xref: /openbmc/qemu/linux-user/syscall.c (revision bf957284)
1 /*
2  *  Linux syscalls
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #define _ATFILE_SOURCE
20 #include <stdlib.h>
21 #include <stdio.h>
22 #include <stdarg.h>
23 #include <string.h>
24 #include <elf.h>
25 #include <endian.h>
26 #include <errno.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29 #include <time.h>
30 #include <limits.h>
31 #include <grp.h>
32 #include <sys/types.h>
33 #include <sys/ipc.h>
34 #include <sys/msg.h>
35 #include <sys/wait.h>
36 #include <sys/time.h>
37 #include <sys/stat.h>
38 #include <sys/mount.h>
39 #include <sys/file.h>
40 #include <sys/fsuid.h>
41 #include <sys/personality.h>
42 #include <sys/prctl.h>
43 #include <sys/resource.h>
44 #include <sys/mman.h>
45 #include <sys/swap.h>
46 #include <linux/capability.h>
47 #include <signal.h>
48 #include <sched.h>
49 #ifdef __ia64__
50 int __clone2(int (*fn)(void *), void *child_stack_base,
51              size_t stack_size, int flags, void *arg, ...);
52 #endif
53 #include <sys/socket.h>
54 #include <sys/un.h>
55 #include <sys/uio.h>
56 #include <sys/poll.h>
57 #include <sys/times.h>
58 #include <sys/shm.h>
59 #include <sys/sem.h>
60 #include <sys/statfs.h>
61 #include <utime.h>
62 #include <sys/sysinfo.h>
63 //#include <sys/user.h>
64 #include <netinet/ip.h>
65 #include <netinet/tcp.h>
66 #include <linux/wireless.h>
67 #include <linux/icmp.h>
68 #include "qemu-common.h"
69 #ifdef CONFIG_TIMERFD
70 #include <sys/timerfd.h>
71 #endif
72 #ifdef TARGET_GPROF
73 #include <sys/gmon.h>
74 #endif
75 #ifdef CONFIG_EVENTFD
76 #include <sys/eventfd.h>
77 #endif
78 #ifdef CONFIG_EPOLL
79 #include <sys/epoll.h>
80 #endif
81 #ifdef CONFIG_ATTR
82 #include "qemu/xattr.h"
83 #endif
84 #ifdef CONFIG_SENDFILE
85 #include <sys/sendfile.h>
86 #endif
87 
88 #define termios host_termios
89 #define winsize host_winsize
90 #define termio host_termio
91 #define sgttyb host_sgttyb /* same as target */
92 #define tchars host_tchars /* same as target */
93 #define ltchars host_ltchars /* same as target */
94 
95 #include <linux/termios.h>
96 #include <linux/unistd.h>
97 #include <linux/cdrom.h>
98 #include <linux/hdreg.h>
99 #include <linux/soundcard.h>
100 #include <linux/kd.h>
101 #include <linux/mtio.h>
102 #include <linux/fs.h>
103 #if defined(CONFIG_FIEMAP)
104 #include <linux/fiemap.h>
105 #endif
106 #include <linux/fb.h>
107 #include <linux/vt.h>
108 #include <linux/dm-ioctl.h>
109 #include <linux/reboot.h>
110 #include <linux/route.h>
111 #include <linux/filter.h>
112 #include <linux/blkpg.h>
113 #include "linux_loop.h"
114 #include "uname.h"
115 
116 #include "qemu.h"
117 
118 #define CLONE_NPTL_FLAGS2 (CLONE_SETTLS | \
119     CLONE_PARENT_SETTID | CLONE_CHILD_SETTID | CLONE_CHILD_CLEARTID)
120 
121 //#define DEBUG
122 
123 //#include <linux/msdos_fs.h>
124 #define	VFAT_IOCTL_READDIR_BOTH		_IOR('r', 1, struct linux_dirent [2])
125 #define	VFAT_IOCTL_READDIR_SHORT	_IOR('r', 2, struct linux_dirent [2])
126 
127 
128 #undef _syscall0
129 #undef _syscall1
130 #undef _syscall2
131 #undef _syscall3
132 #undef _syscall4
133 #undef _syscall5
134 #undef _syscall6
135 
136 #define _syscall0(type,name)		\
137 static type name (void)			\
138 {					\
139 	return syscall(__NR_##name);	\
140 }
141 
142 #define _syscall1(type,name,type1,arg1)		\
143 static type name (type1 arg1)			\
144 {						\
145 	return syscall(__NR_##name, arg1);	\
146 }
147 
148 #define _syscall2(type,name,type1,arg1,type2,arg2)	\
149 static type name (type1 arg1,type2 arg2)		\
150 {							\
151 	return syscall(__NR_##name, arg1, arg2);	\
152 }
153 
154 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3)	\
155 static type name (type1 arg1,type2 arg2,type3 arg3)		\
156 {								\
157 	return syscall(__NR_##name, arg1, arg2, arg3);		\
158 }
159 
160 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4)	\
161 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4)			\
162 {										\
163 	return syscall(__NR_##name, arg1, arg2, arg3, arg4);			\
164 }
165 
166 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
167 		  type5,arg5)							\
168 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5)	\
169 {										\
170 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5);		\
171 }
172 
173 
174 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
175 		  type5,arg5,type6,arg6)					\
176 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5,	\
177                   type6 arg6)							\
178 {										\
179 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6);	\
180 }
181 
182 
183 #define __NR_sys_uname __NR_uname
184 #define __NR_sys_getcwd1 __NR_getcwd
185 #define __NR_sys_getdents __NR_getdents
186 #define __NR_sys_getdents64 __NR_getdents64
187 #define __NR_sys_getpriority __NR_getpriority
188 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
189 #define __NR_sys_syslog __NR_syslog
190 #define __NR_sys_tgkill __NR_tgkill
191 #define __NR_sys_tkill __NR_tkill
192 #define __NR_sys_futex __NR_futex
193 #define __NR_sys_inotify_init __NR_inotify_init
194 #define __NR_sys_inotify_add_watch __NR_inotify_add_watch
195 #define __NR_sys_inotify_rm_watch __NR_inotify_rm_watch
196 
197 #if defined(__alpha__) || defined (__ia64__) || defined(__x86_64__) || \
198     defined(__s390x__)
199 #define __NR__llseek __NR_lseek
200 #endif
201 
202 /* Newer kernel ports have llseek() instead of _llseek() */
203 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
204 #define TARGET_NR__llseek TARGET_NR_llseek
205 #endif
206 
207 #ifdef __NR_gettid
208 _syscall0(int, gettid)
209 #else
210 /* This is a replacement for the host gettid() and must return a host
211    errno. */
212 static int gettid(void) {
213     return -ENOSYS;
214 }
215 #endif
216 #ifdef __NR_getdents
217 _syscall3(int, sys_getdents, uint, fd, struct linux_dirent *, dirp, uint, count);
218 #endif
219 #if !defined(__NR_getdents) || \
220     (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
221 _syscall3(int, sys_getdents64, uint, fd, struct linux_dirent64 *, dirp, uint, count);
222 #endif
223 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
224 _syscall5(int, _llseek,  uint,  fd, ulong, hi, ulong, lo,
225           loff_t *, res, uint, wh);
226 #endif
227 _syscall3(int,sys_rt_sigqueueinfo,int,pid,int,sig,siginfo_t *,uinfo)
228 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len)
229 #if defined(TARGET_NR_tgkill) && defined(__NR_tgkill)
230 _syscall3(int,sys_tgkill,int,tgid,int,pid,int,sig)
231 #endif
232 #if defined(TARGET_NR_tkill) && defined(__NR_tkill)
233 _syscall2(int,sys_tkill,int,tid,int,sig)
234 #endif
235 #ifdef __NR_exit_group
236 _syscall1(int,exit_group,int,error_code)
237 #endif
238 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
239 _syscall1(int,set_tid_address,int *,tidptr)
240 #endif
241 #if defined(TARGET_NR_futex) && defined(__NR_futex)
242 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val,
243           const struct timespec *,timeout,int *,uaddr2,int,val3)
244 #endif
245 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
246 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len,
247           unsigned long *, user_mask_ptr);
248 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
249 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len,
250           unsigned long *, user_mask_ptr);
251 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd,
252           void *, arg);
253 _syscall2(int, capget, struct __user_cap_header_struct *, header,
254           struct __user_cap_data_struct *, data);
255 _syscall2(int, capset, struct __user_cap_header_struct *, header,
256           struct __user_cap_data_struct *, data);
257 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
258 _syscall2(int, ioprio_get, int, which, int, who)
259 #endif
260 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
261 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio)
262 #endif
263 
264 static bitmask_transtbl fcntl_flags_tbl[] = {
265   { TARGET_O_ACCMODE,   TARGET_O_WRONLY,    O_ACCMODE,   O_WRONLY,    },
266   { TARGET_O_ACCMODE,   TARGET_O_RDWR,      O_ACCMODE,   O_RDWR,      },
267   { TARGET_O_CREAT,     TARGET_O_CREAT,     O_CREAT,     O_CREAT,     },
268   { TARGET_O_EXCL,      TARGET_O_EXCL,      O_EXCL,      O_EXCL,      },
269   { TARGET_O_NOCTTY,    TARGET_O_NOCTTY,    O_NOCTTY,    O_NOCTTY,    },
270   { TARGET_O_TRUNC,     TARGET_O_TRUNC,     O_TRUNC,     O_TRUNC,     },
271   { TARGET_O_APPEND,    TARGET_O_APPEND,    O_APPEND,    O_APPEND,    },
272   { TARGET_O_NONBLOCK,  TARGET_O_NONBLOCK,  O_NONBLOCK,  O_NONBLOCK,  },
273   { TARGET_O_SYNC,      TARGET_O_DSYNC,     O_SYNC,      O_DSYNC,     },
274   { TARGET_O_SYNC,      TARGET_O_SYNC,      O_SYNC,      O_SYNC,      },
275   { TARGET_FASYNC,      TARGET_FASYNC,      FASYNC,      FASYNC,      },
276   { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, },
277   { TARGET_O_NOFOLLOW,  TARGET_O_NOFOLLOW,  O_NOFOLLOW,  O_NOFOLLOW,  },
278 #if defined(O_DIRECT)
279   { TARGET_O_DIRECT,    TARGET_O_DIRECT,    O_DIRECT,    O_DIRECT,    },
280 #endif
281 #if defined(O_NOATIME)
282   { TARGET_O_NOATIME,   TARGET_O_NOATIME,   O_NOATIME,   O_NOATIME    },
283 #endif
284 #if defined(O_CLOEXEC)
285   { TARGET_O_CLOEXEC,   TARGET_O_CLOEXEC,   O_CLOEXEC,   O_CLOEXEC    },
286 #endif
287 #if defined(O_PATH)
288   { TARGET_O_PATH,      TARGET_O_PATH,      O_PATH,      O_PATH       },
289 #endif
290   /* Don't terminate the list prematurely on 64-bit host+guest.  */
291 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
292   { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, },
293 #endif
294   { 0, 0, 0, 0 }
295 };
296 
297 static int sys_getcwd1(char *buf, size_t size)
298 {
299   if (getcwd(buf, size) == NULL) {
300       /* getcwd() sets errno */
301       return (-1);
302   }
303   return strlen(buf)+1;
304 }
305 
306 static int sys_openat(int dirfd, const char *pathname, int flags, mode_t mode)
307 {
308   /*
309    * open(2) has extra parameter 'mode' when called with
310    * flag O_CREAT.
311    */
312   if ((flags & O_CREAT) != 0) {
313       return (openat(dirfd, pathname, flags, mode));
314   }
315   return (openat(dirfd, pathname, flags));
316 }
317 
318 #ifdef TARGET_NR_utimensat
319 #ifdef CONFIG_UTIMENSAT
320 static int sys_utimensat(int dirfd, const char *pathname,
321     const struct timespec times[2], int flags)
322 {
323     if (pathname == NULL)
324         return futimens(dirfd, times);
325     else
326         return utimensat(dirfd, pathname, times, flags);
327 }
328 #elif defined(__NR_utimensat)
329 #define __NR_sys_utimensat __NR_utimensat
330 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname,
331           const struct timespec *,tsp,int,flags)
332 #else
333 static int sys_utimensat(int dirfd, const char *pathname,
334                          const struct timespec times[2], int flags)
335 {
336     errno = ENOSYS;
337     return -1;
338 }
339 #endif
340 #endif /* TARGET_NR_utimensat */
341 
342 #ifdef CONFIG_INOTIFY
343 #include <sys/inotify.h>
344 
345 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
346 static int sys_inotify_init(void)
347 {
348   return (inotify_init());
349 }
350 #endif
351 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
352 static int sys_inotify_add_watch(int fd,const char *pathname, int32_t mask)
353 {
354   return (inotify_add_watch(fd, pathname, mask));
355 }
356 #endif
357 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
358 static int sys_inotify_rm_watch(int fd, int32_t wd)
359 {
360   return (inotify_rm_watch(fd, wd));
361 }
362 #endif
363 #ifdef CONFIG_INOTIFY1
364 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
365 static int sys_inotify_init1(int flags)
366 {
367   return (inotify_init1(flags));
368 }
369 #endif
370 #endif
371 #else
372 /* Userspace can usually survive runtime without inotify */
373 #undef TARGET_NR_inotify_init
374 #undef TARGET_NR_inotify_init1
375 #undef TARGET_NR_inotify_add_watch
376 #undef TARGET_NR_inotify_rm_watch
377 #endif /* CONFIG_INOTIFY  */
378 
379 #if defined(TARGET_NR_ppoll)
380 #ifndef __NR_ppoll
381 # define __NR_ppoll -1
382 #endif
383 #define __NR_sys_ppoll __NR_ppoll
384 _syscall5(int, sys_ppoll, struct pollfd *, fds, nfds_t, nfds,
385           struct timespec *, timeout, const sigset_t *, sigmask,
386           size_t, sigsetsize)
387 #endif
388 
389 #if defined(TARGET_NR_pselect6)
390 #ifndef __NR_pselect6
391 # define __NR_pselect6 -1
392 #endif
393 #define __NR_sys_pselect6 __NR_pselect6
394 _syscall6(int, sys_pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds,
395           fd_set *, exceptfds, struct timespec *, timeout, void *, sig);
396 #endif
397 
398 #if defined(TARGET_NR_prlimit64)
399 #ifndef __NR_prlimit64
400 # define __NR_prlimit64 -1
401 #endif
402 #define __NR_sys_prlimit64 __NR_prlimit64
403 /* The glibc rlimit structure may not be that used by the underlying syscall */
404 struct host_rlimit64 {
405     uint64_t rlim_cur;
406     uint64_t rlim_max;
407 };
408 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource,
409           const struct host_rlimit64 *, new_limit,
410           struct host_rlimit64 *, old_limit)
411 #endif
412 
413 
414 #if defined(TARGET_NR_timer_create)
415 /* Maxiumum of 32 active POSIX timers allowed at any one time. */
416 static timer_t g_posix_timers[32] = { 0, } ;
417 
418 static inline int next_free_host_timer(void)
419 {
420     int k ;
421     /* FIXME: Does finding the next free slot require a lock? */
422     for (k = 0; k < ARRAY_SIZE(g_posix_timers); k++) {
423         if (g_posix_timers[k] == 0) {
424             g_posix_timers[k] = (timer_t) 1;
425             return k;
426         }
427     }
428     return -1;
429 }
430 #endif
431 
432 /* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */
433 #ifdef TARGET_ARM
434 static inline int regpairs_aligned(void *cpu_env) {
435     return ((((CPUARMState *)cpu_env)->eabi) == 1) ;
436 }
437 #elif defined(TARGET_MIPS)
438 static inline int regpairs_aligned(void *cpu_env) { return 1; }
439 #elif defined(TARGET_PPC) && !defined(TARGET_PPC64)
440 /* SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs
441  * of registers which translates to the same as ARM/MIPS, because we start with
442  * r3 as arg1 */
443 static inline int regpairs_aligned(void *cpu_env) { return 1; }
444 #else
445 static inline int regpairs_aligned(void *cpu_env) { return 0; }
446 #endif
447 
448 #define ERRNO_TABLE_SIZE 1200
449 
450 /* target_to_host_errno_table[] is initialized from
451  * host_to_target_errno_table[] in syscall_init(). */
452 static uint16_t target_to_host_errno_table[ERRNO_TABLE_SIZE] = {
453 };
454 
455 /*
456  * This list is the union of errno values overridden in asm-<arch>/errno.h
457  * minus the errnos that are not actually generic to all archs.
458  */
459 static uint16_t host_to_target_errno_table[ERRNO_TABLE_SIZE] = {
460     [EIDRM]		= TARGET_EIDRM,
461     [ECHRNG]		= TARGET_ECHRNG,
462     [EL2NSYNC]		= TARGET_EL2NSYNC,
463     [EL3HLT]		= TARGET_EL3HLT,
464     [EL3RST]		= TARGET_EL3RST,
465     [ELNRNG]		= TARGET_ELNRNG,
466     [EUNATCH]		= TARGET_EUNATCH,
467     [ENOCSI]		= TARGET_ENOCSI,
468     [EL2HLT]		= TARGET_EL2HLT,
469     [EDEADLK]		= TARGET_EDEADLK,
470     [ENOLCK]		= TARGET_ENOLCK,
471     [EBADE]		= TARGET_EBADE,
472     [EBADR]		= TARGET_EBADR,
473     [EXFULL]		= TARGET_EXFULL,
474     [ENOANO]		= TARGET_ENOANO,
475     [EBADRQC]		= TARGET_EBADRQC,
476     [EBADSLT]		= TARGET_EBADSLT,
477     [EBFONT]		= TARGET_EBFONT,
478     [ENOSTR]		= TARGET_ENOSTR,
479     [ENODATA]		= TARGET_ENODATA,
480     [ETIME]		= TARGET_ETIME,
481     [ENOSR]		= TARGET_ENOSR,
482     [ENONET]		= TARGET_ENONET,
483     [ENOPKG]		= TARGET_ENOPKG,
484     [EREMOTE]		= TARGET_EREMOTE,
485     [ENOLINK]		= TARGET_ENOLINK,
486     [EADV]		= TARGET_EADV,
487     [ESRMNT]		= TARGET_ESRMNT,
488     [ECOMM]		= TARGET_ECOMM,
489     [EPROTO]		= TARGET_EPROTO,
490     [EDOTDOT]		= TARGET_EDOTDOT,
491     [EMULTIHOP]		= TARGET_EMULTIHOP,
492     [EBADMSG]		= TARGET_EBADMSG,
493     [ENAMETOOLONG]	= TARGET_ENAMETOOLONG,
494     [EOVERFLOW]		= TARGET_EOVERFLOW,
495     [ENOTUNIQ]		= TARGET_ENOTUNIQ,
496     [EBADFD]		= TARGET_EBADFD,
497     [EREMCHG]		= TARGET_EREMCHG,
498     [ELIBACC]		= TARGET_ELIBACC,
499     [ELIBBAD]		= TARGET_ELIBBAD,
500     [ELIBSCN]		= TARGET_ELIBSCN,
501     [ELIBMAX]		= TARGET_ELIBMAX,
502     [ELIBEXEC]		= TARGET_ELIBEXEC,
503     [EILSEQ]		= TARGET_EILSEQ,
504     [ENOSYS]		= TARGET_ENOSYS,
505     [ELOOP]		= TARGET_ELOOP,
506     [ERESTART]		= TARGET_ERESTART,
507     [ESTRPIPE]		= TARGET_ESTRPIPE,
508     [ENOTEMPTY]		= TARGET_ENOTEMPTY,
509     [EUSERS]		= TARGET_EUSERS,
510     [ENOTSOCK]		= TARGET_ENOTSOCK,
511     [EDESTADDRREQ]	= TARGET_EDESTADDRREQ,
512     [EMSGSIZE]		= TARGET_EMSGSIZE,
513     [EPROTOTYPE]	= TARGET_EPROTOTYPE,
514     [ENOPROTOOPT]	= TARGET_ENOPROTOOPT,
515     [EPROTONOSUPPORT]	= TARGET_EPROTONOSUPPORT,
516     [ESOCKTNOSUPPORT]	= TARGET_ESOCKTNOSUPPORT,
517     [EOPNOTSUPP]	= TARGET_EOPNOTSUPP,
518     [EPFNOSUPPORT]	= TARGET_EPFNOSUPPORT,
519     [EAFNOSUPPORT]	= TARGET_EAFNOSUPPORT,
520     [EADDRINUSE]	= TARGET_EADDRINUSE,
521     [EADDRNOTAVAIL]	= TARGET_EADDRNOTAVAIL,
522     [ENETDOWN]		= TARGET_ENETDOWN,
523     [ENETUNREACH]	= TARGET_ENETUNREACH,
524     [ENETRESET]		= TARGET_ENETRESET,
525     [ECONNABORTED]	= TARGET_ECONNABORTED,
526     [ECONNRESET]	= TARGET_ECONNRESET,
527     [ENOBUFS]		= TARGET_ENOBUFS,
528     [EISCONN]		= TARGET_EISCONN,
529     [ENOTCONN]		= TARGET_ENOTCONN,
530     [EUCLEAN]		= TARGET_EUCLEAN,
531     [ENOTNAM]		= TARGET_ENOTNAM,
532     [ENAVAIL]		= TARGET_ENAVAIL,
533     [EISNAM]		= TARGET_EISNAM,
534     [EREMOTEIO]		= TARGET_EREMOTEIO,
535     [ESHUTDOWN]		= TARGET_ESHUTDOWN,
536     [ETOOMANYREFS]	= TARGET_ETOOMANYREFS,
537     [ETIMEDOUT]		= TARGET_ETIMEDOUT,
538     [ECONNREFUSED]	= TARGET_ECONNREFUSED,
539     [EHOSTDOWN]		= TARGET_EHOSTDOWN,
540     [EHOSTUNREACH]	= TARGET_EHOSTUNREACH,
541     [EALREADY]		= TARGET_EALREADY,
542     [EINPROGRESS]	= TARGET_EINPROGRESS,
543     [ESTALE]		= TARGET_ESTALE,
544     [ECANCELED]		= TARGET_ECANCELED,
545     [ENOMEDIUM]		= TARGET_ENOMEDIUM,
546     [EMEDIUMTYPE]	= TARGET_EMEDIUMTYPE,
547 #ifdef ENOKEY
548     [ENOKEY]		= TARGET_ENOKEY,
549 #endif
550 #ifdef EKEYEXPIRED
551     [EKEYEXPIRED]	= TARGET_EKEYEXPIRED,
552 #endif
553 #ifdef EKEYREVOKED
554     [EKEYREVOKED]	= TARGET_EKEYREVOKED,
555 #endif
556 #ifdef EKEYREJECTED
557     [EKEYREJECTED]	= TARGET_EKEYREJECTED,
558 #endif
559 #ifdef EOWNERDEAD
560     [EOWNERDEAD]	= TARGET_EOWNERDEAD,
561 #endif
562 #ifdef ENOTRECOVERABLE
563     [ENOTRECOVERABLE]	= TARGET_ENOTRECOVERABLE,
564 #endif
565 };
566 
567 static inline int host_to_target_errno(int err)
568 {
569     if(host_to_target_errno_table[err])
570         return host_to_target_errno_table[err];
571     return err;
572 }
573 
574 static inline int target_to_host_errno(int err)
575 {
576     if (target_to_host_errno_table[err])
577         return target_to_host_errno_table[err];
578     return err;
579 }
580 
581 static inline abi_long get_errno(abi_long ret)
582 {
583     if (ret == -1)
584         return -host_to_target_errno(errno);
585     else
586         return ret;
587 }
588 
589 static inline int is_error(abi_long ret)
590 {
591     return (abi_ulong)ret >= (abi_ulong)(-4096);
592 }
593 
594 char *target_strerror(int err)
595 {
596     if ((err >= ERRNO_TABLE_SIZE) || (err < 0)) {
597         return NULL;
598     }
599     return strerror(target_to_host_errno(err));
600 }
601 
602 static inline int host_to_target_sock_type(int host_type)
603 {
604     int target_type;
605 
606     switch (host_type & 0xf /* SOCK_TYPE_MASK */) {
607     case SOCK_DGRAM:
608         target_type = TARGET_SOCK_DGRAM;
609         break;
610     case SOCK_STREAM:
611         target_type = TARGET_SOCK_STREAM;
612         break;
613     default:
614         target_type = host_type & 0xf /* SOCK_TYPE_MASK */;
615         break;
616     }
617 
618 #if defined(SOCK_CLOEXEC)
619     if (host_type & SOCK_CLOEXEC) {
620         target_type |= TARGET_SOCK_CLOEXEC;
621     }
622 #endif
623 
624 #if defined(SOCK_NONBLOCK)
625     if (host_type & SOCK_NONBLOCK) {
626         target_type |= TARGET_SOCK_NONBLOCK;
627     }
628 #endif
629 
630     return target_type;
631 }
632 
633 static abi_ulong target_brk;
634 static abi_ulong target_original_brk;
635 static abi_ulong brk_page;
636 
637 void target_set_brk(abi_ulong new_brk)
638 {
639     target_original_brk = target_brk = HOST_PAGE_ALIGN(new_brk);
640     brk_page = HOST_PAGE_ALIGN(target_brk);
641 }
642 
643 //#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0)
644 #define DEBUGF_BRK(message, args...)
645 
646 /* do_brk() must return target values and target errnos. */
647 abi_long do_brk(abi_ulong new_brk)
648 {
649     abi_long mapped_addr;
650     int	new_alloc_size;
651 
652     DEBUGF_BRK("do_brk(" TARGET_ABI_FMT_lx ") -> ", new_brk);
653 
654     if (!new_brk) {
655         DEBUGF_BRK(TARGET_ABI_FMT_lx " (!new_brk)\n", target_brk);
656         return target_brk;
657     }
658     if (new_brk < target_original_brk) {
659         DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk < target_original_brk)\n",
660                    target_brk);
661         return target_brk;
662     }
663 
664     /* If the new brk is less than the highest page reserved to the
665      * target heap allocation, set it and we're almost done...  */
666     if (new_brk <= brk_page) {
667         /* Heap contents are initialized to zero, as for anonymous
668          * mapped pages.  */
669         if (new_brk > target_brk) {
670             memset(g2h(target_brk), 0, new_brk - target_brk);
671         }
672 	target_brk = new_brk;
673         DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk <= brk_page)\n", target_brk);
674     	return target_brk;
675     }
676 
677     /* We need to allocate more memory after the brk... Note that
678      * we don't use MAP_FIXED because that will map over the top of
679      * any existing mapping (like the one with the host libc or qemu
680      * itself); instead we treat "mapped but at wrong address" as
681      * a failure and unmap again.
682      */
683     new_alloc_size = HOST_PAGE_ALIGN(new_brk - brk_page);
684     mapped_addr = get_errno(target_mmap(brk_page, new_alloc_size,
685                                         PROT_READ|PROT_WRITE,
686                                         MAP_ANON|MAP_PRIVATE, 0, 0));
687 
688     if (mapped_addr == brk_page) {
689         /* Heap contents are initialized to zero, as for anonymous
690          * mapped pages.  Technically the new pages are already
691          * initialized to zero since they *are* anonymous mapped
692          * pages, however we have to take care with the contents that
693          * come from the remaining part of the previous page: it may
694          * contains garbage data due to a previous heap usage (grown
695          * then shrunken).  */
696         memset(g2h(target_brk), 0, brk_page - target_brk);
697 
698         target_brk = new_brk;
699         brk_page = HOST_PAGE_ALIGN(target_brk);
700         DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr == brk_page)\n",
701             target_brk);
702         return target_brk;
703     } else if (mapped_addr != -1) {
704         /* Mapped but at wrong address, meaning there wasn't actually
705          * enough space for this brk.
706          */
707         target_munmap(mapped_addr, new_alloc_size);
708         mapped_addr = -1;
709         DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr != -1)\n", target_brk);
710     }
711     else {
712         DEBUGF_BRK(TARGET_ABI_FMT_lx " (otherwise)\n", target_brk);
713     }
714 
715 #if defined(TARGET_ALPHA)
716     /* We (partially) emulate OSF/1 on Alpha, which requires we
717        return a proper errno, not an unchanged brk value.  */
718     return -TARGET_ENOMEM;
719 #endif
720     /* For everything else, return the previous break. */
721     return target_brk;
722 }
723 
724 static inline abi_long copy_from_user_fdset(fd_set *fds,
725                                             abi_ulong target_fds_addr,
726                                             int n)
727 {
728     int i, nw, j, k;
729     abi_ulong b, *target_fds;
730 
731     nw = (n + TARGET_ABI_BITS - 1) / TARGET_ABI_BITS;
732     if (!(target_fds = lock_user(VERIFY_READ,
733                                  target_fds_addr,
734                                  sizeof(abi_ulong) * nw,
735                                  1)))
736         return -TARGET_EFAULT;
737 
738     FD_ZERO(fds);
739     k = 0;
740     for (i = 0; i < nw; i++) {
741         /* grab the abi_ulong */
742         __get_user(b, &target_fds[i]);
743         for (j = 0; j < TARGET_ABI_BITS; j++) {
744             /* check the bit inside the abi_ulong */
745             if ((b >> j) & 1)
746                 FD_SET(k, fds);
747             k++;
748         }
749     }
750 
751     unlock_user(target_fds, target_fds_addr, 0);
752 
753     return 0;
754 }
755 
756 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr,
757                                                  abi_ulong target_fds_addr,
758                                                  int n)
759 {
760     if (target_fds_addr) {
761         if (copy_from_user_fdset(fds, target_fds_addr, n))
762             return -TARGET_EFAULT;
763         *fds_ptr = fds;
764     } else {
765         *fds_ptr = NULL;
766     }
767     return 0;
768 }
769 
770 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr,
771                                           const fd_set *fds,
772                                           int n)
773 {
774     int i, nw, j, k;
775     abi_long v;
776     abi_ulong *target_fds;
777 
778     nw = (n + TARGET_ABI_BITS - 1) / TARGET_ABI_BITS;
779     if (!(target_fds = lock_user(VERIFY_WRITE,
780                                  target_fds_addr,
781                                  sizeof(abi_ulong) * nw,
782                                  0)))
783         return -TARGET_EFAULT;
784 
785     k = 0;
786     for (i = 0; i < nw; i++) {
787         v = 0;
788         for (j = 0; j < TARGET_ABI_BITS; j++) {
789             v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j);
790             k++;
791         }
792         __put_user(v, &target_fds[i]);
793     }
794 
795     unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw);
796 
797     return 0;
798 }
799 
800 #if defined(__alpha__)
801 #define HOST_HZ 1024
802 #else
803 #define HOST_HZ 100
804 #endif
805 
806 static inline abi_long host_to_target_clock_t(long ticks)
807 {
808 #if HOST_HZ == TARGET_HZ
809     return ticks;
810 #else
811     return ((int64_t)ticks * TARGET_HZ) / HOST_HZ;
812 #endif
813 }
814 
815 static inline abi_long host_to_target_rusage(abi_ulong target_addr,
816                                              const struct rusage *rusage)
817 {
818     struct target_rusage *target_rusage;
819 
820     if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0))
821         return -TARGET_EFAULT;
822     target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec);
823     target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec);
824     target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec);
825     target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec);
826     target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss);
827     target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss);
828     target_rusage->ru_idrss = tswapal(rusage->ru_idrss);
829     target_rusage->ru_isrss = tswapal(rusage->ru_isrss);
830     target_rusage->ru_minflt = tswapal(rusage->ru_minflt);
831     target_rusage->ru_majflt = tswapal(rusage->ru_majflt);
832     target_rusage->ru_nswap = tswapal(rusage->ru_nswap);
833     target_rusage->ru_inblock = tswapal(rusage->ru_inblock);
834     target_rusage->ru_oublock = tswapal(rusage->ru_oublock);
835     target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd);
836     target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv);
837     target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals);
838     target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw);
839     target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw);
840     unlock_user_struct(target_rusage, target_addr, 1);
841 
842     return 0;
843 }
844 
845 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim)
846 {
847     abi_ulong target_rlim_swap;
848     rlim_t result;
849 
850     target_rlim_swap = tswapal(target_rlim);
851     if (target_rlim_swap == TARGET_RLIM_INFINITY)
852         return RLIM_INFINITY;
853 
854     result = target_rlim_swap;
855     if (target_rlim_swap != (rlim_t)result)
856         return RLIM_INFINITY;
857 
858     return result;
859 }
860 
861 static inline abi_ulong host_to_target_rlim(rlim_t rlim)
862 {
863     abi_ulong target_rlim_swap;
864     abi_ulong result;
865 
866     if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim)
867         target_rlim_swap = TARGET_RLIM_INFINITY;
868     else
869         target_rlim_swap = rlim;
870     result = tswapal(target_rlim_swap);
871 
872     return result;
873 }
874 
875 static inline int target_to_host_resource(int code)
876 {
877     switch (code) {
878     case TARGET_RLIMIT_AS:
879         return RLIMIT_AS;
880     case TARGET_RLIMIT_CORE:
881         return RLIMIT_CORE;
882     case TARGET_RLIMIT_CPU:
883         return RLIMIT_CPU;
884     case TARGET_RLIMIT_DATA:
885         return RLIMIT_DATA;
886     case TARGET_RLIMIT_FSIZE:
887         return RLIMIT_FSIZE;
888     case TARGET_RLIMIT_LOCKS:
889         return RLIMIT_LOCKS;
890     case TARGET_RLIMIT_MEMLOCK:
891         return RLIMIT_MEMLOCK;
892     case TARGET_RLIMIT_MSGQUEUE:
893         return RLIMIT_MSGQUEUE;
894     case TARGET_RLIMIT_NICE:
895         return RLIMIT_NICE;
896     case TARGET_RLIMIT_NOFILE:
897         return RLIMIT_NOFILE;
898     case TARGET_RLIMIT_NPROC:
899         return RLIMIT_NPROC;
900     case TARGET_RLIMIT_RSS:
901         return RLIMIT_RSS;
902     case TARGET_RLIMIT_RTPRIO:
903         return RLIMIT_RTPRIO;
904     case TARGET_RLIMIT_SIGPENDING:
905         return RLIMIT_SIGPENDING;
906     case TARGET_RLIMIT_STACK:
907         return RLIMIT_STACK;
908     default:
909         return code;
910     }
911 }
912 
913 static inline abi_long copy_from_user_timeval(struct timeval *tv,
914                                               abi_ulong target_tv_addr)
915 {
916     struct target_timeval *target_tv;
917 
918     if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1))
919         return -TARGET_EFAULT;
920 
921     __get_user(tv->tv_sec, &target_tv->tv_sec);
922     __get_user(tv->tv_usec, &target_tv->tv_usec);
923 
924     unlock_user_struct(target_tv, target_tv_addr, 0);
925 
926     return 0;
927 }
928 
929 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr,
930                                             const struct timeval *tv)
931 {
932     struct target_timeval *target_tv;
933 
934     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0))
935         return -TARGET_EFAULT;
936 
937     __put_user(tv->tv_sec, &target_tv->tv_sec);
938     __put_user(tv->tv_usec, &target_tv->tv_usec);
939 
940     unlock_user_struct(target_tv, target_tv_addr, 1);
941 
942     return 0;
943 }
944 
945 static inline abi_long copy_from_user_timezone(struct timezone *tz,
946                                                abi_ulong target_tz_addr)
947 {
948     struct target_timezone *target_tz;
949 
950     if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) {
951         return -TARGET_EFAULT;
952     }
953 
954     __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
955     __get_user(tz->tz_dsttime, &target_tz->tz_dsttime);
956 
957     unlock_user_struct(target_tz, target_tz_addr, 0);
958 
959     return 0;
960 }
961 
962 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
963 #include <mqueue.h>
964 
965 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr,
966                                               abi_ulong target_mq_attr_addr)
967 {
968     struct target_mq_attr *target_mq_attr;
969 
970     if (!lock_user_struct(VERIFY_READ, target_mq_attr,
971                           target_mq_attr_addr, 1))
972         return -TARGET_EFAULT;
973 
974     __get_user(attr->mq_flags, &target_mq_attr->mq_flags);
975     __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
976     __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
977     __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
978 
979     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0);
980 
981     return 0;
982 }
983 
984 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr,
985                                             const struct mq_attr *attr)
986 {
987     struct target_mq_attr *target_mq_attr;
988 
989     if (!lock_user_struct(VERIFY_WRITE, target_mq_attr,
990                           target_mq_attr_addr, 0))
991         return -TARGET_EFAULT;
992 
993     __put_user(attr->mq_flags, &target_mq_attr->mq_flags);
994     __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
995     __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
996     __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
997 
998     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1);
999 
1000     return 0;
1001 }
1002 #endif
1003 
1004 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1005 /* do_select() must return target values and target errnos. */
1006 static abi_long do_select(int n,
1007                           abi_ulong rfd_addr, abi_ulong wfd_addr,
1008                           abi_ulong efd_addr, abi_ulong target_tv_addr)
1009 {
1010     fd_set rfds, wfds, efds;
1011     fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1012     struct timeval tv, *tv_ptr;
1013     abi_long ret;
1014 
1015     ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1016     if (ret) {
1017         return ret;
1018     }
1019     ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1020     if (ret) {
1021         return ret;
1022     }
1023     ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1024     if (ret) {
1025         return ret;
1026     }
1027 
1028     if (target_tv_addr) {
1029         if (copy_from_user_timeval(&tv, target_tv_addr))
1030             return -TARGET_EFAULT;
1031         tv_ptr = &tv;
1032     } else {
1033         tv_ptr = NULL;
1034     }
1035 
1036     ret = get_errno(select(n, rfds_ptr, wfds_ptr, efds_ptr, tv_ptr));
1037 
1038     if (!is_error(ret)) {
1039         if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
1040             return -TARGET_EFAULT;
1041         if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
1042             return -TARGET_EFAULT;
1043         if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
1044             return -TARGET_EFAULT;
1045 
1046         if (target_tv_addr && copy_to_user_timeval(target_tv_addr, &tv))
1047             return -TARGET_EFAULT;
1048     }
1049 
1050     return ret;
1051 }
1052 #endif
1053 
1054 static abi_long do_pipe2(int host_pipe[], int flags)
1055 {
1056 #ifdef CONFIG_PIPE2
1057     return pipe2(host_pipe, flags);
1058 #else
1059     return -ENOSYS;
1060 #endif
1061 }
1062 
1063 static abi_long do_pipe(void *cpu_env, abi_ulong pipedes,
1064                         int flags, int is_pipe2)
1065 {
1066     int host_pipe[2];
1067     abi_long ret;
1068     ret = flags ? do_pipe2(host_pipe, flags) : pipe(host_pipe);
1069 
1070     if (is_error(ret))
1071         return get_errno(ret);
1072 
1073     /* Several targets have special calling conventions for the original
1074        pipe syscall, but didn't replicate this into the pipe2 syscall.  */
1075     if (!is_pipe2) {
1076 #if defined(TARGET_ALPHA)
1077         ((CPUAlphaState *)cpu_env)->ir[IR_A4] = host_pipe[1];
1078         return host_pipe[0];
1079 #elif defined(TARGET_MIPS)
1080         ((CPUMIPSState*)cpu_env)->active_tc.gpr[3] = host_pipe[1];
1081         return host_pipe[0];
1082 #elif defined(TARGET_SH4)
1083         ((CPUSH4State*)cpu_env)->gregs[1] = host_pipe[1];
1084         return host_pipe[0];
1085 #elif defined(TARGET_SPARC)
1086         ((CPUSPARCState*)cpu_env)->regwptr[1] = host_pipe[1];
1087         return host_pipe[0];
1088 #endif
1089     }
1090 
1091     if (put_user_s32(host_pipe[0], pipedes)
1092         || put_user_s32(host_pipe[1], pipedes + sizeof(host_pipe[0])))
1093         return -TARGET_EFAULT;
1094     return get_errno(ret);
1095 }
1096 
1097 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn,
1098                                               abi_ulong target_addr,
1099                                               socklen_t len)
1100 {
1101     struct target_ip_mreqn *target_smreqn;
1102 
1103     target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1);
1104     if (!target_smreqn)
1105         return -TARGET_EFAULT;
1106     mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr;
1107     mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr;
1108     if (len == sizeof(struct target_ip_mreqn))
1109         mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex);
1110     unlock_user(target_smreqn, target_addr, 0);
1111 
1112     return 0;
1113 }
1114 
1115 static inline abi_long target_to_host_sockaddr(struct sockaddr *addr,
1116                                                abi_ulong target_addr,
1117                                                socklen_t len)
1118 {
1119     const socklen_t unix_maxlen = sizeof (struct sockaddr_un);
1120     sa_family_t sa_family;
1121     struct target_sockaddr *target_saddr;
1122 
1123     target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
1124     if (!target_saddr)
1125         return -TARGET_EFAULT;
1126 
1127     sa_family = tswap16(target_saddr->sa_family);
1128 
1129     /* Oops. The caller might send a incomplete sun_path; sun_path
1130      * must be terminated by \0 (see the manual page), but
1131      * unfortunately it is quite common to specify sockaddr_un
1132      * length as "strlen(x->sun_path)" while it should be
1133      * "strlen(...) + 1". We'll fix that here if needed.
1134      * Linux kernel has a similar feature.
1135      */
1136 
1137     if (sa_family == AF_UNIX) {
1138         if (len < unix_maxlen && len > 0) {
1139             char *cp = (char*)target_saddr;
1140 
1141             if ( cp[len-1] && !cp[len] )
1142                 len++;
1143         }
1144         if (len > unix_maxlen)
1145             len = unix_maxlen;
1146     }
1147 
1148     memcpy(addr, target_saddr, len);
1149     addr->sa_family = sa_family;
1150     if (sa_family == AF_PACKET) {
1151 	struct target_sockaddr_ll *lladdr;
1152 
1153 	lladdr = (struct target_sockaddr_ll *)addr;
1154 	lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex);
1155 	lladdr->sll_hatype = tswap16(lladdr->sll_hatype);
1156     }
1157     unlock_user(target_saddr, target_addr, 0);
1158 
1159     return 0;
1160 }
1161 
1162 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr,
1163                                                struct sockaddr *addr,
1164                                                socklen_t len)
1165 {
1166     struct target_sockaddr *target_saddr;
1167 
1168     target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0);
1169     if (!target_saddr)
1170         return -TARGET_EFAULT;
1171     memcpy(target_saddr, addr, len);
1172     target_saddr->sa_family = tswap16(addr->sa_family);
1173     unlock_user(target_saddr, target_addr, len);
1174 
1175     return 0;
1176 }
1177 
1178 static inline abi_long target_to_host_cmsg(struct msghdr *msgh,
1179                                            struct target_msghdr *target_msgh)
1180 {
1181     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1182     abi_long msg_controllen;
1183     abi_ulong target_cmsg_addr;
1184     struct target_cmsghdr *target_cmsg;
1185     socklen_t space = 0;
1186 
1187     msg_controllen = tswapal(target_msgh->msg_controllen);
1188     if (msg_controllen < sizeof (struct target_cmsghdr))
1189         goto the_end;
1190     target_cmsg_addr = tswapal(target_msgh->msg_control);
1191     target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1);
1192     if (!target_cmsg)
1193         return -TARGET_EFAULT;
1194 
1195     while (cmsg && target_cmsg) {
1196         void *data = CMSG_DATA(cmsg);
1197         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1198 
1199         int len = tswapal(target_cmsg->cmsg_len)
1200                   - TARGET_CMSG_ALIGN(sizeof (struct target_cmsghdr));
1201 
1202         space += CMSG_SPACE(len);
1203         if (space > msgh->msg_controllen) {
1204             space -= CMSG_SPACE(len);
1205             /* This is a QEMU bug, since we allocated the payload
1206              * area ourselves (unlike overflow in host-to-target
1207              * conversion, which is just the guest giving us a buffer
1208              * that's too small). It can't happen for the payload types
1209              * we currently support; if it becomes an issue in future
1210              * we would need to improve our allocation strategy to
1211              * something more intelligent than "twice the size of the
1212              * target buffer we're reading from".
1213              */
1214             gemu_log("Host cmsg overflow\n");
1215             break;
1216         }
1217 
1218         if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) {
1219             cmsg->cmsg_level = SOL_SOCKET;
1220         } else {
1221             cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level);
1222         }
1223         cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type);
1224         cmsg->cmsg_len = CMSG_LEN(len);
1225 
1226         if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
1227             int *fd = (int *)data;
1228             int *target_fd = (int *)target_data;
1229             int i, numfds = len / sizeof(int);
1230 
1231             for (i = 0; i < numfds; i++) {
1232                 __get_user(fd[i], target_fd + i);
1233             }
1234         } else if (cmsg->cmsg_level == SOL_SOCKET
1235                &&  cmsg->cmsg_type == SCM_CREDENTIALS) {
1236             struct ucred *cred = (struct ucred *)data;
1237             struct target_ucred *target_cred =
1238                 (struct target_ucred *)target_data;
1239 
1240             __get_user(cred->pid, &target_cred->pid);
1241             __get_user(cred->uid, &target_cred->uid);
1242             __get_user(cred->gid, &target_cred->gid);
1243         } else {
1244             gemu_log("Unsupported ancillary data: %d/%d\n",
1245                                         cmsg->cmsg_level, cmsg->cmsg_type);
1246             memcpy(data, target_data, len);
1247         }
1248 
1249         cmsg = CMSG_NXTHDR(msgh, cmsg);
1250         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg);
1251     }
1252     unlock_user(target_cmsg, target_cmsg_addr, 0);
1253  the_end:
1254     msgh->msg_controllen = space;
1255     return 0;
1256 }
1257 
1258 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh,
1259                                            struct msghdr *msgh)
1260 {
1261     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1262     abi_long msg_controllen;
1263     abi_ulong target_cmsg_addr;
1264     struct target_cmsghdr *target_cmsg;
1265     socklen_t space = 0;
1266 
1267     msg_controllen = tswapal(target_msgh->msg_controllen);
1268     if (msg_controllen < sizeof (struct target_cmsghdr))
1269         goto the_end;
1270     target_cmsg_addr = tswapal(target_msgh->msg_control);
1271     target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0);
1272     if (!target_cmsg)
1273         return -TARGET_EFAULT;
1274 
1275     while (cmsg && target_cmsg) {
1276         void *data = CMSG_DATA(cmsg);
1277         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1278 
1279         int len = cmsg->cmsg_len - CMSG_ALIGN(sizeof (struct cmsghdr));
1280         int tgt_len, tgt_space;
1281 
1282         /* We never copy a half-header but may copy half-data;
1283          * this is Linux's behaviour in put_cmsg(). Note that
1284          * truncation here is a guest problem (which we report
1285          * to the guest via the CTRUNC bit), unlike truncation
1286          * in target_to_host_cmsg, which is a QEMU bug.
1287          */
1288         if (msg_controllen < sizeof(struct cmsghdr)) {
1289             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1290             break;
1291         }
1292 
1293         if (cmsg->cmsg_level == SOL_SOCKET) {
1294             target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET);
1295         } else {
1296             target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level);
1297         }
1298         target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type);
1299 
1300         tgt_len = TARGET_CMSG_LEN(len);
1301 
1302         /* Payload types which need a different size of payload on
1303          * the target must adjust tgt_len here.
1304          */
1305         switch (cmsg->cmsg_level) {
1306         case SOL_SOCKET:
1307             switch (cmsg->cmsg_type) {
1308             case SO_TIMESTAMP:
1309                 tgt_len = sizeof(struct target_timeval);
1310                 break;
1311             default:
1312                 break;
1313             }
1314         default:
1315             break;
1316         }
1317 
1318         if (msg_controllen < tgt_len) {
1319             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1320             tgt_len = msg_controllen;
1321         }
1322 
1323         /* We must now copy-and-convert len bytes of payload
1324          * into tgt_len bytes of destination space. Bear in mind
1325          * that in both source and destination we may be dealing
1326          * with a truncated value!
1327          */
1328         switch (cmsg->cmsg_level) {
1329         case SOL_SOCKET:
1330             switch (cmsg->cmsg_type) {
1331             case SCM_RIGHTS:
1332             {
1333                 int *fd = (int *)data;
1334                 int *target_fd = (int *)target_data;
1335                 int i, numfds = tgt_len / sizeof(int);
1336 
1337                 for (i = 0; i < numfds; i++) {
1338                     __put_user(fd[i], target_fd + i);
1339                 }
1340                 break;
1341             }
1342             case SO_TIMESTAMP:
1343             {
1344                 struct timeval *tv = (struct timeval *)data;
1345                 struct target_timeval *target_tv =
1346                     (struct target_timeval *)target_data;
1347 
1348                 if (len != sizeof(struct timeval) ||
1349                     tgt_len != sizeof(struct target_timeval)) {
1350                     goto unimplemented;
1351                 }
1352 
1353                 /* copy struct timeval to target */
1354                 __put_user(tv->tv_sec, &target_tv->tv_sec);
1355                 __put_user(tv->tv_usec, &target_tv->tv_usec);
1356                 break;
1357             }
1358             case SCM_CREDENTIALS:
1359             {
1360                 struct ucred *cred = (struct ucred *)data;
1361                 struct target_ucred *target_cred =
1362                     (struct target_ucred *)target_data;
1363 
1364                 __put_user(cred->pid, &target_cred->pid);
1365                 __put_user(cred->uid, &target_cred->uid);
1366                 __put_user(cred->gid, &target_cred->gid);
1367                 break;
1368             }
1369             default:
1370                 goto unimplemented;
1371             }
1372             break;
1373 
1374         default:
1375         unimplemented:
1376             gemu_log("Unsupported ancillary data: %d/%d\n",
1377                                         cmsg->cmsg_level, cmsg->cmsg_type);
1378             memcpy(target_data, data, MIN(len, tgt_len));
1379             if (tgt_len > len) {
1380                 memset(target_data + len, 0, tgt_len - len);
1381             }
1382         }
1383 
1384         target_cmsg->cmsg_len = tswapal(tgt_len);
1385         tgt_space = TARGET_CMSG_SPACE(tgt_len);
1386         if (msg_controllen < tgt_space) {
1387             tgt_space = msg_controllen;
1388         }
1389         msg_controllen -= tgt_space;
1390         space += tgt_space;
1391         cmsg = CMSG_NXTHDR(msgh, cmsg);
1392         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg);
1393     }
1394     unlock_user(target_cmsg, target_cmsg_addr, space);
1395  the_end:
1396     target_msgh->msg_controllen = tswapal(space);
1397     return 0;
1398 }
1399 
1400 /* do_setsockopt() Must return target values and target errnos. */
1401 static abi_long do_setsockopt(int sockfd, int level, int optname,
1402                               abi_ulong optval_addr, socklen_t optlen)
1403 {
1404     abi_long ret;
1405     int val;
1406     struct ip_mreqn *ip_mreq;
1407     struct ip_mreq_source *ip_mreq_source;
1408 
1409     switch(level) {
1410     case SOL_TCP:
1411         /* TCP options all take an 'int' value.  */
1412         if (optlen < sizeof(uint32_t))
1413             return -TARGET_EINVAL;
1414 
1415         if (get_user_u32(val, optval_addr))
1416             return -TARGET_EFAULT;
1417         ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
1418         break;
1419     case SOL_IP:
1420         switch(optname) {
1421         case IP_TOS:
1422         case IP_TTL:
1423         case IP_HDRINCL:
1424         case IP_ROUTER_ALERT:
1425         case IP_RECVOPTS:
1426         case IP_RETOPTS:
1427         case IP_PKTINFO:
1428         case IP_MTU_DISCOVER:
1429         case IP_RECVERR:
1430         case IP_RECVTOS:
1431 #ifdef IP_FREEBIND
1432         case IP_FREEBIND:
1433 #endif
1434         case IP_MULTICAST_TTL:
1435         case IP_MULTICAST_LOOP:
1436             val = 0;
1437             if (optlen >= sizeof(uint32_t)) {
1438                 if (get_user_u32(val, optval_addr))
1439                     return -TARGET_EFAULT;
1440             } else if (optlen >= 1) {
1441                 if (get_user_u8(val, optval_addr))
1442                     return -TARGET_EFAULT;
1443             }
1444             ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
1445             break;
1446         case IP_ADD_MEMBERSHIP:
1447         case IP_DROP_MEMBERSHIP:
1448             if (optlen < sizeof (struct target_ip_mreq) ||
1449                 optlen > sizeof (struct target_ip_mreqn))
1450                 return -TARGET_EINVAL;
1451 
1452             ip_mreq = (struct ip_mreqn *) alloca(optlen);
1453             target_to_host_ip_mreq(ip_mreq, optval_addr, optlen);
1454             ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen));
1455             break;
1456 
1457         case IP_BLOCK_SOURCE:
1458         case IP_UNBLOCK_SOURCE:
1459         case IP_ADD_SOURCE_MEMBERSHIP:
1460         case IP_DROP_SOURCE_MEMBERSHIP:
1461             if (optlen != sizeof (struct target_ip_mreq_source))
1462                 return -TARGET_EINVAL;
1463 
1464             ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1);
1465             ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen));
1466             unlock_user (ip_mreq_source, optval_addr, 0);
1467             break;
1468 
1469         default:
1470             goto unimplemented;
1471         }
1472         break;
1473     case SOL_IPV6:
1474         switch (optname) {
1475         case IPV6_MTU_DISCOVER:
1476         case IPV6_MTU:
1477         case IPV6_V6ONLY:
1478         case IPV6_RECVPKTINFO:
1479             val = 0;
1480             if (optlen < sizeof(uint32_t)) {
1481                 return -TARGET_EINVAL;
1482             }
1483             if (get_user_u32(val, optval_addr)) {
1484                 return -TARGET_EFAULT;
1485             }
1486             ret = get_errno(setsockopt(sockfd, level, optname,
1487                                        &val, sizeof(val)));
1488             break;
1489         default:
1490             goto unimplemented;
1491         }
1492         break;
1493     case SOL_RAW:
1494         switch (optname) {
1495         case ICMP_FILTER:
1496             /* struct icmp_filter takes an u32 value */
1497             if (optlen < sizeof(uint32_t)) {
1498                 return -TARGET_EINVAL;
1499             }
1500 
1501             if (get_user_u32(val, optval_addr)) {
1502                 return -TARGET_EFAULT;
1503             }
1504             ret = get_errno(setsockopt(sockfd, level, optname,
1505                                        &val, sizeof(val)));
1506             break;
1507 
1508         default:
1509             goto unimplemented;
1510         }
1511         break;
1512     case TARGET_SOL_SOCKET:
1513         switch (optname) {
1514         case TARGET_SO_RCVTIMEO:
1515         {
1516                 struct timeval tv;
1517 
1518                 optname = SO_RCVTIMEO;
1519 
1520 set_timeout:
1521                 if (optlen != sizeof(struct target_timeval)) {
1522                     return -TARGET_EINVAL;
1523                 }
1524 
1525                 if (copy_from_user_timeval(&tv, optval_addr)) {
1526                     return -TARGET_EFAULT;
1527                 }
1528 
1529                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
1530                                 &tv, sizeof(tv)));
1531                 return ret;
1532         }
1533         case TARGET_SO_SNDTIMEO:
1534                 optname = SO_SNDTIMEO;
1535                 goto set_timeout;
1536         case TARGET_SO_ATTACH_FILTER:
1537         {
1538                 struct target_sock_fprog *tfprog;
1539                 struct target_sock_filter *tfilter;
1540                 struct sock_fprog fprog;
1541                 struct sock_filter *filter;
1542                 int i;
1543 
1544                 if (optlen != sizeof(*tfprog)) {
1545                     return -TARGET_EINVAL;
1546                 }
1547                 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) {
1548                     return -TARGET_EFAULT;
1549                 }
1550                 if (!lock_user_struct(VERIFY_READ, tfilter,
1551                                       tswapal(tfprog->filter), 0)) {
1552                     unlock_user_struct(tfprog, optval_addr, 1);
1553                     return -TARGET_EFAULT;
1554                 }
1555 
1556                 fprog.len = tswap16(tfprog->len);
1557                 filter = malloc(fprog.len * sizeof(*filter));
1558                 if (filter == NULL) {
1559                     unlock_user_struct(tfilter, tfprog->filter, 1);
1560                     unlock_user_struct(tfprog, optval_addr, 1);
1561                     return -TARGET_ENOMEM;
1562                 }
1563                 for (i = 0; i < fprog.len; i++) {
1564                     filter[i].code = tswap16(tfilter[i].code);
1565                     filter[i].jt = tfilter[i].jt;
1566                     filter[i].jf = tfilter[i].jf;
1567                     filter[i].k = tswap32(tfilter[i].k);
1568                 }
1569                 fprog.filter = filter;
1570 
1571                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
1572                                 SO_ATTACH_FILTER, &fprog, sizeof(fprog)));
1573                 free(filter);
1574 
1575                 unlock_user_struct(tfilter, tfprog->filter, 1);
1576                 unlock_user_struct(tfprog, optval_addr, 1);
1577                 return ret;
1578         }
1579 	case TARGET_SO_BINDTODEVICE:
1580 	{
1581 		char *dev_ifname, *addr_ifname;
1582 
1583 		if (optlen > IFNAMSIZ - 1) {
1584 		    optlen = IFNAMSIZ - 1;
1585 		}
1586 		dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1);
1587 		if (!dev_ifname) {
1588 		    return -TARGET_EFAULT;
1589 		}
1590 		optname = SO_BINDTODEVICE;
1591 		addr_ifname = alloca(IFNAMSIZ);
1592 		memcpy(addr_ifname, dev_ifname, optlen);
1593 		addr_ifname[optlen] = 0;
1594 		ret = get_errno(setsockopt(sockfd, level, optname, addr_ifname, optlen));
1595 		unlock_user (dev_ifname, optval_addr, 0);
1596 		return ret;
1597 	}
1598             /* Options with 'int' argument.  */
1599         case TARGET_SO_DEBUG:
1600 		optname = SO_DEBUG;
1601 		break;
1602         case TARGET_SO_REUSEADDR:
1603 		optname = SO_REUSEADDR;
1604 		break;
1605         case TARGET_SO_TYPE:
1606 		optname = SO_TYPE;
1607 		break;
1608         case TARGET_SO_ERROR:
1609 		optname = SO_ERROR;
1610 		break;
1611         case TARGET_SO_DONTROUTE:
1612 		optname = SO_DONTROUTE;
1613 		break;
1614         case TARGET_SO_BROADCAST:
1615 		optname = SO_BROADCAST;
1616 		break;
1617         case TARGET_SO_SNDBUF:
1618 		optname = SO_SNDBUF;
1619 		break;
1620         case TARGET_SO_SNDBUFFORCE:
1621                 optname = SO_SNDBUFFORCE;
1622                 break;
1623         case TARGET_SO_RCVBUF:
1624 		optname = SO_RCVBUF;
1625 		break;
1626         case TARGET_SO_RCVBUFFORCE:
1627                 optname = SO_RCVBUFFORCE;
1628                 break;
1629         case TARGET_SO_KEEPALIVE:
1630 		optname = SO_KEEPALIVE;
1631 		break;
1632         case TARGET_SO_OOBINLINE:
1633 		optname = SO_OOBINLINE;
1634 		break;
1635         case TARGET_SO_NO_CHECK:
1636 		optname = SO_NO_CHECK;
1637 		break;
1638         case TARGET_SO_PRIORITY:
1639 		optname = SO_PRIORITY;
1640 		break;
1641 #ifdef SO_BSDCOMPAT
1642         case TARGET_SO_BSDCOMPAT:
1643 		optname = SO_BSDCOMPAT;
1644 		break;
1645 #endif
1646         case TARGET_SO_PASSCRED:
1647 		optname = SO_PASSCRED;
1648 		break;
1649         case TARGET_SO_PASSSEC:
1650                 optname = SO_PASSSEC;
1651                 break;
1652         case TARGET_SO_TIMESTAMP:
1653 		optname = SO_TIMESTAMP;
1654 		break;
1655         case TARGET_SO_RCVLOWAT:
1656 		optname = SO_RCVLOWAT;
1657 		break;
1658             break;
1659         default:
1660             goto unimplemented;
1661         }
1662 	if (optlen < sizeof(uint32_t))
1663             return -TARGET_EINVAL;
1664 
1665 	if (get_user_u32(val, optval_addr))
1666             return -TARGET_EFAULT;
1667 	ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val)));
1668         break;
1669     default:
1670     unimplemented:
1671         gemu_log("Unsupported setsockopt level=%d optname=%d\n", level, optname);
1672         ret = -TARGET_ENOPROTOOPT;
1673     }
1674     return ret;
1675 }
1676 
1677 /* do_getsockopt() Must return target values and target errnos. */
1678 static abi_long do_getsockopt(int sockfd, int level, int optname,
1679                               abi_ulong optval_addr, abi_ulong optlen)
1680 {
1681     abi_long ret;
1682     int len, val;
1683     socklen_t lv;
1684 
1685     switch(level) {
1686     case TARGET_SOL_SOCKET:
1687         level = SOL_SOCKET;
1688         switch (optname) {
1689         /* These don't just return a single integer */
1690         case TARGET_SO_LINGER:
1691         case TARGET_SO_RCVTIMEO:
1692         case TARGET_SO_SNDTIMEO:
1693         case TARGET_SO_PEERNAME:
1694             goto unimplemented;
1695         case TARGET_SO_PEERCRED: {
1696             struct ucred cr;
1697             socklen_t crlen;
1698             struct target_ucred *tcr;
1699 
1700             if (get_user_u32(len, optlen)) {
1701                 return -TARGET_EFAULT;
1702             }
1703             if (len < 0) {
1704                 return -TARGET_EINVAL;
1705             }
1706 
1707             crlen = sizeof(cr);
1708             ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED,
1709                                        &cr, &crlen));
1710             if (ret < 0) {
1711                 return ret;
1712             }
1713             if (len > crlen) {
1714                 len = crlen;
1715             }
1716             if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) {
1717                 return -TARGET_EFAULT;
1718             }
1719             __put_user(cr.pid, &tcr->pid);
1720             __put_user(cr.uid, &tcr->uid);
1721             __put_user(cr.gid, &tcr->gid);
1722             unlock_user_struct(tcr, optval_addr, 1);
1723             if (put_user_u32(len, optlen)) {
1724                 return -TARGET_EFAULT;
1725             }
1726             break;
1727         }
1728         /* Options with 'int' argument.  */
1729         case TARGET_SO_DEBUG:
1730             optname = SO_DEBUG;
1731             goto int_case;
1732         case TARGET_SO_REUSEADDR:
1733             optname = SO_REUSEADDR;
1734             goto int_case;
1735         case TARGET_SO_TYPE:
1736             optname = SO_TYPE;
1737             goto int_case;
1738         case TARGET_SO_ERROR:
1739             optname = SO_ERROR;
1740             goto int_case;
1741         case TARGET_SO_DONTROUTE:
1742             optname = SO_DONTROUTE;
1743             goto int_case;
1744         case TARGET_SO_BROADCAST:
1745             optname = SO_BROADCAST;
1746             goto int_case;
1747         case TARGET_SO_SNDBUF:
1748             optname = SO_SNDBUF;
1749             goto int_case;
1750         case TARGET_SO_RCVBUF:
1751             optname = SO_RCVBUF;
1752             goto int_case;
1753         case TARGET_SO_KEEPALIVE:
1754             optname = SO_KEEPALIVE;
1755             goto int_case;
1756         case TARGET_SO_OOBINLINE:
1757             optname = SO_OOBINLINE;
1758             goto int_case;
1759         case TARGET_SO_NO_CHECK:
1760             optname = SO_NO_CHECK;
1761             goto int_case;
1762         case TARGET_SO_PRIORITY:
1763             optname = SO_PRIORITY;
1764             goto int_case;
1765 #ifdef SO_BSDCOMPAT
1766         case TARGET_SO_BSDCOMPAT:
1767             optname = SO_BSDCOMPAT;
1768             goto int_case;
1769 #endif
1770         case TARGET_SO_PASSCRED:
1771             optname = SO_PASSCRED;
1772             goto int_case;
1773         case TARGET_SO_TIMESTAMP:
1774             optname = SO_TIMESTAMP;
1775             goto int_case;
1776         case TARGET_SO_RCVLOWAT:
1777             optname = SO_RCVLOWAT;
1778             goto int_case;
1779         case TARGET_SO_ACCEPTCONN:
1780             optname = SO_ACCEPTCONN;
1781             goto int_case;
1782         default:
1783             goto int_case;
1784         }
1785         break;
1786     case SOL_TCP:
1787         /* TCP options all take an 'int' value.  */
1788     int_case:
1789         if (get_user_u32(len, optlen))
1790             return -TARGET_EFAULT;
1791         if (len < 0)
1792             return -TARGET_EINVAL;
1793         lv = sizeof(lv);
1794         ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
1795         if (ret < 0)
1796             return ret;
1797         if (optname == SO_TYPE) {
1798             val = host_to_target_sock_type(val);
1799         }
1800         if (len > lv)
1801             len = lv;
1802         if (len == 4) {
1803             if (put_user_u32(val, optval_addr))
1804                 return -TARGET_EFAULT;
1805         } else {
1806             if (put_user_u8(val, optval_addr))
1807                 return -TARGET_EFAULT;
1808         }
1809         if (put_user_u32(len, optlen))
1810             return -TARGET_EFAULT;
1811         break;
1812     case SOL_IP:
1813         switch(optname) {
1814         case IP_TOS:
1815         case IP_TTL:
1816         case IP_HDRINCL:
1817         case IP_ROUTER_ALERT:
1818         case IP_RECVOPTS:
1819         case IP_RETOPTS:
1820         case IP_PKTINFO:
1821         case IP_MTU_DISCOVER:
1822         case IP_RECVERR:
1823         case IP_RECVTOS:
1824 #ifdef IP_FREEBIND
1825         case IP_FREEBIND:
1826 #endif
1827         case IP_MULTICAST_TTL:
1828         case IP_MULTICAST_LOOP:
1829             if (get_user_u32(len, optlen))
1830                 return -TARGET_EFAULT;
1831             if (len < 0)
1832                 return -TARGET_EINVAL;
1833             lv = sizeof(lv);
1834             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
1835             if (ret < 0)
1836                 return ret;
1837             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
1838                 len = 1;
1839                 if (put_user_u32(len, optlen)
1840                     || put_user_u8(val, optval_addr))
1841                     return -TARGET_EFAULT;
1842             } else {
1843                 if (len > sizeof(int))
1844                     len = sizeof(int);
1845                 if (put_user_u32(len, optlen)
1846                     || put_user_u32(val, optval_addr))
1847                     return -TARGET_EFAULT;
1848             }
1849             break;
1850         default:
1851             ret = -TARGET_ENOPROTOOPT;
1852             break;
1853         }
1854         break;
1855     default:
1856     unimplemented:
1857         gemu_log("getsockopt level=%d optname=%d not yet supported\n",
1858                  level, optname);
1859         ret = -TARGET_EOPNOTSUPP;
1860         break;
1861     }
1862     return ret;
1863 }
1864 
1865 static struct iovec *lock_iovec(int type, abi_ulong target_addr,
1866                                 int count, int copy)
1867 {
1868     struct target_iovec *target_vec;
1869     struct iovec *vec;
1870     abi_ulong total_len, max_len;
1871     int i;
1872     int err = 0;
1873     bool bad_address = false;
1874 
1875     if (count == 0) {
1876         errno = 0;
1877         return NULL;
1878     }
1879     if (count < 0 || count > IOV_MAX) {
1880         errno = EINVAL;
1881         return NULL;
1882     }
1883 
1884     vec = calloc(count, sizeof(struct iovec));
1885     if (vec == NULL) {
1886         errno = ENOMEM;
1887         return NULL;
1888     }
1889 
1890     target_vec = lock_user(VERIFY_READ, target_addr,
1891                            count * sizeof(struct target_iovec), 1);
1892     if (target_vec == NULL) {
1893         err = EFAULT;
1894         goto fail2;
1895     }
1896 
1897     /* ??? If host page size > target page size, this will result in a
1898        value larger than what we can actually support.  */
1899     max_len = 0x7fffffff & TARGET_PAGE_MASK;
1900     total_len = 0;
1901 
1902     for (i = 0; i < count; i++) {
1903         abi_ulong base = tswapal(target_vec[i].iov_base);
1904         abi_long len = tswapal(target_vec[i].iov_len);
1905 
1906         if (len < 0) {
1907             err = EINVAL;
1908             goto fail;
1909         } else if (len == 0) {
1910             /* Zero length pointer is ignored.  */
1911             vec[i].iov_base = 0;
1912         } else {
1913             vec[i].iov_base = lock_user(type, base, len, copy);
1914             /* If the first buffer pointer is bad, this is a fault.  But
1915              * subsequent bad buffers will result in a partial write; this
1916              * is realized by filling the vector with null pointers and
1917              * zero lengths. */
1918             if (!vec[i].iov_base) {
1919                 if (i == 0) {
1920                     err = EFAULT;
1921                     goto fail;
1922                 } else {
1923                     bad_address = true;
1924                 }
1925             }
1926             if (bad_address) {
1927                 len = 0;
1928             }
1929             if (len > max_len - total_len) {
1930                 len = max_len - total_len;
1931             }
1932         }
1933         vec[i].iov_len = len;
1934         total_len += len;
1935     }
1936 
1937     unlock_user(target_vec, target_addr, 0);
1938     return vec;
1939 
1940  fail:
1941     while (--i >= 0) {
1942         if (tswapal(target_vec[i].iov_len) > 0) {
1943             unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0);
1944         }
1945     }
1946     unlock_user(target_vec, target_addr, 0);
1947  fail2:
1948     free(vec);
1949     errno = err;
1950     return NULL;
1951 }
1952 
1953 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr,
1954                          int count, int copy)
1955 {
1956     struct target_iovec *target_vec;
1957     int i;
1958 
1959     target_vec = lock_user(VERIFY_READ, target_addr,
1960                            count * sizeof(struct target_iovec), 1);
1961     if (target_vec) {
1962         for (i = 0; i < count; i++) {
1963             abi_ulong base = tswapal(target_vec[i].iov_base);
1964             abi_long len = tswapal(target_vec[i].iov_len);
1965             if (len < 0) {
1966                 break;
1967             }
1968             unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0);
1969         }
1970         unlock_user(target_vec, target_addr, 0);
1971     }
1972 
1973     free(vec);
1974 }
1975 
1976 static inline int target_to_host_sock_type(int *type)
1977 {
1978     int host_type = 0;
1979     int target_type = *type;
1980 
1981     switch (target_type & TARGET_SOCK_TYPE_MASK) {
1982     case TARGET_SOCK_DGRAM:
1983         host_type = SOCK_DGRAM;
1984         break;
1985     case TARGET_SOCK_STREAM:
1986         host_type = SOCK_STREAM;
1987         break;
1988     default:
1989         host_type = target_type & TARGET_SOCK_TYPE_MASK;
1990         break;
1991     }
1992     if (target_type & TARGET_SOCK_CLOEXEC) {
1993 #if defined(SOCK_CLOEXEC)
1994         host_type |= SOCK_CLOEXEC;
1995 #else
1996         return -TARGET_EINVAL;
1997 #endif
1998     }
1999     if (target_type & TARGET_SOCK_NONBLOCK) {
2000 #if defined(SOCK_NONBLOCK)
2001         host_type |= SOCK_NONBLOCK;
2002 #elif !defined(O_NONBLOCK)
2003         return -TARGET_EINVAL;
2004 #endif
2005     }
2006     *type = host_type;
2007     return 0;
2008 }
2009 
2010 /* Try to emulate socket type flags after socket creation.  */
2011 static int sock_flags_fixup(int fd, int target_type)
2012 {
2013 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
2014     if (target_type & TARGET_SOCK_NONBLOCK) {
2015         int flags = fcntl(fd, F_GETFL);
2016         if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) {
2017             close(fd);
2018             return -TARGET_EINVAL;
2019         }
2020     }
2021 #endif
2022     return fd;
2023 }
2024 
2025 /* do_socket() Must return target values and target errnos. */
2026 static abi_long do_socket(int domain, int type, int protocol)
2027 {
2028     int target_type = type;
2029     int ret;
2030 
2031     ret = target_to_host_sock_type(&type);
2032     if (ret) {
2033         return ret;
2034     }
2035 
2036     if (domain == PF_NETLINK)
2037         return -TARGET_EAFNOSUPPORT;
2038     ret = get_errno(socket(domain, type, protocol));
2039     if (ret >= 0) {
2040         ret = sock_flags_fixup(ret, target_type);
2041     }
2042     return ret;
2043 }
2044 
2045 /* do_bind() Must return target values and target errnos. */
2046 static abi_long do_bind(int sockfd, abi_ulong target_addr,
2047                         socklen_t addrlen)
2048 {
2049     void *addr;
2050     abi_long ret;
2051 
2052     if ((int)addrlen < 0) {
2053         return -TARGET_EINVAL;
2054     }
2055 
2056     addr = alloca(addrlen+1);
2057 
2058     ret = target_to_host_sockaddr(addr, target_addr, addrlen);
2059     if (ret)
2060         return ret;
2061 
2062     return get_errno(bind(sockfd, addr, addrlen));
2063 }
2064 
2065 /* do_connect() Must return target values and target errnos. */
2066 static abi_long do_connect(int sockfd, abi_ulong target_addr,
2067                            socklen_t addrlen)
2068 {
2069     void *addr;
2070     abi_long ret;
2071 
2072     if ((int)addrlen < 0) {
2073         return -TARGET_EINVAL;
2074     }
2075 
2076     addr = alloca(addrlen+1);
2077 
2078     ret = target_to_host_sockaddr(addr, target_addr, addrlen);
2079     if (ret)
2080         return ret;
2081 
2082     return get_errno(connect(sockfd, addr, addrlen));
2083 }
2084 
2085 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
2086 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp,
2087                                       int flags, int send)
2088 {
2089     abi_long ret, len;
2090     struct msghdr msg;
2091     int count;
2092     struct iovec *vec;
2093     abi_ulong target_vec;
2094 
2095     if (msgp->msg_name) {
2096         msg.msg_namelen = tswap32(msgp->msg_namelen);
2097         msg.msg_name = alloca(msg.msg_namelen+1);
2098         ret = target_to_host_sockaddr(msg.msg_name, tswapal(msgp->msg_name),
2099                                 msg.msg_namelen);
2100         if (ret) {
2101             goto out2;
2102         }
2103     } else {
2104         msg.msg_name = NULL;
2105         msg.msg_namelen = 0;
2106     }
2107     msg.msg_controllen = 2 * tswapal(msgp->msg_controllen);
2108     msg.msg_control = alloca(msg.msg_controllen);
2109     msg.msg_flags = tswap32(msgp->msg_flags);
2110 
2111     count = tswapal(msgp->msg_iovlen);
2112     target_vec = tswapal(msgp->msg_iov);
2113     vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE,
2114                      target_vec, count, send);
2115     if (vec == NULL) {
2116         ret = -host_to_target_errno(errno);
2117         goto out2;
2118     }
2119     msg.msg_iovlen = count;
2120     msg.msg_iov = vec;
2121 
2122     if (send) {
2123         ret = target_to_host_cmsg(&msg, msgp);
2124         if (ret == 0)
2125             ret = get_errno(sendmsg(fd, &msg, flags));
2126     } else {
2127         ret = get_errno(recvmsg(fd, &msg, flags));
2128         if (!is_error(ret)) {
2129             len = ret;
2130             ret = host_to_target_cmsg(msgp, &msg);
2131             if (!is_error(ret)) {
2132                 msgp->msg_namelen = tswap32(msg.msg_namelen);
2133                 if (msg.msg_name != NULL) {
2134                     ret = host_to_target_sockaddr(tswapal(msgp->msg_name),
2135                                     msg.msg_name, msg.msg_namelen);
2136                     if (ret) {
2137                         goto out;
2138                     }
2139                 }
2140 
2141                 ret = len;
2142             }
2143         }
2144     }
2145 
2146 out:
2147     unlock_iovec(vec, target_vec, count, !send);
2148 out2:
2149     return ret;
2150 }
2151 
2152 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg,
2153                                int flags, int send)
2154 {
2155     abi_long ret;
2156     struct target_msghdr *msgp;
2157 
2158     if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE,
2159                           msgp,
2160                           target_msg,
2161                           send ? 1 : 0)) {
2162         return -TARGET_EFAULT;
2163     }
2164     ret = do_sendrecvmsg_locked(fd, msgp, flags, send);
2165     unlock_user_struct(msgp, target_msg, send ? 0 : 1);
2166     return ret;
2167 }
2168 
2169 #ifdef TARGET_NR_sendmmsg
2170 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
2171  * so it might not have this *mmsg-specific flag either.
2172  */
2173 #ifndef MSG_WAITFORONE
2174 #define MSG_WAITFORONE 0x10000
2175 #endif
2176 
2177 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec,
2178                                 unsigned int vlen, unsigned int flags,
2179                                 int send)
2180 {
2181     struct target_mmsghdr *mmsgp;
2182     abi_long ret = 0;
2183     int i;
2184 
2185     if (vlen > UIO_MAXIOV) {
2186         vlen = UIO_MAXIOV;
2187     }
2188 
2189     mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1);
2190     if (!mmsgp) {
2191         return -TARGET_EFAULT;
2192     }
2193 
2194     for (i = 0; i < vlen; i++) {
2195         ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send);
2196         if (is_error(ret)) {
2197             break;
2198         }
2199         mmsgp[i].msg_len = tswap32(ret);
2200         /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2201         if (flags & MSG_WAITFORONE) {
2202             flags |= MSG_DONTWAIT;
2203         }
2204     }
2205 
2206     unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i);
2207 
2208     /* Return number of datagrams sent if we sent any at all;
2209      * otherwise return the error.
2210      */
2211     if (i) {
2212         return i;
2213     }
2214     return ret;
2215 }
2216 #endif
2217 
2218 /* If we don't have a system accept4() then just call accept.
2219  * The callsites to do_accept4() will ensure that they don't
2220  * pass a non-zero flags argument in this config.
2221  */
2222 #ifndef CONFIG_ACCEPT4
2223 static inline int accept4(int sockfd, struct sockaddr *addr,
2224                           socklen_t *addrlen, int flags)
2225 {
2226     assert(flags == 0);
2227     return accept(sockfd, addr, addrlen);
2228 }
2229 #endif
2230 
2231 /* do_accept4() Must return target values and target errnos. */
2232 static abi_long do_accept4(int fd, abi_ulong target_addr,
2233                            abi_ulong target_addrlen_addr, int flags)
2234 {
2235     socklen_t addrlen;
2236     void *addr;
2237     abi_long ret;
2238     int host_flags;
2239 
2240     host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
2241 
2242     if (target_addr == 0) {
2243         return get_errno(accept4(fd, NULL, NULL, host_flags));
2244     }
2245 
2246     /* linux returns EINVAL if addrlen pointer is invalid */
2247     if (get_user_u32(addrlen, target_addrlen_addr))
2248         return -TARGET_EINVAL;
2249 
2250     if ((int)addrlen < 0) {
2251         return -TARGET_EINVAL;
2252     }
2253 
2254     if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
2255         return -TARGET_EINVAL;
2256 
2257     addr = alloca(addrlen);
2258 
2259     ret = get_errno(accept4(fd, addr, &addrlen, host_flags));
2260     if (!is_error(ret)) {
2261         host_to_target_sockaddr(target_addr, addr, addrlen);
2262         if (put_user_u32(addrlen, target_addrlen_addr))
2263             ret = -TARGET_EFAULT;
2264     }
2265     return ret;
2266 }
2267 
2268 /* do_getpeername() Must return target values and target errnos. */
2269 static abi_long do_getpeername(int fd, abi_ulong target_addr,
2270                                abi_ulong target_addrlen_addr)
2271 {
2272     socklen_t addrlen;
2273     void *addr;
2274     abi_long ret;
2275 
2276     if (get_user_u32(addrlen, target_addrlen_addr))
2277         return -TARGET_EFAULT;
2278 
2279     if ((int)addrlen < 0) {
2280         return -TARGET_EINVAL;
2281     }
2282 
2283     if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
2284         return -TARGET_EFAULT;
2285 
2286     addr = alloca(addrlen);
2287 
2288     ret = get_errno(getpeername(fd, addr, &addrlen));
2289     if (!is_error(ret)) {
2290         host_to_target_sockaddr(target_addr, addr, addrlen);
2291         if (put_user_u32(addrlen, target_addrlen_addr))
2292             ret = -TARGET_EFAULT;
2293     }
2294     return ret;
2295 }
2296 
2297 /* do_getsockname() Must return target values and target errnos. */
2298 static abi_long do_getsockname(int fd, abi_ulong target_addr,
2299                                abi_ulong target_addrlen_addr)
2300 {
2301     socklen_t addrlen;
2302     void *addr;
2303     abi_long ret;
2304 
2305     if (get_user_u32(addrlen, target_addrlen_addr))
2306         return -TARGET_EFAULT;
2307 
2308     if ((int)addrlen < 0) {
2309         return -TARGET_EINVAL;
2310     }
2311 
2312     if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
2313         return -TARGET_EFAULT;
2314 
2315     addr = alloca(addrlen);
2316 
2317     ret = get_errno(getsockname(fd, addr, &addrlen));
2318     if (!is_error(ret)) {
2319         host_to_target_sockaddr(target_addr, addr, addrlen);
2320         if (put_user_u32(addrlen, target_addrlen_addr))
2321             ret = -TARGET_EFAULT;
2322     }
2323     return ret;
2324 }
2325 
2326 /* do_socketpair() Must return target values and target errnos. */
2327 static abi_long do_socketpair(int domain, int type, int protocol,
2328                               abi_ulong target_tab_addr)
2329 {
2330     int tab[2];
2331     abi_long ret;
2332 
2333     target_to_host_sock_type(&type);
2334 
2335     ret = get_errno(socketpair(domain, type, protocol, tab));
2336     if (!is_error(ret)) {
2337         if (put_user_s32(tab[0], target_tab_addr)
2338             || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0])))
2339             ret = -TARGET_EFAULT;
2340     }
2341     return ret;
2342 }
2343 
2344 /* do_sendto() Must return target values and target errnos. */
2345 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags,
2346                           abi_ulong target_addr, socklen_t addrlen)
2347 {
2348     void *addr;
2349     void *host_msg;
2350     abi_long ret;
2351 
2352     if ((int)addrlen < 0) {
2353         return -TARGET_EINVAL;
2354     }
2355 
2356     host_msg = lock_user(VERIFY_READ, msg, len, 1);
2357     if (!host_msg)
2358         return -TARGET_EFAULT;
2359     if (target_addr) {
2360         addr = alloca(addrlen+1);
2361         ret = target_to_host_sockaddr(addr, target_addr, addrlen);
2362         if (ret) {
2363             unlock_user(host_msg, msg, 0);
2364             return ret;
2365         }
2366         ret = get_errno(sendto(fd, host_msg, len, flags, addr, addrlen));
2367     } else {
2368         ret = get_errno(send(fd, host_msg, len, flags));
2369     }
2370     unlock_user(host_msg, msg, 0);
2371     return ret;
2372 }
2373 
2374 /* do_recvfrom() Must return target values and target errnos. */
2375 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags,
2376                             abi_ulong target_addr,
2377                             abi_ulong target_addrlen)
2378 {
2379     socklen_t addrlen;
2380     void *addr;
2381     void *host_msg;
2382     abi_long ret;
2383 
2384     host_msg = lock_user(VERIFY_WRITE, msg, len, 0);
2385     if (!host_msg)
2386         return -TARGET_EFAULT;
2387     if (target_addr) {
2388         if (get_user_u32(addrlen, target_addrlen)) {
2389             ret = -TARGET_EFAULT;
2390             goto fail;
2391         }
2392         if ((int)addrlen < 0) {
2393             ret = -TARGET_EINVAL;
2394             goto fail;
2395         }
2396         addr = alloca(addrlen);
2397         ret = get_errno(recvfrom(fd, host_msg, len, flags, addr, &addrlen));
2398     } else {
2399         addr = NULL; /* To keep compiler quiet.  */
2400         ret = get_errno(qemu_recv(fd, host_msg, len, flags));
2401     }
2402     if (!is_error(ret)) {
2403         if (target_addr) {
2404             host_to_target_sockaddr(target_addr, addr, addrlen);
2405             if (put_user_u32(addrlen, target_addrlen)) {
2406                 ret = -TARGET_EFAULT;
2407                 goto fail;
2408             }
2409         }
2410         unlock_user(host_msg, msg, len);
2411     } else {
2412 fail:
2413         unlock_user(host_msg, msg, 0);
2414     }
2415     return ret;
2416 }
2417 
2418 #ifdef TARGET_NR_socketcall
2419 /* do_socketcall() Must return target values and target errnos. */
2420 static abi_long do_socketcall(int num, abi_ulong vptr)
2421 {
2422     static const unsigned ac[] = { /* number of arguments per call */
2423         [SOCKOP_socket] = 3,      /* domain, type, protocol */
2424         [SOCKOP_bind] = 3,        /* sockfd, addr, addrlen */
2425         [SOCKOP_connect] = 3,     /* sockfd, addr, addrlen */
2426         [SOCKOP_listen] = 2,      /* sockfd, backlog */
2427         [SOCKOP_accept] = 3,      /* sockfd, addr, addrlen */
2428         [SOCKOP_accept4] = 4,     /* sockfd, addr, addrlen, flags */
2429         [SOCKOP_getsockname] = 3, /* sockfd, addr, addrlen */
2430         [SOCKOP_getpeername] = 3, /* sockfd, addr, addrlen */
2431         [SOCKOP_socketpair] = 4,  /* domain, type, protocol, tab */
2432         [SOCKOP_send] = 4,        /* sockfd, msg, len, flags */
2433         [SOCKOP_recv] = 4,        /* sockfd, msg, len, flags */
2434         [SOCKOP_sendto] = 6,      /* sockfd, msg, len, flags, addr, addrlen */
2435         [SOCKOP_recvfrom] = 6,    /* sockfd, msg, len, flags, addr, addrlen */
2436         [SOCKOP_shutdown] = 2,    /* sockfd, how */
2437         [SOCKOP_sendmsg] = 3,     /* sockfd, msg, flags */
2438         [SOCKOP_recvmsg] = 3,     /* sockfd, msg, flags */
2439         [SOCKOP_setsockopt] = 5,  /* sockfd, level, optname, optval, optlen */
2440         [SOCKOP_getsockopt] = 5,  /* sockfd, level, optname, optval, optlen */
2441     };
2442     abi_long a[6]; /* max 6 args */
2443 
2444     /* first, collect the arguments in a[] according to ac[] */
2445     if (num >= 0 && num < ARRAY_SIZE(ac)) {
2446         unsigned i;
2447         assert(ARRAY_SIZE(a) >= ac[num]); /* ensure we have space for args */
2448         for (i = 0; i < ac[num]; ++i) {
2449             if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) {
2450                 return -TARGET_EFAULT;
2451             }
2452         }
2453     }
2454 
2455     /* now when we have the args, actually handle the call */
2456     switch (num) {
2457     case SOCKOP_socket: /* domain, type, protocol */
2458         return do_socket(a[0], a[1], a[2]);
2459     case SOCKOP_bind: /* sockfd, addr, addrlen */
2460         return do_bind(a[0], a[1], a[2]);
2461     case SOCKOP_connect: /* sockfd, addr, addrlen */
2462         return do_connect(a[0], a[1], a[2]);
2463     case SOCKOP_listen: /* sockfd, backlog */
2464         return get_errno(listen(a[0], a[1]));
2465     case SOCKOP_accept: /* sockfd, addr, addrlen */
2466         return do_accept4(a[0], a[1], a[2], 0);
2467     case SOCKOP_accept4: /* sockfd, addr, addrlen, flags */
2468         return do_accept4(a[0], a[1], a[2], a[3]);
2469     case SOCKOP_getsockname: /* sockfd, addr, addrlen */
2470         return do_getsockname(a[0], a[1], a[2]);
2471     case SOCKOP_getpeername: /* sockfd, addr, addrlen */
2472         return do_getpeername(a[0], a[1], a[2]);
2473     case SOCKOP_socketpair: /* domain, type, protocol, tab */
2474         return do_socketpair(a[0], a[1], a[2], a[3]);
2475     case SOCKOP_send: /* sockfd, msg, len, flags */
2476         return do_sendto(a[0], a[1], a[2], a[3], 0, 0);
2477     case SOCKOP_recv: /* sockfd, msg, len, flags */
2478         return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0);
2479     case SOCKOP_sendto: /* sockfd, msg, len, flags, addr, addrlen */
2480         return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]);
2481     case SOCKOP_recvfrom: /* sockfd, msg, len, flags, addr, addrlen */
2482         return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]);
2483     case SOCKOP_shutdown: /* sockfd, how */
2484         return get_errno(shutdown(a[0], a[1]));
2485     case SOCKOP_sendmsg: /* sockfd, msg, flags */
2486         return do_sendrecvmsg(a[0], a[1], a[2], 1);
2487     case SOCKOP_recvmsg: /* sockfd, msg, flags */
2488         return do_sendrecvmsg(a[0], a[1], a[2], 0);
2489     case SOCKOP_setsockopt: /* sockfd, level, optname, optval, optlen */
2490         return do_setsockopt(a[0], a[1], a[2], a[3], a[4]);
2491     case SOCKOP_getsockopt: /* sockfd, level, optname, optval, optlen */
2492         return do_getsockopt(a[0], a[1], a[2], a[3], a[4]);
2493     default:
2494         gemu_log("Unsupported socketcall: %d\n", num);
2495         return -TARGET_ENOSYS;
2496     }
2497 }
2498 #endif
2499 
2500 #define N_SHM_REGIONS	32
2501 
2502 static struct shm_region {
2503     abi_ulong	start;
2504     abi_ulong	size;
2505 } shm_regions[N_SHM_REGIONS];
2506 
2507 struct target_semid_ds
2508 {
2509   struct target_ipc_perm sem_perm;
2510   abi_ulong sem_otime;
2511 #if !defined(TARGET_PPC64)
2512   abi_ulong __unused1;
2513 #endif
2514   abi_ulong sem_ctime;
2515 #if !defined(TARGET_PPC64)
2516   abi_ulong __unused2;
2517 #endif
2518   abi_ulong sem_nsems;
2519   abi_ulong __unused3;
2520   abi_ulong __unused4;
2521 };
2522 
2523 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip,
2524                                                abi_ulong target_addr)
2525 {
2526     struct target_ipc_perm *target_ip;
2527     struct target_semid_ds *target_sd;
2528 
2529     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
2530         return -TARGET_EFAULT;
2531     target_ip = &(target_sd->sem_perm);
2532     host_ip->__key = tswap32(target_ip->__key);
2533     host_ip->uid = tswap32(target_ip->uid);
2534     host_ip->gid = tswap32(target_ip->gid);
2535     host_ip->cuid = tswap32(target_ip->cuid);
2536     host_ip->cgid = tswap32(target_ip->cgid);
2537 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
2538     host_ip->mode = tswap32(target_ip->mode);
2539 #else
2540     host_ip->mode = tswap16(target_ip->mode);
2541 #endif
2542 #if defined(TARGET_PPC)
2543     host_ip->__seq = tswap32(target_ip->__seq);
2544 #else
2545     host_ip->__seq = tswap16(target_ip->__seq);
2546 #endif
2547     unlock_user_struct(target_sd, target_addr, 0);
2548     return 0;
2549 }
2550 
2551 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr,
2552                                                struct ipc_perm *host_ip)
2553 {
2554     struct target_ipc_perm *target_ip;
2555     struct target_semid_ds *target_sd;
2556 
2557     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
2558         return -TARGET_EFAULT;
2559     target_ip = &(target_sd->sem_perm);
2560     target_ip->__key = tswap32(host_ip->__key);
2561     target_ip->uid = tswap32(host_ip->uid);
2562     target_ip->gid = tswap32(host_ip->gid);
2563     target_ip->cuid = tswap32(host_ip->cuid);
2564     target_ip->cgid = tswap32(host_ip->cgid);
2565 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
2566     target_ip->mode = tswap32(host_ip->mode);
2567 #else
2568     target_ip->mode = tswap16(host_ip->mode);
2569 #endif
2570 #if defined(TARGET_PPC)
2571     target_ip->__seq = tswap32(host_ip->__seq);
2572 #else
2573     target_ip->__seq = tswap16(host_ip->__seq);
2574 #endif
2575     unlock_user_struct(target_sd, target_addr, 1);
2576     return 0;
2577 }
2578 
2579 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd,
2580                                                abi_ulong target_addr)
2581 {
2582     struct target_semid_ds *target_sd;
2583 
2584     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
2585         return -TARGET_EFAULT;
2586     if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr))
2587         return -TARGET_EFAULT;
2588     host_sd->sem_nsems = tswapal(target_sd->sem_nsems);
2589     host_sd->sem_otime = tswapal(target_sd->sem_otime);
2590     host_sd->sem_ctime = tswapal(target_sd->sem_ctime);
2591     unlock_user_struct(target_sd, target_addr, 0);
2592     return 0;
2593 }
2594 
2595 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr,
2596                                                struct semid_ds *host_sd)
2597 {
2598     struct target_semid_ds *target_sd;
2599 
2600     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
2601         return -TARGET_EFAULT;
2602     if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm)))
2603         return -TARGET_EFAULT;
2604     target_sd->sem_nsems = tswapal(host_sd->sem_nsems);
2605     target_sd->sem_otime = tswapal(host_sd->sem_otime);
2606     target_sd->sem_ctime = tswapal(host_sd->sem_ctime);
2607     unlock_user_struct(target_sd, target_addr, 1);
2608     return 0;
2609 }
2610 
2611 struct target_seminfo {
2612     int semmap;
2613     int semmni;
2614     int semmns;
2615     int semmnu;
2616     int semmsl;
2617     int semopm;
2618     int semume;
2619     int semusz;
2620     int semvmx;
2621     int semaem;
2622 };
2623 
2624 static inline abi_long host_to_target_seminfo(abi_ulong target_addr,
2625                                               struct seminfo *host_seminfo)
2626 {
2627     struct target_seminfo *target_seminfo;
2628     if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0))
2629         return -TARGET_EFAULT;
2630     __put_user(host_seminfo->semmap, &target_seminfo->semmap);
2631     __put_user(host_seminfo->semmni, &target_seminfo->semmni);
2632     __put_user(host_seminfo->semmns, &target_seminfo->semmns);
2633     __put_user(host_seminfo->semmnu, &target_seminfo->semmnu);
2634     __put_user(host_seminfo->semmsl, &target_seminfo->semmsl);
2635     __put_user(host_seminfo->semopm, &target_seminfo->semopm);
2636     __put_user(host_seminfo->semume, &target_seminfo->semume);
2637     __put_user(host_seminfo->semusz, &target_seminfo->semusz);
2638     __put_user(host_seminfo->semvmx, &target_seminfo->semvmx);
2639     __put_user(host_seminfo->semaem, &target_seminfo->semaem);
2640     unlock_user_struct(target_seminfo, target_addr, 1);
2641     return 0;
2642 }
2643 
2644 union semun {
2645 	int val;
2646 	struct semid_ds *buf;
2647 	unsigned short *array;
2648 	struct seminfo *__buf;
2649 };
2650 
2651 union target_semun {
2652 	int val;
2653 	abi_ulong buf;
2654 	abi_ulong array;
2655 	abi_ulong __buf;
2656 };
2657 
2658 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array,
2659                                                abi_ulong target_addr)
2660 {
2661     int nsems;
2662     unsigned short *array;
2663     union semun semun;
2664     struct semid_ds semid_ds;
2665     int i, ret;
2666 
2667     semun.buf = &semid_ds;
2668 
2669     ret = semctl(semid, 0, IPC_STAT, semun);
2670     if (ret == -1)
2671         return get_errno(ret);
2672 
2673     nsems = semid_ds.sem_nsems;
2674 
2675     *host_array = malloc(nsems*sizeof(unsigned short));
2676     if (!*host_array) {
2677         return -TARGET_ENOMEM;
2678     }
2679     array = lock_user(VERIFY_READ, target_addr,
2680                       nsems*sizeof(unsigned short), 1);
2681     if (!array) {
2682         free(*host_array);
2683         return -TARGET_EFAULT;
2684     }
2685 
2686     for(i=0; i<nsems; i++) {
2687         __get_user((*host_array)[i], &array[i]);
2688     }
2689     unlock_user(array, target_addr, 0);
2690 
2691     return 0;
2692 }
2693 
2694 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr,
2695                                                unsigned short **host_array)
2696 {
2697     int nsems;
2698     unsigned short *array;
2699     union semun semun;
2700     struct semid_ds semid_ds;
2701     int i, ret;
2702 
2703     semun.buf = &semid_ds;
2704 
2705     ret = semctl(semid, 0, IPC_STAT, semun);
2706     if (ret == -1)
2707         return get_errno(ret);
2708 
2709     nsems = semid_ds.sem_nsems;
2710 
2711     array = lock_user(VERIFY_WRITE, target_addr,
2712                       nsems*sizeof(unsigned short), 0);
2713     if (!array)
2714         return -TARGET_EFAULT;
2715 
2716     for(i=0; i<nsems; i++) {
2717         __put_user((*host_array)[i], &array[i]);
2718     }
2719     free(*host_array);
2720     unlock_user(array, target_addr, 1);
2721 
2722     return 0;
2723 }
2724 
2725 static inline abi_long do_semctl(int semid, int semnum, int cmd,
2726                                  union target_semun target_su)
2727 {
2728     union semun arg;
2729     struct semid_ds dsarg;
2730     unsigned short *array = NULL;
2731     struct seminfo seminfo;
2732     abi_long ret = -TARGET_EINVAL;
2733     abi_long err;
2734     cmd &= 0xff;
2735 
2736     switch( cmd ) {
2737 	case GETVAL:
2738 	case SETVAL:
2739             /* In 64 bit cross-endian situations, we will erroneously pick up
2740              * the wrong half of the union for the "val" element.  To rectify
2741              * this, the entire 8-byte structure is byteswapped, followed by
2742 	     * a swap of the 4 byte val field. In other cases, the data is
2743 	     * already in proper host byte order. */
2744 	    if (sizeof(target_su.val) != (sizeof(target_su.buf))) {
2745 		target_su.buf = tswapal(target_su.buf);
2746 		arg.val = tswap32(target_su.val);
2747 	    } else {
2748 		arg.val = target_su.val;
2749 	    }
2750             ret = get_errno(semctl(semid, semnum, cmd, arg));
2751             break;
2752 	case GETALL:
2753 	case SETALL:
2754             err = target_to_host_semarray(semid, &array, target_su.array);
2755             if (err)
2756                 return err;
2757             arg.array = array;
2758             ret = get_errno(semctl(semid, semnum, cmd, arg));
2759             err = host_to_target_semarray(semid, target_su.array, &array);
2760             if (err)
2761                 return err;
2762             break;
2763 	case IPC_STAT:
2764 	case IPC_SET:
2765 	case SEM_STAT:
2766             err = target_to_host_semid_ds(&dsarg, target_su.buf);
2767             if (err)
2768                 return err;
2769             arg.buf = &dsarg;
2770             ret = get_errno(semctl(semid, semnum, cmd, arg));
2771             err = host_to_target_semid_ds(target_su.buf, &dsarg);
2772             if (err)
2773                 return err;
2774             break;
2775 	case IPC_INFO:
2776 	case SEM_INFO:
2777             arg.__buf = &seminfo;
2778             ret = get_errno(semctl(semid, semnum, cmd, arg));
2779             err = host_to_target_seminfo(target_su.__buf, &seminfo);
2780             if (err)
2781                 return err;
2782             break;
2783 	case IPC_RMID:
2784 	case GETPID:
2785 	case GETNCNT:
2786 	case GETZCNT:
2787             ret = get_errno(semctl(semid, semnum, cmd, NULL));
2788             break;
2789     }
2790 
2791     return ret;
2792 }
2793 
2794 struct target_sembuf {
2795     unsigned short sem_num;
2796     short sem_op;
2797     short sem_flg;
2798 };
2799 
2800 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf,
2801                                              abi_ulong target_addr,
2802                                              unsigned nsops)
2803 {
2804     struct target_sembuf *target_sembuf;
2805     int i;
2806 
2807     target_sembuf = lock_user(VERIFY_READ, target_addr,
2808                               nsops*sizeof(struct target_sembuf), 1);
2809     if (!target_sembuf)
2810         return -TARGET_EFAULT;
2811 
2812     for(i=0; i<nsops; i++) {
2813         __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num);
2814         __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op);
2815         __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg);
2816     }
2817 
2818     unlock_user(target_sembuf, target_addr, 0);
2819 
2820     return 0;
2821 }
2822 
2823 static inline abi_long do_semop(int semid, abi_long ptr, unsigned nsops)
2824 {
2825     struct sembuf sops[nsops];
2826 
2827     if (target_to_host_sembuf(sops, ptr, nsops))
2828         return -TARGET_EFAULT;
2829 
2830     return get_errno(semop(semid, sops, nsops));
2831 }
2832 
2833 struct target_msqid_ds
2834 {
2835     struct target_ipc_perm msg_perm;
2836     abi_ulong msg_stime;
2837 #if TARGET_ABI_BITS == 32
2838     abi_ulong __unused1;
2839 #endif
2840     abi_ulong msg_rtime;
2841 #if TARGET_ABI_BITS == 32
2842     abi_ulong __unused2;
2843 #endif
2844     abi_ulong msg_ctime;
2845 #if TARGET_ABI_BITS == 32
2846     abi_ulong __unused3;
2847 #endif
2848     abi_ulong __msg_cbytes;
2849     abi_ulong msg_qnum;
2850     abi_ulong msg_qbytes;
2851     abi_ulong msg_lspid;
2852     abi_ulong msg_lrpid;
2853     abi_ulong __unused4;
2854     abi_ulong __unused5;
2855 };
2856 
2857 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md,
2858                                                abi_ulong target_addr)
2859 {
2860     struct target_msqid_ds *target_md;
2861 
2862     if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1))
2863         return -TARGET_EFAULT;
2864     if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr))
2865         return -TARGET_EFAULT;
2866     host_md->msg_stime = tswapal(target_md->msg_stime);
2867     host_md->msg_rtime = tswapal(target_md->msg_rtime);
2868     host_md->msg_ctime = tswapal(target_md->msg_ctime);
2869     host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes);
2870     host_md->msg_qnum = tswapal(target_md->msg_qnum);
2871     host_md->msg_qbytes = tswapal(target_md->msg_qbytes);
2872     host_md->msg_lspid = tswapal(target_md->msg_lspid);
2873     host_md->msg_lrpid = tswapal(target_md->msg_lrpid);
2874     unlock_user_struct(target_md, target_addr, 0);
2875     return 0;
2876 }
2877 
2878 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr,
2879                                                struct msqid_ds *host_md)
2880 {
2881     struct target_msqid_ds *target_md;
2882 
2883     if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0))
2884         return -TARGET_EFAULT;
2885     if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm)))
2886         return -TARGET_EFAULT;
2887     target_md->msg_stime = tswapal(host_md->msg_stime);
2888     target_md->msg_rtime = tswapal(host_md->msg_rtime);
2889     target_md->msg_ctime = tswapal(host_md->msg_ctime);
2890     target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes);
2891     target_md->msg_qnum = tswapal(host_md->msg_qnum);
2892     target_md->msg_qbytes = tswapal(host_md->msg_qbytes);
2893     target_md->msg_lspid = tswapal(host_md->msg_lspid);
2894     target_md->msg_lrpid = tswapal(host_md->msg_lrpid);
2895     unlock_user_struct(target_md, target_addr, 1);
2896     return 0;
2897 }
2898 
2899 struct target_msginfo {
2900     int msgpool;
2901     int msgmap;
2902     int msgmax;
2903     int msgmnb;
2904     int msgmni;
2905     int msgssz;
2906     int msgtql;
2907     unsigned short int msgseg;
2908 };
2909 
2910 static inline abi_long host_to_target_msginfo(abi_ulong target_addr,
2911                                               struct msginfo *host_msginfo)
2912 {
2913     struct target_msginfo *target_msginfo;
2914     if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0))
2915         return -TARGET_EFAULT;
2916     __put_user(host_msginfo->msgpool, &target_msginfo->msgpool);
2917     __put_user(host_msginfo->msgmap, &target_msginfo->msgmap);
2918     __put_user(host_msginfo->msgmax, &target_msginfo->msgmax);
2919     __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb);
2920     __put_user(host_msginfo->msgmni, &target_msginfo->msgmni);
2921     __put_user(host_msginfo->msgssz, &target_msginfo->msgssz);
2922     __put_user(host_msginfo->msgtql, &target_msginfo->msgtql);
2923     __put_user(host_msginfo->msgseg, &target_msginfo->msgseg);
2924     unlock_user_struct(target_msginfo, target_addr, 1);
2925     return 0;
2926 }
2927 
2928 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr)
2929 {
2930     struct msqid_ds dsarg;
2931     struct msginfo msginfo;
2932     abi_long ret = -TARGET_EINVAL;
2933 
2934     cmd &= 0xff;
2935 
2936     switch (cmd) {
2937     case IPC_STAT:
2938     case IPC_SET:
2939     case MSG_STAT:
2940         if (target_to_host_msqid_ds(&dsarg,ptr))
2941             return -TARGET_EFAULT;
2942         ret = get_errno(msgctl(msgid, cmd, &dsarg));
2943         if (host_to_target_msqid_ds(ptr,&dsarg))
2944             return -TARGET_EFAULT;
2945         break;
2946     case IPC_RMID:
2947         ret = get_errno(msgctl(msgid, cmd, NULL));
2948         break;
2949     case IPC_INFO:
2950     case MSG_INFO:
2951         ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo));
2952         if (host_to_target_msginfo(ptr, &msginfo))
2953             return -TARGET_EFAULT;
2954         break;
2955     }
2956 
2957     return ret;
2958 }
2959 
2960 struct target_msgbuf {
2961     abi_long mtype;
2962     char	mtext[1];
2963 };
2964 
2965 static inline abi_long do_msgsnd(int msqid, abi_long msgp,
2966                                  ssize_t msgsz, int msgflg)
2967 {
2968     struct target_msgbuf *target_mb;
2969     struct msgbuf *host_mb;
2970     abi_long ret = 0;
2971 
2972     if (msgsz < 0) {
2973         return -TARGET_EINVAL;
2974     }
2975 
2976     if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0))
2977         return -TARGET_EFAULT;
2978     host_mb = malloc(msgsz+sizeof(long));
2979     if (!host_mb) {
2980         unlock_user_struct(target_mb, msgp, 0);
2981         return -TARGET_ENOMEM;
2982     }
2983     host_mb->mtype = (abi_long) tswapal(target_mb->mtype);
2984     memcpy(host_mb->mtext, target_mb->mtext, msgsz);
2985     ret = get_errno(msgsnd(msqid, host_mb, msgsz, msgflg));
2986     free(host_mb);
2987     unlock_user_struct(target_mb, msgp, 0);
2988 
2989     return ret;
2990 }
2991 
2992 static inline abi_long do_msgrcv(int msqid, abi_long msgp,
2993                                  unsigned int msgsz, abi_long msgtyp,
2994                                  int msgflg)
2995 {
2996     struct target_msgbuf *target_mb;
2997     char *target_mtext;
2998     struct msgbuf *host_mb;
2999     abi_long ret = 0;
3000 
3001     if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0))
3002         return -TARGET_EFAULT;
3003 
3004     host_mb = g_malloc(msgsz+sizeof(long));
3005     ret = get_errno(msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg));
3006 
3007     if (ret > 0) {
3008         abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong);
3009         target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0);
3010         if (!target_mtext) {
3011             ret = -TARGET_EFAULT;
3012             goto end;
3013         }
3014         memcpy(target_mb->mtext, host_mb->mtext, ret);
3015         unlock_user(target_mtext, target_mtext_addr, ret);
3016     }
3017 
3018     target_mb->mtype = tswapal(host_mb->mtype);
3019 
3020 end:
3021     if (target_mb)
3022         unlock_user_struct(target_mb, msgp, 1);
3023     g_free(host_mb);
3024     return ret;
3025 }
3026 
3027 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd,
3028                                                abi_ulong target_addr)
3029 {
3030     struct target_shmid_ds *target_sd;
3031 
3032     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3033         return -TARGET_EFAULT;
3034     if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr))
3035         return -TARGET_EFAULT;
3036     __get_user(host_sd->shm_segsz, &target_sd->shm_segsz);
3037     __get_user(host_sd->shm_atime, &target_sd->shm_atime);
3038     __get_user(host_sd->shm_dtime, &target_sd->shm_dtime);
3039     __get_user(host_sd->shm_ctime, &target_sd->shm_ctime);
3040     __get_user(host_sd->shm_cpid, &target_sd->shm_cpid);
3041     __get_user(host_sd->shm_lpid, &target_sd->shm_lpid);
3042     __get_user(host_sd->shm_nattch, &target_sd->shm_nattch);
3043     unlock_user_struct(target_sd, target_addr, 0);
3044     return 0;
3045 }
3046 
3047 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr,
3048                                                struct shmid_ds *host_sd)
3049 {
3050     struct target_shmid_ds *target_sd;
3051 
3052     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3053         return -TARGET_EFAULT;
3054     if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm)))
3055         return -TARGET_EFAULT;
3056     __put_user(host_sd->shm_segsz, &target_sd->shm_segsz);
3057     __put_user(host_sd->shm_atime, &target_sd->shm_atime);
3058     __put_user(host_sd->shm_dtime, &target_sd->shm_dtime);
3059     __put_user(host_sd->shm_ctime, &target_sd->shm_ctime);
3060     __put_user(host_sd->shm_cpid, &target_sd->shm_cpid);
3061     __put_user(host_sd->shm_lpid, &target_sd->shm_lpid);
3062     __put_user(host_sd->shm_nattch, &target_sd->shm_nattch);
3063     unlock_user_struct(target_sd, target_addr, 1);
3064     return 0;
3065 }
3066 
3067 struct  target_shminfo {
3068     abi_ulong shmmax;
3069     abi_ulong shmmin;
3070     abi_ulong shmmni;
3071     abi_ulong shmseg;
3072     abi_ulong shmall;
3073 };
3074 
3075 static inline abi_long host_to_target_shminfo(abi_ulong target_addr,
3076                                               struct shminfo *host_shminfo)
3077 {
3078     struct target_shminfo *target_shminfo;
3079     if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0))
3080         return -TARGET_EFAULT;
3081     __put_user(host_shminfo->shmmax, &target_shminfo->shmmax);
3082     __put_user(host_shminfo->shmmin, &target_shminfo->shmmin);
3083     __put_user(host_shminfo->shmmni, &target_shminfo->shmmni);
3084     __put_user(host_shminfo->shmseg, &target_shminfo->shmseg);
3085     __put_user(host_shminfo->shmall, &target_shminfo->shmall);
3086     unlock_user_struct(target_shminfo, target_addr, 1);
3087     return 0;
3088 }
3089 
3090 struct target_shm_info {
3091     int used_ids;
3092     abi_ulong shm_tot;
3093     abi_ulong shm_rss;
3094     abi_ulong shm_swp;
3095     abi_ulong swap_attempts;
3096     abi_ulong swap_successes;
3097 };
3098 
3099 static inline abi_long host_to_target_shm_info(abi_ulong target_addr,
3100                                                struct shm_info *host_shm_info)
3101 {
3102     struct target_shm_info *target_shm_info;
3103     if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0))
3104         return -TARGET_EFAULT;
3105     __put_user(host_shm_info->used_ids, &target_shm_info->used_ids);
3106     __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot);
3107     __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss);
3108     __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp);
3109     __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts);
3110     __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes);
3111     unlock_user_struct(target_shm_info, target_addr, 1);
3112     return 0;
3113 }
3114 
3115 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf)
3116 {
3117     struct shmid_ds dsarg;
3118     struct shminfo shminfo;
3119     struct shm_info shm_info;
3120     abi_long ret = -TARGET_EINVAL;
3121 
3122     cmd &= 0xff;
3123 
3124     switch(cmd) {
3125     case IPC_STAT:
3126     case IPC_SET:
3127     case SHM_STAT:
3128         if (target_to_host_shmid_ds(&dsarg, buf))
3129             return -TARGET_EFAULT;
3130         ret = get_errno(shmctl(shmid, cmd, &dsarg));
3131         if (host_to_target_shmid_ds(buf, &dsarg))
3132             return -TARGET_EFAULT;
3133         break;
3134     case IPC_INFO:
3135         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo));
3136         if (host_to_target_shminfo(buf, &shminfo))
3137             return -TARGET_EFAULT;
3138         break;
3139     case SHM_INFO:
3140         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info));
3141         if (host_to_target_shm_info(buf, &shm_info))
3142             return -TARGET_EFAULT;
3143         break;
3144     case IPC_RMID:
3145     case SHM_LOCK:
3146     case SHM_UNLOCK:
3147         ret = get_errno(shmctl(shmid, cmd, NULL));
3148         break;
3149     }
3150 
3151     return ret;
3152 }
3153 
3154 static inline abi_ulong do_shmat(int shmid, abi_ulong shmaddr, int shmflg)
3155 {
3156     abi_long raddr;
3157     void *host_raddr;
3158     struct shmid_ds shm_info;
3159     int i,ret;
3160 
3161     /* find out the length of the shared memory segment */
3162     ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info));
3163     if (is_error(ret)) {
3164         /* can't get length, bail out */
3165         return ret;
3166     }
3167 
3168     mmap_lock();
3169 
3170     if (shmaddr)
3171         host_raddr = shmat(shmid, (void *)g2h(shmaddr), shmflg);
3172     else {
3173         abi_ulong mmap_start;
3174 
3175         mmap_start = mmap_find_vma(0, shm_info.shm_segsz);
3176 
3177         if (mmap_start == -1) {
3178             errno = ENOMEM;
3179             host_raddr = (void *)-1;
3180         } else
3181             host_raddr = shmat(shmid, g2h(mmap_start), shmflg | SHM_REMAP);
3182     }
3183 
3184     if (host_raddr == (void *)-1) {
3185         mmap_unlock();
3186         return get_errno((long)host_raddr);
3187     }
3188     raddr=h2g((unsigned long)host_raddr);
3189 
3190     page_set_flags(raddr, raddr + shm_info.shm_segsz,
3191                    PAGE_VALID | PAGE_READ |
3192                    ((shmflg & SHM_RDONLY)? 0 : PAGE_WRITE));
3193 
3194     for (i = 0; i < N_SHM_REGIONS; i++) {
3195         if (shm_regions[i].start == 0) {
3196             shm_regions[i].start = raddr;
3197             shm_regions[i].size = shm_info.shm_segsz;
3198             break;
3199         }
3200     }
3201 
3202     mmap_unlock();
3203     return raddr;
3204 
3205 }
3206 
3207 static inline abi_long do_shmdt(abi_ulong shmaddr)
3208 {
3209     int i;
3210 
3211     for (i = 0; i < N_SHM_REGIONS; ++i) {
3212         if (shm_regions[i].start == shmaddr) {
3213             shm_regions[i].start = 0;
3214             page_set_flags(shmaddr, shmaddr + shm_regions[i].size, 0);
3215             break;
3216         }
3217     }
3218 
3219     return get_errno(shmdt(g2h(shmaddr)));
3220 }
3221 
3222 #ifdef TARGET_NR_ipc
3223 /* ??? This only works with linear mappings.  */
3224 /* do_ipc() must return target values and target errnos. */
3225 static abi_long do_ipc(unsigned int call, abi_long first,
3226                        abi_long second, abi_long third,
3227                        abi_long ptr, abi_long fifth)
3228 {
3229     int version;
3230     abi_long ret = 0;
3231 
3232     version = call >> 16;
3233     call &= 0xffff;
3234 
3235     switch (call) {
3236     case IPCOP_semop:
3237         ret = do_semop(first, ptr, second);
3238         break;
3239 
3240     case IPCOP_semget:
3241         ret = get_errno(semget(first, second, third));
3242         break;
3243 
3244     case IPCOP_semctl: {
3245         /* The semun argument to semctl is passed by value, so dereference the
3246          * ptr argument. */
3247         abi_ulong atptr;
3248         get_user_ual(atptr, ptr);
3249         ret = do_semctl(first, second, third,
3250                 (union target_semun) atptr);
3251         break;
3252     }
3253 
3254     case IPCOP_msgget:
3255         ret = get_errno(msgget(first, second));
3256         break;
3257 
3258     case IPCOP_msgsnd:
3259         ret = do_msgsnd(first, ptr, second, third);
3260         break;
3261 
3262     case IPCOP_msgctl:
3263         ret = do_msgctl(first, second, ptr);
3264         break;
3265 
3266     case IPCOP_msgrcv:
3267         switch (version) {
3268         case 0:
3269             {
3270                 struct target_ipc_kludge {
3271                     abi_long msgp;
3272                     abi_long msgtyp;
3273                 } *tmp;
3274 
3275                 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) {
3276                     ret = -TARGET_EFAULT;
3277                     break;
3278                 }
3279 
3280                 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third);
3281 
3282                 unlock_user_struct(tmp, ptr, 0);
3283                 break;
3284             }
3285         default:
3286             ret = do_msgrcv(first, ptr, second, fifth, third);
3287         }
3288         break;
3289 
3290     case IPCOP_shmat:
3291         switch (version) {
3292         default:
3293         {
3294             abi_ulong raddr;
3295             raddr = do_shmat(first, ptr, second);
3296             if (is_error(raddr))
3297                 return get_errno(raddr);
3298             if (put_user_ual(raddr, third))
3299                 return -TARGET_EFAULT;
3300             break;
3301         }
3302         case 1:
3303             ret = -TARGET_EINVAL;
3304             break;
3305         }
3306 	break;
3307     case IPCOP_shmdt:
3308         ret = do_shmdt(ptr);
3309 	break;
3310 
3311     case IPCOP_shmget:
3312 	/* IPC_* flag values are the same on all linux platforms */
3313 	ret = get_errno(shmget(first, second, third));
3314 	break;
3315 
3316 	/* IPC_* and SHM_* command values are the same on all linux platforms */
3317     case IPCOP_shmctl:
3318         ret = do_shmctl(first, second, ptr);
3319         break;
3320     default:
3321 	gemu_log("Unsupported ipc call: %d (version %d)\n", call, version);
3322 	ret = -TARGET_ENOSYS;
3323 	break;
3324     }
3325     return ret;
3326 }
3327 #endif
3328 
3329 /* kernel structure types definitions */
3330 
3331 #define STRUCT(name, ...) STRUCT_ ## name,
3332 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
3333 enum {
3334 #include "syscall_types.h"
3335 STRUCT_MAX
3336 };
3337 #undef STRUCT
3338 #undef STRUCT_SPECIAL
3339 
3340 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = {  __VA_ARGS__, TYPE_NULL };
3341 #define STRUCT_SPECIAL(name)
3342 #include "syscall_types.h"
3343 #undef STRUCT
3344 #undef STRUCT_SPECIAL
3345 
3346 typedef struct IOCTLEntry IOCTLEntry;
3347 
3348 typedef abi_long do_ioctl_fn(const IOCTLEntry *ie, uint8_t *buf_temp,
3349                              int fd, int cmd, abi_long arg);
3350 
3351 struct IOCTLEntry {
3352     int target_cmd;
3353     unsigned int host_cmd;
3354     const char *name;
3355     int access;
3356     do_ioctl_fn *do_ioctl;
3357     const argtype arg_type[5];
3358 };
3359 
3360 #define IOC_R 0x0001
3361 #define IOC_W 0x0002
3362 #define IOC_RW (IOC_R | IOC_W)
3363 
3364 #define MAX_STRUCT_SIZE 4096
3365 
3366 #ifdef CONFIG_FIEMAP
3367 /* So fiemap access checks don't overflow on 32 bit systems.
3368  * This is very slightly smaller than the limit imposed by
3369  * the underlying kernel.
3370  */
3371 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap))  \
3372                             / sizeof(struct fiemap_extent))
3373 
3374 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp,
3375                                        int fd, int cmd, abi_long arg)
3376 {
3377     /* The parameter for this ioctl is a struct fiemap followed
3378      * by an array of struct fiemap_extent whose size is set
3379      * in fiemap->fm_extent_count. The array is filled in by the
3380      * ioctl.
3381      */
3382     int target_size_in, target_size_out;
3383     struct fiemap *fm;
3384     const argtype *arg_type = ie->arg_type;
3385     const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) };
3386     void *argptr, *p;
3387     abi_long ret;
3388     int i, extent_size = thunk_type_size(extent_arg_type, 0);
3389     uint32_t outbufsz;
3390     int free_fm = 0;
3391 
3392     assert(arg_type[0] == TYPE_PTR);
3393     assert(ie->access == IOC_RW);
3394     arg_type++;
3395     target_size_in = thunk_type_size(arg_type, 0);
3396     argptr = lock_user(VERIFY_READ, arg, target_size_in, 1);
3397     if (!argptr) {
3398         return -TARGET_EFAULT;
3399     }
3400     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
3401     unlock_user(argptr, arg, 0);
3402     fm = (struct fiemap *)buf_temp;
3403     if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) {
3404         return -TARGET_EINVAL;
3405     }
3406 
3407     outbufsz = sizeof (*fm) +
3408         (sizeof(struct fiemap_extent) * fm->fm_extent_count);
3409 
3410     if (outbufsz > MAX_STRUCT_SIZE) {
3411         /* We can't fit all the extents into the fixed size buffer.
3412          * Allocate one that is large enough and use it instead.
3413          */
3414         fm = malloc(outbufsz);
3415         if (!fm) {
3416             return -TARGET_ENOMEM;
3417         }
3418         memcpy(fm, buf_temp, sizeof(struct fiemap));
3419         free_fm = 1;
3420     }
3421     ret = get_errno(ioctl(fd, ie->host_cmd, fm));
3422     if (!is_error(ret)) {
3423         target_size_out = target_size_in;
3424         /* An extent_count of 0 means we were only counting the extents
3425          * so there are no structs to copy
3426          */
3427         if (fm->fm_extent_count != 0) {
3428             target_size_out += fm->fm_mapped_extents * extent_size;
3429         }
3430         argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0);
3431         if (!argptr) {
3432             ret = -TARGET_EFAULT;
3433         } else {
3434             /* Convert the struct fiemap */
3435             thunk_convert(argptr, fm, arg_type, THUNK_TARGET);
3436             if (fm->fm_extent_count != 0) {
3437                 p = argptr + target_size_in;
3438                 /* ...and then all the struct fiemap_extents */
3439                 for (i = 0; i < fm->fm_mapped_extents; i++) {
3440                     thunk_convert(p, &fm->fm_extents[i], extent_arg_type,
3441                                   THUNK_TARGET);
3442                     p += extent_size;
3443                 }
3444             }
3445             unlock_user(argptr, arg, target_size_out);
3446         }
3447     }
3448     if (free_fm) {
3449         free(fm);
3450     }
3451     return ret;
3452 }
3453 #endif
3454 
3455 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp,
3456                                 int fd, int cmd, abi_long arg)
3457 {
3458     const argtype *arg_type = ie->arg_type;
3459     int target_size;
3460     void *argptr;
3461     int ret;
3462     struct ifconf *host_ifconf;
3463     uint32_t outbufsz;
3464     const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) };
3465     int target_ifreq_size;
3466     int nb_ifreq;
3467     int free_buf = 0;
3468     int i;
3469     int target_ifc_len;
3470     abi_long target_ifc_buf;
3471     int host_ifc_len;
3472     char *host_ifc_buf;
3473 
3474     assert(arg_type[0] == TYPE_PTR);
3475     assert(ie->access == IOC_RW);
3476 
3477     arg_type++;
3478     target_size = thunk_type_size(arg_type, 0);
3479 
3480     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
3481     if (!argptr)
3482         return -TARGET_EFAULT;
3483     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
3484     unlock_user(argptr, arg, 0);
3485 
3486     host_ifconf = (struct ifconf *)(unsigned long)buf_temp;
3487     target_ifc_len = host_ifconf->ifc_len;
3488     target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf;
3489 
3490     target_ifreq_size = thunk_type_size(ifreq_arg_type, 0);
3491     nb_ifreq = target_ifc_len / target_ifreq_size;
3492     host_ifc_len = nb_ifreq * sizeof(struct ifreq);
3493 
3494     outbufsz = sizeof(*host_ifconf) + host_ifc_len;
3495     if (outbufsz > MAX_STRUCT_SIZE) {
3496         /* We can't fit all the extents into the fixed size buffer.
3497          * Allocate one that is large enough and use it instead.
3498          */
3499         host_ifconf = malloc(outbufsz);
3500         if (!host_ifconf) {
3501             return -TARGET_ENOMEM;
3502         }
3503         memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf));
3504         free_buf = 1;
3505     }
3506     host_ifc_buf = (char*)host_ifconf + sizeof(*host_ifconf);
3507 
3508     host_ifconf->ifc_len = host_ifc_len;
3509     host_ifconf->ifc_buf = host_ifc_buf;
3510 
3511     ret = get_errno(ioctl(fd, ie->host_cmd, host_ifconf));
3512     if (!is_error(ret)) {
3513 	/* convert host ifc_len to target ifc_len */
3514 
3515         nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq);
3516         target_ifc_len = nb_ifreq * target_ifreq_size;
3517         host_ifconf->ifc_len = target_ifc_len;
3518 
3519 	/* restore target ifc_buf */
3520 
3521         host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf;
3522 
3523 	/* copy struct ifconf to target user */
3524 
3525         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
3526         if (!argptr)
3527             return -TARGET_EFAULT;
3528         thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET);
3529         unlock_user(argptr, arg, target_size);
3530 
3531 	/* copy ifreq[] to target user */
3532 
3533         argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0);
3534         for (i = 0; i < nb_ifreq ; i++) {
3535             thunk_convert(argptr + i * target_ifreq_size,
3536                           host_ifc_buf + i * sizeof(struct ifreq),
3537                           ifreq_arg_type, THUNK_TARGET);
3538         }
3539         unlock_user(argptr, target_ifc_buf, target_ifc_len);
3540     }
3541 
3542     if (free_buf) {
3543         free(host_ifconf);
3544     }
3545 
3546     return ret;
3547 }
3548 
3549 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
3550                             int cmd, abi_long arg)
3551 {
3552     void *argptr;
3553     struct dm_ioctl *host_dm;
3554     abi_long guest_data;
3555     uint32_t guest_data_size;
3556     int target_size;
3557     const argtype *arg_type = ie->arg_type;
3558     abi_long ret;
3559     void *big_buf = NULL;
3560     char *host_data;
3561 
3562     arg_type++;
3563     target_size = thunk_type_size(arg_type, 0);
3564     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
3565     if (!argptr) {
3566         ret = -TARGET_EFAULT;
3567         goto out;
3568     }
3569     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
3570     unlock_user(argptr, arg, 0);
3571 
3572     /* buf_temp is too small, so fetch things into a bigger buffer */
3573     big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2);
3574     memcpy(big_buf, buf_temp, target_size);
3575     buf_temp = big_buf;
3576     host_dm = big_buf;
3577 
3578     guest_data = arg + host_dm->data_start;
3579     if ((guest_data - arg) < 0) {
3580         ret = -EINVAL;
3581         goto out;
3582     }
3583     guest_data_size = host_dm->data_size - host_dm->data_start;
3584     host_data = (char*)host_dm + host_dm->data_start;
3585 
3586     argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1);
3587     switch (ie->host_cmd) {
3588     case DM_REMOVE_ALL:
3589     case DM_LIST_DEVICES:
3590     case DM_DEV_CREATE:
3591     case DM_DEV_REMOVE:
3592     case DM_DEV_SUSPEND:
3593     case DM_DEV_STATUS:
3594     case DM_DEV_WAIT:
3595     case DM_TABLE_STATUS:
3596     case DM_TABLE_CLEAR:
3597     case DM_TABLE_DEPS:
3598     case DM_LIST_VERSIONS:
3599         /* no input data */
3600         break;
3601     case DM_DEV_RENAME:
3602     case DM_DEV_SET_GEOMETRY:
3603         /* data contains only strings */
3604         memcpy(host_data, argptr, guest_data_size);
3605         break;
3606     case DM_TARGET_MSG:
3607         memcpy(host_data, argptr, guest_data_size);
3608         *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr);
3609         break;
3610     case DM_TABLE_LOAD:
3611     {
3612         void *gspec = argptr;
3613         void *cur_data = host_data;
3614         const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
3615         int spec_size = thunk_type_size(arg_type, 0);
3616         int i;
3617 
3618         for (i = 0; i < host_dm->target_count; i++) {
3619             struct dm_target_spec *spec = cur_data;
3620             uint32_t next;
3621             int slen;
3622 
3623             thunk_convert(spec, gspec, arg_type, THUNK_HOST);
3624             slen = strlen((char*)gspec + spec_size) + 1;
3625             next = spec->next;
3626             spec->next = sizeof(*spec) + slen;
3627             strcpy((char*)&spec[1], gspec + spec_size);
3628             gspec += next;
3629             cur_data += spec->next;
3630         }
3631         break;
3632     }
3633     default:
3634         ret = -TARGET_EINVAL;
3635         unlock_user(argptr, guest_data, 0);
3636         goto out;
3637     }
3638     unlock_user(argptr, guest_data, 0);
3639 
3640     ret = get_errno(ioctl(fd, ie->host_cmd, buf_temp));
3641     if (!is_error(ret)) {
3642         guest_data = arg + host_dm->data_start;
3643         guest_data_size = host_dm->data_size - host_dm->data_start;
3644         argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0);
3645         switch (ie->host_cmd) {
3646         case DM_REMOVE_ALL:
3647         case DM_DEV_CREATE:
3648         case DM_DEV_REMOVE:
3649         case DM_DEV_RENAME:
3650         case DM_DEV_SUSPEND:
3651         case DM_DEV_STATUS:
3652         case DM_TABLE_LOAD:
3653         case DM_TABLE_CLEAR:
3654         case DM_TARGET_MSG:
3655         case DM_DEV_SET_GEOMETRY:
3656             /* no return data */
3657             break;
3658         case DM_LIST_DEVICES:
3659         {
3660             struct dm_name_list *nl = (void*)host_dm + host_dm->data_start;
3661             uint32_t remaining_data = guest_data_size;
3662             void *cur_data = argptr;
3663             const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) };
3664             int nl_size = 12; /* can't use thunk_size due to alignment */
3665 
3666             while (1) {
3667                 uint32_t next = nl->next;
3668                 if (next) {
3669                     nl->next = nl_size + (strlen(nl->name) + 1);
3670                 }
3671                 if (remaining_data < nl->next) {
3672                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
3673                     break;
3674                 }
3675                 thunk_convert(cur_data, nl, arg_type, THUNK_TARGET);
3676                 strcpy(cur_data + nl_size, nl->name);
3677                 cur_data += nl->next;
3678                 remaining_data -= nl->next;
3679                 if (!next) {
3680                     break;
3681                 }
3682                 nl = (void*)nl + next;
3683             }
3684             break;
3685         }
3686         case DM_DEV_WAIT:
3687         case DM_TABLE_STATUS:
3688         {
3689             struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start;
3690             void *cur_data = argptr;
3691             const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
3692             int spec_size = thunk_type_size(arg_type, 0);
3693             int i;
3694 
3695             for (i = 0; i < host_dm->target_count; i++) {
3696                 uint32_t next = spec->next;
3697                 int slen = strlen((char*)&spec[1]) + 1;
3698                 spec->next = (cur_data - argptr) + spec_size + slen;
3699                 if (guest_data_size < spec->next) {
3700                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
3701                     break;
3702                 }
3703                 thunk_convert(cur_data, spec, arg_type, THUNK_TARGET);
3704                 strcpy(cur_data + spec_size, (char*)&spec[1]);
3705                 cur_data = argptr + spec->next;
3706                 spec = (void*)host_dm + host_dm->data_start + next;
3707             }
3708             break;
3709         }
3710         case DM_TABLE_DEPS:
3711         {
3712             void *hdata = (void*)host_dm + host_dm->data_start;
3713             int count = *(uint32_t*)hdata;
3714             uint64_t *hdev = hdata + 8;
3715             uint64_t *gdev = argptr + 8;
3716             int i;
3717 
3718             *(uint32_t*)argptr = tswap32(count);
3719             for (i = 0; i < count; i++) {
3720                 *gdev = tswap64(*hdev);
3721                 gdev++;
3722                 hdev++;
3723             }
3724             break;
3725         }
3726         case DM_LIST_VERSIONS:
3727         {
3728             struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start;
3729             uint32_t remaining_data = guest_data_size;
3730             void *cur_data = argptr;
3731             const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) };
3732             int vers_size = thunk_type_size(arg_type, 0);
3733 
3734             while (1) {
3735                 uint32_t next = vers->next;
3736                 if (next) {
3737                     vers->next = vers_size + (strlen(vers->name) + 1);
3738                 }
3739                 if (remaining_data < vers->next) {
3740                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
3741                     break;
3742                 }
3743                 thunk_convert(cur_data, vers, arg_type, THUNK_TARGET);
3744                 strcpy(cur_data + vers_size, vers->name);
3745                 cur_data += vers->next;
3746                 remaining_data -= vers->next;
3747                 if (!next) {
3748                     break;
3749                 }
3750                 vers = (void*)vers + next;
3751             }
3752             break;
3753         }
3754         default:
3755             unlock_user(argptr, guest_data, 0);
3756             ret = -TARGET_EINVAL;
3757             goto out;
3758         }
3759         unlock_user(argptr, guest_data, guest_data_size);
3760 
3761         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
3762         if (!argptr) {
3763             ret = -TARGET_EFAULT;
3764             goto out;
3765         }
3766         thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
3767         unlock_user(argptr, arg, target_size);
3768     }
3769 out:
3770     g_free(big_buf);
3771     return ret;
3772 }
3773 
3774 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
3775                                int cmd, abi_long arg)
3776 {
3777     void *argptr;
3778     int target_size;
3779     const argtype *arg_type = ie->arg_type;
3780     const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) };
3781     abi_long ret;
3782 
3783     struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp;
3784     struct blkpg_partition host_part;
3785 
3786     /* Read and convert blkpg */
3787     arg_type++;
3788     target_size = thunk_type_size(arg_type, 0);
3789     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
3790     if (!argptr) {
3791         ret = -TARGET_EFAULT;
3792         goto out;
3793     }
3794     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
3795     unlock_user(argptr, arg, 0);
3796 
3797     switch (host_blkpg->op) {
3798     case BLKPG_ADD_PARTITION:
3799     case BLKPG_DEL_PARTITION:
3800         /* payload is struct blkpg_partition */
3801         break;
3802     default:
3803         /* Unknown opcode */
3804         ret = -TARGET_EINVAL;
3805         goto out;
3806     }
3807 
3808     /* Read and convert blkpg->data */
3809     arg = (abi_long)(uintptr_t)host_blkpg->data;
3810     target_size = thunk_type_size(part_arg_type, 0);
3811     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
3812     if (!argptr) {
3813         ret = -TARGET_EFAULT;
3814         goto out;
3815     }
3816     thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST);
3817     unlock_user(argptr, arg, 0);
3818 
3819     /* Swizzle the data pointer to our local copy and call! */
3820     host_blkpg->data = &host_part;
3821     ret = get_errno(ioctl(fd, ie->host_cmd, host_blkpg));
3822 
3823 out:
3824     return ret;
3825 }
3826 
3827 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp,
3828                                 int fd, int cmd, abi_long arg)
3829 {
3830     const argtype *arg_type = ie->arg_type;
3831     const StructEntry *se;
3832     const argtype *field_types;
3833     const int *dst_offsets, *src_offsets;
3834     int target_size;
3835     void *argptr;
3836     abi_ulong *target_rt_dev_ptr;
3837     unsigned long *host_rt_dev_ptr;
3838     abi_long ret;
3839     int i;
3840 
3841     assert(ie->access == IOC_W);
3842     assert(*arg_type == TYPE_PTR);
3843     arg_type++;
3844     assert(*arg_type == TYPE_STRUCT);
3845     target_size = thunk_type_size(arg_type, 0);
3846     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
3847     if (!argptr) {
3848         return -TARGET_EFAULT;
3849     }
3850     arg_type++;
3851     assert(*arg_type == (int)STRUCT_rtentry);
3852     se = struct_entries + *arg_type++;
3853     assert(se->convert[0] == NULL);
3854     /* convert struct here to be able to catch rt_dev string */
3855     field_types = se->field_types;
3856     dst_offsets = se->field_offsets[THUNK_HOST];
3857     src_offsets = se->field_offsets[THUNK_TARGET];
3858     for (i = 0; i < se->nb_fields; i++) {
3859         if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) {
3860             assert(*field_types == TYPE_PTRVOID);
3861             target_rt_dev_ptr = (abi_ulong *)(argptr + src_offsets[i]);
3862             host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]);
3863             if (*target_rt_dev_ptr != 0) {
3864                 *host_rt_dev_ptr = (unsigned long)lock_user_string(
3865                                                   tswapal(*target_rt_dev_ptr));
3866                 if (!*host_rt_dev_ptr) {
3867                     unlock_user(argptr, arg, 0);
3868                     return -TARGET_EFAULT;
3869                 }
3870             } else {
3871                 *host_rt_dev_ptr = 0;
3872             }
3873             field_types++;
3874             continue;
3875         }
3876         field_types = thunk_convert(buf_temp + dst_offsets[i],
3877                                     argptr + src_offsets[i],
3878                                     field_types, THUNK_HOST);
3879     }
3880     unlock_user(argptr, arg, 0);
3881 
3882     ret = get_errno(ioctl(fd, ie->host_cmd, buf_temp));
3883     if (*host_rt_dev_ptr != 0) {
3884         unlock_user((void *)*host_rt_dev_ptr,
3885                     *target_rt_dev_ptr, 0);
3886     }
3887     return ret;
3888 }
3889 
3890 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp,
3891                                      int fd, int cmd, abi_long arg)
3892 {
3893     int sig = target_to_host_signal(arg);
3894     return get_errno(ioctl(fd, ie->host_cmd, sig));
3895 }
3896 
3897 static IOCTLEntry ioctl_entries[] = {
3898 #define IOCTL(cmd, access, ...) \
3899     { TARGET_ ## cmd, cmd, #cmd, access, 0, {  __VA_ARGS__ } },
3900 #define IOCTL_SPECIAL(cmd, access, dofn, ...)                      \
3901     { TARGET_ ## cmd, cmd, #cmd, access, dofn, {  __VA_ARGS__ } },
3902 #include "ioctls.h"
3903     { 0, 0, },
3904 };
3905 
3906 /* ??? Implement proper locking for ioctls.  */
3907 /* do_ioctl() Must return target values and target errnos. */
3908 static abi_long do_ioctl(int fd, int cmd, abi_long arg)
3909 {
3910     const IOCTLEntry *ie;
3911     const argtype *arg_type;
3912     abi_long ret;
3913     uint8_t buf_temp[MAX_STRUCT_SIZE];
3914     int target_size;
3915     void *argptr;
3916 
3917     ie = ioctl_entries;
3918     for(;;) {
3919         if (ie->target_cmd == 0) {
3920             gemu_log("Unsupported ioctl: cmd=0x%04lx\n", (long)cmd);
3921             return -TARGET_ENOSYS;
3922         }
3923         if (ie->target_cmd == cmd)
3924             break;
3925         ie++;
3926     }
3927     arg_type = ie->arg_type;
3928 #if defined(DEBUG)
3929     gemu_log("ioctl: cmd=0x%04lx (%s)\n", (long)cmd, ie->name);
3930 #endif
3931     if (ie->do_ioctl) {
3932         return ie->do_ioctl(ie, buf_temp, fd, cmd, arg);
3933     }
3934 
3935     switch(arg_type[0]) {
3936     case TYPE_NULL:
3937         /* no argument */
3938         ret = get_errno(ioctl(fd, ie->host_cmd));
3939         break;
3940     case TYPE_PTRVOID:
3941     case TYPE_INT:
3942         ret = get_errno(ioctl(fd, ie->host_cmd, arg));
3943         break;
3944     case TYPE_PTR:
3945         arg_type++;
3946         target_size = thunk_type_size(arg_type, 0);
3947         switch(ie->access) {
3948         case IOC_R:
3949             ret = get_errno(ioctl(fd, ie->host_cmd, buf_temp));
3950             if (!is_error(ret)) {
3951                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
3952                 if (!argptr)
3953                     return -TARGET_EFAULT;
3954                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
3955                 unlock_user(argptr, arg, target_size);
3956             }
3957             break;
3958         case IOC_W:
3959             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
3960             if (!argptr)
3961                 return -TARGET_EFAULT;
3962             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
3963             unlock_user(argptr, arg, 0);
3964             ret = get_errno(ioctl(fd, ie->host_cmd, buf_temp));
3965             break;
3966         default:
3967         case IOC_RW:
3968             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
3969             if (!argptr)
3970                 return -TARGET_EFAULT;
3971             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
3972             unlock_user(argptr, arg, 0);
3973             ret = get_errno(ioctl(fd, ie->host_cmd, buf_temp));
3974             if (!is_error(ret)) {
3975                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
3976                 if (!argptr)
3977                     return -TARGET_EFAULT;
3978                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
3979                 unlock_user(argptr, arg, target_size);
3980             }
3981             break;
3982         }
3983         break;
3984     default:
3985         gemu_log("Unsupported ioctl type: cmd=0x%04lx type=%d\n",
3986                  (long)cmd, arg_type[0]);
3987         ret = -TARGET_ENOSYS;
3988         break;
3989     }
3990     return ret;
3991 }
3992 
3993 static const bitmask_transtbl iflag_tbl[] = {
3994         { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK },
3995         { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT },
3996         { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR },
3997         { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK },
3998         { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK },
3999         { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP },
4000         { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR },
4001         { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR },
4002         { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL },
4003         { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC },
4004         { TARGET_IXON, TARGET_IXON, IXON, IXON },
4005         { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY },
4006         { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF },
4007         { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL },
4008         { 0, 0, 0, 0 }
4009 };
4010 
4011 static const bitmask_transtbl oflag_tbl[] = {
4012 	{ TARGET_OPOST, TARGET_OPOST, OPOST, OPOST },
4013 	{ TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC },
4014 	{ TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR },
4015 	{ TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL },
4016 	{ TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR },
4017 	{ TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET },
4018 	{ TARGET_OFILL, TARGET_OFILL, OFILL, OFILL },
4019 	{ TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL },
4020 	{ TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 },
4021 	{ TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 },
4022 	{ TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 },
4023 	{ TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 },
4024 	{ TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 },
4025 	{ TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 },
4026 	{ TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 },
4027 	{ TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 },
4028 	{ TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 },
4029 	{ TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 },
4030 	{ TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 },
4031 	{ TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 },
4032 	{ TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 },
4033 	{ TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 },
4034 	{ TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 },
4035 	{ TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 },
4036 	{ 0, 0, 0, 0 }
4037 };
4038 
4039 static const bitmask_transtbl cflag_tbl[] = {
4040 	{ TARGET_CBAUD, TARGET_B0, CBAUD, B0 },
4041 	{ TARGET_CBAUD, TARGET_B50, CBAUD, B50 },
4042 	{ TARGET_CBAUD, TARGET_B75, CBAUD, B75 },
4043 	{ TARGET_CBAUD, TARGET_B110, CBAUD, B110 },
4044 	{ TARGET_CBAUD, TARGET_B134, CBAUD, B134 },
4045 	{ TARGET_CBAUD, TARGET_B150, CBAUD, B150 },
4046 	{ TARGET_CBAUD, TARGET_B200, CBAUD, B200 },
4047 	{ TARGET_CBAUD, TARGET_B300, CBAUD, B300 },
4048 	{ TARGET_CBAUD, TARGET_B600, CBAUD, B600 },
4049 	{ TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 },
4050 	{ TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 },
4051 	{ TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 },
4052 	{ TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 },
4053 	{ TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 },
4054 	{ TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 },
4055 	{ TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 },
4056 	{ TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 },
4057 	{ TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 },
4058 	{ TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 },
4059 	{ TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 },
4060 	{ TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 },
4061 	{ TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 },
4062 	{ TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 },
4063 	{ TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 },
4064 	{ TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB },
4065 	{ TARGET_CREAD, TARGET_CREAD, CREAD, CREAD },
4066 	{ TARGET_PARENB, TARGET_PARENB, PARENB, PARENB },
4067 	{ TARGET_PARODD, TARGET_PARODD, PARODD, PARODD },
4068 	{ TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL },
4069 	{ TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL },
4070 	{ TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS },
4071 	{ 0, 0, 0, 0 }
4072 };
4073 
4074 static const bitmask_transtbl lflag_tbl[] = {
4075 	{ TARGET_ISIG, TARGET_ISIG, ISIG, ISIG },
4076 	{ TARGET_ICANON, TARGET_ICANON, ICANON, ICANON },
4077 	{ TARGET_XCASE, TARGET_XCASE, XCASE, XCASE },
4078 	{ TARGET_ECHO, TARGET_ECHO, ECHO, ECHO },
4079 	{ TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE },
4080 	{ TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK },
4081 	{ TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL },
4082 	{ TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH },
4083 	{ TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP },
4084 	{ TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL },
4085 	{ TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT },
4086 	{ TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE },
4087 	{ TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO },
4088 	{ TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN },
4089 	{ TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN },
4090 	{ 0, 0, 0, 0 }
4091 };
4092 
4093 static void target_to_host_termios (void *dst, const void *src)
4094 {
4095     struct host_termios *host = dst;
4096     const struct target_termios *target = src;
4097 
4098     host->c_iflag =
4099         target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl);
4100     host->c_oflag =
4101         target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl);
4102     host->c_cflag =
4103         target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl);
4104     host->c_lflag =
4105         target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl);
4106     host->c_line = target->c_line;
4107 
4108     memset(host->c_cc, 0, sizeof(host->c_cc));
4109     host->c_cc[VINTR] = target->c_cc[TARGET_VINTR];
4110     host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT];
4111     host->c_cc[VERASE] = target->c_cc[TARGET_VERASE];
4112     host->c_cc[VKILL] = target->c_cc[TARGET_VKILL];
4113     host->c_cc[VEOF] = target->c_cc[TARGET_VEOF];
4114     host->c_cc[VTIME] = target->c_cc[TARGET_VTIME];
4115     host->c_cc[VMIN] = target->c_cc[TARGET_VMIN];
4116     host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC];
4117     host->c_cc[VSTART] = target->c_cc[TARGET_VSTART];
4118     host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP];
4119     host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP];
4120     host->c_cc[VEOL] = target->c_cc[TARGET_VEOL];
4121     host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT];
4122     host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD];
4123     host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE];
4124     host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT];
4125     host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2];
4126 }
4127 
4128 static void host_to_target_termios (void *dst, const void *src)
4129 {
4130     struct target_termios *target = dst;
4131     const struct host_termios *host = src;
4132 
4133     target->c_iflag =
4134         tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl));
4135     target->c_oflag =
4136         tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl));
4137     target->c_cflag =
4138         tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl));
4139     target->c_lflag =
4140         tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl));
4141     target->c_line = host->c_line;
4142 
4143     memset(target->c_cc, 0, sizeof(target->c_cc));
4144     target->c_cc[TARGET_VINTR] = host->c_cc[VINTR];
4145     target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT];
4146     target->c_cc[TARGET_VERASE] = host->c_cc[VERASE];
4147     target->c_cc[TARGET_VKILL] = host->c_cc[VKILL];
4148     target->c_cc[TARGET_VEOF] = host->c_cc[VEOF];
4149     target->c_cc[TARGET_VTIME] = host->c_cc[VTIME];
4150     target->c_cc[TARGET_VMIN] = host->c_cc[VMIN];
4151     target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC];
4152     target->c_cc[TARGET_VSTART] = host->c_cc[VSTART];
4153     target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP];
4154     target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP];
4155     target->c_cc[TARGET_VEOL] = host->c_cc[VEOL];
4156     target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT];
4157     target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD];
4158     target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE];
4159     target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT];
4160     target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2];
4161 }
4162 
4163 static const StructEntry struct_termios_def = {
4164     .convert = { host_to_target_termios, target_to_host_termios },
4165     .size = { sizeof(struct target_termios), sizeof(struct host_termios) },
4166     .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) },
4167 };
4168 
4169 static bitmask_transtbl mmap_flags_tbl[] = {
4170 	{ TARGET_MAP_SHARED, TARGET_MAP_SHARED, MAP_SHARED, MAP_SHARED },
4171 	{ TARGET_MAP_PRIVATE, TARGET_MAP_PRIVATE, MAP_PRIVATE, MAP_PRIVATE },
4172 	{ TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED },
4173 	{ TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS, MAP_ANONYMOUS, MAP_ANONYMOUS },
4174 	{ TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN, MAP_GROWSDOWN, MAP_GROWSDOWN },
4175 	{ TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE, MAP_DENYWRITE, MAP_DENYWRITE },
4176 	{ TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE, MAP_EXECUTABLE, MAP_EXECUTABLE },
4177 	{ TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED },
4178         { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE, MAP_NORESERVE,
4179           MAP_NORESERVE },
4180 	{ 0, 0, 0, 0 }
4181 };
4182 
4183 #if defined(TARGET_I386)
4184 
4185 /* NOTE: there is really one LDT for all the threads */
4186 static uint8_t *ldt_table;
4187 
4188 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount)
4189 {
4190     int size;
4191     void *p;
4192 
4193     if (!ldt_table)
4194         return 0;
4195     size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE;
4196     if (size > bytecount)
4197         size = bytecount;
4198     p = lock_user(VERIFY_WRITE, ptr, size, 0);
4199     if (!p)
4200         return -TARGET_EFAULT;
4201     /* ??? Should this by byteswapped?  */
4202     memcpy(p, ldt_table, size);
4203     unlock_user(p, ptr, size);
4204     return size;
4205 }
4206 
4207 /* XXX: add locking support */
4208 static abi_long write_ldt(CPUX86State *env,
4209                           abi_ulong ptr, unsigned long bytecount, int oldmode)
4210 {
4211     struct target_modify_ldt_ldt_s ldt_info;
4212     struct target_modify_ldt_ldt_s *target_ldt_info;
4213     int seg_32bit, contents, read_exec_only, limit_in_pages;
4214     int seg_not_present, useable, lm;
4215     uint32_t *lp, entry_1, entry_2;
4216 
4217     if (bytecount != sizeof(ldt_info))
4218         return -TARGET_EINVAL;
4219     if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1))
4220         return -TARGET_EFAULT;
4221     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
4222     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
4223     ldt_info.limit = tswap32(target_ldt_info->limit);
4224     ldt_info.flags = tswap32(target_ldt_info->flags);
4225     unlock_user_struct(target_ldt_info, ptr, 0);
4226 
4227     if (ldt_info.entry_number >= TARGET_LDT_ENTRIES)
4228         return -TARGET_EINVAL;
4229     seg_32bit = ldt_info.flags & 1;
4230     contents = (ldt_info.flags >> 1) & 3;
4231     read_exec_only = (ldt_info.flags >> 3) & 1;
4232     limit_in_pages = (ldt_info.flags >> 4) & 1;
4233     seg_not_present = (ldt_info.flags >> 5) & 1;
4234     useable = (ldt_info.flags >> 6) & 1;
4235 #ifdef TARGET_ABI32
4236     lm = 0;
4237 #else
4238     lm = (ldt_info.flags >> 7) & 1;
4239 #endif
4240     if (contents == 3) {
4241         if (oldmode)
4242             return -TARGET_EINVAL;
4243         if (seg_not_present == 0)
4244             return -TARGET_EINVAL;
4245     }
4246     /* allocate the LDT */
4247     if (!ldt_table) {
4248         env->ldt.base = target_mmap(0,
4249                                     TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE,
4250                                     PROT_READ|PROT_WRITE,
4251                                     MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
4252         if (env->ldt.base == -1)
4253             return -TARGET_ENOMEM;
4254         memset(g2h(env->ldt.base), 0,
4255                TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE);
4256         env->ldt.limit = 0xffff;
4257         ldt_table = g2h(env->ldt.base);
4258     }
4259 
4260     /* NOTE: same code as Linux kernel */
4261     /* Allow LDTs to be cleared by the user. */
4262     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
4263         if (oldmode ||
4264             (contents == 0		&&
4265              read_exec_only == 1	&&
4266              seg_32bit == 0		&&
4267              limit_in_pages == 0	&&
4268              seg_not_present == 1	&&
4269              useable == 0 )) {
4270             entry_1 = 0;
4271             entry_2 = 0;
4272             goto install;
4273         }
4274     }
4275 
4276     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
4277         (ldt_info.limit & 0x0ffff);
4278     entry_2 = (ldt_info.base_addr & 0xff000000) |
4279         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
4280         (ldt_info.limit & 0xf0000) |
4281         ((read_exec_only ^ 1) << 9) |
4282         (contents << 10) |
4283         ((seg_not_present ^ 1) << 15) |
4284         (seg_32bit << 22) |
4285         (limit_in_pages << 23) |
4286         (lm << 21) |
4287         0x7000;
4288     if (!oldmode)
4289         entry_2 |= (useable << 20);
4290 
4291     /* Install the new entry ...  */
4292 install:
4293     lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3));
4294     lp[0] = tswap32(entry_1);
4295     lp[1] = tswap32(entry_2);
4296     return 0;
4297 }
4298 
4299 /* specific and weird i386 syscalls */
4300 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr,
4301                               unsigned long bytecount)
4302 {
4303     abi_long ret;
4304 
4305     switch (func) {
4306     case 0:
4307         ret = read_ldt(ptr, bytecount);
4308         break;
4309     case 1:
4310         ret = write_ldt(env, ptr, bytecount, 1);
4311         break;
4312     case 0x11:
4313         ret = write_ldt(env, ptr, bytecount, 0);
4314         break;
4315     default:
4316         ret = -TARGET_ENOSYS;
4317         break;
4318     }
4319     return ret;
4320 }
4321 
4322 #if defined(TARGET_I386) && defined(TARGET_ABI32)
4323 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr)
4324 {
4325     uint64_t *gdt_table = g2h(env->gdt.base);
4326     struct target_modify_ldt_ldt_s ldt_info;
4327     struct target_modify_ldt_ldt_s *target_ldt_info;
4328     int seg_32bit, contents, read_exec_only, limit_in_pages;
4329     int seg_not_present, useable, lm;
4330     uint32_t *lp, entry_1, entry_2;
4331     int i;
4332 
4333     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
4334     if (!target_ldt_info)
4335         return -TARGET_EFAULT;
4336     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
4337     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
4338     ldt_info.limit = tswap32(target_ldt_info->limit);
4339     ldt_info.flags = tswap32(target_ldt_info->flags);
4340     if (ldt_info.entry_number == -1) {
4341         for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) {
4342             if (gdt_table[i] == 0) {
4343                 ldt_info.entry_number = i;
4344                 target_ldt_info->entry_number = tswap32(i);
4345                 break;
4346             }
4347         }
4348     }
4349     unlock_user_struct(target_ldt_info, ptr, 1);
4350 
4351     if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN ||
4352         ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX)
4353            return -TARGET_EINVAL;
4354     seg_32bit = ldt_info.flags & 1;
4355     contents = (ldt_info.flags >> 1) & 3;
4356     read_exec_only = (ldt_info.flags >> 3) & 1;
4357     limit_in_pages = (ldt_info.flags >> 4) & 1;
4358     seg_not_present = (ldt_info.flags >> 5) & 1;
4359     useable = (ldt_info.flags >> 6) & 1;
4360 #ifdef TARGET_ABI32
4361     lm = 0;
4362 #else
4363     lm = (ldt_info.flags >> 7) & 1;
4364 #endif
4365 
4366     if (contents == 3) {
4367         if (seg_not_present == 0)
4368             return -TARGET_EINVAL;
4369     }
4370 
4371     /* NOTE: same code as Linux kernel */
4372     /* Allow LDTs to be cleared by the user. */
4373     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
4374         if ((contents == 0             &&
4375              read_exec_only == 1       &&
4376              seg_32bit == 0            &&
4377              limit_in_pages == 0       &&
4378              seg_not_present == 1      &&
4379              useable == 0 )) {
4380             entry_1 = 0;
4381             entry_2 = 0;
4382             goto install;
4383         }
4384     }
4385 
4386     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
4387         (ldt_info.limit & 0x0ffff);
4388     entry_2 = (ldt_info.base_addr & 0xff000000) |
4389         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
4390         (ldt_info.limit & 0xf0000) |
4391         ((read_exec_only ^ 1) << 9) |
4392         (contents << 10) |
4393         ((seg_not_present ^ 1) << 15) |
4394         (seg_32bit << 22) |
4395         (limit_in_pages << 23) |
4396         (useable << 20) |
4397         (lm << 21) |
4398         0x7000;
4399 
4400     /* Install the new entry ...  */
4401 install:
4402     lp = (uint32_t *)(gdt_table + ldt_info.entry_number);
4403     lp[0] = tswap32(entry_1);
4404     lp[1] = tswap32(entry_2);
4405     return 0;
4406 }
4407 
4408 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr)
4409 {
4410     struct target_modify_ldt_ldt_s *target_ldt_info;
4411     uint64_t *gdt_table = g2h(env->gdt.base);
4412     uint32_t base_addr, limit, flags;
4413     int seg_32bit, contents, read_exec_only, limit_in_pages, idx;
4414     int seg_not_present, useable, lm;
4415     uint32_t *lp, entry_1, entry_2;
4416 
4417     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
4418     if (!target_ldt_info)
4419         return -TARGET_EFAULT;
4420     idx = tswap32(target_ldt_info->entry_number);
4421     if (idx < TARGET_GDT_ENTRY_TLS_MIN ||
4422         idx > TARGET_GDT_ENTRY_TLS_MAX) {
4423         unlock_user_struct(target_ldt_info, ptr, 1);
4424         return -TARGET_EINVAL;
4425     }
4426     lp = (uint32_t *)(gdt_table + idx);
4427     entry_1 = tswap32(lp[0]);
4428     entry_2 = tswap32(lp[1]);
4429 
4430     read_exec_only = ((entry_2 >> 9) & 1) ^ 1;
4431     contents = (entry_2 >> 10) & 3;
4432     seg_not_present = ((entry_2 >> 15) & 1) ^ 1;
4433     seg_32bit = (entry_2 >> 22) & 1;
4434     limit_in_pages = (entry_2 >> 23) & 1;
4435     useable = (entry_2 >> 20) & 1;
4436 #ifdef TARGET_ABI32
4437     lm = 0;
4438 #else
4439     lm = (entry_2 >> 21) & 1;
4440 #endif
4441     flags = (seg_32bit << 0) | (contents << 1) |
4442         (read_exec_only << 3) | (limit_in_pages << 4) |
4443         (seg_not_present << 5) | (useable << 6) | (lm << 7);
4444     limit = (entry_1 & 0xffff) | (entry_2  & 0xf0000);
4445     base_addr = (entry_1 >> 16) |
4446         (entry_2 & 0xff000000) |
4447         ((entry_2 & 0xff) << 16);
4448     target_ldt_info->base_addr = tswapal(base_addr);
4449     target_ldt_info->limit = tswap32(limit);
4450     target_ldt_info->flags = tswap32(flags);
4451     unlock_user_struct(target_ldt_info, ptr, 1);
4452     return 0;
4453 }
4454 #endif /* TARGET_I386 && TARGET_ABI32 */
4455 
4456 #ifndef TARGET_ABI32
4457 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
4458 {
4459     abi_long ret = 0;
4460     abi_ulong val;
4461     int idx;
4462 
4463     switch(code) {
4464     case TARGET_ARCH_SET_GS:
4465     case TARGET_ARCH_SET_FS:
4466         if (code == TARGET_ARCH_SET_GS)
4467             idx = R_GS;
4468         else
4469             idx = R_FS;
4470         cpu_x86_load_seg(env, idx, 0);
4471         env->segs[idx].base = addr;
4472         break;
4473     case TARGET_ARCH_GET_GS:
4474     case TARGET_ARCH_GET_FS:
4475         if (code == TARGET_ARCH_GET_GS)
4476             idx = R_GS;
4477         else
4478             idx = R_FS;
4479         val = env->segs[idx].base;
4480         if (put_user(val, addr, abi_ulong))
4481             ret = -TARGET_EFAULT;
4482         break;
4483     default:
4484         ret = -TARGET_EINVAL;
4485         break;
4486     }
4487     return ret;
4488 }
4489 #endif
4490 
4491 #endif /* defined(TARGET_I386) */
4492 
4493 #define NEW_STACK_SIZE 0x40000
4494 
4495 
4496 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER;
4497 typedef struct {
4498     CPUArchState *env;
4499     pthread_mutex_t mutex;
4500     pthread_cond_t cond;
4501     pthread_t thread;
4502     uint32_t tid;
4503     abi_ulong child_tidptr;
4504     abi_ulong parent_tidptr;
4505     sigset_t sigmask;
4506 } new_thread_info;
4507 
4508 static void *clone_func(void *arg)
4509 {
4510     new_thread_info *info = arg;
4511     CPUArchState *env;
4512     CPUState *cpu;
4513     TaskState *ts;
4514 
4515     rcu_register_thread();
4516     env = info->env;
4517     cpu = ENV_GET_CPU(env);
4518     thread_cpu = cpu;
4519     ts = (TaskState *)cpu->opaque;
4520     info->tid = gettid();
4521     cpu->host_tid = info->tid;
4522     task_settid(ts);
4523     if (info->child_tidptr)
4524         put_user_u32(info->tid, info->child_tidptr);
4525     if (info->parent_tidptr)
4526         put_user_u32(info->tid, info->parent_tidptr);
4527     /* Enable signals.  */
4528     sigprocmask(SIG_SETMASK, &info->sigmask, NULL);
4529     /* Signal to the parent that we're ready.  */
4530     pthread_mutex_lock(&info->mutex);
4531     pthread_cond_broadcast(&info->cond);
4532     pthread_mutex_unlock(&info->mutex);
4533     /* Wait until the parent has finshed initializing the tls state.  */
4534     pthread_mutex_lock(&clone_lock);
4535     pthread_mutex_unlock(&clone_lock);
4536     cpu_loop(env);
4537     /* never exits */
4538     return NULL;
4539 }
4540 
4541 /* do_fork() Must return host values and target errnos (unlike most
4542    do_*() functions). */
4543 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp,
4544                    abi_ulong parent_tidptr, target_ulong newtls,
4545                    abi_ulong child_tidptr)
4546 {
4547     CPUState *cpu = ENV_GET_CPU(env);
4548     int ret;
4549     TaskState *ts;
4550     CPUState *new_cpu;
4551     CPUArchState *new_env;
4552     unsigned int nptl_flags;
4553     sigset_t sigmask;
4554 
4555     /* Emulate vfork() with fork() */
4556     if (flags & CLONE_VFORK)
4557         flags &= ~(CLONE_VFORK | CLONE_VM);
4558 
4559     if (flags & CLONE_VM) {
4560         TaskState *parent_ts = (TaskState *)cpu->opaque;
4561         new_thread_info info;
4562         pthread_attr_t attr;
4563 
4564         ts = g_malloc0(sizeof(TaskState));
4565         init_task_state(ts);
4566         /* we create a new CPU instance. */
4567         new_env = cpu_copy(env);
4568         /* Init regs that differ from the parent.  */
4569         cpu_clone_regs(new_env, newsp);
4570         new_cpu = ENV_GET_CPU(new_env);
4571         new_cpu->opaque = ts;
4572         ts->bprm = parent_ts->bprm;
4573         ts->info = parent_ts->info;
4574         nptl_flags = flags;
4575         flags &= ~CLONE_NPTL_FLAGS2;
4576 
4577         if (nptl_flags & CLONE_CHILD_CLEARTID) {
4578             ts->child_tidptr = child_tidptr;
4579         }
4580 
4581         if (nptl_flags & CLONE_SETTLS)
4582             cpu_set_tls (new_env, newtls);
4583 
4584         /* Grab a mutex so that thread setup appears atomic.  */
4585         pthread_mutex_lock(&clone_lock);
4586 
4587         memset(&info, 0, sizeof(info));
4588         pthread_mutex_init(&info.mutex, NULL);
4589         pthread_mutex_lock(&info.mutex);
4590         pthread_cond_init(&info.cond, NULL);
4591         info.env = new_env;
4592         if (nptl_flags & CLONE_CHILD_SETTID)
4593             info.child_tidptr = child_tidptr;
4594         if (nptl_flags & CLONE_PARENT_SETTID)
4595             info.parent_tidptr = parent_tidptr;
4596 
4597         ret = pthread_attr_init(&attr);
4598         ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE);
4599         ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
4600         /* It is not safe to deliver signals until the child has finished
4601            initializing, so temporarily block all signals.  */
4602         sigfillset(&sigmask);
4603         sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask);
4604 
4605         ret = pthread_create(&info.thread, &attr, clone_func, &info);
4606         /* TODO: Free new CPU state if thread creation failed.  */
4607 
4608         sigprocmask(SIG_SETMASK, &info.sigmask, NULL);
4609         pthread_attr_destroy(&attr);
4610         if (ret == 0) {
4611             /* Wait for the child to initialize.  */
4612             pthread_cond_wait(&info.cond, &info.mutex);
4613             ret = info.tid;
4614             if (flags & CLONE_PARENT_SETTID)
4615                 put_user_u32(ret, parent_tidptr);
4616         } else {
4617             ret = -1;
4618         }
4619         pthread_mutex_unlock(&info.mutex);
4620         pthread_cond_destroy(&info.cond);
4621         pthread_mutex_destroy(&info.mutex);
4622         pthread_mutex_unlock(&clone_lock);
4623     } else {
4624         /* if no CLONE_VM, we consider it is a fork */
4625         if ((flags & ~(CSIGNAL | CLONE_NPTL_FLAGS2)) != 0)
4626             return -EINVAL;
4627         fork_start();
4628         ret = fork();
4629         if (ret == 0) {
4630             /* Child Process.  */
4631             rcu_after_fork();
4632             cpu_clone_regs(env, newsp);
4633             fork_end(1);
4634             /* There is a race condition here.  The parent process could
4635                theoretically read the TID in the child process before the child
4636                tid is set.  This would require using either ptrace
4637                (not implemented) or having *_tidptr to point at a shared memory
4638                mapping.  We can't repeat the spinlock hack used above because
4639                the child process gets its own copy of the lock.  */
4640             if (flags & CLONE_CHILD_SETTID)
4641                 put_user_u32(gettid(), child_tidptr);
4642             if (flags & CLONE_PARENT_SETTID)
4643                 put_user_u32(gettid(), parent_tidptr);
4644             ts = (TaskState *)cpu->opaque;
4645             if (flags & CLONE_SETTLS)
4646                 cpu_set_tls (env, newtls);
4647             if (flags & CLONE_CHILD_CLEARTID)
4648                 ts->child_tidptr = child_tidptr;
4649         } else {
4650             fork_end(0);
4651         }
4652     }
4653     return ret;
4654 }
4655 
4656 /* warning : doesn't handle linux specific flags... */
4657 static int target_to_host_fcntl_cmd(int cmd)
4658 {
4659     switch(cmd) {
4660 	case TARGET_F_DUPFD:
4661 	case TARGET_F_GETFD:
4662 	case TARGET_F_SETFD:
4663 	case TARGET_F_GETFL:
4664 	case TARGET_F_SETFL:
4665             return cmd;
4666         case TARGET_F_GETLK:
4667 	    return F_GETLK;
4668 	case TARGET_F_SETLK:
4669 	    return F_SETLK;
4670 	case TARGET_F_SETLKW:
4671 	    return F_SETLKW;
4672 	case TARGET_F_GETOWN:
4673 	    return F_GETOWN;
4674 	case TARGET_F_SETOWN:
4675 	    return F_SETOWN;
4676 	case TARGET_F_GETSIG:
4677 	    return F_GETSIG;
4678 	case TARGET_F_SETSIG:
4679 	    return F_SETSIG;
4680 #if TARGET_ABI_BITS == 32
4681         case TARGET_F_GETLK64:
4682 	    return F_GETLK64;
4683 	case TARGET_F_SETLK64:
4684 	    return F_SETLK64;
4685 	case TARGET_F_SETLKW64:
4686 	    return F_SETLKW64;
4687 #endif
4688         case TARGET_F_SETLEASE:
4689             return F_SETLEASE;
4690         case TARGET_F_GETLEASE:
4691             return F_GETLEASE;
4692 #ifdef F_DUPFD_CLOEXEC
4693         case TARGET_F_DUPFD_CLOEXEC:
4694             return F_DUPFD_CLOEXEC;
4695 #endif
4696         case TARGET_F_NOTIFY:
4697             return F_NOTIFY;
4698 #ifdef F_GETOWN_EX
4699 	case TARGET_F_GETOWN_EX:
4700 	    return F_GETOWN_EX;
4701 #endif
4702 #ifdef F_SETOWN_EX
4703 	case TARGET_F_SETOWN_EX:
4704 	    return F_SETOWN_EX;
4705 #endif
4706 	default:
4707             return -TARGET_EINVAL;
4708     }
4709     return -TARGET_EINVAL;
4710 }
4711 
4712 #define TRANSTBL_CONVERT(a) { -1, TARGET_##a, -1, a }
4713 static const bitmask_transtbl flock_tbl[] = {
4714     TRANSTBL_CONVERT(F_RDLCK),
4715     TRANSTBL_CONVERT(F_WRLCK),
4716     TRANSTBL_CONVERT(F_UNLCK),
4717     TRANSTBL_CONVERT(F_EXLCK),
4718     TRANSTBL_CONVERT(F_SHLCK),
4719     { 0, 0, 0, 0 }
4720 };
4721 
4722 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg)
4723 {
4724     struct flock fl;
4725     struct target_flock *target_fl;
4726     struct flock64 fl64;
4727     struct target_flock64 *target_fl64;
4728 #ifdef F_GETOWN_EX
4729     struct f_owner_ex fox;
4730     struct target_f_owner_ex *target_fox;
4731 #endif
4732     abi_long ret;
4733     int host_cmd = target_to_host_fcntl_cmd(cmd);
4734 
4735     if (host_cmd == -TARGET_EINVAL)
4736 	    return host_cmd;
4737 
4738     switch(cmd) {
4739     case TARGET_F_GETLK:
4740         if (!lock_user_struct(VERIFY_READ, target_fl, arg, 1))
4741             return -TARGET_EFAULT;
4742         fl.l_type =
4743                   target_to_host_bitmask(tswap16(target_fl->l_type), flock_tbl);
4744         fl.l_whence = tswap16(target_fl->l_whence);
4745         fl.l_start = tswapal(target_fl->l_start);
4746         fl.l_len = tswapal(target_fl->l_len);
4747         fl.l_pid = tswap32(target_fl->l_pid);
4748         unlock_user_struct(target_fl, arg, 0);
4749         ret = get_errno(fcntl(fd, host_cmd, &fl));
4750         if (ret == 0) {
4751             if (!lock_user_struct(VERIFY_WRITE, target_fl, arg, 0))
4752                 return -TARGET_EFAULT;
4753             target_fl->l_type =
4754                           host_to_target_bitmask(tswap16(fl.l_type), flock_tbl);
4755             target_fl->l_whence = tswap16(fl.l_whence);
4756             target_fl->l_start = tswapal(fl.l_start);
4757             target_fl->l_len = tswapal(fl.l_len);
4758             target_fl->l_pid = tswap32(fl.l_pid);
4759             unlock_user_struct(target_fl, arg, 1);
4760         }
4761         break;
4762 
4763     case TARGET_F_SETLK:
4764     case TARGET_F_SETLKW:
4765         if (!lock_user_struct(VERIFY_READ, target_fl, arg, 1))
4766             return -TARGET_EFAULT;
4767         fl.l_type =
4768                   target_to_host_bitmask(tswap16(target_fl->l_type), flock_tbl);
4769         fl.l_whence = tswap16(target_fl->l_whence);
4770         fl.l_start = tswapal(target_fl->l_start);
4771         fl.l_len = tswapal(target_fl->l_len);
4772         fl.l_pid = tswap32(target_fl->l_pid);
4773         unlock_user_struct(target_fl, arg, 0);
4774         ret = get_errno(fcntl(fd, host_cmd, &fl));
4775         break;
4776 
4777     case TARGET_F_GETLK64:
4778         if (!lock_user_struct(VERIFY_READ, target_fl64, arg, 1))
4779             return -TARGET_EFAULT;
4780         fl64.l_type =
4781            target_to_host_bitmask(tswap16(target_fl64->l_type), flock_tbl) >> 1;
4782         fl64.l_whence = tswap16(target_fl64->l_whence);
4783         fl64.l_start = tswap64(target_fl64->l_start);
4784         fl64.l_len = tswap64(target_fl64->l_len);
4785         fl64.l_pid = tswap32(target_fl64->l_pid);
4786         unlock_user_struct(target_fl64, arg, 0);
4787         ret = get_errno(fcntl(fd, host_cmd, &fl64));
4788         if (ret == 0) {
4789             if (!lock_user_struct(VERIFY_WRITE, target_fl64, arg, 0))
4790                 return -TARGET_EFAULT;
4791             target_fl64->l_type =
4792                    host_to_target_bitmask(tswap16(fl64.l_type), flock_tbl) >> 1;
4793             target_fl64->l_whence = tswap16(fl64.l_whence);
4794             target_fl64->l_start = tswap64(fl64.l_start);
4795             target_fl64->l_len = tswap64(fl64.l_len);
4796             target_fl64->l_pid = tswap32(fl64.l_pid);
4797             unlock_user_struct(target_fl64, arg, 1);
4798         }
4799         break;
4800     case TARGET_F_SETLK64:
4801     case TARGET_F_SETLKW64:
4802         if (!lock_user_struct(VERIFY_READ, target_fl64, arg, 1))
4803             return -TARGET_EFAULT;
4804         fl64.l_type =
4805            target_to_host_bitmask(tswap16(target_fl64->l_type), flock_tbl) >> 1;
4806         fl64.l_whence = tswap16(target_fl64->l_whence);
4807         fl64.l_start = tswap64(target_fl64->l_start);
4808         fl64.l_len = tswap64(target_fl64->l_len);
4809         fl64.l_pid = tswap32(target_fl64->l_pid);
4810         unlock_user_struct(target_fl64, arg, 0);
4811         ret = get_errno(fcntl(fd, host_cmd, &fl64));
4812         break;
4813 
4814     case TARGET_F_GETFL:
4815         ret = get_errno(fcntl(fd, host_cmd, arg));
4816         if (ret >= 0) {
4817             ret = host_to_target_bitmask(ret, fcntl_flags_tbl);
4818         }
4819         break;
4820 
4821     case TARGET_F_SETFL:
4822         ret = get_errno(fcntl(fd, host_cmd, target_to_host_bitmask(arg, fcntl_flags_tbl)));
4823         break;
4824 
4825 #ifdef F_GETOWN_EX
4826     case TARGET_F_GETOWN_EX:
4827         ret = get_errno(fcntl(fd, host_cmd, &fox));
4828         if (ret >= 0) {
4829             if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0))
4830                 return -TARGET_EFAULT;
4831             target_fox->type = tswap32(fox.type);
4832             target_fox->pid = tswap32(fox.pid);
4833             unlock_user_struct(target_fox, arg, 1);
4834         }
4835         break;
4836 #endif
4837 
4838 #ifdef F_SETOWN_EX
4839     case TARGET_F_SETOWN_EX:
4840         if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1))
4841             return -TARGET_EFAULT;
4842         fox.type = tswap32(target_fox->type);
4843         fox.pid = tswap32(target_fox->pid);
4844         unlock_user_struct(target_fox, arg, 0);
4845         ret = get_errno(fcntl(fd, host_cmd, &fox));
4846         break;
4847 #endif
4848 
4849     case TARGET_F_SETOWN:
4850     case TARGET_F_GETOWN:
4851     case TARGET_F_SETSIG:
4852     case TARGET_F_GETSIG:
4853     case TARGET_F_SETLEASE:
4854     case TARGET_F_GETLEASE:
4855         ret = get_errno(fcntl(fd, host_cmd, arg));
4856         break;
4857 
4858     default:
4859         ret = get_errno(fcntl(fd, cmd, arg));
4860         break;
4861     }
4862     return ret;
4863 }
4864 
4865 #ifdef USE_UID16
4866 
4867 static inline int high2lowuid(int uid)
4868 {
4869     if (uid > 65535)
4870         return 65534;
4871     else
4872         return uid;
4873 }
4874 
4875 static inline int high2lowgid(int gid)
4876 {
4877     if (gid > 65535)
4878         return 65534;
4879     else
4880         return gid;
4881 }
4882 
4883 static inline int low2highuid(int uid)
4884 {
4885     if ((int16_t)uid == -1)
4886         return -1;
4887     else
4888         return uid;
4889 }
4890 
4891 static inline int low2highgid(int gid)
4892 {
4893     if ((int16_t)gid == -1)
4894         return -1;
4895     else
4896         return gid;
4897 }
4898 static inline int tswapid(int id)
4899 {
4900     return tswap16(id);
4901 }
4902 
4903 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
4904 
4905 #else /* !USE_UID16 */
4906 static inline int high2lowuid(int uid)
4907 {
4908     return uid;
4909 }
4910 static inline int high2lowgid(int gid)
4911 {
4912     return gid;
4913 }
4914 static inline int low2highuid(int uid)
4915 {
4916     return uid;
4917 }
4918 static inline int low2highgid(int gid)
4919 {
4920     return gid;
4921 }
4922 static inline int tswapid(int id)
4923 {
4924     return tswap32(id);
4925 }
4926 
4927 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
4928 
4929 #endif /* USE_UID16 */
4930 
4931 void syscall_init(void)
4932 {
4933     IOCTLEntry *ie;
4934     const argtype *arg_type;
4935     int size;
4936     int i;
4937 
4938     thunk_init(STRUCT_MAX);
4939 
4940 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
4941 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
4942 #include "syscall_types.h"
4943 #undef STRUCT
4944 #undef STRUCT_SPECIAL
4945 
4946     /* Build target_to_host_errno_table[] table from
4947      * host_to_target_errno_table[]. */
4948     for (i = 0; i < ERRNO_TABLE_SIZE; i++) {
4949         target_to_host_errno_table[host_to_target_errno_table[i]] = i;
4950     }
4951 
4952     /* we patch the ioctl size if necessary. We rely on the fact that
4953        no ioctl has all the bits at '1' in the size field */
4954     ie = ioctl_entries;
4955     while (ie->target_cmd != 0) {
4956         if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) ==
4957             TARGET_IOC_SIZEMASK) {
4958             arg_type = ie->arg_type;
4959             if (arg_type[0] != TYPE_PTR) {
4960                 fprintf(stderr, "cannot patch size for ioctl 0x%x\n",
4961                         ie->target_cmd);
4962                 exit(1);
4963             }
4964             arg_type++;
4965             size = thunk_type_size(arg_type, 0);
4966             ie->target_cmd = (ie->target_cmd &
4967                               ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) |
4968                 (size << TARGET_IOC_SIZESHIFT);
4969         }
4970 
4971         /* automatic consistency check if same arch */
4972 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
4973     (defined(__x86_64__) && defined(TARGET_X86_64))
4974         if (unlikely(ie->target_cmd != ie->host_cmd)) {
4975             fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
4976                     ie->name, ie->target_cmd, ie->host_cmd);
4977         }
4978 #endif
4979         ie++;
4980     }
4981 }
4982 
4983 #if TARGET_ABI_BITS == 32
4984 static inline uint64_t target_offset64(uint32_t word0, uint32_t word1)
4985 {
4986 #ifdef TARGET_WORDS_BIGENDIAN
4987     return ((uint64_t)word0 << 32) | word1;
4988 #else
4989     return ((uint64_t)word1 << 32) | word0;
4990 #endif
4991 }
4992 #else /* TARGET_ABI_BITS == 32 */
4993 static inline uint64_t target_offset64(uint64_t word0, uint64_t word1)
4994 {
4995     return word0;
4996 }
4997 #endif /* TARGET_ABI_BITS != 32 */
4998 
4999 #ifdef TARGET_NR_truncate64
5000 static inline abi_long target_truncate64(void *cpu_env, const char *arg1,
5001                                          abi_long arg2,
5002                                          abi_long arg3,
5003                                          abi_long arg4)
5004 {
5005     if (regpairs_aligned(cpu_env)) {
5006         arg2 = arg3;
5007         arg3 = arg4;
5008     }
5009     return get_errno(truncate64(arg1, target_offset64(arg2, arg3)));
5010 }
5011 #endif
5012 
5013 #ifdef TARGET_NR_ftruncate64
5014 static inline abi_long target_ftruncate64(void *cpu_env, abi_long arg1,
5015                                           abi_long arg2,
5016                                           abi_long arg3,
5017                                           abi_long arg4)
5018 {
5019     if (regpairs_aligned(cpu_env)) {
5020         arg2 = arg3;
5021         arg3 = arg4;
5022     }
5023     return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3)));
5024 }
5025 #endif
5026 
5027 static inline abi_long target_to_host_timespec(struct timespec *host_ts,
5028                                                abi_ulong target_addr)
5029 {
5030     struct target_timespec *target_ts;
5031 
5032     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1))
5033         return -TARGET_EFAULT;
5034     host_ts->tv_sec = tswapal(target_ts->tv_sec);
5035     host_ts->tv_nsec = tswapal(target_ts->tv_nsec);
5036     unlock_user_struct(target_ts, target_addr, 0);
5037     return 0;
5038 }
5039 
5040 static inline abi_long host_to_target_timespec(abi_ulong target_addr,
5041                                                struct timespec *host_ts)
5042 {
5043     struct target_timespec *target_ts;
5044 
5045     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0))
5046         return -TARGET_EFAULT;
5047     target_ts->tv_sec = tswapal(host_ts->tv_sec);
5048     target_ts->tv_nsec = tswapal(host_ts->tv_nsec);
5049     unlock_user_struct(target_ts, target_addr, 1);
5050     return 0;
5051 }
5052 
5053 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_itspec,
5054                                                  abi_ulong target_addr)
5055 {
5056     struct target_itimerspec *target_itspec;
5057 
5058     if (!lock_user_struct(VERIFY_READ, target_itspec, target_addr, 1)) {
5059         return -TARGET_EFAULT;
5060     }
5061 
5062     host_itspec->it_interval.tv_sec =
5063                             tswapal(target_itspec->it_interval.tv_sec);
5064     host_itspec->it_interval.tv_nsec =
5065                             tswapal(target_itspec->it_interval.tv_nsec);
5066     host_itspec->it_value.tv_sec = tswapal(target_itspec->it_value.tv_sec);
5067     host_itspec->it_value.tv_nsec = tswapal(target_itspec->it_value.tv_nsec);
5068 
5069     unlock_user_struct(target_itspec, target_addr, 1);
5070     return 0;
5071 }
5072 
5073 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr,
5074                                                struct itimerspec *host_its)
5075 {
5076     struct target_itimerspec *target_itspec;
5077 
5078     if (!lock_user_struct(VERIFY_WRITE, target_itspec, target_addr, 0)) {
5079         return -TARGET_EFAULT;
5080     }
5081 
5082     target_itspec->it_interval.tv_sec = tswapal(host_its->it_interval.tv_sec);
5083     target_itspec->it_interval.tv_nsec = tswapal(host_its->it_interval.tv_nsec);
5084 
5085     target_itspec->it_value.tv_sec = tswapal(host_its->it_value.tv_sec);
5086     target_itspec->it_value.tv_nsec = tswapal(host_its->it_value.tv_nsec);
5087 
5088     unlock_user_struct(target_itspec, target_addr, 0);
5089     return 0;
5090 }
5091 
5092 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp,
5093                                                abi_ulong target_addr)
5094 {
5095     struct target_sigevent *target_sevp;
5096 
5097     if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) {
5098         return -TARGET_EFAULT;
5099     }
5100 
5101     /* This union is awkward on 64 bit systems because it has a 32 bit
5102      * integer and a pointer in it; we follow the conversion approach
5103      * used for handling sigval types in signal.c so the guest should get
5104      * the correct value back even if we did a 64 bit byteswap and it's
5105      * using the 32 bit integer.
5106      */
5107     host_sevp->sigev_value.sival_ptr =
5108         (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr);
5109     host_sevp->sigev_signo =
5110         target_to_host_signal(tswap32(target_sevp->sigev_signo));
5111     host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify);
5112     host_sevp->_sigev_un._tid = tswap32(target_sevp->_sigev_un._tid);
5113 
5114     unlock_user_struct(target_sevp, target_addr, 1);
5115     return 0;
5116 }
5117 
5118 #if defined(TARGET_NR_mlockall)
5119 static inline int target_to_host_mlockall_arg(int arg)
5120 {
5121     int result = 0;
5122 
5123     if (arg & TARGET_MLOCKALL_MCL_CURRENT) {
5124         result |= MCL_CURRENT;
5125     }
5126     if (arg & TARGET_MLOCKALL_MCL_FUTURE) {
5127         result |= MCL_FUTURE;
5128     }
5129     return result;
5130 }
5131 #endif
5132 
5133 #if defined(TARGET_NR_stat64) || defined(TARGET_NR_newfstatat)
5134 static inline abi_long host_to_target_stat64(void *cpu_env,
5135                                              abi_ulong target_addr,
5136                                              struct stat *host_st)
5137 {
5138 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
5139     if (((CPUARMState *)cpu_env)->eabi) {
5140         struct target_eabi_stat64 *target_st;
5141 
5142         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
5143             return -TARGET_EFAULT;
5144         memset(target_st, 0, sizeof(struct target_eabi_stat64));
5145         __put_user(host_st->st_dev, &target_st->st_dev);
5146         __put_user(host_st->st_ino, &target_st->st_ino);
5147 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
5148         __put_user(host_st->st_ino, &target_st->__st_ino);
5149 #endif
5150         __put_user(host_st->st_mode, &target_st->st_mode);
5151         __put_user(host_st->st_nlink, &target_st->st_nlink);
5152         __put_user(host_st->st_uid, &target_st->st_uid);
5153         __put_user(host_st->st_gid, &target_st->st_gid);
5154         __put_user(host_st->st_rdev, &target_st->st_rdev);
5155         __put_user(host_st->st_size, &target_st->st_size);
5156         __put_user(host_st->st_blksize, &target_st->st_blksize);
5157         __put_user(host_st->st_blocks, &target_st->st_blocks);
5158         __put_user(host_st->st_atime, &target_st->target_st_atime);
5159         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
5160         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
5161         unlock_user_struct(target_st, target_addr, 1);
5162     } else
5163 #endif
5164     {
5165 #if defined(TARGET_HAS_STRUCT_STAT64)
5166         struct target_stat64 *target_st;
5167 #else
5168         struct target_stat *target_st;
5169 #endif
5170 
5171         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
5172             return -TARGET_EFAULT;
5173         memset(target_st, 0, sizeof(*target_st));
5174         __put_user(host_st->st_dev, &target_st->st_dev);
5175         __put_user(host_st->st_ino, &target_st->st_ino);
5176 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
5177         __put_user(host_st->st_ino, &target_st->__st_ino);
5178 #endif
5179         __put_user(host_st->st_mode, &target_st->st_mode);
5180         __put_user(host_st->st_nlink, &target_st->st_nlink);
5181         __put_user(host_st->st_uid, &target_st->st_uid);
5182         __put_user(host_st->st_gid, &target_st->st_gid);
5183         __put_user(host_st->st_rdev, &target_st->st_rdev);
5184         /* XXX: better use of kernel struct */
5185         __put_user(host_st->st_size, &target_st->st_size);
5186         __put_user(host_st->st_blksize, &target_st->st_blksize);
5187         __put_user(host_st->st_blocks, &target_st->st_blocks);
5188         __put_user(host_st->st_atime, &target_st->target_st_atime);
5189         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
5190         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
5191         unlock_user_struct(target_st, target_addr, 1);
5192     }
5193 
5194     return 0;
5195 }
5196 #endif
5197 
5198 /* ??? Using host futex calls even when target atomic operations
5199    are not really atomic probably breaks things.  However implementing
5200    futexes locally would make futexes shared between multiple processes
5201    tricky.  However they're probably useless because guest atomic
5202    operations won't work either.  */
5203 static int do_futex(target_ulong uaddr, int op, int val, target_ulong timeout,
5204                     target_ulong uaddr2, int val3)
5205 {
5206     struct timespec ts, *pts;
5207     int base_op;
5208 
5209     /* ??? We assume FUTEX_* constants are the same on both host
5210        and target.  */
5211 #ifdef FUTEX_CMD_MASK
5212     base_op = op & FUTEX_CMD_MASK;
5213 #else
5214     base_op = op;
5215 #endif
5216     switch (base_op) {
5217     case FUTEX_WAIT:
5218     case FUTEX_WAIT_BITSET:
5219         if (timeout) {
5220             pts = &ts;
5221             target_to_host_timespec(pts, timeout);
5222         } else {
5223             pts = NULL;
5224         }
5225         return get_errno(sys_futex(g2h(uaddr), op, tswap32(val),
5226                          pts, NULL, val3));
5227     case FUTEX_WAKE:
5228         return get_errno(sys_futex(g2h(uaddr), op, val, NULL, NULL, 0));
5229     case FUTEX_FD:
5230         return get_errno(sys_futex(g2h(uaddr), op, val, NULL, NULL, 0));
5231     case FUTEX_REQUEUE:
5232     case FUTEX_CMP_REQUEUE:
5233     case FUTEX_WAKE_OP:
5234         /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the
5235            TIMEOUT parameter is interpreted as a uint32_t by the kernel.
5236            But the prototype takes a `struct timespec *'; insert casts
5237            to satisfy the compiler.  We do not need to tswap TIMEOUT
5238            since it's not compared to guest memory.  */
5239         pts = (struct timespec *)(uintptr_t) timeout;
5240         return get_errno(sys_futex(g2h(uaddr), op, val, pts,
5241                                    g2h(uaddr2),
5242                                    (base_op == FUTEX_CMP_REQUEUE
5243                                     ? tswap32(val3)
5244                                     : val3)));
5245     default:
5246         return -TARGET_ENOSYS;
5247     }
5248 }
5249 
5250 /* Map host to target signal numbers for the wait family of syscalls.
5251    Assume all other status bits are the same.  */
5252 int host_to_target_waitstatus(int status)
5253 {
5254     if (WIFSIGNALED(status)) {
5255         return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f);
5256     }
5257     if (WIFSTOPPED(status)) {
5258         return (host_to_target_signal(WSTOPSIG(status)) << 8)
5259                | (status & 0xff);
5260     }
5261     return status;
5262 }
5263 
5264 static int open_self_cmdline(void *cpu_env, int fd)
5265 {
5266     int fd_orig = -1;
5267     bool word_skipped = false;
5268 
5269     fd_orig = open("/proc/self/cmdline", O_RDONLY);
5270     if (fd_orig < 0) {
5271         return fd_orig;
5272     }
5273 
5274     while (true) {
5275         ssize_t nb_read;
5276         char buf[128];
5277         char *cp_buf = buf;
5278 
5279         nb_read = read(fd_orig, buf, sizeof(buf));
5280         if (nb_read < 0) {
5281             fd_orig = close(fd_orig);
5282             return -1;
5283         } else if (nb_read == 0) {
5284             break;
5285         }
5286 
5287         if (!word_skipped) {
5288             /* Skip the first string, which is the path to qemu-*-static
5289                instead of the actual command. */
5290             cp_buf = memchr(buf, 0, sizeof(buf));
5291             if (cp_buf) {
5292                 /* Null byte found, skip one string */
5293                 cp_buf++;
5294                 nb_read -= cp_buf - buf;
5295                 word_skipped = true;
5296             }
5297         }
5298 
5299         if (word_skipped) {
5300             if (write(fd, cp_buf, nb_read) != nb_read) {
5301                 close(fd_orig);
5302                 return -1;
5303             }
5304         }
5305     }
5306 
5307     return close(fd_orig);
5308 }
5309 
5310 static int open_self_maps(void *cpu_env, int fd)
5311 {
5312     CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env);
5313     TaskState *ts = cpu->opaque;
5314     FILE *fp;
5315     char *line = NULL;
5316     size_t len = 0;
5317     ssize_t read;
5318 
5319     fp = fopen("/proc/self/maps", "r");
5320     if (fp == NULL) {
5321         return -EACCES;
5322     }
5323 
5324     while ((read = getline(&line, &len, fp)) != -1) {
5325         int fields, dev_maj, dev_min, inode;
5326         uint64_t min, max, offset;
5327         char flag_r, flag_w, flag_x, flag_p;
5328         char path[512] = "";
5329         fields = sscanf(line, "%"PRIx64"-%"PRIx64" %c%c%c%c %"PRIx64" %x:%x %d"
5330                         " %512s", &min, &max, &flag_r, &flag_w, &flag_x,
5331                         &flag_p, &offset, &dev_maj, &dev_min, &inode, path);
5332 
5333         if ((fields < 10) || (fields > 11)) {
5334             continue;
5335         }
5336         if (h2g_valid(min)) {
5337             int flags = page_get_flags(h2g(min));
5338             max = h2g_valid(max - 1) ? max : (uintptr_t)g2h(GUEST_ADDR_MAX);
5339             if (page_check_range(h2g(min), max - min, flags) == -1) {
5340                 continue;
5341             }
5342             if (h2g(min) == ts->info->stack_limit) {
5343                 pstrcpy(path, sizeof(path), "      [stack]");
5344             }
5345             dprintf(fd, TARGET_ABI_FMT_lx "-" TARGET_ABI_FMT_lx
5346                     " %c%c%c%c %08" PRIx64 " %02x:%02x %d %s%s\n",
5347                     h2g(min), h2g(max - 1) + 1, flag_r, flag_w,
5348                     flag_x, flag_p, offset, dev_maj, dev_min, inode,
5349                     path[0] ? "         " : "", path);
5350         }
5351     }
5352 
5353     free(line);
5354     fclose(fp);
5355 
5356     return 0;
5357 }
5358 
5359 static int open_self_stat(void *cpu_env, int fd)
5360 {
5361     CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env);
5362     TaskState *ts = cpu->opaque;
5363     abi_ulong start_stack = ts->info->start_stack;
5364     int i;
5365 
5366     for (i = 0; i < 44; i++) {
5367       char buf[128];
5368       int len;
5369       uint64_t val = 0;
5370 
5371       if (i == 0) {
5372         /* pid */
5373         val = getpid();
5374         snprintf(buf, sizeof(buf), "%"PRId64 " ", val);
5375       } else if (i == 1) {
5376         /* app name */
5377         snprintf(buf, sizeof(buf), "(%s) ", ts->bprm->argv[0]);
5378       } else if (i == 27) {
5379         /* stack bottom */
5380         val = start_stack;
5381         snprintf(buf, sizeof(buf), "%"PRId64 " ", val);
5382       } else {
5383         /* for the rest, there is MasterCard */
5384         snprintf(buf, sizeof(buf), "0%c", i == 43 ? '\n' : ' ');
5385       }
5386 
5387       len = strlen(buf);
5388       if (write(fd, buf, len) != len) {
5389           return -1;
5390       }
5391     }
5392 
5393     return 0;
5394 }
5395 
5396 static int open_self_auxv(void *cpu_env, int fd)
5397 {
5398     CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env);
5399     TaskState *ts = cpu->opaque;
5400     abi_ulong auxv = ts->info->saved_auxv;
5401     abi_ulong len = ts->info->auxv_len;
5402     char *ptr;
5403 
5404     /*
5405      * Auxiliary vector is stored in target process stack.
5406      * read in whole auxv vector and copy it to file
5407      */
5408     ptr = lock_user(VERIFY_READ, auxv, len, 0);
5409     if (ptr != NULL) {
5410         while (len > 0) {
5411             ssize_t r;
5412             r = write(fd, ptr, len);
5413             if (r <= 0) {
5414                 break;
5415             }
5416             len -= r;
5417             ptr += r;
5418         }
5419         lseek(fd, 0, SEEK_SET);
5420         unlock_user(ptr, auxv, len);
5421     }
5422 
5423     return 0;
5424 }
5425 
5426 static int is_proc_myself(const char *filename, const char *entry)
5427 {
5428     if (!strncmp(filename, "/proc/", strlen("/proc/"))) {
5429         filename += strlen("/proc/");
5430         if (!strncmp(filename, "self/", strlen("self/"))) {
5431             filename += strlen("self/");
5432         } else if (*filename >= '1' && *filename <= '9') {
5433             char myself[80];
5434             snprintf(myself, sizeof(myself), "%d/", getpid());
5435             if (!strncmp(filename, myself, strlen(myself))) {
5436                 filename += strlen(myself);
5437             } else {
5438                 return 0;
5439             }
5440         } else {
5441             return 0;
5442         }
5443         if (!strcmp(filename, entry)) {
5444             return 1;
5445         }
5446     }
5447     return 0;
5448 }
5449 
5450 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
5451 static int is_proc(const char *filename, const char *entry)
5452 {
5453     return strcmp(filename, entry) == 0;
5454 }
5455 
5456 static int open_net_route(void *cpu_env, int fd)
5457 {
5458     FILE *fp;
5459     char *line = NULL;
5460     size_t len = 0;
5461     ssize_t read;
5462 
5463     fp = fopen("/proc/net/route", "r");
5464     if (fp == NULL) {
5465         return -EACCES;
5466     }
5467 
5468     /* read header */
5469 
5470     read = getline(&line, &len, fp);
5471     dprintf(fd, "%s", line);
5472 
5473     /* read routes */
5474 
5475     while ((read = getline(&line, &len, fp)) != -1) {
5476         char iface[16];
5477         uint32_t dest, gw, mask;
5478         unsigned int flags, refcnt, use, metric, mtu, window, irtt;
5479         sscanf(line, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
5480                      iface, &dest, &gw, &flags, &refcnt, &use, &metric,
5481                      &mask, &mtu, &window, &irtt);
5482         dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
5483                 iface, tswap32(dest), tswap32(gw), flags, refcnt, use,
5484                 metric, tswap32(mask), mtu, window, irtt);
5485     }
5486 
5487     free(line);
5488     fclose(fp);
5489 
5490     return 0;
5491 }
5492 #endif
5493 
5494 static int do_openat(void *cpu_env, int dirfd, const char *pathname, int flags, mode_t mode)
5495 {
5496     struct fake_open {
5497         const char *filename;
5498         int (*fill)(void *cpu_env, int fd);
5499         int (*cmp)(const char *s1, const char *s2);
5500     };
5501     const struct fake_open *fake_open;
5502     static const struct fake_open fakes[] = {
5503         { "maps", open_self_maps, is_proc_myself },
5504         { "stat", open_self_stat, is_proc_myself },
5505         { "auxv", open_self_auxv, is_proc_myself },
5506         { "cmdline", open_self_cmdline, is_proc_myself },
5507 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
5508         { "/proc/net/route", open_net_route, is_proc },
5509 #endif
5510         { NULL, NULL, NULL }
5511     };
5512 
5513     if (is_proc_myself(pathname, "exe")) {
5514         int execfd = qemu_getauxval(AT_EXECFD);
5515         return execfd ? execfd : get_errno(sys_openat(dirfd, exec_path, flags, mode));
5516     }
5517 
5518     for (fake_open = fakes; fake_open->filename; fake_open++) {
5519         if (fake_open->cmp(pathname, fake_open->filename)) {
5520             break;
5521         }
5522     }
5523 
5524     if (fake_open->filename) {
5525         const char *tmpdir;
5526         char filename[PATH_MAX];
5527         int fd, r;
5528 
5529         /* create temporary file to map stat to */
5530         tmpdir = getenv("TMPDIR");
5531         if (!tmpdir)
5532             tmpdir = "/tmp";
5533         snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir);
5534         fd = mkstemp(filename);
5535         if (fd < 0) {
5536             return fd;
5537         }
5538         unlink(filename);
5539 
5540         if ((r = fake_open->fill(cpu_env, fd))) {
5541             close(fd);
5542             return r;
5543         }
5544         lseek(fd, 0, SEEK_SET);
5545 
5546         return fd;
5547     }
5548 
5549     return get_errno(sys_openat(dirfd, path(pathname), flags, mode));
5550 }
5551 
5552 #define TIMER_MAGIC 0x0caf0000
5553 #define TIMER_MAGIC_MASK 0xffff0000
5554 
5555 /* Convert QEMU provided timer ID back to internal 16bit index format */
5556 static target_timer_t get_timer_id(abi_long arg)
5557 {
5558     target_timer_t timerid = arg;
5559 
5560     if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) {
5561         return -TARGET_EINVAL;
5562     }
5563 
5564     timerid &= 0xffff;
5565 
5566     if (timerid >= ARRAY_SIZE(g_posix_timers)) {
5567         return -TARGET_EINVAL;
5568     }
5569 
5570     return timerid;
5571 }
5572 
5573 /* do_syscall() should always have a single exit point at the end so
5574    that actions, such as logging of syscall results, can be performed.
5575    All errnos that do_syscall() returns must be -TARGET_<errcode>. */
5576 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
5577                     abi_long arg2, abi_long arg3, abi_long arg4,
5578                     abi_long arg5, abi_long arg6, abi_long arg7,
5579                     abi_long arg8)
5580 {
5581     CPUState *cpu = ENV_GET_CPU(cpu_env);
5582     abi_long ret;
5583     struct stat st;
5584     struct statfs stfs;
5585     void *p;
5586 
5587 #ifdef DEBUG
5588     gemu_log("syscall %d", num);
5589 #endif
5590     if(do_strace)
5591         print_syscall(num, arg1, arg2, arg3, arg4, arg5, arg6);
5592 
5593     switch(num) {
5594     case TARGET_NR_exit:
5595         /* In old applications this may be used to implement _exit(2).
5596            However in threaded applictions it is used for thread termination,
5597            and _exit_group is used for application termination.
5598            Do thread termination if we have more then one thread.  */
5599         /* FIXME: This probably breaks if a signal arrives.  We should probably
5600            be disabling signals.  */
5601         if (CPU_NEXT(first_cpu)) {
5602             TaskState *ts;
5603 
5604             cpu_list_lock();
5605             /* Remove the CPU from the list.  */
5606             QTAILQ_REMOVE(&cpus, cpu, node);
5607             cpu_list_unlock();
5608             ts = cpu->opaque;
5609             if (ts->child_tidptr) {
5610                 put_user_u32(0, ts->child_tidptr);
5611                 sys_futex(g2h(ts->child_tidptr), FUTEX_WAKE, INT_MAX,
5612                           NULL, NULL, 0);
5613             }
5614             thread_cpu = NULL;
5615             object_unref(OBJECT(cpu));
5616             g_free(ts);
5617             rcu_unregister_thread();
5618             pthread_exit(NULL);
5619         }
5620 #ifdef TARGET_GPROF
5621         _mcleanup();
5622 #endif
5623         gdb_exit(cpu_env, arg1);
5624         _exit(arg1);
5625         ret = 0; /* avoid warning */
5626         break;
5627     case TARGET_NR_read:
5628         if (arg3 == 0)
5629             ret = 0;
5630         else {
5631             if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
5632                 goto efault;
5633             ret = get_errno(read(arg1, p, arg3));
5634             unlock_user(p, arg2, ret);
5635         }
5636         break;
5637     case TARGET_NR_write:
5638         if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
5639             goto efault;
5640         ret = get_errno(write(arg1, p, arg3));
5641         unlock_user(p, arg2, 0);
5642         break;
5643     case TARGET_NR_open:
5644         if (!(p = lock_user_string(arg1)))
5645             goto efault;
5646         ret = get_errno(do_openat(cpu_env, AT_FDCWD, p,
5647                                   target_to_host_bitmask(arg2, fcntl_flags_tbl),
5648                                   arg3));
5649         unlock_user(p, arg1, 0);
5650         break;
5651     case TARGET_NR_openat:
5652         if (!(p = lock_user_string(arg2)))
5653             goto efault;
5654         ret = get_errno(do_openat(cpu_env, arg1, p,
5655                                   target_to_host_bitmask(arg3, fcntl_flags_tbl),
5656                                   arg4));
5657         unlock_user(p, arg2, 0);
5658         break;
5659     case TARGET_NR_close:
5660         ret = get_errno(close(arg1));
5661         break;
5662     case TARGET_NR_brk:
5663         ret = do_brk(arg1);
5664         break;
5665     case TARGET_NR_fork:
5666         ret = get_errno(do_fork(cpu_env, SIGCHLD, 0, 0, 0, 0));
5667         break;
5668 #ifdef TARGET_NR_waitpid
5669     case TARGET_NR_waitpid:
5670         {
5671             int status;
5672             ret = get_errno(waitpid(arg1, &status, arg3));
5673             if (!is_error(ret) && arg2 && ret
5674                 && put_user_s32(host_to_target_waitstatus(status), arg2))
5675                 goto efault;
5676         }
5677         break;
5678 #endif
5679 #ifdef TARGET_NR_waitid
5680     case TARGET_NR_waitid:
5681         {
5682             siginfo_t info;
5683             info.si_pid = 0;
5684             ret = get_errno(waitid(arg1, arg2, &info, arg4));
5685             if (!is_error(ret) && arg3 && info.si_pid != 0) {
5686                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0)))
5687                     goto efault;
5688                 host_to_target_siginfo(p, &info);
5689                 unlock_user(p, arg3, sizeof(target_siginfo_t));
5690             }
5691         }
5692         break;
5693 #endif
5694 #ifdef TARGET_NR_creat /* not on alpha */
5695     case TARGET_NR_creat:
5696         if (!(p = lock_user_string(arg1)))
5697             goto efault;
5698         ret = get_errno(creat(p, arg2));
5699         unlock_user(p, arg1, 0);
5700         break;
5701 #endif
5702     case TARGET_NR_link:
5703         {
5704             void * p2;
5705             p = lock_user_string(arg1);
5706             p2 = lock_user_string(arg2);
5707             if (!p || !p2)
5708                 ret = -TARGET_EFAULT;
5709             else
5710                 ret = get_errno(link(p, p2));
5711             unlock_user(p2, arg2, 0);
5712             unlock_user(p, arg1, 0);
5713         }
5714         break;
5715 #if defined(TARGET_NR_linkat)
5716     case TARGET_NR_linkat:
5717         {
5718             void * p2 = NULL;
5719             if (!arg2 || !arg4)
5720                 goto efault;
5721             p  = lock_user_string(arg2);
5722             p2 = lock_user_string(arg4);
5723             if (!p || !p2)
5724                 ret = -TARGET_EFAULT;
5725             else
5726                 ret = get_errno(linkat(arg1, p, arg3, p2, arg5));
5727             unlock_user(p, arg2, 0);
5728             unlock_user(p2, arg4, 0);
5729         }
5730         break;
5731 #endif
5732     case TARGET_NR_unlink:
5733         if (!(p = lock_user_string(arg1)))
5734             goto efault;
5735         ret = get_errno(unlink(p));
5736         unlock_user(p, arg1, 0);
5737         break;
5738 #if defined(TARGET_NR_unlinkat)
5739     case TARGET_NR_unlinkat:
5740         if (!(p = lock_user_string(arg2)))
5741             goto efault;
5742         ret = get_errno(unlinkat(arg1, p, arg3));
5743         unlock_user(p, arg2, 0);
5744         break;
5745 #endif
5746     case TARGET_NR_execve:
5747         {
5748             char **argp, **envp;
5749             int argc, envc;
5750             abi_ulong gp;
5751             abi_ulong guest_argp;
5752             abi_ulong guest_envp;
5753             abi_ulong addr;
5754             char **q;
5755             int total_size = 0;
5756 
5757             argc = 0;
5758             guest_argp = arg2;
5759             for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) {
5760                 if (get_user_ual(addr, gp))
5761                     goto efault;
5762                 if (!addr)
5763                     break;
5764                 argc++;
5765             }
5766             envc = 0;
5767             guest_envp = arg3;
5768             for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) {
5769                 if (get_user_ual(addr, gp))
5770                     goto efault;
5771                 if (!addr)
5772                     break;
5773                 envc++;
5774             }
5775 
5776             argp = alloca((argc + 1) * sizeof(void *));
5777             envp = alloca((envc + 1) * sizeof(void *));
5778 
5779             for (gp = guest_argp, q = argp; gp;
5780                   gp += sizeof(abi_ulong), q++) {
5781                 if (get_user_ual(addr, gp))
5782                     goto execve_efault;
5783                 if (!addr)
5784                     break;
5785                 if (!(*q = lock_user_string(addr)))
5786                     goto execve_efault;
5787                 total_size += strlen(*q) + 1;
5788             }
5789             *q = NULL;
5790 
5791             for (gp = guest_envp, q = envp; gp;
5792                   gp += sizeof(abi_ulong), q++) {
5793                 if (get_user_ual(addr, gp))
5794                     goto execve_efault;
5795                 if (!addr)
5796                     break;
5797                 if (!(*q = lock_user_string(addr)))
5798                     goto execve_efault;
5799                 total_size += strlen(*q) + 1;
5800             }
5801             *q = NULL;
5802 
5803             /* This case will not be caught by the host's execve() if its
5804                page size is bigger than the target's. */
5805             if (total_size > MAX_ARG_PAGES * TARGET_PAGE_SIZE) {
5806                 ret = -TARGET_E2BIG;
5807                 goto execve_end;
5808             }
5809             if (!(p = lock_user_string(arg1)))
5810                 goto execve_efault;
5811             ret = get_errno(execve(p, argp, envp));
5812             unlock_user(p, arg1, 0);
5813 
5814             goto execve_end;
5815 
5816         execve_efault:
5817             ret = -TARGET_EFAULT;
5818 
5819         execve_end:
5820             for (gp = guest_argp, q = argp; *q;
5821                   gp += sizeof(abi_ulong), q++) {
5822                 if (get_user_ual(addr, gp)
5823                     || !addr)
5824                     break;
5825                 unlock_user(*q, addr, 0);
5826             }
5827             for (gp = guest_envp, q = envp; *q;
5828                   gp += sizeof(abi_ulong), q++) {
5829                 if (get_user_ual(addr, gp)
5830                     || !addr)
5831                     break;
5832                 unlock_user(*q, addr, 0);
5833             }
5834         }
5835         break;
5836     case TARGET_NR_chdir:
5837         if (!(p = lock_user_string(arg1)))
5838             goto efault;
5839         ret = get_errno(chdir(p));
5840         unlock_user(p, arg1, 0);
5841         break;
5842 #ifdef TARGET_NR_time
5843     case TARGET_NR_time:
5844         {
5845             time_t host_time;
5846             ret = get_errno(time(&host_time));
5847             if (!is_error(ret)
5848                 && arg1
5849                 && put_user_sal(host_time, arg1))
5850                 goto efault;
5851         }
5852         break;
5853 #endif
5854     case TARGET_NR_mknod:
5855         if (!(p = lock_user_string(arg1)))
5856             goto efault;
5857         ret = get_errno(mknod(p, arg2, arg3));
5858         unlock_user(p, arg1, 0);
5859         break;
5860 #if defined(TARGET_NR_mknodat)
5861     case TARGET_NR_mknodat:
5862         if (!(p = lock_user_string(arg2)))
5863             goto efault;
5864         ret = get_errno(mknodat(arg1, p, arg3, arg4));
5865         unlock_user(p, arg2, 0);
5866         break;
5867 #endif
5868     case TARGET_NR_chmod:
5869         if (!(p = lock_user_string(arg1)))
5870             goto efault;
5871         ret = get_errno(chmod(p, arg2));
5872         unlock_user(p, arg1, 0);
5873         break;
5874 #ifdef TARGET_NR_break
5875     case TARGET_NR_break:
5876         goto unimplemented;
5877 #endif
5878 #ifdef TARGET_NR_oldstat
5879     case TARGET_NR_oldstat:
5880         goto unimplemented;
5881 #endif
5882     case TARGET_NR_lseek:
5883         ret = get_errno(lseek(arg1, arg2, arg3));
5884         break;
5885 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
5886     /* Alpha specific */
5887     case TARGET_NR_getxpid:
5888         ((CPUAlphaState *)cpu_env)->ir[IR_A4] = getppid();
5889         ret = get_errno(getpid());
5890         break;
5891 #endif
5892 #ifdef TARGET_NR_getpid
5893     case TARGET_NR_getpid:
5894         ret = get_errno(getpid());
5895         break;
5896 #endif
5897     case TARGET_NR_mount:
5898         {
5899             /* need to look at the data field */
5900             void *p2, *p3;
5901 
5902             if (arg1) {
5903                 p = lock_user_string(arg1);
5904                 if (!p) {
5905                     goto efault;
5906                 }
5907             } else {
5908                 p = NULL;
5909             }
5910 
5911             p2 = lock_user_string(arg2);
5912             if (!p2) {
5913                 if (arg1) {
5914                     unlock_user(p, arg1, 0);
5915                 }
5916                 goto efault;
5917             }
5918 
5919             if (arg3) {
5920                 p3 = lock_user_string(arg3);
5921                 if (!p3) {
5922                     if (arg1) {
5923                         unlock_user(p, arg1, 0);
5924                     }
5925                     unlock_user(p2, arg2, 0);
5926                     goto efault;
5927                 }
5928             } else {
5929                 p3 = NULL;
5930             }
5931 
5932             /* FIXME - arg5 should be locked, but it isn't clear how to
5933              * do that since it's not guaranteed to be a NULL-terminated
5934              * string.
5935              */
5936             if (!arg5) {
5937                 ret = mount(p, p2, p3, (unsigned long)arg4, NULL);
5938             } else {
5939                 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(arg5));
5940             }
5941             ret = get_errno(ret);
5942 
5943             if (arg1) {
5944                 unlock_user(p, arg1, 0);
5945             }
5946             unlock_user(p2, arg2, 0);
5947             if (arg3) {
5948                 unlock_user(p3, arg3, 0);
5949             }
5950         }
5951         break;
5952 #ifdef TARGET_NR_umount
5953     case TARGET_NR_umount:
5954         if (!(p = lock_user_string(arg1)))
5955             goto efault;
5956         ret = get_errno(umount(p));
5957         unlock_user(p, arg1, 0);
5958         break;
5959 #endif
5960 #ifdef TARGET_NR_stime /* not on alpha */
5961     case TARGET_NR_stime:
5962         {
5963             time_t host_time;
5964             if (get_user_sal(host_time, arg1))
5965                 goto efault;
5966             ret = get_errno(stime(&host_time));
5967         }
5968         break;
5969 #endif
5970     case TARGET_NR_ptrace:
5971         goto unimplemented;
5972 #ifdef TARGET_NR_alarm /* not on alpha */
5973     case TARGET_NR_alarm:
5974         ret = alarm(arg1);
5975         break;
5976 #endif
5977 #ifdef TARGET_NR_oldfstat
5978     case TARGET_NR_oldfstat:
5979         goto unimplemented;
5980 #endif
5981 #ifdef TARGET_NR_pause /* not on alpha */
5982     case TARGET_NR_pause:
5983         ret = get_errno(pause());
5984         break;
5985 #endif
5986 #ifdef TARGET_NR_utime
5987     case TARGET_NR_utime:
5988         {
5989             struct utimbuf tbuf, *host_tbuf;
5990             struct target_utimbuf *target_tbuf;
5991             if (arg2) {
5992                 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1))
5993                     goto efault;
5994                 tbuf.actime = tswapal(target_tbuf->actime);
5995                 tbuf.modtime = tswapal(target_tbuf->modtime);
5996                 unlock_user_struct(target_tbuf, arg2, 0);
5997                 host_tbuf = &tbuf;
5998             } else {
5999                 host_tbuf = NULL;
6000             }
6001             if (!(p = lock_user_string(arg1)))
6002                 goto efault;
6003             ret = get_errno(utime(p, host_tbuf));
6004             unlock_user(p, arg1, 0);
6005         }
6006         break;
6007 #endif
6008     case TARGET_NR_utimes:
6009         {
6010             struct timeval *tvp, tv[2];
6011             if (arg2) {
6012                 if (copy_from_user_timeval(&tv[0], arg2)
6013                     || copy_from_user_timeval(&tv[1],
6014                                               arg2 + sizeof(struct target_timeval)))
6015                     goto efault;
6016                 tvp = tv;
6017             } else {
6018                 tvp = NULL;
6019             }
6020             if (!(p = lock_user_string(arg1)))
6021                 goto efault;
6022             ret = get_errno(utimes(p, tvp));
6023             unlock_user(p, arg1, 0);
6024         }
6025         break;
6026 #if defined(TARGET_NR_futimesat)
6027     case TARGET_NR_futimesat:
6028         {
6029             struct timeval *tvp, tv[2];
6030             if (arg3) {
6031                 if (copy_from_user_timeval(&tv[0], arg3)
6032                     || copy_from_user_timeval(&tv[1],
6033                                               arg3 + sizeof(struct target_timeval)))
6034                     goto efault;
6035                 tvp = tv;
6036             } else {
6037                 tvp = NULL;
6038             }
6039             if (!(p = lock_user_string(arg2)))
6040                 goto efault;
6041             ret = get_errno(futimesat(arg1, path(p), tvp));
6042             unlock_user(p, arg2, 0);
6043         }
6044         break;
6045 #endif
6046 #ifdef TARGET_NR_stty
6047     case TARGET_NR_stty:
6048         goto unimplemented;
6049 #endif
6050 #ifdef TARGET_NR_gtty
6051     case TARGET_NR_gtty:
6052         goto unimplemented;
6053 #endif
6054     case TARGET_NR_access:
6055         if (!(p = lock_user_string(arg1)))
6056             goto efault;
6057         ret = get_errno(access(path(p), arg2));
6058         unlock_user(p, arg1, 0);
6059         break;
6060 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
6061     case TARGET_NR_faccessat:
6062         if (!(p = lock_user_string(arg2)))
6063             goto efault;
6064         ret = get_errno(faccessat(arg1, p, arg3, 0));
6065         unlock_user(p, arg2, 0);
6066         break;
6067 #endif
6068 #ifdef TARGET_NR_nice /* not on alpha */
6069     case TARGET_NR_nice:
6070         ret = get_errno(nice(arg1));
6071         break;
6072 #endif
6073 #ifdef TARGET_NR_ftime
6074     case TARGET_NR_ftime:
6075         goto unimplemented;
6076 #endif
6077     case TARGET_NR_sync:
6078         sync();
6079         ret = 0;
6080         break;
6081     case TARGET_NR_kill:
6082         ret = get_errno(kill(arg1, target_to_host_signal(arg2)));
6083         break;
6084     case TARGET_NR_rename:
6085         {
6086             void *p2;
6087             p = lock_user_string(arg1);
6088             p2 = lock_user_string(arg2);
6089             if (!p || !p2)
6090                 ret = -TARGET_EFAULT;
6091             else
6092                 ret = get_errno(rename(p, p2));
6093             unlock_user(p2, arg2, 0);
6094             unlock_user(p, arg1, 0);
6095         }
6096         break;
6097 #if defined(TARGET_NR_renameat)
6098     case TARGET_NR_renameat:
6099         {
6100             void *p2;
6101             p  = lock_user_string(arg2);
6102             p2 = lock_user_string(arg4);
6103             if (!p || !p2)
6104                 ret = -TARGET_EFAULT;
6105             else
6106                 ret = get_errno(renameat(arg1, p, arg3, p2));
6107             unlock_user(p2, arg4, 0);
6108             unlock_user(p, arg2, 0);
6109         }
6110         break;
6111 #endif
6112     case TARGET_NR_mkdir:
6113         if (!(p = lock_user_string(arg1)))
6114             goto efault;
6115         ret = get_errno(mkdir(p, arg2));
6116         unlock_user(p, arg1, 0);
6117         break;
6118 #if defined(TARGET_NR_mkdirat)
6119     case TARGET_NR_mkdirat:
6120         if (!(p = lock_user_string(arg2)))
6121             goto efault;
6122         ret = get_errno(mkdirat(arg1, p, arg3));
6123         unlock_user(p, arg2, 0);
6124         break;
6125 #endif
6126     case TARGET_NR_rmdir:
6127         if (!(p = lock_user_string(arg1)))
6128             goto efault;
6129         ret = get_errno(rmdir(p));
6130         unlock_user(p, arg1, 0);
6131         break;
6132     case TARGET_NR_dup:
6133         ret = get_errno(dup(arg1));
6134         break;
6135     case TARGET_NR_pipe:
6136         ret = do_pipe(cpu_env, arg1, 0, 0);
6137         break;
6138 #ifdef TARGET_NR_pipe2
6139     case TARGET_NR_pipe2:
6140         ret = do_pipe(cpu_env, arg1,
6141                       target_to_host_bitmask(arg2, fcntl_flags_tbl), 1);
6142         break;
6143 #endif
6144     case TARGET_NR_times:
6145         {
6146             struct target_tms *tmsp;
6147             struct tms tms;
6148             ret = get_errno(times(&tms));
6149             if (arg1) {
6150                 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0);
6151                 if (!tmsp)
6152                     goto efault;
6153                 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime));
6154                 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime));
6155                 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime));
6156                 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime));
6157             }
6158             if (!is_error(ret))
6159                 ret = host_to_target_clock_t(ret);
6160         }
6161         break;
6162 #ifdef TARGET_NR_prof
6163     case TARGET_NR_prof:
6164         goto unimplemented;
6165 #endif
6166 #ifdef TARGET_NR_signal
6167     case TARGET_NR_signal:
6168         goto unimplemented;
6169 #endif
6170     case TARGET_NR_acct:
6171         if (arg1 == 0) {
6172             ret = get_errno(acct(NULL));
6173         } else {
6174             if (!(p = lock_user_string(arg1)))
6175                 goto efault;
6176             ret = get_errno(acct(path(p)));
6177             unlock_user(p, arg1, 0);
6178         }
6179         break;
6180 #ifdef TARGET_NR_umount2
6181     case TARGET_NR_umount2:
6182         if (!(p = lock_user_string(arg1)))
6183             goto efault;
6184         ret = get_errno(umount2(p, arg2));
6185         unlock_user(p, arg1, 0);
6186         break;
6187 #endif
6188 #ifdef TARGET_NR_lock
6189     case TARGET_NR_lock:
6190         goto unimplemented;
6191 #endif
6192     case TARGET_NR_ioctl:
6193         ret = do_ioctl(arg1, arg2, arg3);
6194         break;
6195     case TARGET_NR_fcntl:
6196         ret = do_fcntl(arg1, arg2, arg3);
6197         break;
6198 #ifdef TARGET_NR_mpx
6199     case TARGET_NR_mpx:
6200         goto unimplemented;
6201 #endif
6202     case TARGET_NR_setpgid:
6203         ret = get_errno(setpgid(arg1, arg2));
6204         break;
6205 #ifdef TARGET_NR_ulimit
6206     case TARGET_NR_ulimit:
6207         goto unimplemented;
6208 #endif
6209 #ifdef TARGET_NR_oldolduname
6210     case TARGET_NR_oldolduname:
6211         goto unimplemented;
6212 #endif
6213     case TARGET_NR_umask:
6214         ret = get_errno(umask(arg1));
6215         break;
6216     case TARGET_NR_chroot:
6217         if (!(p = lock_user_string(arg1)))
6218             goto efault;
6219         ret = get_errno(chroot(p));
6220         unlock_user(p, arg1, 0);
6221         break;
6222     case TARGET_NR_ustat:
6223         goto unimplemented;
6224     case TARGET_NR_dup2:
6225         ret = get_errno(dup2(arg1, arg2));
6226         break;
6227 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
6228     case TARGET_NR_dup3:
6229         ret = get_errno(dup3(arg1, arg2, arg3));
6230         break;
6231 #endif
6232 #ifdef TARGET_NR_getppid /* not on alpha */
6233     case TARGET_NR_getppid:
6234         ret = get_errno(getppid());
6235         break;
6236 #endif
6237     case TARGET_NR_getpgrp:
6238         ret = get_errno(getpgrp());
6239         break;
6240     case TARGET_NR_setsid:
6241         ret = get_errno(setsid());
6242         break;
6243 #ifdef TARGET_NR_sigaction
6244     case TARGET_NR_sigaction:
6245         {
6246 #if defined(TARGET_ALPHA)
6247             struct target_sigaction act, oact, *pact = 0;
6248             struct target_old_sigaction *old_act;
6249             if (arg2) {
6250                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
6251                     goto efault;
6252                 act._sa_handler = old_act->_sa_handler;
6253                 target_siginitset(&act.sa_mask, old_act->sa_mask);
6254                 act.sa_flags = old_act->sa_flags;
6255                 act.sa_restorer = 0;
6256                 unlock_user_struct(old_act, arg2, 0);
6257                 pact = &act;
6258             }
6259             ret = get_errno(do_sigaction(arg1, pact, &oact));
6260             if (!is_error(ret) && arg3) {
6261                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
6262                     goto efault;
6263                 old_act->_sa_handler = oact._sa_handler;
6264                 old_act->sa_mask = oact.sa_mask.sig[0];
6265                 old_act->sa_flags = oact.sa_flags;
6266                 unlock_user_struct(old_act, arg3, 1);
6267             }
6268 #elif defined(TARGET_MIPS)
6269 	    struct target_sigaction act, oact, *pact, *old_act;
6270 
6271 	    if (arg2) {
6272                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
6273                     goto efault;
6274 		act._sa_handler = old_act->_sa_handler;
6275 		target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]);
6276 		act.sa_flags = old_act->sa_flags;
6277 		unlock_user_struct(old_act, arg2, 0);
6278 		pact = &act;
6279 	    } else {
6280 		pact = NULL;
6281 	    }
6282 
6283 	    ret = get_errno(do_sigaction(arg1, pact, &oact));
6284 
6285 	    if (!is_error(ret) && arg3) {
6286                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
6287                     goto efault;
6288 		old_act->_sa_handler = oact._sa_handler;
6289 		old_act->sa_flags = oact.sa_flags;
6290 		old_act->sa_mask.sig[0] = oact.sa_mask.sig[0];
6291 		old_act->sa_mask.sig[1] = 0;
6292 		old_act->sa_mask.sig[2] = 0;
6293 		old_act->sa_mask.sig[3] = 0;
6294 		unlock_user_struct(old_act, arg3, 1);
6295 	    }
6296 #else
6297             struct target_old_sigaction *old_act;
6298             struct target_sigaction act, oact, *pact;
6299             if (arg2) {
6300                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
6301                     goto efault;
6302                 act._sa_handler = old_act->_sa_handler;
6303                 target_siginitset(&act.sa_mask, old_act->sa_mask);
6304                 act.sa_flags = old_act->sa_flags;
6305                 act.sa_restorer = old_act->sa_restorer;
6306                 unlock_user_struct(old_act, arg2, 0);
6307                 pact = &act;
6308             } else {
6309                 pact = NULL;
6310             }
6311             ret = get_errno(do_sigaction(arg1, pact, &oact));
6312             if (!is_error(ret) && arg3) {
6313                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
6314                     goto efault;
6315                 old_act->_sa_handler = oact._sa_handler;
6316                 old_act->sa_mask = oact.sa_mask.sig[0];
6317                 old_act->sa_flags = oact.sa_flags;
6318                 old_act->sa_restorer = oact.sa_restorer;
6319                 unlock_user_struct(old_act, arg3, 1);
6320             }
6321 #endif
6322         }
6323         break;
6324 #endif
6325     case TARGET_NR_rt_sigaction:
6326         {
6327 #if defined(TARGET_ALPHA)
6328             struct target_sigaction act, oact, *pact = 0;
6329             struct target_rt_sigaction *rt_act;
6330             /* ??? arg4 == sizeof(sigset_t).  */
6331             if (arg2) {
6332                 if (!lock_user_struct(VERIFY_READ, rt_act, arg2, 1))
6333                     goto efault;
6334                 act._sa_handler = rt_act->_sa_handler;
6335                 act.sa_mask = rt_act->sa_mask;
6336                 act.sa_flags = rt_act->sa_flags;
6337                 act.sa_restorer = arg5;
6338                 unlock_user_struct(rt_act, arg2, 0);
6339                 pact = &act;
6340             }
6341             ret = get_errno(do_sigaction(arg1, pact, &oact));
6342             if (!is_error(ret) && arg3) {
6343                 if (!lock_user_struct(VERIFY_WRITE, rt_act, arg3, 0))
6344                     goto efault;
6345                 rt_act->_sa_handler = oact._sa_handler;
6346                 rt_act->sa_mask = oact.sa_mask;
6347                 rt_act->sa_flags = oact.sa_flags;
6348                 unlock_user_struct(rt_act, arg3, 1);
6349             }
6350 #else
6351             struct target_sigaction *act;
6352             struct target_sigaction *oact;
6353 
6354             if (arg2) {
6355                 if (!lock_user_struct(VERIFY_READ, act, arg2, 1))
6356                     goto efault;
6357             } else
6358                 act = NULL;
6359             if (arg3) {
6360                 if (!lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) {
6361                     ret = -TARGET_EFAULT;
6362                     goto rt_sigaction_fail;
6363                 }
6364             } else
6365                 oact = NULL;
6366             ret = get_errno(do_sigaction(arg1, act, oact));
6367 	rt_sigaction_fail:
6368             if (act)
6369                 unlock_user_struct(act, arg2, 0);
6370             if (oact)
6371                 unlock_user_struct(oact, arg3, 1);
6372 #endif
6373         }
6374         break;
6375 #ifdef TARGET_NR_sgetmask /* not on alpha */
6376     case TARGET_NR_sgetmask:
6377         {
6378             sigset_t cur_set;
6379             abi_ulong target_set;
6380             do_sigprocmask(0, NULL, &cur_set);
6381             host_to_target_old_sigset(&target_set, &cur_set);
6382             ret = target_set;
6383         }
6384         break;
6385 #endif
6386 #ifdef TARGET_NR_ssetmask /* not on alpha */
6387     case TARGET_NR_ssetmask:
6388         {
6389             sigset_t set, oset, cur_set;
6390             abi_ulong target_set = arg1;
6391             do_sigprocmask(0, NULL, &cur_set);
6392             target_to_host_old_sigset(&set, &target_set);
6393             sigorset(&set, &set, &cur_set);
6394             do_sigprocmask(SIG_SETMASK, &set, &oset);
6395             host_to_target_old_sigset(&target_set, &oset);
6396             ret = target_set;
6397         }
6398         break;
6399 #endif
6400 #ifdef TARGET_NR_sigprocmask
6401     case TARGET_NR_sigprocmask:
6402         {
6403 #if defined(TARGET_ALPHA)
6404             sigset_t set, oldset;
6405             abi_ulong mask;
6406             int how;
6407 
6408             switch (arg1) {
6409             case TARGET_SIG_BLOCK:
6410                 how = SIG_BLOCK;
6411                 break;
6412             case TARGET_SIG_UNBLOCK:
6413                 how = SIG_UNBLOCK;
6414                 break;
6415             case TARGET_SIG_SETMASK:
6416                 how = SIG_SETMASK;
6417                 break;
6418             default:
6419                 ret = -TARGET_EINVAL;
6420                 goto fail;
6421             }
6422             mask = arg2;
6423             target_to_host_old_sigset(&set, &mask);
6424 
6425             ret = get_errno(do_sigprocmask(how, &set, &oldset));
6426             if (!is_error(ret)) {
6427                 host_to_target_old_sigset(&mask, &oldset);
6428                 ret = mask;
6429                 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; /* force no error */
6430             }
6431 #else
6432             sigset_t set, oldset, *set_ptr;
6433             int how;
6434 
6435             if (arg2) {
6436                 switch (arg1) {
6437                 case TARGET_SIG_BLOCK:
6438                     how = SIG_BLOCK;
6439                     break;
6440                 case TARGET_SIG_UNBLOCK:
6441                     how = SIG_UNBLOCK;
6442                     break;
6443                 case TARGET_SIG_SETMASK:
6444                     how = SIG_SETMASK;
6445                     break;
6446                 default:
6447                     ret = -TARGET_EINVAL;
6448                     goto fail;
6449                 }
6450                 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1)))
6451                     goto efault;
6452                 target_to_host_old_sigset(&set, p);
6453                 unlock_user(p, arg2, 0);
6454                 set_ptr = &set;
6455             } else {
6456                 how = 0;
6457                 set_ptr = NULL;
6458             }
6459             ret = get_errno(do_sigprocmask(how, set_ptr, &oldset));
6460             if (!is_error(ret) && arg3) {
6461                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
6462                     goto efault;
6463                 host_to_target_old_sigset(p, &oldset);
6464                 unlock_user(p, arg3, sizeof(target_sigset_t));
6465             }
6466 #endif
6467         }
6468         break;
6469 #endif
6470     case TARGET_NR_rt_sigprocmask:
6471         {
6472             int how = arg1;
6473             sigset_t set, oldset, *set_ptr;
6474 
6475             if (arg2) {
6476                 switch(how) {
6477                 case TARGET_SIG_BLOCK:
6478                     how = SIG_BLOCK;
6479                     break;
6480                 case TARGET_SIG_UNBLOCK:
6481                     how = SIG_UNBLOCK;
6482                     break;
6483                 case TARGET_SIG_SETMASK:
6484                     how = SIG_SETMASK;
6485                     break;
6486                 default:
6487                     ret = -TARGET_EINVAL;
6488                     goto fail;
6489                 }
6490                 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1)))
6491                     goto efault;
6492                 target_to_host_sigset(&set, p);
6493                 unlock_user(p, arg2, 0);
6494                 set_ptr = &set;
6495             } else {
6496                 how = 0;
6497                 set_ptr = NULL;
6498             }
6499             ret = get_errno(do_sigprocmask(how, set_ptr, &oldset));
6500             if (!is_error(ret) && arg3) {
6501                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
6502                     goto efault;
6503                 host_to_target_sigset(p, &oldset);
6504                 unlock_user(p, arg3, sizeof(target_sigset_t));
6505             }
6506         }
6507         break;
6508 #ifdef TARGET_NR_sigpending
6509     case TARGET_NR_sigpending:
6510         {
6511             sigset_t set;
6512             ret = get_errno(sigpending(&set));
6513             if (!is_error(ret)) {
6514                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
6515                     goto efault;
6516                 host_to_target_old_sigset(p, &set);
6517                 unlock_user(p, arg1, sizeof(target_sigset_t));
6518             }
6519         }
6520         break;
6521 #endif
6522     case TARGET_NR_rt_sigpending:
6523         {
6524             sigset_t set;
6525             ret = get_errno(sigpending(&set));
6526             if (!is_error(ret)) {
6527                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
6528                     goto efault;
6529                 host_to_target_sigset(p, &set);
6530                 unlock_user(p, arg1, sizeof(target_sigset_t));
6531             }
6532         }
6533         break;
6534 #ifdef TARGET_NR_sigsuspend
6535     case TARGET_NR_sigsuspend:
6536         {
6537             sigset_t set;
6538 #if defined(TARGET_ALPHA)
6539             abi_ulong mask = arg1;
6540             target_to_host_old_sigset(&set, &mask);
6541 #else
6542             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
6543                 goto efault;
6544             target_to_host_old_sigset(&set, p);
6545             unlock_user(p, arg1, 0);
6546 #endif
6547             ret = get_errno(sigsuspend(&set));
6548         }
6549         break;
6550 #endif
6551     case TARGET_NR_rt_sigsuspend:
6552         {
6553             sigset_t set;
6554             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
6555                 goto efault;
6556             target_to_host_sigset(&set, p);
6557             unlock_user(p, arg1, 0);
6558             ret = get_errno(sigsuspend(&set));
6559         }
6560         break;
6561     case TARGET_NR_rt_sigtimedwait:
6562         {
6563             sigset_t set;
6564             struct timespec uts, *puts;
6565             siginfo_t uinfo;
6566 
6567             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
6568                 goto efault;
6569             target_to_host_sigset(&set, p);
6570             unlock_user(p, arg1, 0);
6571             if (arg3) {
6572                 puts = &uts;
6573                 target_to_host_timespec(puts, arg3);
6574             } else {
6575                 puts = NULL;
6576             }
6577             ret = get_errno(sigtimedwait(&set, &uinfo, puts));
6578             if (!is_error(ret)) {
6579                 if (arg2) {
6580                     p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t),
6581                                   0);
6582                     if (!p) {
6583                         goto efault;
6584                     }
6585                     host_to_target_siginfo(p, &uinfo);
6586                     unlock_user(p, arg2, sizeof(target_siginfo_t));
6587                 }
6588                 ret = host_to_target_signal(ret);
6589             }
6590         }
6591         break;
6592     case TARGET_NR_rt_sigqueueinfo:
6593         {
6594             siginfo_t uinfo;
6595             if (!(p = lock_user(VERIFY_READ, arg3, sizeof(target_sigset_t), 1)))
6596                 goto efault;
6597             target_to_host_siginfo(&uinfo, p);
6598             unlock_user(p, arg1, 0);
6599             ret = get_errno(sys_rt_sigqueueinfo(arg1, arg2, &uinfo));
6600         }
6601         break;
6602 #ifdef TARGET_NR_sigreturn
6603     case TARGET_NR_sigreturn:
6604         /* NOTE: ret is eax, so not transcoding must be done */
6605         ret = do_sigreturn(cpu_env);
6606         break;
6607 #endif
6608     case TARGET_NR_rt_sigreturn:
6609         /* NOTE: ret is eax, so not transcoding must be done */
6610         ret = do_rt_sigreturn(cpu_env);
6611         break;
6612     case TARGET_NR_sethostname:
6613         if (!(p = lock_user_string(arg1)))
6614             goto efault;
6615         ret = get_errno(sethostname(p, arg2));
6616         unlock_user(p, arg1, 0);
6617         break;
6618     case TARGET_NR_setrlimit:
6619         {
6620             int resource = target_to_host_resource(arg1);
6621             struct target_rlimit *target_rlim;
6622             struct rlimit rlim;
6623             if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1))
6624                 goto efault;
6625             rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur);
6626             rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max);
6627             unlock_user_struct(target_rlim, arg2, 0);
6628             ret = get_errno(setrlimit(resource, &rlim));
6629         }
6630         break;
6631     case TARGET_NR_getrlimit:
6632         {
6633             int resource = target_to_host_resource(arg1);
6634             struct target_rlimit *target_rlim;
6635             struct rlimit rlim;
6636 
6637             ret = get_errno(getrlimit(resource, &rlim));
6638             if (!is_error(ret)) {
6639                 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
6640                     goto efault;
6641                 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
6642                 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
6643                 unlock_user_struct(target_rlim, arg2, 1);
6644             }
6645         }
6646         break;
6647     case TARGET_NR_getrusage:
6648         {
6649             struct rusage rusage;
6650             ret = get_errno(getrusage(arg1, &rusage));
6651             if (!is_error(ret)) {
6652                 ret = host_to_target_rusage(arg2, &rusage);
6653             }
6654         }
6655         break;
6656     case TARGET_NR_gettimeofday:
6657         {
6658             struct timeval tv;
6659             ret = get_errno(gettimeofday(&tv, NULL));
6660             if (!is_error(ret)) {
6661                 if (copy_to_user_timeval(arg1, &tv))
6662                     goto efault;
6663             }
6664         }
6665         break;
6666     case TARGET_NR_settimeofday:
6667         {
6668             struct timeval tv, *ptv = NULL;
6669             struct timezone tz, *ptz = NULL;
6670 
6671             if (arg1) {
6672                 if (copy_from_user_timeval(&tv, arg1)) {
6673                     goto efault;
6674                 }
6675                 ptv = &tv;
6676             }
6677 
6678             if (arg2) {
6679                 if (copy_from_user_timezone(&tz, arg2)) {
6680                     goto efault;
6681                 }
6682                 ptz = &tz;
6683             }
6684 
6685             ret = get_errno(settimeofday(ptv, ptz));
6686         }
6687         break;
6688 #if defined(TARGET_NR_select)
6689     case TARGET_NR_select:
6690 #if defined(TARGET_S390X) || defined(TARGET_ALPHA)
6691         ret = do_select(arg1, arg2, arg3, arg4, arg5);
6692 #else
6693         {
6694             struct target_sel_arg_struct *sel;
6695             abi_ulong inp, outp, exp, tvp;
6696             long nsel;
6697 
6698             if (!lock_user_struct(VERIFY_READ, sel, arg1, 1))
6699                 goto efault;
6700             nsel = tswapal(sel->n);
6701             inp = tswapal(sel->inp);
6702             outp = tswapal(sel->outp);
6703             exp = tswapal(sel->exp);
6704             tvp = tswapal(sel->tvp);
6705             unlock_user_struct(sel, arg1, 0);
6706             ret = do_select(nsel, inp, outp, exp, tvp);
6707         }
6708 #endif
6709         break;
6710 #endif
6711 #ifdef TARGET_NR_pselect6
6712     case TARGET_NR_pselect6:
6713         {
6714             abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr;
6715             fd_set rfds, wfds, efds;
6716             fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
6717             struct timespec ts, *ts_ptr;
6718 
6719             /*
6720              * The 6th arg is actually two args smashed together,
6721              * so we cannot use the C library.
6722              */
6723             sigset_t set;
6724             struct {
6725                 sigset_t *set;
6726                 size_t size;
6727             } sig, *sig_ptr;
6728 
6729             abi_ulong arg_sigset, arg_sigsize, *arg7;
6730             target_sigset_t *target_sigset;
6731 
6732             n = arg1;
6733             rfd_addr = arg2;
6734             wfd_addr = arg3;
6735             efd_addr = arg4;
6736             ts_addr = arg5;
6737 
6738             ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
6739             if (ret) {
6740                 goto fail;
6741             }
6742             ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
6743             if (ret) {
6744                 goto fail;
6745             }
6746             ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
6747             if (ret) {
6748                 goto fail;
6749             }
6750 
6751             /*
6752              * This takes a timespec, and not a timeval, so we cannot
6753              * use the do_select() helper ...
6754              */
6755             if (ts_addr) {
6756                 if (target_to_host_timespec(&ts, ts_addr)) {
6757                     goto efault;
6758                 }
6759                 ts_ptr = &ts;
6760             } else {
6761                 ts_ptr = NULL;
6762             }
6763 
6764             /* Extract the two packed args for the sigset */
6765             if (arg6) {
6766                 sig_ptr = &sig;
6767                 sig.size = _NSIG / 8;
6768 
6769                 arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1);
6770                 if (!arg7) {
6771                     goto efault;
6772                 }
6773                 arg_sigset = tswapal(arg7[0]);
6774                 arg_sigsize = tswapal(arg7[1]);
6775                 unlock_user(arg7, arg6, 0);
6776 
6777                 if (arg_sigset) {
6778                     sig.set = &set;
6779                     if (arg_sigsize != sizeof(*target_sigset)) {
6780                         /* Like the kernel, we enforce correct size sigsets */
6781                         ret = -TARGET_EINVAL;
6782                         goto fail;
6783                     }
6784                     target_sigset = lock_user(VERIFY_READ, arg_sigset,
6785                                               sizeof(*target_sigset), 1);
6786                     if (!target_sigset) {
6787                         goto efault;
6788                     }
6789                     target_to_host_sigset(&set, target_sigset);
6790                     unlock_user(target_sigset, arg_sigset, 0);
6791                 } else {
6792                     sig.set = NULL;
6793                 }
6794             } else {
6795                 sig_ptr = NULL;
6796             }
6797 
6798             ret = get_errno(sys_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
6799                                          ts_ptr, sig_ptr));
6800 
6801             if (!is_error(ret)) {
6802                 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
6803                     goto efault;
6804                 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
6805                     goto efault;
6806                 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
6807                     goto efault;
6808 
6809                 if (ts_addr && host_to_target_timespec(ts_addr, &ts))
6810                     goto efault;
6811             }
6812         }
6813         break;
6814 #endif
6815     case TARGET_NR_symlink:
6816         {
6817             void *p2;
6818             p = lock_user_string(arg1);
6819             p2 = lock_user_string(arg2);
6820             if (!p || !p2)
6821                 ret = -TARGET_EFAULT;
6822             else
6823                 ret = get_errno(symlink(p, p2));
6824             unlock_user(p2, arg2, 0);
6825             unlock_user(p, arg1, 0);
6826         }
6827         break;
6828 #if defined(TARGET_NR_symlinkat)
6829     case TARGET_NR_symlinkat:
6830         {
6831             void *p2;
6832             p  = lock_user_string(arg1);
6833             p2 = lock_user_string(arg3);
6834             if (!p || !p2)
6835                 ret = -TARGET_EFAULT;
6836             else
6837                 ret = get_errno(symlinkat(p, arg2, p2));
6838             unlock_user(p2, arg3, 0);
6839             unlock_user(p, arg1, 0);
6840         }
6841         break;
6842 #endif
6843 #ifdef TARGET_NR_oldlstat
6844     case TARGET_NR_oldlstat:
6845         goto unimplemented;
6846 #endif
6847     case TARGET_NR_readlink:
6848         {
6849             void *p2;
6850             p = lock_user_string(arg1);
6851             p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0);
6852             if (!p || !p2) {
6853                 ret = -TARGET_EFAULT;
6854             } else if (!arg3) {
6855                 /* Short circuit this for the magic exe check. */
6856                 ret = -TARGET_EINVAL;
6857             } else if (is_proc_myself((const char *)p, "exe")) {
6858                 char real[PATH_MAX], *temp;
6859                 temp = realpath(exec_path, real);
6860                 /* Return value is # of bytes that we wrote to the buffer. */
6861                 if (temp == NULL) {
6862                     ret = get_errno(-1);
6863                 } else {
6864                     /* Don't worry about sign mismatch as earlier mapping
6865                      * logic would have thrown a bad address error. */
6866                     ret = MIN(strlen(real), arg3);
6867                     /* We cannot NUL terminate the string. */
6868                     memcpy(p2, real, ret);
6869                 }
6870             } else {
6871                 ret = get_errno(readlink(path(p), p2, arg3));
6872             }
6873             unlock_user(p2, arg2, ret);
6874             unlock_user(p, arg1, 0);
6875         }
6876         break;
6877 #if defined(TARGET_NR_readlinkat)
6878     case TARGET_NR_readlinkat:
6879         {
6880             void *p2;
6881             p  = lock_user_string(arg2);
6882             p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0);
6883             if (!p || !p2) {
6884                 ret = -TARGET_EFAULT;
6885             } else if (is_proc_myself((const char *)p, "exe")) {
6886                 char real[PATH_MAX], *temp;
6887                 temp = realpath(exec_path, real);
6888                 ret = temp == NULL ? get_errno(-1) : strlen(real) ;
6889                 snprintf((char *)p2, arg4, "%s", real);
6890             } else {
6891                 ret = get_errno(readlinkat(arg1, path(p), p2, arg4));
6892             }
6893             unlock_user(p2, arg3, ret);
6894             unlock_user(p, arg2, 0);
6895         }
6896         break;
6897 #endif
6898 #ifdef TARGET_NR_uselib
6899     case TARGET_NR_uselib:
6900         goto unimplemented;
6901 #endif
6902 #ifdef TARGET_NR_swapon
6903     case TARGET_NR_swapon:
6904         if (!(p = lock_user_string(arg1)))
6905             goto efault;
6906         ret = get_errno(swapon(p, arg2));
6907         unlock_user(p, arg1, 0);
6908         break;
6909 #endif
6910     case TARGET_NR_reboot:
6911         if (arg3 == LINUX_REBOOT_CMD_RESTART2) {
6912            /* arg4 must be ignored in all other cases */
6913            p = lock_user_string(arg4);
6914            if (!p) {
6915               goto efault;
6916            }
6917            ret = get_errno(reboot(arg1, arg2, arg3, p));
6918            unlock_user(p, arg4, 0);
6919         } else {
6920            ret = get_errno(reboot(arg1, arg2, arg3, NULL));
6921         }
6922         break;
6923 #ifdef TARGET_NR_readdir
6924     case TARGET_NR_readdir:
6925         goto unimplemented;
6926 #endif
6927 #ifdef TARGET_NR_mmap
6928     case TARGET_NR_mmap:
6929 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
6930     (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
6931     defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
6932     || defined(TARGET_S390X)
6933         {
6934             abi_ulong *v;
6935             abi_ulong v1, v2, v3, v4, v5, v6;
6936             if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1)))
6937                 goto efault;
6938             v1 = tswapal(v[0]);
6939             v2 = tswapal(v[1]);
6940             v3 = tswapal(v[2]);
6941             v4 = tswapal(v[3]);
6942             v5 = tswapal(v[4]);
6943             v6 = tswapal(v[5]);
6944             unlock_user(v, arg1, 0);
6945             ret = get_errno(target_mmap(v1, v2, v3,
6946                                         target_to_host_bitmask(v4, mmap_flags_tbl),
6947                                         v5, v6));
6948         }
6949 #else
6950         ret = get_errno(target_mmap(arg1, arg2, arg3,
6951                                     target_to_host_bitmask(arg4, mmap_flags_tbl),
6952                                     arg5,
6953                                     arg6));
6954 #endif
6955         break;
6956 #endif
6957 #ifdef TARGET_NR_mmap2
6958     case TARGET_NR_mmap2:
6959 #ifndef MMAP_SHIFT
6960 #define MMAP_SHIFT 12
6961 #endif
6962         ret = get_errno(target_mmap(arg1, arg2, arg3,
6963                                     target_to_host_bitmask(arg4, mmap_flags_tbl),
6964                                     arg5,
6965                                     arg6 << MMAP_SHIFT));
6966         break;
6967 #endif
6968     case TARGET_NR_munmap:
6969         ret = get_errno(target_munmap(arg1, arg2));
6970         break;
6971     case TARGET_NR_mprotect:
6972         {
6973             TaskState *ts = cpu->opaque;
6974             /* Special hack to detect libc making the stack executable.  */
6975             if ((arg3 & PROT_GROWSDOWN)
6976                 && arg1 >= ts->info->stack_limit
6977                 && arg1 <= ts->info->start_stack) {
6978                 arg3 &= ~PROT_GROWSDOWN;
6979                 arg2 = arg2 + arg1 - ts->info->stack_limit;
6980                 arg1 = ts->info->stack_limit;
6981             }
6982         }
6983         ret = get_errno(target_mprotect(arg1, arg2, arg3));
6984         break;
6985 #ifdef TARGET_NR_mremap
6986     case TARGET_NR_mremap:
6987         ret = get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5));
6988         break;
6989 #endif
6990         /* ??? msync/mlock/munlock are broken for softmmu.  */
6991 #ifdef TARGET_NR_msync
6992     case TARGET_NR_msync:
6993         ret = get_errno(msync(g2h(arg1), arg2, arg3));
6994         break;
6995 #endif
6996 #ifdef TARGET_NR_mlock
6997     case TARGET_NR_mlock:
6998         ret = get_errno(mlock(g2h(arg1), arg2));
6999         break;
7000 #endif
7001 #ifdef TARGET_NR_munlock
7002     case TARGET_NR_munlock:
7003         ret = get_errno(munlock(g2h(arg1), arg2));
7004         break;
7005 #endif
7006 #ifdef TARGET_NR_mlockall
7007     case TARGET_NR_mlockall:
7008         ret = get_errno(mlockall(target_to_host_mlockall_arg(arg1)));
7009         break;
7010 #endif
7011 #ifdef TARGET_NR_munlockall
7012     case TARGET_NR_munlockall:
7013         ret = get_errno(munlockall());
7014         break;
7015 #endif
7016     case TARGET_NR_truncate:
7017         if (!(p = lock_user_string(arg1)))
7018             goto efault;
7019         ret = get_errno(truncate(p, arg2));
7020         unlock_user(p, arg1, 0);
7021         break;
7022     case TARGET_NR_ftruncate:
7023         ret = get_errno(ftruncate(arg1, arg2));
7024         break;
7025     case TARGET_NR_fchmod:
7026         ret = get_errno(fchmod(arg1, arg2));
7027         break;
7028 #if defined(TARGET_NR_fchmodat)
7029     case TARGET_NR_fchmodat:
7030         if (!(p = lock_user_string(arg2)))
7031             goto efault;
7032         ret = get_errno(fchmodat(arg1, p, arg3, 0));
7033         unlock_user(p, arg2, 0);
7034         break;
7035 #endif
7036     case TARGET_NR_getpriority:
7037         /* Note that negative values are valid for getpriority, so we must
7038            differentiate based on errno settings.  */
7039         errno = 0;
7040         ret = getpriority(arg1, arg2);
7041         if (ret == -1 && errno != 0) {
7042             ret = -host_to_target_errno(errno);
7043             break;
7044         }
7045 #ifdef TARGET_ALPHA
7046         /* Return value is the unbiased priority.  Signal no error.  */
7047         ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0;
7048 #else
7049         /* Return value is a biased priority to avoid negative numbers.  */
7050         ret = 20 - ret;
7051 #endif
7052         break;
7053     case TARGET_NR_setpriority:
7054         ret = get_errno(setpriority(arg1, arg2, arg3));
7055         break;
7056 #ifdef TARGET_NR_profil
7057     case TARGET_NR_profil:
7058         goto unimplemented;
7059 #endif
7060     case TARGET_NR_statfs:
7061         if (!(p = lock_user_string(arg1)))
7062             goto efault;
7063         ret = get_errno(statfs(path(p), &stfs));
7064         unlock_user(p, arg1, 0);
7065     convert_statfs:
7066         if (!is_error(ret)) {
7067             struct target_statfs *target_stfs;
7068 
7069             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0))
7070                 goto efault;
7071             __put_user(stfs.f_type, &target_stfs->f_type);
7072             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
7073             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
7074             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
7075             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
7076             __put_user(stfs.f_files, &target_stfs->f_files);
7077             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
7078             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
7079             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
7080             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
7081             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
7082             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
7083             unlock_user_struct(target_stfs, arg2, 1);
7084         }
7085         break;
7086     case TARGET_NR_fstatfs:
7087         ret = get_errno(fstatfs(arg1, &stfs));
7088         goto convert_statfs;
7089 #ifdef TARGET_NR_statfs64
7090     case TARGET_NR_statfs64:
7091         if (!(p = lock_user_string(arg1)))
7092             goto efault;
7093         ret = get_errno(statfs(path(p), &stfs));
7094         unlock_user(p, arg1, 0);
7095     convert_statfs64:
7096         if (!is_error(ret)) {
7097             struct target_statfs64 *target_stfs;
7098 
7099             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0))
7100                 goto efault;
7101             __put_user(stfs.f_type, &target_stfs->f_type);
7102             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
7103             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
7104             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
7105             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
7106             __put_user(stfs.f_files, &target_stfs->f_files);
7107             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
7108             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
7109             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
7110             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
7111             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
7112             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
7113             unlock_user_struct(target_stfs, arg3, 1);
7114         }
7115         break;
7116     case TARGET_NR_fstatfs64:
7117         ret = get_errno(fstatfs(arg1, &stfs));
7118         goto convert_statfs64;
7119 #endif
7120 #ifdef TARGET_NR_ioperm
7121     case TARGET_NR_ioperm:
7122         goto unimplemented;
7123 #endif
7124 #ifdef TARGET_NR_socketcall
7125     case TARGET_NR_socketcall:
7126         ret = do_socketcall(arg1, arg2);
7127         break;
7128 #endif
7129 #ifdef TARGET_NR_accept
7130     case TARGET_NR_accept:
7131         ret = do_accept4(arg1, arg2, arg3, 0);
7132         break;
7133 #endif
7134 #ifdef TARGET_NR_accept4
7135     case TARGET_NR_accept4:
7136 #ifdef CONFIG_ACCEPT4
7137         ret = do_accept4(arg1, arg2, arg3, arg4);
7138 #else
7139         goto unimplemented;
7140 #endif
7141         break;
7142 #endif
7143 #ifdef TARGET_NR_bind
7144     case TARGET_NR_bind:
7145         ret = do_bind(arg1, arg2, arg3);
7146         break;
7147 #endif
7148 #ifdef TARGET_NR_connect
7149     case TARGET_NR_connect:
7150         ret = do_connect(arg1, arg2, arg3);
7151         break;
7152 #endif
7153 #ifdef TARGET_NR_getpeername
7154     case TARGET_NR_getpeername:
7155         ret = do_getpeername(arg1, arg2, arg3);
7156         break;
7157 #endif
7158 #ifdef TARGET_NR_getsockname
7159     case TARGET_NR_getsockname:
7160         ret = do_getsockname(arg1, arg2, arg3);
7161         break;
7162 #endif
7163 #ifdef TARGET_NR_getsockopt
7164     case TARGET_NR_getsockopt:
7165         ret = do_getsockopt(arg1, arg2, arg3, arg4, arg5);
7166         break;
7167 #endif
7168 #ifdef TARGET_NR_listen
7169     case TARGET_NR_listen:
7170         ret = get_errno(listen(arg1, arg2));
7171         break;
7172 #endif
7173 #ifdef TARGET_NR_recv
7174     case TARGET_NR_recv:
7175         ret = do_recvfrom(arg1, arg2, arg3, arg4, 0, 0);
7176         break;
7177 #endif
7178 #ifdef TARGET_NR_recvfrom
7179     case TARGET_NR_recvfrom:
7180         ret = do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6);
7181         break;
7182 #endif
7183 #ifdef TARGET_NR_recvmsg
7184     case TARGET_NR_recvmsg:
7185         ret = do_sendrecvmsg(arg1, arg2, arg3, 0);
7186         break;
7187 #endif
7188 #ifdef TARGET_NR_send
7189     case TARGET_NR_send:
7190         ret = do_sendto(arg1, arg2, arg3, arg4, 0, 0);
7191         break;
7192 #endif
7193 #ifdef TARGET_NR_sendmsg
7194     case TARGET_NR_sendmsg:
7195         ret = do_sendrecvmsg(arg1, arg2, arg3, 1);
7196         break;
7197 #endif
7198 #ifdef TARGET_NR_sendmmsg
7199     case TARGET_NR_sendmmsg:
7200         ret = do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1);
7201         break;
7202     case TARGET_NR_recvmmsg:
7203         ret = do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0);
7204         break;
7205 #endif
7206 #ifdef TARGET_NR_sendto
7207     case TARGET_NR_sendto:
7208         ret = do_sendto(arg1, arg2, arg3, arg4, arg5, arg6);
7209         break;
7210 #endif
7211 #ifdef TARGET_NR_shutdown
7212     case TARGET_NR_shutdown:
7213         ret = get_errno(shutdown(arg1, arg2));
7214         break;
7215 #endif
7216 #ifdef TARGET_NR_socket
7217     case TARGET_NR_socket:
7218         ret = do_socket(arg1, arg2, arg3);
7219         break;
7220 #endif
7221 #ifdef TARGET_NR_socketpair
7222     case TARGET_NR_socketpair:
7223         ret = do_socketpair(arg1, arg2, arg3, arg4);
7224         break;
7225 #endif
7226 #ifdef TARGET_NR_setsockopt
7227     case TARGET_NR_setsockopt:
7228         ret = do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5);
7229         break;
7230 #endif
7231 
7232     case TARGET_NR_syslog:
7233         if (!(p = lock_user_string(arg2)))
7234             goto efault;
7235         ret = get_errno(sys_syslog((int)arg1, p, (int)arg3));
7236         unlock_user(p, arg2, 0);
7237         break;
7238 
7239     case TARGET_NR_setitimer:
7240         {
7241             struct itimerval value, ovalue, *pvalue;
7242 
7243             if (arg2) {
7244                 pvalue = &value;
7245                 if (copy_from_user_timeval(&pvalue->it_interval, arg2)
7246                     || copy_from_user_timeval(&pvalue->it_value,
7247                                               arg2 + sizeof(struct target_timeval)))
7248                     goto efault;
7249             } else {
7250                 pvalue = NULL;
7251             }
7252             ret = get_errno(setitimer(arg1, pvalue, &ovalue));
7253             if (!is_error(ret) && arg3) {
7254                 if (copy_to_user_timeval(arg3,
7255                                          &ovalue.it_interval)
7256                     || copy_to_user_timeval(arg3 + sizeof(struct target_timeval),
7257                                             &ovalue.it_value))
7258                     goto efault;
7259             }
7260         }
7261         break;
7262     case TARGET_NR_getitimer:
7263         {
7264             struct itimerval value;
7265 
7266             ret = get_errno(getitimer(arg1, &value));
7267             if (!is_error(ret) && arg2) {
7268                 if (copy_to_user_timeval(arg2,
7269                                          &value.it_interval)
7270                     || copy_to_user_timeval(arg2 + sizeof(struct target_timeval),
7271                                             &value.it_value))
7272                     goto efault;
7273             }
7274         }
7275         break;
7276     case TARGET_NR_stat:
7277         if (!(p = lock_user_string(arg1)))
7278             goto efault;
7279         ret = get_errno(stat(path(p), &st));
7280         unlock_user(p, arg1, 0);
7281         goto do_stat;
7282     case TARGET_NR_lstat:
7283         if (!(p = lock_user_string(arg1)))
7284             goto efault;
7285         ret = get_errno(lstat(path(p), &st));
7286         unlock_user(p, arg1, 0);
7287         goto do_stat;
7288     case TARGET_NR_fstat:
7289         {
7290             ret = get_errno(fstat(arg1, &st));
7291         do_stat:
7292             if (!is_error(ret)) {
7293                 struct target_stat *target_st;
7294 
7295                 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0))
7296                     goto efault;
7297                 memset(target_st, 0, sizeof(*target_st));
7298                 __put_user(st.st_dev, &target_st->st_dev);
7299                 __put_user(st.st_ino, &target_st->st_ino);
7300                 __put_user(st.st_mode, &target_st->st_mode);
7301                 __put_user(st.st_uid, &target_st->st_uid);
7302                 __put_user(st.st_gid, &target_st->st_gid);
7303                 __put_user(st.st_nlink, &target_st->st_nlink);
7304                 __put_user(st.st_rdev, &target_st->st_rdev);
7305                 __put_user(st.st_size, &target_st->st_size);
7306                 __put_user(st.st_blksize, &target_st->st_blksize);
7307                 __put_user(st.st_blocks, &target_st->st_blocks);
7308                 __put_user(st.st_atime, &target_st->target_st_atime);
7309                 __put_user(st.st_mtime, &target_st->target_st_mtime);
7310                 __put_user(st.st_ctime, &target_st->target_st_ctime);
7311                 unlock_user_struct(target_st, arg2, 1);
7312             }
7313         }
7314         break;
7315 #ifdef TARGET_NR_olduname
7316     case TARGET_NR_olduname:
7317         goto unimplemented;
7318 #endif
7319 #ifdef TARGET_NR_iopl
7320     case TARGET_NR_iopl:
7321         goto unimplemented;
7322 #endif
7323     case TARGET_NR_vhangup:
7324         ret = get_errno(vhangup());
7325         break;
7326 #ifdef TARGET_NR_idle
7327     case TARGET_NR_idle:
7328         goto unimplemented;
7329 #endif
7330 #ifdef TARGET_NR_syscall
7331     case TARGET_NR_syscall:
7332         ret = do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5,
7333                          arg6, arg7, arg8, 0);
7334         break;
7335 #endif
7336     case TARGET_NR_wait4:
7337         {
7338             int status;
7339             abi_long status_ptr = arg2;
7340             struct rusage rusage, *rusage_ptr;
7341             abi_ulong target_rusage = arg4;
7342             abi_long rusage_err;
7343             if (target_rusage)
7344                 rusage_ptr = &rusage;
7345             else
7346                 rusage_ptr = NULL;
7347             ret = get_errno(wait4(arg1, &status, arg3, rusage_ptr));
7348             if (!is_error(ret)) {
7349                 if (status_ptr && ret) {
7350                     status = host_to_target_waitstatus(status);
7351                     if (put_user_s32(status, status_ptr))
7352                         goto efault;
7353                 }
7354                 if (target_rusage) {
7355                     rusage_err = host_to_target_rusage(target_rusage, &rusage);
7356                     if (rusage_err) {
7357                         ret = rusage_err;
7358                     }
7359                 }
7360             }
7361         }
7362         break;
7363 #ifdef TARGET_NR_swapoff
7364     case TARGET_NR_swapoff:
7365         if (!(p = lock_user_string(arg1)))
7366             goto efault;
7367         ret = get_errno(swapoff(p));
7368         unlock_user(p, arg1, 0);
7369         break;
7370 #endif
7371     case TARGET_NR_sysinfo:
7372         {
7373             struct target_sysinfo *target_value;
7374             struct sysinfo value;
7375             ret = get_errno(sysinfo(&value));
7376             if (!is_error(ret) && arg1)
7377             {
7378                 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0))
7379                     goto efault;
7380                 __put_user(value.uptime, &target_value->uptime);
7381                 __put_user(value.loads[0], &target_value->loads[0]);
7382                 __put_user(value.loads[1], &target_value->loads[1]);
7383                 __put_user(value.loads[2], &target_value->loads[2]);
7384                 __put_user(value.totalram, &target_value->totalram);
7385                 __put_user(value.freeram, &target_value->freeram);
7386                 __put_user(value.sharedram, &target_value->sharedram);
7387                 __put_user(value.bufferram, &target_value->bufferram);
7388                 __put_user(value.totalswap, &target_value->totalswap);
7389                 __put_user(value.freeswap, &target_value->freeswap);
7390                 __put_user(value.procs, &target_value->procs);
7391                 __put_user(value.totalhigh, &target_value->totalhigh);
7392                 __put_user(value.freehigh, &target_value->freehigh);
7393                 __put_user(value.mem_unit, &target_value->mem_unit);
7394                 unlock_user_struct(target_value, arg1, 1);
7395             }
7396         }
7397         break;
7398 #ifdef TARGET_NR_ipc
7399     case TARGET_NR_ipc:
7400 	ret = do_ipc(arg1, arg2, arg3, arg4, arg5, arg6);
7401 	break;
7402 #endif
7403 #ifdef TARGET_NR_semget
7404     case TARGET_NR_semget:
7405         ret = get_errno(semget(arg1, arg2, arg3));
7406         break;
7407 #endif
7408 #ifdef TARGET_NR_semop
7409     case TARGET_NR_semop:
7410         ret = do_semop(arg1, arg2, arg3);
7411         break;
7412 #endif
7413 #ifdef TARGET_NR_semctl
7414     case TARGET_NR_semctl:
7415         ret = do_semctl(arg1, arg2, arg3, (union target_semun)(abi_ulong)arg4);
7416         break;
7417 #endif
7418 #ifdef TARGET_NR_msgctl
7419     case TARGET_NR_msgctl:
7420         ret = do_msgctl(arg1, arg2, arg3);
7421         break;
7422 #endif
7423 #ifdef TARGET_NR_msgget
7424     case TARGET_NR_msgget:
7425         ret = get_errno(msgget(arg1, arg2));
7426         break;
7427 #endif
7428 #ifdef TARGET_NR_msgrcv
7429     case TARGET_NR_msgrcv:
7430         ret = do_msgrcv(arg1, arg2, arg3, arg4, arg5);
7431         break;
7432 #endif
7433 #ifdef TARGET_NR_msgsnd
7434     case TARGET_NR_msgsnd:
7435         ret = do_msgsnd(arg1, arg2, arg3, arg4);
7436         break;
7437 #endif
7438 #ifdef TARGET_NR_shmget
7439     case TARGET_NR_shmget:
7440         ret = get_errno(shmget(arg1, arg2, arg3));
7441         break;
7442 #endif
7443 #ifdef TARGET_NR_shmctl
7444     case TARGET_NR_shmctl:
7445         ret = do_shmctl(arg1, arg2, arg3);
7446         break;
7447 #endif
7448 #ifdef TARGET_NR_shmat
7449     case TARGET_NR_shmat:
7450         ret = do_shmat(arg1, arg2, arg3);
7451         break;
7452 #endif
7453 #ifdef TARGET_NR_shmdt
7454     case TARGET_NR_shmdt:
7455         ret = do_shmdt(arg1);
7456         break;
7457 #endif
7458     case TARGET_NR_fsync:
7459         ret = get_errno(fsync(arg1));
7460         break;
7461     case TARGET_NR_clone:
7462         /* Linux manages to have three different orderings for its
7463          * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
7464          * match the kernel's CONFIG_CLONE_* settings.
7465          * Microblaze is further special in that it uses a sixth
7466          * implicit argument to clone for the TLS pointer.
7467          */
7468 #if defined(TARGET_MICROBLAZE)
7469         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5));
7470 #elif defined(TARGET_CLONE_BACKWARDS)
7471         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5));
7472 #elif defined(TARGET_CLONE_BACKWARDS2)
7473         ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4));
7474 #else
7475         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4));
7476 #endif
7477         break;
7478 #ifdef __NR_exit_group
7479         /* new thread calls */
7480     case TARGET_NR_exit_group:
7481 #ifdef TARGET_GPROF
7482         _mcleanup();
7483 #endif
7484         gdb_exit(cpu_env, arg1);
7485         ret = get_errno(exit_group(arg1));
7486         break;
7487 #endif
7488     case TARGET_NR_setdomainname:
7489         if (!(p = lock_user_string(arg1)))
7490             goto efault;
7491         ret = get_errno(setdomainname(p, arg2));
7492         unlock_user(p, arg1, 0);
7493         break;
7494     case TARGET_NR_uname:
7495         /* no need to transcode because we use the linux syscall */
7496         {
7497             struct new_utsname * buf;
7498 
7499             if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0))
7500                 goto efault;
7501             ret = get_errno(sys_uname(buf));
7502             if (!is_error(ret)) {
7503                 /* Overrite the native machine name with whatever is being
7504                    emulated. */
7505                 strcpy (buf->machine, cpu_to_uname_machine(cpu_env));
7506                 /* Allow the user to override the reported release.  */
7507                 if (qemu_uname_release && *qemu_uname_release)
7508                   strcpy (buf->release, qemu_uname_release);
7509             }
7510             unlock_user_struct(buf, arg1, 1);
7511         }
7512         break;
7513 #ifdef TARGET_I386
7514     case TARGET_NR_modify_ldt:
7515         ret = do_modify_ldt(cpu_env, arg1, arg2, arg3);
7516         break;
7517 #if !defined(TARGET_X86_64)
7518     case TARGET_NR_vm86old:
7519         goto unimplemented;
7520     case TARGET_NR_vm86:
7521         ret = do_vm86(cpu_env, arg1, arg2);
7522         break;
7523 #endif
7524 #endif
7525     case TARGET_NR_adjtimex:
7526         goto unimplemented;
7527 #ifdef TARGET_NR_create_module
7528     case TARGET_NR_create_module:
7529 #endif
7530     case TARGET_NR_init_module:
7531     case TARGET_NR_delete_module:
7532 #ifdef TARGET_NR_get_kernel_syms
7533     case TARGET_NR_get_kernel_syms:
7534 #endif
7535         goto unimplemented;
7536     case TARGET_NR_quotactl:
7537         goto unimplemented;
7538     case TARGET_NR_getpgid:
7539         ret = get_errno(getpgid(arg1));
7540         break;
7541     case TARGET_NR_fchdir:
7542         ret = get_errno(fchdir(arg1));
7543         break;
7544 #ifdef TARGET_NR_bdflush /* not on x86_64 */
7545     case TARGET_NR_bdflush:
7546         goto unimplemented;
7547 #endif
7548 #ifdef TARGET_NR_sysfs
7549     case TARGET_NR_sysfs:
7550         goto unimplemented;
7551 #endif
7552     case TARGET_NR_personality:
7553         ret = get_errno(personality(arg1));
7554         break;
7555 #ifdef TARGET_NR_afs_syscall
7556     case TARGET_NR_afs_syscall:
7557         goto unimplemented;
7558 #endif
7559 #ifdef TARGET_NR__llseek /* Not on alpha */
7560     case TARGET_NR__llseek:
7561         {
7562             int64_t res;
7563 #if !defined(__NR_llseek)
7564             res = lseek(arg1, ((uint64_t)arg2 << 32) | arg3, arg5);
7565             if (res == -1) {
7566                 ret = get_errno(res);
7567             } else {
7568                 ret = 0;
7569             }
7570 #else
7571             ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5));
7572 #endif
7573             if ((ret == 0) && put_user_s64(res, arg4)) {
7574                 goto efault;
7575             }
7576         }
7577         break;
7578 #endif
7579     case TARGET_NR_getdents:
7580 #ifdef __NR_getdents
7581 #if TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 64
7582         {
7583             struct target_dirent *target_dirp;
7584             struct linux_dirent *dirp;
7585             abi_long count = arg3;
7586 
7587 	    dirp = malloc(count);
7588 	    if (!dirp) {
7589                 ret = -TARGET_ENOMEM;
7590                 goto fail;
7591             }
7592 
7593             ret = get_errno(sys_getdents(arg1, dirp, count));
7594             if (!is_error(ret)) {
7595                 struct linux_dirent *de;
7596 		struct target_dirent *tde;
7597                 int len = ret;
7598                 int reclen, treclen;
7599 		int count1, tnamelen;
7600 
7601 		count1 = 0;
7602                 de = dirp;
7603                 if (!(target_dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
7604                     goto efault;
7605 		tde = target_dirp;
7606                 while (len > 0) {
7607                     reclen = de->d_reclen;
7608                     tnamelen = reclen - offsetof(struct linux_dirent, d_name);
7609                     assert(tnamelen >= 0);
7610                     treclen = tnamelen + offsetof(struct target_dirent, d_name);
7611                     assert(count1 + treclen <= count);
7612                     tde->d_reclen = tswap16(treclen);
7613                     tde->d_ino = tswapal(de->d_ino);
7614                     tde->d_off = tswapal(de->d_off);
7615                     memcpy(tde->d_name, de->d_name, tnamelen);
7616                     de = (struct linux_dirent *)((char *)de + reclen);
7617                     len -= reclen;
7618                     tde = (struct target_dirent *)((char *)tde + treclen);
7619 		    count1 += treclen;
7620                 }
7621 		ret = count1;
7622                 unlock_user(target_dirp, arg2, ret);
7623             }
7624 	    free(dirp);
7625         }
7626 #else
7627         {
7628             struct linux_dirent *dirp;
7629             abi_long count = arg3;
7630 
7631             if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
7632                 goto efault;
7633             ret = get_errno(sys_getdents(arg1, dirp, count));
7634             if (!is_error(ret)) {
7635                 struct linux_dirent *de;
7636                 int len = ret;
7637                 int reclen;
7638                 de = dirp;
7639                 while (len > 0) {
7640                     reclen = de->d_reclen;
7641                     if (reclen > len)
7642                         break;
7643                     de->d_reclen = tswap16(reclen);
7644                     tswapls(&de->d_ino);
7645                     tswapls(&de->d_off);
7646                     de = (struct linux_dirent *)((char *)de + reclen);
7647                     len -= reclen;
7648                 }
7649             }
7650             unlock_user(dirp, arg2, ret);
7651         }
7652 #endif
7653 #else
7654         /* Implement getdents in terms of getdents64 */
7655         {
7656             struct linux_dirent64 *dirp;
7657             abi_long count = arg3;
7658 
7659             dirp = lock_user(VERIFY_WRITE, arg2, count, 0);
7660             if (!dirp) {
7661                 goto efault;
7662             }
7663             ret = get_errno(sys_getdents64(arg1, dirp, count));
7664             if (!is_error(ret)) {
7665                 /* Convert the dirent64 structs to target dirent.  We do this
7666                  * in-place, since we can guarantee that a target_dirent is no
7667                  * larger than a dirent64; however this means we have to be
7668                  * careful to read everything before writing in the new format.
7669                  */
7670                 struct linux_dirent64 *de;
7671                 struct target_dirent *tde;
7672                 int len = ret;
7673                 int tlen = 0;
7674 
7675                 de = dirp;
7676                 tde = (struct target_dirent *)dirp;
7677                 while (len > 0) {
7678                     int namelen, treclen;
7679                     int reclen = de->d_reclen;
7680                     uint64_t ino = de->d_ino;
7681                     int64_t off = de->d_off;
7682                     uint8_t type = de->d_type;
7683 
7684                     namelen = strlen(de->d_name);
7685                     treclen = offsetof(struct target_dirent, d_name)
7686                         + namelen + 2;
7687                     treclen = QEMU_ALIGN_UP(treclen, sizeof(abi_long));
7688 
7689                     memmove(tde->d_name, de->d_name, namelen + 1);
7690                     tde->d_ino = tswapal(ino);
7691                     tde->d_off = tswapal(off);
7692                     tde->d_reclen = tswap16(treclen);
7693                     /* The target_dirent type is in what was formerly a padding
7694                      * byte at the end of the structure:
7695                      */
7696                     *(((char *)tde) + treclen - 1) = type;
7697 
7698                     de = (struct linux_dirent64 *)((char *)de + reclen);
7699                     tde = (struct target_dirent *)((char *)tde + treclen);
7700                     len -= reclen;
7701                     tlen += treclen;
7702                 }
7703                 ret = tlen;
7704             }
7705             unlock_user(dirp, arg2, ret);
7706         }
7707 #endif
7708         break;
7709 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
7710     case TARGET_NR_getdents64:
7711         {
7712             struct linux_dirent64 *dirp;
7713             abi_long count = arg3;
7714             if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
7715                 goto efault;
7716             ret = get_errno(sys_getdents64(arg1, dirp, count));
7717             if (!is_error(ret)) {
7718                 struct linux_dirent64 *de;
7719                 int len = ret;
7720                 int reclen;
7721                 de = dirp;
7722                 while (len > 0) {
7723                     reclen = de->d_reclen;
7724                     if (reclen > len)
7725                         break;
7726                     de->d_reclen = tswap16(reclen);
7727                     tswap64s((uint64_t *)&de->d_ino);
7728                     tswap64s((uint64_t *)&de->d_off);
7729                     de = (struct linux_dirent64 *)((char *)de + reclen);
7730                     len -= reclen;
7731                 }
7732             }
7733             unlock_user(dirp, arg2, ret);
7734         }
7735         break;
7736 #endif /* TARGET_NR_getdents64 */
7737 #if defined(TARGET_NR__newselect)
7738     case TARGET_NR__newselect:
7739         ret = do_select(arg1, arg2, arg3, arg4, arg5);
7740         break;
7741 #endif
7742 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll)
7743 # ifdef TARGET_NR_poll
7744     case TARGET_NR_poll:
7745 # endif
7746 # ifdef TARGET_NR_ppoll
7747     case TARGET_NR_ppoll:
7748 # endif
7749         {
7750             struct target_pollfd *target_pfd;
7751             unsigned int nfds = arg2;
7752             int timeout = arg3;
7753             struct pollfd *pfd;
7754             unsigned int i;
7755 
7756             target_pfd = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_pollfd) * nfds, 1);
7757             if (!target_pfd)
7758                 goto efault;
7759 
7760             pfd = alloca(sizeof(struct pollfd) * nfds);
7761             for(i = 0; i < nfds; i++) {
7762                 pfd[i].fd = tswap32(target_pfd[i].fd);
7763                 pfd[i].events = tswap16(target_pfd[i].events);
7764             }
7765 
7766 # ifdef TARGET_NR_ppoll
7767             if (num == TARGET_NR_ppoll) {
7768                 struct timespec _timeout_ts, *timeout_ts = &_timeout_ts;
7769                 target_sigset_t *target_set;
7770                 sigset_t _set, *set = &_set;
7771 
7772                 if (arg3) {
7773                     if (target_to_host_timespec(timeout_ts, arg3)) {
7774                         unlock_user(target_pfd, arg1, 0);
7775                         goto efault;
7776                     }
7777                 } else {
7778                     timeout_ts = NULL;
7779                 }
7780 
7781                 if (arg4) {
7782                     target_set = lock_user(VERIFY_READ, arg4, sizeof(target_sigset_t), 1);
7783                     if (!target_set) {
7784                         unlock_user(target_pfd, arg1, 0);
7785                         goto efault;
7786                     }
7787                     target_to_host_sigset(set, target_set);
7788                 } else {
7789                     set = NULL;
7790                 }
7791 
7792                 ret = get_errno(sys_ppoll(pfd, nfds, timeout_ts, set, _NSIG/8));
7793 
7794                 if (!is_error(ret) && arg3) {
7795                     host_to_target_timespec(arg3, timeout_ts);
7796                 }
7797                 if (arg4) {
7798                     unlock_user(target_set, arg4, 0);
7799                 }
7800             } else
7801 # endif
7802                 ret = get_errno(poll(pfd, nfds, timeout));
7803 
7804             if (!is_error(ret)) {
7805                 for(i = 0; i < nfds; i++) {
7806                     target_pfd[i].revents = tswap16(pfd[i].revents);
7807                 }
7808             }
7809             unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds);
7810         }
7811         break;
7812 #endif
7813     case TARGET_NR_flock:
7814         /* NOTE: the flock constant seems to be the same for every
7815            Linux platform */
7816         ret = get_errno(flock(arg1, arg2));
7817         break;
7818     case TARGET_NR_readv:
7819         {
7820             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
7821             if (vec != NULL) {
7822                 ret = get_errno(readv(arg1, vec, arg3));
7823                 unlock_iovec(vec, arg2, arg3, 1);
7824             } else {
7825                 ret = -host_to_target_errno(errno);
7826             }
7827         }
7828         break;
7829     case TARGET_NR_writev:
7830         {
7831             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
7832             if (vec != NULL) {
7833                 ret = get_errno(writev(arg1, vec, arg3));
7834                 unlock_iovec(vec, arg2, arg3, 0);
7835             } else {
7836                 ret = -host_to_target_errno(errno);
7837             }
7838         }
7839         break;
7840     case TARGET_NR_getsid:
7841         ret = get_errno(getsid(arg1));
7842         break;
7843 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
7844     case TARGET_NR_fdatasync:
7845         ret = get_errno(fdatasync(arg1));
7846         break;
7847 #endif
7848     case TARGET_NR__sysctl:
7849         /* We don't implement this, but ENOTDIR is always a safe
7850            return value. */
7851         ret = -TARGET_ENOTDIR;
7852         break;
7853     case TARGET_NR_sched_getaffinity:
7854         {
7855             unsigned int mask_size;
7856             unsigned long *mask;
7857 
7858             /*
7859              * sched_getaffinity needs multiples of ulong, so need to take
7860              * care of mismatches between target ulong and host ulong sizes.
7861              */
7862             if (arg2 & (sizeof(abi_ulong) - 1)) {
7863                 ret = -TARGET_EINVAL;
7864                 break;
7865             }
7866             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
7867 
7868             mask = alloca(mask_size);
7869             ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask));
7870 
7871             if (!is_error(ret)) {
7872                 if (ret > arg2) {
7873                     /* More data returned than the caller's buffer will fit.
7874                      * This only happens if sizeof(abi_long) < sizeof(long)
7875                      * and the caller passed us a buffer holding an odd number
7876                      * of abi_longs. If the host kernel is actually using the
7877                      * extra 4 bytes then fail EINVAL; otherwise we can just
7878                      * ignore them and only copy the interesting part.
7879                      */
7880                     int numcpus = sysconf(_SC_NPROCESSORS_CONF);
7881                     if (numcpus > arg2 * 8) {
7882                         ret = -TARGET_EINVAL;
7883                         break;
7884                     }
7885                     ret = arg2;
7886                 }
7887 
7888                 if (copy_to_user(arg3, mask, ret)) {
7889                     goto efault;
7890                 }
7891             }
7892         }
7893         break;
7894     case TARGET_NR_sched_setaffinity:
7895         {
7896             unsigned int mask_size;
7897             unsigned long *mask;
7898 
7899             /*
7900              * sched_setaffinity needs multiples of ulong, so need to take
7901              * care of mismatches between target ulong and host ulong sizes.
7902              */
7903             if (arg2 & (sizeof(abi_ulong) - 1)) {
7904                 ret = -TARGET_EINVAL;
7905                 break;
7906             }
7907             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
7908 
7909             mask = alloca(mask_size);
7910             if (!lock_user_struct(VERIFY_READ, p, arg3, 1)) {
7911                 goto efault;
7912             }
7913             memcpy(mask, p, arg2);
7914             unlock_user_struct(p, arg2, 0);
7915 
7916             ret = get_errno(sys_sched_setaffinity(arg1, mask_size, mask));
7917         }
7918         break;
7919     case TARGET_NR_sched_setparam:
7920         {
7921             struct sched_param *target_schp;
7922             struct sched_param schp;
7923 
7924             if (arg2 == 0) {
7925                 return -TARGET_EINVAL;
7926             }
7927             if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1))
7928                 goto efault;
7929             schp.sched_priority = tswap32(target_schp->sched_priority);
7930             unlock_user_struct(target_schp, arg2, 0);
7931             ret = get_errno(sched_setparam(arg1, &schp));
7932         }
7933         break;
7934     case TARGET_NR_sched_getparam:
7935         {
7936             struct sched_param *target_schp;
7937             struct sched_param schp;
7938 
7939             if (arg2 == 0) {
7940                 return -TARGET_EINVAL;
7941             }
7942             ret = get_errno(sched_getparam(arg1, &schp));
7943             if (!is_error(ret)) {
7944                 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0))
7945                     goto efault;
7946                 target_schp->sched_priority = tswap32(schp.sched_priority);
7947                 unlock_user_struct(target_schp, arg2, 1);
7948             }
7949         }
7950         break;
7951     case TARGET_NR_sched_setscheduler:
7952         {
7953             struct sched_param *target_schp;
7954             struct sched_param schp;
7955             if (arg3 == 0) {
7956                 return -TARGET_EINVAL;
7957             }
7958             if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1))
7959                 goto efault;
7960             schp.sched_priority = tswap32(target_schp->sched_priority);
7961             unlock_user_struct(target_schp, arg3, 0);
7962             ret = get_errno(sched_setscheduler(arg1, arg2, &schp));
7963         }
7964         break;
7965     case TARGET_NR_sched_getscheduler:
7966         ret = get_errno(sched_getscheduler(arg1));
7967         break;
7968     case TARGET_NR_sched_yield:
7969         ret = get_errno(sched_yield());
7970         break;
7971     case TARGET_NR_sched_get_priority_max:
7972         ret = get_errno(sched_get_priority_max(arg1));
7973         break;
7974     case TARGET_NR_sched_get_priority_min:
7975         ret = get_errno(sched_get_priority_min(arg1));
7976         break;
7977     case TARGET_NR_sched_rr_get_interval:
7978         {
7979             struct timespec ts;
7980             ret = get_errno(sched_rr_get_interval(arg1, &ts));
7981             if (!is_error(ret)) {
7982                 ret = host_to_target_timespec(arg2, &ts);
7983             }
7984         }
7985         break;
7986     case TARGET_NR_nanosleep:
7987         {
7988             struct timespec req, rem;
7989             target_to_host_timespec(&req, arg1);
7990             ret = get_errno(nanosleep(&req, &rem));
7991             if (is_error(ret) && arg2) {
7992                 host_to_target_timespec(arg2, &rem);
7993             }
7994         }
7995         break;
7996 #ifdef TARGET_NR_query_module
7997     case TARGET_NR_query_module:
7998         goto unimplemented;
7999 #endif
8000 #ifdef TARGET_NR_nfsservctl
8001     case TARGET_NR_nfsservctl:
8002         goto unimplemented;
8003 #endif
8004     case TARGET_NR_prctl:
8005         switch (arg1) {
8006         case PR_GET_PDEATHSIG:
8007         {
8008             int deathsig;
8009             ret = get_errno(prctl(arg1, &deathsig, arg3, arg4, arg5));
8010             if (!is_error(ret) && arg2
8011                 && put_user_ual(deathsig, arg2)) {
8012                 goto efault;
8013             }
8014             break;
8015         }
8016 #ifdef PR_GET_NAME
8017         case PR_GET_NAME:
8018         {
8019             void *name = lock_user(VERIFY_WRITE, arg2, 16, 1);
8020             if (!name) {
8021                 goto efault;
8022             }
8023             ret = get_errno(prctl(arg1, (unsigned long)name,
8024                                   arg3, arg4, arg5));
8025             unlock_user(name, arg2, 16);
8026             break;
8027         }
8028         case PR_SET_NAME:
8029         {
8030             void *name = lock_user(VERIFY_READ, arg2, 16, 1);
8031             if (!name) {
8032                 goto efault;
8033             }
8034             ret = get_errno(prctl(arg1, (unsigned long)name,
8035                                   arg3, arg4, arg5));
8036             unlock_user(name, arg2, 0);
8037             break;
8038         }
8039 #endif
8040         default:
8041             /* Most prctl options have no pointer arguments */
8042             ret = get_errno(prctl(arg1, arg2, arg3, arg4, arg5));
8043             break;
8044         }
8045         break;
8046 #ifdef TARGET_NR_arch_prctl
8047     case TARGET_NR_arch_prctl:
8048 #if defined(TARGET_I386) && !defined(TARGET_ABI32)
8049         ret = do_arch_prctl(cpu_env, arg1, arg2);
8050         break;
8051 #else
8052         goto unimplemented;
8053 #endif
8054 #endif
8055 #ifdef TARGET_NR_pread64
8056     case TARGET_NR_pread64:
8057         if (regpairs_aligned(cpu_env)) {
8058             arg4 = arg5;
8059             arg5 = arg6;
8060         }
8061         if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
8062             goto efault;
8063         ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5)));
8064         unlock_user(p, arg2, ret);
8065         break;
8066     case TARGET_NR_pwrite64:
8067         if (regpairs_aligned(cpu_env)) {
8068             arg4 = arg5;
8069             arg5 = arg6;
8070         }
8071         if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
8072             goto efault;
8073         ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5)));
8074         unlock_user(p, arg2, 0);
8075         break;
8076 #endif
8077     case TARGET_NR_getcwd:
8078         if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0)))
8079             goto efault;
8080         ret = get_errno(sys_getcwd1(p, arg2));
8081         unlock_user(p, arg1, ret);
8082         break;
8083     case TARGET_NR_capget:
8084     case TARGET_NR_capset:
8085     {
8086         struct target_user_cap_header *target_header;
8087         struct target_user_cap_data *target_data = NULL;
8088         struct __user_cap_header_struct header;
8089         struct __user_cap_data_struct data[2];
8090         struct __user_cap_data_struct *dataptr = NULL;
8091         int i, target_datalen;
8092         int data_items = 1;
8093 
8094         if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) {
8095             goto efault;
8096         }
8097         header.version = tswap32(target_header->version);
8098         header.pid = tswap32(target_header->pid);
8099 
8100         if (header.version != _LINUX_CAPABILITY_VERSION) {
8101             /* Version 2 and up takes pointer to two user_data structs */
8102             data_items = 2;
8103         }
8104 
8105         target_datalen = sizeof(*target_data) * data_items;
8106 
8107         if (arg2) {
8108             if (num == TARGET_NR_capget) {
8109                 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0);
8110             } else {
8111                 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1);
8112             }
8113             if (!target_data) {
8114                 unlock_user_struct(target_header, arg1, 0);
8115                 goto efault;
8116             }
8117 
8118             if (num == TARGET_NR_capset) {
8119                 for (i = 0; i < data_items; i++) {
8120                     data[i].effective = tswap32(target_data[i].effective);
8121                     data[i].permitted = tswap32(target_data[i].permitted);
8122                     data[i].inheritable = tswap32(target_data[i].inheritable);
8123                 }
8124             }
8125 
8126             dataptr = data;
8127         }
8128 
8129         if (num == TARGET_NR_capget) {
8130             ret = get_errno(capget(&header, dataptr));
8131         } else {
8132             ret = get_errno(capset(&header, dataptr));
8133         }
8134 
8135         /* The kernel always updates version for both capget and capset */
8136         target_header->version = tswap32(header.version);
8137         unlock_user_struct(target_header, arg1, 1);
8138 
8139         if (arg2) {
8140             if (num == TARGET_NR_capget) {
8141                 for (i = 0; i < data_items; i++) {
8142                     target_data[i].effective = tswap32(data[i].effective);
8143                     target_data[i].permitted = tswap32(data[i].permitted);
8144                     target_data[i].inheritable = tswap32(data[i].inheritable);
8145                 }
8146                 unlock_user(target_data, arg2, target_datalen);
8147             } else {
8148                 unlock_user(target_data, arg2, 0);
8149             }
8150         }
8151         break;
8152     }
8153     case TARGET_NR_sigaltstack:
8154 #if defined(TARGET_I386) || defined(TARGET_ARM) || defined(TARGET_MIPS) || \
8155     defined(TARGET_SPARC) || defined(TARGET_PPC) || defined(TARGET_ALPHA) || \
8156     defined(TARGET_M68K) || defined(TARGET_S390X) || defined(TARGET_OPENRISC)
8157         ret = do_sigaltstack(arg1, arg2, get_sp_from_cpustate((CPUArchState *)cpu_env));
8158         break;
8159 #else
8160         goto unimplemented;
8161 #endif
8162 
8163 #ifdef CONFIG_SENDFILE
8164     case TARGET_NR_sendfile:
8165     {
8166         off_t *offp = NULL;
8167         off_t off;
8168         if (arg3) {
8169             ret = get_user_sal(off, arg3);
8170             if (is_error(ret)) {
8171                 break;
8172             }
8173             offp = &off;
8174         }
8175         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
8176         if (!is_error(ret) && arg3) {
8177             abi_long ret2 = put_user_sal(off, arg3);
8178             if (is_error(ret2)) {
8179                 ret = ret2;
8180             }
8181         }
8182         break;
8183     }
8184 #ifdef TARGET_NR_sendfile64
8185     case TARGET_NR_sendfile64:
8186     {
8187         off_t *offp = NULL;
8188         off_t off;
8189         if (arg3) {
8190             ret = get_user_s64(off, arg3);
8191             if (is_error(ret)) {
8192                 break;
8193             }
8194             offp = &off;
8195         }
8196         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
8197         if (!is_error(ret) && arg3) {
8198             abi_long ret2 = put_user_s64(off, arg3);
8199             if (is_error(ret2)) {
8200                 ret = ret2;
8201             }
8202         }
8203         break;
8204     }
8205 #endif
8206 #else
8207     case TARGET_NR_sendfile:
8208 #ifdef TARGET_NR_sendfile64
8209     case TARGET_NR_sendfile64:
8210 #endif
8211         goto unimplemented;
8212 #endif
8213 
8214 #ifdef TARGET_NR_getpmsg
8215     case TARGET_NR_getpmsg:
8216         goto unimplemented;
8217 #endif
8218 #ifdef TARGET_NR_putpmsg
8219     case TARGET_NR_putpmsg:
8220         goto unimplemented;
8221 #endif
8222 #ifdef TARGET_NR_vfork
8223     case TARGET_NR_vfork:
8224         ret = get_errno(do_fork(cpu_env, CLONE_VFORK | CLONE_VM | SIGCHLD,
8225                         0, 0, 0, 0));
8226         break;
8227 #endif
8228 #ifdef TARGET_NR_ugetrlimit
8229     case TARGET_NR_ugetrlimit:
8230     {
8231 	struct rlimit rlim;
8232 	int resource = target_to_host_resource(arg1);
8233 	ret = get_errno(getrlimit(resource, &rlim));
8234 	if (!is_error(ret)) {
8235 	    struct target_rlimit *target_rlim;
8236             if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
8237                 goto efault;
8238 	    target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
8239 	    target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
8240             unlock_user_struct(target_rlim, arg2, 1);
8241 	}
8242 	break;
8243     }
8244 #endif
8245 #ifdef TARGET_NR_truncate64
8246     case TARGET_NR_truncate64:
8247         if (!(p = lock_user_string(arg1)))
8248             goto efault;
8249 	ret = target_truncate64(cpu_env, p, arg2, arg3, arg4);
8250         unlock_user(p, arg1, 0);
8251 	break;
8252 #endif
8253 #ifdef TARGET_NR_ftruncate64
8254     case TARGET_NR_ftruncate64:
8255 	ret = target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4);
8256 	break;
8257 #endif
8258 #ifdef TARGET_NR_stat64
8259     case TARGET_NR_stat64:
8260         if (!(p = lock_user_string(arg1)))
8261             goto efault;
8262         ret = get_errno(stat(path(p), &st));
8263         unlock_user(p, arg1, 0);
8264         if (!is_error(ret))
8265             ret = host_to_target_stat64(cpu_env, arg2, &st);
8266         break;
8267 #endif
8268 #ifdef TARGET_NR_lstat64
8269     case TARGET_NR_lstat64:
8270         if (!(p = lock_user_string(arg1)))
8271             goto efault;
8272         ret = get_errno(lstat(path(p), &st));
8273         unlock_user(p, arg1, 0);
8274         if (!is_error(ret))
8275             ret = host_to_target_stat64(cpu_env, arg2, &st);
8276         break;
8277 #endif
8278 #ifdef TARGET_NR_fstat64
8279     case TARGET_NR_fstat64:
8280         ret = get_errno(fstat(arg1, &st));
8281         if (!is_error(ret))
8282             ret = host_to_target_stat64(cpu_env, arg2, &st);
8283         break;
8284 #endif
8285 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
8286 #ifdef TARGET_NR_fstatat64
8287     case TARGET_NR_fstatat64:
8288 #endif
8289 #ifdef TARGET_NR_newfstatat
8290     case TARGET_NR_newfstatat:
8291 #endif
8292         if (!(p = lock_user_string(arg2)))
8293             goto efault;
8294         ret = get_errno(fstatat(arg1, path(p), &st, arg4));
8295         if (!is_error(ret))
8296             ret = host_to_target_stat64(cpu_env, arg3, &st);
8297         break;
8298 #endif
8299     case TARGET_NR_lchown:
8300         if (!(p = lock_user_string(arg1)))
8301             goto efault;
8302         ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3)));
8303         unlock_user(p, arg1, 0);
8304         break;
8305 #ifdef TARGET_NR_getuid
8306     case TARGET_NR_getuid:
8307         ret = get_errno(high2lowuid(getuid()));
8308         break;
8309 #endif
8310 #ifdef TARGET_NR_getgid
8311     case TARGET_NR_getgid:
8312         ret = get_errno(high2lowgid(getgid()));
8313         break;
8314 #endif
8315 #ifdef TARGET_NR_geteuid
8316     case TARGET_NR_geteuid:
8317         ret = get_errno(high2lowuid(geteuid()));
8318         break;
8319 #endif
8320 #ifdef TARGET_NR_getegid
8321     case TARGET_NR_getegid:
8322         ret = get_errno(high2lowgid(getegid()));
8323         break;
8324 #endif
8325     case TARGET_NR_setreuid:
8326         ret = get_errno(setreuid(low2highuid(arg1), low2highuid(arg2)));
8327         break;
8328     case TARGET_NR_setregid:
8329         ret = get_errno(setregid(low2highgid(arg1), low2highgid(arg2)));
8330         break;
8331     case TARGET_NR_getgroups:
8332         {
8333             int gidsetsize = arg1;
8334             target_id *target_grouplist;
8335             gid_t *grouplist;
8336             int i;
8337 
8338             grouplist = alloca(gidsetsize * sizeof(gid_t));
8339             ret = get_errno(getgroups(gidsetsize, grouplist));
8340             if (gidsetsize == 0)
8341                 break;
8342             if (!is_error(ret)) {
8343                 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * sizeof(target_id), 0);
8344                 if (!target_grouplist)
8345                     goto efault;
8346                 for(i = 0;i < ret; i++)
8347                     target_grouplist[i] = tswapid(high2lowgid(grouplist[i]));
8348                 unlock_user(target_grouplist, arg2, gidsetsize * sizeof(target_id));
8349             }
8350         }
8351         break;
8352     case TARGET_NR_setgroups:
8353         {
8354             int gidsetsize = arg1;
8355             target_id *target_grouplist;
8356             gid_t *grouplist = NULL;
8357             int i;
8358             if (gidsetsize) {
8359                 grouplist = alloca(gidsetsize * sizeof(gid_t));
8360                 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * sizeof(target_id), 1);
8361                 if (!target_grouplist) {
8362                     ret = -TARGET_EFAULT;
8363                     goto fail;
8364                 }
8365                 for (i = 0; i < gidsetsize; i++) {
8366                     grouplist[i] = low2highgid(tswapid(target_grouplist[i]));
8367                 }
8368                 unlock_user(target_grouplist, arg2, 0);
8369             }
8370             ret = get_errno(setgroups(gidsetsize, grouplist));
8371         }
8372         break;
8373     case TARGET_NR_fchown:
8374         ret = get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3)));
8375         break;
8376 #if defined(TARGET_NR_fchownat)
8377     case TARGET_NR_fchownat:
8378         if (!(p = lock_user_string(arg2)))
8379             goto efault;
8380         ret = get_errno(fchownat(arg1, p, low2highuid(arg3),
8381                                  low2highgid(arg4), arg5));
8382         unlock_user(p, arg2, 0);
8383         break;
8384 #endif
8385 #ifdef TARGET_NR_setresuid
8386     case TARGET_NR_setresuid:
8387         ret = get_errno(setresuid(low2highuid(arg1),
8388                                   low2highuid(arg2),
8389                                   low2highuid(arg3)));
8390         break;
8391 #endif
8392 #ifdef TARGET_NR_getresuid
8393     case TARGET_NR_getresuid:
8394         {
8395             uid_t ruid, euid, suid;
8396             ret = get_errno(getresuid(&ruid, &euid, &suid));
8397             if (!is_error(ret)) {
8398                 if (put_user_id(high2lowuid(ruid), arg1)
8399                     || put_user_id(high2lowuid(euid), arg2)
8400                     || put_user_id(high2lowuid(suid), arg3))
8401                     goto efault;
8402             }
8403         }
8404         break;
8405 #endif
8406 #ifdef TARGET_NR_getresgid
8407     case TARGET_NR_setresgid:
8408         ret = get_errno(setresgid(low2highgid(arg1),
8409                                   low2highgid(arg2),
8410                                   low2highgid(arg3)));
8411         break;
8412 #endif
8413 #ifdef TARGET_NR_getresgid
8414     case TARGET_NR_getresgid:
8415         {
8416             gid_t rgid, egid, sgid;
8417             ret = get_errno(getresgid(&rgid, &egid, &sgid));
8418             if (!is_error(ret)) {
8419                 if (put_user_id(high2lowgid(rgid), arg1)
8420                     || put_user_id(high2lowgid(egid), arg2)
8421                     || put_user_id(high2lowgid(sgid), arg3))
8422                     goto efault;
8423             }
8424         }
8425         break;
8426 #endif
8427     case TARGET_NR_chown:
8428         if (!(p = lock_user_string(arg1)))
8429             goto efault;
8430         ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3)));
8431         unlock_user(p, arg1, 0);
8432         break;
8433     case TARGET_NR_setuid:
8434         ret = get_errno(setuid(low2highuid(arg1)));
8435         break;
8436     case TARGET_NR_setgid:
8437         ret = get_errno(setgid(low2highgid(arg1)));
8438         break;
8439     case TARGET_NR_setfsuid:
8440         ret = get_errno(setfsuid(arg1));
8441         break;
8442     case TARGET_NR_setfsgid:
8443         ret = get_errno(setfsgid(arg1));
8444         break;
8445 
8446 #ifdef TARGET_NR_lchown32
8447     case TARGET_NR_lchown32:
8448         if (!(p = lock_user_string(arg1)))
8449             goto efault;
8450         ret = get_errno(lchown(p, arg2, arg3));
8451         unlock_user(p, arg1, 0);
8452         break;
8453 #endif
8454 #ifdef TARGET_NR_getuid32
8455     case TARGET_NR_getuid32:
8456         ret = get_errno(getuid());
8457         break;
8458 #endif
8459 
8460 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
8461    /* Alpha specific */
8462     case TARGET_NR_getxuid:
8463          {
8464             uid_t euid;
8465             euid=geteuid();
8466             ((CPUAlphaState *)cpu_env)->ir[IR_A4]=euid;
8467          }
8468         ret = get_errno(getuid());
8469         break;
8470 #endif
8471 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
8472    /* Alpha specific */
8473     case TARGET_NR_getxgid:
8474          {
8475             uid_t egid;
8476             egid=getegid();
8477             ((CPUAlphaState *)cpu_env)->ir[IR_A4]=egid;
8478          }
8479         ret = get_errno(getgid());
8480         break;
8481 #endif
8482 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
8483     /* Alpha specific */
8484     case TARGET_NR_osf_getsysinfo:
8485         ret = -TARGET_EOPNOTSUPP;
8486         switch (arg1) {
8487           case TARGET_GSI_IEEE_FP_CONTROL:
8488             {
8489                 uint64_t swcr, fpcr = cpu_alpha_load_fpcr (cpu_env);
8490 
8491                 /* Copied from linux ieee_fpcr_to_swcr.  */
8492                 swcr = (fpcr >> 35) & SWCR_STATUS_MASK;
8493                 swcr |= (fpcr >> 36) & SWCR_MAP_DMZ;
8494                 swcr |= (~fpcr >> 48) & (SWCR_TRAP_ENABLE_INV
8495                                         | SWCR_TRAP_ENABLE_DZE
8496                                         | SWCR_TRAP_ENABLE_OVF);
8497                 swcr |= (~fpcr >> 57) & (SWCR_TRAP_ENABLE_UNF
8498                                         | SWCR_TRAP_ENABLE_INE);
8499                 swcr |= (fpcr >> 47) & SWCR_MAP_UMZ;
8500                 swcr |= (~fpcr >> 41) & SWCR_TRAP_ENABLE_DNO;
8501 
8502                 if (put_user_u64 (swcr, arg2))
8503                         goto efault;
8504                 ret = 0;
8505             }
8506             break;
8507 
8508           /* case GSI_IEEE_STATE_AT_SIGNAL:
8509              -- Not implemented in linux kernel.
8510              case GSI_UACPROC:
8511              -- Retrieves current unaligned access state; not much used.
8512              case GSI_PROC_TYPE:
8513              -- Retrieves implver information; surely not used.
8514              case GSI_GET_HWRPB:
8515              -- Grabs a copy of the HWRPB; surely not used.
8516           */
8517         }
8518         break;
8519 #endif
8520 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
8521     /* Alpha specific */
8522     case TARGET_NR_osf_setsysinfo:
8523         ret = -TARGET_EOPNOTSUPP;
8524         switch (arg1) {
8525           case TARGET_SSI_IEEE_FP_CONTROL:
8526             {
8527                 uint64_t swcr, fpcr, orig_fpcr;
8528 
8529                 if (get_user_u64 (swcr, arg2)) {
8530                     goto efault;
8531                 }
8532                 orig_fpcr = cpu_alpha_load_fpcr(cpu_env);
8533                 fpcr = orig_fpcr & FPCR_DYN_MASK;
8534 
8535                 /* Copied from linux ieee_swcr_to_fpcr.  */
8536                 fpcr |= (swcr & SWCR_STATUS_MASK) << 35;
8537                 fpcr |= (swcr & SWCR_MAP_DMZ) << 36;
8538                 fpcr |= (~swcr & (SWCR_TRAP_ENABLE_INV
8539                                   | SWCR_TRAP_ENABLE_DZE
8540                                   | SWCR_TRAP_ENABLE_OVF)) << 48;
8541                 fpcr |= (~swcr & (SWCR_TRAP_ENABLE_UNF
8542                                   | SWCR_TRAP_ENABLE_INE)) << 57;
8543                 fpcr |= (swcr & SWCR_MAP_UMZ ? FPCR_UNDZ | FPCR_UNFD : 0);
8544                 fpcr |= (~swcr & SWCR_TRAP_ENABLE_DNO) << 41;
8545 
8546                 cpu_alpha_store_fpcr(cpu_env, fpcr);
8547                 ret = 0;
8548             }
8549             break;
8550 
8551           case TARGET_SSI_IEEE_RAISE_EXCEPTION:
8552             {
8553                 uint64_t exc, fpcr, orig_fpcr;
8554                 int si_code;
8555 
8556                 if (get_user_u64(exc, arg2)) {
8557                     goto efault;
8558                 }
8559 
8560                 orig_fpcr = cpu_alpha_load_fpcr(cpu_env);
8561 
8562                 /* We only add to the exception status here.  */
8563                 fpcr = orig_fpcr | ((exc & SWCR_STATUS_MASK) << 35);
8564 
8565                 cpu_alpha_store_fpcr(cpu_env, fpcr);
8566                 ret = 0;
8567 
8568                 /* Old exceptions are not signaled.  */
8569                 fpcr &= ~(orig_fpcr & FPCR_STATUS_MASK);
8570 
8571                 /* If any exceptions set by this call,
8572                    and are unmasked, send a signal.  */
8573                 si_code = 0;
8574                 if ((fpcr & (FPCR_INE | FPCR_INED)) == FPCR_INE) {
8575                     si_code = TARGET_FPE_FLTRES;
8576                 }
8577                 if ((fpcr & (FPCR_UNF | FPCR_UNFD)) == FPCR_UNF) {
8578                     si_code = TARGET_FPE_FLTUND;
8579                 }
8580                 if ((fpcr & (FPCR_OVF | FPCR_OVFD)) == FPCR_OVF) {
8581                     si_code = TARGET_FPE_FLTOVF;
8582                 }
8583                 if ((fpcr & (FPCR_DZE | FPCR_DZED)) == FPCR_DZE) {
8584                     si_code = TARGET_FPE_FLTDIV;
8585                 }
8586                 if ((fpcr & (FPCR_INV | FPCR_INVD)) == FPCR_INV) {
8587                     si_code = TARGET_FPE_FLTINV;
8588                 }
8589                 if (si_code != 0) {
8590                     target_siginfo_t info;
8591                     info.si_signo = SIGFPE;
8592                     info.si_errno = 0;
8593                     info.si_code = si_code;
8594                     info._sifields._sigfault._addr
8595                         = ((CPUArchState *)cpu_env)->pc;
8596                     queue_signal((CPUArchState *)cpu_env, info.si_signo, &info);
8597                 }
8598             }
8599             break;
8600 
8601           /* case SSI_NVPAIRS:
8602              -- Used with SSIN_UACPROC to enable unaligned accesses.
8603              case SSI_IEEE_STATE_AT_SIGNAL:
8604              case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
8605              -- Not implemented in linux kernel
8606           */
8607         }
8608         break;
8609 #endif
8610 #ifdef TARGET_NR_osf_sigprocmask
8611     /* Alpha specific.  */
8612     case TARGET_NR_osf_sigprocmask:
8613         {
8614             abi_ulong mask;
8615             int how;
8616             sigset_t set, oldset;
8617 
8618             switch(arg1) {
8619             case TARGET_SIG_BLOCK:
8620                 how = SIG_BLOCK;
8621                 break;
8622             case TARGET_SIG_UNBLOCK:
8623                 how = SIG_UNBLOCK;
8624                 break;
8625             case TARGET_SIG_SETMASK:
8626                 how = SIG_SETMASK;
8627                 break;
8628             default:
8629                 ret = -TARGET_EINVAL;
8630                 goto fail;
8631             }
8632             mask = arg2;
8633             target_to_host_old_sigset(&set, &mask);
8634             do_sigprocmask(how, &set, &oldset);
8635             host_to_target_old_sigset(&mask, &oldset);
8636             ret = mask;
8637         }
8638         break;
8639 #endif
8640 
8641 #ifdef TARGET_NR_getgid32
8642     case TARGET_NR_getgid32:
8643         ret = get_errno(getgid());
8644         break;
8645 #endif
8646 #ifdef TARGET_NR_geteuid32
8647     case TARGET_NR_geteuid32:
8648         ret = get_errno(geteuid());
8649         break;
8650 #endif
8651 #ifdef TARGET_NR_getegid32
8652     case TARGET_NR_getegid32:
8653         ret = get_errno(getegid());
8654         break;
8655 #endif
8656 #ifdef TARGET_NR_setreuid32
8657     case TARGET_NR_setreuid32:
8658         ret = get_errno(setreuid(arg1, arg2));
8659         break;
8660 #endif
8661 #ifdef TARGET_NR_setregid32
8662     case TARGET_NR_setregid32:
8663         ret = get_errno(setregid(arg1, arg2));
8664         break;
8665 #endif
8666 #ifdef TARGET_NR_getgroups32
8667     case TARGET_NR_getgroups32:
8668         {
8669             int gidsetsize = arg1;
8670             uint32_t *target_grouplist;
8671             gid_t *grouplist;
8672             int i;
8673 
8674             grouplist = alloca(gidsetsize * sizeof(gid_t));
8675             ret = get_errno(getgroups(gidsetsize, grouplist));
8676             if (gidsetsize == 0)
8677                 break;
8678             if (!is_error(ret)) {
8679                 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * 4, 0);
8680                 if (!target_grouplist) {
8681                     ret = -TARGET_EFAULT;
8682                     goto fail;
8683                 }
8684                 for(i = 0;i < ret; i++)
8685                     target_grouplist[i] = tswap32(grouplist[i]);
8686                 unlock_user(target_grouplist, arg2, gidsetsize * 4);
8687             }
8688         }
8689         break;
8690 #endif
8691 #ifdef TARGET_NR_setgroups32
8692     case TARGET_NR_setgroups32:
8693         {
8694             int gidsetsize = arg1;
8695             uint32_t *target_grouplist;
8696             gid_t *grouplist;
8697             int i;
8698 
8699             grouplist = alloca(gidsetsize * sizeof(gid_t));
8700             target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * 4, 1);
8701             if (!target_grouplist) {
8702                 ret = -TARGET_EFAULT;
8703                 goto fail;
8704             }
8705             for(i = 0;i < gidsetsize; i++)
8706                 grouplist[i] = tswap32(target_grouplist[i]);
8707             unlock_user(target_grouplist, arg2, 0);
8708             ret = get_errno(setgroups(gidsetsize, grouplist));
8709         }
8710         break;
8711 #endif
8712 #ifdef TARGET_NR_fchown32
8713     case TARGET_NR_fchown32:
8714         ret = get_errno(fchown(arg1, arg2, arg3));
8715         break;
8716 #endif
8717 #ifdef TARGET_NR_setresuid32
8718     case TARGET_NR_setresuid32:
8719         ret = get_errno(setresuid(arg1, arg2, arg3));
8720         break;
8721 #endif
8722 #ifdef TARGET_NR_getresuid32
8723     case TARGET_NR_getresuid32:
8724         {
8725             uid_t ruid, euid, suid;
8726             ret = get_errno(getresuid(&ruid, &euid, &suid));
8727             if (!is_error(ret)) {
8728                 if (put_user_u32(ruid, arg1)
8729                     || put_user_u32(euid, arg2)
8730                     || put_user_u32(suid, arg3))
8731                     goto efault;
8732             }
8733         }
8734         break;
8735 #endif
8736 #ifdef TARGET_NR_setresgid32
8737     case TARGET_NR_setresgid32:
8738         ret = get_errno(setresgid(arg1, arg2, arg3));
8739         break;
8740 #endif
8741 #ifdef TARGET_NR_getresgid32
8742     case TARGET_NR_getresgid32:
8743         {
8744             gid_t rgid, egid, sgid;
8745             ret = get_errno(getresgid(&rgid, &egid, &sgid));
8746             if (!is_error(ret)) {
8747                 if (put_user_u32(rgid, arg1)
8748                     || put_user_u32(egid, arg2)
8749                     || put_user_u32(sgid, arg3))
8750                     goto efault;
8751             }
8752         }
8753         break;
8754 #endif
8755 #ifdef TARGET_NR_chown32
8756     case TARGET_NR_chown32:
8757         if (!(p = lock_user_string(arg1)))
8758             goto efault;
8759         ret = get_errno(chown(p, arg2, arg3));
8760         unlock_user(p, arg1, 0);
8761         break;
8762 #endif
8763 #ifdef TARGET_NR_setuid32
8764     case TARGET_NR_setuid32:
8765         ret = get_errno(setuid(arg1));
8766         break;
8767 #endif
8768 #ifdef TARGET_NR_setgid32
8769     case TARGET_NR_setgid32:
8770         ret = get_errno(setgid(arg1));
8771         break;
8772 #endif
8773 #ifdef TARGET_NR_setfsuid32
8774     case TARGET_NR_setfsuid32:
8775         ret = get_errno(setfsuid(arg1));
8776         break;
8777 #endif
8778 #ifdef TARGET_NR_setfsgid32
8779     case TARGET_NR_setfsgid32:
8780         ret = get_errno(setfsgid(arg1));
8781         break;
8782 #endif
8783 
8784     case TARGET_NR_pivot_root:
8785         goto unimplemented;
8786 #ifdef TARGET_NR_mincore
8787     case TARGET_NR_mincore:
8788         {
8789             void *a;
8790             ret = -TARGET_EFAULT;
8791             if (!(a = lock_user(VERIFY_READ, arg1,arg2, 0)))
8792                 goto efault;
8793             if (!(p = lock_user_string(arg3)))
8794                 goto mincore_fail;
8795             ret = get_errno(mincore(a, arg2, p));
8796             unlock_user(p, arg3, ret);
8797             mincore_fail:
8798             unlock_user(a, arg1, 0);
8799         }
8800         break;
8801 #endif
8802 #ifdef TARGET_NR_arm_fadvise64_64
8803     case TARGET_NR_arm_fadvise64_64:
8804 	{
8805 		/*
8806 		 * arm_fadvise64_64 looks like fadvise64_64 but
8807 		 * with different argument order
8808 		 */
8809 		abi_long temp;
8810 		temp = arg3;
8811 		arg3 = arg4;
8812 		arg4 = temp;
8813 	}
8814 #endif
8815 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_arm_fadvise64_64) || defined(TARGET_NR_fadvise64)
8816 #ifdef TARGET_NR_fadvise64_64
8817     case TARGET_NR_fadvise64_64:
8818 #endif
8819 #ifdef TARGET_NR_fadvise64
8820     case TARGET_NR_fadvise64:
8821 #endif
8822 #ifdef TARGET_S390X
8823         switch (arg4) {
8824         case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */
8825         case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */
8826         case 6: arg4 = POSIX_FADV_DONTNEED; break;
8827         case 7: arg4 = POSIX_FADV_NOREUSE; break;
8828         default: break;
8829         }
8830 #endif
8831         ret = -posix_fadvise(arg1, arg2, arg3, arg4);
8832 	break;
8833 #endif
8834 #ifdef TARGET_NR_madvise
8835     case TARGET_NR_madvise:
8836         /* A straight passthrough may not be safe because qemu sometimes
8837            turns private file-backed mappings into anonymous mappings.
8838            This will break MADV_DONTNEED.
8839            This is a hint, so ignoring and returning success is ok.  */
8840         ret = get_errno(0);
8841         break;
8842 #endif
8843 #if TARGET_ABI_BITS == 32
8844     case TARGET_NR_fcntl64:
8845     {
8846 	int cmd;
8847 	struct flock64 fl;
8848 	struct target_flock64 *target_fl;
8849 #ifdef TARGET_ARM
8850 	struct target_eabi_flock64 *target_efl;
8851 #endif
8852 
8853 	cmd = target_to_host_fcntl_cmd(arg2);
8854         if (cmd == -TARGET_EINVAL) {
8855             ret = cmd;
8856             break;
8857         }
8858 
8859         switch(arg2) {
8860         case TARGET_F_GETLK64:
8861 #ifdef TARGET_ARM
8862             if (((CPUARMState *)cpu_env)->eabi) {
8863                 if (!lock_user_struct(VERIFY_READ, target_efl, arg3, 1))
8864                     goto efault;
8865                 fl.l_type = tswap16(target_efl->l_type);
8866                 fl.l_whence = tswap16(target_efl->l_whence);
8867                 fl.l_start = tswap64(target_efl->l_start);
8868                 fl.l_len = tswap64(target_efl->l_len);
8869                 fl.l_pid = tswap32(target_efl->l_pid);
8870                 unlock_user_struct(target_efl, arg3, 0);
8871             } else
8872 #endif
8873             {
8874                 if (!lock_user_struct(VERIFY_READ, target_fl, arg3, 1))
8875                     goto efault;
8876                 fl.l_type = tswap16(target_fl->l_type);
8877                 fl.l_whence = tswap16(target_fl->l_whence);
8878                 fl.l_start = tswap64(target_fl->l_start);
8879                 fl.l_len = tswap64(target_fl->l_len);
8880                 fl.l_pid = tswap32(target_fl->l_pid);
8881                 unlock_user_struct(target_fl, arg3, 0);
8882             }
8883             ret = get_errno(fcntl(arg1, cmd, &fl));
8884 	    if (ret == 0) {
8885 #ifdef TARGET_ARM
8886                 if (((CPUARMState *)cpu_env)->eabi) {
8887                     if (!lock_user_struct(VERIFY_WRITE, target_efl, arg3, 0))
8888                         goto efault;
8889                     target_efl->l_type = tswap16(fl.l_type);
8890                     target_efl->l_whence = tswap16(fl.l_whence);
8891                     target_efl->l_start = tswap64(fl.l_start);
8892                     target_efl->l_len = tswap64(fl.l_len);
8893                     target_efl->l_pid = tswap32(fl.l_pid);
8894                     unlock_user_struct(target_efl, arg3, 1);
8895                 } else
8896 #endif
8897                 {
8898                     if (!lock_user_struct(VERIFY_WRITE, target_fl, arg3, 0))
8899                         goto efault;
8900                     target_fl->l_type = tswap16(fl.l_type);
8901                     target_fl->l_whence = tswap16(fl.l_whence);
8902                     target_fl->l_start = tswap64(fl.l_start);
8903                     target_fl->l_len = tswap64(fl.l_len);
8904                     target_fl->l_pid = tswap32(fl.l_pid);
8905                     unlock_user_struct(target_fl, arg3, 1);
8906                 }
8907 	    }
8908 	    break;
8909 
8910         case TARGET_F_SETLK64:
8911         case TARGET_F_SETLKW64:
8912 #ifdef TARGET_ARM
8913             if (((CPUARMState *)cpu_env)->eabi) {
8914                 if (!lock_user_struct(VERIFY_READ, target_efl, arg3, 1))
8915                     goto efault;
8916                 fl.l_type = tswap16(target_efl->l_type);
8917                 fl.l_whence = tswap16(target_efl->l_whence);
8918                 fl.l_start = tswap64(target_efl->l_start);
8919                 fl.l_len = tswap64(target_efl->l_len);
8920                 fl.l_pid = tswap32(target_efl->l_pid);
8921                 unlock_user_struct(target_efl, arg3, 0);
8922             } else
8923 #endif
8924             {
8925                 if (!lock_user_struct(VERIFY_READ, target_fl, arg3, 1))
8926                     goto efault;
8927                 fl.l_type = tswap16(target_fl->l_type);
8928                 fl.l_whence = tswap16(target_fl->l_whence);
8929                 fl.l_start = tswap64(target_fl->l_start);
8930                 fl.l_len = tswap64(target_fl->l_len);
8931                 fl.l_pid = tswap32(target_fl->l_pid);
8932                 unlock_user_struct(target_fl, arg3, 0);
8933             }
8934             ret = get_errno(fcntl(arg1, cmd, &fl));
8935 	    break;
8936         default:
8937             ret = do_fcntl(arg1, arg2, arg3);
8938             break;
8939         }
8940 	break;
8941     }
8942 #endif
8943 #ifdef TARGET_NR_cacheflush
8944     case TARGET_NR_cacheflush:
8945         /* self-modifying code is handled automatically, so nothing needed */
8946         ret = 0;
8947         break;
8948 #endif
8949 #ifdef TARGET_NR_security
8950     case TARGET_NR_security:
8951         goto unimplemented;
8952 #endif
8953 #ifdef TARGET_NR_getpagesize
8954     case TARGET_NR_getpagesize:
8955         ret = TARGET_PAGE_SIZE;
8956         break;
8957 #endif
8958     case TARGET_NR_gettid:
8959         ret = get_errno(gettid());
8960         break;
8961 #ifdef TARGET_NR_readahead
8962     case TARGET_NR_readahead:
8963 #if TARGET_ABI_BITS == 32
8964         if (regpairs_aligned(cpu_env)) {
8965             arg2 = arg3;
8966             arg3 = arg4;
8967             arg4 = arg5;
8968         }
8969         ret = get_errno(readahead(arg1, ((off64_t)arg3 << 32) | arg2, arg4));
8970 #else
8971         ret = get_errno(readahead(arg1, arg2, arg3));
8972 #endif
8973         break;
8974 #endif
8975 #ifdef CONFIG_ATTR
8976 #ifdef TARGET_NR_setxattr
8977     case TARGET_NR_listxattr:
8978     case TARGET_NR_llistxattr:
8979     {
8980         void *p, *b = 0;
8981         if (arg2) {
8982             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
8983             if (!b) {
8984                 ret = -TARGET_EFAULT;
8985                 break;
8986             }
8987         }
8988         p = lock_user_string(arg1);
8989         if (p) {
8990             if (num == TARGET_NR_listxattr) {
8991                 ret = get_errno(listxattr(p, b, arg3));
8992             } else {
8993                 ret = get_errno(llistxattr(p, b, arg3));
8994             }
8995         } else {
8996             ret = -TARGET_EFAULT;
8997         }
8998         unlock_user(p, arg1, 0);
8999         unlock_user(b, arg2, arg3);
9000         break;
9001     }
9002     case TARGET_NR_flistxattr:
9003     {
9004         void *b = 0;
9005         if (arg2) {
9006             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
9007             if (!b) {
9008                 ret = -TARGET_EFAULT;
9009                 break;
9010             }
9011         }
9012         ret = get_errno(flistxattr(arg1, b, arg3));
9013         unlock_user(b, arg2, arg3);
9014         break;
9015     }
9016     case TARGET_NR_setxattr:
9017     case TARGET_NR_lsetxattr:
9018         {
9019             void *p, *n, *v = 0;
9020             if (arg3) {
9021                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
9022                 if (!v) {
9023                     ret = -TARGET_EFAULT;
9024                     break;
9025                 }
9026             }
9027             p = lock_user_string(arg1);
9028             n = lock_user_string(arg2);
9029             if (p && n) {
9030                 if (num == TARGET_NR_setxattr) {
9031                     ret = get_errno(setxattr(p, n, v, arg4, arg5));
9032                 } else {
9033                     ret = get_errno(lsetxattr(p, n, v, arg4, arg5));
9034                 }
9035             } else {
9036                 ret = -TARGET_EFAULT;
9037             }
9038             unlock_user(p, arg1, 0);
9039             unlock_user(n, arg2, 0);
9040             unlock_user(v, arg3, 0);
9041         }
9042         break;
9043     case TARGET_NR_fsetxattr:
9044         {
9045             void *n, *v = 0;
9046             if (arg3) {
9047                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
9048                 if (!v) {
9049                     ret = -TARGET_EFAULT;
9050                     break;
9051                 }
9052             }
9053             n = lock_user_string(arg2);
9054             if (n) {
9055                 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5));
9056             } else {
9057                 ret = -TARGET_EFAULT;
9058             }
9059             unlock_user(n, arg2, 0);
9060             unlock_user(v, arg3, 0);
9061         }
9062         break;
9063     case TARGET_NR_getxattr:
9064     case TARGET_NR_lgetxattr:
9065         {
9066             void *p, *n, *v = 0;
9067             if (arg3) {
9068                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
9069                 if (!v) {
9070                     ret = -TARGET_EFAULT;
9071                     break;
9072                 }
9073             }
9074             p = lock_user_string(arg1);
9075             n = lock_user_string(arg2);
9076             if (p && n) {
9077                 if (num == TARGET_NR_getxattr) {
9078                     ret = get_errno(getxattr(p, n, v, arg4));
9079                 } else {
9080                     ret = get_errno(lgetxattr(p, n, v, arg4));
9081                 }
9082             } else {
9083                 ret = -TARGET_EFAULT;
9084             }
9085             unlock_user(p, arg1, 0);
9086             unlock_user(n, arg2, 0);
9087             unlock_user(v, arg3, arg4);
9088         }
9089         break;
9090     case TARGET_NR_fgetxattr:
9091         {
9092             void *n, *v = 0;
9093             if (arg3) {
9094                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
9095                 if (!v) {
9096                     ret = -TARGET_EFAULT;
9097                     break;
9098                 }
9099             }
9100             n = lock_user_string(arg2);
9101             if (n) {
9102                 ret = get_errno(fgetxattr(arg1, n, v, arg4));
9103             } else {
9104                 ret = -TARGET_EFAULT;
9105             }
9106             unlock_user(n, arg2, 0);
9107             unlock_user(v, arg3, arg4);
9108         }
9109         break;
9110     case TARGET_NR_removexattr:
9111     case TARGET_NR_lremovexattr:
9112         {
9113             void *p, *n;
9114             p = lock_user_string(arg1);
9115             n = lock_user_string(arg2);
9116             if (p && n) {
9117                 if (num == TARGET_NR_removexattr) {
9118                     ret = get_errno(removexattr(p, n));
9119                 } else {
9120                     ret = get_errno(lremovexattr(p, n));
9121                 }
9122             } else {
9123                 ret = -TARGET_EFAULT;
9124             }
9125             unlock_user(p, arg1, 0);
9126             unlock_user(n, arg2, 0);
9127         }
9128         break;
9129     case TARGET_NR_fremovexattr:
9130         {
9131             void *n;
9132             n = lock_user_string(arg2);
9133             if (n) {
9134                 ret = get_errno(fremovexattr(arg1, n));
9135             } else {
9136                 ret = -TARGET_EFAULT;
9137             }
9138             unlock_user(n, arg2, 0);
9139         }
9140         break;
9141 #endif
9142 #endif /* CONFIG_ATTR */
9143 #ifdef TARGET_NR_set_thread_area
9144     case TARGET_NR_set_thread_area:
9145 #if defined(TARGET_MIPS)
9146       ((CPUMIPSState *) cpu_env)->active_tc.CP0_UserLocal = arg1;
9147       ret = 0;
9148       break;
9149 #elif defined(TARGET_CRIS)
9150       if (arg1 & 0xff)
9151           ret = -TARGET_EINVAL;
9152       else {
9153           ((CPUCRISState *) cpu_env)->pregs[PR_PID] = arg1;
9154           ret = 0;
9155       }
9156       break;
9157 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
9158       ret = do_set_thread_area(cpu_env, arg1);
9159       break;
9160 #elif defined(TARGET_M68K)
9161       {
9162           TaskState *ts = cpu->opaque;
9163           ts->tp_value = arg1;
9164           ret = 0;
9165           break;
9166       }
9167 #else
9168       goto unimplemented_nowarn;
9169 #endif
9170 #endif
9171 #ifdef TARGET_NR_get_thread_area
9172     case TARGET_NR_get_thread_area:
9173 #if defined(TARGET_I386) && defined(TARGET_ABI32)
9174         ret = do_get_thread_area(cpu_env, arg1);
9175         break;
9176 #elif defined(TARGET_M68K)
9177         {
9178             TaskState *ts = cpu->opaque;
9179             ret = ts->tp_value;
9180             break;
9181         }
9182 #else
9183         goto unimplemented_nowarn;
9184 #endif
9185 #endif
9186 #ifdef TARGET_NR_getdomainname
9187     case TARGET_NR_getdomainname:
9188         goto unimplemented_nowarn;
9189 #endif
9190 
9191 #ifdef TARGET_NR_clock_gettime
9192     case TARGET_NR_clock_gettime:
9193     {
9194         struct timespec ts;
9195         ret = get_errno(clock_gettime(arg1, &ts));
9196         if (!is_error(ret)) {
9197             host_to_target_timespec(arg2, &ts);
9198         }
9199         break;
9200     }
9201 #endif
9202 #ifdef TARGET_NR_clock_getres
9203     case TARGET_NR_clock_getres:
9204     {
9205         struct timespec ts;
9206         ret = get_errno(clock_getres(arg1, &ts));
9207         if (!is_error(ret)) {
9208             host_to_target_timespec(arg2, &ts);
9209         }
9210         break;
9211     }
9212 #endif
9213 #ifdef TARGET_NR_clock_nanosleep
9214     case TARGET_NR_clock_nanosleep:
9215     {
9216         struct timespec ts;
9217         target_to_host_timespec(&ts, arg3);
9218         ret = get_errno(clock_nanosleep(arg1, arg2, &ts, arg4 ? &ts : NULL));
9219         if (arg4)
9220             host_to_target_timespec(arg4, &ts);
9221 
9222 #if defined(TARGET_PPC)
9223         /* clock_nanosleep is odd in that it returns positive errno values.
9224          * On PPC, CR0 bit 3 should be set in such a situation. */
9225         if (ret) {
9226             ((CPUPPCState *)cpu_env)->crf[0] |= 1;
9227         }
9228 #endif
9229         break;
9230     }
9231 #endif
9232 
9233 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
9234     case TARGET_NR_set_tid_address:
9235         ret = get_errno(set_tid_address((int *)g2h(arg1)));
9236         break;
9237 #endif
9238 
9239 #if defined(TARGET_NR_tkill) && defined(__NR_tkill)
9240     case TARGET_NR_tkill:
9241         ret = get_errno(sys_tkill((int)arg1, target_to_host_signal(arg2)));
9242         break;
9243 #endif
9244 
9245 #if defined(TARGET_NR_tgkill) && defined(__NR_tgkill)
9246     case TARGET_NR_tgkill:
9247 	ret = get_errno(sys_tgkill((int)arg1, (int)arg2,
9248                         target_to_host_signal(arg3)));
9249 	break;
9250 #endif
9251 
9252 #ifdef TARGET_NR_set_robust_list
9253     case TARGET_NR_set_robust_list:
9254     case TARGET_NR_get_robust_list:
9255         /* The ABI for supporting robust futexes has userspace pass
9256          * the kernel a pointer to a linked list which is updated by
9257          * userspace after the syscall; the list is walked by the kernel
9258          * when the thread exits. Since the linked list in QEMU guest
9259          * memory isn't a valid linked list for the host and we have
9260          * no way to reliably intercept the thread-death event, we can't
9261          * support these. Silently return ENOSYS so that guest userspace
9262          * falls back to a non-robust futex implementation (which should
9263          * be OK except in the corner case of the guest crashing while
9264          * holding a mutex that is shared with another process via
9265          * shared memory).
9266          */
9267         goto unimplemented_nowarn;
9268 #endif
9269 
9270 #if defined(TARGET_NR_utimensat)
9271     case TARGET_NR_utimensat:
9272         {
9273             struct timespec *tsp, ts[2];
9274             if (!arg3) {
9275                 tsp = NULL;
9276             } else {
9277                 target_to_host_timespec(ts, arg3);
9278                 target_to_host_timespec(ts+1, arg3+sizeof(struct target_timespec));
9279                 tsp = ts;
9280             }
9281             if (!arg2)
9282                 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
9283             else {
9284                 if (!(p = lock_user_string(arg2))) {
9285                     ret = -TARGET_EFAULT;
9286                     goto fail;
9287                 }
9288                 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
9289                 unlock_user(p, arg2, 0);
9290             }
9291         }
9292 	break;
9293 #endif
9294     case TARGET_NR_futex:
9295         ret = do_futex(arg1, arg2, arg3, arg4, arg5, arg6);
9296         break;
9297 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
9298     case TARGET_NR_inotify_init:
9299         ret = get_errno(sys_inotify_init());
9300         break;
9301 #endif
9302 #ifdef CONFIG_INOTIFY1
9303 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
9304     case TARGET_NR_inotify_init1:
9305         ret = get_errno(sys_inotify_init1(arg1));
9306         break;
9307 #endif
9308 #endif
9309 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
9310     case TARGET_NR_inotify_add_watch:
9311         p = lock_user_string(arg2);
9312         ret = get_errno(sys_inotify_add_watch(arg1, path(p), arg3));
9313         unlock_user(p, arg2, 0);
9314         break;
9315 #endif
9316 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
9317     case TARGET_NR_inotify_rm_watch:
9318         ret = get_errno(sys_inotify_rm_watch(arg1, arg2));
9319         break;
9320 #endif
9321 
9322 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
9323     case TARGET_NR_mq_open:
9324         {
9325             struct mq_attr posix_mq_attr, *attrp;
9326 
9327             p = lock_user_string(arg1 - 1);
9328             if (arg4 != 0) {
9329                 copy_from_user_mq_attr (&posix_mq_attr, arg4);
9330                 attrp = &posix_mq_attr;
9331             } else {
9332                 attrp = 0;
9333             }
9334             ret = get_errno(mq_open(p, arg2, arg3, attrp));
9335             unlock_user (p, arg1, 0);
9336         }
9337         break;
9338 
9339     case TARGET_NR_mq_unlink:
9340         p = lock_user_string(arg1 - 1);
9341         ret = get_errno(mq_unlink(p));
9342         unlock_user (p, arg1, 0);
9343         break;
9344 
9345     case TARGET_NR_mq_timedsend:
9346         {
9347             struct timespec ts;
9348 
9349             p = lock_user (VERIFY_READ, arg2, arg3, 1);
9350             if (arg5 != 0) {
9351                 target_to_host_timespec(&ts, arg5);
9352                 ret = get_errno(mq_timedsend(arg1, p, arg3, arg4, &ts));
9353                 host_to_target_timespec(arg5, &ts);
9354             }
9355             else
9356                 ret = get_errno(mq_send(arg1, p, arg3, arg4));
9357             unlock_user (p, arg2, arg3);
9358         }
9359         break;
9360 
9361     case TARGET_NR_mq_timedreceive:
9362         {
9363             struct timespec ts;
9364             unsigned int prio;
9365 
9366             p = lock_user (VERIFY_READ, arg2, arg3, 1);
9367             if (arg5 != 0) {
9368                 target_to_host_timespec(&ts, arg5);
9369                 ret = get_errno(mq_timedreceive(arg1, p, arg3, &prio, &ts));
9370                 host_to_target_timespec(arg5, &ts);
9371             }
9372             else
9373                 ret = get_errno(mq_receive(arg1, p, arg3, &prio));
9374             unlock_user (p, arg2, arg3);
9375             if (arg4 != 0)
9376                 put_user_u32(prio, arg4);
9377         }
9378         break;
9379 
9380     /* Not implemented for now... */
9381 /*     case TARGET_NR_mq_notify: */
9382 /*         break; */
9383 
9384     case TARGET_NR_mq_getsetattr:
9385         {
9386             struct mq_attr posix_mq_attr_in, posix_mq_attr_out;
9387             ret = 0;
9388             if (arg3 != 0) {
9389                 ret = mq_getattr(arg1, &posix_mq_attr_out);
9390                 copy_to_user_mq_attr(arg3, &posix_mq_attr_out);
9391             }
9392             if (arg2 != 0) {
9393                 copy_from_user_mq_attr(&posix_mq_attr_in, arg2);
9394                 ret |= mq_setattr(arg1, &posix_mq_attr_in, &posix_mq_attr_out);
9395             }
9396 
9397         }
9398         break;
9399 #endif
9400 
9401 #ifdef CONFIG_SPLICE
9402 #ifdef TARGET_NR_tee
9403     case TARGET_NR_tee:
9404         {
9405             ret = get_errno(tee(arg1,arg2,arg3,arg4));
9406         }
9407         break;
9408 #endif
9409 #ifdef TARGET_NR_splice
9410     case TARGET_NR_splice:
9411         {
9412             loff_t loff_in, loff_out;
9413             loff_t *ploff_in = NULL, *ploff_out = NULL;
9414             if (arg2) {
9415                 if (get_user_u64(loff_in, arg2)) {
9416                     goto efault;
9417                 }
9418                 ploff_in = &loff_in;
9419             }
9420             if (arg4) {
9421                 if (get_user_u64(loff_out, arg4)) {
9422                     goto efault;
9423                 }
9424                 ploff_out = &loff_out;
9425             }
9426             ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6));
9427             if (arg2) {
9428                 if (put_user_u64(loff_in, arg2)) {
9429                     goto efault;
9430                 }
9431             }
9432             if (arg4) {
9433                 if (put_user_u64(loff_out, arg4)) {
9434                     goto efault;
9435                 }
9436             }
9437         }
9438         break;
9439 #endif
9440 #ifdef TARGET_NR_vmsplice
9441 	case TARGET_NR_vmsplice:
9442         {
9443             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
9444             if (vec != NULL) {
9445                 ret = get_errno(vmsplice(arg1, vec, arg3, arg4));
9446                 unlock_iovec(vec, arg2, arg3, 0);
9447             } else {
9448                 ret = -host_to_target_errno(errno);
9449             }
9450         }
9451         break;
9452 #endif
9453 #endif /* CONFIG_SPLICE */
9454 #ifdef CONFIG_EVENTFD
9455 #if defined(TARGET_NR_eventfd)
9456     case TARGET_NR_eventfd:
9457         ret = get_errno(eventfd(arg1, 0));
9458         break;
9459 #endif
9460 #if defined(TARGET_NR_eventfd2)
9461     case TARGET_NR_eventfd2:
9462     {
9463         int host_flags = arg2 & (~(TARGET_O_NONBLOCK | TARGET_O_CLOEXEC));
9464         if (arg2 & TARGET_O_NONBLOCK) {
9465             host_flags |= O_NONBLOCK;
9466         }
9467         if (arg2 & TARGET_O_CLOEXEC) {
9468             host_flags |= O_CLOEXEC;
9469         }
9470         ret = get_errno(eventfd(arg1, host_flags));
9471         break;
9472     }
9473 #endif
9474 #endif /* CONFIG_EVENTFD  */
9475 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
9476     case TARGET_NR_fallocate:
9477 #if TARGET_ABI_BITS == 32
9478         ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4),
9479                                   target_offset64(arg5, arg6)));
9480 #else
9481         ret = get_errno(fallocate(arg1, arg2, arg3, arg4));
9482 #endif
9483         break;
9484 #endif
9485 #if defined(CONFIG_SYNC_FILE_RANGE)
9486 #if defined(TARGET_NR_sync_file_range)
9487     case TARGET_NR_sync_file_range:
9488 #if TARGET_ABI_BITS == 32
9489 #if defined(TARGET_MIPS)
9490         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
9491                                         target_offset64(arg5, arg6), arg7));
9492 #else
9493         ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3),
9494                                         target_offset64(arg4, arg5), arg6));
9495 #endif /* !TARGET_MIPS */
9496 #else
9497         ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4));
9498 #endif
9499         break;
9500 #endif
9501 #if defined(TARGET_NR_sync_file_range2)
9502     case TARGET_NR_sync_file_range2:
9503         /* This is like sync_file_range but the arguments are reordered */
9504 #if TARGET_ABI_BITS == 32
9505         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
9506                                         target_offset64(arg5, arg6), arg2));
9507 #else
9508         ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2));
9509 #endif
9510         break;
9511 #endif
9512 #endif
9513 #if defined(CONFIG_EPOLL)
9514 #if defined(TARGET_NR_epoll_create)
9515     case TARGET_NR_epoll_create:
9516         ret = get_errno(epoll_create(arg1));
9517         break;
9518 #endif
9519 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
9520     case TARGET_NR_epoll_create1:
9521         ret = get_errno(epoll_create1(arg1));
9522         break;
9523 #endif
9524 #if defined(TARGET_NR_epoll_ctl)
9525     case TARGET_NR_epoll_ctl:
9526     {
9527         struct epoll_event ep;
9528         struct epoll_event *epp = 0;
9529         if (arg4) {
9530             struct target_epoll_event *target_ep;
9531             if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) {
9532                 goto efault;
9533             }
9534             ep.events = tswap32(target_ep->events);
9535             /* The epoll_data_t union is just opaque data to the kernel,
9536              * so we transfer all 64 bits across and need not worry what
9537              * actual data type it is.
9538              */
9539             ep.data.u64 = tswap64(target_ep->data.u64);
9540             unlock_user_struct(target_ep, arg4, 0);
9541             epp = &ep;
9542         }
9543         ret = get_errno(epoll_ctl(arg1, arg2, arg3, epp));
9544         break;
9545     }
9546 #endif
9547 
9548 #if defined(TARGET_NR_epoll_pwait) && defined(CONFIG_EPOLL_PWAIT)
9549 #define IMPLEMENT_EPOLL_PWAIT
9550 #endif
9551 #if defined(TARGET_NR_epoll_wait) || defined(IMPLEMENT_EPOLL_PWAIT)
9552 #if defined(TARGET_NR_epoll_wait)
9553     case TARGET_NR_epoll_wait:
9554 #endif
9555 #if defined(IMPLEMENT_EPOLL_PWAIT)
9556     case TARGET_NR_epoll_pwait:
9557 #endif
9558     {
9559         struct target_epoll_event *target_ep;
9560         struct epoll_event *ep;
9561         int epfd = arg1;
9562         int maxevents = arg3;
9563         int timeout = arg4;
9564 
9565         target_ep = lock_user(VERIFY_WRITE, arg2,
9566                               maxevents * sizeof(struct target_epoll_event), 1);
9567         if (!target_ep) {
9568             goto efault;
9569         }
9570 
9571         ep = alloca(maxevents * sizeof(struct epoll_event));
9572 
9573         switch (num) {
9574 #if defined(IMPLEMENT_EPOLL_PWAIT)
9575         case TARGET_NR_epoll_pwait:
9576         {
9577             target_sigset_t *target_set;
9578             sigset_t _set, *set = &_set;
9579 
9580             if (arg5) {
9581                 target_set = lock_user(VERIFY_READ, arg5,
9582                                        sizeof(target_sigset_t), 1);
9583                 if (!target_set) {
9584                     unlock_user(target_ep, arg2, 0);
9585                     goto efault;
9586                 }
9587                 target_to_host_sigset(set, target_set);
9588                 unlock_user(target_set, arg5, 0);
9589             } else {
9590                 set = NULL;
9591             }
9592 
9593             ret = get_errno(epoll_pwait(epfd, ep, maxevents, timeout, set));
9594             break;
9595         }
9596 #endif
9597 #if defined(TARGET_NR_epoll_wait)
9598         case TARGET_NR_epoll_wait:
9599             ret = get_errno(epoll_wait(epfd, ep, maxevents, timeout));
9600             break;
9601 #endif
9602         default:
9603             ret = -TARGET_ENOSYS;
9604         }
9605         if (!is_error(ret)) {
9606             int i;
9607             for (i = 0; i < ret; i++) {
9608                 target_ep[i].events = tswap32(ep[i].events);
9609                 target_ep[i].data.u64 = tswap64(ep[i].data.u64);
9610             }
9611         }
9612         unlock_user(target_ep, arg2, ret * sizeof(struct target_epoll_event));
9613         break;
9614     }
9615 #endif
9616 #endif
9617 #ifdef TARGET_NR_prlimit64
9618     case TARGET_NR_prlimit64:
9619     {
9620         /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
9621         struct target_rlimit64 *target_rnew, *target_rold;
9622         struct host_rlimit64 rnew, rold, *rnewp = 0;
9623         int resource = target_to_host_resource(arg2);
9624         if (arg3) {
9625             if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) {
9626                 goto efault;
9627             }
9628             rnew.rlim_cur = tswap64(target_rnew->rlim_cur);
9629             rnew.rlim_max = tswap64(target_rnew->rlim_max);
9630             unlock_user_struct(target_rnew, arg3, 0);
9631             rnewp = &rnew;
9632         }
9633 
9634         ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0));
9635         if (!is_error(ret) && arg4) {
9636             if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) {
9637                 goto efault;
9638             }
9639             target_rold->rlim_cur = tswap64(rold.rlim_cur);
9640             target_rold->rlim_max = tswap64(rold.rlim_max);
9641             unlock_user_struct(target_rold, arg4, 1);
9642         }
9643         break;
9644     }
9645 #endif
9646 #ifdef TARGET_NR_gethostname
9647     case TARGET_NR_gethostname:
9648     {
9649         char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0);
9650         if (name) {
9651             ret = get_errno(gethostname(name, arg2));
9652             unlock_user(name, arg1, arg2);
9653         } else {
9654             ret = -TARGET_EFAULT;
9655         }
9656         break;
9657     }
9658 #endif
9659 #ifdef TARGET_NR_atomic_cmpxchg_32
9660     case TARGET_NR_atomic_cmpxchg_32:
9661     {
9662         /* should use start_exclusive from main.c */
9663         abi_ulong mem_value;
9664         if (get_user_u32(mem_value, arg6)) {
9665             target_siginfo_t info;
9666             info.si_signo = SIGSEGV;
9667             info.si_errno = 0;
9668             info.si_code = TARGET_SEGV_MAPERR;
9669             info._sifields._sigfault._addr = arg6;
9670             queue_signal((CPUArchState *)cpu_env, info.si_signo, &info);
9671             ret = 0xdeadbeef;
9672 
9673         }
9674         if (mem_value == arg2)
9675             put_user_u32(arg1, arg6);
9676         ret = mem_value;
9677         break;
9678     }
9679 #endif
9680 #ifdef TARGET_NR_atomic_barrier
9681     case TARGET_NR_atomic_barrier:
9682     {
9683         /* Like the kernel implementation and the qemu arm barrier, no-op this? */
9684         ret = 0;
9685         break;
9686     }
9687 #endif
9688 
9689 #ifdef TARGET_NR_timer_create
9690     case TARGET_NR_timer_create:
9691     {
9692         /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
9693 
9694         struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL;
9695 
9696         int clkid = arg1;
9697         int timer_index = next_free_host_timer();
9698 
9699         if (timer_index < 0) {
9700             ret = -TARGET_EAGAIN;
9701         } else {
9702             timer_t *phtimer = g_posix_timers  + timer_index;
9703 
9704             if (arg2) {
9705                 phost_sevp = &host_sevp;
9706                 ret = target_to_host_sigevent(phost_sevp, arg2);
9707                 if (ret != 0) {
9708                     break;
9709                 }
9710             }
9711 
9712             ret = get_errno(timer_create(clkid, phost_sevp, phtimer));
9713             if (ret) {
9714                 phtimer = NULL;
9715             } else {
9716                 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) {
9717                     goto efault;
9718                 }
9719             }
9720         }
9721         break;
9722     }
9723 #endif
9724 
9725 #ifdef TARGET_NR_timer_settime
9726     case TARGET_NR_timer_settime:
9727     {
9728         /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
9729          * struct itimerspec * old_value */
9730         target_timer_t timerid = get_timer_id(arg1);
9731 
9732         if (timerid < 0) {
9733             ret = timerid;
9734         } else if (arg3 == 0) {
9735             ret = -TARGET_EINVAL;
9736         } else {
9737             timer_t htimer = g_posix_timers[timerid];
9738             struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
9739 
9740             target_to_host_itimerspec(&hspec_new, arg3);
9741             ret = get_errno(
9742                           timer_settime(htimer, arg2, &hspec_new, &hspec_old));
9743             host_to_target_itimerspec(arg2, &hspec_old);
9744         }
9745         break;
9746     }
9747 #endif
9748 
9749 #ifdef TARGET_NR_timer_gettime
9750     case TARGET_NR_timer_gettime:
9751     {
9752         /* args: timer_t timerid, struct itimerspec *curr_value */
9753         target_timer_t timerid = get_timer_id(arg1);
9754 
9755         if (timerid < 0) {
9756             ret = timerid;
9757         } else if (!arg2) {
9758             ret = -TARGET_EFAULT;
9759         } else {
9760             timer_t htimer = g_posix_timers[timerid];
9761             struct itimerspec hspec;
9762             ret = get_errno(timer_gettime(htimer, &hspec));
9763 
9764             if (host_to_target_itimerspec(arg2, &hspec)) {
9765                 ret = -TARGET_EFAULT;
9766             }
9767         }
9768         break;
9769     }
9770 #endif
9771 
9772 #ifdef TARGET_NR_timer_getoverrun
9773     case TARGET_NR_timer_getoverrun:
9774     {
9775         /* args: timer_t timerid */
9776         target_timer_t timerid = get_timer_id(arg1);
9777 
9778         if (timerid < 0) {
9779             ret = timerid;
9780         } else {
9781             timer_t htimer = g_posix_timers[timerid];
9782             ret = get_errno(timer_getoverrun(htimer));
9783         }
9784         break;
9785     }
9786 #endif
9787 
9788 #ifdef TARGET_NR_timer_delete
9789     case TARGET_NR_timer_delete:
9790     {
9791         /* args: timer_t timerid */
9792         target_timer_t timerid = get_timer_id(arg1);
9793 
9794         if (timerid < 0) {
9795             ret = timerid;
9796         } else {
9797             timer_t htimer = g_posix_timers[timerid];
9798             ret = get_errno(timer_delete(htimer));
9799             g_posix_timers[timerid] = 0;
9800         }
9801         break;
9802     }
9803 #endif
9804 
9805 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
9806     case TARGET_NR_timerfd_create:
9807         ret = get_errno(timerfd_create(arg1,
9808                 target_to_host_bitmask(arg2, fcntl_flags_tbl)));
9809         break;
9810 #endif
9811 
9812 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
9813     case TARGET_NR_timerfd_gettime:
9814         {
9815             struct itimerspec its_curr;
9816 
9817             ret = get_errno(timerfd_gettime(arg1, &its_curr));
9818 
9819             if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) {
9820                 goto efault;
9821             }
9822         }
9823         break;
9824 #endif
9825 
9826 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
9827     case TARGET_NR_timerfd_settime:
9828         {
9829             struct itimerspec its_new, its_old, *p_new;
9830 
9831             if (arg3) {
9832                 if (target_to_host_itimerspec(&its_new, arg3)) {
9833                     goto efault;
9834                 }
9835                 p_new = &its_new;
9836             } else {
9837                 p_new = NULL;
9838             }
9839 
9840             ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
9841 
9842             if (arg4 && host_to_target_itimerspec(arg4, &its_old)) {
9843                 goto efault;
9844             }
9845         }
9846         break;
9847 #endif
9848 
9849 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
9850     case TARGET_NR_ioprio_get:
9851         ret = get_errno(ioprio_get(arg1, arg2));
9852         break;
9853 #endif
9854 
9855 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
9856     case TARGET_NR_ioprio_set:
9857         ret = get_errno(ioprio_set(arg1, arg2, arg3));
9858         break;
9859 #endif
9860 
9861 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
9862     case TARGET_NR_setns:
9863         ret = get_errno(setns(arg1, arg2));
9864         break;
9865 #endif
9866 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
9867     case TARGET_NR_unshare:
9868         ret = get_errno(unshare(arg1));
9869         break;
9870 #endif
9871 
9872     default:
9873     unimplemented:
9874         gemu_log("qemu: Unsupported syscall: %d\n", num);
9875 #if defined(TARGET_NR_setxattr) || defined(TARGET_NR_get_thread_area) || defined(TARGET_NR_getdomainname) || defined(TARGET_NR_set_robust_list)
9876     unimplemented_nowarn:
9877 #endif
9878         ret = -TARGET_ENOSYS;
9879         break;
9880     }
9881 fail:
9882 #ifdef DEBUG
9883     gemu_log(" = " TARGET_ABI_FMT_ld "\n", ret);
9884 #endif
9885     if(do_strace)
9886         print_syscall_ret(num, ret);
9887     return ret;
9888 efault:
9889     ret = -TARGET_EFAULT;
9890     goto fail;
9891 }
9892