcr->gid); 1722 unlock_user_struct(tcr, optval_addr, 1); 1723 if (put_user_u32(len, optlen)) { 1724 return -TARGET_EFAULT; 1725 } 1726 break; 1727 } 1728 /* Options with 'int' argument. */ 1729 case TARGET_SO_DEBUG: 1730 optname = SO_DEBUG; 1731 goto int_case; 1732 case TARGET_SO_REUSEADDR: 1733 optname = SO_REUSEADDR; 1734 goto int_case; 1735 case TARGET_SO_TYPE: 1736 optname = SO_TYPE; 1737 goto int_case; 1738 case TARGET_SO_ERROR: 1739 optname = SO_ERROR; 1740 goto int_case; 1741 case TARGET_SO_DONTROUTE: 1742 optname = SO_DONTROUTE; 1743 goto int_case; 1744 case TARGET_SO_BROADCAST: 1745 optname = SO_BROADCAST; 1746 goto int_case; 1747 case TARGET_SO_SNDBUF: 1748 optname = SO_SNDBUF; 1749 goto int_case; 1750 case TARGET_SO_RCVBUF: 1751 optname = SO_RCVBUF; 1752 goto int_case; 1753 case TARGET_SO_KEEPALIVE: 1754 optname = SO_KEEPALIVE; 1755 goto int_case; 1756 case TARGET_SO_OOBINLINE: 1757 optname = SO_OOBINLINE; 1758 goto int_case; 1759 case TARGET_SO_NO_CHECK: 1760 optname = SO_NO_CHECK; 1761 goto int_case; 1762 case TARGET_SO_PRIORITY: 1763 optname = SO_PRIORITY; 1764 goto int_case; 1765 #ifdef SO_BSDCOMPAT 1766 case TARGET_SO_BSDCOMPAT: 1767 optname = SO_BSDCOMPAT; 1768 goto int_case; 1769 #endif 1770 case TARGET_SO_PASSCRED: 1771 optname = SO_PASSCRED; 1772 goto int_case; 1773 case TARGET_SO_TIMESTAMP: 1774 optname = SO_TIMESTAMP; 1775 goto int_case; 1776 case TARGET_SO_RCVLOWAT: 1777 optname = SO_RCVLOWAT; 1778 goto int_case; 1779 case TARGET_SO_ACCEPTCONN: 1780 optname = SO_ACCEPTCONN; 1781 goto int_case; 1782 default: 1783 goto int_case; 1784 } 1785 break; 1786 case SOL_TCP: 1787 /* TCP options all take an 'int' value. */ 1788 int_case: 1789 if (get_user_u32(len, optlen)) 1790 return -TARGET_EFAULT; 1791 if (len < 0) 1792 return -TARGET_EINVAL; 1793 lv = sizeof(lv); 1794 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 1795 if (ret < 0) 1796 return ret; 1797 if (optname == SO_TYPE) { 1798 val = host_to_target_sock_type(val); 1799 } 1800 if (len > lv) 1801 len = lv; 1802 if (len == 4) { 1803 if (put_user_u32(val, optval_addr)) 1804 return -TARGET_EFAULT; 1805 } else { 1806 if (put_user_u8(val, optval_addr)) 1807 return -TARGET_EFAULT; 1808 } 1809 if (put_user_u32(len, optlen)) 1810 return -TARGET_EFAULT; 1811 break; 1812 case SOL_IP: 1813 switch(optname) { 1814 case IP_TOS: 1815 case IP_TTL: 1816 case IP_HDRINCL: 1817 case IP_ROUTER_ALERT: 1818 case IP_RECVOPTS: 1819 case IP_RETOPTS: 1820 case IP_PKTINFO: 1821 case IP_MTU_DISCOVER: 1822 case IP_RECVERR: 1823 case IP_RECVTOS: 1824 #ifdef IP_FREEBIND 1825 case IP_FREEBIND: 1826 #endif 1827 case IP_MULTICAST_TTL: 1828 case IP_MULTICAST_LOOP: 1829 if (get_user_u32(len, optlen)) 1830 return -TARGET_EFAULT; 1831 if (len < 0) 1832 return -TARGET_EINVAL; 1833 lv = sizeof(lv); 1834 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); 1835 if (ret < 0) 1836 return ret; 1837 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) { 1838 len = 1; 1839 if (put_user_u32(len, optlen) 1840 || put_user_u8(val, optval_addr)) 1841 return -TARGET_EFAULT; 1842 } else { 1843 if (len > sizeof(int)) 1844 len = sizeof(int); 1845 if (put_user_u32(len, optlen) 1846 || put_user_u32(val, optval_addr)) 1847 return -TARGET_EFAULT; 1848 } 1849 break; 1850 default: 1851 ret = -TARGET_ENOPROTOOPT; 1852 break; 1853 } 1854 break; 1855 default: 1856 unimplemented: 1857 gemu_log("getsockopt level=%d optname=%d not yet supported\n", 1858 level, optname); 1859 ret = -TARGET_EOPNOTSUPP; 1860 break; 1861 } 1862 return ret; 1863 } 1864 1865 static struct iovec *lock_iovec(int type, abi_ulong target_addr, 1866 int count, int copy) 1867 { 1868 struct target_iovec *target_vec; 1869 struct iovec *vec; 1870 abi_ulong total_len, max_len; 1871 int i; 1872 int err = 0; 1873 bool bad_address = false; 1874 1875 if (count == 0) { 1876 errno = 0; 1877 return NULL; 1878 } 1879 if (count < 0 || count > IOV_MAX) { 1880 errno = EINVAL; 1881 return NULL; 1882 } 1883 1884 vec = calloc(count, sizeof(struct iovec)); 1885 if (vec == NULL) { 1886 errno = ENOMEM; 1887 return NULL; 1888 } 1889 1890 target_vec = lock_user(VERIFY_READ, target_addr, 1891 count * sizeof(struct target_iovec), 1); 1892 if (target_vec == NULL) { 1893 err = EFAULT; 1894 goto fail2; 1895 } 1896 1897 /* ??? If host page size > target page size, this will result in a 1898 value larger than what we can actually support. */ 1899 max_len = 0x7fffffff & TARGET_PAGE_MASK; 1900 total_len = 0; 1901 1902 for (i = 0; i < count; i++) { 1903 abi_ulong base = tswapal(target_vec[i].iov_base); 1904 abi_long len = tswapal(target_vec[i].iov_len); 1905 1906 if (len < 0) { 1907 err = EINVAL; 1908 goto fail; 1909 } else if (len == 0) { 1910 /* Zero length pointer is ignored. */ 1911 vec[i].iov_base = 0; 1912 } else { 1913 vec[i].iov_base = lock_user(type, base, len, copy); 1914 /* If the first buffer pointer is bad, this is a fault. But 1915 * subsequent bad buffers will result in a partial write; this 1916 * is realized by filling the vector with null pointers and 1917 * zero lengths. */ 1918 if (!vec[i].iov_base) { 1919 if (i == 0) { 1920 err = EFAULT; 1921 goto fail; 1922 } else { 1923 bad_address = true; 1924 } 1925 } 1926 if (bad_address) { 1927 len = 0; 1928 } 1929 if (len > max_len - total_len) { 1930 len = max_len - total_len; 1931 } 1932 } 1933 vec[i].iov_len = len; 1934 total_len += len; 1935 } 1936 1937 unlock_user(target_vec, target_addr, 0); 1938 return vec; 1939 1940 fail: 1941 while (--i >= 0) { 1942 if (tswapal(target_vec[i].iov_len) > 0) { 1943 unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0); 1944 } 1945 } 1946 unlock_user(target_vec, target_addr, 0); 1947 fail2: 1948 free(vec); 1949 errno = err; 1950 return NULL; 1951 } 1952 1953 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr, 1954 int count, int copy) 1955 { 1956 struct target_iovec *target_vec; 1957 int i; 1958 1959 target_vec = lock_user(VERIFY_READ, target_addr, 1960 count * sizeof(struct target_iovec), 1); 1961 if (target_vec) { 1962 for (i = 0; i < count; i++) { 1963 abi_ulong base = tswapal(target_vec[i].iov_base); 1964 abi_long len = tswapal(target_vec[i].iov_len); 1965 if (len < 0) { 1966 break; 1967 } 1968 unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0); 1969 } 1970 unlock_user(target_vec, target_addr, 0); 1971 } 1972 1973 free(vec); 1974 } 1975 1976 static inline int target_to_host_sock_type(int *type) 1977 { 1978 int host_type = 0; 1979 int target_type = *type; 1980 1981 switch (target_type & TARGET_SOCK_TYPE_MASK) { 1982 case TARGET_SOCK_DGRAM: 1983 host_type = SOCK_DGRAM; 1984 break; 1985 case TARGET_SOCK_STREAM: 1986 host_type = SOCK_STREAM; 1987 break; 1988 default: 1989 host_type = target_type & TARGET_SOCK_TYPE_MASK; 1990 break; 1991 } 1992 if (target_type & TARGET_SOCK_CLOEXEC) { 1993 #if defined(SOCK_CLOEXEC) 1994 host_type |= SOCK_CLOEXEC; 1995 #else 1996 return -TARGET_EINVAL; 1997 #endif 1998 } 1999 if (target_type & TARGET_SOCK_NONBLOCK) { 2000 #if defined(SOCK_NONBLOCK) 2001 host_type |= SOCK_NONBLOCK; 2002 #elif !defined(O_NONBLOCK) 2003 return -TARGET_EINVAL; 2004 #endif 2005 } 2006 *type = host_type; 2007 return 0; 2008 } 2009 2010 /* Try to emulate socket type flags after socket creation. */ 2011 static int sock_flags_fixup(int fd, int target_type) 2012 { 2013 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK) 2014 if (target_type & TARGET_SOCK_NONBLOCK) { 2015 int flags = fcntl(fd, F_GETFL); 2016 if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) { 2017 close(fd); 2018 return -TARGET_EINVAL; 2019 } 2020 } 2021 #endif 2022 return fd; 2023 } 2024 2025 /* do_socket() Must return target values and target errnos. */ 2026 static abi_long do_socket(int domain, int type, int protocol) 2027 { 2028 int target_type = type; 2029 int ret; 2030 2031 ret = target_to_host_sock_type(&type); 2032 if (ret) { 2033 return ret; 2034 } 2035 2036 if (domain == PF_NETLINK) 2037 return -TARGET_EAFNOSUPPORT; 2038 ret = get_errno(socket(domain, type, protocol)); 2039 if (ret >= 0) { 2040 ret = sock_flags_fixup(ret, target_type); 2041 } 2042 return ret; 2043 } 2044 2045 /* do_bind() Must return target values and target errnos. */ 2046 static abi_long do_bind(int sockfd, abi_ulong target_addr, 2047 socklen_t addrlen) 2048 { 2049 void *addr; 2050 abi_long ret; 2051 2052 if ((int)addrlen < 0) { 2053 return -TARGET_EINVAL; 2054 } 2055 2056 addr = alloca(addrlen+1); 2057 2058 ret = target_to_host_sockaddr(addr, target_addr, addrlen); 2059 if (ret) 2060 return ret; 2061 2062 return get_errno(bind(sockfd, addr, addrlen)); 2063 } 2064 2065 /* do_connect() Must return target values and target errnos. */ 2066 static abi_long do_connect(int sockfd, abi_ulong target_addr, 2067 socklen_t addrlen) 2068 { 2069 void *addr; 2070 abi_long ret; 2071 2072 if ((int)addrlen < 0) { 2073 return -TARGET_EINVAL; 2074 } 2075 2076 addr = alloca(addrlen+1); 2077 2078 ret = target_to_host_sockaddr(addr, target_addr, addrlen); 2079 if (ret) 2080 return ret; 2081 2082 return get_errno(connect(sockfd, addr, addrlen)); 2083 } 2084 2085 /* do_sendrecvmsg_locked() Must return target values and target errnos. */ 2086 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp, 2087 int flags, int send) 2088 { 2089 abi_long ret, len; 2090 struct msghdr msg; 2091 int count; 2092 struct iovec *vec; 2093 abi_ulong target_vec; 2094 2095 if (msgp->msg_name) { 2096 msg.msg_namelen = tswap32(msgp->msg_namelen); 2097 msg.msg_name = alloca(msg.msg_namelen+1); 2098 ret = target_to_host_sockaddr(msg.msg_name, tswapal(msgp->msg_name), 2099 msg.msg_namelen); 2100 if (ret) { 2101 goto out2; 2102 } 2103 } else { 2104 msg.msg_name = NULL; 2105 msg.msg_namelen = 0; 2106 } 2107 msg.msg_controllen = 2 * tswapal(msgp->msg_controllen); 2108 msg.msg_control = alloca(msg.msg_controllen); 2109 msg.msg_flags = tswap32(msgp->msg_flags); 2110 2111 count = tswapal(msgp->msg_iovlen); 2112 target_vec = tswapal(msgp->msg_iov); 2113 vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE, 2114 target_vec, count, send); 2115 if (vec == NULL) { 2116 ret = -host_to_target_errno(errno); 2117 goto out2; 2118 } 2119 msg.msg_iovlen = count; 2120 msg.msg_iov = vec; 2121 2122 if (send) { 2123 ret = target_to_host_cmsg(&msg, msgp); 2124 if (ret == 0) 2125 ret = get_errno(sendmsg(fd, &msg, flags)); 2126 } else { 2127 ret = get_errno(recvmsg(fd, &msg, flags)); 2128 if (!is_error(ret)) { 2129 len = ret; 2130 ret = host_to_target_cmsg(msgp, &msg); 2131 if (!is_error(ret)) { 2132 msgp->msg_namelen = tswap32(msg.msg_namelen); 2133 if (msg.msg_name != NULL) { 2134 ret = host_to_target_sockaddr(tswapal(msgp->msg_name), 2135 msg.msg_name, msg.msg_namelen); 2136 if (ret) { 2137 goto out; 2138 } 2139 } 2140 2141 ret = len; 2142 } 2143 } 2144 } 2145 2146 out: 2147 unlock_iovec(vec, target_vec, count, !send); 2148 out2: 2149 return ret; 2150 } 2151 2152 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg, 2153 int flags, int send) 2154 { 2155 abi_long ret; 2156 struct target_msghdr *msgp; 2157 2158 if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE, 2159 msgp, 2160 target_msg, 2161 send ? 1 : 0)) { 2162 return -TARGET_EFAULT; 2163 } 2164 ret = do_sendrecvmsg_locked(fd, msgp, flags, send); 2165 unlock_user_struct(msgp, target_msg, send ? 0 : 1); 2166 return ret; 2167 } 2168 2169 #ifdef TARGET_NR_sendmmsg 2170 /* We don't rely on the C library to have sendmmsg/recvmmsg support, 2171 * so it might not have this *mmsg-specific flag either. 2172 */ 2173 #ifndef MSG_WAITFORONE 2174 #define MSG_WAITFORONE 0x10000 2175 #endif 2176 2177 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec, 2178 unsigned int vlen, unsigned int flags, 2179 int send) 2180 { 2181 struct target_mmsghdr *mmsgp; 2182 abi_long ret = 0; 2183 int i; 2184 2185 if (vlen > UIO_MAXIOV) { 2186 vlen = UIO_MAXIOV; 2187 } 2188 2189 mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1); 2190 if (!mmsgp) { 2191 return -TARGET_EFAULT; 2192 } 2193 2194 for (i = 0; i < vlen; i++) { 2195 ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send); 2196 if (is_error(ret)) { 2197 break; 2198 } 2199 mmsgp[i].msg_len = tswap32(ret); 2200 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2201 if (flags & MSG_WAITFORONE) { 2202 flags |= MSG_DONTWAIT; 2203 } 2204 } 2205 2206 unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i); 2207 2208 /* Return number of datagrams sent if we sent any at all; 2209 * otherwise return the error. 2210 */ 2211 if (i) { 2212 return i; 2213 } 2214 return ret; 2215 } 2216 #endif 2217 2218 /* If we don't have a system accept4() then just call accept. 2219 * The callsites to do_accept4() will ensure that they don't 2220 * pass a non-zero flags argument in this config. 2221 */ 2222 #ifndef CONFIG_ACCEPT4 2223 static inline int accept4(int sockfd, struct sockaddr *addr, 2224 socklen_t *addrlen, int flags) 2225 { 2226 assert(flags == 0); 2227 return accept(sockfd, addr, addrlen); 2228 } 2229 #endif 2230 2231 /* do_accept4() Must return target values and target errnos. */ 2232 static abi_long do_accept4(int fd, abi_ulong target_addr, 2233 abi_ulong target_addrlen_addr, int flags) 2234 { 2235 socklen_t addrlen; 2236 void *addr; 2237 abi_long ret; 2238 int host_flags; 2239 2240 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl); 2241 2242 if (target_addr == 0) { 2243 return get_errno(accept4(fd, NULL, NULL, host_flags)); 2244 } 2245 2246 /* linux returns EINVAL if addrlen pointer is invalid */ 2247 if (get_user_u32(addrlen, target_addrlen_addr)) 2248 return -TARGET_EINVAL; 2249 2250 if ((int)addrlen < 0) { 2251 return -TARGET_EINVAL; 2252 } 2253 2254 if (!access_ok(VERIFY_WRITE, target_addr, addrlen)) 2255 return -TARGET_EINVAL; 2256 2257 addr = alloca(addrlen); 2258 2259 ret = get_errno(accept4(fd, addr, &addrlen, host_flags)); 2260 if (!is_error(ret)) { 2261 host_to_target_sockaddr(target_addr, addr, addrlen); 2262 if (put_user_u32(addrlen, target_addrlen_addr)) 2263 ret = -TARGET_EFAULT; 2264 } 2265 return ret; 2266 } 2267 2268 /* do_getpeername() Must return target values and target errnos. */ 2269 static abi_long do_getpeername(int fd, abi_ulong target_addr, 2270 abi_ulong target_addrlen_addr) 2271 { 2272 socklen_t addrlen; 2273 void *addr; 2274 abi_long ret; 2275 2276 if (get_user_u32(addrlen, target_addrlen_addr)) 2277 return -TARGET_EFAULT; 2278 2279 if ((int)addrlen < 0) { 2280 return -TARGET_EINVAL; 2281 } 2282 2283 if (!access_ok(VERIFY_WRITE, target_addr, addrlen)) 2284 return -TARGET_EFAULT; 2285 2286 addr = alloca(addrlen); 2287 2288 ret = get_errno(getpeername(fd, addr, &addrlen)); 2289 if (!is_error(ret)) { 2290 host_to_target_sockaddr(target_addr, addr, addrlen); 2291 if (put_user_u32(addrlen, target_addrlen_addr)) 2292 ret = -TARGET_EFAULT; 2293 } 2294 return ret; 2295 } 2296 2297 /* do_getsockname() Must return target values and target errnos. */ 2298 static abi_long do_getsockname(int fd, abi_ulong target_addr, 2299 abi_ulong target_addrlen_addr) 2300 { 2301 socklen_t addrlen; 2302 void *addr; 2303 abi_long ret; 2304 2305 if (get_user_u32(addrlen, target_addrlen_addr)) 2306 return -TARGET_EFAULT; 2307 2308 if ((int)addrlen < 0) { 2309 return -TARGET_EINVAL; 2310 } 2311 2312 if (!access_ok(VERIFY_WRITE, target_addr, addrlen)) 2313 return -TARGET_EFAULT; 2314 2315 addr = alloca(addrlen); 2316 2317 ret = get_errno(getsockname(fd, addr, &addrlen)); 2318 if (!is_error(ret)) { 2319 host_to_target_sockaddr(target_addr, addr, addrlen); 2320 if (put_user_u32(addrlen, target_addrlen_addr)) 2321 ret = -TARGET_EFAULT; 2322 } 2323 return ret; 2324 } 2325 2326 /* do_socketpair() Must return target values and target errnos. */ 2327 static abi_long do_socketpair(int domain, int type, int protocol, 2328 abi_ulong target_tab_addr) 2329 { 2330 int tab[2]; 2331 abi_long ret; 2332 2333 target_to_host_sock_type(&type); 2334 2335 ret = get_errno(socketpair(domain, type, protocol, tab)); 2336 if (!is_error(ret)) { 2337 if (put_user_s32(tab[0], target_tab_addr) 2338 || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0]))) 2339 ret = -TARGET_EFAULT; 2340 } 2341 return ret; 2342 } 2343 2344 /* do_sendto() Must return target values and target errnos. */ 2345 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags, 2346 abi_ulong target_addr, socklen_t addrlen) 2347 { 2348 void *addr; 2349 void *host_msg; 2350 abi_long ret; 2351 2352 if ((int)addrlen < 0) { 2353 return -TARGET_EINVAL; 2354 } 2355 2356 host_msg = lock_user(VERIFY_READ, msg, len, 1); 2357 if (!host_msg) 2358 return -TARGET_EFAULT; 2359 if (target_addr) { 2360 addr = alloca(addrlen+1); 2361 ret = target_to_host_sockaddr(addr, target_addr, addrlen); 2362 if (ret) { 2363 unlock_user(host_msg, msg, 0); 2364 return ret; 2365 } 2366 ret = get_errno(sendto(fd, host_msg, len, flags, addr, addrlen)); 2367 } else { 2368 ret = get_errno(send(fd, host_msg, len, flags)); 2369 } 2370 unlock_user(host_msg, msg, 0); 2371 return ret; 2372 } 2373 2374 /* do_recvfrom() Must return target values and target errnos. */ 2375 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags, 2376 abi_ulong target_addr, 2377 abi_ulong target_addrlen) 2378 { 2379 socklen_t addrlen; 2380 void *addr; 2381 void *host_msg; 2382 abi_long ret; 2383 2384 host_msg = lock_user(VERIFY_WRITE, msg, len, 0); 2385 if (!host_msg) 2386 return -TARGET_EFAULT; 2387 if (target_addr) { 2388 if (get_user_u32(addrlen, target_addrlen)) { 2389 ret = -TARGET_EFAULT; 2390 goto fail; 2391 } 2392 if ((int)addrlen < 0) { 2393 ret = -TARGET_EINVAL; 2394 goto fail; 2395 } 2396 addr = alloca(addrlen); 2397 ret = get_errno(recvfrom(fd, host_msg, len, flags, addr, &addrlen)); 2398 } else { 2399 addr = NULL; /* To keep compiler quiet. */ 2400 ret = get_errno(qemu_recv(fd, host_msg, len, flags)); 2401 } 2402 if (!is_error(ret)) { 2403 if (target_addr) { 2404 host_to_target_sockaddr(target_addr, addr, addrlen); 2405 if (put_user_u32(addrlen, target_addrlen)) { 2406 ret = -TARGET_EFAULT; 2407 goto fail; 2408 } 2409 } 2410 unlock_user(host_msg, msg, len); 2411 } else { 2412 fail: 2413 unlock_user(host_msg, msg, 0); 2414 } 2415 return ret; 2416 } 2417 2418 #ifdef TARGET_NR_socketcall 2419 /* do_socketcall() Must return target values and target errnos. */ 2420 static abi_long do_socketcall(int num, abi_ulong vptr) 2421 { 2422 static const unsigned ac[] = { /* number of arguments per call */ 2423 [SOCKOP_socket] = 3, /* domain, type, protocol */ 2424 [SOCKOP_bind] = 3, /* sockfd, addr, addrlen */ 2425 [SOCKOP_connect] = 3, /* sockfd, addr, addrlen */ 2426 [SOCKOP_listen] = 2, /* sockfd, backlog */ 2427 [SOCKOP_accept] = 3, /* sockfd, addr, addrlen */ 2428 [SOCKOP_accept4] = 4, /* sockfd, addr, addrlen, flags */ 2429 [SOCKOP_getsockname] = 3, /* sockfd, addr, addrlen */ 2430 [SOCKOP_getpeername] = 3, /* sockfd, addr, addrlen */ 2431 [SOCKOP_socketpair] = 4, /* domain, type, protocol, tab */ 2432 [SOCKOP_send] = 4, /* sockfd, msg, len, flags */ 2433 [SOCKOP_recv] = 4, /* sockfd, msg, len, flags */ 2434 [SOCKOP_sendto] = 6, /* sockfd, msg, len, flags, addr, addrlen */ 2435 [SOCKOP_recvfrom] = 6, /* sockfd, msg, len, flags, addr, addrlen */ 2436 [SOCKOP_shutdown] = 2, /* sockfd, how */ 2437 [SOCKOP_sendmsg] = 3, /* sockfd, msg, flags */ 2438 [SOCKOP_recvmsg] = 3, /* sockfd, msg, flags */ 2439 [SOCKOP_setsockopt] = 5, /* sockfd, level, optname, optval, optlen */ 2440 [SOCKOP_getsockopt] = 5, /* sockfd, level, optname, optval, optlen */ 2441 }; 2442 abi_long a[6]; /* max 6 args */ 2443 2444 /* first, collect the arguments in a[] according to ac[] */ 2445 if (num >= 0 && num < ARRAY_SIZE(ac)) { 2446 unsigned i; 2447 assert(ARRAY_SIZE(a) >= ac[num]); /* ensure we have space for args */ 2448 for (i = 0; i < ac[num]; ++i) { 2449 if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) { 2450 return -TARGET_EFAULT; 2451 } 2452 } 2453 } 2454 2455 /* now when we have the args, actually handle the call */ 2456 switch (num) { 2457 case SOCKOP_socket: /* domain, type, protocol */ 2458 return do_socket(a[0], a[1], a[2]); 2459 case SOCKOP_bind: /* sockfd, addr, addrlen */ 2460 return do_bind(a[0], a[1], a[2]); 2461 case SOCKOP_connect: /* sockfd, addr, addrlen */ 2462 return do_connect(a[0], a[1], a[2]); 2463 case SOCKOP_listen: /* sockfd, backlog */ 2464 return get_errno(listen(a[0], a[1])); 2465 case SOCKOP_accept: /* sockfd, addr, addrlen */ 2466 return do_accept4(a[0], a[1], a[2], 0); 2467 case SOCKOP_accept4: /* sockfd, addr, addrlen, flags */ 2468 return do_accept4(a[0], a[1], a[2], a[3]); 2469 case SOCKOP_getsockname: /* sockfd, addr, addrlen */ 2470 return do_getsockname(a[0], a[1], a[2]); 2471 case SOCKOP_getpeername: /* sockfd, addr, addrlen */ 2472 return do_getpeername(a[0], a[1], a[2]); 2473 case SOCKOP_socketpair: /* domain, type, protocol, tab */ 2474 return do_socketpair(a[0], a[1], a[2], a[3]); 2475 case SOCKOP_send: /* sockfd, msg, len, flags */ 2476 return do_sendto(a[0], a[1], a[2], a[3], 0, 0); 2477 case SOCKOP_recv: /* sockfd, msg, len, flags */ 2478 return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0); 2479 case SOCKOP_sendto: /* sockfd, msg, len, flags, addr, addrlen */ 2480 return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]); 2481 case SOCKOP_recvfrom: /* sockfd, msg, len, flags, addr, addrlen */ 2482 return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]); 2483 case SOCKOP_shutdown: /* sockfd, how */ 2484 return get_errno(shutdown(a[0], a[1])); 2485 case SOCKOP_sendmsg: /* sockfd, msg, flags */ 2486 return do_sendrecvmsg(a[0], a[1], a[2], 1); 2487 case SOCKOP_recvmsg: /* sockfd, msg, flags */ 2488 return do_sendrecvmsg(a[0], a[1], a[2], 0); 2489 case SOCKOP_setsockopt: /* sockfd, level, optname, optval, optlen */ 2490 return do_setsockopt(a[0], a[1], a[2], a[3], a[4]); 2491 case SOCKOP_getsockopt: /* sockfd, level, optname, optval, optlen */ 2492 return do_getsockopt(a[0], a[1], a[2], a[3], a[4]); 2493 default: 2494 gemu_log("Unsupported socketcall: %d\n", num); 2495 return -TARGET_ENOSYS; 2496 } 2497 } 2498 #endif 2499 2500 #define N_SHM_REGIONS 32 2501 2502 static struct shm_region { 2503 abi_ulong start; 2504 abi_ulong size; 2505 } shm_regions[N_SHM_REGIONS]; 2506 2507 struct target_semid_ds 2508 { 2509 struct target_ipc_perm sem_perm; 2510 abi_ulong sem_otime; 2511 #if !defined(TARGET_PPC64) 2512 abi_ulong __unused1; 2513 #endif 2514 abi_ulong sem_ctime; 2515 #if !defined(TARGET_PPC64) 2516 abi_ulong __unused2; 2517 #endif 2518 abi_ulong sem_nsems; 2519 abi_ulong __unused3; 2520 abi_ulong __unused4; 2521 }; 2522 2523 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip, 2524 abi_ulong target_addr) 2525 { 2526 struct target_ipc_perm *target_ip; 2527 struct target_semid_ds *target_sd; 2528 2529 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 2530 return -TARGET_EFAULT; 2531 target_ip = &(target_sd->sem_perm); 2532 host_ip->__key = tswap32(target_ip->__key); 2533 host_ip->uid = tswap32(target_ip->uid); 2534 host_ip->gid = tswap32(target_ip->gid); 2535 host_ip->cuid = tswap32(target_ip->cuid); 2536 host_ip->cgid = tswap32(target_ip->cgid); 2537 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC) 2538 host_ip->mode = tswap32(target_ip->mode); 2539 #else 2540 host_ip->mode = tswap16(target_ip->mode); 2541 #endif 2542 #if defined(TARGET_PPC) 2543 host_ip->__seq = tswap32(target_ip->__seq); 2544 #else 2545 host_ip->__seq = tswap16(target_ip->__seq); 2546 #endif 2547 unlock_user_struct(target_sd, target_addr, 0); 2548 return 0; 2549 } 2550 2551 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr, 2552 struct ipc_perm *host_ip) 2553 { 2554 struct target_ipc_perm *target_ip; 2555 struct target_semid_ds *target_sd; 2556 2557 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 2558 return -TARGET_EFAULT; 2559 target_ip = &(target_sd->sem_perm); 2560 target_ip->__key = tswap32(host_ip->__key); 2561 target_ip->uid = tswap32(host_ip->uid); 2562 target_ip->gid = tswap32(host_ip->gid); 2563 target_ip->cuid = tswap32(host_ip->cuid); 2564 target_ip->cgid = tswap32(host_ip->cgid); 2565 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC) 2566 target_ip->mode = tswap32(host_ip->mode); 2567 #else 2568 target_ip->mode = tswap16(host_ip->mode); 2569 #endif 2570 #if defined(TARGET_PPC) 2571 target_ip->__seq = tswap32(host_ip->__seq); 2572 #else 2573 target_ip->__seq = tswap16(host_ip->__seq); 2574 #endif 2575 unlock_user_struct(target_sd, target_addr, 1); 2576 return 0; 2577 } 2578 2579 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd, 2580 abi_ulong target_addr) 2581 { 2582 struct target_semid_ds *target_sd; 2583 2584 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 2585 return -TARGET_EFAULT; 2586 if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr)) 2587 return -TARGET_EFAULT; 2588 host_sd->sem_nsems = tswapal(target_sd->sem_nsems); 2589 host_sd->sem_otime = tswapal(target_sd->sem_otime); 2590 host_sd->sem_ctime = tswapal(target_sd->sem_ctime); 2591 unlock_user_struct(target_sd, target_addr, 0); 2592 return 0; 2593 } 2594 2595 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr, 2596 struct semid_ds *host_sd) 2597 { 2598 struct target_semid_ds *target_sd; 2599 2600 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 2601 return -TARGET_EFAULT; 2602 if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm))) 2603 return -TARGET_EFAULT; 2604 target_sd->sem_nsems = tswapal(host_sd->sem_nsems); 2605 target_sd->sem_otime = tswapal(host_sd->sem_otime); 2606 target_sd->sem_ctime = tswapal(host_sd->sem_ctime); 2607 unlock_user_struct(target_sd, target_addr, 1); 2608 return 0; 2609 } 2610 2611 struct target_seminfo { 2612 int semmap; 2613 int semmni; 2614 int semmns; 2615 int semmnu; 2616 int semmsl; 2617 int semopm; 2618 int semume; 2619 int semusz; 2620 int semvmx; 2621 int semaem; 2622 }; 2623 2624 static inline abi_long host_to_target_seminfo(abi_ulong target_addr, 2625 struct seminfo *host_seminfo) 2626 { 2627 struct target_seminfo *target_seminfo; 2628 if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0)) 2629 return -TARGET_EFAULT; 2630 __put_user(host_seminfo->semmap, &target_seminfo->semmap); 2631 __put_user(host_seminfo->semmni, &target_seminfo->semmni); 2632 __put_user(host_seminfo->semmns, &target_seminfo->semmns); 2633 __put_user(host_seminfo->semmnu, &target_seminfo->semmnu); 2634 __put_user(host_seminfo->semmsl, &target_seminfo->semmsl); 2635 __put_user(host_seminfo->semopm, &target_seminfo->semopm); 2636 __put_user(host_seminfo->semume, &target_seminfo->semume); 2637 __put_user(host_seminfo->semusz, &target_seminfo->semusz); 2638 __put_user(host_seminfo->semvmx, &target_seminfo->semvmx); 2639 __put_user(host_seminfo->semaem, &target_seminfo->semaem); 2640 unlock_user_struct(target_seminfo, target_addr, 1); 2641 return 0; 2642 } 2643 2644 union semun { 2645 int val; 2646 struct semid_ds *buf; 2647 unsigned short *array; 2648 struct seminfo *__buf; 2649 }; 2650 2651 union target_semun { 2652 int val; 2653 abi_ulong buf; 2654 abi_ulong array; 2655 abi_ulong __buf; 2656 }; 2657 2658 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array, 2659 abi_ulong target_addr) 2660 { 2661 int nsems; 2662 unsigned short *array; 2663 union semun semun; 2664 struct semid_ds semid_ds; 2665 int i, ret; 2666 2667 semun.buf = &semid_ds; 2668 2669 ret = semctl(semid, 0, IPC_STAT, semun); 2670 if (ret == -1) 2671 return get_errno(ret); 2672 2673 nsems = semid_ds.sem_nsems; 2674 2675 *host_array = malloc(nsems*sizeof(unsigned short)); 2676 if (!*host_array) { 2677 return -TARGET_ENOMEM; 2678 } 2679 array = lock_user(VERIFY_READ, target_addr, 2680 nsems*sizeof(unsigned short), 1); 2681 if (!array) { 2682 free(*host_array); 2683 return -TARGET_EFAULT; 2684 } 2685 2686 for(i=0; i<nsems; i++) { 2687 __get_user((*host_array)[i], &array[i]); 2688 } 2689 unlock_user(array, target_addr, 0); 2690 2691 return 0; 2692 } 2693 2694 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr, 2695 unsigned short **host_array) 2696 { 2697 int nsems; 2698 unsigned short *array; 2699 union semun semun; 2700 struct semid_ds semid_ds; 2701 int i, ret; 2702 2703 semun.buf = &semid_ds; 2704 2705 ret = semctl(semid, 0, IPC_STAT, semun); 2706 if (ret == -1) 2707 return get_errno(ret); 2708 2709 nsems = semid_ds.sem_nsems; 2710 2711 array = lock_user(VERIFY_WRITE, target_addr, 2712 nsems*sizeof(unsigned short), 0); 2713 if (!array) 2714 return -TARGET_EFAULT; 2715 2716 for(i=0; i<nsems; i++) { 2717 __put_user((*host_array)[i], &array[i]); 2718 } 2719 free(*host_array); 2720 unlock_user(array, target_addr, 1); 2721 2722 return 0; 2723 } 2724 2725 static inline abi_long do_semctl(int semid, int semnum, int cmd, 2726 union target_semun target_su) 2727 { 2728 union semun arg; 2729 struct semid_ds dsarg; 2730 unsigned short *array = NULL; 2731 struct seminfo seminfo; 2732 abi_long ret = -TARGET_EINVAL; 2733 abi_long err; 2734 cmd &= 0xff; 2735 2736 switch( cmd ) { 2737 case GETVAL: 2738 case SETVAL: 2739 /* In 64 bit cross-endian situations, we will erroneously pick up 2740 * the wrong half of the union for the "val" element. To rectify 2741 * this, the entire 8-byte structure is byteswapped, followed by 2742 * a swap of the 4 byte val field. In other cases, the data is 2743 * already in proper host byte order. */ 2744 if (sizeof(target_su.val) != (sizeof(target_su.buf))) { 2745 target_su.buf = tswapal(target_su.buf); 2746 arg.val = tswap32(target_su.val); 2747 } else { 2748 arg.val = target_su.val; 2749 } 2750 ret = get_errno(semctl(semid, semnum, cmd, arg)); 2751 break; 2752 case GETALL: 2753 case SETALL: 2754 err = target_to_host_semarray(semid, &array, target_su.array); 2755 if (err) 2756 return err; 2757 arg.array = array; 2758 ret = get_errno(semctl(semid, semnum, cmd, arg)); 2759 err = host_to_target_semarray(semid, target_su.array, &array); 2760 if (err) 2761 return err; 2762 break; 2763 case IPC_STAT: 2764 case IPC_SET: 2765 case SEM_STAT: 2766 err = target_to_host_semid_ds(&dsarg, target_su.buf); 2767 if (err) 2768 return err; 2769 arg.buf = &dsarg; 2770 ret = get_errno(semctl(semid, semnum, cmd, arg)); 2771 err = host_to_target_semid_ds(target_su.buf, &dsarg); 2772 if (err) 2773 return err; 2774 break; 2775 case IPC_INFO: 2776 case SEM_INFO: 2777 arg.__buf = &seminfo; 2778 ret = get_errno(semctl(semid, semnum, cmd, arg)); 2779 err = host_to_target_seminfo(target_su.__buf, &seminfo); 2780 if (err) 2781 return err; 2782 break; 2783 case IPC_RMID: 2784 case GETPID: 2785 case GETNCNT: 2786 case GETZCNT: 2787 ret = get_errno(semctl(semid, semnum, cmd, NULL)); 2788 break; 2789 } 2790 2791 return ret; 2792 } 2793 2794 struct target_sembuf { 2795 unsigned short sem_num; 2796 short sem_op; 2797 short sem_flg; 2798 }; 2799 2800 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf, 2801 abi_ulong target_addr, 2802 unsigned nsops) 2803 { 2804 struct target_sembuf *target_sembuf; 2805 int i; 2806 2807 target_sembuf = lock_user(VERIFY_READ, target_addr, 2808 nsops*sizeof(struct target_sembuf), 1); 2809 if (!target_sembuf) 2810 return -TARGET_EFAULT; 2811 2812 for(i=0; i<nsops; i++) { 2813 __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num); 2814 __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op); 2815 __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg); 2816 } 2817 2818 unlock_user(target_sembuf, target_addr, 0); 2819 2820 return 0; 2821 } 2822 2823 static inline abi_long do_semop(int semid, abi_long ptr, unsigned nsops) 2824 { 2825 struct sembuf sops[nsops]; 2826 2827 if (target_to_host_sembuf(sops, ptr, nsops)) 2828 return -TARGET_EFAULT; 2829 2830 return get_errno(semop(semid, sops, nsops)); 2831 } 2832 2833 struct target_msqid_ds 2834 { 2835 struct target_ipc_perm msg_perm; 2836 abi_ulong msg_stime; 2837 #if TARGET_ABI_BITS == 32 2838 abi_ulong __unused1; 2839 #endif 2840 abi_ulong msg_rtime; 2841 #if TARGET_ABI_BITS == 32 2842 abi_ulong __unused2; 2843 #endif 2844 abi_ulong msg_ctime; 2845 #if TARGET_ABI_BITS == 32 2846 abi_ulong __unused3; 2847 #endif 2848 abi_ulong __msg_cbytes; 2849 abi_ulong msg_qnum; 2850 abi_ulong msg_qbytes; 2851 abi_ulong msg_lspid; 2852 abi_ulong msg_lrpid; 2853 abi_ulong __unused4; 2854 abi_ulong __unused5; 2855 }; 2856 2857 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md, 2858 abi_ulong target_addr) 2859 { 2860 struct target_msqid_ds *target_md; 2861 2862 if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1)) 2863 return -TARGET_EFAULT; 2864 if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr)) 2865 return -TARGET_EFAULT; 2866 host_md->msg_stime = tswapal(target_md->msg_stime); 2867 host_md->msg_rtime = tswapal(target_md->msg_rtime); 2868 host_md->msg_ctime = tswapal(target_md->msg_ctime); 2869 host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes); 2870 host_md->msg_qnum = tswapal(target_md->msg_qnum); 2871 host_md->msg_qbytes = tswapal(target_md->msg_qbytes); 2872 host_md->msg_lspid = tswapal(target_md->msg_lspid); 2873 host_md->msg_lrpid = tswapal(target_md->msg_lrpid); 2874 unlock_user_struct(target_md, target_addr, 0); 2875 return 0; 2876 } 2877 2878 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr, 2879 struct msqid_ds *host_md) 2880 { 2881 struct target_msqid_ds *target_md; 2882 2883 if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0)) 2884 return -TARGET_EFAULT; 2885 if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm))) 2886 return -TARGET_EFAULT; 2887 target_md->msg_stime = tswapal(host_md->msg_stime); 2888 target_md->msg_rtime = tswapal(host_md->msg_rtime); 2889 target_md->msg_ctime = tswapal(host_md->msg_ctime); 2890 target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes); 2891 target_md->msg_qnum = tswapal(host_md->msg_qnum); 2892 target_md->msg_qbytes = tswapal(host_md->msg_qbytes); 2893 target_md->msg_lspid = tswapal(host_md->msg_lspid); 2894 target_md->msg_lrpid = tswapal(host_md->msg_lrpid); 2895 unlock_user_struct(target_md, target_addr, 1); 2896 return 0; 2897 } 2898 2899 struct target_msginfo { 2900 int msgpool; 2901 int msgmap; 2902 int msgmax; 2903 int msgmnb; 2904 int msgmni; 2905 int msgssz; 2906 int msgtql; 2907 unsigned short int msgseg; 2908 }; 2909 2910 static inline abi_long host_to_target_msginfo(abi_ulong target_addr, 2911 struct msginfo *host_msginfo) 2912 { 2913 struct target_msginfo *target_msginfo; 2914 if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0)) 2915 return -TARGET_EFAULT; 2916 __put_user(host_msginfo->msgpool, &target_msginfo->msgpool); 2917 __put_user(host_msginfo->msgmap, &target_msginfo->msgmap); 2918 __put_user(host_msginfo->msgmax, &target_msginfo->msgmax); 2919 __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb); 2920 __put_user(host_msginfo->msgmni, &target_msginfo->msgmni); 2921 __put_user(host_msginfo->msgssz, &target_msginfo->msgssz); 2922 __put_user(host_msginfo->msgtql, &target_msginfo->msgtql); 2923 __put_user(host_msginfo->msgseg, &target_msginfo->msgseg); 2924 unlock_user_struct(target_msginfo, target_addr, 1); 2925 return 0; 2926 } 2927 2928 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr) 2929 { 2930 struct msqid_ds dsarg; 2931 struct msginfo msginfo; 2932 abi_long ret = -TARGET_EINVAL; 2933 2934 cmd &= 0xff; 2935 2936 switch (cmd) { 2937 case IPC_STAT: 2938 case IPC_SET: 2939 case MSG_STAT: 2940 if (target_to_host_msqid_ds(&dsarg,ptr)) 2941 return -TARGET_EFAULT; 2942 ret = get_errno(msgctl(msgid, cmd, &dsarg)); 2943 if (host_to_target_msqid_ds(ptr,&dsarg)) 2944 return -TARGET_EFAULT; 2945 break; 2946 case IPC_RMID: 2947 ret = get_errno(msgctl(msgid, cmd, NULL)); 2948 break; 2949 case IPC_INFO: 2950 case MSG_INFO: 2951 ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo)); 2952 if (host_to_target_msginfo(ptr, &msginfo)) 2953 return -TARGET_EFAULT; 2954 break; 2955 } 2956 2957 return ret; 2958 } 2959 2960 struct target_msgbuf { 2961 abi_long mtype; 2962 char mtext[1]; 2963 }; 2964 2965 static inline abi_long do_msgsnd(int msqid, abi_long msgp, 2966 ssize_t msgsz, int msgflg) 2967 { 2968 struct target_msgbuf *target_mb; 2969 struct msgbuf *host_mb; 2970 abi_long ret = 0; 2971 2972 if (msgsz < 0) { 2973 return -TARGET_EINVAL; 2974 } 2975 2976 if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0)) 2977 return -TARGET_EFAULT; 2978 host_mb = malloc(msgsz+sizeof(long)); 2979 if (!host_mb) { 2980 unlock_user_struct(target_mb, msgp, 0); 2981 return -TARGET_ENOMEM; 2982 } 2983 host_mb->mtype = (abi_long) tswapal(target_mb->mtype); 2984 memcpy(host_mb->mtext, target_mb->mtext, msgsz); 2985 ret = get_errno(msgsnd(msqid, host_mb, msgsz, msgflg)); 2986 free(host_mb); 2987 unlock_user_struct(target_mb, msgp, 0); 2988 2989 return ret; 2990 } 2991 2992 static inline abi_long do_msgrcv(int msqid, abi_long msgp, 2993 unsigned int msgsz, abi_long msgtyp, 2994 int msgflg) 2995 { 2996 struct target_msgbuf *target_mb; 2997 char *target_mtext; 2998 struct msgbuf *host_mb; 2999 abi_long ret = 0; 3000 3001 if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0)) 3002 return -TARGET_EFAULT; 3003 3004 host_mb = g_malloc(msgsz+sizeof(long)); 3005 ret = get_errno(msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg)); 3006 3007 if (ret > 0) { 3008 abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong); 3009 target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0); 3010 if (!target_mtext) { 3011 ret = -TARGET_EFAULT; 3012 goto end; 3013 } 3014 memcpy(target_mb->mtext, host_mb->mtext, ret); 3015 unlock_user(target_mtext, target_mtext_addr, ret); 3016 } 3017 3018 target_mb->mtype = tswapal(host_mb->mtype); 3019 3020 end: 3021 if (target_mb) 3022 unlock_user_struct(target_mb, msgp, 1); 3023 g_free(host_mb); 3024 return ret; 3025 } 3026 3027 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd, 3028 abi_ulong target_addr) 3029 { 3030 struct target_shmid_ds *target_sd; 3031 3032 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1)) 3033 return -TARGET_EFAULT; 3034 if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr)) 3035 return -TARGET_EFAULT; 3036 __get_user(host_sd->shm_segsz, &target_sd->shm_segsz); 3037 __get_user(host_sd->shm_atime, &target_sd->shm_atime); 3038 __get_user(host_sd->shm_dtime, &target_sd->shm_dtime); 3039 __get_user(host_sd->shm_ctime, &target_sd->shm_ctime); 3040 __get_user(host_sd->shm_cpid, &target_sd->shm_cpid); 3041 __get_user(host_sd->shm_lpid, &target_sd->shm_lpid); 3042 __get_user(host_sd->shm_nattch, &target_sd->shm_nattch); 3043 unlock_user_struct(target_sd, target_addr, 0); 3044 return 0; 3045 } 3046 3047 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr, 3048 struct shmid_ds *host_sd) 3049 { 3050 struct target_shmid_ds *target_sd; 3051 3052 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0)) 3053 return -TARGET_EFAULT; 3054 if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm))) 3055 return -TARGET_EFAULT; 3056 __put_user(host_sd->shm_segsz, &target_sd->shm_segsz); 3057 __put_user(host_sd->shm_atime, &target_sd->shm_atime); 3058 __put_user(host_sd->shm_dtime, &target_sd->shm_dtime); 3059 __put_user(host_sd->shm_ctime, &target_sd->shm_ctime); 3060 __put_user(host_sd->shm_cpid, &target_sd->shm_cpid); 3061 __put_user(host_sd->shm_lpid, &target_sd->shm_lpid); 3062 __put_user(host_sd->shm_nattch, &target_sd->shm_nattch); 3063 unlock_user_struct(target_sd, target_addr, 1); 3064 return 0; 3065 } 3066 3067 struct target_shminfo { 3068 abi_ulong shmmax; 3069 abi_ulong shmmin; 3070 abi_ulong shmmni; 3071 abi_ulong shmseg; 3072 abi_ulong shmall; 3073 }; 3074 3075 static inline abi_long host_to_target_shminfo(abi_ulong target_addr, 3076 struct shminfo *host_shminfo) 3077 { 3078 struct target_shminfo *target_shminfo; 3079 if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0)) 3080 return -TARGET_EFAULT; 3081 __put_user(host_shminfo->shmmax, &target_shminfo->shmmax); 3082 __put_user(host_shminfo->shmmin, &target_shminfo->shmmin); 3083 __put_user(host_shminfo->shmmni, &target_shminfo->shmmni); 3084 __put_user(host_shminfo->shmseg, &target_shminfo->shmseg); 3085 __put_user(host_shminfo->shmall, &target_shminfo->shmall); 3086 unlock_user_struct(target_shminfo, target_addr, 1); 3087 return 0; 3088 } 3089 3090 struct target_shm_info { 3091 int used_ids; 3092 abi_ulong shm_tot; 3093 abi_ulong shm_rss; 3094 abi_ulong shm_swp; 3095 abi_ulong swap_attempts; 3096 abi_ulong swap_successes; 3097 }; 3098 3099 static inline abi_long host_to_target_shm_info(abi_ulong target_addr, 3100 struct shm_info *host_shm_info) 3101 { 3102 struct target_shm_info *target_shm_info; 3103 if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0)) 3104 return -TARGET_EFAULT; 3105 __put_user(host_shm_info->used_ids, &target_shm_info->used_ids); 3106 __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot); 3107 __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss); 3108 __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp); 3109 __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts); 3110 __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes); 3111 unlock_user_struct(target_shm_info, target_addr, 1); 3112 return 0; 3113 } 3114 3115 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf) 3116 { 3117 struct shmid_ds dsarg; 3118 struct shminfo shminfo; 3119 struct shm_info shm_info; 3120 abi_long ret = -TARGET_EINVAL; 3121 3122 cmd &= 0xff; 3123 3124 switch(cmd) { 3125 case IPC_STAT: 3126 case IPC_SET: 3127 case SHM_STAT: 3128 if (target_to_host_shmid_ds(&dsarg, buf)) 3129 return -TARGET_EFAULT; 3130 ret = get_errno(shmctl(shmid, cmd, &dsarg)); 3131 if (host_to_target_shmid_ds(buf, &dsarg)) 3132 return -TARGET_EFAULT; 3133 break; 3134 case IPC_INFO: 3135 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo)); 3136 if (host_to_target_shminfo(buf, &shminfo)) 3137 return -TARGET_EFAULT; 3138 break; 3139 case SHM_INFO: 3140 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info)); 3141 if (host_to_target_shm_info(buf, &shm_info)) 3142 return -TARGET_EFAULT; 3143 break; 3144 case IPC_RMID: 3145 case SHM_LOCK: 3146 case SHM_UNLOCK: 3147 ret = get_errno(shmctl(shmid, cmd, NULL)); 3148 break; 3149 } 3150 3151 return ret; 3152 } 3153 3154 static inline abi_ulong do_shmat(int shmid, abi_ulong shmaddr, int shmflg) 3155 { 3156 abi_long raddr; 3157 void *host_raddr; 3158 struct shmid_ds shm_info; 3159 int i,ret; 3160 3161 /* find out the length of the shared memory segment */ 3162 ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info)); 3163 if (is_error(ret)) { 3164 /* can't get length, bail out */ 3165 return ret; 3166 } 3167 3168 mmap_lock(); 3169 3170 if (shmaddr) 3171 host_raddr = shmat(shmid, (void *)g2h(shmaddr), shmflg); 3172 else { 3173 abi_ulong mmap_start; 3174 3175 mmap_start = mmap_find_vma(0, shm_info.shm_segsz); 3176 3177 if (mmap_start == -1) { 3178 errno = ENOMEM; 3179 host_raddr = (void *)-1; 3180 } else 3181 host_raddr = shmat(shmid, g2h(mmap_start), shmflg | SHM_REMAP); 3182 } 3183 3184 if (host_raddr == (void *)-1) { 3185 mmap_unlock(); 3186 return get_errno((long)host_raddr); 3187 } 3188 raddr=h2g((unsigned long)host_raddr); 3189 3190 page_set_flags(raddr, raddr + shm_info.shm_segsz, 3191 PAGE_VALID | PAGE_READ | 3192 ((shmflg & SHM_RDONLY)? 0 : PAGE_WRITE)); 3193 3194 for (i = 0; i < N_SHM_REGIONS; i++) { 3195 if (shm_regions[i].start == 0) { 3196 shm_regions[i].start = raddr; 3197 shm_regions[i].size = shm_info.shm_segsz; 3198 break; 3199 } 3200 } 3201 3202 mmap_unlock(); 3203 return raddr; 3204 3205 } 3206 3207 static inline abi_long do_shmdt(abi_ulong shmaddr) 3208 { 3209 int i; 3210 3211 for (i = 0; i < N_SHM_REGIONS; ++i) { 3212 if (shm_regions[i].start == shmaddr) { 3213 shm_regions[i].start = 0; 3214 page_set_flags(shmaddr, shmaddr + shm_regions[i].size, 0); 3215 break; 3216 } 3217 } 3218 3219 return get_errno(shmdt(g2h(shmaddr))); 3220 } 3221 3222 #ifdef TARGET_NR_ipc 3223 /* ??? This only works with linear mappings. */ 3224 /* do_ipc() must return target values and target errnos. */ 3225 static abi_long do_ipc(unsigned int call, abi_long first, 3226 abi_long second, abi_long third, 3227 abi_long ptr, abi_long fifth) 3228 { 3229 int version; 3230 abi_long ret = 0; 3231 3232 version = call >> 16; 3233 call &= 0xffff; 3234 3235 switch (call) { 3236 case IPCOP_semop: 3237 ret = do_semop(first, ptr, second); 3238 break; 3239 3240 case IPCOP_semget: 3241 ret = get_errno(semget(first, second, third)); 3242 break; 3243 3244 case IPCOP_semctl: { 3245 /* The semun argument to semctl is passed by value, so dereference the 3246 * ptr argument. */ 3247 abi_ulong atptr; 3248 get_user_ual(atptr, ptr); 3249 ret = do_semctl(first, second, third, 3250 (union target_semun) atptr); 3251 break; 3252 } 3253 3254 case IPCOP_msgget: 3255 ret = get_errno(msgget(first, second)); 3256 break; 3257 3258 case IPCOP_msgsnd: 3259 ret = do_msgsnd(first, ptr, second, third); 3260 break; 3261 3262 case IPCOP_msgctl: 3263 ret = do_msgctl(first, second, ptr); 3264 break; 3265 3266 case IPCOP_msgrcv: 3267 switch (version) { 3268 case 0: 3269 { 3270 struct target_ipc_kludge { 3271 abi_long msgp; 3272 abi_long msgtyp; 3273 } *tmp; 3274 3275 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) { 3276 ret = -TARGET_EFAULT; 3277 break; 3278 } 3279 3280 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third); 3281 3282 unlock_user_struct(tmp, ptr, 0); 3283 break; 3284 } 3285 default: 3286 ret = do_msgrcv(first, ptr, second, fifth, third); 3287 } 3288 break; 3289 3290 case IPCOP_shmat: 3291 switch (version) { 3292 default: 3293 { 3294 abi_ulong raddr; 3295 raddr = do_shmat(first, ptr, second); 3296 if (is_error(raddr)) 3297 return get_errno(raddr); 3298 if (put_user_ual(raddr, third)) 3299 return -TARGET_EFAULT; 3300 break; 3301 } 3302 case 1: 3303 ret = -TARGET_EINVAL; 3304 break; 3305 } 3306 break; 3307 case IPCOP_shmdt: 3308 ret = do_shmdt(ptr); 3309 break; 3310 3311 case IPCOP_shmget: 3312 /* IPC_* flag values are the same on all linux platforms */ 3313 ret = get_errno(shmget(first, second, third)); 3314 break; 3315 3316 /* IPC_* and SHM_* command values are the same on all linux platforms */ 3317 case IPCOP_shmctl: 3318 ret = do_shmctl(first, second, ptr); 3319 break; 3320 default: 3321 gemu_log("Unsupported ipc call: %d (version %d)\n", call, version); 3322 ret = -TARGET_ENOSYS; 3323 break; 3324 } 3325 return ret; 3326 } 3327 #endif 3328 3329 /* kernel structure types definitions */ 3330 3331 #define STRUCT(name, ...) STRUCT_ ## name, 3332 #define STRUCT_SPECIAL(name) STRUCT_ ## name, 3333 enum { 3334 #include "syscall_types.h" 3335 STRUCT_MAX 3336 }; 3337 #undef STRUCT 3338 #undef STRUCT_SPECIAL 3339 3340 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL }; 3341 #define STRUCT_SPECIAL(name) 3342 #include "syscall_types.h" 3343 #undef STRUCT 3344 #undef STRUCT_SPECIAL 3345 3346 typedef struct IOCTLEntry IOCTLEntry; 3347 3348 typedef abi_long do_ioctl_fn(const IOCTLEntry *ie, uint8_t *buf_temp, 3349 int fd, int cmd, abi_long arg); 3350 3351 struct IOCTLEntry { 3352 int target_cmd; 3353 unsigned int host_cmd; 3354 const char *name; 3355 int access; 3356 do_ioctl_fn *do_ioctl; 3357 const argtype arg_type[5]; 3358 }; 3359 3360 #define IOC_R 0x0001 3361 #define IOC_W 0x0002 3362 #define IOC_RW (IOC_R | IOC_W) 3363 3364 #define MAX_STRUCT_SIZE 4096 3365 3366 #ifdef CONFIG_FIEMAP 3367 /* So fiemap access checks don't overflow on 32 bit systems. 3368 * This is very slightly smaller than the limit imposed by 3369 * the underlying kernel. 3370 */ 3371 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \ 3372 / sizeof(struct fiemap_extent)) 3373 3374 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp, 3375 int fd, int cmd, abi_long arg) 3376 { 3377 /* The parameter for this ioctl is a struct fiemap followed 3378 * by an array of struct fiemap_extent whose size is set 3379 * in fiemap->fm_extent_count. The array is filled in by the 3380 * ioctl. 3381 */ 3382 int target_size_in, target_size_out; 3383 struct fiemap *fm; 3384 const argtype *arg_type = ie->arg_type; 3385 const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) }; 3386 void *argptr, *p; 3387 abi_long ret; 3388 int i, extent_size = thunk_type_size(extent_arg_type, 0); 3389 uint32_t outbufsz; 3390 int free_fm = 0; 3391 3392 assert(arg_type[0] == TYPE_PTR); 3393 assert(ie->access == IOC_RW); 3394 arg_type++; 3395 target_size_in = thunk_type_size(arg_type, 0); 3396 argptr = lock_user(VERIFY_READ, arg, target_size_in, 1); 3397 if (!argptr) { 3398 return -TARGET_EFAULT; 3399 } 3400 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 3401 unlock_user(argptr, arg, 0); 3402 fm = (struct fiemap *)buf_temp; 3403 if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) { 3404 return -TARGET_EINVAL; 3405 } 3406 3407 outbufsz = sizeof (*fm) + 3408 (sizeof(struct fiemap_extent) * fm->fm_extent_count); 3409 3410 if (outbufsz > MAX_STRUCT_SIZE) { 3411 /* We can't fit all the extents into the fixed size buffer. 3412 * Allocate one that is large enough and use it instead. 3413 */ 3414 fm = malloc(outbufsz); 3415 if (!fm) { 3416 return -TARGET_ENOMEM; 3417 } 3418 memcpy(fm, buf_temp, sizeof(struct fiemap)); 3419 free_fm = 1; 3420 } 3421 ret = get_errno(ioctl(fd, ie->host_cmd, fm)); 3422 if (!is_error(ret)) { 3423 target_size_out = target_size_in; 3424 /* An extent_count of 0 means we were only counting the extents 3425 * so there are no structs to copy 3426 */ 3427 if (fm->fm_extent_count != 0) { 3428 target_size_out += fm->fm_mapped_extents * extent_size; 3429 } 3430 argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0); 3431 if (!argptr) { 3432 ret = -TARGET_EFAULT; 3433 } else { 3434 /* Convert the struct fiemap */ 3435 thunk_convert(argptr, fm, arg_type, THUNK_TARGET); 3436 if (fm->fm_extent_count != 0) { 3437 p = argptr + target_size_in; 3438 /* ...and then all the struct fiemap_extents */ 3439 for (i = 0; i < fm->fm_mapped_extents; i++) { 3440 thunk_convert(p, &fm->fm_extents[i], extent_arg_type, 3441 THUNK_TARGET); 3442 p += extent_size; 3443 } 3444 } 3445 unlock_user(argptr, arg, target_size_out); 3446 } 3447 } 3448 if (free_fm) { 3449 free(fm); 3450 } 3451 return ret; 3452 } 3453 #endif 3454 3455 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp, 3456 int fd, int cmd, abi_long arg) 3457 { 3458 const argtype *arg_type = ie->arg_type; 3459 int target_size; 3460 void *argptr; 3461 int ret; 3462 struct ifconf *host_ifconf; 3463 uint32_t outbufsz; 3464 const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) }; 3465 int target_ifreq_size; 3466 int nb_ifreq; 3467 int free_buf = 0; 3468 int i; 3469 int target_ifc_len; 3470 abi_long target_ifc_buf; 3471 int host_ifc_len; 3472 char *host_ifc_buf; 3473 3474 assert(arg_type[0] == TYPE_PTR); 3475 assert(ie->access == IOC_RW); 3476 3477 arg_type++; 3478 target_size = thunk_type_size(arg_type, 0); 3479 3480 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 3481 if (!argptr) 3482 return -TARGET_EFAULT; 3483 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 3484 unlock_user(argptr, arg, 0); 3485 3486 host_ifconf = (struct ifconf *)(unsigned long)buf_temp; 3487 target_ifc_len = host_ifconf->ifc_len; 3488 target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf; 3489 3490 target_ifreq_size = thunk_type_size(ifreq_arg_type, 0); 3491 nb_ifreq = target_ifc_len / target_ifreq_size; 3492 host_ifc_len = nb_ifreq * sizeof(struct ifreq); 3493 3494 outbufsz = sizeof(*host_ifconf) + host_ifc_len; 3495 if (outbufsz > MAX_STRUCT_SIZE) { 3496 /* We can't fit all the extents into the fixed size buffer. 3497 * Allocate one that is large enough and use it instead. 3498 */ 3499 host_ifconf = malloc(outbufsz); 3500 if (!host_ifconf) { 3501 return -TARGET_ENOMEM; 3502 } 3503 memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf)); 3504 free_buf = 1; 3505 } 3506 host_ifc_buf = (char*)host_ifconf + sizeof(*host_ifconf); 3507 3508 host_ifconf->ifc_len = host_ifc_len; 3509 host_ifconf->ifc_buf = host_ifc_buf; 3510 3511 ret = get_errno(ioctl(fd, ie->host_cmd, host_ifconf)); 3512 if (!is_error(ret)) { 3513 /* convert host ifc_len to target ifc_len */ 3514 3515 nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq); 3516 target_ifc_len = nb_ifreq * target_ifreq_size; 3517 host_ifconf->ifc_len = target_ifc_len; 3518 3519 /* restore target ifc_buf */ 3520 3521 host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf; 3522 3523 /* copy struct ifconf to target user */ 3524 3525 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 3526 if (!argptr) 3527 return -TARGET_EFAULT; 3528 thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET); 3529 unlock_user(argptr, arg, target_size); 3530 3531 /* copy ifreq[] to target user */ 3532 3533 argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0); 3534 for (i = 0; i < nb_ifreq ; i++) { 3535 thunk_convert(argptr + i * target_ifreq_size, 3536 host_ifc_buf + i * sizeof(struct ifreq), 3537 ifreq_arg_type, THUNK_TARGET); 3538 } 3539 unlock_user(argptr, target_ifc_buf, target_ifc_len); 3540 } 3541 3542 if (free_buf) { 3543 free(host_ifconf); 3544 } 3545 3546 return ret; 3547 } 3548 3549 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd, 3550 int cmd, abi_long arg) 3551 { 3552 void *argptr; 3553 struct dm_ioctl *host_dm; 3554 abi_long guest_data; 3555 uint32_t guest_data_size; 3556 int target_size; 3557 const argtype *arg_type = ie->arg_type; 3558 abi_long ret; 3559 void *big_buf = NULL; 3560 char *host_data; 3561 3562 arg_type++; 3563 target_size = thunk_type_size(arg_type, 0); 3564 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 3565 if (!argptr) { 3566 ret = -TARGET_EFAULT; 3567 goto out; 3568 } 3569 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 3570 unlock_user(argptr, arg, 0); 3571 3572 /* buf_temp is too small, so fetch things into a bigger buffer */ 3573 big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2); 3574 memcpy(big_buf, buf_temp, target_size); 3575 buf_temp = big_buf; 3576 host_dm = big_buf; 3577 3578 guest_data = arg + host_dm->data_start; 3579 if ((guest_data - arg) < 0) { 3580 ret = -EINVAL; 3581 goto out; 3582 } 3583 guest_data_size = host_dm->data_size - host_dm->data_start; 3584 host_data = (char*)host_dm + host_dm->data_start; 3585 3586 argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1); 3587 switch (ie->host_cmd) { 3588 case DM_REMOVE_ALL: 3589 case DM_LIST_DEVICES: 3590 case DM_DEV_CREATE: 3591 case DM_DEV_REMOVE: 3592 case DM_DEV_SUSPEND: 3593 case DM_DEV_STATUS: 3594 case DM_DEV_WAIT: 3595 case DM_TABLE_STATUS: 3596 case DM_TABLE_CLEAR: 3597 case DM_TABLE_DEPS: 3598 case DM_LIST_VERSIONS: 3599 /* no input data */ 3600 break; 3601 case DM_DEV_RENAME: 3602 case DM_DEV_SET_GEOMETRY: 3603 /* data contains only strings */ 3604 memcpy(host_data, argptr, guest_data_size); 3605 break; 3606 case DM_TARGET_MSG: 3607 memcpy(host_data, argptr, guest_data_size); 3608 *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr); 3609 break; 3610 case DM_TABLE_LOAD: 3611 { 3612 void *gspec = argptr; 3613 void *cur_data = host_data; 3614 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) }; 3615 int spec_size = thunk_type_size(arg_type, 0); 3616 int i; 3617 3618 for (i = 0; i < host_dm->target_count; i++) { 3619 struct dm_target_spec *spec = cur_data; 3620 uint32_t next; 3621 int slen; 3622 3623 thunk_convert(spec, gspec, arg_type, THUNK_HOST); 3624 slen = strlen((char*)gspec + spec_size) + 1; 3625 next = spec->next; 3626 spec->next = sizeof(*spec) + slen; 3627 strcpy((char*)&spec[1], gspec + spec_size); 3628 gspec += next; 3629 cur_data += spec->next; 3630 } 3631 break; 3632 } 3633 default: 3634 ret = -TARGET_EINVAL; 3635 unlock_user(argptr, guest_data, 0); 3636 goto out; 3637 } 3638 unlock_user(argptr, guest_data, 0); 3639 3640 ret = get_errno(ioctl(fd, ie->host_cmd, buf_temp)); 3641 if (!is_error(ret)) { 3642 guest_data = arg + host_dm->data_start; 3643 guest_data_size = host_dm->data_size - host_dm->data_start; 3644 argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0); 3645 switch (ie->host_cmd) { 3646 case DM_REMOVE_ALL: 3647 case DM_DEV_CREATE: 3648 case DM_DEV_REMOVE: 3649 case DM_DEV_RENAME: 3650 case DM_DEV_SUSPEND: 3651 case DM_DEV_STATUS: 3652 case DM_TABLE_LOAD: 3653 case DM_TABLE_CLEAR: 3654 case DM_TARGET_MSG: 3655 case DM_DEV_SET_GEOMETRY: 3656 /* no return data */ 3657 break; 3658 case DM_LIST_DEVICES: 3659 { 3660 struct dm_name_list *nl = (void*)host_dm + host_dm->data_start; 3661 uint32_t remaining_data = guest_data_size; 3662 void *cur_data = argptr; 3663 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) }; 3664 int nl_size = 12; /* can't use thunk_size due to alignment */ 3665 3666 while (1) { 3667 uint32_t next = nl->next; 3668 if (next) { 3669 nl->next = nl_size + (strlen(nl->name) + 1); 3670 } 3671 if (remaining_data < nl->next) { 3672 host_dm->flags |= DM_BUFFER_FULL_FLAG; 3673 break; 3674 } 3675 thunk_convert(cur_data, nl, arg_type, THUNK_TARGET); 3676 strcpy(cur_data + nl_size, nl->name); 3677 cur_data += nl->next; 3678 remaining_data -= nl->next; 3679 if (!next) { 3680 break; 3681 } 3682 nl = (void*)nl + next; 3683 } 3684 break; 3685 } 3686 case DM_DEV_WAIT: 3687 case DM_TABLE_STATUS: 3688 { 3689 struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start; 3690 void *cur_data = argptr; 3691 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) }; 3692 int spec_size = thunk_type_size(arg_type, 0); 3693 int i; 3694 3695 for (i = 0; i < host_dm->target_count; i++) { 3696 uint32_t next = spec->next; 3697 int slen = strlen((char*)&spec[1]) + 1; 3698 spec->next = (cur_data - argptr) + spec_size + slen; 3699 if (guest_data_size < spec->next) { 3700 host_dm->flags |= DM_BUFFER_FULL_FLAG; 3701 break; 3702 } 3703 thunk_convert(cur_data, spec, arg_type, THUNK_TARGET); 3704 strcpy(cur_data + spec_size, (char*)&spec[1]); 3705 cur_data = argptr + spec->next; 3706 spec = (void*)host_dm + host_dm->data_start + next; 3707 } 3708 break; 3709 } 3710 case DM_TABLE_DEPS: 3711 { 3712 void *hdata = (void*)host_dm + host_dm->data_start; 3713 int count = *(uint32_t*)hdata; 3714 uint64_t *hdev = hdata + 8; 3715 uint64_t *gdev = argptr + 8; 3716 int i; 3717 3718 *(uint32_t*)argptr = tswap32(count); 3719 for (i = 0; i < count; i++) { 3720 *gdev = tswap64(*hdev); 3721 gdev++; 3722 hdev++; 3723 } 3724 break; 3725 } 3726 case DM_LIST_VERSIONS: 3727 { 3728 struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start; 3729 uint32_t remaining_data = guest_data_size; 3730 void *cur_data = argptr; 3731 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) }; 3732 int vers_size = thunk_type_size(arg_type, 0); 3733 3734 while (1) { 3735 uint32_t next = vers->next; 3736 if (next) { 3737 vers->next = vers_size + (strlen(vers->name) + 1); 3738 } 3739 if (remaining_data < vers->next) { 3740 host_dm->flags |= DM_BUFFER_FULL_FLAG; 3741 break; 3742 } 3743 thunk_convert(cur_data, vers, arg_type, THUNK_TARGET); 3744 strcpy(cur_data + vers_size, vers->name); 3745 cur_data += vers->next; 3746 remaining_data -= vers->next; 3747 if (!next) { 3748 break; 3749 } 3750 vers = (void*)vers + next; 3751 } 3752 break; 3753 } 3754 default: 3755 unlock_user(argptr, guest_data, 0); 3756 ret = -TARGET_EINVAL; 3757 goto out; 3758 } 3759 unlock_user(argptr, guest_data, guest_data_size); 3760 3761 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 3762 if (!argptr) { 3763 ret = -TARGET_EFAULT; 3764 goto out; 3765 } 3766 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 3767 unlock_user(argptr, arg, target_size); 3768 } 3769 out: 3770 g_free(big_buf); 3771 return ret; 3772 } 3773 3774 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd, 3775 int cmd, abi_long arg) 3776 { 3777 void *argptr; 3778 int target_size; 3779 const argtype *arg_type = ie->arg_type; 3780 const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) }; 3781 abi_long ret; 3782 3783 struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp; 3784 struct blkpg_partition host_part; 3785 3786 /* Read and convert blkpg */ 3787 arg_type++; 3788 target_size = thunk_type_size(arg_type, 0); 3789 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 3790 if (!argptr) { 3791 ret = -TARGET_EFAULT; 3792 goto out; 3793 } 3794 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 3795 unlock_user(argptr, arg, 0); 3796 3797 switch (host_blkpg->op) { 3798 case BLKPG_ADD_PARTITION: 3799 case BLKPG_DEL_PARTITION: 3800 /* payload is struct blkpg_partition */ 3801 break; 3802 default: 3803 /* Unknown opcode */ 3804 ret = -TARGET_EINVAL; 3805 goto out; 3806 } 3807 3808 /* Read and convert blkpg->data */ 3809 arg = (abi_long)(uintptr_t)host_blkpg->data; 3810 target_size = thunk_type_size(part_arg_type, 0); 3811 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 3812 if (!argptr) { 3813 ret = -TARGET_EFAULT; 3814 goto out; 3815 } 3816 thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST); 3817 unlock_user(argptr, arg, 0); 3818 3819 /* Swizzle the data pointer to our local copy and call! */ 3820 host_blkpg->data = &host_part; 3821 ret = get_errno(ioctl(fd, ie->host_cmd, host_blkpg)); 3822 3823 out: 3824 return ret; 3825 } 3826 3827 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp, 3828 int fd, int cmd, abi_long arg) 3829 { 3830 const argtype *arg_type = ie->arg_type; 3831 const StructEntry *se; 3832 const argtype *field_types; 3833 const int *dst_offsets, *src_offsets; 3834 int target_size; 3835 void *argptr; 3836 abi_ulong *target_rt_dev_ptr; 3837 unsigned long *host_rt_dev_ptr; 3838 abi_long ret; 3839 int i; 3840 3841 assert(ie->access == IOC_W); 3842 assert(*arg_type == TYPE_PTR); 3843 arg_type++; 3844 assert(*arg_type == TYPE_STRUCT); 3845 target_size = thunk_type_size(arg_type, 0); 3846 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 3847 if (!argptr) { 3848 return -TARGET_EFAULT; 3849 } 3850 arg_type++; 3851 assert(*arg_type == (int)STRUCT_rtentry); 3852 se = struct_entries + *arg_type++; 3853 assert(se->convert[0] == NULL); 3854 /* convert struct here to be able to catch rt_dev string */ 3855 field_types = se->field_types; 3856 dst_offsets = se->field_offsets[THUNK_HOST]; 3857 src_offsets = se->field_offsets[THUNK_TARGET]; 3858 for (i = 0; i < se->nb_fields; i++) { 3859 if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) { 3860 assert(*field_types == TYPE_PTRVOID); 3861 target_rt_dev_ptr = (abi_ulong *)(argptr + src_offsets[i]); 3862 host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]); 3863 if (*target_rt_dev_ptr != 0) { 3864 *host_rt_dev_ptr = (unsigned long)lock_user_string( 3865 tswapal(*target_rt_dev_ptr)); 3866 if (!*host_rt_dev_ptr) { 3867 unlock_user(argptr, arg, 0); 3868 return -TARGET_EFAULT; 3869 } 3870 } else { 3871 *host_rt_dev_ptr = 0; 3872 } 3873 field_types++; 3874 continue; 3875 } 3876 field_types = thunk_convert(buf_temp + dst_offsets[i], 3877 argptr + src_offsets[i], 3878 field_types, THUNK_HOST); 3879 } 3880 unlock_user(argptr, arg, 0); 3881 3882 ret = get_errno(ioctl(fd, ie->host_cmd, buf_temp)); 3883 if (*host_rt_dev_ptr != 0) { 3884 unlock_user((void *)*host_rt_dev_ptr, 3885 *target_rt_dev_ptr, 0); 3886 } 3887 return ret; 3888 } 3889 3890 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp, 3891 int fd, int cmd, abi_long arg) 3892 { 3893 int sig = target_to_host_signal(arg); 3894 return get_errno(ioctl(fd, ie->host_cmd, sig)); 3895 } 3896 3897 static IOCTLEntry ioctl_entries[] = { 3898 #define IOCTL(cmd, access, ...) \ 3899 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } }, 3900 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \ 3901 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } }, 3902 #include "ioctls.h" 3903 { 0, 0, }, 3904 }; 3905 3906 /* ??? Implement proper locking for ioctls. */ 3907 /* do_ioctl() Must return target values and target errnos. */ 3908 static abi_long do_ioctl(int fd, int cmd, abi_long arg) 3909 { 3910 const IOCTLEntry *ie; 3911 const argtype *arg_type; 3912 abi_long ret; 3913 uint8_t buf_temp[MAX_STRUCT_SIZE]; 3914 int target_size; 3915 void *argptr; 3916 3917 ie = ioctl_entries; 3918 for(;;) { 3919 if (ie->target_cmd == 0) { 3920 gemu_log("Unsupported ioctl: cmd=0x%04lx\n", (long)cmd); 3921 return -TARGET_ENOSYS; 3922 } 3923 if (ie->target_cmd == cmd) 3924 break; 3925 ie++; 3926 } 3927 arg_type = ie->arg_type; 3928 #if defined(DEBUG) 3929 gemu_log("ioctl: cmd=0x%04lx (%s)\n", (long)cmd, ie->name); 3930 #endif 3931 if (ie->do_ioctl) { 3932 return ie->do_ioctl(ie, buf_temp, fd, cmd, arg); 3933 } 3934 3935 switch(arg_type[0]) { 3936 case TYPE_NULL: 3937 /* no argument */ 3938 ret = get_errno(ioctl(fd, ie->host_cmd)); 3939 break; 3940 case TYPE_PTRVOID: 3941 case TYPE_INT: 3942 /* int argment */ 3943 ret = get_errno(ioctl(fd, ie->host_cmd, arg)); 3944 break; 3945 case TYPE_PTR: 3946 arg_type++; 3947 target_size = thunk_type_size(arg_type, 0); 3948 switch(ie->access) { 3949 case IOC_R: 3950 ret = get_errno(ioctl(fd, ie->host_cmd, buf_temp)); 3951 if (!is_error(ret)) { 3952 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 3953 if (!argptr) 3954 return -TARGET_EFAULT; 3955 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 3956 unlock_user(argptr, arg, target_size); 3957 } 3958 break; 3959 case IOC_W: 3960 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 3961 if (!argptr) 3962 return -TARGET_EFAULT; 3963 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 3964 unlock_user(argptr, arg, 0); 3965 ret = get_errno(ioctl(fd, ie->host_cmd, buf_temp)); 3966 break; 3967 default: 3968 case IOC_RW: 3969 argptr = lock_user(VERIFY_READ, arg, target_size, 1); 3970 if (!argptr) 3971 return -TARGET_EFAULT; 3972 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); 3973 unlock_user(argptr, arg, 0); 3974 ret = get_errno(ioctl(fd, ie->host_cmd, buf_temp)); 3975 if (!is_error(ret)) { 3976 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0); 3977 if (!argptr) 3978 return -TARGET_EFAULT; 3979 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); 3980 unlock_user(argptr, arg, target_size); 3981 } 3982 break; 3983 } 3984 break; 3985 default: 3986 gemu_log("Unsupported ioctl type: cmd=0x%04lx type=%d\n", 3987 (long)cmd, arg_type[0]); 3988 ret = -TARGET_ENOSYS; 3989 break; 3990 } 3991 return ret; 3992 } 3993 3994 static const bitmask_transtbl iflag_tbl[] = { 3995 { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK }, 3996 { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT }, 3997 { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR }, 3998 { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK }, 3999 { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK }, 4000 { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP }, 4001 { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR }, 4002 { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR }, 4003 { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL }, 4004 { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC }, 4005 { TARGET_IXON, TARGET_IXON, IXON, IXON }, 4006 { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY }, 4007 { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF }, 4008 { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL }, 4009 { 0, 0, 0, 0 } 4010 }; 4011 4012 static const bitmask_transtbl oflag_tbl[] = { 4013 { TARGET_OPOST, TARGET_OPOST, OPOST, OPOST }, 4014 { TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC }, 4015 { TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR }, 4016 { TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL }, 4017 { TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR }, 4018 { TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET }, 4019 { TARGET_OFILL, TARGET_OFILL, OFILL, OFILL }, 4020 { TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL }, 4021 { TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 }, 4022 { TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 }, 4023 { TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 }, 4024 { TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 }, 4025 { TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 }, 4026 { TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 }, 4027 { TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 }, 4028 { TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 }, 4029 { TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 }, 4030 { TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 }, 4031 { TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 }, 4032 { TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 }, 4033 { TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 }, 4034 { TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 }, 4035 { TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 }, 4036 { TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 }, 4037 { 0, 0, 0, 0 } 4038 }; 4039 4040 static const bitmask_transtbl cflag_tbl[] = { 4041 { TARGET_CBAUD, TARGET_B0, CBAUD, B0 }, 4042 { TARGET_CBAUD, TARGET_B50, CBAUD, B50 }, 4043 { TARGET_CBAUD, TARGET_B75, CBAUD, B75 }, 4044 { TARGET_CBAUD, TARGET_B110, CBAUD, B110 }, 4045 { TARGET_CBAUD, TARGET_B134, CBAUD, B134 }, 4046 { TARGET_CBAUD, TARGET_B150, CBAUD, B150 }, 4047 { TARGET_CBAUD, TARGET_B200, CBAUD, B200 }, 4048 { TARGET_CBAUD, TARGET_B300, CBAUD, B300 }, 4049 { TARGET_CBAUD, TARGET_B600, CBAUD, B600 }, 4050 { TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 }, 4051 { TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 }, 4052 { TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 }, 4053 { TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 }, 4054 { TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 }, 4055 { TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 }, 4056 { TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 }, 4057 { TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 }, 4058 { TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 }, 4059 { TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 }, 4060 { TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 }, 4061 { TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 }, 4062 { TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 }, 4063 { TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 }, 4064 { TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 }, 4065 { TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB }, 4066 { TARGET_CREAD, TARGET_CREAD, CREAD, CREAD }, 4067 { TARGET_PARENB, TARGET_PARENB, PARENB, PARENB }, 4068 { TARGET_PARODD, TARGET_PARODD, PARODD, PARODD }, 4069 { TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL }, 4070 { TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL }, 4071 { TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS }, 4072 { 0, 0, 0, 0 } 4073 }; 4074 4075 static const bitmask_transtbl lflag_tbl[] = { 4076 { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG }, 4077 { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON }, 4078 { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE }, 4079 { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO }, 4080 { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE }, 4081 { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK }, 4082 { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL }, 4083 { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH }, 4084 { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP }, 4085 { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL }, 4086 { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT }, 4087 { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE }, 4088 { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO }, 4089 { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN }, 4090 { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN }, 4091 { 0, 0, 0, 0 } 4092 }; 4093 4094 static void target_to_host_termios (void *dst, const void *src) 4095 { 4096 struct host_termios *host = dst; 4097 const struct target_termios *target = src; 4098 4099 host->c_iflag = 4100 target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl); 4101 host->c_oflag = 4102 target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl); 4103 host->c_cflag = 4104 target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl); 4105 host->c_lflag = 4106 target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl); 4107 host->c_line = target->c_line; 4108 4109 memset(host->c_cc, 0, sizeof(host->c_cc)); 4110 host->c_cc[VINTR] = target->c_cc[TARGET_VINTR]; 4111 host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT]; 4112 host->c_cc[VERASE] = target->c_cc[TARGET_VERASE]; 4113 host->c_cc[VKILL] = target->c_cc[TARGET_VKILL]; 4114 host->c_cc[VEOF] = target->c_cc[TARGET_VEOF]; 4115 host->c_cc[VTIME] = target->c_cc[TARGET_VTIME]; 4116 host->c_cc[VMIN] = target->c_cc[TARGET_VMIN]; 4117 host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC]; 4118 host->c_cc[VSTART] = target->c_cc[TARGET_VSTART]; 4119 host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP]; 4120 host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP]; 4121 host->c_cc[VEOL] = target->c_cc[TARGET_VEOL]; 4122 host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT]; 4123 host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD]; 4124 host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE]; 4125 host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT]; 4126 host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2]; 4127 } 4128 4129 static void host_to_target_termios (void *dst, const void *src) 4130 { 4131 struct target_termios *target = dst; 4132 const struct host_termios *host = src; 4133 4134 target->c_iflag = 4135 tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl)); 4136 target->c_oflag = 4137 tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl)); 4138 target->c_cflag = 4139 tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl)); 4140 target->c_lflag = 4141 tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl)); 4142 target->c_line = host->c_line; 4143 4144 memset(target->c_cc, 0, sizeof(target->c_cc)); 4145 target->c_cc[TARGET_VINTR] = host->c_cc[VINTR]; 4146 target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT]; 4147 target->c_cc[TARGET_VERASE] = host->c_cc[VERASE]; 4148 target->c_cc[TARGET_VKILL] = host->c_cc[VKILL]; 4149 target->c_cc[TARGET_VEOF] = host->c_cc[VEOF]; 4150 target->c_cc[TARGET_VTIME] = host->c_cc[VTIME]; 4151 target->c_cc[TARGET_VMIN] = host->c_cc[VMIN]; 4152 target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC]; 4153 target->c_cc[TARGET_VSTART] = host->c_cc[VSTART]; 4154 target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP]; 4155 target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP]; 4156 target->c_cc[TARGET_VEOL] = host->c_cc[VEOL]; 4157 target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT]; 4158 target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD]; 4159 target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE]; 4160 target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT]; 4161 target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2]; 4162 } 4163 4164 static const StructEntry struct_termios_def = { 4165 .convert = { host_to_target_termios, target_to_host_termios }, 4166 .size = { sizeof(struct target_termios), sizeof(struct host_termios) }, 4167 .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) }, 4168 }; 4169 4170 static bitmask_transtbl mmap_flags_tbl[] = { 4171 { TARGET_MAP_SHARED, TARGET_MAP_SHARED, MAP_SHARED, MAP_SHARED }, 4172 { TARGET_MAP_PRIVATE, TARGET_MAP_PRIVATE, MAP_PRIVATE, MAP_PRIVATE }, 4173 { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED }, 4174 { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS, MAP_ANONYMOUS, MAP_ANONYMOUS }, 4175 { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN, MAP_GROWSDOWN, MAP_GROWSDOWN }, 4176 { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE, MAP_DENYWRITE, MAP_DENYWRITE }, 4177 { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE, MAP_EXECUTABLE, MAP_EXECUTABLE }, 4178 { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED }, 4179 { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE, MAP_NORESERVE, 4180 MAP_NORESERVE }, 4181 { 0, 0, 0, 0 } 4182 }; 4183 4184 #if defined(TARGET_I386) 4185 4186 /* NOTE: there is really one LDT for all the threads */ 4187 static uint8_t *ldt_table; 4188 4189 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount) 4190 { 4191 int size; 4192 void *p; 4193 4194 if (!ldt_table) 4195 return 0; 4196 size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE; 4197 if (size > bytecount) 4198 size = bytecount; 4199 p = lock_user(VERIFY_WRITE, ptr, size, 0); 4200 if (!p) 4201 return -TARGET_EFAULT; 4202 /* ??? Should this by byteswapped? */ 4203 memcpy(p, ldt_table, size); 4204 unlock_user(p, ptr, size); 4205 return size; 4206 } 4207 4208 /* XXX: add locking support */ 4209 static abi_long write_ldt(CPUX86State *env, 4210 abi_ulong ptr, unsigned long bytecount, int oldmode) 4211 { 4212 struct target_modify_ldt_ldt_s ldt_info; 4213 struct target_modify_ldt_ldt_s *target_ldt_info; 4214 int seg_32bit, contents, read_exec_only, limit_in_pages; 4215 int seg_not_present, useable, lm; 4216 uint32_t *lp, entry_1, entry_2; 4217 4218 if (bytecount != sizeof(ldt_info)) 4219 return -TARGET_EINVAL; 4220 if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1)) 4221 return -TARGET_EFAULT; 4222 ldt_info.entry_number = tswap32(target_ldt_info->entry_number); 4223 ldt_info.base_addr = tswapal(target_ldt_info->base_addr); 4224 ldt_info.limit = tswap32(target_ldt_info->limit); 4225 ldt_info.flags = tswap32(target_ldt_info->flags); 4226 unlock_user_struct(target_ldt_info, ptr, 0); 4227 4228 if (ldt_info.entry_number >= TARGET_LDT_ENTRIES) 4229 return -TARGET_EINVAL; 4230 seg_32bit = ldt_info.flags & 1; 4231 contents = (ldt_info.flags >> 1) & 3; 4232 read_exec_only = (ldt_info.flags >> 3) & 1; 4233 limit_in_pages = (ldt_info.flags >> 4) & 1; 4234 seg_not_present = (ldt_info.flags >> 5) & 1; 4235 useable = (ldt_info.flags >> 6) & 1; 4236 #ifdef TARGET_ABI32 4237 lm = 0; 4238 #else 4239 lm = (ldt_info.flags >> 7) & 1; 4240 #endif 4241 if (contents == 3) { 4242 if (oldmode) 4243 return -TARGET_EINVAL; 4244 if (seg_not_present == 0) 4245 return -TARGET_EINVAL; 4246 } 4247 /* allocate the LDT */ 4248 if (!ldt_table) { 4249 env->ldt.base = target_mmap(0, 4250 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE, 4251 PROT_READ|PROT_WRITE, 4252 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 4253 if (env->ldt.base == -1) 4254 return -TARGET_ENOMEM; 4255 memset(g2h(env->ldt.base), 0, 4256 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE); 4257 env->ldt.limit = 0xffff; 4258 ldt_table = g2h(env->ldt.base); 4259 } 4260 4261 /* NOTE: same code as Linux kernel */ 4262 /* Allow LDTs to be cleared by the user. */ 4263 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) { 4264 if (oldmode || 4265 (contents == 0 && 4266 read_exec_only == 1 && 4267 seg_32bit == 0 && 4268 limit_in_pages == 0 && 4269 seg_not_present == 1 && 4270 useable == 0 )) { 4271 entry_1 = 0; 4272 entry_2 = 0; 4273 goto install; 4274 } 4275 } 4276 4277 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) | 4278 (ldt_info.limit & 0x0ffff); 4279 entry_2 = (ldt_info.base_addr & 0xff000000) | 4280 ((ldt_info.base_addr & 0x00ff0000) >> 16) | 4281 (ldt_info.limit & 0xf0000) | 4282 ((read_exec_only ^ 1) << 9) | 4283 (contents << 10) | 4284 ((seg_not_present ^ 1) << 15) | 4285 (seg_32bit << 22) | 4286 (limit_in_pages << 23) | 4287 (lm << 21) | 4288 0x7000; 4289 if (!oldmode) 4290 entry_2 |= (useable << 20); 4291 4292 /* Install the new entry ... */ 4293 install: 4294 lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3)); 4295 lp[0] = tswap32(entry_1); 4296 lp[1] = tswap32(entry_2); 4297 return 0; 4298 } 4299 4300 /* specific and weird i386 syscalls */ 4301 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr, 4302 unsigned long bytecount) 4303 { 4304 abi_long ret; 4305 4306 switch (func) { 4307 case 0: 4308 ret = read_ldt(ptr, bytecount); 4309 break; 4310 case 1: 4311 ret = write_ldt(env, ptr, bytecount, 1); 4312 break; 4313 case 0x11: 4314 ret = write_ldt(env, ptr, bytecount, 0); 4315 break; 4316 default: 4317 ret = -TARGET_ENOSYS; 4318 break; 4319 } 4320 return ret; 4321 } 4322 4323 #if defined(TARGET_I386) && defined(TARGET_ABI32) 4324 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr) 4325 { 4326 uint64_t *gdt_table = g2h(env->gdt.base); 4327 struct target_modify_ldt_ldt_s ldt_info; 4328 struct target_modify_ldt_ldt_s *target_ldt_info; 4329 int seg_32bit, contents, read_exec_only, limit_in_pages; 4330 int seg_not_present, useable, lm; 4331 uint32_t *lp, entry_1, entry_2; 4332 int i; 4333 4334 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1); 4335 if (!target_ldt_info) 4336 return -TARGET_EFAULT; 4337 ldt_info.entry_number = tswap32(target_ldt_info->entry_number); 4338 ldt_info.base_addr = tswapal(target_ldt_info->base_addr); 4339 ldt_info.limit = tswap32(target_ldt_info->limit); 4340 ldt_info.flags = tswap32(target_ldt_info->flags); 4341 if (ldt_info.entry_number == -1) { 4342 for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) { 4343 if (gdt_table[i] == 0) { 4344 ldt_info.entry_number = i; 4345 target_ldt_info->entry_number = tswap32(i); 4346 break; 4347 } 4348 } 4349 } 4350 unlock_user_struct(target_ldt_info, ptr, 1); 4351 4352 if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN || 4353 ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX) 4354 return -TARGET_EINVAL; 4355 seg_32bit = ldt_info.flags & 1; 4356 contents = (ldt_info.flags >> 1) & 3; 4357 read_exec_only = (ldt_info.flags >> 3) & 1; 4358 limit_in_pages = (ldt_info.flags >> 4) & 1; 4359 seg_not_present = (ldt_info.flags >> 5) & 1; 4360 useable = (ldt_info.flags >> 6) & 1; 4361 #ifdef TARGET_ABI32 4362 lm = 0; 4363 #else 4364 lm = (ldt_info.flags >> 7) & 1; 4365 #endif 4366 4367 if (contents == 3) { 4368 if (seg_not_present == 0) 4369 return -TARGET_EINVAL; 4370 } 4371 4372 /* NOTE: same code as Linux kernel */ 4373 /* Allow LDTs to be cleared by the user. */ 4374 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) { 4375 if ((contents == 0 && 4376 read_exec_only == 1 && 4377 seg_32bit == 0 && 4378 limit_in_pages == 0 && 4379 seg_not_present == 1 && 4380 useable == 0 )) { 4381 entry_1 = 0; 4382 entry_2 = 0; 4383 goto install; 4384 } 4385 } 4386 4387 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) | 4388 (ldt_info.limit & 0x0ffff); 4389 entry_2 = (ldt_info.base_addr & 0xff000000) | 4390 ((ldt_info.base_addr & 0x00ff0000) >> 16) | 4391 (ldt_info.limit & 0xf0000) | 4392 ((read_exec_only ^ 1) << 9) | 4393 (contents << 10) | 4394 ((seg_not_present ^ 1) << 15) | 4395 (seg_32bit << 22) | 4396 (limit_in_pages << 23) | 4397 (useable << 20) | 4398 (lm << 21) | 4399 0x7000; 4400 4401 /* Install the new entry ... */ 4402 install: 4403 lp = (uint32_t *)(gdt_table + ldt_info.entry_number); 4404 lp[0] = tswap32(entry_1); 4405 lp[1] = tswap32(entry_2); 4406 return 0; 4407 } 4408 4409 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr) 4410 { 4411 struct target_modify_ldt_ldt_s *target_ldt_info; 4412 uint64_t *gdt_table = g2h(env->gdt.base); 4413 uint32_t base_addr, limit, flags; 4414 int seg_32bit, contents, read_exec_only, limit_in_pages, idx; 4415 int seg_not_present, useable, lm; 4416 uint32_t *lp, entry_1, entry_2; 4417 4418 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1); 4419 if (!target_ldt_info) 4420 return -TARGET_EFAULT; 4421 idx = tswap32(target_ldt_info->entry_number); 4422 if (idx < TARGET_GDT_ENTRY_TLS_MIN || 4423 idx > TARGET_GDT_ENTRY_TLS_MAX) { 4424 unlock_user_struct(target_ldt_info, ptr, 1); 4425 return -TARGET_EINVAL; 4426 } 4427 lp = (uint32_t *)(gdt_table + idx); 4428 entry_1 = tswap32(lp[0]); 4429 entry_2 = tswap32(lp[1]); 4430 4431 read_exec_only = ((entry_2 >> 9) & 1) ^ 1; 4432 contents = (entry_2 >> 10) & 3; 4433 seg_not_present = ((entry_2 >> 15) & 1) ^ 1; 4434 seg_32bit = (entry_2 >> 22) & 1; 4435 limit_in_pages = (entry_2 >> 23) & 1; 4436 useable = (entry_2 >> 20) & 1; 4437 #ifdef TARGET_ABI32 4438 lm = 0; 4439 #else 4440 lm = (entry_2 >> 21) & 1; 4441 #endif 4442 flags = (seg_32bit << 0) | (contents << 1) | 4443 (read_exec_only << 3) | (limit_in_pages << 4) | 4444 (seg_not_present << 5) | (useable << 6) | (lm << 7); 4445 limit = (entry_1 & 0xffff) | (entry_2 & 0xf0000); 4446 base_addr = (entry_1 >> 16) | 4447 (entry_2 & 0xff000000) | 4448 ((entry_2 & 0xff) << 16); 4449 target_ldt_info->base_addr = tswapal(base_addr); 4450 target_ldt_info->limit = tswap32(limit); 4451 target_ldt_info->flags = tswap32(flags); 4452 unlock_user_struct(target_ldt_info, ptr, 1); 4453 return 0; 4454 } 4455 #endif /* TARGET_I386 && TARGET_ABI32 */ 4456 4457 #ifndef TARGET_ABI32 4458 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr) 4459 { 4460 abi_long ret = 0; 4461 abi_ulong val; 4462 int idx; 4463 4464 switch(code) { 4465 case TARGET_ARCH_SET_GS: 4466 case TARGET_ARCH_SET_FS: 4467 if (code == TARGET_ARCH_SET_GS) 4468 idx = R_GS; 4469 else 4470 idx = R_FS; 4471 cpu_x86_load_seg(env, idx, 0); 4472 env->segs[idx].base = addr; 4473 break; 4474 case TARGET_ARCH_GET_GS: 4475 case TARGET_ARCH_GET_FS: 4476 if (code == TARGET_ARCH_GET_GS) 4477 idx = R_GS; 4478 else 4479 idx = R_FS; 4480 val = env->segs[idx].base; 4481 if (put_user(val, addr, abi_ulong)) 4482 ret = -TARGET_EFAULT; 4483 break; 4484 default: 4485 ret = -TARGET_EINVAL; 4486 break; 4487 } 4488 return ret; 4489 } 4490 #endif 4491 4492 #endif /* defined(TARGET_I386) */ 4493 4494 #define NEW_STACK_SIZE 0x40000 4495 4496 4497 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER; 4498 typedef struct { 4499 CPUArchState *env; 4500 pthread_mutex_t mutex; 4501 pthread_cond_t cond; 4502 pthread_t thread; 4503 uint32_t tid; 4504 abi_ulong child_tidptr; 4505 abi_ulong parent_tidptr; 4506 sigset_t sigmask; 4507 } new_thread_info; 4508 4509 static void *clone_func(void *arg) 4510 { 4511 new_thread_info *info = arg; 4512 CPUArchState *env; 4513 CPUState *cpu; 4514 TaskState *ts; 4515 4516 env = info->env; 4517 cpu = ENV_GET_CPU(env); 4518 thread_cpu = cpu; 4519 ts = (TaskState *)cpu->opaque; 4520 info->tid = gettid(); 4521 cpu->host_tid = info->tid; 4522 task_settid(ts); 4523 if (info->child_tidptr) 4524 put_user_u32(info->tid, info->child_tidptr); 4525 if (info->parent_tidptr) 4526 put_user_u32(info->tid, info->parent_tidptr); 4527 /* Enable signals. */ 4528 sigprocmask(SIG_SETMASK, &info->sigmask, NULL); 4529 /* Signal to the parent that we're ready. */ 4530 pthread_mutex_lock(&info->mutex); 4531 pthread_cond_broadcast(&info->cond); 4532 pthread_mutex_unlock(&info->mutex); 4533 /* Wait until the parent has finshed initializing the tls state. */ 4534 pthread_mutex_lock(&clone_lock); 4535 pthread_mutex_unlock(&clone_lock); 4536 cpu_loop(env); 4537 /* never exits */ 4538 return NULL; 4539 } 4540 4541 /* do_fork() Must return host values and target errnos (unlike most 4542 do_*() functions). */ 4543 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp, 4544 abi_ulong parent_tidptr, target_ulong newtls, 4545 abi_ulong child_tidptr) 4546 { 4547 CPUState *cpu = ENV_GET_CPU(env); 4548 int ret; 4549 TaskState *ts; 4550 CPUState *new_cpu; 4551 CPUArchState *new_env; 4552 unsigned int nptl_flags; 4553 sigset_t sigmask; 4554 4555 /* Emulate vfork() with fork() */ 4556 if (flags & CLONE_VFORK) 4557 flags &= ~(CLONE_VFORK | CLONE_VM); 4558 4559 if (flags & CLONE_VM) { 4560 TaskState *parent_ts = (TaskState *)cpu->opaque; 4561 new_thread_info info; 4562 pthread_attr_t attr; 4563 4564 ts = g_malloc0(sizeof(TaskState)); 4565 init_task_state(ts); 4566 /* we create a new CPU instance. */ 4567 new_env = cpu_copy(env); 4568 /* Init regs that differ from the parent. */ 4569 cpu_clone_regs(new_env, newsp); 4570 new_cpu = ENV_GET_CPU(new_env); 4571 new_cpu->opaque = ts; 4572 ts->bprm = parent_ts->bprm; 4573 ts->info = parent_ts->info; 4574 nptl_flags = flags; 4575 flags &= ~CLONE_NPTL_FLAGS2; 4576 4577 if (nptl_flags & CLONE_CHILD_CLEARTID) { 4578 ts->child_tidptr = child_tidptr; 4579 } 4580 4581 if (nptl_flags & CLONE_SETTLS) 4582 cpu_set_tls (new_env, newtls); 4583 4584 /* Grab a mutex so that thread setup appears atomic. */ 4585 pthread_mutex_lock(&clone_lock); 4586 4587 memset(&info, 0, sizeof(info)); 4588 pthread_mutex_init(&info.mutex, NULL); 4589 pthread_mutex_lock(&info.mutex); 4590 pthread_cond_init(&info.cond, NULL); 4591 info.env = new_env; 4592 if (nptl_flags & CLONE_CHILD_SETTID) 4593 info.child_tidptr = child_tidptr; 4594 if (nptl_flags & CLONE_PARENT_SETTID) 4595 info.parent_tidptr = parent_tidptr; 4596 4597 ret = pthread_attr_init(&attr); 4598 ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE); 4599 ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); 4600 /* It is not safe to deliver signals until the child has finished 4601 initializing, so temporarily block all signals. */ 4602 sigfillset(&sigmask); 4603 sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask); 4604 4605 ret = pthread_create(&info.thread, &attr, clone_func, &info); 4606 /* TODO: Free new CPU state if thread creation failed. */ 4607 4608 sigprocmask(SIG_SETMASK, &info.sigmask, NULL); 4609 pthread_attr_destroy(&attr); 4610 if (ret == 0) { 4611 /* Wait for the child to initialize. */ 4612 pthread_cond_wait(&info.cond, &info.mutex); 4613 ret = info.tid; 4614 if (flags & CLONE_PARENT_SETTID) 4615 put_user_u32(ret, parent_tidptr); 4616 } else { 4617 ret = -1; 4618 } 4619 pthread_mutex_unlock(&info.mutex); 4620 pthread_cond_destroy(&info.cond); 4621 pthread_mutex_destroy(&info.mutex); 4622 pthread_mutex_unlock(&clone_lock); 4623 } else { 4624 /* if no CLONE_VM, we consider it is a fork */ 4625 if ((flags & ~(CSIGNAL | CLONE_NPTL_FLAGS2)) != 0) 4626 return -EINVAL; 4627 fork_start(); 4628 ret = fork(); 4629 if (ret == 0) { 4630 /* Child Process. */ 4631 rcu_after_fork(); 4632 cpu_clone_regs(env, newsp); 4633 fork_end(1); 4634 /* There is a race condition here. The parent process could 4635 theoretically read the TID in the child process before the child 4636 tid is set. This would require using either ptrace 4637 (not implemented) or having *_tidptr to point at a shared memory 4638 mapping. We can't repeat the spinlock hack used above because 4639 the child process gets its own copy of the lock. */ 4640 if (flags & CLONE_CHILD_SETTID) 4641 put_user_u32(gettid(), child_tidptr); 4642 if (flags & CLONE_PARENT_SETTID) 4643 put_user_u32(gettid(), parent_tidptr); 4644 ts = (TaskState *)cpu->opaque; 4645 if (flags & CLONE_SETTLS) 4646 cpu_set_tls (env, newtls); 4647 if (flags & CLONE_CHILD_CLEARTID) 4648 ts->child_tidptr = child_tidptr; 4649 } else { 4650 fork_end(0); 4651 } 4652 } 4653 return ret; 4654 } 4655 4656 /* warning : doesn't handle linux specific flags... */ 4657 static int target_to_host_fcntl_cmd(int cmd) 4658 { 4659 switch(cmd) { 4660 case TARGET_F_DUPFD: 4661 case TARGET_F_GETFD: 4662 case TARGET_F_SETFD: 4663 case TARGET_F_GETFL: 4664 case TARGET_F_SETFL: 4665 return cmd; 4666 case TARGET_F_GETLK: 4667 return F_GETLK; 4668 case TARGET_F_SETLK: 4669 return F_SETLK; 4670 case TARGET_F_SETLKW: 4671 return F_SETLKW; 4672 case TARGET_F_GETOWN: 4673 return F_GETOWN; 4674 case TARGET_F_SETOWN: 4675 return F_SETOWN; 4676 case TARGET_F_GETSIG: 4677 return F_GETSIG; 4678 case TARGET_F_SETSIG: 4679 return F_SETSIG; 4680 #if TARGET_ABI_BITS == 32 4681 case TARGET_F_GETLK64: 4682 return F_GETLK64; 4683 case TARGET_F_SETLK64: 4684 return F_SETLK64; 4685 case TARGET_F_SETLKW64: 4686 return F_SETLKW64; 4687 #endif 4688 case TARGET_F_SETLEASE: 4689 return F_SETLEASE; 4690 case TARGET_F_GETLEASE: 4691 return F_GETLEASE; 4692 #ifdef F_DUPFD_CLOEXEC 4693 case TARGET_F_DUPFD_CLOEXEC: 4694 return F_DUPFD_CLOEXEC; 4695 #endif 4696 case TARGET_F_NOTIFY: 4697 return F_NOTIFY; 4698 #ifdef F_GETOWN_EX 4699 case TARGET_F_GETOWN_EX: 4700 return F_GETOWN_EX; 4701 #endif 4702 #ifdef F_SETOWN_EX 4703 case TARGET_F_SETOWN_EX: 4704 return F_SETOWN_EX; 4705 #endif 4706 default: 4707 return -TARGET_EINVAL; 4708 } 4709 return -TARGET_EINVAL; 4710 } 4711 4712 #define TRANSTBL_CONVERT(a) { -1, TARGET_##a, -1, a } 4713 static const bitmask_transtbl flock_tbl[] = { 4714 TRANSTBL_CONVERT(F_RDLCK), 4715 TRANSTBL_CONVERT(F_WRLCK), 4716 TRANSTBL_CONVERT(F_UNLCK), 4717 TRANSTBL_CONVERT(F_EXLCK), 4718 TRANSTBL_CONVERT(F_SHLCK), 4719 { 0, 0, 0, 0 } 4720 }; 4721 4722 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg) 4723 { 4724 struct flock fl; 4725 struct target_flock *target_fl; 4726 struct flock64 fl64; 4727 struct target_flock64 *target_fl64; 4728 #ifdef F_GETOWN_EX 4729 struct f_owner_ex fox; 4730 struct target_f_owner_ex *target_fox; 4731 #endif 4732 abi_long ret; 4733 int host_cmd = target_to_host_fcntl_cmd(cmd); 4734 4735 if (host_cmd == -TARGET_EINVAL) 4736 return host_cmd; 4737 4738 switch(cmd) { 4739 case TARGET_F_GETLK: 4740 if (!lock_user_struct(VERIFY_READ, target_fl, arg, 1)) 4741 return -TARGET_EFAULT; 4742 fl.l_type = 4743 target_to_host_bitmask(tswap16(target_fl->l_type), flock_tbl); 4744 fl.l_whence = tswap16(target_fl->l_whence); 4745 fl.l_start = tswapal(target_fl->l_start); 4746 fl.l_len = tswapal(target_fl->l_len); 4747 fl.l_pid = tswap32(target_fl->l_pid); 4748 unlock_user_struct(target_fl, arg, 0); 4749 ret = get_errno(fcntl(fd, host_cmd, &fl)); 4750 if (ret == 0) { 4751 if (!lock_user_struct(VERIFY_WRITE, target_fl, arg, 0)) 4752 return -TARGET_EFAULT; 4753 target_fl->l_type = 4754 host_to_target_bitmask(tswap16(fl.l_type), flock_tbl); 4755 target_fl->l_whence = tswap16(fl.l_whence); 4756 target_fl->l_start = tswapal(fl.l_start); 4757 target_fl->l_len = tswapal(fl.l_len); 4758 target_fl->l_pid = tswap32(fl.l_pid); 4759 unlock_user_struct(target_fl, arg, 1); 4760 } 4761 break; 4762 4763 case TARGET_F_SETLK: 4764 case TARGET_F_SETLKW: 4765 if (!lock_user_struct(VERIFY_READ, target_fl, arg, 1)) 4766 return -TARGET_EFAULT; 4767 fl.l_type = 4768 target_to_host_bitmask(tswap16(target_fl->l_type), flock_tbl); 4769 fl.l_whence = tswap16(target_fl->l_whence); 4770 fl.l_start = tswapal(target_fl->l_start); 4771 fl.l_len = tswapal(target_fl->l_len); 4772 fl.l_pid = tswap32(target_fl->l_pid); 4773 unlock_user_struct(target_fl, arg, 0); 4774 ret = get_errno(fcntl(fd, host_cmd, &fl)); 4775 break; 4776 4777 case TARGET_F_GETLK64: 4778 if (!lock_user_struct(VERIFY_READ, target_fl64, arg, 1)) 4779 return -TARGET_EFAULT; 4780 fl64.l_type = 4781 target_to_host_bitmask(tswap16(target_fl64->l_type), flock_tbl) >> 1; 4782 fl64.l_whence = tswap16(target_fl64->l_whence); 4783 fl64.l_start = tswap64(target_fl64->l_start); 4784 fl64.l_len = tswap64(target_fl64->l_len); 4785 fl64.l_pid = tswap32(target_fl64->l_pid); 4786 unlock_user_struct(target_fl64, arg, 0); 4787 ret = get_errno(fcntl(fd, host_cmd, &fl64)); 4788 if (ret == 0) { 4789 if (!lock_user_struct(VERIFY_WRITE, target_fl64, arg, 0)) 4790 return -TARGET_EFAULT; 4791 target_fl64->l_type = 4792 host_to_target_bitmask(tswap16(fl64.l_type), flock_tbl) >> 1; 4793 target_fl64->l_whence = tswap16(fl64.l_whence); 4794 target_fl64->l_start = tswap64(fl64.l_start); 4795 target_fl64->l_len = tswap64(fl64.l_len); 4796 target_fl64->l_pid = tswap32(fl64.l_pid); 4797 unlock_user_struct(target_fl64, arg, 1); 4798 } 4799 break; 4800 case TARGET_F_SETLK64: 4801 case TARGET_F_SETLKW64: 4802 if (!lock_user_struct(VERIFY_READ, target_fl64, arg, 1)) 4803 return -TARGET_EFAULT; 4804 fl64.l_type = 4805 target_to_host_bitmask(tswap16(target_fl64->l_type), flock_tbl) >> 1; 4806 fl64.l_whence = tswap16(target_fl64->l_whence); 4807 fl64.l_start = tswap64(target_fl64->l_start); 4808 fl64.l_len = tswap64(target_fl64->l_len); 4809 fl64.l_pid = tswap32(target_fl64->l_pid); 4810 unlock_user_struct(target_fl64, arg, 0); 4811 ret = get_errno(fcntl(fd, host_cmd, &fl64)); 4812 break; 4813 4814 case TARGET_F_GETFL: 4815 ret = get_errno(fcntl(fd, host_cmd, arg)); 4816 if (ret >= 0) { 4817 ret = host_to_target_bitmask(ret, fcntl_flags_tbl); 4818 } 4819 break; 4820 4821 case TARGET_F_SETFL: 4822 ret = get_errno(fcntl(fd, host_cmd, target_to_host_bitmask(arg, fcntl_flags_tbl))); 4823 break; 4824 4825 #ifdef F_GETOWN_EX 4826 case TARGET_F_GETOWN_EX: 4827 ret = get_errno(fcntl(fd, host_cmd, &fox)); 4828 if (ret >= 0) { 4829 if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0)) 4830 return -TARGET_EFAULT; 4831 target_fox->type = tswap32(fox.type); 4832 target_fox->pid = tswap32(fox.pid); 4833 unlock_user_struct(target_fox, arg, 1); 4834 } 4835 break; 4836 #endif 4837 4838 #ifdef F_SETOWN_EX 4839 case TARGET_F_SETOWN_EX: 4840 if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1)) 4841 return -TARGET_EFAULT; 4842 fox.type = tswap32(target_fox->type); 4843 fox.pid = tswap32(target_fox->pid); 4844 unlock_user_struct(target_fox, arg, 0); 4845 ret = get_errno(fcntl(fd, host_cmd, &fox)); 4846 break; 4847 #endif 4848 4849 case TARGET_F_SETOWN: 4850 case TARGET_F_GETOWN: 4851 case TARGET_F_SETSIG: 4852 case TARGET_F_GETSIG: 4853 case TARGET_F_SETLEASE: 4854 case TARGET_F_GETLEASE: 4855 ret = get_errno(fcntl(fd, host_cmd, arg)); 4856 break; 4857 4858 default: 4859 ret = get_errno(fcntl(fd, cmd, arg)); 4860 break; 4861 } 4862 return ret; 4863 } 4864 4865 #ifdef USE_UID16 4866 4867 static inline int high2lowuid(int uid) 4868 { 4869 if (uid > 65535) 4870 return 65534; 4871 else 4872 return uid; 4873 } 4874 4875 static inline int high2lowgid(int gid) 4876 { 4877 if (gid > 65535) 4878 return 65534; 4879 else 4880 return gid; 4881 } 4882 4883 static inline int low2highuid(int uid) 4884 { 4885 if ((int16_t)uid == -1) 4886 return -1; 4887 else 4888 return uid; 4889 } 4890 4891 static inline int low2highgid(int gid) 4892 { 4893 if ((int16_t)gid == -1) 4894 return -1; 4895 else 4896 return gid; 4897 } 4898 static inline int tswapid(int id) 4899 { 4900 return tswap16(id); 4901 } 4902 4903 #define put_user_id(x, gaddr) put_user_u16(x, gaddr) 4904 4905 #else /* !USE_UID16 */ 4906 static inline int high2lowuid(int uid) 4907 { 4908 return uid; 4909 } 4910 static inline int high2lowgid(int gid) 4911 { 4912 return gid; 4913 } 4914 static inline int low2highuid(int uid) 4915 { 4916 return uid; 4917 } 4918 static inline int low2highgid(int gid) 4919 { 4920 return gid; 4921 } 4922 static inline int tswapid(int id) 4923 { 4924 return tswap32(id); 4925 } 4926 4927 #define put_user_id(x, gaddr) put_user_u32(x, gaddr) 4928 4929 #endif /* USE_UID16 */ 4930 4931 void syscall_init(void) 4932 { 4933 IOCTLEntry *ie; 4934 const argtype *arg_type; 4935 int size; 4936 int i; 4937 4938 thunk_init(STRUCT_MAX); 4939 4940 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def); 4941 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def); 4942 #include "syscall_types.h" 4943 #undef STRUCT 4944 #undef STRUCT_SPECIAL 4945 4946 /* Build target_to_host_errno_table[] table from 4947 * host_to_target_errno_table[]. */ 4948 for (i = 0; i < ERRNO_TABLE_SIZE; i++) { 4949 target_to_host_errno_table[host_to_target_errno_table[i]] = i; 4950 } 4951 4952 /* we patch the ioctl size if necessary. We rely on the fact that 4953 no ioctl has all the bits at '1' in the size field */ 4954 ie = ioctl_entries; 4955 while (ie->target_cmd != 0) { 4956 if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) == 4957 TARGET_IOC_SIZEMASK) { 4958 arg_type = ie->arg_type; 4959 if (arg_type[0] != TYPE_PTR) { 4960 fprintf(stderr, "cannot patch size for ioctl 0x%x\n", 4961 ie->target_cmd); 4962 exit(1); 4963 } 4964 arg_type++; 4965 size = thunk_type_size(arg_type, 0); 4966 ie->target_cmd = (ie->target_cmd & 4967 ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) | 4968 (size << TARGET_IOC_SIZESHIFT); 4969 } 4970 4971 /* automatic consistency check if same arch */ 4972 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \ 4973 (defined(__x86_64__) && defined(TARGET_X86_64)) 4974 if (unlikely(ie->target_cmd != ie->host_cmd)) { 4975 fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n", 4976 ie->name, ie->target_cmd, ie->host_cmd); 4977 } 4978 #endif 4979 ie++; 4980 } 4981 } 4982 4983 #if TARGET_ABI_BITS == 32 4984 static inline uint64_t target_offset64(uint32_t word0, uint32_t word1) 4985 { 4986 #ifdef TARGET_WORDS_BIGENDIAN 4987 return ((uint64_t)word0 << 32) | word1; 4988 #else 4989 return ((uint64_t)word1 << 32) | word0; 4990 #endif 4991 } 4992 #else /* TARGET_ABI_BITS == 32 */ 4993 static inline uint64_t target_offset64(uint64_t word0, uint64_t word1) 4994 { 4995 return word0; 4996 } 4997 #endif /* TARGET_ABI_BITS != 32 */ 4998 4999 #ifdef TARGET_NR_truncate64 5000 static inline abi_long target_truncate64(void *cpu_env, const char *arg1, 5001 abi_long arg2, 5002 abi_long arg3, 5003 abi_long arg4) 5004 { 5005 if (regpairs_aligned(cpu_env)) { 5006 arg2 = arg3; 5007 arg3 = arg4; 5008 } 5009 return get_errno(truncate64(arg1, target_offset64(arg2, arg3))); 5010 } 5011 #endif 5012 5013 #ifdef TARGET_NR_ftruncate64 5014 static inline abi_long target_ftruncate64(void *cpu_env, abi_long arg1, 5015 abi_long arg2, 5016 abi_long arg3, 5017 abi_long arg4) 5018 { 5019 if (regpairs_aligned(cpu_env)) { 5020 arg2 = arg3; 5021 arg3 = arg4; 5022 } 5023 return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3))); 5024 } 5025 #endif 5026 5027 static inline abi_long target_to_host_timespec(struct timespec *host_ts, 5028 abi_ulong target_addr) 5029 { 5030 struct target_timespec *target_ts; 5031 5032 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) 5033 return -TARGET_EFAULT; 5034 host_ts->tv_sec = tswapal(target_ts->tv_sec); 5035 host_ts->tv_nsec = tswapal(target_ts->tv_nsec); 5036 unlock_user_struct(target_ts, target_addr, 0); 5037 return 0; 5038 } 5039 5040 static inline abi_long host_to_target_timespec(abi_ulong target_addr, 5041 struct timespec *host_ts) 5042 { 5043 struct target_timespec *target_ts; 5044 5045 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) 5046 return -TARGET_EFAULT; 5047 target_ts->tv_sec = tswapal(host_ts->tv_sec); 5048 target_ts->tv_nsec = tswapal(host_ts->tv_nsec); 5049 unlock_user_struct(target_ts, target_addr, 1); 5050 return 0; 5051 } 5052 5053 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_itspec, 5054 abi_ulong target_addr) 5055 { 5056 struct target_itimerspec *target_itspec; 5057 5058 if (!lock_user_struct(VERIFY_READ, target_itspec, target_addr, 1)) { 5059 return -TARGET_EFAULT; 5060 } 5061 5062 host_itspec->it_interval.tv_sec = 5063 tswapal(target_itspec->it_interval.tv_sec); 5064 host_itspec->it_interval.tv_nsec = 5065 tswapal(target_itspec->it_interval.tv_nsec); 5066 host_itspec->it_value.tv_sec = tswapal(target_itspec->it_value.tv_sec); 5067 host_itspec->it_value.tv_nsec = tswapal(target_itspec->it_value.tv_nsec); 5068 5069 unlock_user_struct(target_itspec, target_addr, 1); 5070 return 0; 5071 } 5072 5073 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr, 5074 struct itimerspec *host_its) 5075 { 5076 struct target_itimerspec *target_itspec; 5077 5078 if (!lock_user_struct(VERIFY_WRITE, target_itspec, target_addr, 0)) { 5079 return -TARGET_EFAULT; 5080 } 5081 5082 target_itspec->it_interval.tv_sec = tswapal(host_its->it_interval.tv_sec); 5083 target_itspec->it_interval.tv_nsec = tswapal(host_its->it_interval.tv_nsec); 5084 5085 target_itspec->it_value.tv_sec = tswapal(host_its->it_value.tv_sec); 5086 target_itspec->it_value.tv_nsec = tswapal(host_its->it_value.tv_nsec); 5087 5088 unlock_user_struct(target_itspec, target_addr, 0); 5089 return 0; 5090 } 5091 5092 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp, 5093 abi_ulong target_addr) 5094 { 5095 struct target_sigevent *target_sevp; 5096 5097 if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) { 5098 return -TARGET_EFAULT; 5099 } 5100 5101 /* This union is awkward on 64 bit systems because it has a 32 bit 5102 * integer and a pointer in it; we follow the conversion approach 5103 * used for handling sigval types in signal.c so the guest should get 5104 * the correct value back even if we did a 64 bit byteswap and it's 5105 * using the 32 bit integer. 5106 */ 5107 host_sevp->sigev_value.sival_ptr = 5108 (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr); 5109 host_sevp->sigev_signo = 5110 target_to_host_signal(tswap32(target_sevp->sigev_signo)); 5111 host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify); 5112 host_sevp->_sigev_un._tid = tswap32(target_sevp->_sigev_un._tid); 5113 5114 unlock_user_struct(target_sevp, target_addr, 1); 5115 return 0; 5116 } 5117 5118 #if defined(TARGET_NR_mlockall) 5119 static inline int target_to_host_mlockall_arg(int arg) 5120 { 5121 int result = 0; 5122 5123 if (arg & TARGET_MLOCKALL_MCL_CURRENT) { 5124 result |= MCL_CURRENT; 5125 } 5126 if (arg & TARGET_MLOCKALL_MCL_FUTURE) { 5127 result |= MCL_FUTURE; 5128 } 5129 return result; 5130 } 5131 #endif 5132 5133 #if defined(TARGET_NR_stat64) || defined(TARGET_NR_newfstatat) 5134 static inline abi_long host_to_target_stat64(void *cpu_env, 5135 abi_ulong target_addr, 5136 struct stat *host_st) 5137 { 5138 #if defined(TARGET_ARM) && defined(TARGET_ABI32) 5139 if (((CPUARMState *)cpu_env)->eabi) { 5140 struct target_eabi_stat64 *target_st; 5141 5142 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0)) 5143 return -TARGET_EFAULT; 5144 memset(target_st, 0, sizeof(struct target_eabi_stat64)); 5145 __put_user(host_st->st_dev, &target_st->st_dev); 5146 __put_user(host_st->st_ino, &target_st->st_ino); 5147 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO 5148 __put_user(host_st->st_ino, &target_st->__st_ino); 5149 #endif 5150 __put_user(host_st->st_mode, &target_st->st_mode); 5151 __put_user(host_st->st_nlink, &target_st->st_nlink); 5152 __put_user(host_st->st_uid, &target_st->st_uid); 5153 __put_user(host_st->st_gid, &target_st->st_gid); 5154 __put_user(host_st->st_rdev, &target_st->st_rdev); 5155 __put_user(host_st->st_size, &target_st->st_size); 5156 __put_user(host_st->st_blksize, &target_st->st_blksize); 5157 __put_user(host_st->st_blocks, &target_st->st_blocks); 5158 __put_user(host_st->st_atime, &target_st->target_st_atime); 5159 __put_user(host_st->st_mtime, &target_st->target_st_mtime); 5160 __put_user(host_st->st_ctime, &target_st->target_st_ctime); 5161 unlock_user_struct(target_st, target_addr, 1); 5162 } else 5163 #endif 5164 { 5165 #if defined(TARGET_HAS_STRUCT_STAT64) 5166 struct target_stat64 *target_st; 5167 #else 5168 struct target_stat *target_st; 5169 #endif 5170 5171 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0)) 5172 return -TARGET_EFAULT; 5173 memset(target_st, 0, sizeof(*target_st)); 5174 __put_user(host_st->st_dev, &target_st->st_dev); 5175 __put_user(host_st->st_ino, &target_st->st_ino); 5176 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO 5177 __put_user(host_st->st_ino, &target_st->__st_ino); 5178 #endif 5179 __put_user(host_st->st_mode, &target_st->st_mode); 5180 __put_user(host_st->st_nlink, &target_st->st_nlink); 5181 __put_user(host_st->st_uid, &target_st->st_uid); 5182 __put_user(host_st->st_gid, &target_st->st_gid); 5183 __put_user(host_st->st_rdev, &target_st->st_rdev); 5184 /* XXX: better use of kernel struct */ 5185 __put_user(host_st->st_size, &target_st->st_size); 5186 __put_user(host_st->st_blksize, &target_st->st_blksize); 5187 __put_user(host_st->st_blocks, &target_st->st_blocks); 5188 __put_user(host_st->st_atime, &target_st->target_st_atime); 5189 __put_user(host_st->st_mtime, &target_st->target_st_mtime); 5190 __put_user(host_st->st_ctime, &target_st->target_st_ctime); 5191 unlock_user_struct(target_st, target_addr, 1); 5192 } 5193 5194 return 0; 5195 } 5196 #endif 5197 5198 /* ??? Using host futex calls even when target atomic operations 5199 are not really atomic probably breaks things. However implementing 5200 futexes locally would make futexes shared between multiple processes 5201 tricky. However they're probably useless because guest atomic 5202 operations won't work either. */ 5203 static int do_futex(target_ulong uaddr, int op, int val, target_ulong timeout, 5204 target_ulong uaddr2, int val3) 5205 { 5206 struct timespec ts, *pts; 5207 int base_op; 5208 5209 /* ??? We assume FUTEX_* constants are the same on both host 5210 and target. */ 5211 #ifdef FUTEX_CMD_MASK 5212 base_op = op & FUTEX_CMD_MASK; 5213 #else 5214 base_op = op; 5215 #endif 5216 switch (base_op) { 5217 case FUTEX_WAIT: 5218 case FUTEX_WAIT_BITSET: 5219 if (timeout) { 5220 pts = &ts; 5221 target_to_host_timespec(pts, timeout); 5222 } else { 5223 pts = NULL; 5224 } 5225 return get_errno(sys_futex(g2h(uaddr), op, tswap32(val), 5226 pts, NULL, val3)); 5227 case FUTEX_WAKE: 5228 return get_errno(sys_futex(g2h(uaddr), op, val, NULL, NULL, 0)); 5229 case FUTEX_FD: 5230 return get_errno(sys_futex(g2h(uaddr), op, val, NULL, NULL, 0)); 5231 case FUTEX_REQUEUE: 5232 case FUTEX_CMP_REQUEUE: 5233 case FUTEX_WAKE_OP: 5234 /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the 5235 TIMEOUT parameter is interpreted as a uint32_t by the kernel. 5236 But the prototype takes a `struct timespec *'; insert casts 5237 to satisfy the compiler. We do not need to tswap TIMEOUT 5238 since it's not compared to guest memory. */ 5239 pts = (struct timespec *)(uintptr_t) timeout; 5240 return get_errno(sys_futex(g2h(uaddr), op, val, pts, 5241 g2h(uaddr2), 5242 (base_op == FUTEX_CMP_REQUEUE 5243 ? tswap32(val3) 5244 : val3))); 5245 default: 5246 return -TARGET_ENOSYS; 5247 } 5248 } 5249 5250 /* Map host to target signal numbers for the wait family of syscalls. 5251 Assume all other status bits are the same. */ 5252 int host_to_target_waitstatus(int status) 5253 { 5254 if (WIFSIGNALED(status)) { 5255 return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f); 5256 } 5257 if (WIFSTOPPED(status)) { 5258 return (host_to_target_signal(WSTOPSIG(status)) << 8) 5259 | (status & 0xff); 5260 } 5261 return status; 5262 } 5263 5264 static int open_self_cmdline(void *cpu_env, int fd) 5265 { 5266 int fd_orig = -1; 5267 bool word_skipped = false; 5268 5269 fd_orig = open("/proc/self/cmdline", O_RDONLY); 5270 if (fd_orig < 0) { 5271 return fd_orig; 5272 } 5273 5274 while (true) { 5275 ssize_t nb_read; 5276 char buf[128]; 5277 char *cp_buf = buf; 5278 5279 nb_read = read(fd_orig, buf, sizeof(buf)); 5280 if (nb_read < 0) { 5281 fd_orig = close(fd_orig); 5282 return -1; 5283 } else if (nb_read == 0) { 5284 break; 5285 } 5286 5287 if (!word_skipped) { 5288 /* Skip the first string, which is the path to qemu-*-static 5289 instead of the actual command. */ 5290 cp_buf = memchr(buf, 0, sizeof(buf)); 5291 if (cp_buf) { 5292 /* Null byte found, skip one string */ 5293 cp_buf++; 5294 nb_read -= cp_buf - buf; 5295 word_skipped = true; 5296 } 5297 } 5298 5299 if (word_skipped) { 5300 if (write(fd, cp_buf, nb_read) != nb_read) { 5301 close(fd_orig); 5302 return -1; 5303 } 5304 } 5305 } 5306 5307 return close(fd_orig); 5308 } 5309 5310 static int open_self_maps(void *cpu_env, int fd) 5311 { 5312 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env); 5313 TaskState *ts = cpu->opaque; 5314 FILE *fp; 5315 char *line = NULL; 5316 size_t len = 0; 5317 ssize_t read; 5318 5319 fp = fopen("/proc/self/maps", "r"); 5320 if (fp == NULL) { 5321 return -EACCES; 5322 } 5323 5324 while ((read = getline(&line, &len, fp)) != -1) { 5325 int fields, dev_maj, dev_min, inode; 5326 uint64_t min, max, offset; 5327 char flag_r, flag_w, flag_x, flag_p; 5328 char path[512] = ""; 5329 fields = sscanf(line, "%"PRIx64"-%"PRIx64" %c%c%c%c %"PRIx64" %x:%x %d" 5330 " %512s", &min, &max, &flag_r, &flag_w, &flag_x, 5331 &flag_p, &offset, &dev_maj, &dev_min, &inode, path); 5332 5333 if ((fields < 10) || (fields > 11)) { 5334 continue; 5335 } 5336 if (h2g_valid(min)) { 5337 int flags = page_get_flags(h2g(min)); 5338 max = h2g_valid(max - 1) ? max : (uintptr_t)g2h(GUEST_ADDR_MAX); 5339 if (page_check_range(h2g(min), max - min, flags) == -1) { 5340 continue; 5341 } 5342 if (h2g(min) == ts->info->stack_limit) { 5343 pstrcpy(path, sizeof(path), " [stack]"); 5344 } 5345 dprintf(fd, TARGET_ABI_FMT_lx "-" TARGET_ABI_FMT_lx 5346 " %c%c%c%c %08" PRIx64 " %02x:%02x %d %s%s\n", 5347 h2g(min), h2g(max - 1) + 1, flag_r, flag_w, 5348 flag_x, flag_p, offset, dev_maj, dev_min, inode, 5349 path[0] ? " " : "", path); 5350 } 5351 } 5352 5353 free(line); 5354 fclose(fp); 5355 5356 return 0; 5357 } 5358 5359 static int open_self_stat(void *cpu_env, int fd) 5360 { 5361 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env); 5362 TaskState *ts = cpu->opaque; 5363 abi_ulong start_stack = ts->info->start_stack; 5364 int i; 5365 5366 for (i = 0; i < 44; i++) { 5367 char buf[128]; 5368 int len; 5369 uint64_t val = 0; 5370 5371 if (i == 0) { 5372 /* pid */ 5373 val = getpid(); 5374 snprintf(buf, sizeof(buf), "%"PRId64 " ", val); 5375 } else if (i == 1) { 5376 /* app name */ 5377 snprintf(buf, sizeof(buf), "(%s) ", ts->bprm->argv[0]); 5378 } else if (i == 27) { 5379 /* stack bottom */ 5380 val = start_stack; 5381 snprintf(buf, sizeof(buf), "%"PRId64 " ", val); 5382 } else { 5383 /* for the rest, there is MasterCard */ 5384 snprintf(buf, sizeof(buf), "0%c", i == 43 ? '\n' : ' '); 5385 } 5386 5387 len = strlen(buf); 5388 if (write(fd, buf, len) != len) { 5389 return -1; 5390 } 5391 } 5392 5393 return 0; 5394 } 5395 5396 static int open_self_auxv(void *cpu_env, int fd) 5397 { 5398 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env); 5399 TaskState *ts = cpu->opaque; 5400 abi_ulong auxv = ts->info->saved_auxv; 5401 abi_ulong len = ts->info->auxv_len; 5402 char *ptr; 5403 5404 /* 5405 * Auxiliary vector is stored in target process stack. 5406 * read in whole auxv vector and copy it to file 5407 */ 5408 ptr = lock_user(VERIFY_READ, auxv, len, 0); 5409 if (ptr != NULL) { 5410 while (len > 0) { 5411 ssize_t r; 5412 r = write(fd, ptr, len); 5413 if (r <= 0) { 5414 break; 5415 } 5416 len -= r; 5417 ptr += r; 5418 } 5419 lseek(fd, 0, SEEK_SET); 5420 unlock_user(ptr, auxv, len); 5421 } 5422 5423 return 0; 5424 } 5425 5426 static int is_proc_myself(const char *filename, const char *entry) 5427 { 5428 if (!strncmp(filename, "/proc/", strlen("/proc/"))) { 5429 filename += strlen("/proc/"); 5430 if (!strncmp(filename, "self/", strlen("self/"))) { 5431 filename += strlen("self/"); 5432 } else if (*filename >= '1' && *filename <= '9') { 5433 char myself[80]; 5434 snprintf(myself, sizeof(myself), "%d/", getpid()); 5435 if (!strncmp(filename, myself, strlen(myself))) { 5436 filename += strlen(myself); 5437 } else { 5438 return 0; 5439 } 5440 } else { 5441 return 0; 5442 } 5443 if (!strcmp(filename, entry)) { 5444 return 1; 5445 } 5446 } 5447 return 0; 5448 } 5449 5450 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 5451 static int is_proc(const char *filename, const char *entry) 5452 { 5453 return strcmp(filename, entry) == 0; 5454 } 5455 5456 static int open_net_route(void *cpu_env, int fd) 5457 { 5458 FILE *fp; 5459 char *line = NULL; 5460 size_t len = 0; 5461 ssize_t read; 5462 5463 fp = fopen("/proc/net/route", "r"); 5464 if (fp == NULL) { 5465 return -EACCES; 5466 } 5467 5468 /* read header */ 5469 5470 read = getline(&line, &len, fp); 5471 dprintf(fd, "%s", line); 5472 5473 /* read routes */ 5474 5475 while ((read = getline(&line, &len, fp)) != -1) { 5476 char iface[16]; 5477 uint32_t dest, gw, mask; 5478 unsigned int flags, refcnt, use, metric, mtu, window, irtt; 5479 sscanf(line, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n", 5480 iface, &dest, &gw, &flags, &refcnt, &use, &metric, 5481 &mask, &mtu, &window, &irtt); 5482 dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n", 5483 iface, tswap32(dest), tswap32(gw), flags, refcnt, use, 5484 metric, tswap32(mask), mtu, window, irtt); 5485 } 5486 5487 free(line); 5488 fclose(fp); 5489 5490 return 0; 5491 } 5492 #endif 5493 5494 static int do_openat(void *cpu_env, int dirfd, const char *pathname, int flags, mode_t mode) 5495 { 5496 struct fake_open { 5497 const char *filename; 5498 int (*fill)(void *cpu_env, int fd); 5499 int (*cmp)(const char *s1, const char *s2); 5500 }; 5501 const struct fake_open *fake_open; 5502 static const struct fake_open fakes[] = { 5503 { "maps", open_self_maps, is_proc_myself }, 5504 { "stat", open_self_stat, is_proc_myself }, 5505 { "auxv", open_self_auxv, is_proc_myself }, 5506 { "cmdline", open_self_cmdline, is_proc_myself }, 5507 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 5508 { "/proc/net/route", open_net_route, is_proc }, 5509 #endif 5510 { NULL, NULL, NULL } 5511 }; 5512 5513 if (is_proc_myself(pathname, "exe")) { 5514 int execfd = qemu_getauxval(AT_EXECFD); 5515 return execfd ? execfd : get_errno(sys_openat(dirfd, exec_path, flags, mode)); 5516 } 5517 5518 for (fake_open = fakes; fake_open->filename; fake_open++) { 5519 if (fake_open->cmp(pathname, fake_open->filename)) { 5520 break; 5521 } 5522 } 5523 5524 if (fake_open->filename) { 5525 const char *tmpdir; 5526 char filename[PATH_MAX]; 5527 int fd, r; 5528 5529 /* create temporary file to map stat to */ 5530 tmpdir = getenv("TMPDIR"); 5531 if (!tmpdir) 5532 tmpdir = "/tmp"; 5533 snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir); 5534 fd = mkstemp(filename); 5535 if (fd < 0) { 5536 return fd; 5537 } 5538 unlink(filename); 5539 5540 if ((r = fake_open->fill(cpu_env, fd))) { 5541 close(fd); 5542 return r; 5543 } 5544 lseek(fd, 0, SEEK_SET); 5545 5546 return fd; 5547 } 5548 5549 return get_errno(sys_openat(dirfd, path(pathname), flags, mode)); 5550 } 5551 5552 #define TIMER_MAGIC 0x0caf0000 5553 #define TIMER_MAGIC_MASK 0xffff0000 5554 5555 /* Convert QEMU provided timer ID back to internal 16bit index format */ 5556 static target_timer_t get_timer_id(abi_long arg) 5557 { 5558 target_timer_t timerid = arg; 5559 5560 if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) { 5561 return -TARGET_EINVAL; 5562 } 5563 5564 timerid &= 0xffff; 5565 5566 if (timerid >= ARRAY_SIZE(g_posix_timers)) { 5567 return -TARGET_EINVAL; 5568 } 5569 5570 return timerid; 5571 } 5572 5573 /* do_syscall() should always have a single exit point at the end so 5574 that actions, such as logging of syscall results, can be performed. 5575 All errnos that do_syscall() returns must be -TARGET_<errcode>. */ 5576 abi_long do_syscall(void *cpu_env, int num, abi_long arg1, 5577 abi_long arg2, abi_long arg3, abi_long arg4, 5578 abi_long arg5, abi_long arg6, abi_long arg7, 5579 abi_long arg8) 5580 { 5581 CPUState *cpu = ENV_GET_CPU(cpu_env); 5582 abi_long ret; 5583 struct stat st; 5584 struct statfs stfs; 5585 void *p; 5586 5587 #ifdef DEBUG 5588 gemu_log("syscall %d", num); 5589 #endif 5590 if(do_strace) 5591 print_syscall(num, arg1, arg2, arg3, arg4, arg5, arg6); 5592 5593 switch(num) { 5594 case TARGET_NR_exit: 5595 /* In old applications this may be used to implement _exit(2). 5596 However in threaded applictions it is used for thread termination, 5597 and _exit_group is used for application termination. 5598 Do thread termination if we have more then one thread. */ 5599 /* FIXME: This probably breaks if a signal arrives. We should probably 5600 be disabling signals. */ 5601 if (CPU_NEXT(first_cpu)) { 5602 TaskState *ts; 5603 5604 cpu_list_lock(); 5605 /* Remove the CPU from the list. */ 5606 QTAILQ_REMOVE(&cpus, cpu, node); 5607 cpu_list_unlock(); 5608 ts = cpu->opaque; 5609 if (ts->child_tidptr) { 5610 put_user_u32(0, ts->child_tidptr); 5611 sys_futex(g2h(ts->child_tidptr), FUTEX_WAKE, INT_MAX, 5612 NULL, NULL, 0); 5613 } 5614 thread_cpu = NULL; 5615 object_unref(OBJECT(cpu)); 5616 g_free(ts); 5617 pthread_exit(NULL); 5618 } 5619 #ifdef TARGET_GPROF 5620 _mcleanup(); 5621 #endif 5622 gdb_exit(cpu_env, arg1); 5623 _exit(arg1); 5624 ret = 0; /* avoid warning */ 5625 break; 5626 case TARGET_NR_read: 5627 if (arg3 == 0) 5628 ret = 0; 5629 else { 5630 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0))) 5631 goto efault; 5632 ret = get_errno(read(arg1, p, arg3)); 5633 unlock_user(p, arg2, ret); 5634 } 5635 break; 5636 case TARGET_NR_write: 5637 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1))) 5638 goto efault; 5639 ret = get_errno(write(arg1, p, arg3)); 5640 unlock_user(p, arg2, 0); 5641 break; 5642 case TARGET_NR_open: 5643 if (!(p = lock_user_string(arg1))) 5644 goto efault; 5645 ret = get_errno(do_openat(cpu_env, AT_FDCWD, p, 5646 target_to_host_bitmask(arg2, fcntl_flags_tbl), 5647 arg3)); 5648 unlock_user(p, arg1, 0); 5649 break; 5650 case TARGET_NR_openat: 5651 if (!(p = lock_user_string(arg2))) 5652 goto efault; 5653 ret = get_errno(do_openat(cpu_env, arg1, p, 5654 target_to_host_bitmask(arg3, fcntl_flags_tbl), 5655 arg4)); 5656 unlock_user(p, arg2, 0); 5657 break; 5658 case TARGET_NR_close: 5659 ret = get_errno(close(arg1)); 5660 break; 5661 case TARGET_NR_brk: 5662 ret = do_brk(arg1); 5663 break; 5664 case TARGET_NR_fork: 5665 ret = get_errno(do_fork(cpu_env, SIGCHLD, 0, 0, 0, 0)); 5666 break; 5667 #ifdef TARGET_NR_waitpid 5668 case TARGET_NR_waitpid: 5669 { 5670 int status; 5671 ret = get_errno(waitpid(arg1, &status, arg3)); 5672 if (!is_error(ret) && arg2 && ret 5673 && put_user_s32(host_to_target_waitstatus(status), arg2)) 5674 goto efault; 5675 } 5676 break; 5677 #endif 5678 #ifdef TARGET_NR_waitid 5679 case TARGET_NR_waitid: 5680 { 5681 siginfo_t info; 5682 info.si_pid = 0; 5683 ret = get_errno(waitid(arg1, arg2, &info, arg4)); 5684 if (!is_error(ret) && arg3 && info.si_pid != 0) { 5685 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0))) 5686 goto efault; 5687 host_to_target_siginfo(p, &info); 5688 unlock_user(p, arg3, sizeof(target_siginfo_t)); 5689 } 5690 } 5691 break; 5692 #endif 5693 #ifdef TARGET_NR_creat /* not on alpha */ 5694 case TARGET_NR_creat: 5695 if (!(p = lock_user_string(arg1))) 5696 goto efault; 5697 ret = get_errno(creat(p, arg2)); 5698 unlock_user(p, arg1, 0); 5699 break; 5700 #endif 5701 case TARGET_NR_link: 5702 { 5703 void * p2; 5704 p = lock_user_string(arg1); 5705 p2 = lock_user_string(arg2); 5706 if (!p || !p2) 5707 ret = -TARGET_EFAULT; 5708 else 5709 ret = get_errno(link(p, p2)); 5710 unlock_user(p2, arg2, 0); 5711 unlock_user(p, arg1, 0); 5712 } 5713 break; 5714 #if defined(TARGET_NR_linkat) 5715 case TARGET_NR_linkat: 5716 { 5717 void * p2 = NULL; 5718 if (!arg2 || !arg4) 5719 goto efault; 5720 p = lock_user_string(arg2); 5721 p2 = lock_user_string(arg4); 5722 if (!p || !p2) 5723 ret = -TARGET_EFAULT; 5724 else 5725 ret = get_errno(linkat(arg1, p, arg3, p2, arg5)); 5726 unlock_user(p, arg2, 0); 5727 unlock_user(p2, arg4, 0); 5728 } 5729 break; 5730 #endif 5731 case TARGET_NR_unlink: 5732 if (!(p = lock_user_string(arg1))) 5733 goto efault; 5734 ret = get_errno(unlink(p)); 5735 unlock_user(p, arg1, 0); 5736 break; 5737 #if defined(TARGET_NR_unlinkat) 5738 case TARGET_NR_unlinkat: 5739 if (!(p = lock_user_string(arg2))) 5740 goto efault; 5741 ret = get_errno(unlinkat(arg1, p, arg3)); 5742 unlock_user(p, arg2, 0); 5743 break; 5744 #endif 5745 case TARGET_NR_execve: 5746 { 5747 char **argp, **envp; 5748 int argc, envc; 5749 abi_ulong gp; 5750 abi_ulong guest_argp; 5751 abi_ulong guest_envp; 5752 abi_ulong addr; 5753 char **q; 5754 int total_size = 0; 5755 5756 argc = 0; 5757 guest_argp = arg2; 5758 for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) { 5759 if (get_user_ual(addr, gp)) 5760 goto efault; 5761 if (!addr) 5762 break; 5763 argc++; 5764 } 5765 envc = 0; 5766 guest_envp = arg3; 5767 for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) { 5768 if (get_user_ual(addr, gp)) 5769 goto efault; 5770 if (!addr) 5771 break; 5772 envc++; 5773 } 5774 5775 argp = alloca((argc + 1) * sizeof(void *)); 5776 envp = alloca((envc + 1) * sizeof(void *)); 5777 5778 for (gp = guest_argp, q = argp; gp; 5779 gp += sizeof(abi_ulong), q++) { 5780 if (get_user_ual(addr, gp)) 5781 goto execve_efault; 5782 if (!addr) 5783 break; 5784 if (!(*q = lock_user_string(addr))) 5785 goto execve_efault; 5786 total_size += strlen(*q) + 1; 5787 } 5788 *q = NULL; 5789 5790 for (gp = guest_envp, q = envp; gp; 5791 gp += sizeof(abi_ulong), q++) { 5792 if (get_user_ual(addr, gp)) 5793 goto execve_efault; 5794 if (!addr) 5795 break; 5796 if (!(*q = lock_user_string(addr))) 5797 goto execve_efault; 5798 total_size += strlen(*q) + 1; 5799 } 5800 *q = NULL; 5801 5802 /* This case will not be caught by the host's execve() if its 5803 page size is bigger than the target's. */ 5804 if (total_size > MAX_ARG_PAGES * TARGET_PAGE_SIZE) { 5805 ret = -TARGET_E2BIG; 5806 goto execve_end; 5807 } 5808 if (!(p = lock_user_string(arg1))) 5809 goto execve_efault; 5810 ret = get_errno(execve(p, argp, envp)); 5811 unlock_user(p, arg1, 0); 5812 5813 goto execve_end; 5814 5815 execve_efault: 5816 ret = -TARGET_EFAULT; 5817 5818 execve_end: 5819 for (gp = guest_argp, q = argp; *q; 5820 gp += sizeof(abi_ulong), q++) { 5821 if (get_user_ual(addr, gp) 5822 || !addr) 5823 break; 5824 unlock_user(*q, addr, 0); 5825 } 5826 for (gp = guest_envp, q = envp; *q; 5827 gp += sizeof(abi_ulong), q++) { 5828 if (get_user_ual(addr, gp) 5829 || !addr) 5830 break; 5831 unlock_user(*q, addr, 0); 5832 } 5833 } 5834 break; 5835 case TARGET_NR_chdir: 5836 if (!(p = lock_user_string(arg1))) 5837 goto efault; 5838 ret = get_errno(chdir(p)); 5839 unlock_user(p, arg1, 0); 5840 break; 5841 #ifdef TARGET_NR_time 5842 case TARGET_NR_time: 5843 { 5844 time_t host_time; 5845 ret = get_errno(time(&host_time)); 5846 if (!is_error(ret) 5847 && arg1 5848 && put_user_sal(host_time, arg1)) 5849 goto efault; 5850 } 5851 break; 5852 #endif 5853 case TARGET_NR_mknod: 5854 if (!(p = lock_user_string(arg1))) 5855 goto efault; 5856 ret = get_errno(mknod(p, arg2, arg3)); 5857 unlock_user(p, arg1, 0); 5858 break; 5859 #if defined(TARGET_NR_mknodat) 5860 case TARGET_NR_mknodat: 5861 if (!(p = lock_user_string(arg2))) 5862 goto efault; 5863 ret = get_errno(mknodat(arg1, p, arg3, arg4)); 5864 unlock_user(p, arg2, 0); 5865 break; 5866 #endif 5867 case TARGET_NR_chmod: 5868 if (!(p = lock_user_string(arg1))) 5869 goto efault; 5870 ret = get_errno(chmod(p, arg2)); 5871 unlock_user(p, arg1, 0); 5872 break; 5873 #ifdef TARGET_NR_break 5874 case TARGET_NR_break: 5875 goto unimplemented; 5876 #endif 5877 #ifdef TARGET_NR_oldstat 5878 case TARGET_NR_oldstat: 5879 goto unimplemented; 5880 #endif 5881 case TARGET_NR_lseek: 5882 ret = get_errno(lseek(arg1, arg2, arg3)); 5883 break; 5884 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA) 5885 /* Alpha specific */ 5886 case TARGET_NR_getxpid: 5887 ((CPUAlphaState *)cpu_env)->ir[IR_A4] = getppid(); 5888 ret = get_errno(getpid()); 5889 break; 5890 #endif 5891 #ifdef TARGET_NR_getpid 5892 case TARGET_NR_getpid: 5893 ret = get_errno(getpid()); 5894 break; 5895 #endif 5896 case TARGET_NR_mount: 5897 { 5898 /* need to look at the data field */ 5899 void *p2, *p3; 5900 5901 if (arg1) { 5902 p = lock_user_string(arg1); 5903 if (!p) { 5904 goto efault; 5905 } 5906 } else { 5907 p = NULL; 5908 } 5909 5910 p2 = lock_user_string(arg2); 5911 if (!p2) { 5912 if (arg1) { 5913 unlock_user(p, arg1, 0); 5914 } 5915 goto efault; 5916 } 5917 5918 if (arg3) { 5919 p3 = lock_user_string(arg3); 5920 if (!p3) { 5921 if (arg1) { 5922 unlock_user(p, arg1, 0); 5923 } 5924 unlock_user(p2, arg2, 0); 5925 goto efault; 5926 } 5927 } else { 5928 p3 = NULL; 5929 } 5930 5931 /* FIXME - arg5 should be locked, but it isn't clear how to 5932 * do that since it's not guaranteed to be a NULL-terminated 5933 * string. 5934 */ 5935 if (!arg5) { 5936 ret = mount(p, p2, p3, (unsigned long)arg4, NULL); 5937 } else { 5938 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(arg5)); 5939 } 5940 ret = get_errno(ret); 5941 5942 if (arg1) { 5943 unlock_user(p, arg1, 0); 5944 } 5945 unlock_user(p2, arg2, 0); 5946 if (arg3) { 5947 unlock_user(p3, arg3, 0); 5948 } 5949 } 5950 break; 5951 #ifdef TARGET_NR_umount 5952 case TARGET_NR_umount: 5953 if (!(p = lock_user_string(arg1))) 5954 goto efault; 5955 ret = get_errno(umount(p)); 5956 unlock_user(p, arg1, 0); 5957 break; 5958 #endif 5959 #ifdef TARGET_NR_stime /* not on alpha */ 5960 case TARGET_NR_stime: 5961 { 5962 time_t host_time; 5963 if (get_user_sal(host_time, arg1)) 5964 goto efault; 5965 ret = get_errno(stime(&host_time)); 5966 } 5967 break; 5968 #endif 5969 case TARGET_NR_ptrace: 5970 goto unimplemented; 5971 #ifdef TARGET_NR_alarm /* not on alpha */ 5972 case TARGET_NR_alarm: 5973 ret = alarm(arg1); 5974 break; 5975 #endif 5976 #ifdef TARGET_NR_oldfstat 5977 case TARGET_NR_oldfstat: 5978 goto unimplemented; 5979 #endif 5980 #ifdef TARGET_NR_pause /* not on alpha */ 5981 case TARGET_NR_pause: 5982 ret = get_errno(pause()); 5983 break; 5984 #endif 5985 #ifdef TARGET_NR_utime 5986 case TARGET_NR_utime: 5987 { 5988 struct utimbuf tbuf, *host_tbuf; 5989 struct target_utimbuf *target_tbuf; 5990 if (arg2) { 5991 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1)) 5992 goto efault; 5993 tbuf.actime = tswapal(target_tbuf->actime); 5994 tbuf.modtime = tswapal(target_tbuf->modtime); 5995 unlock_user_struct(target_tbuf, arg2, 0); 5996 host_tbuf = &tbuf; 5997 } else { 5998 host_tbuf = NULL; 5999 } 6000 if (!(p = lock_user_string(arg1))) 6001 goto efault; 6002 ret = get_errno(utime(p, host_tbuf)); 6003 unlock_user(p, arg1, 0); 6004 } 6005 break; 6006 #endif 6007 case TARGET_NR_utimes: 6008 { 6009 struct timeval *tvp, tv[2]; 6010 if (arg2) { 6011 if (copy_from_user_timeval(&tv[0], arg2) 6012 || copy_from_user_timeval(&tv[1], 6013 arg2 + sizeof(struct target_timeval))) 6014 goto efault; 6015 tvp = tv; 6016 } else { 6017 tvp = NULL; 6018 } 6019 if (!(p = lock_user_string(arg1))) 6020 goto efault; 6021 ret = get_errno(utimes(p, tvp)); 6022 unlock_user(p, arg1, 0); 6023 } 6024 break; 6025 #if defined(TARGET_NR_futimesat) 6026 case TARGET_NR_futimesat: 6027 { 6028 struct timeval *tvp, tv[2]; 6029 if (arg3) { 6030 if (copy_from_user_timeval(&tv[0], arg3) 6031 || copy_from_user_timeval(&tv[1], 6032 arg3 + sizeof(struct target_timeval))) 6033 goto efault; 6034 tvp = tv; 6035 } else { 6036 tvp = NULL; 6037 } 6038 if (!(p = lock_user_string(arg2))) 6039 goto efault; 6040 ret = get_errno(futimesat(arg1, path(p), tvp)); 6041 unlock_user(p, arg2, 0); 6042 } 6043 break; 6044 #endif 6045 #ifdef TARGET_NR_stty 6046 case TARGET_NR_stty: 6047 goto unimplemented; 6048 #endif 6049 #ifdef TARGET_NR_gtty 6050 case TARGET_NR_gtty: 6051 goto unimplemented; 6052 #endif 6053 case TARGET_NR_access: 6054 if (!(p = lock_user_string(arg1))) 6055 goto efault; 6056 ret = get_errno(access(path(p), arg2)); 6057 unlock_user(p, arg1, 0); 6058 break; 6059 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat) 6060 case TARGET_NR_faccessat: 6061 if (!(p = lock_user_string(arg2))) 6062 goto efault; 6063 ret = get_errno(faccessat(arg1, p, arg3, 0)); 6064 unlock_user(p, arg2, 0); 6065 break; 6066 #endif 6067 #ifdef TARGET_NR_nice /* not on alpha */ 6068 case TARGET_NR_nice: 6069 ret = get_errno(nice(arg1)); 6070 break; 6071 #endif 6072 #ifdef TARGET_NR_ftime 6073 case TARGET_NR_ftime: 6074 goto unimplemented; 6075 #endif 6076 case TARGET_NR_sync: 6077 sync(); 6078 ret = 0; 6079 break; 6080 case TARGET_NR_kill: 6081 ret = get_errno(kill(arg1, target_to_host_signal(arg2))); 6082 break; 6083 case TARGET_NR_rename: 6084 { 6085 void *p2; 6086 p = lock_user_string(arg1); 6087 p2 = lock_user_string(arg2); 6088 if (!p || !p2) 6089 ret = -TARGET_EFAULT; 6090 else 6091 ret = get_errno(rename(p, p2)); 6092 unlock_user(p2, arg2, 0); 6093 unlock_user(p, arg1, 0); 6094 } 6095 break; 6096 #if defined(TARGET_NR_renameat) 6097 case TARGET_NR_renameat: 6098 { 6099 void *p2; 6100 p = lock_user_string(arg2); 6101 p2 = lock_user_string(arg4); 6102 if (!p || !p2) 6103 ret = -TARGET_EFAULT; 6104 else 6105 ret = get_errno(renameat(arg1, p, arg3, p2)); 6106 unlock_user(p2, arg4, 0); 6107 unlock_user(p, arg2, 0); 6108 } 6109 break; 6110 #endif 6111 case TARGET_NR_mkdir: 6112 if (!(p = lock_user_string(arg1))) 6113 goto efault; 6114 ret = get_errno(mkdir(p, arg2)); 6115 unlock_user(p, arg1, 0); 6116 break; 6117 #if defined(TARGET_NR_mkdirat) 6118 case TARGET_NR_mkdirat: 6119 if (!(p = lock_user_string(arg2))) 6120 goto efault; 6121 ret = get_errno(mkdirat(arg1, p, arg3)); 6122 unlock_user(p, arg2, 0); 6123 break; 6124 #endif 6125 case TARGET_NR_rmdir: 6126 if (!(p = lock_user_string(arg1))) 6127 goto efault; 6128 ret = get_errno(rmdir(p)); 6129 unlock_user(p, arg1, 0); 6130 break; 6131 case TARGET_NR_dup: 6132 ret = get_errno(dup(arg1)); 6133 break; 6134 case TARGET_NR_pipe: 6135 ret = do_pipe(cpu_env, arg1, 0, 0); 6136 break; 6137 #ifdef TARGET_NR_pipe2 6138 case TARGET_NR_pipe2: 6139 ret = do_pipe(cpu_env, arg1, 6140 target_to_host_bitmask(arg2, fcntl_flags_tbl), 1); 6141 break; 6142 #endif 6143 case TARGET_NR_times: 6144 { 6145 struct target_tms *tmsp; 6146 struct tms tms; 6147 ret = get_errno(times(&tms)); 6148 if (arg1) { 6149 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0); 6150 if (!tmsp) 6151 goto efault; 6152 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime)); 6153 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime)); 6154 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime)); 6155 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime)); 6156 } 6157 if (!is_error(ret)) 6158 ret = host_to_target_clock_t(ret); 6159 } 6160 break; 6161 #ifdef TARGET_NR_prof 6162 case TARGET_NR_prof: 6163 goto unimplemented; 6164 #endif 6165 #ifdef TARGET_NR_signal 6166 case TARGET_NR_signal: 6167 goto unimplemented; 6168 #endif 6169 case TARGET_NR_acct: 6170 if (arg1 == 0) { 6171 ret = get_errno(acct(NULL)); 6172 } else { 6173 if (!(p = lock_user_string(arg1))) 6174 goto efault; 6175 ret = get_errno(acct(path(p))); 6176 unlock_user(p, arg1, 0); 6177 } 6178 break; 6179 #ifdef TARGET_NR_umount2 6180 case TARGET_NR_umount2: 6181 if (!(p = lock_user_string(arg1))) 6182 goto efault; 6183 ret = get_errno(umount2(p, arg2)); 6184 unlock_user(p, arg1, 0); 6185 break; 6186 #endif 6187 #ifdef TARGET_NR_lock 6188 case TARGET_NR_lock: 6189 goto unimplemented; 6190 #endif 6191 case TARGET_NR_ioctl: 6192 ret = do_ioctl(arg1, arg2, arg3); 6193 break; 6194 case TARGET_NR_fcntl: 6195 ret = do_fcntl(arg1, arg2, arg3); 6196 break; 6197 #ifdef TARGET_NR_mpx 6198 case TARGET_NR_mpx: 6199 goto unimplemented; 6200 #endif 6201 case TARGET_NR_setpgid: 6202 ret = get_errno(setpgid(arg1, arg2)); 6203 break; 6204 #ifdef TARGET_NR_ulimit 6205 case TARGET_NR_ulimit: 6206 goto unimplemented; 6207 #endif 6208 #ifdef TARGET_NR_oldolduname 6209 case TARGET_NR_oldolduname: 6210 goto unimplemented; 6211 #endif 6212 case TARGET_NR_umask: 6213 ret = get_errno(umask(arg1)); 6214 break; 6215 case TARGET_NR_chroot: 6216 if (!(p = lock_user_string(arg1))) 6217 goto efault; 6218 ret = get_errno(chroot(p)); 6219 unlock_user(p, arg1, 0); 6220 break; 6221 case TARGET_NR_ustat: 6222 goto unimplemented; 6223 case TARGET_NR_dup2: 6224 ret = get_errno(dup2(arg1, arg2)); 6225 break; 6226 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3) 6227 case TARGET_NR_dup3: 6228 ret = get_errno(dup3(arg1, arg2, arg3)); 6229 break; 6230 #endif 6231 #ifdef TARGET_NR_getppid /* not on alpha */ 6232 case TARGET_NR_getppid: 6233 ret = get_errno(getppid()); 6234 break; 6235 #endif 6236 case TARGET_NR_getpgrp: 6237 ret = get_errno(getpgrp()); 6238 break; 6239 case TARGET_NR_setsid: 6240 ret = get_errno(setsid()); 6241 break; 6242 #ifdef TARGET_NR_sigaction 6243 case TARGET_NR_sigaction: 6244 { 6245 #if defined(TARGET_ALPHA) 6246 struct target_sigaction act, oact, *pact = 0; 6247 struct target_old_sigaction *old_act; 6248 if (arg2) { 6249 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 6250 goto efault; 6251 act._sa_handler = old_act->_sa_handler; 6252 target_siginitset(&act.sa_mask, old_act->sa_mask); 6253 act.sa_flags = old_act->sa_flags; 6254 act.sa_restorer = 0; 6255 unlock_user_struct(old_act, arg2, 0); 6256 pact = &act; 6257 } 6258 ret = get_errno(do_sigaction(arg1, pact, &oact)); 6259 if (!is_error(ret) && arg3) { 6260 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 6261 goto efault; 6262 old_act->_sa_handler = oact._sa_handler; 6263 old_act->sa_mask = oact.sa_mask.sig[0]; 6264 old_act->sa_flags = oact.sa_flags; 6265 unlock_user_struct(old_act, arg3, 1); 6266 } 6267 #elif defined(TARGET_MIPS) 6268 struct target_sigaction act, oact, *pact, *old_act; 6269 6270 if (arg2) { 6271 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 6272 goto efault; 6273 act._sa_handler = old_act->_sa_handler; 6274 target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]); 6275 act.sa_flags = old_act->sa_flags; 6276 unlock_user_struct(old_act, arg2, 0); 6277 pact = &act; 6278 } else { 6279 pact = NULL; 6280 } 6281 6282 ret = get_errno(do_sigaction(arg1, pact, &oact)); 6283 6284 if (!is_error(ret) && arg3) { 6285 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 6286 goto efault; 6287 old_act->_sa_handler = oact._sa_handler; 6288 old_act->sa_flags = oact.sa_flags; 6289 old_act->sa_mask.sig[0] = oact.sa_mask.sig[0]; 6290 old_act->sa_mask.sig[1] = 0; 6291 old_act->sa_mask.sig[2] = 0; 6292 old_act->sa_mask.sig[3] = 0; 6293 unlock_user_struct(old_act, arg3, 1); 6294 } 6295 #else 6296 struct target_old_sigaction *old_act; 6297 struct target_sigaction act, oact, *pact; 6298 if (arg2) { 6299 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1)) 6300 goto efault; 6301 act._sa_handler = old_act->_sa_handler; 6302 target_siginitset(&act.sa_mask, old_act->sa_mask); 6303 act.sa_flags = old_act->sa_flags; 6304 act.sa_restorer = old_act->sa_restorer; 6305 unlock_user_struct(old_act, arg2, 0); 6306 pact = &act; 6307 } else { 6308 pact = NULL; 6309 } 6310 ret = get_errno(do_sigaction(arg1, pact, &oact)); 6311 if (!is_error(ret) && arg3) { 6312 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0)) 6313 goto efault; 6314 old_act->_sa_handler = oact._sa_handler; 6315 old_act->sa_mask = oact.sa_mask.sig[0]; 6316 old_act->sa_flags = oact.sa_flags; 6317 old_act->sa_restorer = oact.sa_restorer; 6318 unlock_user_struct(old_act, arg3, 1); 6319 } 6320 #endif 6321 } 6322 break; 6323 #endif 6324 case TARGET_NR_rt_sigaction: 6325 { 6326 #if defined(TARGET_ALPHA) 6327 struct target_sigaction act, oact, *pact = 0; 6328 struct target_rt_sigaction *rt_act; 6329 /* ??? arg4 == sizeof(sigset_t). */ 6330 if (arg2) { 6331 if (!lock_user_struct(VERIFY_READ, rt_act, arg2, 1)) 6332 goto efault; 6333 act._sa_handler = rt_act->_sa_handler; 6334 act.sa_mask = rt_act->sa_mask; 6335 act.sa_flags = rt_act->sa_flags; 6336 act.sa_restorer = arg5; 6337 unlock_user_struct(rt_act, arg2, 0); 6338 pact = &act; 6339 } 6340 ret = get_errno(do_sigaction(arg1, pact, &oact)); 6341 if (!is_error(ret) && arg3) { 6342 if (!lock_user_struct(VERIFY_WRITE, rt_act, arg3, 0)) 6343 goto efault; 6344 rt_act->_sa_handler = oact._sa_handler; 6345 rt_act->sa_mask = oact.sa_mask; 6346 rt_act->sa_flags = oact.sa_flags; 6347 unlock_user_struct(rt_act, arg3, 1); 6348 } 6349 #else 6350 struct target_sigaction *act; 6351 struct target_sigaction *oact; 6352 6353 if (arg2) { 6354 if (!lock_user_struct(VERIFY_READ, act, arg2, 1)) 6355 goto efault; 6356 } else 6357 act = NULL; 6358 if (arg3) { 6359 if (!lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) { 6360 ret = -TARGET_EFAULT; 6361 goto rt_sigaction_fail; 6362 } 6363 } else 6364 oact = NULL; 6365 ret = get_errno(do_sigaction(arg1, act, oact)); 6366 rt_sigaction_fail: 6367 if (act) 6368 unlock_user_struct(act, arg2, 0); 6369 if (oact) 6370 unlock_user_struct(oact, arg3, 1); 6371 #endif 6372 } 6373 break; 6374 #ifdef TARGET_NR_sgetmask /* not on alpha */ 6375 case TARGET_NR_sgetmask: 6376 { 6377 sigset_t cur_set; 6378 abi_ulong target_set; 6379 do_sigprocmask(0, NULL, &cur_set); 6380 host_to_target_old_sigset(&target_set, &cur_set); 6381 ret = target_set; 6382 } 6383 break; 6384 #endif 6385 #ifdef TARGET_NR_ssetmask /* not on alpha */ 6386 case TARGET_NR_ssetmask: 6387 { 6388 sigset_t set, oset, cur_set; 6389 abi_ulong target_set = arg1; 6390 do_sigprocmask(0, NULL, &cur_set); 6391 target_to_host_old_sigset(&set, &target_set); 6392 sigorset(&set, &set, &cur_set); 6393 do_sigprocmask(SIG_SETMASK, &set, &oset); 6394 host_to_target_old_sigset(&target_set, &oset); 6395 ret = target_set; 6396 } 6397 break; 6398 #endif 6399 #ifdef TARGET_NR_sigprocmask 6400 case TARGET_NR_sigprocmask: 6401 { 6402 #if defined(TARGET_ALPHA) 6403 sigset_t set, oldset; 6404 abi_ulong mask; 6405 int how; 6406 6407 switch (arg1) { 6408 case TARGET_SIG_BLOCK: 6409 how = SIG_BLOCK; 6410 break; 6411 case TARGET_SIG_UNBLOCK: 6412 how = SIG_UNBLOCK; 6413 break; 6414 case TARGET_SIG_SETMASK: 6415 how = SIG_SETMASK; 6416 break; 6417 default: 6418 ret = -TARGET_EINVAL; 6419 goto fail; 6420 } 6421 mask = arg2; 6422 target_to_host_old_sigset(&set, &mask); 6423 6424 ret = get_errno(do_sigprocmask(how, &set, &oldset)); 6425 if (!is_error(ret)) { 6426 host_to_target_old_sigset(&mask, &oldset); 6427 ret = mask; 6428 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; /* force no error */ 6429 } 6430 #else 6431 sigset_t set, oldset, *set_ptr; 6432 int how; 6433 6434 if (arg2) { 6435 switch (arg1) { 6436 case TARGET_SIG_BLOCK: 6437 how = SIG_BLOCK; 6438 break; 6439 case TARGET_SIG_UNBLOCK: 6440 how = SIG_UNBLOCK; 6441 break; 6442 case TARGET_SIG_SETMASK: 6443 how = SIG_SETMASK; 6444 break; 6445 default: 6446 ret = -TARGET_EINVAL; 6447 goto fail; 6448 } 6449 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1))) 6450 goto efault; 6451 target_to_host_old_sigset(&set, p); 6452 unlock_user(p, arg2, 0); 6453 set_ptr = &set; 6454 } else { 6455 how = 0; 6456 set_ptr = NULL; 6457 } 6458 ret = get_errno(do_sigprocmask(how, set_ptr, &oldset)); 6459 if (!is_error(ret) && arg3) { 6460 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0))) 6461 goto efault; 6462 host_to_target_old_sigset(p, &oldset); 6463 unlock_user(p, arg3, sizeof(target_sigset_t)); 6464 } 6465 #endif 6466 } 6467 break; 6468 #endif 6469 case TARGET_NR_rt_sigprocmask: 6470 { 6471 int how = arg1; 6472 sigset_t set, oldset, *set_ptr; 6473 6474 if (arg2) { 6475 switch(how) { 6476 case TARGET_SIG_BLOCK: 6477 how = SIG_BLOCK; 6478 break; 6479 case TARGET_SIG_UNBLOCK: 6480 how = SIG_UNBLOCK; 6481 break; 6482 case TARGET_SIG_SETMASK: 6483 how = SIG_SETMASK; 6484 break; 6485 default: 6486 ret = -TARGET_EINVAL; 6487 goto fail; 6488 } 6489 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1))) 6490 goto efault; 6491 target_to_host_sigset(&set, p); 6492 unlock_user(p, arg2, 0); 6493 set_ptr = &set; 6494 } else { 6495 how = 0; 6496 set_ptr = NULL; 6497 } 6498 ret = get_errno(do_sigprocmask(how, set_ptr, &oldset)); 6499 if (!is_error(ret) && arg3) { 6500 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0))) 6501 goto efault; 6502 host_to_target_sigset(p, &oldset); 6503 unlock_user(p, arg3, sizeof(target_sigset_t)); 6504 } 6505 } 6506 break; 6507 #ifdef TARGET_NR_sigpending 6508 case TARGET_NR_sigpending: 6509 { 6510 sigset_t set; 6511 ret = get_errno(sigpending(&set)); 6512 if (!is_error(ret)) { 6513 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0))) 6514 goto efault; 6515 host_to_target_old_sigset(p, &set); 6516 unlock_user(p, arg1, sizeof(target_sigset_t)); 6517 } 6518 } 6519 break; 6520 #endif 6521 case TARGET_NR_rt_sigpending: 6522 { 6523 sigset_t set; 6524 ret = get_errno(sigpending(&set)); 6525 if (!is_error(ret)) { 6526 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0))) 6527 goto efault; 6528 host_to_target_sigset(p, &set); 6529 unlock_user(p, arg1, sizeof(target_sigset_t)); 6530 } 6531 } 6532 break; 6533 #ifdef TARGET_NR_sigsuspend 6534 case TARGET_NR_sigsuspend: 6535 { 6536 sigset_t set; 6537 #if defined(TARGET_ALPHA) 6538 abi_ulong mask = arg1; 6539 target_to_host_old_sigset(&set, &mask); 6540 #else 6541 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1))) 6542 goto efault; 6543 target_to_host_old_sigset(&set, p); 6544 unlock_user(p, arg1, 0); 6545 #endif 6546 ret = get_errno(sigsuspend(&set)); 6547 } 6548 break; 6549 #endif 6550 case TARGET_NR_rt_sigsuspend: 6551 { 6552 sigset_t set; 6553 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1))) 6554 goto efault; 6555 target_to_host_sigset(&set, p); 6556 unlock_user(p, arg1, 0); 6557 ret = get_errno(sigsuspend(&set)); 6558 } 6559 break; 6560 case TARGET_NR_rt_sigtimedwait: 6561 { 6562 sigset_t set; 6563 struct timespec uts, *puts; 6564 siginfo_t uinfo; 6565 6566 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1))) 6567 goto efault; 6568 target_to_host_sigset(&set, p); 6569 unlock_user(p, arg1, 0); 6570 if (arg3) { 6571 puts = &uts; 6572 target_to_host_timespec(puts, arg3); 6573 } else { 6574 puts = NULL; 6575 } 6576 ret = get_errno(sigtimedwait(&set, &uinfo, puts)); 6577 if (!is_error(ret)) { 6578 if (arg2) { 6579 p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t), 6580 0); 6581 if (!p) { 6582 goto efault; 6583 } 6584 host_to_target_siginfo(p, &uinfo); 6585 unlock_user(p, arg2, sizeof(target_siginfo_t)); 6586 } 6587 ret = host_to_target_signal(ret); 6588 } 6589 } 6590 break; 6591 case TARGET_NR_rt_sigqueueinfo: 6592 { 6593 siginfo_t uinfo; 6594 if (!(p = lock_user(VERIFY_READ, arg3, sizeof(target_sigset_t), 1))) 6595 goto efault; 6596 target_to_host_siginfo(&uinfo, p); 6597 unlock_user(p, arg1, 0); 6598 ret = get_errno(sys_rt_sigqueueinfo(arg1, arg2, &uinfo)); 6599 } 6600 break; 6601 #ifdef TARGET_NR_sigreturn 6602 case TARGET_NR_sigreturn: 6603 /* NOTE: ret is eax, so not transcoding must be done */ 6604 ret = do_sigreturn(cpu_env); 6605 break; 6606 #endif 6607 case TARGET_NR_rt_sigreturn: 6608 /* NOTE: ret is eax, so not transcoding must be done */ 6609 ret = do_rt_sigreturn(cpu_env); 6610 break; 6611 case TARGET_NR_sethostname: 6612 if (!(p = lock_user_string(arg1))) 6613 goto efault; 6614 ret = get_errno(sethostname(p, arg2)); 6615 unlock_user(p, arg1, 0); 6616 break; 6617 case TARGET_NR_setrlimit: 6618 { 6619 int resource = target_to_host_resource(arg1); 6620 struct target_rlimit *target_rlim; 6621 struct rlimit rlim; 6622 if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1)) 6623 goto efault; 6624 rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur); 6625 rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max); 6626 unlock_user_struct(target_rlim, arg2, 0); 6627 ret = get_errno(setrlimit(resource, &rlim)); 6628 } 6629 break; 6630 case TARGET_NR_getrlimit: 6631 { 6632 int resource = target_to_host_resource(arg1); 6633 struct target_rlimit *target_rlim; 6634 struct rlimit rlim; 6635 6636 ret = get_errno(getrlimit(resource, &rlim)); 6637 if (!is_error(ret)) { 6638 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0)) 6639 goto efault; 6640 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur); 6641 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max); 6642 unlock_user_struct(target_rlim, arg2, 1); 6643 } 6644 } 6645 break; 6646 case TARGET_NR_getrusage: 6647 { 6648 struct rusage rusage; 6649 ret = get_errno(getrusage(arg1, &rusage)); 6650 if (!is_error(ret)) { 6651 ret = host_to_target_rusage(arg2, &rusage); 6652 } 6653 } 6654 break; 6655 case TARGET_NR_gettimeofday: 6656 { 6657 struct timeval tv; 6658 ret = get_errno(gettimeofday(&tv, NULL)); 6659 if (!is_error(ret)) { 6660 if (copy_to_user_timeval(arg1, &tv)) 6661 goto efault; 6662 } 6663 } 6664 break; 6665 case TARGET_NR_settimeofday: 6666 { 6667 struct timeval tv, *ptv = NULL; 6668 struct timezone tz, *ptz = NULL; 6669 6670 if (arg1) { 6671 if (copy_from_user_timeval(&tv, arg1)) { 6672 goto efault; 6673 } 6674 ptv = &tv; 6675 } 6676 6677 if (arg2) { 6678 if (copy_from_user_timezone(&tz, arg2)) { 6679 goto efault; 6680 } 6681 ptz = &tz; 6682 } 6683 6684 ret = get_errno(settimeofday(ptv, ptz)); 6685 } 6686 break; 6687 #if defined(TARGET_NR_select) 6688 case TARGET_NR_select: 6689 #if defined(TARGET_S390X) || defined(TARGET_ALPHA) 6690 ret = do_select(arg1, arg2, arg3, arg4, arg5); 6691 #else 6692 { 6693 struct target_sel_arg_struct *sel; 6694 abi_ulong inp, outp, exp, tvp; 6695 long nsel; 6696 6697 if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) 6698 goto efault; 6699 nsel = tswapal(sel->n); 6700 inp = tswapal(sel->inp); 6701 outp = tswapal(sel->outp); 6702 exp = tswapal(sel->exp); 6703 tvp = tswapal(sel->tvp); 6704 unlock_user_struct(sel, arg1, 0); 6705 ret = do_select(nsel, inp, outp, exp, tvp); 6706 } 6707 #endif 6708 break; 6709 #endif 6710 #ifdef TARGET_NR_pselect6 6711 case TARGET_NR_pselect6: 6712 { 6713 abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr; 6714 fd_set rfds, wfds, efds; 6715 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr; 6716 struct timespec ts, *ts_ptr; 6717 6718 /* 6719 * The 6th arg is actually two args smashed together, 6720 * so we cannot use the C library. 6721 */ 6722 sigset_t set; 6723 struct { 6724 sigset_t *set; 6725 size_t size; 6726 } sig, *sig_ptr; 6727 6728 abi_ulong arg_sigset, arg_sigsize, *arg7; 6729 target_sigset_t *target_sigset; 6730 6731 n = arg1; 6732 rfd_addr = arg2; 6733 wfd_addr = arg3; 6734 efd_addr = arg4; 6735 ts_addr = arg5; 6736 6737 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n); 6738 if (ret) { 6739 goto fail; 6740 } 6741 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n); 6742 if (ret) { 6743 goto fail; 6744 } 6745 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n); 6746 if (ret) { 6747 goto fail; 6748 } 6749 6750 /* 6751 * This takes a timespec, and not a timeval, so we cannot 6752 * use the do_select() helper ... 6753 */ 6754 if (ts_addr) { 6755 if (target_to_host_timespec(&ts, ts_addr)) { 6756 goto efault; 6757 } 6758 ts_ptr = &ts; 6759 } else { 6760 ts_ptr = NULL; 6761 } 6762 6763 /* Extract the two packed args for the sigset */ 6764 if (arg6) { 6765 sig_ptr = &sig; 6766 sig.size = _NSIG / 8; 6767 6768 arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1); 6769 if (!arg7) { 6770 goto efault; 6771 } 6772 arg_sigset = tswapal(arg7[0]); 6773 arg_sigsize = tswapal(arg7[1]); 6774 unlock_user(arg7, arg6, 0); 6775 6776 if (arg_sigset) { 6777 sig.set = &set; 6778 if (arg_sigsize != sizeof(*target_sigset)) { 6779 /* Like the kernel, we enforce correct size sigsets */ 6780 ret = -TARGET_EINVAL; 6781 goto fail; 6782 } 6783 target_sigset = lock_user(VERIFY_READ, arg_sigset, 6784 sizeof(*target_sigset), 1); 6785 if (!target_sigset) { 6786 goto efault; 6787 } 6788 target_to_host_sigset(&set, target_sigset); 6789 unlock_user(target_sigset, arg_sigset, 0); 6790 } else { 6791 sig.set = NULL; 6792 } 6793 } else { 6794 sig_ptr = NULL; 6795 } 6796 6797 ret = get_errno(sys_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr, 6798 ts_ptr, sig_ptr)); 6799 6800 if (!is_error(ret)) { 6801 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) 6802 goto efault; 6803 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) 6804 goto efault; 6805 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) 6806 goto efault; 6807 6808 if (ts_addr && host_to_target_timespec(ts_addr, &ts)) 6809 goto efault; 6810 } 6811 } 6812 break; 6813 #endif 6814 case TARGET_NR_symlink: 6815 { 6816 void *p2; 6817 p = lock_user_string(arg1); 6818 p2 = lock_user_string(arg2); 6819 if (!p || !p2) 6820 ret = -TARGET_EFAULT; 6821 else 6822 ret = get_errno(symlink(p, p2)); 6823 unlock_user(p2, arg2, 0); 6824 unlock_user(p, arg1, 0); 6825 } 6826 break; 6827 #if defined(TARGET_NR_symlinkat) 6828 case TARGET_NR_symlinkat: 6829 { 6830 void *p2; 6831 p = lock_user_string(arg1); 6832 p2 = lock_user_string(arg3); 6833 if (!p || !p2) 6834 ret = -TARGET_EFAULT; 6835 else 6836 ret = get_errno(symlinkat(p, arg2, p2)); 6837 unlock_user(p2, arg3, 0); 6838 unlock_user(p, arg1, 0); 6839 } 6840 break; 6841 #endif 6842 #ifdef TARGET_NR_oldlstat 6843 case TARGET_NR_oldlstat: 6844 goto unimplemented; 6845 #endif 6846 case TARGET_NR_readlink: 6847 { 6848 void *p2; 6849 p = lock_user_string(arg1); 6850 p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0); 6851 if (!p || !p2) { 6852 ret = -TARGET_EFAULT; 6853 } else if (!arg3) { 6854 /* Short circuit this for the magic exe check. */ 6855 ret = -TARGET_EINVAL; 6856 } else if (is_proc_myself((const char *)p, "exe")) { 6857 char real[PATH_MAX], *temp; 6858 temp = realpath(exec_path, real); 6859 /* Return value is # of bytes that we wrote to the buffer. */ 6860 if (temp == NULL) { 6861 ret = get_errno(-1); 6862 } else { 6863 /* Don't worry about sign mismatch as earlier mapping 6864 * logic would have thrown a bad address error. */ 6865 ret = MIN(strlen(real), arg3); 6866 /* We cannot NUL terminate the string. */ 6867 memcpy(p2, real, ret); 6868 } 6869 } else { 6870 ret = get_errno(readlink(path(p), p2, arg3)); 6871 } 6872 unlock_user(p2, arg2, ret); 6873 unlock_user(p, arg1, 0); 6874 } 6875 break; 6876 #if defined(TARGET_NR_readlinkat) 6877 case TARGET_NR_readlinkat: 6878 { 6879 void *p2; 6880 p = lock_user_string(arg2); 6881 p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0); 6882 if (!p || !p2) { 6883 ret = -TARGET_EFAULT; 6884 } else if (is_proc_myself((const char *)p, "exe")) { 6885 char real[PATH_MAX], *temp; 6886 temp = realpath(exec_path, real); 6887 ret = temp == NULL ? get_errno(-1) : strlen(real) ; 6888 snprintf((char *)p2, arg4, "%s", real); 6889 } else { 6890 ret = get_errno(readlinkat(arg1, path(p), p2, arg4)); 6891 } 6892 unlock_user(p2, arg3, ret); 6893 unlock_user(p, arg2, 0); 6894 } 6895 break; 6896 #endif 6897 #ifdef TARGET_NR_uselib 6898 case TARGET_NR_uselib: 6899 goto unimplemented; 6900 #endif 6901 #ifdef TARGET_NR_swapon 6902 case TARGET_NR_swapon: 6903 if (!(p = lock_user_string(arg1))) 6904 goto efault; 6905 ret = get_errno(swapon(p, arg2)); 6906 unlock_user(p, arg1, 0); 6907 break; 6908 #endif 6909 case TARGET_NR_reboot: 6910 if (arg3 == LINUX_REBOOT_CMD_RESTART2) { 6911 /* arg4 must be ignored in all other cases */ 6912 p = lock_user_string(arg4); 6913 if (!p) { 6914 goto efault; 6915 } 6916 ret = get_errno(reboot(arg1, arg2, arg3, p)); 6917 unlock_user(p, arg4, 0); 6918 } else { 6919 ret = get_errno(reboot(arg1, arg2, arg3, NULL)); 6920 } 6921 break; 6922 #ifdef TARGET_NR_readdir 6923 case TARGET_NR_readdir: 6924 goto unimplemented; 6925 #endif 6926 #ifdef TARGET_NR_mmap 6927 case TARGET_NR_mmap: 6928 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \ 6929 (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \ 6930 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \ 6931 || defined(TARGET_S390X) 6932 { 6933 abi_ulong *v; 6934 abi_ulong v1, v2, v3, v4, v5, v6; 6935 if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1))) 6936 goto efault; 6937 v1 = tswapal(v[0]); 6938 v2 = tswapal(v[1]); 6939 v3 = tswapal(v[2]); 6940 v4 = tswapal(v[3]); 6941 v5 = tswapal(v[4]); 6942 v6 = tswapal(v[5]); 6943 unlock_user(v, arg1, 0); 6944 ret = get_errno(target_mmap(v1, v2, v3, 6945 target_to_host_bitmask(v4, mmap_flags_tbl), 6946 v5, v6)); 6947 } 6948 #else 6949 ret = get_errno(target_mmap(arg1, arg2, arg3, 6950 target_to_host_bitmask(arg4, mmap_flags_tbl), 6951 arg5, 6952 arg6)); 6953 #endif 6954 break; 6955 #endif 6956 #ifdef TARGET_NR_mmap2 6957 case TARGET_NR_mmap2: 6958 #ifndef MMAP_SHIFT 6959 #define MMAP_SHIFT 12 6960 #endif 6961 ret = get_errno(target_mmap(arg1, arg2, arg3, 6962 target_to_host_bitmask(arg4, mmap_flags_tbl), 6963 arg5, 6964 arg6 << MMAP_SHIFT)); 6965 break; 6966 #endif 6967 case TARGET_NR_munmap: 6968 ret = get_errno(target_munmap(arg1, arg2)); 6969 break; 6970 case TARGET_NR_mprotect: 6971 { 6972 TaskState *ts = cpu->opaque; 6973 /* Special hack to detect libc making the stack executable. */ 6974 if ((arg3 & PROT_GROWSDOWN) 6975 && arg1 >= ts->info->stack_limit 6976 && arg1 <= ts->info->start_stack) { 6977 arg3 &= ~PROT_GROWSDOWN; 6978 arg2 = arg2 + arg1 - ts->info->stack_limit; 6979 arg1 = ts->info->stack_limit; 6980 } 6981 } 6982 ret = get_errno(target_mprotect(arg1, arg2, arg3)); 6983 break; 6984 #ifdef TARGET_NR_mremap 6985 case TARGET_NR_mremap: 6986 ret = get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5)); 6987 break; 6988 #endif 6989 /* ??? msync/mlock/munlock are broken for softmmu. */ 6990 #ifdef TARGET_NR_msync 6991 case TARGET_NR_msync: 6992 ret = get_errno(msync(g2h(arg1), arg2, arg3)); 6993 break; 6994 #endif 6995 #ifdef TARGET_NR_mlock 6996 case TARGET_NR_mlock: 6997 ret = get_errno(mlock(g2h(arg1), arg2)); 6998 break; 6999 #endif 7000 #ifdef TARGET_NR_munlock 7001 case TARGET_NR_munlock: 7002 ret = get_errno(munlock(g2h(arg1), arg2)); 7003 break; 7004 #endif 7005 #ifdef TARGET_NR_mlockall 7006 case TARGET_NR_mlockall: 7007 ret = get_errno(mlockall(target_to_host_mlockall_arg(arg1))); 7008 break; 7009 #endif 7010 #ifdef TARGET_NR_munlockall 7011 case TARGET_NR_munlockall: 7012 ret = get_errno(munlockall()); 7013 break; 7014 #endif 7015 case TARGET_NR_truncate: 7016 if (!(p = lock_user_string(arg1))) 7017 goto efault; 7018 ret = get_errno(truncate(p, arg2)); 7019 unlock_user(p, arg1, 0); 7020 break; 7021 case TARGET_NR_ftruncate: 7022 ret = get_errno(ftruncate(arg1, arg2)); 7023 break; 7024 case TARGET_NR_fchmod: 7025 ret = get_errno(fchmod(arg1, arg2)); 7026 break; 7027 #if defined(TARGET_NR_fchmodat) 7028 case TARGET_NR_fchmodat: 7029 if (!(p = lock_user_string(arg2))) 7030 goto efault; 7031 ret = get_errno(fchmodat(arg1, p, arg3, 0)); 7032 unlock_user(p, arg2, 0); 7033 break; 7034 #endif 7035 case TARGET_NR_getpriority: 7036 /* Note that negative values are valid for getpriority, so we must 7037 differentiate based on errno settings. */ 7038 errno = 0; 7039 ret = getpriority(arg1, arg2); 7040 if (ret == -1 && errno != 0) { 7041 ret = -host_to_target_errno(errno); 7042 break; 7043 } 7044 #ifdef TARGET_ALPHA 7045 /* Return value is the unbiased priority. Signal no error. */ 7046 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; 7047 #else 7048 /* Return value is a biased priority to avoid negative numbers. */ 7049 ret = 20 - ret; 7050 #endif 7051 break; 7052 case TARGET_NR_setpriority: 7053 ret = get_errno(setpriority(arg1, arg2, arg3)); 7054 break; 7055 #ifdef TARGET_NR_profil 7056 case TARGET_NR_profil: 7057 goto unimplemented; 7058 #endif 7059 case TARGET_NR_statfs: 7060 if (!(p = lock_user_string(arg1))) 7061 goto efault; 7062 ret = get_errno(statfs(path(p), &stfs)); 7063 unlock_user(p, arg1, 0); 7064 convert_statfs: 7065 if (!is_error(ret)) { 7066 struct target_statfs *target_stfs; 7067 7068 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0)) 7069 goto efault; 7070 __put_user(stfs.f_type, &target_stfs->f_type); 7071 __put_user(stfs.f_bsize, &target_stfs->f_bsize); 7072 __put_user(stfs.f_blocks, &target_stfs->f_blocks); 7073 __put_user(stfs.f_bfree, &target_stfs->f_bfree); 7074 __put_user(stfs.f_bavail, &target_stfs->f_bavail); 7075 __put_user(stfs.f_files, &target_stfs->f_files); 7076 __put_user(stfs.f_ffree, &target_stfs->f_ffree); 7077 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]); 7078 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]); 7079 __put_user(stfs.f_namelen, &target_stfs->f_namelen); 7080 __put_user(stfs.f_frsize, &target_stfs->f_frsize); 7081 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare)); 7082 unlock_user_struct(target_stfs, arg2, 1); 7083 } 7084 break; 7085 case TARGET_NR_fstatfs: 7086 ret = get_errno(fstatfs(arg1, &stfs)); 7087 goto convert_statfs; 7088 #ifdef TARGET_NR_statfs64 7089 case TARGET_NR_statfs64: 7090 if (!(p = lock_user_string(arg1))) 7091 goto efault; 7092 ret = get_errno(statfs(path(p), &stfs)); 7093 unlock_user(p, arg1, 0); 7094 convert_statfs64: 7095 if (!is_error(ret)) { 7096 struct target_statfs64 *target_stfs; 7097 7098 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0)) 7099 goto efault; 7100 __put_user(stfs.f_type, &target_stfs->f_type); 7101 __put_user(stfs.f_bsize, &target_stfs->f_bsize); 7102 __put_user(stfs.f_blocks, &target_stfs->f_blocks); 7103 __put_user(stfs.f_bfree, &target_stfs->f_bfree); 7104 __put_user(stfs.f_bavail, &target_stfs->f_bavail); 7105 __put_user(stfs.f_files, &target_stfs->f_files); 7106 __put_user(stfs.f_ffree, &target_stfs->f_ffree); 7107 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]); 7108 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]); 7109 __put_user(stfs.f_namelen, &target_stfs->f_namelen); 7110 __put_user(stfs.f_frsize, &target_stfs->f_frsize); 7111 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare)); 7112 unlock_user_struct(target_stfs, arg3, 1); 7113 } 7114 break; 7115 case TARGET_NR_fstatfs64: 7116 ret = get_errno(fstatfs(arg1, &stfs)); 7117 goto convert_statfs64; 7118 #endif 7119 #ifdef TARGET_NR_ioperm 7120 case TARGET_NR_ioperm: 7121 goto unimplemented; 7122 #endif 7123 #ifdef TARGET_NR_socketcall 7124 case TARGET_NR_socketcall: 7125 ret = do_socketcall(arg1, arg2); 7126 break; 7127 #endif 7128 #ifdef TARGET_NR_accept 7129 case TARGET_NR_accept: 7130 ret = do_accept4(arg1, arg2, arg3, 0); 7131 break; 7132 #endif 7133 #ifdef TARGET_NR_accept4 7134 case TARGET_NR_accept4: 7135 #ifdef CONFIG_ACCEPT4 7136 ret = do_accept4(arg1, arg2, arg3, arg4); 7137 #else 7138 goto unimplemented; 7139 #endif 7140 break; 7141 #endif 7142 #ifdef TARGET_NR_bind 7143 case TARGET_NR_bind: 7144 ret = do_bind(arg1, arg2, arg3); 7145 break; 7146 #endif 7147 #ifdef TARGET_NR_connect 7148 case TARGET_NR_connect: 7149 ret = do_connect(arg1, arg2, arg3); 7150 break; 7151 #endif 7152 #ifdef TARGET_NR_getpeername 7153 case TARGET_NR_getpeername: 7154 ret = do_getpeername(arg1, arg2, arg3); 7155 break; 7156 #endif 7157 #ifdef TARGET_NR_getsockname 7158 case TARGET_NR_getsockname: 7159 ret = do_getsockname(arg1, arg2, arg3); 7160 break; 7161 #endif 7162 #ifdef TARGET_NR_getsockopt 7163 case TARGET_NR_getsockopt: 7164 ret = do_getsockopt(arg1, arg2, arg3, arg4, arg5); 7165 break; 7166 #endif 7167 #ifdef TARGET_NR_listen 7168 case TARGET_NR_listen: 7169 ret = get_errno(listen(arg1, arg2)); 7170 break; 7171 #endif 7172 #ifdef TARGET_NR_recv 7173 case TARGET_NR_recv: 7174 ret = do_recvfrom(arg1, arg2, arg3, arg4, 0, 0); 7175 break; 7176 #endif 7177 #ifdef TARGET_NR_recvfrom 7178 case TARGET_NR_recvfrom: 7179 ret = do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6); 7180 break; 7181 #endif 7182 #ifdef TARGET_NR_recvmsg 7183 case TARGET_NR_recvmsg: 7184 ret = do_sendrecvmsg(arg1, arg2, arg3, 0); 7185 break; 7186 #endif 7187 #ifdef TARGET_NR_send 7188 case TARGET_NR_send: 7189 ret = do_sendto(arg1, arg2, arg3, arg4, 0, 0); 7190 break; 7191 #endif 7192 #ifdef TARGET_NR_sendmsg 7193 case TARGET_NR_sendmsg: 7194 ret = do_sendrecvmsg(arg1, arg2, arg3, 1); 7195 break; 7196 #endif 7197 #ifdef TARGET_NR_sendmmsg 7198 case TARGET_NR_sendmmsg: 7199 ret = do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1); 7200 break; 7201 case TARGET_NR_recvmmsg: 7202 ret = do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0); 7203 break; 7204 #endif 7205 #ifdef TARGET_NR_sendto 7206 case TARGET_NR_sendto: 7207 ret = do_sendto(arg1, arg2, arg3, arg4, arg5, arg6); 7208 break; 7209 #endif 7210 #ifdef TARGET_NR_shutdown 7211 case TARGET_NR_shutdown: 7212 ret = get_errno(shutdown(arg1, arg2)); 7213 break; 7214 #endif 7215 #ifdef TARGET_NR_socket 7216 case TARGET_NR_socket: 7217 ret = do_socket(arg1, arg2, arg3); 7218 break; 7219 #endif 7220 #ifdef TARGET_NR_socketpair 7221 case TARGET_NR_socketpair: 7222 ret = do_socketpair(arg1, arg2, arg3, arg4); 7223 break; 7224 #endif 7225 #ifdef TARGET_NR_setsockopt 7226 case TARGET_NR_setsockopt: 7227 ret = do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5); 7228 break; 7229 #endif 7230 7231 case TARGET_NR_syslog: 7232 if (!(p = lock_user_string(arg2))) 7233 goto efault; 7234 ret = get_errno(sys_syslog((int)arg1, p, (int)arg3)); 7235 unlock_user(p, arg2, 0); 7236 break; 7237 7238 case TARGET_NR_setitimer: 7239 { 7240 struct itimerval value, ovalue, *pvalue; 7241 7242 if (arg2) { 7243 pvalue = &value; 7244 if (copy_from_user_timeval(&pvalue->it_interval, arg2) 7245 || copy_from_user_timeval(&pvalue->it_value, 7246 arg2 + sizeof(struct target_timeval))) 7247 goto efault; 7248 } else { 7249 pvalue = NULL; 7250 } 7251 ret = get_errno(setitimer(arg1, pvalue, &ovalue)); 7252 if (!is_error(ret) && arg3) { 7253 if (copy_to_user_timeval(arg3, 7254 &ovalue.it_interval) 7255 || copy_to_user_timeval(arg3 + sizeof(struct target_timeval), 7256 &ovalue.it_value)) 7257 goto efault; 7258 } 7259 } 7260 break; 7261 case TARGET_NR_getitimer: 7262 { 7263 struct itimerval value; 7264 7265 ret = get_errno(getitimer(arg1, &value)); 7266 if (!is_error(ret) && arg2) { 7267 if (copy_to_user_timeval(arg2, 7268 &value.it_interval) 7269 || copy_to_user_timeval(arg2 + sizeof(struct target_timeval), 7270 &value.it_value)) 7271 goto efault; 7272 } 7273 } 7274 break; 7275 case TARGET_NR_stat: 7276 if (!(p = lock_user_string(arg1))) 7277 goto efault; 7278 ret = get_errno(stat(path(p), &st)); 7279 unlock_user(p, arg1, 0); 7280 goto do_stat; 7281 case TARGET_NR_lstat: 7282 if (!(p = lock_user_string(arg1))) 7283 goto efault; 7284 ret = get_errno(lstat(path(p), &st)); 7285 unlock_user(p, arg1, 0); 7286 goto do_stat; 7287 case TARGET_NR_fstat: 7288 { 7289 ret = get_errno(fstat(arg1, &st)); 7290 do_stat: 7291 if (!is_error(ret)) { 7292 struct target_stat *target_st; 7293 7294 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0)) 7295 goto efault; 7296 memset(target_st, 0, sizeof(*target_st)); 7297 __put_user(st.st_dev, &target_st->st_dev); 7298 __put_user(st.st_ino, &target_st->st_ino); 7299 __put_user(st.st_mode, &target_st->st_mode); 7300 __put_user(st.st_uid, &target_st->st_uid); 7301 __put_user(st.st_gid, &target_st->st_gid); 7302 __put_user(st.st_nlink, &target_st->st_nlink); 7303 __put_user(st.st_rdev, &target_st->st_rdev); 7304 __put_user(st.st_size, &target_st->st_size); 7305 __put_user(st.st_blksize, &target_st->st_blksize); 7306 __put_user(st.st_blocks, &target_st->st_blocks); 7307 __put_user(st.st_atime, &target_st->target_st_atime); 7308 __put_user(st.st_mtime, &target_st->target_st_mtime); 7309 __put_user(st.st_ctime, &target_st->target_st_ctime); 7310 unlock_user_struct(target_st, arg2, 1); 7311 } 7312 } 7313 break; 7314 #ifdef TARGET_NR_olduname 7315 case TARGET_NR_olduname: 7316 goto unimplemented; 7317 #endif 7318 #ifdef TARGET_NR_iopl 7319 case TARGET_NR_iopl: 7320 goto unimplemented; 7321 #endif 7322 case TARGET_NR_vhangup: 7323 ret = get_errno(vhangup()); 7324 break; 7325 #ifdef TARGET_NR_idle 7326 case TARGET_NR_idle: 7327 goto unimplemented; 7328 #endif 7329 #ifdef TARGET_NR_syscall 7330 case TARGET_NR_syscall: 7331 ret = do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5, 7332 arg6, arg7, arg8, 0); 7333 break; 7334 #endif 7335 case TARGET_NR_wait4: 7336 { 7337 int status; 7338 abi_long status_ptr = arg2; 7339 struct rusage rusage, *rusage_ptr; 7340 abi_ulong target_rusage = arg4; 7341 abi_long rusage_err; 7342 if (target_rusage) 7343 rusage_ptr = &rusage; 7344 else 7345 rusage_ptr = NULL; 7346 ret = get_errno(wait4(arg1, &status, arg3, rusage_ptr)); 7347 if (!is_error(ret)) { 7348 if (status_ptr && ret) { 7349 status = host_to_target_waitstatus(status); 7350 if (put_user_s32(status, status_ptr)) 7351 goto efault; 7352 } 7353 if (target_rusage) { 7354 rusage_err = host_to_target_rusage(target_rusage, &rusage); 7355 if (rusage_err) { 7356 ret = rusage_err; 7357 } 7358 } 7359 } 7360 } 7361 break; 7362 #ifdef TARGET_NR_swapoff 7363 case TARGET_NR_swapoff: 7364 if (!(p = lock_user_string(arg1))) 7365 goto efault; 7366 ret = get_errno(swapoff(p)); 7367 unlock_user(p, arg1, 0); 7368 break; 7369 #endif 7370 case TARGET_NR_sysinfo: 7371 { 7372 struct target_sysinfo *target_value; 7373 struct sysinfo value; 7374 ret = get_errno(sysinfo(&value)); 7375 if (!is_error(ret) && arg1) 7376 { 7377 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0)) 7378 goto efault; 7379 __put_user(value.uptime, &target_value->uptime); 7380 __put_user(value.loads[0], &target_value->loads[0]); 7381 __put_user(value.loads[1], &target_value->loads[1]); 7382 __put_user(value.loads[2], &target_value->loads[2]); 7383 __put_user(value.totalram, &target_value->totalram); 7384 __put_user(value.freeram, &target_value->freeram); 7385 __put_user(value.sharedram, &target_value->sharedram); 7386 __put_user(value.bufferram, &target_value->bufferram); 7387 __put_user(value.totalswap, &target_value->totalswap); 7388 __put_user(value.freeswap, &target_value->freeswap); 7389 __put_user(value.procs, &target_value->procs); 7390 __put_user(value.totalhigh, &target_value->totalhigh); 7391 __put_user(value.freehigh, &target_value->freehigh); 7392 __put_user(value.mem_unit, &target_value->mem_unit); 7393 unlock_user_struct(target_value, arg1, 1); 7394 } 7395 } 7396 break; 7397 #ifdef TARGET_NR_ipc 7398 case TARGET_NR_ipc: 7399 ret = do_ipc(arg1, arg2, arg3, arg4, arg5, arg6); 7400 break; 7401 #endif 7402 #ifdef TARGET_NR_semget 7403 case TARGET_NR_semget: 7404 ret = get_errno(semget(arg1, arg2, arg3)); 7405 break; 7406 #endif 7407 #ifdef TARGET_NR_semop 7408 case TARGET_NR_semop: 7409 ret = do_semop(arg1, arg2, arg3); 7410 break; 7411 #endif 7412 #ifdef TARGET_NR_semctl 7413 case TARGET_NR_semctl: 7414 ret = do_semctl(arg1, arg2, arg3, (union target_semun)(abi_ulong)arg4); 7415 break; 7416 #endif 7417 #ifdef TARGET_NR_msgctl 7418 case TARGET_NR_msgctl: 7419 ret = do_msgctl(arg1, arg2, arg3); 7420 break; 7421 #endif 7422 #ifdef TARGET_NR_msgget 7423 case TARGET_NR_msgget: 7424 ret = get_errno(msgget(arg1, arg2)); 7425 break; 7426 #endif 7427 #ifdef TARGET_NR_msgrcv 7428 case TARGET_NR_msgrcv: 7429 ret = do_msgrcv(arg1, arg2, arg3, arg4, arg5); 7430 break; 7431 #endif 7432 #ifdef TARGET_NR_msgsnd 7433 case TARGET_NR_msgsnd: 7434 ret = do_msgsnd(arg1, arg2, arg3, arg4); 7435 break; 7436 #endif 7437 #ifdef TARGET_NR_shmget 7438 case TARGET_NR_shmget: 7439 ret = get_errno(shmget(arg1, arg2, arg3)); 7440 break; 7441 #endif 7442 #ifdef TARGET_NR_shmctl 7443 case TARGET_NR_shmctl: 7444 ret = do_shmctl(arg1, arg2, arg3); 7445 break; 7446 #endif 7447 #ifdef TARGET_NR_shmat 7448 case TARGET_NR_shmat: 7449 ret = do_shmat(arg1, arg2, arg3); 7450 break; 7451 #endif 7452 #ifdef TARGET_NR_shmdt 7453 case TARGET_NR_shmdt: 7454 ret = do_shmdt(arg1); 7455 break; 7456 #endif 7457 case TARGET_NR_fsync: 7458 ret = get_errno(fsync(arg1)); 7459 break; 7460 case TARGET_NR_clone: 7461 /* Linux manages to have three different orderings for its 7462 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines 7463 * match the kernel's CONFIG_CLONE_* settings. 7464 * Microblaze is further special in that it uses a sixth 7465 * implicit argument to clone for the TLS pointer. 7466 */ 7467 #if defined(TARGET_MICROBLAZE) 7468 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5)); 7469 #elif defined(TARGET_CLONE_BACKWARDS) 7470 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5)); 7471 #elif defined(TARGET_CLONE_BACKWARDS2) 7472 ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4)); 7473 #else 7474 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4)); 7475 #endif 7476 break; 7477 #ifdef __NR_exit_group 7478 /* new thread calls */ 7479 case TARGET_NR_exit_group: 7480 #ifdef TARGET_GPROF 7481 _mcleanup(); 7482 #endif 7483 gdb_exit(cpu_env, arg1); 7484 ret = get_errno(exit_group(arg1)); 7485 break; 7486 #endif 7487 case TARGET_NR_setdomainname: 7488 if (!(p = lock_user_string(arg1))) 7489 goto efault; 7490 ret = get_errno(setdomainname(p, arg2)); 7491 unlock_user(p, arg1, 0); 7492 break; 7493 case TARGET_NR_uname: 7494 /* no need to transcode because we use the linux syscall */ 7495 { 7496 struct new_utsname * buf; 7497 7498 if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0)) 7499 goto efault; 7500 ret = get_errno(sys_uname(buf)); 7501 if (!is_error(ret)) { 7502 /* Overrite the native machine name with whatever is being 7503 emulated. */ 7504 strcpy (buf->machine, cpu_to_uname_machine(cpu_env)); 7505 /* Allow the user to override the reported release. */ 7506 if (qemu_uname_release && *qemu_uname_release) 7507 strcpy (buf->release, qemu_uname_release); 7508 } 7509 unlock_user_struct(buf, arg1, 1); 7510 } 7511 break; 7512 #ifdef TARGET_I386 7513 case TARGET_NR_modify_ldt: 7514 ret = do_modify_ldt(cpu_env, arg1, arg2, arg3); 7515 break; 7516 #if !defined(TARGET_X86_64) 7517 case TARGET_NR_vm86old: 7518 goto unimplemented; 7519 case TARGET_NR_vm86: 7520 ret = do_vm86(cpu_env, arg1, arg2); 7521 break; 7522 #endif 7523 #endif 7524 case TARGET_NR_adjtimex: 7525 goto unimplemented; 7526 #ifdef TARGET_NR_create_module 7527 case TARGET_NR_create_module: 7528 #endif 7529 case TARGET_NR_init_module: 7530 case TARGET_NR_delete_module: 7531 #ifdef TARGET_NR_get_kernel_syms 7532 case TARGET_NR_get_kernel_syms: 7533 #endif 7534 goto unimplemented; 7535 case TARGET_NR_quotactl: 7536 goto unimplemented; 7537 case TARGET_NR_getpgid: 7538 ret = get_errno(getpgid(arg1)); 7539 break; 7540 case TARGET_NR_fchdir: 7541 ret = get_errno(fchdir(arg1)); 7542 break; 7543 #ifdef TARGET_NR_bdflush /* not on x86_64 */ 7544 case TARGET_NR_bdflush: 7545 goto unimplemented; 7546 #endif 7547 #ifdef TARGET_NR_sysfs 7548 case TARGET_NR_sysfs: 7549 goto unimplemented; 7550 #endif 7551 case TARGET_NR_personality: 7552 ret = get_errno(personality(arg1)); 7553 break; 7554 #ifdef TARGET_NR_afs_syscall 7555 case TARGET_NR_afs_syscall: 7556 goto unimplemented; 7557 #endif 7558 #ifdef TARGET_NR__llseek /* Not on alpha */ 7559 case TARGET_NR__llseek: 7560 { 7561 int64_t res; 7562 #if !defined(__NR_llseek) 7563 res = lseek(arg1, ((uint64_t)arg2 << 32) | arg3, arg5); 7564 if (res == -1) { 7565 ret = get_errno(res); 7566 } else { 7567 ret = 0; 7568 } 7569 #else 7570 ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5)); 7571 #endif 7572 if ((ret == 0) && put_user_s64(res, arg4)) { 7573 goto efault; 7574 } 7575 } 7576 break; 7577 #endif 7578 case TARGET_NR_getdents: 7579 #ifdef __NR_getdents 7580 #if TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 64 7581 { 7582 struct target_dirent *target_dirp; 7583 struct linux_dirent *dirp; 7584 abi_long count = arg3; 7585 7586 dirp = malloc(count); 7587 if (!dirp) { 7588 ret = -TARGET_ENOMEM; 7589 goto fail; 7590 } 7591 7592 ret = get_errno(sys_getdents(arg1, dirp, count)); 7593 if (!is_error(ret)) { 7594 struct linux_dirent *de; 7595 struct target_dirent *tde; 7596 int len = ret; 7597 int reclen, treclen; 7598 int count1, tnamelen; 7599 7600 count1 = 0; 7601 de = dirp; 7602 if (!(target_dirp = lock_user(VERIFY_WRITE, arg2, count, 0))) 7603 goto efault; 7604 tde = target_dirp; 7605 while (len > 0) { 7606 reclen = de->d_reclen; 7607 tnamelen = reclen - offsetof(struct linux_dirent, d_name); 7608 assert(tnamelen >= 0); 7609 treclen = tnamelen + offsetof(struct target_dirent, d_name); 7610 assert(count1 + treclen <= count); 7611 tde->d_reclen = tswap16(treclen); 7612 tde->d_ino = tswapal(de->d_ino); 7613 tde->d_off = tswapal(de->d_off); 7614 memcpy(tde->d_name, de->d_name, tnamelen); 7615 de = (struct linux_dirent *)((char *)de + reclen); 7616 len -= reclen; 7617 tde = (struct target_dirent *)((char *)tde + treclen); 7618 count1 += treclen; 7619 } 7620 ret = count1; 7621 unlock_user(target_dirp, arg2, ret); 7622 } 7623 free(dirp); 7624 } 7625 #else 7626 { 7627 struct linux_dirent *dirp; 7628 abi_long count = arg3; 7629 7630 if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0))) 7631 goto efault; 7632 ret = get_errno(sys_getdents(arg1, dirp, count)); 7633 if (!is_error(ret)) { 7634 struct linux_dirent *de; 7635 int len = ret; 7636 int reclen; 7637 de = dirp; 7638 while (len > 0) { 7639 reclen = de->d_reclen; 7640 if (reclen > len) 7641 break; 7642 de->d_reclen = tswap16(reclen); 7643 tswapls(&de->d_ino); 7644 tswapls(&de->d_off); 7645 de = (struct linux_dirent *)((char *)de + reclen); 7646 len -= reclen; 7647 } 7648 } 7649 unlock_user(dirp, arg2, ret); 7650 } 7651 #endif 7652 #else 7653 /* Implement getdents in terms of getdents64 */ 7654 { 7655 struct linux_dirent64 *dirp; 7656 abi_long count = arg3; 7657 7658 dirp = lock_user(VERIFY_WRITE, arg2, count, 0); 7659 if (!dirp) { 7660 goto efault; 7661 } 7662 ret = get_errno(sys_getdents64(arg1, dirp, count)); 7663 if (!is_error(ret)) { 7664 /* Convert the dirent64 structs to target dirent. We do this 7665 * in-place, since we can guarantee that a target_dirent is no 7666 * larger than a dirent64; however this means we have to be 7667 * careful to read everything before writing in the new format. 7668 */ 7669 struct linux_dirent64 *de; 7670 struct target_dirent *tde; 7671 int len = ret; 7672 int tlen = 0; 7673 7674 de = dirp; 7675 tde = (struct target_dirent *)dirp; 7676 while (len > 0) { 7677 int namelen, treclen; 7678 int reclen = de->d_reclen; 7679 uint64_t ino = de->d_ino; 7680 int64_t off = de->d_off; 7681 uint8_t type = de->d_type; 7682 7683 namelen = strlen(de->d_name); 7684 treclen = offsetof(struct target_dirent, d_name) 7685 + namelen + 2; 7686 treclen = QEMU_ALIGN_UP(treclen, sizeof(abi_long)); 7687 7688 memmove(tde->d_name, de->d_name, namelen + 1); 7689 tde->d_ino = tswapal(ino); 7690 tde->d_off = tswapal(off); 7691 tde->d_reclen = tswap16(treclen); 7692 /* The target_dirent type is in what was formerly a padding 7693 * byte at the end of the structure: 7694 */ 7695 *(((char *)tde) + treclen - 1) = type; 7696 7697 de = (struct linux_dirent64 *)((char *)de + reclen); 7698 tde = (struct target_dirent *)((char *)tde + treclen); 7699 len -= reclen; 7700 tlen += treclen; 7701 } 7702 ret = tlen; 7703 } 7704 unlock_user(dirp, arg2, ret); 7705 } 7706 #endif 7707 break; 7708 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64) 7709 case TARGET_NR_getdents64: 7710 { 7711 struct linux_dirent64 *dirp; 7712 abi_long count = arg3; 7713 if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0))) 7714 goto efault; 7715 ret = get_errno(sys_getdents64(arg1, dirp, count)); 7716 if (!is_error(ret)) { 7717 struct linux_dirent64 *de; 7718 int len = ret; 7719 int reclen; 7720 de = dirp; 7721 while (len > 0) { 7722 reclen = de->d_reclen; 7723 if (reclen > len) 7724 break; 7725 de->d_reclen = tswap16(reclen); 7726 tswap64s((uint64_t *)&de->d_ino); 7727 tswap64s((uint64_t *)&de->d_off); 7728 de = (struct linux_dirent64 *)((char *)de + reclen); 7729 len -= reclen; 7730 } 7731 } 7732 unlock_user(dirp, arg2, ret); 7733 } 7734 break; 7735 #endif /* TARGET_NR_getdents64 */ 7736 #if defined(TARGET_NR__newselect) 7737 case TARGET_NR__newselect: 7738 ret = do_select(arg1, arg2, arg3, arg4, arg5); 7739 break; 7740 #endif 7741 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) 7742 # ifdef TARGET_NR_poll 7743 case TARGET_NR_poll: 7744 # endif 7745 # ifdef TARGET_NR_ppoll 7746 case TARGET_NR_ppoll: 7747 # endif 7748 { 7749 struct target_pollfd *target_pfd; 7750 unsigned int nfds = arg2; 7751 int timeout = arg3; 7752 struct pollfd *pfd; 7753 unsigned int i; 7754 7755 target_pfd = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_pollfd) * nfds, 1); 7756 if (!target_pfd) 7757 goto efault; 7758 7759 pfd = alloca(sizeof(struct pollfd) * nfds); 7760 for(i = 0; i < nfds; i++) { 7761 pfd[i].fd = tswap32(target_pfd[i].fd); 7762 pfd[i].events = tswap16(target_pfd[i].events); 7763 } 7764 7765 # ifdef TARGET_NR_ppoll 7766 if (num == TARGET_NR_ppoll) { 7767 struct timespec _timeout_ts, *timeout_ts = &_timeout_ts; 7768 target_sigset_t *target_set; 7769 sigset_t _set, *set = &_set; 7770 7771 if (arg3) { 7772 if (target_to_host_timespec(timeout_ts, arg3)) { 7773 unlock_user(target_pfd, arg1, 0); 7774 goto efault; 7775 } 7776 } else { 7777 timeout_ts = NULL; 7778 } 7779 7780 if (arg4) { 7781 target_set = lock_user(VERIFY_READ, arg4, sizeof(target_sigset_t), 1); 7782 if (!target_set) { 7783 unlock_user(target_pfd, arg1, 0); 7784 goto efault; 7785 } 7786 target_to_host_sigset(set, target_set); 7787 } else { 7788 set = NULL; 7789 } 7790 7791 ret = get_errno(sys_ppoll(pfd, nfds, timeout_ts, set, _NSIG/8)); 7792 7793 if (!is_error(ret) && arg3) { 7794 host_to_target_timespec(arg3, timeout_ts); 7795 } 7796 if (arg4) { 7797 unlock_user(target_set, arg4, 0); 7798 } 7799 } else 7800 # endif 7801 ret = get_errno(poll(pfd, nfds, timeout)); 7802 7803 if (!is_error(ret)) { 7804 for(i = 0; i < nfds; i++) { 7805 target_pfd[i].revents = tswap16(pfd[i].revents); 7806 } 7807 } 7808 unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds); 7809 } 7810 break; 7811 #endif 7812 case TARGET_NR_flock: 7813 /* NOTE: the flock constant seems to be the same for every 7814 Linux platform */ 7815 ret = get_errno(flock(arg1, arg2)); 7816 break; 7817 case TARGET_NR_readv: 7818 { 7819 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0); 7820 if (vec != NULL) { 7821 ret = get_errno(readv(arg1, vec, arg3)); 7822 unlock_iovec(vec, arg2, arg3, 1); 7823 } else { 7824 ret = -host_to_target_errno(errno); 7825 } 7826 } 7827 break; 7828 case TARGET_NR_writev: 7829 { 7830 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 7831 if (vec != NULL) { 7832 ret = get_errno(writev(arg1, vec, arg3)); 7833 unlock_iovec(vec, arg2, arg3, 0); 7834 } else { 7835 ret = -host_to_target_errno(errno); 7836 } 7837 } 7838 break; 7839 case TARGET_NR_getsid: 7840 ret = get_errno(getsid(arg1)); 7841 break; 7842 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */ 7843 case TARGET_NR_fdatasync: 7844 ret = get_errno(fdatasync(arg1)); 7845 break; 7846 #endif 7847 case TARGET_NR__sysctl: 7848 /* We don't implement this, but ENOTDIR is always a safe 7849 return value. */ 7850 ret = -TARGET_ENOTDIR; 7851 break; 7852 case TARGET_NR_sched_getaffinity: 7853 { 7854 unsigned int mask_size; 7855 unsigned long *mask; 7856 7857 /* 7858 * sched_getaffinity needs multiples of ulong, so need to take 7859 * care of mismatches between target ulong and host ulong sizes. 7860 */ 7861 if (arg2 & (sizeof(abi_ulong) - 1)) { 7862 ret = -TARGET_EINVAL; 7863 break; 7864 } 7865 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1); 7866 7867 mask = alloca(mask_size); 7868 ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask)); 7869 7870 if (!is_error(ret)) { 7871 if (ret > arg2) { 7872 /* More data returned than the caller's buffer will fit. 7873 * This only happens if sizeof(abi_long) < sizeof(long) 7874 * and the caller passed us a buffer holding an odd number 7875 * of abi_longs. If the host kernel is actually using the 7876 * extra 4 bytes then fail EINVAL; otherwise we can just 7877 * ignore them and only copy the interesting part. 7878 */ 7879 int numcpus = sysconf(_SC_NPROCESSORS_CONF); 7880 if (numcpus > arg2 * 8) { 7881 ret = -TARGET_EINVAL; 7882 break; 7883 } 7884 ret = arg2; 7885 } 7886 7887 if (copy_to_user(arg3, mask, ret)) { 7888 goto efault; 7889 } 7890 } 7891 } 7892 break; 7893 case TARGET_NR_sched_setaffinity: 7894 { 7895 unsigned int mask_size; 7896 unsigned long *mask; 7897 7898 /* 7899 * sched_setaffinity needs multiples of ulong, so need to take 7900 * care of mismatches between target ulong and host ulong sizes. 7901 */ 7902 if (arg2 & (sizeof(abi_ulong) - 1)) { 7903 ret = -TARGET_EINVAL; 7904 break; 7905 } 7906 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1); 7907 7908 mask = alloca(mask_size); 7909 if (!lock_user_struct(VERIFY_READ, p, arg3, 1)) { 7910 goto efault; 7911 } 7912 memcpy(mask, p, arg2); 7913 unlock_user_struct(p, arg2, 0); 7914 7915 ret = get_errno(sys_sched_setaffinity(arg1, mask_size, mask)); 7916 } 7917 break; 7918 case TARGET_NR_sched_setparam: 7919 { 7920 struct sched_param *target_schp; 7921 struct sched_param schp; 7922 7923 if (arg2 == 0) { 7924 return -TARGET_EINVAL; 7925 } 7926 if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1)) 7927 goto efault; 7928 schp.sched_priority = tswap32(target_schp->sched_priority); 7929 unlock_user_struct(target_schp, arg2, 0); 7930 ret = get_errno(sched_setparam(arg1, &schp)); 7931 } 7932 break; 7933 case TARGET_NR_sched_getparam: 7934 { 7935 struct sched_param *target_schp; 7936 struct sched_param schp; 7937 7938 if (arg2 == 0) { 7939 return -TARGET_EINVAL; 7940 } 7941 ret = get_errno(sched_getparam(arg1, &schp)); 7942 if (!is_error(ret)) { 7943 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0)) 7944 goto efault; 7945 target_schp->sched_priority = tswap32(schp.sched_priority); 7946 unlock_user_struct(target_schp, arg2, 1); 7947 } 7948 } 7949 break; 7950 case TARGET_NR_sched_setscheduler: 7951 { 7952 struct sched_param *target_schp; 7953 struct sched_param schp; 7954 if (arg3 == 0) { 7955 return -TARGET_EINVAL; 7956 } 7957 if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1)) 7958 goto efault; 7959 schp.sched_priority = tswap32(target_schp->sched_priority); 7960 unlock_user_struct(target_schp, arg3, 0); 7961 ret = get_errno(sched_setscheduler(arg1, arg2, &schp)); 7962 } 7963 break; 7964 case TARGET_NR_sched_getscheduler: 7965 ret = get_errno(sched_getscheduler(arg1)); 7966 break; 7967 case TARGET_NR_sched_yield: 7968 ret = get_errno(sched_yield()); 7969 break; 7970 case TARGET_NR_sched_get_priority_max: 7971 ret = get_errno(sched_get_priority_max(arg1)); 7972 break; 7973 case TARGET_NR_sched_get_priority_min: 7974 ret = get_errno(sched_get_priority_min(arg1)); 7975 break; 7976 case TARGET_NR_sched_rr_get_interval: 7977 { 7978 struct timespec ts; 7979 ret = get_errno(sched_rr_get_interval(arg1, &ts)); 7980 if (!is_error(ret)) { 7981 ret = host_to_target_timespec(arg2, &ts); 7982 } 7983 } 7984 break; 7985 case TARGET_NR_nanosleep: 7986 { 7987 struct timespec req, rem; 7988 target_to_host_timespec(&req, arg1); 7989 ret = get_errno(nanosleep(&req, &rem)); 7990 if (is_error(ret) && arg2) { 7991 host_to_target_timespec(arg2, &rem); 7992 } 7993 } 7994 break; 7995 #ifdef TARGET_NR_query_module 7996 case TARGET_NR_query_module: 7997 goto unimplemented; 7998 #endif 7999 #ifdef TARGET_NR_nfsservctl 8000 case TARGET_NR_nfsservctl: 8001 goto unimplemented; 8002 #endif 8003 case TARGET_NR_prctl: 8004 switch (arg1) { 8005 case PR_GET_PDEATHSIG: 8006 { 8007 int deathsig; 8008 ret = get_errno(prctl(arg1, &deathsig, arg3, arg4, arg5)); 8009 if (!is_error(ret) && arg2 8010 && put_user_ual(deathsig, arg2)) { 8011 goto efault; 8012 } 8013 break; 8014 } 8015 #ifdef PR_GET_NAME 8016 case PR_GET_NAME: 8017 { 8018 void *name = lock_user(VERIFY_WRITE, arg2, 16, 1); 8019 if (!name) { 8020 goto efault; 8021 } 8022 ret = get_errno(prctl(arg1, (unsigned long)name, 8023 arg3, arg4, arg5)); 8024 unlock_user(name, arg2, 16); 8025 break; 8026 } 8027 case PR_SET_NAME: 8028 { 8029 void *name = lock_user(VERIFY_READ, arg2, 16, 1); 8030 if (!name) { 8031 goto efault; 8032 } 8033 ret = get_errno(prctl(arg1, (unsigned long)name, 8034 arg3, arg4, arg5)); 8035 unlock_user(name, arg2, 0); 8036 break; 8037 } 8038 #endif 8039 default: 8040 /* Most prctl options have no pointer arguments */ 8041 ret = get_errno(prctl(arg1, arg2, arg3, arg4, arg5)); 8042 break; 8043 } 8044 break; 8045 #ifdef TARGET_NR_arch_prctl 8046 case TARGET_NR_arch_prctl: 8047 #if defined(TARGET_I386) && !defined(TARGET_ABI32) 8048 ret = do_arch_prctl(cpu_env, arg1, arg2); 8049 break; 8050 #else 8051 goto unimplemented; 8052 #endif 8053 #endif 8054 #ifdef TARGET_NR_pread64 8055 case TARGET_NR_pread64: 8056 if (regpairs_aligned(cpu_env)) { 8057 arg4 = arg5; 8058 arg5 = arg6; 8059 } 8060 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0))) 8061 goto efault; 8062 ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5))); 8063 unlock_user(p, arg2, ret); 8064 break; 8065 case TARGET_NR_pwrite64: 8066 if (regpairs_aligned(cpu_env)) { 8067 arg4 = arg5; 8068 arg5 = arg6; 8069 } 8070 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1))) 8071 goto efault; 8072 ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5))); 8073 unlock_user(p, arg2, 0); 8074 break; 8075 #endif 8076 case TARGET_NR_getcwd: 8077 if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0))) 8078 goto efault; 8079 ret = get_errno(sys_getcwd1(p, arg2)); 8080 unlock_user(p, arg1, ret); 8081 break; 8082 case TARGET_NR_capget: 8083 case TARGET_NR_capset: 8084 { 8085 struct target_user_cap_header *target_header; 8086 struct target_user_cap_data *target_data = NULL; 8087 struct __user_cap_header_struct header; 8088 struct __user_cap_data_struct data[2]; 8089 struct __user_cap_data_struct *dataptr = NULL; 8090 int i, target_datalen; 8091 int data_items = 1; 8092 8093 if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) { 8094 goto efault; 8095 } 8096 header.version = tswap32(target_header->version); 8097 header.pid = tswap32(target_header->pid); 8098 8099 if (header.version != _LINUX_CAPABILITY_VERSION) { 8100 /* Version 2 and up takes pointer to two user_data structs */ 8101 data_items = 2; 8102 } 8103 8104 target_datalen = sizeof(*target_data) * data_items; 8105 8106 if (arg2) { 8107 if (num == TARGET_NR_capget) { 8108 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0); 8109 } else { 8110 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1); 8111 } 8112 if (!target_data) { 8113 unlock_user_struct(target_header, arg1, 0); 8114 goto efault; 8115 } 8116 8117 if (num == TARGET_NR_capset) { 8118 for (i = 0; i < data_items; i++) { 8119 data[i].effective = tswap32(target_data[i].effective); 8120 data[i].permitted = tswap32(target_data[i].permitted); 8121 data[i].inheritable = tswap32(target_data[i].inheritable); 8122 } 8123 } 8124 8125 dataptr = data; 8126 } 8127 8128 if (num == TARGET_NR_capget) { 8129 ret = get_errno(capget(&header, dataptr)); 8130 } else { 8131 ret = get_errno(capset(&header, dataptr)); 8132 } 8133 8134 /* The kernel always updates version for both capget and capset */ 8135 target_header->version = tswap32(header.version); 8136 unlock_user_struct(target_header, arg1, 1); 8137 8138 if (arg2) { 8139 if (num == TARGET_NR_capget) { 8140 for (i = 0; i < data_items; i++) { 8141 target_data[i].effective = tswap32(data[i].effective); 8142 target_data[i].permitted = tswap32(data[i].permitted); 8143 target_data[i].inheritable = tswap32(data[i].inheritable); 8144 } 8145 unlock_user(target_data, arg2, target_datalen); 8146 } else { 8147 unlock_user(target_data, arg2, 0); 8148 } 8149 } 8150 break; 8151 } 8152 case TARGET_NR_sigaltstack: 8153 #if defined(TARGET_I386) || defined(TARGET_ARM) || defined(TARGET_MIPS) || \ 8154 defined(TARGET_SPARC) || defined(TARGET_PPC) || defined(TARGET_ALPHA) || \ 8155 defined(TARGET_M68K) || defined(TARGET_S390X) || defined(TARGET_OPENRISC) 8156 ret = do_sigaltstack(arg1, arg2, get_sp_from_cpustate((CPUArchState *)cpu_env)); 8157 break; 8158 #else 8159 goto unimplemented; 8160 #endif 8161 8162 #ifdef CONFIG_SENDFILE 8163 case TARGET_NR_sendfile: 8164 { 8165 off_t *offp = NULL; 8166 off_t off; 8167 if (arg3) { 8168 ret = get_user_sal(off, arg3); 8169 if (is_error(ret)) { 8170 break; 8171 } 8172 offp = &off; 8173 } 8174 ret = get_errno(sendfile(arg1, arg2, offp, arg4)); 8175 if (!is_error(ret) && arg3) { 8176 abi_long ret2 = put_user_sal(off, arg3); 8177 if (is_error(ret2)) { 8178 ret = ret2; 8179 } 8180 } 8181 break; 8182 } 8183 #ifdef TARGET_NR_sendfile64 8184 case TARGET_NR_sendfile64: 8185 { 8186 off_t *offp = NULL; 8187 off_t off; 8188 if (arg3) { 8189 ret = get_user_s64(off, arg3); 8190 if (is_error(ret)) { 8191 break; 8192 } 8193 offp = &off; 8194 } 8195 ret = get_errno(sendfile(arg1, arg2, offp, arg4)); 8196 if (!is_error(ret) && arg3) { 8197 abi_long ret2 = put_user_s64(off, arg3); 8198 if (is_error(ret2)) { 8199 ret = ret2; 8200 } 8201 } 8202 break; 8203 } 8204 #endif 8205 #else 8206 case TARGET_NR_sendfile: 8207 #ifdef TARGET_NR_sendfile64 8208 case TARGET_NR_sendfile64: 8209 #endif 8210 goto unimplemented; 8211 #endif 8212 8213 #ifdef TARGET_NR_getpmsg 8214 case TARGET_NR_getpmsg: 8215 goto unimplemented; 8216 #endif 8217 #ifdef TARGET_NR_putpmsg 8218 case TARGET_NR_putpmsg: 8219 goto unimplemented; 8220 #endif 8221 #ifdef TARGET_NR_vfork 8222 case TARGET_NR_vfork: 8223 ret = get_errno(do_fork(cpu_env, CLONE_VFORK | CLONE_VM | SIGCHLD, 8224 0, 0, 0, 0)); 8225 break; 8226 #endif 8227 #ifdef TARGET_NR_ugetrlimit 8228 case TARGET_NR_ugetrlimit: 8229 { 8230 struct rlimit rlim; 8231 int resource = target_to_host_resource(arg1); 8232 ret = get_errno(getrlimit(resource, &rlim)); 8233 if (!is_error(ret)) { 8234 struct target_rlimit *target_rlim; 8235 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0)) 8236 goto efault; 8237 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur); 8238 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max); 8239 unlock_user_struct(target_rlim, arg2, 1); 8240 } 8241 break; 8242 } 8243 #endif 8244 #ifdef TARGET_NR_truncate64 8245 case TARGET_NR_truncate64: 8246 if (!(p = lock_user_string(arg1))) 8247 goto efault; 8248 ret = target_truncate64(cpu_env, p, arg2, arg3, arg4); 8249 unlock_user(p, arg1, 0); 8250 break; 8251 #endif 8252 #ifdef TARGET_NR_ftruncate64 8253 case TARGET_NR_ftruncate64: 8254 ret = target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4); 8255 break; 8256 #endif 8257 #ifdef TARGET_NR_stat64 8258 case TARGET_NR_stat64: 8259 if (!(p = lock_user_string(arg1))) 8260 goto efault; 8261 ret = get_errno(stat(path(p), &st)); 8262 unlock_user(p, arg1, 0); 8263 if (!is_error(ret)) 8264 ret = host_to_target_stat64(cpu_env, arg2, &st); 8265 break; 8266 #endif 8267 #ifdef TARGET_NR_lstat64 8268 case TARGET_NR_lstat64: 8269 if (!(p = lock_user_string(arg1))) 8270 goto efault; 8271 ret = get_errno(lstat(path(p), &st)); 8272 unlock_user(p, arg1, 0); 8273 if (!is_error(ret)) 8274 ret = host_to_target_stat64(cpu_env, arg2, &st); 8275 break; 8276 #endif 8277 #ifdef TARGET_NR_fstat64 8278 case TARGET_NR_fstat64: 8279 ret = get_errno(fstat(arg1, &st)); 8280 if (!is_error(ret)) 8281 ret = host_to_target_stat64(cpu_env, arg2, &st); 8282 break; 8283 #endif 8284 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat)) 8285 #ifdef TARGET_NR_fstatat64 8286 case TARGET_NR_fstatat64: 8287 #endif 8288 #ifdef TARGET_NR_newfstatat 8289 case TARGET_NR_newfstatat: 8290 #endif 8291 if (!(p = lock_user_string(arg2))) 8292 goto efault; 8293 ret = get_errno(fstatat(arg1, path(p), &st, arg4)); 8294 if (!is_error(ret)) 8295 ret = host_to_target_stat64(cpu_env, arg3, &st); 8296 break; 8297 #endif 8298 case TARGET_NR_lchown: 8299 if (!(p = lock_user_string(arg1))) 8300 goto efault; 8301 ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3))); 8302 unlock_user(p, arg1, 0); 8303 break; 8304 #ifdef TARGET_NR_getuid 8305 case TARGET_NR_getuid: 8306 ret = get_errno(high2lowuid(getuid())); 8307 break; 8308 #endif 8309 #ifdef TARGET_NR_getgid 8310 case TARGET_NR_getgid: 8311 ret = get_errno(high2lowgid(getgid())); 8312 break; 8313 #endif 8314 #ifdef TARGET_NR_geteuid 8315 case TARGET_NR_geteuid: 8316 ret = get_errno(high2lowuid(geteuid())); 8317 break; 8318 #endif 8319 #ifdef TARGET_NR_getegid 8320 case TARGET_NR_getegid: 8321 ret = get_errno(high2lowgid(getegid())); 8322 break; 8323 #endif 8324 case TARGET_NR_setreuid: 8325 ret = get_errno(setreuid(low2highuid(arg1), low2highuid(arg2))); 8326 break; 8327 case TARGET_NR_setregid: 8328 ret = get_errno(setregid(low2highgid(arg1), low2highgid(arg2))); 8329 break; 8330 case TARGET_NR_getgroups: 8331 { 8332 int gidsetsize = arg1; 8333 target_id *target_grouplist; 8334 gid_t *grouplist; 8335 int i; 8336 8337 grouplist = alloca(gidsetsize * sizeof(gid_t)); 8338 ret = get_errno(getgroups(gidsetsize, grouplist)); 8339 if (gidsetsize == 0) 8340 break; 8341 if (!is_error(ret)) { 8342 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * sizeof(target_id), 0); 8343 if (!target_grouplist) 8344 goto efault; 8345 for(i = 0;i < ret; i++) 8346 target_grouplist[i] = tswapid(high2lowgid(grouplist[i])); 8347 unlock_user(target_grouplist, arg2, gidsetsize * sizeof(target_id)); 8348 } 8349 } 8350 break; 8351 case TARGET_NR_setgroups: 8352 { 8353 int gidsetsize = arg1; 8354 target_id *target_grouplist; 8355 gid_t *grouplist = NULL; 8356 int i; 8357 if (gidsetsize) { 8358 grouplist = alloca(gidsetsize * sizeof(gid_t)); 8359 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * sizeof(target_id), 1); 8360 if (!target_grouplist) { 8361 ret = -TARGET_EFAULT; 8362 goto fail; 8363 } 8364 for (i = 0; i < gidsetsize; i++) { 8365 grouplist[i] = low2highgid(tswapid(target_grouplist[i])); 8366 } 8367 unlock_user(target_grouplist, arg2, 0); 8368 } 8369 ret = get_errno(setgroups(gidsetsize, grouplist)); 8370 } 8371 break; 8372 case TARGET_NR_fchown: 8373 ret = get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3))); 8374 break; 8375 #if defined(TARGET_NR_fchownat) 8376 case TARGET_NR_fchownat: 8377 if (!(p = lock_user_string(arg2))) 8378 goto efault; 8379 ret = get_errno(fchownat(arg1, p, low2highuid(arg3), 8380 low2highgid(arg4), arg5)); 8381 unlock_user(p, arg2, 0); 8382 break; 8383 #endif 8384 #ifdef TARGET_NR_setresuid 8385 case TARGET_NR_setresuid: 8386 ret = get_errno(setresuid(low2highuid(arg1), 8387 low2highuid(arg2), 8388 low2highuid(arg3))); 8389 break; 8390 #endif 8391 #ifdef TARGET_NR_getresuid 8392 case TARGET_NR_getresuid: 8393 { 8394 uid_t ruid, euid, suid; 8395 ret = get_errno(getresuid(&ruid, &euid, &suid)); 8396 if (!is_error(ret)) { 8397 if (put_user_id(high2lowuid(ruid), arg1) 8398 || put_user_id(high2lowuid(euid), arg2) 8399 || put_user_id(high2lowuid(suid), arg3)) 8400 goto efault; 8401 } 8402 } 8403 break; 8404 #endif 8405 #ifdef TARGET_NR_getresgid 8406 case TARGET_NR_setresgid: 8407 ret = get_errno(setresgid(low2highgid(arg1), 8408 low2highgid(arg2), 8409 low2highgid(arg3))); 8410 break; 8411 #endif 8412 #ifdef TARGET_NR_getresgid 8413 case TARGET_NR_getresgid: 8414 { 8415 gid_t rgid, egid, sgid; 8416 ret = get_errno(getresgid(&rgid, &egid, &sgid)); 8417 if (!is_error(ret)) { 8418 if (put_user_id(high2lowgid(rgid), arg1) 8419 || put_user_id(high2lowgid(egid), arg2) 8420 || put_user_id(high2lowgid(sgid), arg3)) 8421 goto efault; 8422 } 8423 } 8424 break; 8425 #endif 8426 case TARGET_NR_chown: 8427 if (!(p = lock_user_string(arg1))) 8428 goto efault; 8429 ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3))); 8430 unlock_user(p, arg1, 0); 8431 break; 8432 case TARGET_NR_setuid: 8433 ret = get_errno(setuid(low2highuid(arg1))); 8434 break; 8435 case TARGET_NR_setgid: 8436 ret = get_errno(setgid(low2highgid(arg1))); 8437 break; 8438 case TARGET_NR_setfsuid: 8439 ret = get_errno(setfsuid(arg1)); 8440 break; 8441 case TARGET_NR_setfsgid: 8442 ret = get_errno(setfsgid(arg1)); 8443 break; 8444 8445 #ifdef TARGET_NR_lchown32 8446 case TARGET_NR_lchown32: 8447 if (!(p = lock_user_string(arg1))) 8448 goto efault; 8449 ret = get_errno(lchown(p, arg2, arg3)); 8450 unlock_user(p, arg1, 0); 8451 break; 8452 #endif 8453 #ifdef TARGET_NR_getuid32 8454 case TARGET_NR_getuid32: 8455 ret = get_errno(getuid()); 8456 break; 8457 #endif 8458 8459 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA) 8460 /* Alpha specific */ 8461 case TARGET_NR_getxuid: 8462 { 8463 uid_t euid; 8464 euid=geteuid(); 8465 ((CPUAlphaState *)cpu_env)->ir[IR_A4]=euid; 8466 } 8467 ret = get_errno(getuid()); 8468 break; 8469 #endif 8470 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA) 8471 /* Alpha specific */ 8472 case TARGET_NR_getxgid: 8473 { 8474 uid_t egid; 8475 egid=getegid(); 8476 ((CPUAlphaState *)cpu_env)->ir[IR_A4]=egid; 8477 } 8478 ret = get_errno(getgid()); 8479 break; 8480 #endif 8481 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA) 8482 /* Alpha specific */ 8483 case TARGET_NR_osf_getsysinfo: 8484 ret = -TARGET_EOPNOTSUPP; 8485 switch (arg1) { 8486 case TARGET_GSI_IEEE_FP_CONTROL: 8487 { 8488 uint64_t swcr, fpcr = cpu_alpha_load_fpcr (cpu_env); 8489 8490 /* Copied from linux ieee_fpcr_to_swcr. */ 8491 swcr = (fpcr >> 35) & SWCR_STATUS_MASK; 8492 swcr |= (fpcr >> 36) & SWCR_MAP_DMZ; 8493 swcr |= (~fpcr >> 48) & (SWCR_TRAP_ENABLE_INV 8494 | SWCR_TRAP_ENABLE_DZE 8495 | SWCR_TRAP_ENABLE_OVF); 8496 swcr |= (~fpcr >> 57) & (SWCR_TRAP_ENABLE_UNF 8497 | SWCR_TRAP_ENABLE_INE); 8498 swcr |= (fpcr >> 47) & SWCR_MAP_UMZ; 8499 swcr |= (~fpcr >> 41) & SWCR_TRAP_ENABLE_DNO; 8500 8501 if (put_user_u64 (swcr, arg2)) 8502 goto efault; 8503 ret = 0; 8504 } 8505 break; 8506 8507 /* case GSI_IEEE_STATE_AT_SIGNAL: 8508 -- Not implemented in linux kernel. 8509 case GSI_UACPROC: 8510 -- Retrieves current unaligned access state; not much used. 8511 case GSI_PROC_TYPE: 8512 -- Retrieves implver information; surely not used. 8513 case GSI_GET_HWRPB: 8514 -- Grabs a copy of the HWRPB; surely not used. 8515 */ 8516 } 8517 break; 8518 #endif 8519 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA) 8520 /* Alpha specific */ 8521 case TARGET_NR_osf_setsysinfo: 8522 ret = -TARGET_EOPNOTSUPP; 8523 switch (arg1) { 8524 case TARGET_SSI_IEEE_FP_CONTROL: 8525 { 8526 uint64_t swcr, fpcr, orig_fpcr; 8527 8528 if (get_user_u64 (swcr, arg2)) { 8529 goto efault; 8530 } 8531 orig_fpcr = cpu_alpha_load_fpcr(cpu_env); 8532 fpcr = orig_fpcr & FPCR_DYN_MASK; 8533 8534 /* Copied from linux ieee_swcr_to_fpcr. */ 8535 fpcr |= (swcr & SWCR_STATUS_MASK) << 35; 8536 fpcr |= (swcr & SWCR_MAP_DMZ) << 36; 8537 fpcr |= (~swcr & (SWCR_TRAP_ENABLE_INV 8538 | SWCR_TRAP_ENABLE_DZE 8539 | SWCR_TRAP_ENABLE_OVF)) << 48; 8540 fpcr |= (~swcr & (SWCR_TRAP_ENABLE_UNF 8541 | SWCR_TRAP_ENABLE_INE)) << 57; 8542 fpcr |= (swcr & SWCR_MAP_UMZ ? FPCR_UNDZ | FPCR_UNFD : 0); 8543 fpcr |= (~swcr & SWCR_TRAP_ENABLE_DNO) << 41; 8544 8545 cpu_alpha_store_fpcr(cpu_env, fpcr); 8546 ret = 0; 8547 } 8548 break; 8549 8550 case TARGET_SSI_IEEE_RAISE_EXCEPTION: 8551 { 8552 uint64_t exc, fpcr, orig_fpcr; 8553 int si_code; 8554 8555 if (get_user_u64(exc, arg2)) { 8556 goto efault; 8557 } 8558 8559 orig_fpcr = cpu_alpha_load_fpcr(cpu_env); 8560 8561 /* We only add to the exception status here. */ 8562 fpcr = orig_fpcr | ((exc & SWCR_STATUS_MASK) << 35); 8563 8564 cpu_alpha_store_fpcr(cpu_env, fpcr); 8565 ret = 0; 8566 8567 /* Old exceptions are not signaled. */ 8568 fpcr &= ~(orig_fpcr & FPCR_STATUS_MASK); 8569 8570 /* If any exceptions set by this call, 8571 and are unmasked, send a signal. */ 8572 si_code = 0; 8573 if ((fpcr & (FPCR_INE | FPCR_INED)) == FPCR_INE) { 8574 si_code = TARGET_FPE_FLTRES; 8575 } 8576 if ((fpcr & (FPCR_UNF | FPCR_UNFD)) == FPCR_UNF) { 8577 si_code = TARGET_FPE_FLTUND; 8578 } 8579 if ((fpcr & (FPCR_OVF | FPCR_OVFD)) == FPCR_OVF) { 8580 si_code = TARGET_FPE_FLTOVF; 8581 } 8582 if ((fpcr & (FPCR_DZE | FPCR_DZED)) == FPCR_DZE) { 8583 si_code = TARGET_FPE_FLTDIV; 8584 } 8585 if ((fpcr & (FPCR_INV | FPCR_INVD)) == FPCR_INV) { 8586 si_code = TARGET_FPE_FLTINV; 8587 } 8588 if (si_code != 0) { 8589 target_siginfo_t info; 8590 info.si_signo = SIGFPE; 8591 info.si_errno = 0; 8592 info.si_code = si_code; 8593 info._sifields._sigfault._addr 8594 = ((CPUArchState *)cpu_env)->pc; 8595 queue_signal((CPUArchState *)cpu_env, info.si_signo, &info); 8596 } 8597 } 8598 break; 8599 8600 /* case SSI_NVPAIRS: 8601 -- Used with SSIN_UACPROC to enable unaligned accesses. 8602 case SSI_IEEE_STATE_AT_SIGNAL: 8603 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL: 8604 -- Not implemented in linux kernel 8605 */ 8606 } 8607 break; 8608 #endif 8609 #ifdef TARGET_NR_osf_sigprocmask 8610 /* Alpha specific. */ 8611 case TARGET_NR_osf_sigprocmask: 8612 { 8613 abi_ulong mask; 8614 int how; 8615 sigset_t set, oldset; 8616 8617 switch(arg1) { 8618 case TARGET_SIG_BLOCK: 8619 how = SIG_BLOCK; 8620 break; 8621 case TARGET_SIG_UNBLOCK: 8622 how = SIG_UNBLOCK; 8623 break; 8624 case TARGET_SIG_SETMASK: 8625 how = SIG_SETMASK; 8626 break; 8627 default: 8628 ret = -TARGET_EINVAL; 8629 goto fail; 8630 } 8631 mask = arg2; 8632 target_to_host_old_sigset(&set, &mask); 8633 do_sigprocmask(how, &set, &oldset); 8634 host_to_target_old_sigset(&mask, &oldset); 8635 ret = mask; 8636 } 8637 break; 8638 #endif 8639 8640 #ifdef TARGET_NR_getgid32 8641 case TARGET_NR_getgid32: 8642 ret = get_errno(getgid()); 8643 break; 8644 #endif 8645 #ifdef TARGET_NR_geteuid32 8646 case TARGET_NR_geteuid32: 8647 ret = get_errno(geteuid()); 8648 break; 8649 #endif 8650 #ifdef TARGET_NR_getegid32 8651 case TARGET_NR_getegid32: 8652 ret = get_errno(getegid()); 8653 break; 8654 #endif 8655 #ifdef TARGET_NR_setreuid32 8656 case TARGET_NR_setreuid32: 8657 ret = get_errno(setreuid(arg1, arg2)); 8658 break; 8659 #endif 8660 #ifdef TARGET_NR_setregid32 8661 case TARGET_NR_setregid32: 8662 ret = get_errno(setregid(arg1, arg2)); 8663 break; 8664 #endif 8665 #ifdef TARGET_NR_getgroups32 8666 case TARGET_NR_getgroups32: 8667 { 8668 int gidsetsize = arg1; 8669 uint32_t *target_grouplist; 8670 gid_t *grouplist; 8671 int i; 8672 8673 grouplist = alloca(gidsetsize * sizeof(gid_t)); 8674 ret = get_errno(getgroups(gidsetsize, grouplist)); 8675 if (gidsetsize == 0) 8676 break; 8677 if (!is_error(ret)) { 8678 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * 4, 0); 8679 if (!target_grouplist) { 8680 ret = -TARGET_EFAULT; 8681 goto fail; 8682 } 8683 for(i = 0;i < ret; i++) 8684 target_grouplist[i] = tswap32(grouplist[i]); 8685 unlock_user(target_grouplist, arg2, gidsetsize * 4); 8686 } 8687 } 8688 break; 8689 #endif 8690 #ifdef TARGET_NR_setgroups32 8691 case TARGET_NR_setgroups32: 8692 { 8693 int gidsetsize = arg1; 8694 uint32_t *target_grouplist; 8695 gid_t *grouplist; 8696 int i; 8697 8698 grouplist = alloca(gidsetsize * sizeof(gid_t)); 8699 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * 4, 1); 8700 if (!target_grouplist) { 8701 ret = -TARGET_EFAULT; 8702 goto fail; 8703 } 8704 for(i = 0;i < gidsetsize; i++) 8705 grouplist[i] = tswap32(target_grouplist[i]); 8706 unlock_user(target_grouplist, arg2, 0); 8707 ret = get_errno(setgroups(gidsetsize, grouplist)); 8708 } 8709 break; 8710 #endif 8711 #ifdef TARGET_NR_fchown32 8712 case TARGET_NR_fchown32: 8713 ret = get_errno(fchown(arg1, arg2, arg3)); 8714 break; 8715 #endif 8716 #ifdef TARGET_NR_setresuid32 8717 case TARGET_NR_setresuid32: 8718 ret = get_errno(setresuid(arg1, arg2, arg3)); 8719 break; 8720 #endif 8721 #ifdef TARGET_NR_getresuid32 8722 case TARGET_NR_getresuid32: 8723 { 8724 uid_t ruid, euid, suid; 8725 ret = get_errno(getresuid(&ruid, &euid, &suid)); 8726 if (!is_error(ret)) { 8727 if (put_user_u32(ruid, arg1) 8728 || put_user_u32(euid, arg2) 8729 || put_user_u32(suid, arg3)) 8730 goto efault; 8731 } 8732 } 8733 break; 8734 #endif 8735 #ifdef TARGET_NR_setresgid32 8736 case TARGET_NR_setresgid32: 8737 ret = get_errno(setresgid(arg1, arg2, arg3)); 8738 break; 8739 #endif 8740 #ifdef TARGET_NR_getresgid32 8741 case TARGET_NR_getresgid32: 8742 { 8743 gid_t rgid, egid, sgid; 8744 ret = get_errno(getresgid(&rgid, &egid, &sgid)); 8745 if (!is_error(ret)) { 8746 if (put_user_u32(rgid, arg1) 8747 || put_user_u32(egid, arg2) 8748 || put_user_u32(sgid, arg3)) 8749 goto efault; 8750 } 8751 } 8752 break; 8753 #endif 8754 #ifdef TARGET_NR_chown32 8755 case TARGET_NR_chown32: 8756 if (!(p = lock_user_string(arg1))) 8757 goto efault; 8758 ret = get_errno(chown(p, arg2, arg3)); 8759 unlock_user(p, arg1, 0); 8760 break; 8761 #endif 8762 #ifdef TARGET_NR_setuid32 8763 case TARGET_NR_setuid32: 8764 ret = get_errno(setuid(arg1)); 8765 break; 8766 #endif 8767 #ifdef TARGET_NR_setgid32 8768 case TARGET_NR_setgid32: 8769 ret = get_errno(setgid(arg1)); 8770 break; 8771 #endif 8772 #ifdef TARGET_NR_setfsuid32 8773 case TARGET_NR_setfsuid32: 8774 ret = get_errno(setfsuid(arg1)); 8775 break; 8776 #endif 8777 #ifdef TARGET_NR_setfsgid32 8778 case TARGET_NR_setfsgid32: 8779 ret = get_errno(setfsgid(arg1)); 8780 break; 8781 #endif 8782 8783 case TARGET_NR_pivot_root: 8784 goto unimplemented; 8785 #ifdef TARGET_NR_mincore 8786 case TARGET_NR_mincore: 8787 { 8788 void *a; 8789 ret = -TARGET_EFAULT; 8790 if (!(a = lock_user(VERIFY_READ, arg1,arg2, 0))) 8791 goto efault; 8792 if (!(p = lock_user_string(arg3))) 8793 goto mincore_fail; 8794 ret = get_errno(mincore(a, arg2, p)); 8795 unlock_user(p, arg3, ret); 8796 mincore_fail: 8797 unlock_user(a, arg1, 0); 8798 } 8799 break; 8800 #endif 8801 #ifdef TARGET_NR_arm_fadvise64_64 8802 case TARGET_NR_arm_fadvise64_64: 8803 { 8804 /* 8805 * arm_fadvise64_64 looks like fadvise64_64 but 8806 * with different argument order 8807 */ 8808 abi_long temp; 8809 temp = arg3; 8810 arg3 = arg4; 8811 arg4 = temp; 8812 } 8813 #endif 8814 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_arm_fadvise64_64) || defined(TARGET_NR_fadvise64) 8815 #ifdef TARGET_NR_fadvise64_64 8816 case TARGET_NR_fadvise64_64: 8817 #endif 8818 #ifdef TARGET_NR_fadvise64 8819 case TARGET_NR_fadvise64: 8820 #endif 8821 #ifdef TARGET_S390X 8822 switch (arg4) { 8823 case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */ 8824 case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */ 8825 case 6: arg4 = POSIX_FADV_DONTNEED; break; 8826 case 7: arg4 = POSIX_FADV_NOREUSE; break; 8827 default: break; 8828 } 8829 #endif 8830 ret = -posix_fadvise(arg1, arg2, arg3, arg4); 8831 break; 8832 #endif 8833 #ifdef TARGET_NR_madvise 8834 case TARGET_NR_madvise: 8835 /* A straight passthrough may not be safe because qemu sometimes 8836 turns private file-backed mappings into anonymous mappings. 8837 This will break MADV_DONTNEED. 8838 This is a hint, so ignoring and returning success is ok. */ 8839 ret = get_errno(0); 8840 break; 8841 #endif 8842 #if TARGET_ABI_BITS == 32 8843 case TARGET_NR_fcntl64: 8844 { 8845 int cmd; 8846 struct flock64 fl; 8847 struct target_flock64 *target_fl; 8848 #ifdef TARGET_ARM 8849 struct target_eabi_flock64 *target_efl; 8850 #endif 8851 8852 cmd = target_to_host_fcntl_cmd(arg2); 8853 if (cmd == -TARGET_EINVAL) { 8854 ret = cmd; 8855 break; 8856 } 8857 8858 switch(arg2) { 8859 case TARGET_F_GETLK64: 8860 #ifdef TARGET_ARM 8861 if (((CPUARMState *)cpu_env)->eabi) { 8862 if (!lock_user_struct(VERIFY_READ, target_efl, arg3, 1)) 8863 goto efault; 8864 fl.l_type = tswap16(target_efl->l_type); 8865 fl.l_whence = tswap16(target_efl->l_whence); 8866 fl.l_start = tswap64(target_efl->l_start); 8867 fl.l_len = tswap64(target_efl->l_len); 8868 fl.l_pid = tswap32(target_efl->l_pid); 8869 unlock_user_struct(target_efl, arg3, 0); 8870 } else 8871 #endif 8872 { 8873 if (!lock_user_struct(VERIFY_READ, target_fl, arg3, 1)) 8874 goto efault; 8875 fl.l_type = tswap16(target_fl->l_type); 8876 fl.l_whence = tswap16(target_fl->l_whence); 8877 fl.l_start = tswap64(target_fl->l_start); 8878 fl.l_len = tswap64(target_fl->l_len); 8879 fl.l_pid = tswap32(target_fl->l_pid); 8880 unlock_user_struct(target_fl, arg3, 0); 8881 } 8882 ret = get_errno(fcntl(arg1, cmd, &fl)); 8883 if (ret == 0) { 8884 #ifdef TARGET_ARM 8885 if (((CPUARMState *)cpu_env)->eabi) { 8886 if (!lock_user_struct(VERIFY_WRITE, target_efl, arg3, 0)) 8887 goto efault; 8888 target_efl->l_type = tswap16(fl.l_type); 8889 target_efl->l_whence = tswap16(fl.l_whence); 8890 target_efl->l_start = tswap64(fl.l_start); 8891 target_efl->l_len = tswap64(fl.l_len); 8892 target_efl->l_pid = tswap32(fl.l_pid); 8893 unlock_user_struct(target_efl, arg3, 1); 8894 } else 8895 #endif 8896 { 8897 if (!lock_user_struct(VERIFY_WRITE, target_fl, arg3, 0)) 8898 goto efault; 8899 target_fl->l_type = tswap16(fl.l_type); 8900 target_fl->l_whence = tswap16(fl.l_whence); 8901 target_fl->l_start = tswap64(fl.l_start); 8902 target_fl->l_len = tswap64(fl.l_len); 8903 target_fl->l_pid = tswap32(fl.l_pid); 8904 unlock_user_struct(target_fl, arg3, 1); 8905 } 8906 } 8907 break; 8908 8909 case TARGET_F_SETLK64: 8910 case TARGET_F_SETLKW64: 8911 #ifdef TARGET_ARM 8912 if (((CPUARMState *)cpu_env)->eabi) { 8913 if (!lock_user_struct(VERIFY_READ, target_efl, arg3, 1)) 8914 goto efault; 8915 fl.l_type = tswap16(target_efl->l_type); 8916 fl.l_whence = tswap16(target_efl->l_whence); 8917 fl.l_start = tswap64(target_efl->l_start); 8918 fl.l_len = tswap64(target_efl->l_len); 8919 fl.l_pid = tswap32(target_efl->l_pid); 8920 unlock_user_struct(target_efl, arg3, 0); 8921 } else 8922 #endif 8923 { 8924 if (!lock_user_struct(VERIFY_READ, target_fl, arg3, 1)) 8925 goto efault; 8926 fl.l_type = tswap16(target_fl->l_type); 8927 fl.l_whence = tswap16(target_fl->l_whence); 8928 fl.l_start = tswap64(target_fl->l_start); 8929 fl.l_len = tswap64(target_fl->l_len); 8930 fl.l_pid = tswap32(target_fl->l_pid); 8931 unlock_user_struct(target_fl, arg3, 0); 8932 } 8933 ret = get_errno(fcntl(arg1, cmd, &fl)); 8934 break; 8935 default: 8936 ret = do_fcntl(arg1, arg2, arg3); 8937 break; 8938 } 8939 break; 8940 } 8941 #endif 8942 #ifdef TARGET_NR_cacheflush 8943 case TARGET_NR_cacheflush: 8944 /* self-modifying code is handled automatically, so nothing needed */ 8945 ret = 0; 8946 break; 8947 #endif 8948 #ifdef TARGET_NR_security 8949 case TARGET_NR_security: 8950 goto unimplemented; 8951 #endif 8952 #ifdef TARGET_NR_getpagesize 8953 case TARGET_NR_getpagesize: 8954 ret = TARGET_PAGE_SIZE; 8955 break; 8956 #endif 8957 case TARGET_NR_gettid: 8958 ret = get_errno(gettid()); 8959 break; 8960 #ifdef TARGET_NR_readahead 8961 case TARGET_NR_readahead: 8962 #if TARGET_ABI_BITS == 32 8963 if (regpairs_aligned(cpu_env)) { 8964 arg2 = arg3; 8965 arg3 = arg4; 8966 arg4 = arg5; 8967 } 8968 ret = get_errno(readahead(arg1, ((off64_t)arg3 << 32) | arg2, arg4)); 8969 #else 8970 ret = get_errno(readahead(arg1, arg2, arg3)); 8971 #endif 8972 break; 8973 #endif 8974 #ifdef CONFIG_ATTR 8975 #ifdef TARGET_NR_setxattr 8976 case TARGET_NR_listxattr: 8977 case TARGET_NR_llistxattr: 8978 { 8979 void *p, *b = 0; 8980 if (arg2) { 8981 b = lock_user(VERIFY_WRITE, arg2, arg3, 0); 8982 if (!b) { 8983 ret = -TARGET_EFAULT; 8984 break; 8985 } 8986 } 8987 p = lock_user_string(arg1); 8988 if (p) { 8989 if (num == TARGET_NR_listxattr) { 8990 ret = get_errno(listxattr(p, b, arg3)); 8991 } else { 8992 ret = get_errno(llistxattr(p, b, arg3)); 8993 } 8994 } else { 8995 ret = -TARGET_EFAULT; 8996 } 8997 unlock_user(p, arg1, 0); 8998 unlock_user(b, arg2, arg3); 8999 break; 9000 } 9001 case TARGET_NR_flistxattr: 9002 { 9003 void *b = 0; 9004 if (arg2) { 9005 b = lock_user(VERIFY_WRITE, arg2, arg3, 0); 9006 if (!b) { 9007 ret = -TARGET_EFAULT; 9008 break; 9009 } 9010 } 9011 ret = get_errno(flistxattr(arg1, b, arg3)); 9012 unlock_user(b, arg2, arg3); 9013 break; 9014 } 9015 case TARGET_NR_setxattr: 9016 case TARGET_NR_lsetxattr: 9017 { 9018 void *p, *n, *v = 0; 9019 if (arg3) { 9020 v = lock_user(VERIFY_READ, arg3, arg4, 1); 9021 if (!v) { 9022 ret = -TARGET_EFAULT; 9023 break; 9024 } 9025 } 9026 p = lock_user_string(arg1); 9027 n = lock_user_string(arg2); 9028 if (p && n) { 9029 if (num == TARGET_NR_setxattr) { 9030 ret = get_errno(setxattr(p, n, v, arg4, arg5)); 9031 } else { 9032 ret = get_errno(lsetxattr(p, n, v, arg4, arg5)); 9033 } 9034 } else { 9035 ret = -TARGET_EFAULT; 9036 } 9037 unlock_user(p, arg1, 0); 9038 unlock_user(n, arg2, 0); 9039 unlock_user(v, arg3, 0); 9040 } 9041 break; 9042 case TARGET_NR_fsetxattr: 9043 { 9044 void *n, *v = 0; 9045 if (arg3) { 9046 v = lock_user(VERIFY_READ, arg3, arg4, 1); 9047 if (!v) { 9048 ret = -TARGET_EFAULT; 9049 break; 9050 } 9051 } 9052 n = lock_user_string(arg2); 9053 if (n) { 9054 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5)); 9055 } else { 9056 ret = -TARGET_EFAULT; 9057 } 9058 unlock_user(n, arg2, 0); 9059 unlock_user(v, arg3, 0); 9060 } 9061 break; 9062 case TARGET_NR_getxattr: 9063 case TARGET_NR_lgetxattr: 9064 { 9065 void *p, *n, *v = 0; 9066 if (arg3) { 9067 v = lock_user(VERIFY_WRITE, arg3, arg4, 0); 9068 if (!v) { 9069 ret = -TARGET_EFAULT; 9070 break; 9071 } 9072 } 9073 p = lock_user_string(arg1); 9074 n = lock_user_string(arg2); 9075 if (p && n) { 9076 if (num == TARGET_NR_getxattr) { 9077 ret = get_errno(getxattr(p, n, v, arg4)); 9078 } else { 9079 ret = get_errno(lgetxattr(p, n, v, arg4)); 9080 } 9081 } else { 9082 ret = -TARGET_EFAULT; 9083 } 9084 unlock_user(p, arg1, 0); 9085 unlock_user(n, arg2, 0); 9086 unlock_user(v, arg3, arg4); 9087 } 9088 break; 9089 case TARGET_NR_fgetxattr: 9090 { 9091 void *n, *v = 0; 9092 if (arg3) { 9093 v = lock_user(VERIFY_WRITE, arg3, arg4, 0); 9094 if (!v) { 9095 ret = -TARGET_EFAULT; 9096 break; 9097 } 9098 } 9099 n = lock_user_string(arg2); 9100 if (n) { 9101 ret = get_errno(fgetxattr(arg1, n, v, arg4)); 9102 } else { 9103 ret = -TARGET_EFAULT; 9104 } 9105 unlock_user(n, arg2, 0); 9106 unlock_user(v, arg3, arg4); 9107 } 9108 break; 9109 case TARGET_NR_removexattr: 9110 case TARGET_NR_lremovexattr: 9111 { 9112 void *p, *n; 9113 p = lock_user_string(arg1); 9114 n = lock_user_string(arg2); 9115 if (p && n) { 9116 if (num == TARGET_NR_removexattr) { 9117 ret = get_errno(removexattr(p, n)); 9118 } else { 9119 ret = get_errno(lremovexattr(p, n)); 9120 } 9121 } else { 9122 ret = -TARGET_EFAULT; 9123 } 9124 unlock_user(p, arg1, 0); 9125 unlock_user(n, arg2, 0); 9126 } 9127 break; 9128 case TARGET_NR_fremovexattr: 9129 { 9130 void *n; 9131 n = lock_user_string(arg2); 9132 if (n) { 9133 ret = get_errno(fremovexattr(arg1, n)); 9134 } else { 9135 ret = -TARGET_EFAULT; 9136 } 9137 unlock_user(n, arg2, 0); 9138 } 9139 break; 9140 #endif 9141 #endif /* CONFIG_ATTR */ 9142 #ifdef TARGET_NR_set_thread_area 9143 case TARGET_NR_set_thread_area: 9144 #if defined(TARGET_MIPS) 9145 ((CPUMIPSState *) cpu_env)->active_tc.CP0_UserLocal = arg1; 9146 ret = 0; 9147 break; 9148 #elif defined(TARGET_CRIS) 9149 if (arg1 & 0xff) 9150 ret = -TARGET_EINVAL; 9151 else { 9152 ((CPUCRISState *) cpu_env)->pregs[PR_PID] = arg1; 9153 ret = 0; 9154 } 9155 break; 9156 #elif defined(TARGET_I386) && defined(TARGET_ABI32) 9157 ret = do_set_thread_area(cpu_env, arg1); 9158 break; 9159 #elif defined(TARGET_M68K) 9160 { 9161 TaskState *ts = cpu->opaque; 9162 ts->tp_value = arg1; 9163 ret = 0; 9164 break; 9165 } 9166 #else 9167 goto unimplemented_nowarn; 9168 #endif 9169 #endif 9170 #ifdef TARGET_NR_get_thread_area 9171 case TARGET_NR_get_thread_area: 9172 #if defined(TARGET_I386) && defined(TARGET_ABI32) 9173 ret = do_get_thread_area(cpu_env, arg1); 9174 break; 9175 #elif defined(TARGET_M68K) 9176 { 9177 TaskState *ts = cpu->opaque; 9178 ret = ts->tp_value; 9179 break; 9180 } 9181 #else 9182 goto unimplemented_nowarn; 9183 #endif 9184 #endif 9185 #ifdef TARGET_NR_getdomainname 9186 case TARGET_NR_getdomainname: 9187 goto unimplemented_nowarn; 9188 #endif 9189 9190 #ifdef TARGET_NR_clock_gettime 9191 case TARGET_NR_clock_gettime: 9192 { 9193 struct timespec ts; 9194 ret = get_errno(clock_gettime(arg1, &ts)); 9195 if (!is_error(ret)) { 9196 host_to_target_timespec(arg2, &ts); 9197 } 9198 break; 9199 } 9200 #endif 9201 #ifdef TARGET_NR_clock_getres 9202 case TARGET_NR_clock_getres: 9203 { 9204 struct timespec ts; 9205 ret = get_errno(clock_getres(arg1, &ts)); 9206 if (!is_error(ret)) { 9207 host_to_target_timespec(arg2, &ts); 9208 } 9209 break; 9210 } 9211 #endif 9212 #ifdef TARGET_NR_clock_nanosleep 9213 case TARGET_NR_clock_nanosleep: 9214 { 9215 struct timespec ts; 9216 target_to_host_timespec(&ts, arg3); 9217 ret = get_errno(clock_nanosleep(arg1, arg2, &ts, arg4 ? &ts : NULL)); 9218 if (arg4) 9219 host_to_target_timespec(arg4, &ts); 9220 9221 #if defined(TARGET_PPC) 9222 /* clock_nanosleep is odd in that it returns positive errno values. 9223 * On PPC, CR0 bit 3 should be set in such a situation. */ 9224 if (ret) { 9225 ((CPUPPCState *)cpu_env)->crf[0] |= 1; 9226 } 9227 #endif 9228 break; 9229 } 9230 #endif 9231 9232 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address) 9233 case TARGET_NR_set_tid_address: 9234 ret = get_errno(set_tid_address((int *)g2h(arg1))); 9235 break; 9236 #endif 9237 9238 #if defined(TARGET_NR_tkill) && defined(__NR_tkill) 9239 case TARGET_NR_tkill: 9240 ret = get_errno(sys_tkill((int)arg1, target_to_host_signal(arg2))); 9241 break; 9242 #endif 9243 9244 #if defined(TARGET_NR_tgkill) && defined(__NR_tgkill) 9245 case TARGET_NR_tgkill: 9246 ret = get_errno(sys_tgkill((int)arg1, (int)arg2, 9247 target_to_host_signal(arg3))); 9248 break; 9249 #endif 9250 9251 #ifdef TARGET_NR_set_robust_list 9252 case TARGET_NR_set_robust_list: 9253 case TARGET_NR_get_robust_list: 9254 /* The ABI for supporting robust futexes has userspace pass 9255 * the kernel a pointer to a linked list which is updated by 9256 * userspace after the syscall; the list is walked by the kernel 9257 * when the thread exits. Since the linked list in QEMU guest 9258 * memory isn't a valid linked list for the host and we have 9259 * no way to reliably intercept the thread-death event, we can't 9260 * support these. Silently return ENOSYS so that guest userspace 9261 * falls back to a non-robust futex implementation (which should 9262 * be OK except in the corner case of the guest crashing while 9263 * holding a mutex that is shared with another process via 9264 * shared memory). 9265 */ 9266 goto unimplemented_nowarn; 9267 #endif 9268 9269 #if defined(TARGET_NR_utimensat) 9270 case TARGET_NR_utimensat: 9271 { 9272 struct timespec *tsp, ts[2]; 9273 if (!arg3) { 9274 tsp = NULL; 9275 } else { 9276 target_to_host_timespec(ts, arg3); 9277 target_to_host_timespec(ts+1, arg3+sizeof(struct target_timespec)); 9278 tsp = ts; 9279 } 9280 if (!arg2) 9281 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4)); 9282 else { 9283 if (!(p = lock_user_string(arg2))) { 9284 ret = -TARGET_EFAULT; 9285 goto fail; 9286 } 9287 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4)); 9288 unlock_user(p, arg2, 0); 9289 } 9290 } 9291 break; 9292 #endif 9293 case TARGET_NR_futex: 9294 ret = do_futex(arg1, arg2, arg3, arg4, arg5, arg6); 9295 break; 9296 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init) 9297 case TARGET_NR_inotify_init: 9298 ret = get_errno(sys_inotify_init()); 9299 break; 9300 #endif 9301 #ifdef CONFIG_INOTIFY1 9302 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1) 9303 case TARGET_NR_inotify_init1: 9304 ret = get_errno(sys_inotify_init1(arg1)); 9305 break; 9306 #endif 9307 #endif 9308 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch) 9309 case TARGET_NR_inotify_add_watch: 9310 p = lock_user_string(arg2); 9311 ret = get_errno(sys_inotify_add_watch(arg1, path(p), arg3)); 9312 unlock_user(p, arg2, 0); 9313 break; 9314 #endif 9315 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch) 9316 case TARGET_NR_inotify_rm_watch: 9317 ret = get_errno(sys_inotify_rm_watch(arg1, arg2)); 9318 break; 9319 #endif 9320 9321 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open) 9322 case TARGET_NR_mq_open: 9323 { 9324 struct mq_attr posix_mq_attr, *attrp; 9325 9326 p = lock_user_string(arg1 - 1); 9327 if (arg4 != 0) { 9328 copy_from_user_mq_attr (&posix_mq_attr, arg4); 9329 attrp = &posix_mq_attr; 9330 } else { 9331 attrp = 0; 9332 } 9333 ret = get_errno(mq_open(p, arg2, arg3, attrp)); 9334 unlock_user (p, arg1, 0); 9335 } 9336 break; 9337 9338 case TARGET_NR_mq_unlink: 9339 p = lock_user_string(arg1 - 1); 9340 ret = get_errno(mq_unlink(p)); 9341 unlock_user (p, arg1, 0); 9342 break; 9343 9344 case TARGET_NR_mq_timedsend: 9345 { 9346 struct timespec ts; 9347 9348 p = lock_user (VERIFY_READ, arg2, arg3, 1); 9349 if (arg5 != 0) { 9350 target_to_host_timespec(&ts, arg5); 9351 ret = get_errno(mq_timedsend(arg1, p, arg3, arg4, &ts)); 9352 host_to_target_timespec(arg5, &ts); 9353 } 9354 else 9355 ret = get_errno(mq_send(arg1, p, arg3, arg4)); 9356 unlock_user (p, arg2, arg3); 9357 } 9358 break; 9359 9360 case TARGET_NR_mq_timedreceive: 9361 { 9362 struct timespec ts; 9363 unsigned int prio; 9364 9365 p = lock_user (VERIFY_READ, arg2, arg3, 1); 9366 if (arg5 != 0) { 9367 target_to_host_timespec(&ts, arg5); 9368 ret = get_errno(mq_timedreceive(arg1, p, arg3, &prio, &ts)); 9369 host_to_target_timespec(arg5, &ts); 9370 } 9371 else 9372 ret = get_errno(mq_receive(arg1, p, arg3, &prio)); 9373 unlock_user (p, arg2, arg3); 9374 if (arg4 != 0) 9375 put_user_u32(prio, arg4); 9376 } 9377 break; 9378 9379 /* Not implemented for now... */ 9380 /* case TARGET_NR_mq_notify: */ 9381 /* break; */ 9382 9383 case TARGET_NR_mq_getsetattr: 9384 { 9385 struct mq_attr posix_mq_attr_in, posix_mq_attr_out; 9386 ret = 0; 9387 if (arg3 != 0) { 9388 ret = mq_getattr(arg1, &posix_mq_attr_out); 9389 copy_to_user_mq_attr(arg3, &posix_mq_attr_out); 9390 } 9391 if (arg2 != 0) { 9392 copy_from_user_mq_attr(&posix_mq_attr_in, arg2); 9393 ret |= mq_setattr(arg1, &posix_mq_attr_in, &posix_mq_attr_out); 9394 } 9395 9396 } 9397 break; 9398 #endif 9399 9400 #ifdef CONFIG_SPLICE 9401 #ifdef TARGET_NR_tee 9402 case TARGET_NR_tee: 9403 { 9404 ret = get_errno(tee(arg1,arg2,arg3,arg4)); 9405 } 9406 break; 9407 #endif 9408 #ifdef TARGET_NR_splice 9409 case TARGET_NR_splice: 9410 { 9411 loff_t loff_in, loff_out; 9412 loff_t *ploff_in = NULL, *ploff_out = NULL; 9413 if (arg2) { 9414 if (get_user_u64(loff_in, arg2)) { 9415 goto efault; 9416 } 9417 ploff_in = &loff_in; 9418 } 9419 if (arg4) { 9420 if (get_user_u64(loff_out, arg4)) { 9421 goto efault; 9422 } 9423 ploff_out = &loff_out; 9424 } 9425 ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6)); 9426 if (arg2) { 9427 if (put_user_u64(loff_in, arg2)) { 9428 goto efault; 9429 } 9430 } 9431 if (arg4) { 9432 if (put_user_u64(loff_out, arg4)) { 9433 goto efault; 9434 } 9435 } 9436 } 9437 break; 9438 #endif 9439 #ifdef TARGET_NR_vmsplice 9440 case TARGET_NR_vmsplice: 9441 { 9442 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1); 9443 if (vec != NULL) { 9444 ret = get_errno(vmsplice(arg1, vec, arg3, arg4)); 9445 unlock_iovec(vec, arg2, arg3, 0); 9446 } else { 9447 ret = -host_to_target_errno(errno); 9448 } 9449 } 9450 break; 9451 #endif 9452 #endif /* CONFIG_SPLICE */ 9453 #ifdef CONFIG_EVENTFD 9454 #if defined(TARGET_NR_eventfd) 9455 case TARGET_NR_eventfd: 9456 ret = get_errno(eventfd(arg1, 0)); 9457 break; 9458 #endif 9459 #if defined(TARGET_NR_eventfd2) 9460 case TARGET_NR_eventfd2: 9461 { 9462 int host_flags = arg2 & (~(TARGET_O_NONBLOCK | TARGET_O_CLOEXEC)); 9463 if (arg2 & TARGET_O_NONBLOCK) { 9464 host_flags |= O_NONBLOCK; 9465 } 9466 if (arg2 & TARGET_O_CLOEXEC) { 9467 host_flags |= O_CLOEXEC; 9468 } 9469 ret = get_errno(eventfd(arg1, host_flags)); 9470 break; 9471 } 9472 #endif 9473 #endif /* CONFIG_EVENTFD */ 9474 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate) 9475 case TARGET_NR_fallocate: 9476 #if TARGET_ABI_BITS == 32 9477 ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4), 9478 target_offset64(arg5, arg6))); 9479 #else 9480 ret = get_errno(fallocate(arg1, arg2, arg3, arg4)); 9481 #endif 9482 break; 9483 #endif 9484 #if defined(CONFIG_SYNC_FILE_RANGE) 9485 #if defined(TARGET_NR_sync_file_range) 9486 case TARGET_NR_sync_file_range: 9487 #if TARGET_ABI_BITS == 32 9488 #if defined(TARGET_MIPS) 9489 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4), 9490 target_offset64(arg5, arg6), arg7)); 9491 #else 9492 ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3), 9493 target_offset64(arg4, arg5), arg6)); 9494 #endif /* !TARGET_MIPS */ 9495 #else 9496 ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4)); 9497 #endif 9498 break; 9499 #endif 9500 #if defined(TARGET_NR_sync_file_range2) 9501 case TARGET_NR_sync_file_range2: 9502 /* This is like sync_file_range but the arguments are reordered */ 9503 #if TARGET_ABI_BITS == 32 9504 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4), 9505 target_offset64(arg5, arg6), arg2)); 9506 #else 9507 ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2)); 9508 #endif 9509 break; 9510 #endif 9511 #endif 9512 #if defined(CONFIG_EPOLL) 9513 #if defined(TARGET_NR_epoll_create) 9514 case TARGET_NR_epoll_create: 9515 ret = get_errno(epoll_create(arg1)); 9516 break; 9517 #endif 9518 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1) 9519 case TARGET_NR_epoll_create1: 9520 ret = get_errno(epoll_create1(arg1)); 9521 break; 9522 #endif 9523 #if defined(TARGET_NR_epoll_ctl) 9524 case TARGET_NR_epoll_ctl: 9525 { 9526 struct epoll_event ep; 9527 struct epoll_event *epp = 0; 9528 if (arg4) { 9529 struct target_epoll_event *target_ep; 9530 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) { 9531 goto efault; 9532 } 9533 ep.events = tswap32(target_ep->events); 9534 /* The epoll_data_t union is just opaque data to the kernel, 9535 * so we transfer all 64 bits across and need not worry what 9536 * actual data type it is. 9537 */ 9538 ep.data.u64 = tswap64(target_ep->data.u64); 9539 unlock_user_struct(target_ep, arg4, 0); 9540 epp = &ep; 9541 } 9542 ret = get_errno(epoll_ctl(arg1, arg2, arg3, epp)); 9543 break; 9544 } 9545 #endif 9546 9547 #if defined(TARGET_NR_epoll_pwait) && defined(CONFIG_EPOLL_PWAIT) 9548 #define IMPLEMENT_EPOLL_PWAIT 9549 #endif 9550 #if defined(TARGET_NR_epoll_wait) || defined(IMPLEMENT_EPOLL_PWAIT) 9551 #if defined(TARGET_NR_epoll_wait) 9552 case TARGET_NR_epoll_wait: 9553 #endif 9554 #if defined(IMPLEMENT_EPOLL_PWAIT) 9555 case TARGET_NR_epoll_pwait: 9556 #endif 9557 { 9558 struct target_epoll_event *target_ep; 9559 struct epoll_event *ep; 9560 int epfd = arg1; 9561 int maxevents = arg3; 9562 int timeout = arg4; 9563 9564 target_ep = lock_user(VERIFY_WRITE, arg2, 9565 maxevents * sizeof(struct target_epoll_event), 1); 9566 if (!target_ep) { 9567 goto efault; 9568 } 9569 9570 ep = alloca(maxevents * sizeof(struct epoll_event)); 9571 9572 switch (num) { 9573 #if defined(IMPLEMENT_EPOLL_PWAIT) 9574 case TARGET_NR_epoll_pwait: 9575 { 9576 target_sigset_t *target_set; 9577 sigset_t _set, *set = &_set; 9578 9579 if (arg5) { 9580 target_set = lock_user(VERIFY_READ, arg5, 9581 sizeof(target_sigset_t), 1); 9582 if (!target_set) { 9583 unlock_user(target_ep, arg2, 0); 9584 goto efault; 9585 } 9586 target_to_host_sigset(set, target_set); 9587 unlock_user(target_set, arg5, 0); 9588 } else { 9589 set = NULL; 9590 } 9591 9592 ret = get_errno(epoll_pwait(epfd, ep, maxevents, timeout, set)); 9593 break; 9594 } 9595 #endif 9596 #if defined(TARGET_NR_epoll_wait) 9597 case TARGET_NR_epoll_wait: 9598 ret = get_errno(epoll_wait(epfd, ep, maxevents, timeout)); 9599 break; 9600 #endif 9601 default: 9602 ret = -TARGET_ENOSYS; 9603 } 9604 if (!is_error(ret)) { 9605 int i; 9606 for (i = 0; i < ret; i++) { 9607 target_ep[i].events = tswap32(ep[i].events); 9608 target_ep[i].data.u64 = tswap64(ep[i].data.u64); 9609 } 9610 } 9611 unlock_user(target_ep, arg2, ret * sizeof(struct target_epoll_event)); 9612 break; 9613 } 9614 #endif 9615 #endif 9616 #ifdef TARGET_NR_prlimit64 9617 case TARGET_NR_prlimit64: 9618 { 9619 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */ 9620 struct target_rlimit64 *target_rnew, *target_rold; 9621 struct host_rlimit64 rnew, rold, *rnewp = 0; 9622 int resource = target_to_host_resource(arg2); 9623 if (arg3) { 9624 if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) { 9625 goto efault; 9626 } 9627 rnew.rlim_cur = tswap64(target_rnew->rlim_cur); 9628 rnew.rlim_max = tswap64(target_rnew->rlim_max); 9629 unlock_user_struct(target_rnew, arg3, 0); 9630 rnewp = &rnew; 9631 } 9632 9633 ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0)); 9634 if (!is_error(ret) && arg4) { 9635 if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) { 9636 goto efault; 9637 } 9638 target_rold->rlim_cur = tswap64(rold.rlim_cur); 9639 target_rold->rlim_max = tswap64(rold.rlim_max); 9640 unlock_user_struct(target_rold, arg4, 1); 9641 } 9642 break; 9643 } 9644 #endif 9645 #ifdef TARGET_NR_gethostname 9646 case TARGET_NR_gethostname: 9647 { 9648 char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0); 9649 if (name) { 9650 ret = get_errno(gethostname(name, arg2)); 9651 unlock_user(name, arg1, arg2); 9652 } else { 9653 ret = -TARGET_EFAULT; 9654 } 9655 break; 9656 } 9657 #endif 9658 #ifdef TARGET_NR_atomic_cmpxchg_32 9659 case TARGET_NR_atomic_cmpxchg_32: 9660 { 9661 /* should use start_exclusive from main.c */ 9662 abi_ulong mem_value; 9663 if (get_user_u32(mem_value, arg6)) { 9664 target_siginfo_t info; 9665 info.si_signo = SIGSEGV; 9666 info.si_errno = 0; 9667 info.si_code = TARGET_SEGV_MAPERR; 9668 info._sifields._sigfault._addr = arg6; 9669 queue_signal((CPUArchState *)cpu_env, info.si_signo, &info); 9670 ret = 0xdeadbeef; 9671 9672 } 9673 if (mem_value == arg2) 9674 put_user_u32(arg1, arg6); 9675 ret = mem_value; 9676 break; 9677 } 9678 #endif 9679 #ifdef TARGET_NR_atomic_barrier 9680 case TARGET_NR_atomic_barrier: 9681 { 9682 /* Like the kernel implementation and the qemu arm barrier, no-op this? */ 9683 ret = 0; 9684 break; 9685 } 9686 #endif 9687 9688 #ifdef TARGET_NR_timer_create 9689 case TARGET_NR_timer_create: 9690 { 9691 /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */ 9692 9693 struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL; 9694 9695 int clkid = arg1; 9696 int timer_index = next_free_host_timer(); 9697 9698 if (timer_index < 0) { 9699 ret = -TARGET_EAGAIN; 9700 } else { 9701 timer_t *phtimer = g_posix_timers + timer_index; 9702 9703 if (arg2) { 9704 phost_sevp = &host_sevp; 9705 ret = target_to_host_sigevent(phost_sevp, arg2); 9706 if (ret != 0) { 9707 break; 9708 } 9709 } 9710 9711 ret = get_errno(timer_create(clkid, phost_sevp, phtimer)); 9712 if (ret) { 9713 phtimer = NULL; 9714 } else { 9715 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) { 9716 goto efault; 9717 } 9718 } 9719 } 9720 break; 9721 } 9722 #endif 9723 9724 #ifdef TARGET_NR_timer_settime 9725 case TARGET_NR_timer_settime: 9726 { 9727 /* args: timer_t timerid, int flags, const struct itimerspec *new_value, 9728 * struct itimerspec * old_value */ 9729 target_timer_t timerid = get_timer_id(arg1); 9730 9731 if (timerid < 0) { 9732 ret = timerid; 9733 } else if (arg3 == 0) { 9734 ret = -TARGET_EINVAL; 9735 } else { 9736 timer_t htimer = g_posix_timers[timerid]; 9737 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},}; 9738 9739 target_to_host_itimerspec(&hspec_new, arg3); 9740 ret = get_errno( 9741 timer_settime(htimer, arg2, &hspec_new, &hspec_old)); 9742 host_to_target_itimerspec(arg2, &hspec_old); 9743 } 9744 break; 9745 } 9746 #endif 9747 9748 #ifdef TARGET_NR_timer_gettime 9749 case TARGET_NR_timer_gettime: 9750 { 9751 /* args: timer_t timerid, struct itimerspec *curr_value */ 9752 target_timer_t timerid = get_timer_id(arg1); 9753 9754 if (timerid < 0) { 9755 ret = timerid; 9756 } else if (!arg2) { 9757 ret = -TARGET_EFAULT; 9758 } else { 9759 timer_t htimer = g_posix_timers[timerid]; 9760 struct itimerspec hspec; 9761 ret = get_errno(timer_gettime(htimer, &hspec)); 9762 9763 if (host_to_target_itimerspec(arg2, &hspec)) { 9764 ret = -TARGET_EFAULT; 9765 } 9766 } 9767 break; 9768 } 9769 #endif 9770 9771 #ifdef TARGET_NR_timer_getoverrun 9772 case TARGET_NR_timer_getoverrun: 9773 { 9774 /* args: timer_t timerid */ 9775 target_timer_t timerid = get_timer_id(arg1); 9776 9777 if (timerid < 0) { 9778 ret = timerid; 9779 } else { 9780 timer_t htimer = g_posix_timers[timerid]; 9781 ret = get_errno(timer_getoverrun(htimer)); 9782 } 9783 break; 9784 } 9785 #endif 9786 9787 #ifdef TARGET_NR_timer_delete 9788 case TARGET_NR_timer_delete: 9789 { 9790 /* args: timer_t timerid */ 9791 target_timer_t timerid = get_timer_id(arg1); 9792 9793 if (timerid < 0) { 9794 ret = timerid; 9795 } else { 9796 timer_t htimer = g_posix_timers[timerid]; 9797 ret = get_errno(timer_delete(htimer)); 9798 g_posix_timers[timerid] = 0; 9799 } 9800 break; 9801 } 9802 #endif 9803 9804 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD) 9805 case TARGET_NR_timerfd_create: 9806 ret = get_errno(timerfd_create(arg1, 9807 target_to_host_bitmask(arg2, fcntl_flags_tbl))); 9808 break; 9809 #endif 9810 9811 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD) 9812 case TARGET_NR_timerfd_gettime: 9813 { 9814 struct itimerspec its_curr; 9815 9816 ret = get_errno(timerfd_gettime(arg1, &its_curr)); 9817 9818 if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) { 9819 goto efault; 9820 } 9821 } 9822 break; 9823 #endif 9824 9825 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD) 9826 case TARGET_NR_timerfd_settime: 9827 { 9828 struct itimerspec its_new, its_old, *p_new; 9829 9830 if (arg3) { 9831 if (target_to_host_itimerspec(&its_new, arg3)) { 9832 goto efault; 9833 } 9834 p_new = &its_new; 9835 } else { 9836 p_new = NULL; 9837 } 9838 9839 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old)); 9840 9841 if (arg4 && host_to_target_itimerspec(arg4, &its_old)) { 9842 goto efault; 9843 } 9844 } 9845 break; 9846 #endif 9847 9848 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get) 9849 case TARGET_NR_ioprio_get: 9850 ret = get_errno(ioprio_get(arg1, arg2)); 9851 break; 9852 #endif 9853 9854 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set) 9855 case TARGET_NR_ioprio_set: 9856 ret = get_errno(ioprio_set(arg1, arg2, arg3)); 9857 break; 9858 #endif 9859 9860 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS) 9861 case TARGET_NR_setns: 9862 ret = get_errno(setns(arg1, arg2)); 9863 break; 9864 #endif 9865 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS) 9866 case TARGET_NR_unshare: 9867 ret = get_errno(unshare(arg1)); 9868 break; 9869 #endif 9870 9871 default: 9872 unimplemented: 9873 gemu_log("qemu: Unsupported syscall: %d\n", num); 9874 #if defined(TARGET_NR_setxattr) || defined(TARGET_NR_get_thread_area) || defined(TARGET_NR_getdomainname) || defined(TARGET_NR_set_robust_list) 9875 unimplemented_nowarn: 9876 #endif 9877 ret = -TARGET_ENOSYS; 9878 break; 9879 } 9880 fail: 9881 #ifdef DEBUG 9882 gemu_log(" = " TARGET_ABI_FMT_ld "\n", ret); 9883 #endif 9884 if(do_strace) 9885 print_syscall_ret(num, ret); 9886 return ret; 9887 efault: 9888 ret = -TARGET_EFAULT; 9889 goto fail; 9890 } 9891